Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia

Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topograph...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 28; no. 28; pp. 7143 - 7152
Main Authors Draganski, Bogdan, Kherif, Ferath, Kloppel, Stefan, Cook, Philip A, Alexander, Daniel C, Parker, Geoff J. M, Deichmann, Ralf, Ashburner, John, Frackowiak, Richard S. J
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 09.07.2008
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.1486-08.2008

Cover

Loading…
Abstract Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo . Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
AbstractList Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo . Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Author Cook, Philip A
Kherif, Ferath
Alexander, Daniel C
Deichmann, Ralf
Ashburner, John
Parker, Geoff J. M
Draganski, Bogdan
Kloppel, Stefan
Frackowiak, Richard S. J
Author_xml – sequence: 1
  fullname: Draganski, Bogdan
– sequence: 2
  fullname: Kherif, Ferath
– sequence: 3
  fullname: Kloppel, Stefan
– sequence: 4
  fullname: Cook, Philip A
– sequence: 5
  fullname: Alexander, Daniel C
– sequence: 6
  fullname: Parker, Geoff J. M
– sequence: 7
  fullname: Deichmann, Ralf
– sequence: 8
  fullname: Ashburner, John
– sequence: 9
  fullname: Frackowiak, Richard S. J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18614684$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCK1RewWqC_8b2SAgJotAGVRRRKrGzXM_NxGjiKbaTqG-PRykR7aYrW77fuT465wQdhSEAQmeUTGnN-Puv3-Y3P66uZ4spFVpWRE8ZIfoFmpRpUzFB6BGaEKZIJYUSx-gkpd-EEEWoeoWOqZZUSC0m6Nd861sIDvByiPgaugidzdBiG1q8CLk82Oy3gGdDCODK1ed7_N3mDDEk7APOK8AXm7UN-LNNtsfnNnS9t6_Ry6XtE7x5OE_RzZf5z9lFdXl1vph9uqxcLWiuFOeaWked1o4LcG2jmZDqdumcVECZcpYxwmxjSdMWkrXa1krTVtUgQRB-ij7u995tbtfQOgg52t7cRb-28d4M1pvHk-BXphu2RkpFSnRlwduHBXH4s4GUzdonB31vAwybZGTDKSdcPQsyonTNmxE8-9_Swcu_1AvwYQ-4OKQUYWmczyXmYXToe0OJGUs2h5LNWLIh2owlF7l8Ij_88Jzw3V648t1q5yOYtLZ9X2xSs9vtWMG0UVRw_hcytbqx
CitedBy_id crossref_primary_10_1371_journal_pone_0098211
crossref_primary_10_1016_j_nbd_2011_02_010
crossref_primary_10_1007_s10143_015_0643_1
crossref_primary_10_1016_j_neuroimage_2013_09_009
crossref_primary_10_1016_j_cortex_2020_02_010
crossref_primary_10_1038_pr_2017_161
crossref_primary_10_1016_j_neuroimage_2017_02_019
crossref_primary_10_1016_j_neuroscience_2011_07_060
crossref_primary_10_1016_j_nbd_2009_12_002
crossref_primary_10_1093_cercor_bhp293
crossref_primary_10_1523_JNEUROSCI_1750_23_2024
crossref_primary_10_3389_fnhum_2016_00374
crossref_primary_10_1016_j_neuroimage_2020_117105
crossref_primary_10_1016_j_neuroimage_2010_05_060
crossref_primary_10_1371_journal_pone_0066736
crossref_primary_10_1038_s41598_019_56260_x
crossref_primary_10_1016_j_neuroimage_2024_120866
crossref_primary_10_1093_scan_nsu157
crossref_primary_10_1016_j_brainres_2020_147129
crossref_primary_10_1016_j_biopsych_2016_08_009
crossref_primary_10_1002_ca_22689
crossref_primary_10_1093_cercor_bhy093
crossref_primary_10_1017_S0033291708004716
crossref_primary_10_1016_j_schres_2023_09_018
crossref_primary_10_7554_eLife_93063
crossref_primary_10_7554_eLife_93063_4
crossref_primary_10_1016_j_nicl_2020_102382
crossref_primary_10_31083_j_jin2311200
crossref_primary_10_1007_s00429_018_1662_9
crossref_primary_10_1371_journal_pone_0067931
crossref_primary_10_1016_j_neuron_2021_06_003
crossref_primary_10_1111_adb_12523
crossref_primary_10_3389_fnhum_2022_1050605
crossref_primary_10_1002_mds_27054
crossref_primary_10_1016_j_cortex_2013_10_009
crossref_primary_10_1002_hbm_25538
crossref_primary_10_1093_cercor_bhab532
crossref_primary_10_31887_DCNS_2010_12_4_tschulte
crossref_primary_10_1097_WNR_0b013e32832aa928
crossref_primary_10_1002_hbm_24361
crossref_primary_10_1016_j_neuroscience_2009_01_045
crossref_primary_10_1159_000534009
crossref_primary_10_31887_DCNS_2018_20_2_gfricchione
crossref_primary_10_11154_pain_31_135
crossref_primary_10_1016_j_neures_2024_01_007
crossref_primary_10_1007_s40429_019_00268_w
crossref_primary_10_1016_j_bpsc_2019_05_017
crossref_primary_10_1016_j_pscychresns_2021_111352
crossref_primary_10_1093_brain_awz310
crossref_primary_10_1016_j_pscychresns_2016_10_012
crossref_primary_10_1523_JNEUROSCI_1808_18_2018
crossref_primary_10_1089_brain_2019_0722
crossref_primary_10_1016_j_ymgme_2022_09_006
crossref_primary_10_1038_s41380_023_02031_0
crossref_primary_10_1002_ana_24694
crossref_primary_10_1016_j_neuroimage_2014_12_016
crossref_primary_10_1152_jn_00260_2016
crossref_primary_10_1016_j_nicl_2016_02_011
crossref_primary_10_1136_bmjdrc_2015_000175
crossref_primary_10_1111_ejn_12956
crossref_primary_10_1002_hbm_25201
crossref_primary_10_1136_jnnp_2020_324256
crossref_primary_10_1002_hbm_24233
crossref_primary_10_1016_j_nicl_2014_05_009
crossref_primary_10_1002_ejp_745
crossref_primary_10_1016_j_bpsc_2018_12_011
crossref_primary_10_1162_jocn_2010_21510
crossref_primary_10_1093_cercor_bhp178
crossref_primary_10_1093_cercor_bhr117
crossref_primary_10_1038_s41562_017_0146
crossref_primary_10_1162_jocn_a_02124
crossref_primary_10_1016_j_brainres_2011_09_040
crossref_primary_10_1093_cercor_bhr114
crossref_primary_10_1016_j_pain_2013_04_010
crossref_primary_10_1016_j_parkreldis_2016_07_012
crossref_primary_10_1212_WNL_0000000000006880
crossref_primary_10_1093_schbul_sbx180
crossref_primary_10_1111_gbb_12386
crossref_primary_10_1371_journal_pone_0029517
crossref_primary_10_1038_s41598_018_21346_5
crossref_primary_10_1002_asi_24242
crossref_primary_10_1093_cercor_bhp098
crossref_primary_10_1016_j_neubiorev_2019_04_017
crossref_primary_10_7554_eLife_96020
crossref_primary_10_3389_fnhum_2018_00115
crossref_primary_10_3389_fpsyg_2018_02415
crossref_primary_10_1093_pm_pnaa227
crossref_primary_10_1093_schbul_sbz129
crossref_primary_10_1016_j_neubiorev_2016_08_036
crossref_primary_10_1093_brain_awv134
crossref_primary_10_1159_000534307
crossref_primary_10_1016_j_msard_2020_102351
crossref_primary_10_1038_s41380_023_02063_6
crossref_primary_10_1093_brain_awv259
crossref_primary_10_1016_j_pscychresns_2019_07_003
crossref_primary_10_4103_1673_5374_322463
crossref_primary_10_1016_j_yfrne_2016_10_001
crossref_primary_10_1016_j_neuroimage_2016_09_037
crossref_primary_10_3389_fpsyt_2021_706017
crossref_primary_10_1111_epi_12428
crossref_primary_10_1523_JNEUROSCI_4394_09_2010
crossref_primary_10_1212_WNL_0000000000001189
crossref_primary_10_3389_fpsyg_2018_02781
crossref_primary_10_1016_j_biopsych_2020_03_010
crossref_primary_10_1016_j_neuron_2014_08_031
crossref_primary_10_1007_s00429_017_1450_y
crossref_primary_10_1016_j_neuroimage_2022_119391
crossref_primary_10_1177_0004867411432076
crossref_primary_10_1212_WNL_0000000000004680
crossref_primary_10_1007_s00429_016_1250_9
crossref_primary_10_1016_j_cortex_2013_02_014
crossref_primary_10_1038_s41598_024_58339_6
crossref_primary_10_18632_aging_103628
crossref_primary_10_3390_diagnostics11030560
crossref_primary_10_1162_jocn_a_01229
crossref_primary_10_4081_ejh_2021_3284
crossref_primary_10_1016_j_ynirp_2023_100189
crossref_primary_10_1016_j_nicl_2020_102297
crossref_primary_10_1162_jocn_a_00255
crossref_primary_10_3389_fnana_2017_00030
crossref_primary_10_1016_j_neuroimage_2019_01_078
crossref_primary_10_1177_0333102417748570
crossref_primary_10_1371_journal_pone_0039061
crossref_primary_10_1111_bdi_12103
crossref_primary_10_2174_1568026620666200302111130
crossref_primary_10_1002_hbm_23466
crossref_primary_10_1016_j_neuroimage_2016_08_028
crossref_primary_10_1093_schbul_sbx041
crossref_primary_10_1371_journal_pbio_1001266
crossref_primary_10_1371_journal_pbio_1000157
crossref_primary_10_3389_fncom_2016_00100
crossref_primary_10_1016_j_nicl_2017_05_025
crossref_primary_10_1523_JNEUROSCI_3195_15_2016
crossref_primary_10_1016_j_neulet_2024_137985
crossref_primary_10_1016_j_neuroimage_2011_05_059
crossref_primary_10_1016_j_brainresbull_2023_110663
crossref_primary_10_1038_s41598_018_34269_y
crossref_primary_10_1080_17470910903202559
crossref_primary_10_1523_JNEUROSCI_4966_08_2009
crossref_primary_10_1093_cercor_bhr041
crossref_primary_10_1227_NEU_0b013e3182262c9a
crossref_primary_10_1002_hbm_21398
crossref_primary_10_1016_j_ijpsycho_2015_01_011
crossref_primary_10_2174_1574885514666191121143930
crossref_primary_10_1016_j_schres_2012_12_004
crossref_primary_10_1176_appi_ajp_2019_19030261
crossref_primary_10_1016_j_nicl_2019_102099
crossref_primary_10_1038_nrn2915
crossref_primary_10_1016_j_neuron_2019_11_012
crossref_primary_10_1162_netn_a_00323
crossref_primary_10_1523_JNEUROSCI_1394_18_2018
crossref_primary_10_1371_journal_pone_0041042
crossref_primary_10_1523_JNEUROSCI_1951_09_2009
crossref_primary_10_3389_fpsyg_2018_00278
crossref_primary_10_1111_adb_12013
crossref_primary_10_1093_cercor_bhab126
crossref_primary_10_1016_j_neuroimage_2020_117061
crossref_primary_10_1093_braincomms_fcac047
crossref_primary_10_1007_s00221_013_3715_x
crossref_primary_10_1038_ijo_2011_125
crossref_primary_10_1016_j_tics_2012_06_009
crossref_primary_10_1371_journal_pone_0053135
crossref_primary_10_1016_j_schres_2012_08_032
crossref_primary_10_1152_jn_00277_2015
crossref_primary_10_1093_cercor_bhy259
crossref_primary_10_1016_j_neuroimage_2011_12_010
crossref_primary_10_1111_ejn_12897
crossref_primary_10_1017_S0033291719003830
crossref_primary_10_1038_s41598_020_69923_x
crossref_primary_10_1089_neu_2021_0093
crossref_primary_10_1162_jocn_a_01699
crossref_primary_10_1371_journal_pone_0041048
crossref_primary_10_3390_brainsci13060942
crossref_primary_10_1016_j_conb_2012_12_004
crossref_primary_10_1162_jocn_a_00008
crossref_primary_10_3390_brainsci12121681
crossref_primary_10_1038_s41562_018_0503_4
crossref_primary_10_1212_WNL_0000000000002235
crossref_primary_10_1523_JNEUROSCI_2636_14_2015
crossref_primary_10_1016_j_neuroimage_2015_04_033
crossref_primary_10_1002_hbm_22665
crossref_primary_10_1002_hbm_22305
crossref_primary_10_1371_journal_pone_0140250
crossref_primary_10_1002_hbm_23636
crossref_primary_10_1016_j_neuroimage_2017_08_056
crossref_primary_10_1111_adb_12482
crossref_primary_10_1111_psyp_12969
crossref_primary_10_1016_j_spen_2017_12_005
crossref_primary_10_1016_j_neurobiolaging_2010_09_027
crossref_primary_10_1016_j_neuroimage_2009_11_027
crossref_primary_10_1152_jn_00270_2012
crossref_primary_10_1523_JNEUROSCI_2770_15_2015
crossref_primary_10_1016_j_neuron_2013_03_031
crossref_primary_10_1073_pnas_1422638112
crossref_primary_10_1002_mds_25864
crossref_primary_10_3389_fnins_2018_00998
crossref_primary_10_1016_j_neuron_2009_09_040
crossref_primary_10_3758_s13415_024_01219_3
crossref_primary_10_1016_j_neuroimage_2017_07_029
crossref_primary_10_1016_j_neuron_2012_10_017
crossref_primary_10_1523_JNEUROSCI_5756_11_2012
crossref_primary_10_1016_j_jaac_2017_02_009
crossref_primary_10_1523_JNEUROSCI_3069_13_2014
crossref_primary_10_1016_j_clinph_2022_04_022
crossref_primary_10_1016_j_neubiorev_2022_104588
crossref_primary_10_1093_cercor_bhab387
crossref_primary_10_1038_s41531_023_00494_0
crossref_primary_10_1093_brain_awq332
crossref_primary_10_1016_j_neuroimage_2011_11_008
crossref_primary_10_1111_ejn_12314
crossref_primary_10_3389_fnana_2018_00060
crossref_primary_10_3389_fnins_2022_906875
crossref_primary_10_1093_cercor_bhy150
crossref_primary_10_1007_s00429_013_0671_y
crossref_primary_10_1016_j_neuroimage_2011_11_006
crossref_primary_10_1093_cercor_bhz121
crossref_primary_10_1016_j_neuroimage_2014_03_073
crossref_primary_10_1523_JNEUROSCI_2317_15_2015
crossref_primary_10_1007_s11357_025_01529_5
crossref_primary_10_1016_j_neuroimage_2022_118959
crossref_primary_10_1007_s00429_016_1223_z
crossref_primary_10_1016_j_cortex_2021_05_003
crossref_primary_10_3389_fnana_2017_00085
crossref_primary_10_1016_j_neuroimage_2018_02_048
crossref_primary_10_1016_j_pscychresns_2011_07_013
crossref_primary_10_1093_cercor_bhab159
crossref_primary_10_3389_fnhum_2018_00285
crossref_primary_10_3389_fnana_2016_00093
crossref_primary_10_1371_journal_pone_0129692
crossref_primary_10_1016_j_brs_2021_11_006
crossref_primary_10_1146_annurev_neuro_110920_013544
crossref_primary_10_1186_s12888_021_03187_1
crossref_primary_10_1111_ejn_14869
crossref_primary_10_7554_eLife_79642
crossref_primary_10_1016_j_neubiorev_2021_06_042
crossref_primary_10_1016_j_neuroimage_2011_07_032
crossref_primary_10_1371_journal_pone_0106768
crossref_primary_10_1016_j_jphysparis_2015_02_001
crossref_primary_10_1371_journal_pone_0081410
crossref_primary_10_1016_j_yebeh_2011_03_013
crossref_primary_10_1002_hbm_23609
crossref_primary_10_1093_cercor_bhp123
crossref_primary_10_1002_hbm_25906
crossref_primary_10_1016_j_cortex_2020_03_021
crossref_primary_10_1016_j_nicl_2018_01_034
crossref_primary_10_1016_j_tics_2012_07_007
crossref_primary_10_1109_TBME_2016_2598818
crossref_primary_10_1016_j_neuroimage_2018_02_054
crossref_primary_10_1016_j_pscychresns_2012_07_001
crossref_primary_10_1152_jn_00569_2014
crossref_primary_10_1111_adb_12692
crossref_primary_10_1111_j_1528_1167_2012_03422_x
crossref_primary_10_1038_srep31378
crossref_primary_10_1111_ejn_14518
crossref_primary_10_3389_fpsyt_2019_00756
crossref_primary_10_1016_j_cortex_2016_05_021
crossref_primary_10_1016_j_cobeha_2016_01_010
crossref_primary_10_3389_fnins_2018_00917
crossref_primary_10_1016_j_conb_2010_01_007
crossref_primary_10_1016_j_neuropsychologia_2013_11_015
crossref_primary_10_1111_ejn_13661
crossref_primary_10_1177_0004867412440191
crossref_primary_10_1007_s10548_017_0548_0
crossref_primary_10_1007_s10143_020_01245_y
crossref_primary_10_1016_j_neubiorev_2022_104639
crossref_primary_10_1016_j_brainres_2016_08_005
crossref_primary_10_1016_j_bandl_2013_04_003
crossref_primary_10_1016_j_pscychresns_2010_10_006
crossref_primary_10_1016_j_pscychresns_2019_01_008
crossref_primary_10_1002_jmri_27851
crossref_primary_10_1038_s41539_024_00282_2
crossref_primary_10_1016_j_neuroimage_2016_06_018
crossref_primary_10_1523_JNEUROSCI_4902_09_2010
crossref_primary_10_1177_0883073819862121
crossref_primary_10_1038_s41562_024_01901_z
crossref_primary_10_1038_s41598_021_93190_z
crossref_primary_10_1016_j_neuropsychologia_2016_09_006
crossref_primary_10_1016_j_bpsc_2022_02_011
crossref_primary_10_1016_j_jneuroling_2019_03_004
crossref_primary_10_1093_braincomms_fcad275
crossref_primary_10_1002_hbm_22417
crossref_primary_10_1093_brain_awq300
crossref_primary_10_1093_brain_awz239
crossref_primary_10_1007_s10548_023_00960_1
crossref_primary_10_1038_s41598_018_24528_3
crossref_primary_10_1002_mds_27712
crossref_primary_10_1038_s41467_023_38974_9
crossref_primary_10_1007_s00429_014_0706_z
crossref_primary_10_1016_j_bpsc_2024_05_008
crossref_primary_10_1016_j_neuroimage_2021_118744
crossref_primary_10_1016_j_tics_2018_08_005
crossref_primary_10_1038_s41598_021_95300_3
crossref_primary_10_1016_j_neuroimage_2015_06_084
crossref_primary_10_1016_j_neuroimage_2016_12_011
crossref_primary_10_1523_JNEUROSCI_2344_12_2012
crossref_primary_10_1002_hbm_22401
crossref_primary_10_1523_ENEURO_0392_17_2017
crossref_primary_10_3389_fnana_2022_960439
crossref_primary_10_3390_medicina56120686
crossref_primary_10_1002_hbm_22769
crossref_primary_10_1016_j_brainres_2013_04_021
crossref_primary_10_1016_j_neuron_2013_10_042
crossref_primary_10_1038_npp_2009_129
crossref_primary_10_1016_j_cognition_2021_104785
crossref_primary_10_1016_j_neuroimage_2011_09_008
crossref_primary_10_1093_brain_awq281
crossref_primary_10_1159_000516237
crossref_primary_10_1016_j_ejpn_2016_10_003
crossref_primary_10_1016_j_ejpn_2016_10_002
crossref_primary_10_1523_JNEUROSCI_1088_12_2012
crossref_primary_10_1016_j_jchemneu_2016_06_003
crossref_primary_10_1093_cercor_bhu064
crossref_primary_10_1002_hbm_21505
crossref_primary_10_1016_j_neuroimage_2015_02_012
crossref_primary_10_1002_hbm_22834
crossref_primary_10_1162_jocn_a_01967
crossref_primary_10_1016_j_neuroimage_2017_06_032
crossref_primary_10_1016_j_cortex_2017_06_006
crossref_primary_10_1016_j_neuroimage_2009_12_118
crossref_primary_10_1016_j_neuropsychologia_2012_02_007
crossref_primary_10_1017_S1355617711000567
crossref_primary_10_1371_journal_pone_0060982
crossref_primary_10_3389_fnhum_2014_00747
crossref_primary_10_1016_j_jagp_2013_04_011
crossref_primary_10_1111_ejn_13586
crossref_primary_10_1016_j_neuroimage_2015_03_072
crossref_primary_10_1007_s12264_020_00543_1
crossref_primary_10_1177_1352458515614407
crossref_primary_10_3390_cells12121599
crossref_primary_10_1016_j_conb_2011_04_002
crossref_primary_10_1002_hbm_22701
crossref_primary_10_1016_j_neuroimage_2012_04_011
crossref_primary_10_3389_fneur_2018_01004
crossref_primary_10_1038_nrdp_2015_82
crossref_primary_10_1016_j_neuroimage_2012_12_042
crossref_primary_10_3390_brainsci11111472
crossref_primary_10_1016_j_neubiorev_2019_09_019
crossref_primary_10_1038_mp_2012_54
crossref_primary_10_1038_ncomms9165
crossref_primary_10_1073_pnas_1316911111
crossref_primary_10_1016_j_biopsych_2019_02_013
crossref_primary_10_1016_j_neuroimage_2018_01_077
crossref_primary_10_1016_j_jpsychires_2016_09_014
crossref_primary_10_1177_1352458518758911
crossref_primary_10_1089_brain_2015_0348
crossref_primary_10_1016_j_eurpsy_2016_01_2426
crossref_primary_10_1016_j_cortex_2015_02_012
crossref_primary_10_1073_pnas_2003383117
crossref_primary_10_1002_hbm_22733
crossref_primary_10_1093_cercor_bhae379
crossref_primary_10_3389_fpsyt_2018_00689
crossref_primary_10_1093_cercor_bhu073
crossref_primary_10_1016_j_cortex_2012_04_013
crossref_primary_10_1016_j_neubiorev_2015_09_007
crossref_primary_10_1093_brain_awt329
crossref_primary_10_1186_1744_8069_6_27
crossref_primary_10_1016_j_neuroimage_2018_08_019
crossref_primary_10_1371_journal_pone_0112075
crossref_primary_10_1002_hbm_21517
crossref_primary_10_1016_j_neuroimage_2011_11_089
crossref_primary_10_1007_s00429_021_02446_x
crossref_primary_10_1038_srep40469
crossref_primary_10_1016_j_neuroimage_2011_11_082
crossref_primary_10_1016_j_cortex_2018_08_031
crossref_primary_10_1016_j_neuroimage_2019_116387
crossref_primary_10_1002_hbm_22724
crossref_primary_10_1002_jimd_12279
crossref_primary_10_1016_j_concog_2012_01_011
crossref_primary_10_1016_j_neuroscience_2014_09_033
crossref_primary_10_1523_JNEUROSCI_6486_10_2011
crossref_primary_10_3389_fnins_2016_00106
crossref_primary_10_1177_0004867412457224
crossref_primary_10_1016_j_neuroimage_2017_07_042
crossref_primary_10_1371_journal_pone_0013848
crossref_primary_10_1038_nn_2228
crossref_primary_10_20900_jpbs_20200007
crossref_primary_10_1016_j_nicl_2017_01_034
crossref_primary_10_3389_fnint_2024_1324581
crossref_primary_10_1523_ENEURO_0382_17_2018
crossref_primary_10_1523_JNEUROSCI_2033_15_2016
crossref_primary_10_1016_j_bpsc_2020_06_011
crossref_primary_10_3390_metabo12020187
crossref_primary_10_3389_fnsys_2022_966433
crossref_primary_10_1016_j_heliyon_2022_e12215
crossref_primary_10_3758_s13415_021_00914_9
crossref_primary_10_1007_s00702_015_1406_4
crossref_primary_10_1093_cercor_bhv063
crossref_primary_10_1007_s00702_016_1571_0
crossref_primary_10_1007_s00429_012_0422_5
crossref_primary_10_1007_s12311_022_01418_z
crossref_primary_10_1038_s41380_019_0570_6
crossref_primary_10_1016_j_neuroimage_2018_09_067
crossref_primary_10_1016_j_neurobiolaging_2013_08_018
crossref_primary_10_1016_j_neuroimage_2011_11_023
crossref_primary_10_1136_jnnp_2013_307041
crossref_primary_10_1016_j_neuroimage_2016_12_071
crossref_primary_10_1136_bmjopen_2021_053991
crossref_primary_10_1016_j_jfludis_2017_09_002
crossref_primary_10_1371_journal_pone_0075912
crossref_primary_10_1002_jdn_10039
crossref_primary_10_1016_j_neuron_2015_12_015
crossref_primary_10_1016_j_nicl_2015_02_017
crossref_primary_10_1016_j_nicl_2015_02_018
crossref_primary_10_3389_fnana_2016_00076
crossref_primary_10_1016_j_brainres_2012_05_037
crossref_primary_10_1016_j_neuroimage_2017_05_012
crossref_primary_10_1016_j_jns_2011_05_015
crossref_primary_10_1111_ejn_15575
crossref_primary_10_1007_s10548_017_0578_7
crossref_primary_10_1038_nrn4038
crossref_primary_10_1093_braincomms_fcae409
crossref_primary_10_3389_fnbeh_2016_00179
crossref_primary_10_1016_j_bpsc_2016_03_008
crossref_primary_10_1088_1741_2552_aabdf5
crossref_primary_10_1016_j_bbr_2023_114525
crossref_primary_10_1016_j_cortex_2023_11_008
crossref_primary_10_1038_s41390_023_02923_5
crossref_primary_10_1111_j_1460_9568_2010_07492_x
crossref_primary_10_1016_j_cortex_2014_10_011
crossref_primary_10_1016_j_pscychresns_2010_12_002
crossref_primary_10_1007_s00429_014_0921_7
crossref_primary_10_1007_s11682_024_00906_6
crossref_primary_10_3389_fnagi_2019_00295
crossref_primary_10_1016_j_nicl_2014_09_010
crossref_primary_10_3389_fnagi_2017_00091
crossref_primary_10_1016_j_neuroimage_2016_05_069
crossref_primary_10_1016_j_biopsych_2011_02_036
crossref_primary_10_3389_fnagi_2017_00095
crossref_primary_10_1016_j_bpsc_2017_05_005
crossref_primary_10_1111_nyas_12110
crossref_primary_10_1002_cne_23937
crossref_primary_10_1172_jci_insight_92641
crossref_primary_10_1016_j_jns_2015_04_041
crossref_primary_10_12688_f1000research_16524_1
crossref_primary_10_7554_eLife_19103
crossref_primary_10_36472_msd_v11i3_1141
crossref_primary_10_1002_mds_25255
crossref_primary_10_1016_j_neubiorev_2016_10_033
crossref_primary_10_1002_mds_25015
crossref_primary_10_1371_journal_pone_0093344
crossref_primary_10_1016_j_neuroimage_2010_02_017
crossref_primary_10_1002_ana_25475
crossref_primary_10_1016_j_neuroimage_2012_10_012
crossref_primary_10_2217_nmt_15_71
crossref_primary_10_1016_j_bbr_2017_02_008
crossref_primary_10_1016_j_schres_2016_08_020
crossref_primary_10_1016_j_neuroimage_2019_07_001
crossref_primary_10_1371_journal_pone_0029153
crossref_primary_10_1016_j_neuroimage_2012_03_066
crossref_primary_10_1002_nbm_3762
crossref_primary_10_1098_rstb_2013_0403
crossref_primary_10_1371_journal_pone_0082389
crossref_primary_10_1016_j_nicl_2023_103358
crossref_primary_10_1088_1741_2552_ac16b3
crossref_primary_10_1016_j_jpain_2022_11_008
crossref_primary_10_1177_1352458512460416
crossref_primary_10_1093_cercor_bhv305
crossref_primary_10_1097_WCO_0000000000000461
crossref_primary_10_1016_j_neuroimage_2012_11_055
crossref_primary_10_1186_s13195_019_0572_2
crossref_primary_10_1016_j_nicl_2023_103360
crossref_primary_10_1016_j_neuropsychologia_2020_107633
crossref_primary_10_1002_mds_26012
crossref_primary_10_1177_1756285613511507
crossref_primary_10_1002_brb3_511
crossref_primary_10_1523_JNEUROSCI_1954_14_2014
crossref_primary_10_1016_j_cortex_2020_07_004
crossref_primary_10_1038_s42003_022_04084_3
crossref_primary_10_1002_hbm_25147
crossref_primary_10_1523_JNEUROSCI_3464_13_2014
crossref_primary_10_1002_nbm_3752
crossref_primary_10_1093_cercor_bhs277
crossref_primary_10_1093_cercor_bhs397
crossref_primary_10_1093_cercor_bht002
crossref_primary_10_1038_s41598_023_28100_6
crossref_primary_10_1098_rspb_2015_1203
crossref_primary_10_1007_s00429_015_1018_7
crossref_primary_10_1016_j_neuroimage_2014_05_002
crossref_primary_10_1016_j_pscychresns_2020_111202
crossref_primary_10_3389_fneur_2017_00323
crossref_primary_10_1111_j_1460_9568_2009_06673_x
crossref_primary_10_1007_s12559_023_10140_9
crossref_primary_10_1371_journal_pone_0036147
crossref_primary_10_1371_journal_pone_0070141
crossref_primary_10_1152_jn_00995_2011
crossref_primary_10_3389_fneur_2015_00270
crossref_primary_10_1097_RLU_0000000000003609
crossref_primary_10_3389_fneur_2016_00226
crossref_primary_10_1111_nyas_12281
crossref_primary_10_3390_medicina56090452
crossref_primary_10_1515_revneuro_2020_0047
crossref_primary_10_1016_j_cortex_2020_08_028
crossref_primary_10_1089_brain_2013_0160
crossref_primary_10_1177_1352458514555784
crossref_primary_10_1093_scan_nsx129
crossref_primary_10_1007_s11682_012_9172_5
crossref_primary_10_1016_j_neures_2021_09_003
crossref_primary_10_1523_JNEUROSCI_4821_11_2012
crossref_primary_10_1007_s00429_024_02778_4
crossref_primary_10_1093_brain_awad389
crossref_primary_10_1016_j_pscychresns_2023_111717
crossref_primary_10_1016_j_euroneuro_2022_01_003
crossref_primary_10_1016_j_pscychresns_2012_04_006
crossref_primary_10_1523_ENEURO_0495_20_2021
crossref_primary_10_1016_j_parkreldis_2019_06_004
crossref_primary_10_1093_cercor_bhv323
crossref_primary_10_3171_2016_1_JNS15601
crossref_primary_10_1093_cercor_bhr088
crossref_primary_10_1016_j_mri_2015_07_011
crossref_primary_10_1016_j_neuroimage_2013_05_043
crossref_primary_10_1038_tpj_2012_3
crossref_primary_10_1111_nyas_12271
crossref_primary_10_1016_j_neuroimage_2012_05_021
crossref_primary_10_1016_j_nicl_2017_01_008
crossref_primary_10_1007_s11695_019_03822_7
crossref_primary_10_3174_ajnr_A3140
crossref_primary_10_1016_j_celrep_2022_110439
crossref_primary_10_1016_j_biopsych_2022_07_017
crossref_primary_10_1016_j_neuroimage_2023_120414
crossref_primary_10_1002_brb3_529
crossref_primary_10_1002_mds_27358
crossref_primary_10_7759_cureus_11846
crossref_primary_10_1016_j_neubiorev_2018_04_016
crossref_primary_10_1016_j_pscychresns_2010_09_014
crossref_primary_10_1016_j_neuroimage_2022_119684
crossref_primary_10_1098_rstb_2008_0155
crossref_primary_10_1002_hbm_23056
crossref_primary_10_1111_ene_14648
crossref_primary_10_1007_s12662_012_0230_3
crossref_primary_10_1016_j_cortex_2015_07_016
crossref_primary_10_3758_s13423_015_0999_9
crossref_primary_10_1186_1744_8069_7_71
crossref_primary_10_1523_JNEUROSCI_5806_12_2014
crossref_primary_10_1016_j_neuroscience_2021_01_028
crossref_primary_10_1016_j_neuroimage_2021_118077
crossref_primary_10_1523_ENEURO_0151_18_2018
crossref_primary_10_3389_fneur_2018_00467
crossref_primary_10_1146_annurev_psych_122216_011555
crossref_primary_10_1016_j_schres_2023_01_026
crossref_primary_10_1002_jmri_28599
crossref_primary_10_1371_journal_pone_0269154
crossref_primary_10_1007_s00415_025_13018_y
crossref_primary_10_1371_journal_pone_0031728
crossref_primary_10_1038_tp_2015_148
crossref_primary_10_1016_j_ijpsycho_2011_11_003
crossref_primary_10_3389_fneur_2019_00267
crossref_primary_10_1111_jnc_14898
crossref_primary_10_3389_fnins_2018_00242
crossref_primary_10_3389_fneur_2017_00129
crossref_primary_10_3174_ajnr_A3242
crossref_primary_10_31887_DCNS_2016_18_1_shaber
crossref_primary_10_3389_fnins_2014_00187
crossref_primary_10_1016_j_neuroimage_2019_06_019
crossref_primary_10_1093_cercor_bhv135
crossref_primary_10_1016_j_neuroimage_2018_05_012
crossref_primary_10_1111_ene_14423
crossref_primary_10_1073_pnas_1007277107
crossref_primary_10_1016_j_cortex_2017_02_011
crossref_primary_10_1002_mco2_764
crossref_primary_10_1126_sciadv_abm1971
crossref_primary_10_1016_j_pscychresns_2013_05_010
crossref_primary_10_1073_pnas_1423095112
crossref_primary_10_1007_s11682_016_9533_6
crossref_primary_10_1002_ana_25566
crossref_primary_10_1152_jn_00221_2014
crossref_primary_10_1002_hbm_24275
crossref_primary_10_1016_j_neuroimage_2011_10_089
crossref_primary_10_1080_02640414_2011_647706
crossref_primary_10_1093_cercor_bhv243
crossref_primary_10_3389_fpsyt_2019_00060
crossref_primary_10_1016_j_jns_2018_02_032
Cites_doi 10.1016/j.jchemneu.2003.10.003
10.1016/S0896-6273(02)00718-3
10.1152/jn.1996.76.3.1367
10.1007/BF00227517
10.1002/mrm.10308
10.1016/S1471-1931(00)00022-7
10.1002/(SICI)1096-9861(19960812)372:1<59::AID-CNE6>3.0.CO;2-L
10.1016/j.neubiorev.2006.11.003
10.1523/JNEUROSCI.14-02-00599.1994
10.1159/000123779
10.1002/mrm.10268
10.1093/brain/120.10.1823
10.1016/S0896-6273(01)00285-9
10.1006/brcg.1999.1099
10.1016/S0006-8993(98)00198-X
10.1126/science.7679223
10.1093/cercor/bhh091
10.1093/brain/awm275
10.1523/JNEUROSCI.22-18-08117.2002
10.1016/S0301-0082(97)00002-6
10.1002/cne.903140209
10.1038/nn1075
10.1126/science.275.5306.1593
10.1126/science.286.5445.1745
10.1002/1096-9861(20000925)425:3<447::AID-CNE9>3.0.CO;2-V
10.1006/brcg.1999.1188
10.1016/j.neuroimage.2007.06.022
10.1016/S0006-3495(94)80775-1
10.1523/JNEUROSCI.20-16-06159.2000
10.1016/j.neuroimage.2005.02.018
10.1093/cercor/bhh108
10.1006/nimg.2001.1022
10.1046/j.1460-9568.2001.02090.x
10.1523/JNEUROSCI.23-08-03432.2003
10.1016/S0959-4388(01)00270-7
10.1016/S0166-2236(03)00122-X
10.1148/radiology.201.3.8939209
10.1126/science.1115270
10.1523/JNEUROSCI.21-15-05764.2001
10.1192/bjp.164.4.459
10.1137/1.9780898719802
10.1098/rstb.2005.1639
10.1523/JNEUROSCI.17-10-03870.1997
10.1523/JNEUROSCI.20-10-03798.2000
10.1002/mrm.1910360612
10.1002/ana.20030
10.1016/j.neulet.2007.04.049
10.1007/s002210050384
10.1146/annurev.ne.09.030186.002041
10.1016/S0079-6123(08)62678-3
10.1093/cercor/12.9.926
10.1016/j.neuropsychologia.2004.07.018
10.1093/cercor/bhh105
10.1093/brain/awl106
10.1016/j.neuroimage.2006.01.021
10.1038/nature05051
10.1016/j.neuroimage.2006.08.005
10.1093/cercor/bhi089
10.54294/fgfrtv
10.1523/JNEUROSCI.0271-06.2006
10.1002/(SICI)1096-9861(19990726)410:2<211::AID-CNE4>3.0.CO;2-X
10.1152/jn.1998.80.2.964
10.1002/mrm.10209
10.1038/nn1579
ContentType Journal Article
Copyright Copyright © 2008 Society for Neuroscience 0270-6474/08/287143-10$15.00/0 2008
Copyright_xml – notice: Copyright © 2008 Society for Neuroscience 0270-6474/08/287143-10$15.00/0 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.1486-08.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 7152
ExternalDocumentID PMC6670486
18614684
10_1523_JNEUROSCI_1486_08_2008
www28_28_7143
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 075696/Z/04/Z
– fundername: Wellcome Trust
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c541t-73381ac1c88c34ecd982467bfcc67e127ca2202a9a09d81a2d8a5781d75e6e403
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:09:28 EDT 2025
Fri Jul 11 14:01:41 EDT 2025
Thu Jul 10 17:33:49 EDT 2025
Thu Apr 03 06:59:51 EDT 2025
Tue Jul 01 02:58:56 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Tue Nov 10 19:20:00 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
This article is freely available online through the J Neurosci Open Choice option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-73381ac1c88c34ecd982467bfcc67e127ca2202a9a09d81a2d8a5781d75e6e403
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
B.D. and F.K. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/28/28/7143.full.pdf
PMID 18614684
PQID 20785397
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6670486
proquest_miscellaneous_69313037
proquest_miscellaneous_20785397
pubmed_primary_18614684
crossref_citationtrail_10_1523_JNEUROSCI_1486_08_2008
crossref_primary_10_1523_JNEUROSCI_1486_08_2008
highwire_smallpub1_www28_28_7143
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20080709
2008-07-09
2008-Jul-09
PublicationDateYYYYMMDD 2008-07-09
PublicationDate_xml – month: 07
  year: 2008
  text: 20080709
  day: 09
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2008
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Parker (2023041303324679000_28.28.7143.49) 2003; 18
Sherman (2023041303324679000_28.28.7143.60) 1996; 76
2023041303324679000_28.28.7143.35
2023041303324679000_28.28.7143.34
2023041303324679000_28.28.7143.37
2023041303324679000_28.28.7143.36
2023041303324679000_28.28.7143.30
Kolomiets (2023041303324679000_28.28.7143.31) 2001; 21
Tremblay (2023041303324679000_28.28.7143.64) 1998; 80
Levy (2023041303324679000_28.28.7143.38) 1997; 17
2023041303324679000_28.28.7143.32
2023041303324679000_28.28.7143.28
Flaherty (2023041303324679000_28.28.7143.21) 1994; 14
2023041303324679000_28.28.7143.29
Alexander (2023041303324679000_28.28.7143.3) 1990; 85
Taniwaki (2023041303324679000_28.28.7143.63) 2003; 23
McFarland (2023041303324679000_28.28.7143.41) 2002; 22
2023041303324679000_28.28.7143.62
2023041303324679000_28.28.7143.61
McFarland (2023041303324679000_28.28.7143.40) 2000; 20
Elliott (2023041303324679000_28.28.7143.16) 2000; 20
2023041303324679000_28.28.7143.24
2023041303324679000_28.28.7143.23
2023041303324679000_28.28.7143.67
2023041303324679000_28.28.7143.26
2023041303324679000_28.28.7143.25
2023041303324679000_28.28.7143.20
2023041303324679000_28.28.7143.66
2023041303324679000_28.28.7143.65
2023041303324679000_28.28.7143.2
2023041303324679000_28.28.7143.17
2023041303324679000_28.28.7143.1
Cook (2023041303324679000_28.28.7143.9) 2004; 1
2023041303324679000_28.28.7143.19
2023041303324679000_28.28.7143.18
2023041303324679000_28.28.7143.6
François (2023041303324679000_28.28.7143.22) 1994; 102
2023041303324679000_28.28.7143.5
2023041303324679000_28.28.7143.4
2023041303324679000_28.28.7143.8
2023041303324679000_28.28.7143.7
Jansons (2023041303324679000_28.28.7143.27) 2003; 18
2023041303324679000_28.28.7143.51
2023041303324679000_28.28.7143.50
Künzle (2023041303324679000_28.28.7143.33) 1978; 15
2023041303324679000_28.28.7143.13
2023041303324679000_28.28.7143.57
2023041303324679000_28.28.7143.12
2023041303324679000_28.28.7143.56
2023041303324679000_28.28.7143.15
2023041303324679000_28.28.7143.59
2023041303324679000_28.28.7143.14
2023041303324679000_28.28.7143.58
2023041303324679000_28.28.7143.53
2023041303324679000_28.28.7143.52
2023041303324679000_28.28.7143.11
2023041303324679000_28.28.7143.55
2023041303324679000_28.28.7143.10
2023041303324679000_28.28.7143.54
2023041303324679000_28.28.7143.46
2023041303324679000_28.28.7143.45
2023041303324679000_28.28.7143.48
2023041303324679000_28.28.7143.47
2023041303324679000_28.28.7143.42
2023041303324679000_28.28.7143.44
2023041303324679000_28.28.7143.43
2023041303324679000_28.28.7143.39
References_xml – ident: 2023041303324679000_28.28.7143.24
  doi: 10.1016/j.jchemneu.2003.10.003
– ident: 2023041303324679000_28.28.7143.56
  doi: 10.1016/S0896-6273(02)00718-3
– volume: 76
  start-page: 1367
  year: 1996
  ident: 2023041303324679000_28.28.7143.60
  article-title: Functional organization of thalamocortical relays
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1996.76.3.1367
– volume: 102
  start-page: 305
  year: 1994
  ident: 2023041303324679000_28.28.7143.22
  article-title: Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra
  publication-title: Exp Brain Res
  doi: 10.1007/BF00227517
– ident: 2023041303324679000_28.28.7143.55
  doi: 10.1002/mrm.10308
– ident: 2023041303324679000_28.28.7143.48
  doi: 10.1016/S1471-1931(00)00022-7
– ident: 2023041303324679000_28.28.7143.39
  doi: 10.1002/(SICI)1096-9861(19960812)372:1<59::AID-CNE6>3.0.CO;2-L
– ident: 2023041303324679000_28.28.7143.66
  doi: 10.1016/j.neubiorev.2006.11.003
– volume: 14
  start-page: 599
  year: 1994
  ident: 2023041303324679000_28.28.7143.21
  article-title: Input-output organization of the sensorimotor striatum in the squirrel monkey
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-02-00599.1994
– volume: 1
  start-page: 332
  year: 2004
  ident: 2023041303324679000_28.28.7143.9
  article-title: Modelling noise-induced fibre-orientation error in diffusion-tensor MRI
  publication-title: IEEE ISBI
– volume: 15
  start-page: 185
  year: 1978
  ident: 2023041303324679000_28.28.7143.33
  article-title: An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis
  publication-title: Brain Behav Evol
  doi: 10.1159/000123779
– ident: 2023041303324679000_28.28.7143.65
  doi: 10.1002/mrm.10268
– ident: 2023041303324679000_28.28.7143.47
  doi: 10.1093/brain/120.10.1823
– ident: 2023041303324679000_28.28.7143.23
  doi: 10.1016/S0896-6273(01)00285-9
– ident: 2023041303324679000_28.28.7143.44
  doi: 10.1006/brcg.1999.1099
– ident: 2023041303324679000_28.28.7143.62
  doi: 10.1016/S0006-8993(98)00198-X
– ident: 2023041303324679000_28.28.7143.26
  doi: 10.1126/science.7679223
– ident: 2023041303324679000_28.28.7143.35
  doi: 10.1093/cercor/bhh091
– ident: 2023041303324679000_28.28.7143.30
  doi: 10.1093/brain/awm275
– volume: 22
  start-page: 8117
  year: 2002
  ident: 2023041303324679000_28.28.7143.41
  article-title: Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-18-08117.2002
– ident: 2023041303324679000_28.28.7143.8
  doi: 10.1016/S0301-0082(97)00002-6
– ident: 2023041303324679000_28.28.7143.32
  doi: 10.1002/cne.903140209
– ident: 2023041303324679000_28.28.7143.7
  doi: 10.1038/nn1075
– ident: 2023041303324679000_28.28.7143.58
  doi: 10.1126/science.275.5306.1593
– ident: 2023041303324679000_28.28.7143.28
  doi: 10.1126/science.286.5445.1745
– ident: 2023041303324679000_28.28.7143.20
  doi: 10.1002/1096-9861(20000925)425:3<447::AID-CNE9>3.0.CO;2-V
– ident: 2023041303324679000_28.28.7143.15
  doi: 10.1006/brcg.1999.1188
– ident: 2023041303324679000_28.28.7143.14
  doi: 10.1016/j.neuroimage.2007.06.022
– ident: 2023041303324679000_28.28.7143.6
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 20
  start-page: 6159
  year: 2000
  ident: 2023041303324679000_28.28.7143.16
  article-title: Dissociable neural responses in human reward systems
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-16-06159.2000
– ident: 2023041303324679000_28.28.7143.4
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: 2023041303324679000_28.28.7143.19
  doi: 10.1093/cercor/bhh108
– ident: 2023041303324679000_28.28.7143.67
  doi: 10.1006/nimg.2001.1022
– ident: 2023041303324679000_28.28.7143.52
  doi: 10.1046/j.1460-9568.2001.02090.x
– volume: 23
  start-page: 3432
  year: 2003
  ident: 2023041303324679000_28.28.7143.63
  article-title: Reappraisal of the motor role of basal ganglia: a functional magnetic resonance image study
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-08-03432.2003
– ident: 2023041303324679000_28.28.7143.5
  doi: 10.1016/S0959-4388(01)00270-7
– ident: 2023041303324679000_28.28.7143.59
  doi: 10.1016/S0166-2236(03)00122-X
– ident: 2023041303324679000_28.28.7143.54
  doi: 10.1148/radiology.201.3.8939209
– volume: 18
  start-page: 684
  year: 2003
  ident: 2023041303324679000_28.28.7143.49
  article-title: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information
  publication-title: Inf Process Med Imaging
– ident: 2023041303324679000_28.28.7143.57
  doi: 10.1126/science.1115270
– volume: 21
  start-page: 5764
  year: 2001
  ident: 2023041303324679000_28.28.7143.31
  article-title: Segregation and convergence of information flow through the cortico-subthalamic pathways
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-15-05764.2001
– ident: 2023041303324679000_28.28.7143.42
  doi: 10.1192/bjp.164.4.459
– ident: 2023041303324679000_28.28.7143.43
  doi: 10.1137/1.9780898719802
– ident: 2023041303324679000_28.28.7143.50
  doi: 10.1098/rstb.2005.1639
– volume: 17
  start-page: 3870
  year: 1997
  ident: 2023041303324679000_28.28.7143.38
  article-title: Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-10-03870.1997
– volume: 20
  start-page: 3798
  year: 2000
  ident: 2023041303324679000_28.28.7143.40
  article-title: Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-10-03798.2000
– ident: 2023041303324679000_28.28.7143.53
  doi: 10.1002/mrm.1910360612
– ident: 2023041303324679000_28.28.7143.36
  doi: 10.1002/ana.20030
– ident: 2023041303324679000_28.28.7143.34
  doi: 10.1016/j.neulet.2007.04.049
– ident: 2023041303324679000_28.28.7143.61
  doi: 10.1007/s002210050384
– ident: 2023041303324679000_28.28.7143.2
  doi: 10.1146/annurev.ne.09.030186.002041
– volume: 85
  start-page: 119
  year: 1990
  ident: 2023041303324679000_28.28.7143.3
  article-title: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)62678-3
– ident: 2023041303324679000_28.28.7143.45
  doi: 10.1093/cercor/12.9.926
– ident: 2023041303324679000_28.28.7143.18
  doi: 10.1016/j.neuropsychologia.2004.07.018
– ident: 2023041303324679000_28.28.7143.29
  doi: 10.1093/cercor/bhh105
– ident: 2023041303324679000_28.28.7143.46
  doi: 10.1093/brain/awl106
– ident: 2023041303324679000_28.28.7143.13
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 18
  start-page: 672
  year: 2003
  ident: 2023041303324679000_28.28.7143.27
  article-title: Persistent angular structure: new insights from diffusion MRI data. Dummy version
  publication-title: Inf Process Med Imaging
– ident: 2023041303324679000_28.28.7143.51
  doi: 10.1038/nature05051
– ident: 2023041303324679000_28.28.7143.12
  doi: 10.1016/j.neuroimage.2006.08.005
– ident: 2023041303324679000_28.28.7143.37
  doi: 10.1093/cercor/bhi089
– ident: 2023041303324679000_28.28.7143.10
  doi: 10.54294/fgfrtv
– ident: 2023041303324679000_28.28.7143.25
  doi: 10.1523/JNEUROSCI.0271-06.2006
– ident: 2023041303324679000_28.28.7143.11
  doi: 10.1002/(SICI)1096-9861(19990726)410:2<211::AID-CNE4>3.0.CO;2-X
– volume: 80
  start-page: 964
  year: 1998
  ident: 2023041303324679000_28.28.7143.64
  article-title: Modifications of reward expectation-related neuronal activity during learning in primate striatum
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.80.2.964
– ident: 2023041303324679000_28.28.7143.1
  doi: 10.1002/mrm.10209
– ident: 2023041303324679000_28.28.7143.17
  doi: 10.1038/nn1579
SSID ssj0007017
Score 2.4955482
Snippet Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7143
SubjectTerms Adult
Basal Ganglia - anatomy & histology
Basal Ganglia - physiology
Brain Mapping
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
Female
Functional Laterality
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Male
Middle Aged
Neural Pathways - anatomy & histology
Neural Pathways - physiology
Primates
Title Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia
URI http://www.jneurosci.org/cgi/content/abstract/28/28/7143
https://www.ncbi.nlm.nih.gov/pubmed/18614684
https://www.proquest.com/docview/20785397
https://www.proquest.com/docview/69313037
https://pubmed.ncbi.nlm.nih.gov/PMC6670486
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgvPCCgPFRGOAHxFtY7Ca287iWlbGOIrRW6pvlOu6G1KXVmqkav557nc-iogFSFbWp86GeU-fYvvdcQt4baUEWd6NApMIFkY1mgVIuDFJmmHMgyZnPr_g6EieT6HQaT5sVfJ9dks8-2p8780r-B1XYB7hiluw_IFufFHbAe8AXtoAwbP8K46okqI8VXDsYOuOkWFo6KhU-EBgZZDGaxZZ1IlbeUbOIH0fVWVTp65k1gPXZYFavaSvWJnfMq9aW_2VNiU_X5sJUBbB7y4u0YdwQ0wu97-MA3ZvruefhAlfoe2K1KqIEznM3b47qg_JvZnvK6dZqakL5MNak3Ztyv3xTkMft2Fd2wVy1qFZ-KDpULM--s6ePvePE6QgDHs_7X6DHVyIIlY-ObZ5t1Xr-6JseTM7O9Ph4Or5PHnAYU2C5i-H3xlpehr48c31_ZTo5XOdw91W2lUzlLr1rpPJ7wG1LwYwfk0cliPSo4NETcs9lT8n-UWby5dUt_UB9MLBfZdkn04paFKhFG2pRoBZtUYu2qUUrakELCtSinlrUU4uW1HpGJoPjcf8kKItwBDaOWB7ILmg6Y5lVynYjZ9NEcXi4zubWCukYl9ZwHnKTmDBJoSVPlYGnAEtl7ISLwu5zspctM_eSUJFEfC6YCqMZvEAJxyJlcD7j0njOpOmQuPpBtS0d6rFQykLjSBWA0DUQGoHQofJVVDvksD5uVXi03HkErfDS6yuzWAA8TG82Gw7fK42k65B3FY4aelxcRjOZW96s4QQSNG4i_9xCJF2UhtDiRYF7c1tKYK5j1CFyixF1A3R73_4m-3HpXd-FkGiP-erOq74mD5s_4wHZy69v3BtQzvnsrWf8L0SpxBM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+segregated+and+integrative+connectivity+patterns+in+the+human+Basal+Ganglia&rft.jtitle=The+Journal+of+neuroscience&rft.au=Draganski%2C+Bogdan&rft.au=Kherif%2C+Ferath&rft.au=Kl%C3%B6ppel%2C+Stefan&rft.au=Cook%2C+Philip+A&rft.date=2008-07-09&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=28&rft.issue=28&rft.spage=7143&rft_id=info:doi/10.1523%2FJNEUROSCI.1486-08.2008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon