Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topograph...
Saved in:
Published in | The Journal of neuroscience Vol. 28; no. 28; pp. 7143 - 7152 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
09.07.2008
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.1486-08.2008 |
Cover
Loading…
Abstract | Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity
in vivo
. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show
in vivo
the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders. |
---|---|
AbstractList | Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders. Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo . Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders. Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders. |
Author | Cook, Philip A Kherif, Ferath Alexander, Daniel C Deichmann, Ralf Ashburner, John Parker, Geoff J. M Draganski, Bogdan Kloppel, Stefan Frackowiak, Richard S. J |
Author_xml | – sequence: 1 fullname: Draganski, Bogdan – sequence: 2 fullname: Kherif, Ferath – sequence: 3 fullname: Kloppel, Stefan – sequence: 4 fullname: Cook, Philip A – sequence: 5 fullname: Alexander, Daniel C – sequence: 6 fullname: Parker, Geoff J. M – sequence: 7 fullname: Deichmann, Ralf – sequence: 8 fullname: Ashburner, John – sequence: 9 fullname: Frackowiak, Richard S. J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18614684$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCK1RewWqC_8b2SAgJotAGVRRRKrGzXM_NxGjiKbaTqG-PRykR7aYrW77fuT465wQdhSEAQmeUTGnN-Puv3-Y3P66uZ4spFVpWRE8ZIfoFmpRpUzFB6BGaEKZIJYUSx-gkpd-EEEWoeoWOqZZUSC0m6Nd861sIDvByiPgaugidzdBiG1q8CLk82Oy3gGdDCODK1ed7_N3mDDEk7APOK8AXm7UN-LNNtsfnNnS9t6_Ry6XtE7x5OE_RzZf5z9lFdXl1vph9uqxcLWiuFOeaWked1o4LcG2jmZDqdumcVECZcpYxwmxjSdMWkrXa1krTVtUgQRB-ij7u995tbtfQOgg52t7cRb-28d4M1pvHk-BXphu2RkpFSnRlwduHBXH4s4GUzdonB31vAwybZGTDKSdcPQsyonTNmxE8-9_Swcu_1AvwYQ-4OKQUYWmczyXmYXToe0OJGUs2h5LNWLIh2owlF7l8Ij_88Jzw3V648t1q5yOYtLZ9X2xSs9vtWMG0UVRw_hcytbqx |
CitedBy_id | crossref_primary_10_1371_journal_pone_0098211 crossref_primary_10_1016_j_nbd_2011_02_010 crossref_primary_10_1007_s10143_015_0643_1 crossref_primary_10_1016_j_neuroimage_2013_09_009 crossref_primary_10_1016_j_cortex_2020_02_010 crossref_primary_10_1038_pr_2017_161 crossref_primary_10_1016_j_neuroimage_2017_02_019 crossref_primary_10_1016_j_neuroscience_2011_07_060 crossref_primary_10_1016_j_nbd_2009_12_002 crossref_primary_10_1093_cercor_bhp293 crossref_primary_10_1523_JNEUROSCI_1750_23_2024 crossref_primary_10_3389_fnhum_2016_00374 crossref_primary_10_1016_j_neuroimage_2020_117105 crossref_primary_10_1016_j_neuroimage_2010_05_060 crossref_primary_10_1371_journal_pone_0066736 crossref_primary_10_1038_s41598_019_56260_x crossref_primary_10_1016_j_neuroimage_2024_120866 crossref_primary_10_1093_scan_nsu157 crossref_primary_10_1016_j_brainres_2020_147129 crossref_primary_10_1016_j_biopsych_2016_08_009 crossref_primary_10_1002_ca_22689 crossref_primary_10_1093_cercor_bhy093 crossref_primary_10_1017_S0033291708004716 crossref_primary_10_1016_j_schres_2023_09_018 crossref_primary_10_7554_eLife_93063 crossref_primary_10_7554_eLife_93063_4 crossref_primary_10_1016_j_nicl_2020_102382 crossref_primary_10_31083_j_jin2311200 crossref_primary_10_1007_s00429_018_1662_9 crossref_primary_10_1371_journal_pone_0067931 crossref_primary_10_1016_j_neuron_2021_06_003 crossref_primary_10_1111_adb_12523 crossref_primary_10_3389_fnhum_2022_1050605 crossref_primary_10_1002_mds_27054 crossref_primary_10_1016_j_cortex_2013_10_009 crossref_primary_10_1002_hbm_25538 crossref_primary_10_1093_cercor_bhab532 crossref_primary_10_31887_DCNS_2010_12_4_tschulte crossref_primary_10_1097_WNR_0b013e32832aa928 crossref_primary_10_1002_hbm_24361 crossref_primary_10_1016_j_neuroscience_2009_01_045 crossref_primary_10_1159_000534009 crossref_primary_10_31887_DCNS_2018_20_2_gfricchione crossref_primary_10_11154_pain_31_135 crossref_primary_10_1016_j_neures_2024_01_007 crossref_primary_10_1007_s40429_019_00268_w crossref_primary_10_1016_j_bpsc_2019_05_017 crossref_primary_10_1016_j_pscychresns_2021_111352 crossref_primary_10_1093_brain_awz310 crossref_primary_10_1016_j_pscychresns_2016_10_012 crossref_primary_10_1523_JNEUROSCI_1808_18_2018 crossref_primary_10_1089_brain_2019_0722 crossref_primary_10_1016_j_ymgme_2022_09_006 crossref_primary_10_1038_s41380_023_02031_0 crossref_primary_10_1002_ana_24694 crossref_primary_10_1016_j_neuroimage_2014_12_016 crossref_primary_10_1152_jn_00260_2016 crossref_primary_10_1016_j_nicl_2016_02_011 crossref_primary_10_1136_bmjdrc_2015_000175 crossref_primary_10_1111_ejn_12956 crossref_primary_10_1002_hbm_25201 crossref_primary_10_1136_jnnp_2020_324256 crossref_primary_10_1002_hbm_24233 crossref_primary_10_1016_j_nicl_2014_05_009 crossref_primary_10_1002_ejp_745 crossref_primary_10_1016_j_bpsc_2018_12_011 crossref_primary_10_1162_jocn_2010_21510 crossref_primary_10_1093_cercor_bhp178 crossref_primary_10_1093_cercor_bhr117 crossref_primary_10_1038_s41562_017_0146 crossref_primary_10_1162_jocn_a_02124 crossref_primary_10_1016_j_brainres_2011_09_040 crossref_primary_10_1093_cercor_bhr114 crossref_primary_10_1016_j_pain_2013_04_010 crossref_primary_10_1016_j_parkreldis_2016_07_012 crossref_primary_10_1212_WNL_0000000000006880 crossref_primary_10_1093_schbul_sbx180 crossref_primary_10_1111_gbb_12386 crossref_primary_10_1371_journal_pone_0029517 crossref_primary_10_1038_s41598_018_21346_5 crossref_primary_10_1002_asi_24242 crossref_primary_10_1093_cercor_bhp098 crossref_primary_10_1016_j_neubiorev_2019_04_017 crossref_primary_10_7554_eLife_96020 crossref_primary_10_3389_fnhum_2018_00115 crossref_primary_10_3389_fpsyg_2018_02415 crossref_primary_10_1093_pm_pnaa227 crossref_primary_10_1093_schbul_sbz129 crossref_primary_10_1016_j_neubiorev_2016_08_036 crossref_primary_10_1093_brain_awv134 crossref_primary_10_1159_000534307 crossref_primary_10_1016_j_msard_2020_102351 crossref_primary_10_1038_s41380_023_02063_6 crossref_primary_10_1093_brain_awv259 crossref_primary_10_1016_j_pscychresns_2019_07_003 crossref_primary_10_4103_1673_5374_322463 crossref_primary_10_1016_j_yfrne_2016_10_001 crossref_primary_10_1016_j_neuroimage_2016_09_037 crossref_primary_10_3389_fpsyt_2021_706017 crossref_primary_10_1111_epi_12428 crossref_primary_10_1523_JNEUROSCI_4394_09_2010 crossref_primary_10_1212_WNL_0000000000001189 crossref_primary_10_3389_fpsyg_2018_02781 crossref_primary_10_1016_j_biopsych_2020_03_010 crossref_primary_10_1016_j_neuron_2014_08_031 crossref_primary_10_1007_s00429_017_1450_y crossref_primary_10_1016_j_neuroimage_2022_119391 crossref_primary_10_1177_0004867411432076 crossref_primary_10_1212_WNL_0000000000004680 crossref_primary_10_1007_s00429_016_1250_9 crossref_primary_10_1016_j_cortex_2013_02_014 crossref_primary_10_1038_s41598_024_58339_6 crossref_primary_10_18632_aging_103628 crossref_primary_10_3390_diagnostics11030560 crossref_primary_10_1162_jocn_a_01229 crossref_primary_10_4081_ejh_2021_3284 crossref_primary_10_1016_j_ynirp_2023_100189 crossref_primary_10_1016_j_nicl_2020_102297 crossref_primary_10_1162_jocn_a_00255 crossref_primary_10_3389_fnana_2017_00030 crossref_primary_10_1016_j_neuroimage_2019_01_078 crossref_primary_10_1177_0333102417748570 crossref_primary_10_1371_journal_pone_0039061 crossref_primary_10_1111_bdi_12103 crossref_primary_10_2174_1568026620666200302111130 crossref_primary_10_1002_hbm_23466 crossref_primary_10_1016_j_neuroimage_2016_08_028 crossref_primary_10_1093_schbul_sbx041 crossref_primary_10_1371_journal_pbio_1001266 crossref_primary_10_1371_journal_pbio_1000157 crossref_primary_10_3389_fncom_2016_00100 crossref_primary_10_1016_j_nicl_2017_05_025 crossref_primary_10_1523_JNEUROSCI_3195_15_2016 crossref_primary_10_1016_j_neulet_2024_137985 crossref_primary_10_1016_j_neuroimage_2011_05_059 crossref_primary_10_1016_j_brainresbull_2023_110663 crossref_primary_10_1038_s41598_018_34269_y crossref_primary_10_1080_17470910903202559 crossref_primary_10_1523_JNEUROSCI_4966_08_2009 crossref_primary_10_1093_cercor_bhr041 crossref_primary_10_1227_NEU_0b013e3182262c9a crossref_primary_10_1002_hbm_21398 crossref_primary_10_1016_j_ijpsycho_2015_01_011 crossref_primary_10_2174_1574885514666191121143930 crossref_primary_10_1016_j_schres_2012_12_004 crossref_primary_10_1176_appi_ajp_2019_19030261 crossref_primary_10_1016_j_nicl_2019_102099 crossref_primary_10_1038_nrn2915 crossref_primary_10_1016_j_neuron_2019_11_012 crossref_primary_10_1162_netn_a_00323 crossref_primary_10_1523_JNEUROSCI_1394_18_2018 crossref_primary_10_1371_journal_pone_0041042 crossref_primary_10_1523_JNEUROSCI_1951_09_2009 crossref_primary_10_3389_fpsyg_2018_00278 crossref_primary_10_1111_adb_12013 crossref_primary_10_1093_cercor_bhab126 crossref_primary_10_1016_j_neuroimage_2020_117061 crossref_primary_10_1093_braincomms_fcac047 crossref_primary_10_1007_s00221_013_3715_x crossref_primary_10_1038_ijo_2011_125 crossref_primary_10_1016_j_tics_2012_06_009 crossref_primary_10_1371_journal_pone_0053135 crossref_primary_10_1016_j_schres_2012_08_032 crossref_primary_10_1152_jn_00277_2015 crossref_primary_10_1093_cercor_bhy259 crossref_primary_10_1016_j_neuroimage_2011_12_010 crossref_primary_10_1111_ejn_12897 crossref_primary_10_1017_S0033291719003830 crossref_primary_10_1038_s41598_020_69923_x crossref_primary_10_1089_neu_2021_0093 crossref_primary_10_1162_jocn_a_01699 crossref_primary_10_1371_journal_pone_0041048 crossref_primary_10_3390_brainsci13060942 crossref_primary_10_1016_j_conb_2012_12_004 crossref_primary_10_1162_jocn_a_00008 crossref_primary_10_3390_brainsci12121681 crossref_primary_10_1038_s41562_018_0503_4 crossref_primary_10_1212_WNL_0000000000002235 crossref_primary_10_1523_JNEUROSCI_2636_14_2015 crossref_primary_10_1016_j_neuroimage_2015_04_033 crossref_primary_10_1002_hbm_22665 crossref_primary_10_1002_hbm_22305 crossref_primary_10_1371_journal_pone_0140250 crossref_primary_10_1002_hbm_23636 crossref_primary_10_1016_j_neuroimage_2017_08_056 crossref_primary_10_1111_adb_12482 crossref_primary_10_1111_psyp_12969 crossref_primary_10_1016_j_spen_2017_12_005 crossref_primary_10_1016_j_neurobiolaging_2010_09_027 crossref_primary_10_1016_j_neuroimage_2009_11_027 crossref_primary_10_1152_jn_00270_2012 crossref_primary_10_1523_JNEUROSCI_2770_15_2015 crossref_primary_10_1016_j_neuron_2013_03_031 crossref_primary_10_1073_pnas_1422638112 crossref_primary_10_1002_mds_25864 crossref_primary_10_3389_fnins_2018_00998 crossref_primary_10_1016_j_neuron_2009_09_040 crossref_primary_10_3758_s13415_024_01219_3 crossref_primary_10_1016_j_neuroimage_2017_07_029 crossref_primary_10_1016_j_neuron_2012_10_017 crossref_primary_10_1523_JNEUROSCI_5756_11_2012 crossref_primary_10_1016_j_jaac_2017_02_009 crossref_primary_10_1523_JNEUROSCI_3069_13_2014 crossref_primary_10_1016_j_clinph_2022_04_022 crossref_primary_10_1016_j_neubiorev_2022_104588 crossref_primary_10_1093_cercor_bhab387 crossref_primary_10_1038_s41531_023_00494_0 crossref_primary_10_1093_brain_awq332 crossref_primary_10_1016_j_neuroimage_2011_11_008 crossref_primary_10_1111_ejn_12314 crossref_primary_10_3389_fnana_2018_00060 crossref_primary_10_3389_fnins_2022_906875 crossref_primary_10_1093_cercor_bhy150 crossref_primary_10_1007_s00429_013_0671_y crossref_primary_10_1016_j_neuroimage_2011_11_006 crossref_primary_10_1093_cercor_bhz121 crossref_primary_10_1016_j_neuroimage_2014_03_073 crossref_primary_10_1523_JNEUROSCI_2317_15_2015 crossref_primary_10_1007_s11357_025_01529_5 crossref_primary_10_1016_j_neuroimage_2022_118959 crossref_primary_10_1007_s00429_016_1223_z crossref_primary_10_1016_j_cortex_2021_05_003 crossref_primary_10_3389_fnana_2017_00085 crossref_primary_10_1016_j_neuroimage_2018_02_048 crossref_primary_10_1016_j_pscychresns_2011_07_013 crossref_primary_10_1093_cercor_bhab159 crossref_primary_10_3389_fnhum_2018_00285 crossref_primary_10_3389_fnana_2016_00093 crossref_primary_10_1371_journal_pone_0129692 crossref_primary_10_1016_j_brs_2021_11_006 crossref_primary_10_1146_annurev_neuro_110920_013544 crossref_primary_10_1186_s12888_021_03187_1 crossref_primary_10_1111_ejn_14869 crossref_primary_10_7554_eLife_79642 crossref_primary_10_1016_j_neubiorev_2021_06_042 crossref_primary_10_1016_j_neuroimage_2011_07_032 crossref_primary_10_1371_journal_pone_0106768 crossref_primary_10_1016_j_jphysparis_2015_02_001 crossref_primary_10_1371_journal_pone_0081410 crossref_primary_10_1016_j_yebeh_2011_03_013 crossref_primary_10_1002_hbm_23609 crossref_primary_10_1093_cercor_bhp123 crossref_primary_10_1002_hbm_25906 crossref_primary_10_1016_j_cortex_2020_03_021 crossref_primary_10_1016_j_nicl_2018_01_034 crossref_primary_10_1016_j_tics_2012_07_007 crossref_primary_10_1109_TBME_2016_2598818 crossref_primary_10_1016_j_neuroimage_2018_02_054 crossref_primary_10_1016_j_pscychresns_2012_07_001 crossref_primary_10_1152_jn_00569_2014 crossref_primary_10_1111_adb_12692 crossref_primary_10_1111_j_1528_1167_2012_03422_x crossref_primary_10_1038_srep31378 crossref_primary_10_1111_ejn_14518 crossref_primary_10_3389_fpsyt_2019_00756 crossref_primary_10_1016_j_cortex_2016_05_021 crossref_primary_10_1016_j_cobeha_2016_01_010 crossref_primary_10_3389_fnins_2018_00917 crossref_primary_10_1016_j_conb_2010_01_007 crossref_primary_10_1016_j_neuropsychologia_2013_11_015 crossref_primary_10_1111_ejn_13661 crossref_primary_10_1177_0004867412440191 crossref_primary_10_1007_s10548_017_0548_0 crossref_primary_10_1007_s10143_020_01245_y crossref_primary_10_1016_j_neubiorev_2022_104639 crossref_primary_10_1016_j_brainres_2016_08_005 crossref_primary_10_1016_j_bandl_2013_04_003 crossref_primary_10_1016_j_pscychresns_2010_10_006 crossref_primary_10_1016_j_pscychresns_2019_01_008 crossref_primary_10_1002_jmri_27851 crossref_primary_10_1038_s41539_024_00282_2 crossref_primary_10_1016_j_neuroimage_2016_06_018 crossref_primary_10_1523_JNEUROSCI_4902_09_2010 crossref_primary_10_1177_0883073819862121 crossref_primary_10_1038_s41562_024_01901_z crossref_primary_10_1038_s41598_021_93190_z crossref_primary_10_1016_j_neuropsychologia_2016_09_006 crossref_primary_10_1016_j_bpsc_2022_02_011 crossref_primary_10_1016_j_jneuroling_2019_03_004 crossref_primary_10_1093_braincomms_fcad275 crossref_primary_10_1002_hbm_22417 crossref_primary_10_1093_brain_awq300 crossref_primary_10_1093_brain_awz239 crossref_primary_10_1007_s10548_023_00960_1 crossref_primary_10_1038_s41598_018_24528_3 crossref_primary_10_1002_mds_27712 crossref_primary_10_1038_s41467_023_38974_9 crossref_primary_10_1007_s00429_014_0706_z crossref_primary_10_1016_j_bpsc_2024_05_008 crossref_primary_10_1016_j_neuroimage_2021_118744 crossref_primary_10_1016_j_tics_2018_08_005 crossref_primary_10_1038_s41598_021_95300_3 crossref_primary_10_1016_j_neuroimage_2015_06_084 crossref_primary_10_1016_j_neuroimage_2016_12_011 crossref_primary_10_1523_JNEUROSCI_2344_12_2012 crossref_primary_10_1002_hbm_22401 crossref_primary_10_1523_ENEURO_0392_17_2017 crossref_primary_10_3389_fnana_2022_960439 crossref_primary_10_3390_medicina56120686 crossref_primary_10_1002_hbm_22769 crossref_primary_10_1016_j_brainres_2013_04_021 crossref_primary_10_1016_j_neuron_2013_10_042 crossref_primary_10_1038_npp_2009_129 crossref_primary_10_1016_j_cognition_2021_104785 crossref_primary_10_1016_j_neuroimage_2011_09_008 crossref_primary_10_1093_brain_awq281 crossref_primary_10_1159_000516237 crossref_primary_10_1016_j_ejpn_2016_10_003 crossref_primary_10_1016_j_ejpn_2016_10_002 crossref_primary_10_1523_JNEUROSCI_1088_12_2012 crossref_primary_10_1016_j_jchemneu_2016_06_003 crossref_primary_10_1093_cercor_bhu064 crossref_primary_10_1002_hbm_21505 crossref_primary_10_1016_j_neuroimage_2015_02_012 crossref_primary_10_1002_hbm_22834 crossref_primary_10_1162_jocn_a_01967 crossref_primary_10_1016_j_neuroimage_2017_06_032 crossref_primary_10_1016_j_cortex_2017_06_006 crossref_primary_10_1016_j_neuroimage_2009_12_118 crossref_primary_10_1016_j_neuropsychologia_2012_02_007 crossref_primary_10_1017_S1355617711000567 crossref_primary_10_1371_journal_pone_0060982 crossref_primary_10_3389_fnhum_2014_00747 crossref_primary_10_1016_j_jagp_2013_04_011 crossref_primary_10_1111_ejn_13586 crossref_primary_10_1016_j_neuroimage_2015_03_072 crossref_primary_10_1007_s12264_020_00543_1 crossref_primary_10_1177_1352458515614407 crossref_primary_10_3390_cells12121599 crossref_primary_10_1016_j_conb_2011_04_002 crossref_primary_10_1002_hbm_22701 crossref_primary_10_1016_j_neuroimage_2012_04_011 crossref_primary_10_3389_fneur_2018_01004 crossref_primary_10_1038_nrdp_2015_82 crossref_primary_10_1016_j_neuroimage_2012_12_042 crossref_primary_10_3390_brainsci11111472 crossref_primary_10_1016_j_neubiorev_2019_09_019 crossref_primary_10_1038_mp_2012_54 crossref_primary_10_1038_ncomms9165 crossref_primary_10_1073_pnas_1316911111 crossref_primary_10_1016_j_biopsych_2019_02_013 crossref_primary_10_1016_j_neuroimage_2018_01_077 crossref_primary_10_1016_j_jpsychires_2016_09_014 crossref_primary_10_1177_1352458518758911 crossref_primary_10_1089_brain_2015_0348 crossref_primary_10_1016_j_eurpsy_2016_01_2426 crossref_primary_10_1016_j_cortex_2015_02_012 crossref_primary_10_1073_pnas_2003383117 crossref_primary_10_1002_hbm_22733 crossref_primary_10_1093_cercor_bhae379 crossref_primary_10_3389_fpsyt_2018_00689 crossref_primary_10_1093_cercor_bhu073 crossref_primary_10_1016_j_cortex_2012_04_013 crossref_primary_10_1016_j_neubiorev_2015_09_007 crossref_primary_10_1093_brain_awt329 crossref_primary_10_1186_1744_8069_6_27 crossref_primary_10_1016_j_neuroimage_2018_08_019 crossref_primary_10_1371_journal_pone_0112075 crossref_primary_10_1002_hbm_21517 crossref_primary_10_1016_j_neuroimage_2011_11_089 crossref_primary_10_1007_s00429_021_02446_x crossref_primary_10_1038_srep40469 crossref_primary_10_1016_j_neuroimage_2011_11_082 crossref_primary_10_1016_j_cortex_2018_08_031 crossref_primary_10_1016_j_neuroimage_2019_116387 crossref_primary_10_1002_hbm_22724 crossref_primary_10_1002_jimd_12279 crossref_primary_10_1016_j_concog_2012_01_011 crossref_primary_10_1016_j_neuroscience_2014_09_033 crossref_primary_10_1523_JNEUROSCI_6486_10_2011 crossref_primary_10_3389_fnins_2016_00106 crossref_primary_10_1177_0004867412457224 crossref_primary_10_1016_j_neuroimage_2017_07_042 crossref_primary_10_1371_journal_pone_0013848 crossref_primary_10_1038_nn_2228 crossref_primary_10_20900_jpbs_20200007 crossref_primary_10_1016_j_nicl_2017_01_034 crossref_primary_10_3389_fnint_2024_1324581 crossref_primary_10_1523_ENEURO_0382_17_2018 crossref_primary_10_1523_JNEUROSCI_2033_15_2016 crossref_primary_10_1016_j_bpsc_2020_06_011 crossref_primary_10_3390_metabo12020187 crossref_primary_10_3389_fnsys_2022_966433 crossref_primary_10_1016_j_heliyon_2022_e12215 crossref_primary_10_3758_s13415_021_00914_9 crossref_primary_10_1007_s00702_015_1406_4 crossref_primary_10_1093_cercor_bhv063 crossref_primary_10_1007_s00702_016_1571_0 crossref_primary_10_1007_s00429_012_0422_5 crossref_primary_10_1007_s12311_022_01418_z crossref_primary_10_1038_s41380_019_0570_6 crossref_primary_10_1016_j_neuroimage_2018_09_067 crossref_primary_10_1016_j_neurobiolaging_2013_08_018 crossref_primary_10_1016_j_neuroimage_2011_11_023 crossref_primary_10_1136_jnnp_2013_307041 crossref_primary_10_1016_j_neuroimage_2016_12_071 crossref_primary_10_1136_bmjopen_2021_053991 crossref_primary_10_1016_j_jfludis_2017_09_002 crossref_primary_10_1371_journal_pone_0075912 crossref_primary_10_1002_jdn_10039 crossref_primary_10_1016_j_neuron_2015_12_015 crossref_primary_10_1016_j_nicl_2015_02_017 crossref_primary_10_1016_j_nicl_2015_02_018 crossref_primary_10_3389_fnana_2016_00076 crossref_primary_10_1016_j_brainres_2012_05_037 crossref_primary_10_1016_j_neuroimage_2017_05_012 crossref_primary_10_1016_j_jns_2011_05_015 crossref_primary_10_1111_ejn_15575 crossref_primary_10_1007_s10548_017_0578_7 crossref_primary_10_1038_nrn4038 crossref_primary_10_1093_braincomms_fcae409 crossref_primary_10_3389_fnbeh_2016_00179 crossref_primary_10_1016_j_bpsc_2016_03_008 crossref_primary_10_1088_1741_2552_aabdf5 crossref_primary_10_1016_j_bbr_2023_114525 crossref_primary_10_1016_j_cortex_2023_11_008 crossref_primary_10_1038_s41390_023_02923_5 crossref_primary_10_1111_j_1460_9568_2010_07492_x crossref_primary_10_1016_j_cortex_2014_10_011 crossref_primary_10_1016_j_pscychresns_2010_12_002 crossref_primary_10_1007_s00429_014_0921_7 crossref_primary_10_1007_s11682_024_00906_6 crossref_primary_10_3389_fnagi_2019_00295 crossref_primary_10_1016_j_nicl_2014_09_010 crossref_primary_10_3389_fnagi_2017_00091 crossref_primary_10_1016_j_neuroimage_2016_05_069 crossref_primary_10_1016_j_biopsych_2011_02_036 crossref_primary_10_3389_fnagi_2017_00095 crossref_primary_10_1016_j_bpsc_2017_05_005 crossref_primary_10_1111_nyas_12110 crossref_primary_10_1002_cne_23937 crossref_primary_10_1172_jci_insight_92641 crossref_primary_10_1016_j_jns_2015_04_041 crossref_primary_10_12688_f1000research_16524_1 crossref_primary_10_7554_eLife_19103 crossref_primary_10_36472_msd_v11i3_1141 crossref_primary_10_1002_mds_25255 crossref_primary_10_1016_j_neubiorev_2016_10_033 crossref_primary_10_1002_mds_25015 crossref_primary_10_1371_journal_pone_0093344 crossref_primary_10_1016_j_neuroimage_2010_02_017 crossref_primary_10_1002_ana_25475 crossref_primary_10_1016_j_neuroimage_2012_10_012 crossref_primary_10_2217_nmt_15_71 crossref_primary_10_1016_j_bbr_2017_02_008 crossref_primary_10_1016_j_schres_2016_08_020 crossref_primary_10_1016_j_neuroimage_2019_07_001 crossref_primary_10_1371_journal_pone_0029153 crossref_primary_10_1016_j_neuroimage_2012_03_066 crossref_primary_10_1002_nbm_3762 crossref_primary_10_1098_rstb_2013_0403 crossref_primary_10_1371_journal_pone_0082389 crossref_primary_10_1016_j_nicl_2023_103358 crossref_primary_10_1088_1741_2552_ac16b3 crossref_primary_10_1016_j_jpain_2022_11_008 crossref_primary_10_1177_1352458512460416 crossref_primary_10_1093_cercor_bhv305 crossref_primary_10_1097_WCO_0000000000000461 crossref_primary_10_1016_j_neuroimage_2012_11_055 crossref_primary_10_1186_s13195_019_0572_2 crossref_primary_10_1016_j_nicl_2023_103360 crossref_primary_10_1016_j_neuropsychologia_2020_107633 crossref_primary_10_1002_mds_26012 crossref_primary_10_1177_1756285613511507 crossref_primary_10_1002_brb3_511 crossref_primary_10_1523_JNEUROSCI_1954_14_2014 crossref_primary_10_1016_j_cortex_2020_07_004 crossref_primary_10_1038_s42003_022_04084_3 crossref_primary_10_1002_hbm_25147 crossref_primary_10_1523_JNEUROSCI_3464_13_2014 crossref_primary_10_1002_nbm_3752 crossref_primary_10_1093_cercor_bhs277 crossref_primary_10_1093_cercor_bhs397 crossref_primary_10_1093_cercor_bht002 crossref_primary_10_1038_s41598_023_28100_6 crossref_primary_10_1098_rspb_2015_1203 crossref_primary_10_1007_s00429_015_1018_7 crossref_primary_10_1016_j_neuroimage_2014_05_002 crossref_primary_10_1016_j_pscychresns_2020_111202 crossref_primary_10_3389_fneur_2017_00323 crossref_primary_10_1111_j_1460_9568_2009_06673_x crossref_primary_10_1007_s12559_023_10140_9 crossref_primary_10_1371_journal_pone_0036147 crossref_primary_10_1371_journal_pone_0070141 crossref_primary_10_1152_jn_00995_2011 crossref_primary_10_3389_fneur_2015_00270 crossref_primary_10_1097_RLU_0000000000003609 crossref_primary_10_3389_fneur_2016_00226 crossref_primary_10_1111_nyas_12281 crossref_primary_10_3390_medicina56090452 crossref_primary_10_1515_revneuro_2020_0047 crossref_primary_10_1016_j_cortex_2020_08_028 crossref_primary_10_1089_brain_2013_0160 crossref_primary_10_1177_1352458514555784 crossref_primary_10_1093_scan_nsx129 crossref_primary_10_1007_s11682_012_9172_5 crossref_primary_10_1016_j_neures_2021_09_003 crossref_primary_10_1523_JNEUROSCI_4821_11_2012 crossref_primary_10_1007_s00429_024_02778_4 crossref_primary_10_1093_brain_awad389 crossref_primary_10_1016_j_pscychresns_2023_111717 crossref_primary_10_1016_j_euroneuro_2022_01_003 crossref_primary_10_1016_j_pscychresns_2012_04_006 crossref_primary_10_1523_ENEURO_0495_20_2021 crossref_primary_10_1016_j_parkreldis_2019_06_004 crossref_primary_10_1093_cercor_bhv323 crossref_primary_10_3171_2016_1_JNS15601 crossref_primary_10_1093_cercor_bhr088 crossref_primary_10_1016_j_mri_2015_07_011 crossref_primary_10_1016_j_neuroimage_2013_05_043 crossref_primary_10_1038_tpj_2012_3 crossref_primary_10_1111_nyas_12271 crossref_primary_10_1016_j_neuroimage_2012_05_021 crossref_primary_10_1016_j_nicl_2017_01_008 crossref_primary_10_1007_s11695_019_03822_7 crossref_primary_10_3174_ajnr_A3140 crossref_primary_10_1016_j_celrep_2022_110439 crossref_primary_10_1016_j_biopsych_2022_07_017 crossref_primary_10_1016_j_neuroimage_2023_120414 crossref_primary_10_1002_brb3_529 crossref_primary_10_1002_mds_27358 crossref_primary_10_7759_cureus_11846 crossref_primary_10_1016_j_neubiorev_2018_04_016 crossref_primary_10_1016_j_pscychresns_2010_09_014 crossref_primary_10_1016_j_neuroimage_2022_119684 crossref_primary_10_1098_rstb_2008_0155 crossref_primary_10_1002_hbm_23056 crossref_primary_10_1111_ene_14648 crossref_primary_10_1007_s12662_012_0230_3 crossref_primary_10_1016_j_cortex_2015_07_016 crossref_primary_10_3758_s13423_015_0999_9 crossref_primary_10_1186_1744_8069_7_71 crossref_primary_10_1523_JNEUROSCI_5806_12_2014 crossref_primary_10_1016_j_neuroscience_2021_01_028 crossref_primary_10_1016_j_neuroimage_2021_118077 crossref_primary_10_1523_ENEURO_0151_18_2018 crossref_primary_10_3389_fneur_2018_00467 crossref_primary_10_1146_annurev_psych_122216_011555 crossref_primary_10_1016_j_schres_2023_01_026 crossref_primary_10_1002_jmri_28599 crossref_primary_10_1371_journal_pone_0269154 crossref_primary_10_1007_s00415_025_13018_y crossref_primary_10_1371_journal_pone_0031728 crossref_primary_10_1038_tp_2015_148 crossref_primary_10_1016_j_ijpsycho_2011_11_003 crossref_primary_10_3389_fneur_2019_00267 crossref_primary_10_1111_jnc_14898 crossref_primary_10_3389_fnins_2018_00242 crossref_primary_10_3389_fneur_2017_00129 crossref_primary_10_3174_ajnr_A3242 crossref_primary_10_31887_DCNS_2016_18_1_shaber crossref_primary_10_3389_fnins_2014_00187 crossref_primary_10_1016_j_neuroimage_2019_06_019 crossref_primary_10_1093_cercor_bhv135 crossref_primary_10_1016_j_neuroimage_2018_05_012 crossref_primary_10_1111_ene_14423 crossref_primary_10_1073_pnas_1007277107 crossref_primary_10_1016_j_cortex_2017_02_011 crossref_primary_10_1002_mco2_764 crossref_primary_10_1126_sciadv_abm1971 crossref_primary_10_1016_j_pscychresns_2013_05_010 crossref_primary_10_1073_pnas_1423095112 crossref_primary_10_1007_s11682_016_9533_6 crossref_primary_10_1002_ana_25566 crossref_primary_10_1152_jn_00221_2014 crossref_primary_10_1002_hbm_24275 crossref_primary_10_1016_j_neuroimage_2011_10_089 crossref_primary_10_1080_02640414_2011_647706 crossref_primary_10_1093_cercor_bhv243 crossref_primary_10_3389_fpsyt_2019_00060 crossref_primary_10_1016_j_jns_2018_02_032 |
Cites_doi | 10.1016/j.jchemneu.2003.10.003 10.1016/S0896-6273(02)00718-3 10.1152/jn.1996.76.3.1367 10.1007/BF00227517 10.1002/mrm.10308 10.1016/S1471-1931(00)00022-7 10.1002/(SICI)1096-9861(19960812)372:1<59::AID-CNE6>3.0.CO;2-L 10.1016/j.neubiorev.2006.11.003 10.1523/JNEUROSCI.14-02-00599.1994 10.1159/000123779 10.1002/mrm.10268 10.1093/brain/120.10.1823 10.1016/S0896-6273(01)00285-9 10.1006/brcg.1999.1099 10.1016/S0006-8993(98)00198-X 10.1126/science.7679223 10.1093/cercor/bhh091 10.1093/brain/awm275 10.1523/JNEUROSCI.22-18-08117.2002 10.1016/S0301-0082(97)00002-6 10.1002/cne.903140209 10.1038/nn1075 10.1126/science.275.5306.1593 10.1126/science.286.5445.1745 10.1002/1096-9861(20000925)425:3<447::AID-CNE9>3.0.CO;2-V 10.1006/brcg.1999.1188 10.1016/j.neuroimage.2007.06.022 10.1016/S0006-3495(94)80775-1 10.1523/JNEUROSCI.20-16-06159.2000 10.1016/j.neuroimage.2005.02.018 10.1093/cercor/bhh108 10.1006/nimg.2001.1022 10.1046/j.1460-9568.2001.02090.x 10.1523/JNEUROSCI.23-08-03432.2003 10.1016/S0959-4388(01)00270-7 10.1016/S0166-2236(03)00122-X 10.1148/radiology.201.3.8939209 10.1126/science.1115270 10.1523/JNEUROSCI.21-15-05764.2001 10.1192/bjp.164.4.459 10.1137/1.9780898719802 10.1098/rstb.2005.1639 10.1523/JNEUROSCI.17-10-03870.1997 10.1523/JNEUROSCI.20-10-03798.2000 10.1002/mrm.1910360612 10.1002/ana.20030 10.1016/j.neulet.2007.04.049 10.1007/s002210050384 10.1146/annurev.ne.09.030186.002041 10.1016/S0079-6123(08)62678-3 10.1093/cercor/12.9.926 10.1016/j.neuropsychologia.2004.07.018 10.1093/cercor/bhh105 10.1093/brain/awl106 10.1016/j.neuroimage.2006.01.021 10.1038/nature05051 10.1016/j.neuroimage.2006.08.005 10.1093/cercor/bhi089 10.54294/fgfrtv 10.1523/JNEUROSCI.0271-06.2006 10.1002/(SICI)1096-9861(19990726)410:2<211::AID-CNE4>3.0.CO;2-X 10.1152/jn.1998.80.2.964 10.1002/mrm.10209 10.1038/nn1579 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Society for Neuroscience 0270-6474/08/287143-10$15.00/0 2008 |
Copyright_xml | – notice: Copyright © 2008 Society for Neuroscience 0270-6474/08/287143-10$15.00/0 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.1486-08.2008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 7152 |
ExternalDocumentID | PMC6670486 18614684 10_1523_JNEUROSCI_1486_08_2008 www28_28_7143 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 075696/Z/04/Z – fundername: Wellcome Trust |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c541t-73381ac1c88c34ecd982467bfcc67e127ca2202a9a09d81a2d8a5781d75e6e403 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:09:28 EDT 2025 Fri Jul 11 14:01:41 EDT 2025 Thu Jul 10 17:33:49 EDT 2025 Thu Apr 03 06:59:51 EDT 2025 Tue Jul 01 02:58:56 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Nov 10 19:20:00 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 This article is freely available online through the J Neurosci Open Choice option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c541t-73381ac1c88c34ecd982467bfcc67e127ca2202a9a09d81a2d8a5781d75e6e403 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 B.D. and F.K. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/28/28/7143.full.pdf |
PMID | 18614684 |
PQID | 20785397 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6670486 proquest_miscellaneous_69313037 proquest_miscellaneous_20785397 pubmed_primary_18614684 crossref_citationtrail_10_1523_JNEUROSCI_1486_08_2008 crossref_primary_10_1523_JNEUROSCI_1486_08_2008 highwire_smallpub1_www28_28_7143 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20080709 2008-07-09 2008-Jul-09 |
PublicationDateYYYYMMDD | 2008-07-09 |
PublicationDate_xml | – month: 07 year: 2008 text: 20080709 day: 09 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2008 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Parker (2023041303324679000_28.28.7143.49) 2003; 18 Sherman (2023041303324679000_28.28.7143.60) 1996; 76 2023041303324679000_28.28.7143.35 2023041303324679000_28.28.7143.34 2023041303324679000_28.28.7143.37 2023041303324679000_28.28.7143.36 2023041303324679000_28.28.7143.30 Kolomiets (2023041303324679000_28.28.7143.31) 2001; 21 Tremblay (2023041303324679000_28.28.7143.64) 1998; 80 Levy (2023041303324679000_28.28.7143.38) 1997; 17 2023041303324679000_28.28.7143.32 2023041303324679000_28.28.7143.28 Flaherty (2023041303324679000_28.28.7143.21) 1994; 14 2023041303324679000_28.28.7143.29 Alexander (2023041303324679000_28.28.7143.3) 1990; 85 Taniwaki (2023041303324679000_28.28.7143.63) 2003; 23 McFarland (2023041303324679000_28.28.7143.41) 2002; 22 2023041303324679000_28.28.7143.62 2023041303324679000_28.28.7143.61 McFarland (2023041303324679000_28.28.7143.40) 2000; 20 Elliott (2023041303324679000_28.28.7143.16) 2000; 20 2023041303324679000_28.28.7143.24 2023041303324679000_28.28.7143.23 2023041303324679000_28.28.7143.67 2023041303324679000_28.28.7143.26 2023041303324679000_28.28.7143.25 2023041303324679000_28.28.7143.20 2023041303324679000_28.28.7143.66 2023041303324679000_28.28.7143.65 2023041303324679000_28.28.7143.2 2023041303324679000_28.28.7143.17 2023041303324679000_28.28.7143.1 Cook (2023041303324679000_28.28.7143.9) 2004; 1 2023041303324679000_28.28.7143.19 2023041303324679000_28.28.7143.18 2023041303324679000_28.28.7143.6 François (2023041303324679000_28.28.7143.22) 1994; 102 2023041303324679000_28.28.7143.5 2023041303324679000_28.28.7143.4 2023041303324679000_28.28.7143.8 2023041303324679000_28.28.7143.7 Jansons (2023041303324679000_28.28.7143.27) 2003; 18 2023041303324679000_28.28.7143.51 2023041303324679000_28.28.7143.50 Künzle (2023041303324679000_28.28.7143.33) 1978; 15 2023041303324679000_28.28.7143.13 2023041303324679000_28.28.7143.57 2023041303324679000_28.28.7143.12 2023041303324679000_28.28.7143.56 2023041303324679000_28.28.7143.15 2023041303324679000_28.28.7143.59 2023041303324679000_28.28.7143.14 2023041303324679000_28.28.7143.58 2023041303324679000_28.28.7143.53 2023041303324679000_28.28.7143.52 2023041303324679000_28.28.7143.11 2023041303324679000_28.28.7143.55 2023041303324679000_28.28.7143.10 2023041303324679000_28.28.7143.54 2023041303324679000_28.28.7143.46 2023041303324679000_28.28.7143.45 2023041303324679000_28.28.7143.48 2023041303324679000_28.28.7143.47 2023041303324679000_28.28.7143.42 2023041303324679000_28.28.7143.44 2023041303324679000_28.28.7143.43 2023041303324679000_28.28.7143.39 |
References_xml | – ident: 2023041303324679000_28.28.7143.24 doi: 10.1016/j.jchemneu.2003.10.003 – ident: 2023041303324679000_28.28.7143.56 doi: 10.1016/S0896-6273(02)00718-3 – volume: 76 start-page: 1367 year: 1996 ident: 2023041303324679000_28.28.7143.60 article-title: Functional organization of thalamocortical relays publication-title: J Neurophysiol doi: 10.1152/jn.1996.76.3.1367 – volume: 102 start-page: 305 year: 1994 ident: 2023041303324679000_28.28.7143.22 article-title: Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra publication-title: Exp Brain Res doi: 10.1007/BF00227517 – ident: 2023041303324679000_28.28.7143.55 doi: 10.1002/mrm.10308 – ident: 2023041303324679000_28.28.7143.48 doi: 10.1016/S1471-1931(00)00022-7 – ident: 2023041303324679000_28.28.7143.39 doi: 10.1002/(SICI)1096-9861(19960812)372:1<59::AID-CNE6>3.0.CO;2-L – ident: 2023041303324679000_28.28.7143.66 doi: 10.1016/j.neubiorev.2006.11.003 – volume: 14 start-page: 599 year: 1994 ident: 2023041303324679000_28.28.7143.21 article-title: Input-output organization of the sensorimotor striatum in the squirrel monkey publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-02-00599.1994 – volume: 1 start-page: 332 year: 2004 ident: 2023041303324679000_28.28.7143.9 article-title: Modelling noise-induced fibre-orientation error in diffusion-tensor MRI publication-title: IEEE ISBI – volume: 15 start-page: 185 year: 1978 ident: 2023041303324679000_28.28.7143.33 article-title: An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis publication-title: Brain Behav Evol doi: 10.1159/000123779 – ident: 2023041303324679000_28.28.7143.65 doi: 10.1002/mrm.10268 – ident: 2023041303324679000_28.28.7143.47 doi: 10.1093/brain/120.10.1823 – ident: 2023041303324679000_28.28.7143.23 doi: 10.1016/S0896-6273(01)00285-9 – ident: 2023041303324679000_28.28.7143.44 doi: 10.1006/brcg.1999.1099 – ident: 2023041303324679000_28.28.7143.62 doi: 10.1016/S0006-8993(98)00198-X – ident: 2023041303324679000_28.28.7143.26 doi: 10.1126/science.7679223 – ident: 2023041303324679000_28.28.7143.35 doi: 10.1093/cercor/bhh091 – ident: 2023041303324679000_28.28.7143.30 doi: 10.1093/brain/awm275 – volume: 22 start-page: 8117 year: 2002 ident: 2023041303324679000_28.28.7143.41 article-title: Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-18-08117.2002 – ident: 2023041303324679000_28.28.7143.8 doi: 10.1016/S0301-0082(97)00002-6 – ident: 2023041303324679000_28.28.7143.32 doi: 10.1002/cne.903140209 – ident: 2023041303324679000_28.28.7143.7 doi: 10.1038/nn1075 – ident: 2023041303324679000_28.28.7143.58 doi: 10.1126/science.275.5306.1593 – ident: 2023041303324679000_28.28.7143.28 doi: 10.1126/science.286.5445.1745 – ident: 2023041303324679000_28.28.7143.20 doi: 10.1002/1096-9861(20000925)425:3<447::AID-CNE9>3.0.CO;2-V – ident: 2023041303324679000_28.28.7143.15 doi: 10.1006/brcg.1999.1188 – ident: 2023041303324679000_28.28.7143.14 doi: 10.1016/j.neuroimage.2007.06.022 – ident: 2023041303324679000_28.28.7143.6 doi: 10.1016/S0006-3495(94)80775-1 – volume: 20 start-page: 6159 year: 2000 ident: 2023041303324679000_28.28.7143.16 article-title: Dissociable neural responses in human reward systems publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-16-06159.2000 – ident: 2023041303324679000_28.28.7143.4 doi: 10.1016/j.neuroimage.2005.02.018 – ident: 2023041303324679000_28.28.7143.19 doi: 10.1093/cercor/bhh108 – ident: 2023041303324679000_28.28.7143.67 doi: 10.1006/nimg.2001.1022 – ident: 2023041303324679000_28.28.7143.52 doi: 10.1046/j.1460-9568.2001.02090.x – volume: 23 start-page: 3432 year: 2003 ident: 2023041303324679000_28.28.7143.63 article-title: Reappraisal of the motor role of basal ganglia: a functional magnetic resonance image study publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-08-03432.2003 – ident: 2023041303324679000_28.28.7143.5 doi: 10.1016/S0959-4388(01)00270-7 – ident: 2023041303324679000_28.28.7143.59 doi: 10.1016/S0166-2236(03)00122-X – ident: 2023041303324679000_28.28.7143.54 doi: 10.1148/radiology.201.3.8939209 – volume: 18 start-page: 684 year: 2003 ident: 2023041303324679000_28.28.7143.49 article-title: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information publication-title: Inf Process Med Imaging – ident: 2023041303324679000_28.28.7143.57 doi: 10.1126/science.1115270 – volume: 21 start-page: 5764 year: 2001 ident: 2023041303324679000_28.28.7143.31 article-title: Segregation and convergence of information flow through the cortico-subthalamic pathways publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-15-05764.2001 – ident: 2023041303324679000_28.28.7143.42 doi: 10.1192/bjp.164.4.459 – ident: 2023041303324679000_28.28.7143.43 doi: 10.1137/1.9780898719802 – ident: 2023041303324679000_28.28.7143.50 doi: 10.1098/rstb.2005.1639 – volume: 17 start-page: 3870 year: 1997 ident: 2023041303324679000_28.28.7143.38 article-title: Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-10-03870.1997 – volume: 20 start-page: 3798 year: 2000 ident: 2023041303324679000_28.28.7143.40 article-title: Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-10-03798.2000 – ident: 2023041303324679000_28.28.7143.53 doi: 10.1002/mrm.1910360612 – ident: 2023041303324679000_28.28.7143.36 doi: 10.1002/ana.20030 – ident: 2023041303324679000_28.28.7143.34 doi: 10.1016/j.neulet.2007.04.049 – ident: 2023041303324679000_28.28.7143.61 doi: 10.1007/s002210050384 – ident: 2023041303324679000_28.28.7143.2 doi: 10.1146/annurev.ne.09.030186.002041 – volume: 85 start-page: 119 year: 1990 ident: 2023041303324679000_28.28.7143.3 article-title: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)62678-3 – ident: 2023041303324679000_28.28.7143.45 doi: 10.1093/cercor/12.9.926 – ident: 2023041303324679000_28.28.7143.18 doi: 10.1016/j.neuropsychologia.2004.07.018 – ident: 2023041303324679000_28.28.7143.29 doi: 10.1093/cercor/bhh105 – ident: 2023041303324679000_28.28.7143.46 doi: 10.1093/brain/awl106 – ident: 2023041303324679000_28.28.7143.13 doi: 10.1016/j.neuroimage.2006.01.021 – volume: 18 start-page: 672 year: 2003 ident: 2023041303324679000_28.28.7143.27 article-title: Persistent angular structure: new insights from diffusion MRI data. Dummy version publication-title: Inf Process Med Imaging – ident: 2023041303324679000_28.28.7143.51 doi: 10.1038/nature05051 – ident: 2023041303324679000_28.28.7143.12 doi: 10.1016/j.neuroimage.2006.08.005 – ident: 2023041303324679000_28.28.7143.37 doi: 10.1093/cercor/bhi089 – ident: 2023041303324679000_28.28.7143.10 doi: 10.54294/fgfrtv – ident: 2023041303324679000_28.28.7143.25 doi: 10.1523/JNEUROSCI.0271-06.2006 – ident: 2023041303324679000_28.28.7143.11 doi: 10.1002/(SICI)1096-9861(19990726)410:2<211::AID-CNE4>3.0.CO;2-X – volume: 80 start-page: 964 year: 1998 ident: 2023041303324679000_28.28.7143.64 article-title: Modifications of reward expectation-related neuronal activity during learning in primate striatum publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.2.964 – ident: 2023041303324679000_28.28.7143.1 doi: 10.1002/mrm.10209 – ident: 2023041303324679000_28.28.7143.17 doi: 10.1038/nn1579 |
SSID | ssj0007017 |
Score | 2.4955482 |
Snippet | Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7143 |
SubjectTerms | Adult Basal Ganglia - anatomy & histology Basal Ganglia - physiology Brain Mapping Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology Female Functional Laterality Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Male Middle Aged Neural Pathways - anatomy & histology Neural Pathways - physiology Primates |
Title | Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia |
URI | http://www.jneurosci.org/cgi/content/abstract/28/28/7143 https://www.ncbi.nlm.nih.gov/pubmed/18614684 https://www.proquest.com/docview/20785397 https://www.proquest.com/docview/69313037 https://pubmed.ncbi.nlm.nih.gov/PMC6670486 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgvPCCgPFRGOAHxFtY7Ca287iWlbGOIrRW6pvlOu6G1KXVmqkav557nc-iogFSFbWp86GeU-fYvvdcQt4baUEWd6NApMIFkY1mgVIuDFJmmHMgyZnPr_g6EieT6HQaT5sVfJ9dks8-2p8780r-B1XYB7hiluw_IFufFHbAe8AXtoAwbP8K46okqI8VXDsYOuOkWFo6KhU-EBgZZDGaxZZ1IlbeUbOIH0fVWVTp65k1gPXZYFavaSvWJnfMq9aW_2VNiU_X5sJUBbB7y4u0YdwQ0wu97-MA3ZvruefhAlfoe2K1KqIEznM3b47qg_JvZnvK6dZqakL5MNak3Ztyv3xTkMft2Fd2wVy1qFZ-KDpULM--s6ePvePE6QgDHs_7X6DHVyIIlY-ObZ5t1Xr-6JseTM7O9Ph4Or5PHnAYU2C5i-H3xlpehr48c31_ZTo5XOdw91W2lUzlLr1rpPJ7wG1LwYwfk0cliPSo4NETcs9lT8n-UWby5dUt_UB9MLBfZdkn04paFKhFG2pRoBZtUYu2qUUrakELCtSinlrUU4uW1HpGJoPjcf8kKItwBDaOWB7ILmg6Y5lVynYjZ9NEcXi4zubWCukYl9ZwHnKTmDBJoSVPlYGnAEtl7ISLwu5zspctM_eSUJFEfC6YCqMZvEAJxyJlcD7j0njOpOmQuPpBtS0d6rFQykLjSBWA0DUQGoHQofJVVDvksD5uVXi03HkErfDS6yuzWAA8TG82Gw7fK42k65B3FY4aelxcRjOZW96s4QQSNG4i_9xCJF2UhtDiRYF7c1tKYK5j1CFyixF1A3R73_4m-3HpXd-FkGiP-erOq74mD5s_4wHZy69v3BtQzvnsrWf8L0SpxBM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+segregated+and+integrative+connectivity+patterns+in+the+human+Basal+Ganglia&rft.jtitle=The+Journal+of+neuroscience&rft.au=Draganski%2C+Bogdan&rft.au=Kherif%2C+Ferath&rft.au=Kl%C3%B6ppel%2C+Stefan&rft.au=Cook%2C+Philip+A&rft.date=2008-07-09&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=28&rft.issue=28&rft.spage=7143&rft_id=info:doi/10.1523%2FJNEUROSCI.1486-08.2008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |