Lightweight federated learning for STIs/HIV prediction

This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 6560 - 12
Main Authors Nguyen, Thi Phuoc Van, Yang, Wencheng, Tang, Zhaohui, Xia, Xiaoyu, Mullens, Amy B., Dean, Judith A., Li, Yan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.
AbstractList This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.
This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93\%$$\end{document} 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.
This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( ). Despite these promising findings, a limitation of the study lies in the experiment for man's data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework's impact and ultimately aim to improve health outcomes/health service optimisation.
This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy (93%). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.
Abstract This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( $$93\%$$ 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.
This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( $$93\%$$ 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man’s data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework’s impact and ultimately aim to improve health outcomes/health service optimisation.
This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man's data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework's impact and ultimately aim to improve health outcomes/health service optimisation.This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible infections/human immunodeficiency virus (STIs/HIV). The approach utilised Federated Learning (FL) to construct a model from multiple clinics and key stakeholders. FL ensured that only models were shared between clinics, minimising the risk of personal information leakage. Additionally, an algorithm was explored on the FL manager side to construct a global model that aligns with the communication status of the system. Our proposed method introduced Random Forest Federated Learning for assessing the risk of STIs/HIV, incorporating a flexible aggregation process that can be adjusted to accommodate the capacious communication system. Experimental results demonstrated the significant potential of a solution for estimating STIs/HIV risk. In comparison with recent studies, our approach yielded superior results in terms of AUC (0.97) and accuracy ( 93 % ). Despite these promising findings, a limitation of the study lies in the experiment for man's data, due to the self-reported nature of the data and sensitive content. which may be subject to participant bias. Future research could check the performance of the proposed framework in partnership with high-risk populations (e.g., men who have sex with men) to provide a more comprehensive understanding of the proposed framework's impact and ultimately aim to improve health outcomes/health service optimisation.
ArticleNumber 6560
Author Yang, Wencheng
Dean, Judith A.
Li, Yan
Xia, Xiaoyu
Nguyen, Thi Phuoc Van
Mullens, Amy B.
Tang, Zhaohui
Author_xml – sequence: 1
  givenname: Thi Phuoc Van
  surname: Nguyen
  fullname: Nguyen, Thi Phuoc Van
  email: phuocvan.haui@gmail.com
  organization: School of Mathematics, Physics and Computing, Centre for Health Research, University of Southern Queensland
– sequence: 2
  givenname: Wencheng
  surname: Yang
  fullname: Yang, Wencheng
  organization: School of Mathematics, Physics and Computing, Centre for Health Research, University of Southern Queensland
– sequence: 3
  givenname: Zhaohui
  surname: Tang
  fullname: Tang, Zhaohui
  organization: School of Mathematics, Physics and Computing, Centre for Health Research, University of Southern Queensland
– sequence: 4
  givenname: Xiaoyu
  surname: Xia
  fullname: Xia, Xiaoyu
  organization: School of Computing Technologies, RMIT University
– sequence: 5
  givenname: Amy B.
  surname: Mullens
  fullname: Mullens, Amy B.
  organization: School of Psychology and Wellbeing, Institute for Resilient Regions, Centre for Health Research, University of Southern Queensland
– sequence: 6
  givenname: Judith A.
  surname: Dean
  fullname: Dean, Judith A.
  organization: School of Public Health, Faculty of Medicine, The University of Queensland
– sequence: 7
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: School of Mathematics, Physics and Computing, Centre for Health Research, University of Southern Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38503789$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFCEYxompsbX2C3gwk3jxMpa_M3AyplG7ySYerF4JAy9TNrOwwqzGby_babXtoRyAwPP88rzwvkRHMUVA6DXB7wlm8rxwIpRsMeWt6AgRLX6GTijmoqWM0qN7-2N0VsoG1yGo4kS9QMdMCsx6qU5Qtw7j9fwbDnPjwUE2M7hmApNjiGPjU26-Xa3K-eXqR7PL4IKdQ4qv0HNvpgJnt-sp-v7509XFZbv--mV18XHdWsHJ3PYM904M2BDluBA1JjPUe4WZ4lJxpZQzShHWyR5zYGDIwDG3rqcGnHUDO0WrheuS2ehdDluT_-hkgr45SHnUJs_BTqCJG0AqaoljwDuPlefGW0aF89Y6ySvrw8La7YdtxUOcs5keQB_exHCtx_RLE6wEll1XCe9uCTn93EOZ9TYUC9NkIqR90VT1tBbSU1Wlbx9JN2mfY32rqupkV6snsqre3I_0L8vd_1SBXAQ2p1IyeG3DbA4_UBOGqUbTh27QSzfo2g36phs0rlb6yHpHf9LEFlOp4jhC_h_7CddfxHjFHA
CitedBy_id crossref_primary_10_3390_a17080362
crossref_primary_10_3390_ai5020031
crossref_primary_10_1016_j_future_2024_107484
crossref_primary_10_3389_fpubh_2024_1511689
Cites_doi 10.1093/cid/ciz1096
10.3390/atmos12020238
10.1071/SH21044
10.3390/s20092533
10.1080/14639220903470205
10.1109/TNSE.2021.3053588
10.1007/s10461-022-03672-y
10.3390/jcm11071818
10.1213/ANE.0000000000002864
10.2196/37850
10.1186/s12889-023-15418-z
10.1016/j.jinf.2020.11.007
10.52339/tjet.v41i3.845
10.1109/COMST.2021.3075439
10.1109/JIOT.2020.3030072
10.3390/ijerph191912213
10.1016/j.ress.2023.109130
10.1177/2055102915581562
10.1080/09540121.2020.1822502
10.1038/s41746-021-00489-2
10.1016/j.eswa.2017.07.026
10.1038/s41598-020-69250-1
10.1177/14759217211036880
10.1186/s12939-018-0772-6
10.1200/CCI.19.00047
10.1186/s12874-022-01625-6
10.4097/kja.21209
10.1111/rssc.12600
10.1007/s41666-020-00082-4
10.1038/s41437-020-0303-2
10.1016/j.eclinm.2019.10.016
10.1109/COMST.2021.3058573
10.1145/3501813
10.1038/s41746-020-00323-1
10.1080/13691058.2016.1184316
10.1371/journal.pone.0230706
10.1109/MC.2022.3142151
10.1016/B978-0-12-800284-1.00003-5
10.1109/ICC.2019.8761381
10.18653/v1/W19-5030
10.1145/3286490.3286559
10.1007/978-3-030-32692-0_16
10.1109/CVPR.2019.00220
10.1109/HPCA47549.2020.00049
10.1142/9789812836939_0049
10.1109/BIBE.2019.00169
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-56115-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_1dbe892c1d3e46f09f4afc325dfccd84
PMC10950866
38503789
10_1038_s41598_024_56115_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-7307d5b0a19d4551153a2ff90394894999da991368704e3ea1b404cd72aedcdb3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:57 EDT 2025
Thu Aug 21 18:34:45 EDT 2025
Fri Jul 11 02:20:27 EDT 2025
Wed Aug 13 05:30:23 EDT 2025
Mon Jul 21 05:55:03 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 00:51:37 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-7307d5b0a19d4551153a2ff90394894999da991368704e3ea1b404cd72aedcdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-56115-0
PMID 38503789
PQID 2968689418
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1dbe892c1d3e46f09f4afc325dfccd84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10950866
proquest_miscellaneous_2972704729
proquest_journals_2968689418
pubmed_primary_38503789
crossref_citationtrail_10_1038_s41598_024_56115_0
crossref_primary_10_1038_s41598_024_56115_0
springer_journals_10_1038_s41598_024_56115_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xu (CR7) 2022; 11
Probst, Wright, Boulesteix (CR49) 2019; 9
AbdulRahman (CR35) 2020; 8
Kimovski, Ristov, Prodan (CR12) 2022; 55
CR39
Zerka (CR30) 2020; 4
Kamei, Taghipour (CR38) 2023; 233
CR34
Antunes, André da Costa, Küderle, Yari, Eskofier (CR14) 2022; 13
CR33
CR31
Nahm (CR51) 2022; 75
Bao (CR8) 2021; 82
Nguyen (CR40) 2021; 23
Merenda, Porcaro, Iero (CR28) 2020; 20
CR2
Agrawal, Prabakaran (CR36) 2020; 124
Wang (CR43) 2022; 2022
Vujcich (CR22) 2022; 19
Soogun, Kharsany, Zewotir, North, Ogunsakin (CR4) 2022; 22
Xu (CR9) 2022; 24
Krennmair, Schmid (CR5) 2022; 71
Contreras, Orellana-Alvear, Muñoz, Bendix, Célleri (CR50) 2021; 12
Dean, Mitchell, Stewart, Debattista (CR16) 2017; 19
Schober, Boer, Schwarte (CR45) 2018; 126
Mhaisen, Abdellatif, Mohamed, Erbad, Guizani (CR41) 2021; 9
Ridgway (CR3) 2022; 26
Young, Weckman, Holland (CR47) 2011; 12
Engstrom (CR20) 2023; 23
Rieke (CR15) 2020; 3
Mullens (CR18) 2018; 17
Fisher, Fisher, Shuper (CR23) 2014; 50
Malekloo, Ozer, AlHamaydeh, Girolami (CR6) 2022; 21
Sadilek (CR13) 2021; 4
CR10
Sheller (CR25) 2020; 10
Ahlström, Ronit, Omland, Vedel, Obel (CR52) 2019; 17
Mundie, Lazarou, Mullens, Gu, Dean (CR17) 2021; 18
Garciarena, Santana (CR48) 2017; 89
Xu, Huang, Xu, Zhang (CR1) 2007; 45
Kaladharan, Daken, Mullens, Durham (CR19) 2021; 33
Wahab, Mourad, Otrok, Taleb (CR37) 2021; 23
CR29
CR27
Huang (CR32) 2020; 15
Nisa, Mahmood, Ujager, Malik (CR44) 2023; 24
CR24
Dankar, El Emam (CR11) 2013; 6
Strodl, Stewart, Mullens, Deb (CR21) 2015; 2
Xu (CR26) 2021; 5
Chaula, Justo (CR42) 2022; 41
Balzer (CR46) 2020; 71
56115_CR33
S Kamei (56115_CR38) 2023; 233
56115_CR34
56115_CR31
B Wang (56115_CR43) 2022; 2022
U Garciarena (56115_CR48) 2017; 89
D Vujcich (56115_CR22) 2022; 19
AB Mullens (56115_CR18) 2018; 17
SU Nisa (56115_CR44) 2023; 24
N Mhaisen (56115_CR41) 2021; 9
M Merenda (56115_CR28) 2020; 20
FK Dankar (56115_CR11) 2013; 6
A Sadilek (56115_CR13) 2021; 4
S Xu (56115_CR1) 2007; 45
56115_CR29
MJ Sheller (56115_CR25) 2020; 10
RS Antunes (56115_CR14) 2022; 13
P Contreras (56115_CR50) 2021; 12
J Dean (56115_CR16) 2017; 19
LB Balzer (56115_CR46) 2020; 71
S AbdulRahman (56115_CR35) 2020; 8
DC Nguyen (56115_CR40) 2021; 23
S Kaladharan (56115_CR19) 2021; 33
F Zerka (56115_CR30) 2020; 4
P Schober (56115_CR45) 2018; 126
L Huang (56115_CR32) 2020; 15
T Engstrom (56115_CR20) 2023; 23
56115_CR39
P Krennmair (56115_CR5) 2022; 71
56115_CR10
R Chaula (56115_CR42) 2022; 41
E Strodl (56115_CR21) 2015; 2
56115_CR2
D Kimovski (56115_CR12) 2022; 55
N Rieke (56115_CR15) 2020; 3
A Mundie (56115_CR17) 2021; 18
MG Ahlström (56115_CR52) 2019; 17
X Xu (56115_CR9) 2022; 24
OA Wahab (56115_CR37) 2021; 23
R Agrawal (56115_CR36) 2020; 124
A Malekloo (56115_CR6) 2022; 21
X Xu (56115_CR7) 2022; 11
56115_CR27
56115_CR24
WA Fisher (56115_CR23) 2014; 50
P Probst (56115_CR49) 2019; 9
W Young (56115_CR47) 2011; 12
AO Soogun (56115_CR4) 2022; 22
Y Bao (56115_CR8) 2021; 82
JP Ridgway (56115_CR3) 2022; 26
FS Nahm (56115_CR51) 2022; 75
J Xu (56115_CR26) 2021; 5
References_xml – volume: 71
  start-page: 2326
  year: 2020
  end-page: 2333
  ident: CR46
  article-title: Machine learning to identify persons at high-risk of human immunodeficiency virus acquisition in rural kenya and uganda
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciz1096
– volume: 12
  start-page: 238
  year: 2021
  ident: CR50
  article-title: Influence of random forest hyperparameterization on short-term runoff forecasting in an andean mountain catchment
  publication-title: Atmosphere
  doi: 10.3390/atmos12020238
– ident: CR39
– volume: 18
  start-page: 294
  year: 2021
  end-page: 302
  ident: CR17
  article-title: Sexual and reproductive health knowledge, attitudes and behaviours of Chinese international students studying abroad (in Australia, the UK and the US): A scoping review
  publication-title: Sexual Health
  doi: 10.1071/SH21044
– volume: 20
  start-page: 2533
  year: 2020
  ident: CR28
  article-title: Edge machine learning for ai-enabled iot devices: A review
  publication-title: Sensors
  doi: 10.3390/s20092533
– ident: CR29
– volume: 9
  start-page: e1301
  year: 2019
  ident: CR49
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wiley Interdiscipl. Rev.: Data Mining Knowl. Discov.
– volume: 12
  start-page: 15
  year: 2011
  end-page: 43
  ident: CR47
  article-title: A survey of methodologies for the treatment of missing values within datasets: Limitations and benefits
  publication-title: Theor. Issues Ergon. Sci.
  doi: 10.1080/14639220903470205
– volume: 9
  start-page: 55
  year: 2021
  end-page: 66
  ident: CR41
  article-title: Optimal user-edge assignment in hierarchical federated learning based on statistical properties and network topology constraints
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3053588
– volume: 24
  start-page: 107
  year: 2023
  end-page: 115
  ident: CR44
  article-title: Hiv/aids predictive model using random forest based on socio-demographical, biological and behavioral data
  publication-title: Egypt. Inf. J.
– volume: 26
  start-page: 3279
  year: 2022
  end-page: 3288
  ident: CR3
  article-title: Multicenter development and validation of a model for predicting retention in care among people with hiv
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-022-03672-y
– volume: 11
  start-page: 1818
  year: 2022
  ident: CR7
  article-title: A machine-learning-based risk-prediction tool for hiv and sexually transmitted infections acquisition over the next 12 months
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11071818
– volume: 126
  start-page: 1763
  year: 2018
  end-page: 1768
  ident: CR45
  article-title: Correlation coefficients: Appropriate use and interpretation
  publication-title: Anesthes. Analges.
  doi: 10.1213/ANE.0000000000002864
– volume: 24
  start-page: e37850
  year: 2022
  ident: CR9
  article-title: Web-based risk prediction tool for an individual’s risk of hiv and sexually transmitted infections using machine learning algorithms: Development and external validation study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/37850
– volume: 23
  start-page: 1
  year: 2023
  end-page: 11
  ident: CR20
  article-title: Sti and hiv testing: Examining factors that influence uptake among domestic Australian-born, domestic overseas-born and international tertiary students studying in Australia
  publication-title: BMC Public Health
  doi: 10.1186/s12889-023-15418-z
– volume: 82
  start-page: 48
  year: 2021
  end-page: 59
  ident: CR8
  article-title: Predicting the diagnosis of hiv and sexually transmitted infections among men who have sex with men using machine learning approaches
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.11.007
– volume: 41
  start-page: 64
  year: 2022
  end-page: 70
  ident: CR42
  article-title: A robust random forest prediction model for mother-to-child hiv transmission based on individual medical history
  publication-title: Tanzania J. Eng. Technol.
  doi: 10.52339/tjet.v41i3.845
– volume: 23
  start-page: 1622
  year: 2021
  end-page: 1658
  ident: CR40
  article-title: Federated learning for internet of things: A comprehensive survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3075439
– volume: 8
  start-page: 5476
  year: 2020
  end-page: 5497
  ident: CR35
  article-title: A survey on federated learning: The journey from centralized to distributed on-site learning and beyond
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3030072
– volume: 19
  start-page: 12213
  year: 2022
  ident: CR22
  article-title: Strategies for recruiting migrants to participate in a sexual health survey: Methods, results, and lessons
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph191912213
– volume: 233
  start-page: 109130
  year: 2023
  ident: CR38
  article-title: A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109130
– volume: 2
  start-page: 2055102915581562
  year: 2015
  ident: CR21
  article-title: Metacognitions mediate hiv stigma and depression/anxiety in men who have sex with men living with hiv
  publication-title: Health Psychol. Open
  doi: 10.1177/2055102915581562
– volume: 33
  start-page: 1500
  year: 2021
  end-page: 1506
  ident: CR19
  article-title: Tools to measure hiv knowledge, attitudes & practices (kaps) in healthcare providers: A systematic review
  publication-title: AIDS Care
  doi: 10.1080/09540121.2020.1822502
– ident: CR2
– ident: CR10
– volume: 4
  start-page: 132
  year: 2021
  ident: CR13
  article-title: Privacy-first health research with federated learning
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00489-2
– ident: CR33
– volume: 89
  start-page: 52
  year: 2017
  end-page: 65
  ident: CR48
  article-title: An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.026
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR25
  article-title: Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69250-1
– volume: 21
  start-page: 1906
  year: 2022
  end-page: 1955
  ident: CR6
  article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211036880
– volume: 17
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR18
  article-title: Exploring hiv risks, testing and prevention among sub-Saharan African community members in Australia
  publication-title: Int. J. Equity Health
  doi: 10.1186/s12939-018-0772-6
– volume: 4
  start-page: 184
  year: 2020
  end-page: 200
  ident: CR30
  article-title: Systematic review of privacy-preserving distributed machine learning from federated databases in health care
  publication-title: JCO Clin. Cancer Inf.
  doi: 10.1200/CCI.19.00047
– volume: 22
  start-page: 174
  year: 2022
  ident: CR4
  article-title: Identifying potential factors associated with high hiv viral load in kwazulu-natal, south africa using multiple correspondence analysis and random forest analysis
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-022-01625-6
– ident: CR27
– volume: 45
  start-page: 441
  year: 2007
  end-page: 446
  ident: CR1
  article-title: Improved prediction of coreceptor usage and phenotype of hiv-1 based on combined features of v3 loop sequence using random forest
  publication-title: J. Microbiol.
– volume: 75
  start-page: 25
  year: 2022
  end-page: 36
  ident: CR51
  article-title: Receiver operating characteristic curve: Overview and practical use for clinicians
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kja.21209
– volume: 71
  start-page: 1865
  year: 2022
  end-page: 1894
  ident: CR5
  article-title: Flexible domain prediction using mixed effects random forests
  publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat.
  doi: 10.1111/rssc.12600
– volume: 6
  start-page: 35
  year: 2013
  end-page: 67
  ident: CR11
  article-title: Practicing differential privacy in health care: A review
  publication-title: Trans. Data Priv.
– volume: 5
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR26
  article-title: Federated learning for healthcare informatics
  publication-title: J. Healthcare Inf. Res.
  doi: 10.1007/s41666-020-00082-4
– volume: 124
  start-page: 525
  year: 2020
  end-page: 534
  ident: CR36
  article-title: Big data in digital healthcare: Lessons learnt and recommendations for general practice
  publication-title: Heredity
  doi: 10.1038/s41437-020-0303-2
– volume: 17
  start-page: 100203
  year: 2019
  ident: CR52
  article-title: Algorithmic prediction of hiv status using nation-wide electronic registry data
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2019.10.016
– volume: 23
  start-page: 1342
  year: 2021
  end-page: 1397
  ident: CR37
  article-title: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3058573
– volume: 13
  start-page: 1
  year: 2022
  end-page: 23
  ident: CR14
  article-title: Federated learning for healthcare, systematic review and architecture proposal
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3501813
– ident: CR31
– volume: 3
  start-page: 119
  year: 2020
  ident: CR15
  article-title: The future of digital health with federated learning
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-020-00323-1
– volume: 19
  start-page: 17
  year: 2017
  end-page: 31
  ident: CR16
  article-title: Intergenerational variation in sexual health attitudes and beliefs among sudanese refugee communities in Australia
  publication-title: Cult. Health Sexuality
  doi: 10.1080/13691058.2016.1184316
– volume: 15
  start-page: e0230706
  year: 2020
  ident: CR32
  article-title: Loadaboost: Loss-based adaboost federated machine learning with reduced computational complexity on iid and non-iid intensive care data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0230706
– ident: CR34
– volume: 55
  start-page: 55
  year: 2022
  end-page: 65
  ident: CR12
  article-title: Decentralized machine learning for intelligent health care systems on the computing continuum
  publication-title: Computer
  doi: 10.1109/MC.2022.3142151
– volume: 50
  start-page: 105
  year: 2014
  end-page: 193
  ident: CR23
  article-title: Social psychology and the fight against aids: An information-motivation-behavioral skills model for the prediction and promotion of health behavior change
  publication-title: Adv. Exp. Soc. Psychol.
  doi: 10.1016/B978-0-12-800284-1.00003-5
– ident: CR24
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 11
  ident: CR43
  article-title: Predicting adolescent intervention non-responsiveness for precision hiv prevention using machine learning
  publication-title: AIDS Behav.
– volume: 26
  start-page: 3279
  year: 2022
  ident: 56115_CR3
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-022-03672-y
– volume: 17
  start-page: 100203
  year: 2019
  ident: 56115_CR52
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2019.10.016
– volume: 2022
  start-page: 1
  year: 2022
  ident: 56115_CR43
  publication-title: AIDS Behav.
– volume: 75
  start-page: 25
  year: 2022
  ident: 56115_CR51
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kja.21209
– volume: 11
  start-page: 1818
  year: 2022
  ident: 56115_CR7
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11071818
– volume: 124
  start-page: 525
  year: 2020
  ident: 56115_CR36
  publication-title: Heredity
  doi: 10.1038/s41437-020-0303-2
– volume: 23
  start-page: 1
  year: 2023
  ident: 56115_CR20
  publication-title: BMC Public Health
  doi: 10.1186/s12889-023-15418-z
– volume: 71
  start-page: 2326
  year: 2020
  ident: 56115_CR46
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciz1096
– volume: 19
  start-page: 12213
  year: 2022
  ident: 56115_CR22
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph191912213
– ident: 56115_CR24
  doi: 10.1109/ICC.2019.8761381
– ident: 56115_CR29
  doi: 10.18653/v1/W19-5030
– volume: 89
  start-page: 52
  year: 2017
  ident: 56115_CR48
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.026
– ident: 56115_CR39
  doi: 10.1145/3286490.3286559
– volume: 13
  start-page: 1
  year: 2022
  ident: 56115_CR14
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3501813
– ident: 56115_CR33
  doi: 10.1007/978-3-030-32692-0_16
– ident: 56115_CR34
  doi: 10.1109/CVPR.2019.00220
– ident: 56115_CR27
  doi: 10.1109/HPCA47549.2020.00049
– volume: 3
  start-page: 119
  year: 2020
  ident: 56115_CR15
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-020-00323-1
– volume: 22
  start-page: 174
  year: 2022
  ident: 56115_CR4
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-022-01625-6
– volume: 10
  start-page: 1
  year: 2020
  ident: 56115_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69250-1
– volume: 5
  start-page: 1
  year: 2021
  ident: 56115_CR26
  publication-title: J. Healthcare Inf. Res.
  doi: 10.1007/s41666-020-00082-4
– volume: 20
  start-page: 2533
  year: 2020
  ident: 56115_CR28
  publication-title: Sensors
  doi: 10.3390/s20092533
– volume: 71
  start-page: 1865
  year: 2022
  ident: 56115_CR5
  publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat.
  doi: 10.1111/rssc.12600
– volume: 12
  start-page: 238
  year: 2021
  ident: 56115_CR50
  publication-title: Atmosphere
  doi: 10.3390/atmos12020238
– volume: 233
  start-page: 109130
  year: 2023
  ident: 56115_CR38
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109130
– volume: 18
  start-page: 294
  year: 2021
  ident: 56115_CR17
  publication-title: Sexual Health
  doi: 10.1071/SH21044
– volume: 33
  start-page: 1500
  year: 2021
  ident: 56115_CR19
  publication-title: AIDS Care
  doi: 10.1080/09540121.2020.1822502
– volume: 41
  start-page: 64
  year: 2022
  ident: 56115_CR42
  publication-title: Tanzania J. Eng. Technol.
  doi: 10.52339/tjet.v41i3.845
– ident: 56115_CR2
  doi: 10.1142/9789812836939_0049
– volume: 55
  start-page: 55
  year: 2022
  ident: 56115_CR12
  publication-title: Computer
  doi: 10.1109/MC.2022.3142151
– volume: 23
  start-page: 1342
  year: 2021
  ident: 56115_CR37
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3058573
– volume: 24
  start-page: 107
  year: 2023
  ident: 56115_CR44
  publication-title: Egypt. Inf. J.
– volume: 45
  start-page: 441
  year: 2007
  ident: 56115_CR1
  publication-title: J. Microbiol.
– ident: 56115_CR31
– volume: 21
  start-page: 1906
  year: 2022
  ident: 56115_CR6
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211036880
– volume: 50
  start-page: 105
  year: 2014
  ident: 56115_CR23
  publication-title: Adv. Exp. Soc. Psychol.
  doi: 10.1016/B978-0-12-800284-1.00003-5
– volume: 23
  start-page: 1622
  year: 2021
  ident: 56115_CR40
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3075439
– volume: 15
  start-page: e0230706
  year: 2020
  ident: 56115_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0230706
– volume: 2
  start-page: 205510291558156
  year: 2015
  ident: 56115_CR21
  publication-title: Health Psychol. Open
  doi: 10.1177/2055102915581562
– volume: 12
  start-page: 15
  year: 2011
  ident: 56115_CR47
  publication-title: Theor. Issues Ergon. Sci.
  doi: 10.1080/14639220903470205
– volume: 24
  start-page: e37850
  year: 2022
  ident: 56115_CR9
  publication-title: J. Med. Internet Res.
  doi: 10.2196/37850
– volume: 9
  start-page: e1301
  year: 2019
  ident: 56115_CR49
  publication-title: Wiley Interdiscipl. Rev.: Data Mining Knowl. Discov.
– volume: 4
  start-page: 184
  year: 2020
  ident: 56115_CR30
  publication-title: JCO Clin. Cancer Inf.
  doi: 10.1200/CCI.19.00047
– volume: 82
  start-page: 48
  year: 2021
  ident: 56115_CR8
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.11.007
– volume: 4
  start-page: 132
  year: 2021
  ident: 56115_CR13
  publication-title: NPJ Digital Med.
  doi: 10.1038/s41746-021-00489-2
– volume: 6
  start-page: 35
  year: 2013
  ident: 56115_CR11
  publication-title: Trans. Data Priv.
– volume: 17
  start-page: 1
  year: 2018
  ident: 56115_CR18
  publication-title: Int. J. Equity Health
  doi: 10.1186/s12939-018-0772-6
– volume: 9
  start-page: 55
  year: 2021
  ident: 56115_CR41
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3053588
– volume: 8
  start-page: 5476
  year: 2020
  ident: 56115_CR35
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3030072
– volume: 126
  start-page: 1763
  year: 2018
  ident: 56115_CR45
  publication-title: Anesthes. Analges.
  doi: 10.1213/ANE.0000000000002864
– volume: 19
  start-page: 17
  year: 2017
  ident: 56115_CR16
  publication-title: Cult. Health Sexuality
  doi: 10.1080/13691058.2016.1184316
– ident: 56115_CR10
  doi: 10.1109/BIBE.2019.00169
SSID ssj0000529419
Score 2.4515772
Snippet This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually transmissible...
Abstract This paper presents a solution that prioritises high privacy protection and improves communication throughput for predicting the risk of sexually...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6560
SubjectTerms 631/114
631/61
692/700
Communication
Communications systems
Health risks
HIV
HIV Infections - epidemiology
Homosexuality, Male
Human immunodeficiency virus
Humanities and Social Sciences
Humans
Learning
Male
multidisciplinary
Risk assessment
Science
Science (multidisciplinary)
Sexual and Gender Minorities
Sexually transmitted diseases
Sexually Transmitted Diseases - epidemiology
STD
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUiUuFVBa0gJKJW4QrR1_xD5CBVqq0kuh4mY5sQ1IKIvYRYh_z4yTXVgo5cI1dqTx80z8nLHfELIdJKc-GAikCOEmnGKFcUwVFefC1XWsZIV3h49_q-Gp-Hkmz56U-sIzYZ08cAfcgPk6aFM2zPMgVKQmChcbXkofm8brpAQKa96TzVSn6l0awUx_S4ZyPRjDSoW3yUpRAGVgsqBzK1ES7P8Xy3x5WPJZxjQtRIfL5GPPIPO9zvIVshDaVfKhqyl5_4moX7jdvkt_PPOIUhHAJn3eV4c4z4Gk5n9OjsaD4dHf_PoG8zQ4N2vk9PDg5Mew6IsjFI0UbAJg0srLmjpmvADaA18uV8ZoKDdCo-KM8Q64H1cQkCLw4FgtqGh8VToYi6_5Z7LYjtqwTvLAYKMaPXIvL-oQjJENYEuldClzmBE2Bco2vXI4FrC4simDzbXtwLUArk3gWpqRndk7151uxn977yP-s56oeZ0egCfY3hPsW56QkY3p7Nk-EMe2NEorwIPBKL7PmiGEMC_i2jC6xT5A4lA102TkSzfZM0u4lpRXGlr0nBvMmTrf0l5eJJluRrHCrlIZ2Z16zKNdr2Px9T2w-EaWSnR1PHhoNsji5OY2bAJ7mtRbKVAeAHAtFFQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixQxEA66IngR37au0oI3bSbpPDo5iYrLrKgXd2VuIZ3HKkjPODOL-O-tSmd6GR977aQhqUfypSr5ipDnUXIaogFHSuBuwinWGMdU03EuXN-nTnb4dvjjJzU_Fe8XclECbptyrXK3JuaFOiw9xshnrVFaaSOYfrX60WDVKMyulhIaV8k1pC7DK13doptiLJjFEsyUtzKU69kG9it8U9aKBoADkw3d248ybf-_sObfVyb_yJvm7ejoFrlZcGT9elT8bXIlDnfI9bGy5K-7RH3AQ_fPHPesExJGAKYMdakRcVYDVK0_nxxvZvPjL_Vqjdka1NA9cnr07uTtvCklEhovBduCSGkXZE8dM0EA-IH1y7UpGcqN0Mg7Y4IDBMgVuKWIPDrWCyp86FoHcwk9v08OhuUQH5I6MjiupoAILIg-RmOk9z5QKV3OH1aE7QRlfeEPxzIW323OY3NtR-FaEK7NwrW0Ii-mf1Yje8alvd-g_KeeyHydPyzXZ7Y4kmWhj9q0ngUehUrUJOGS560MCUarRUUOd9qzxR039sJ4KvJsagZHwuyIG-LyHPsAlEPuTFORB6Oyp5FwLSnvNLToPTPYG-p-y_DtaybrZhTr7CpVkZc7i7kY1_9l8ejyaTwmN1o0YrxYaA7JwXZ9Hp8AOtr2T7ML_AYewgpd
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KRfBF_Ha1ygq-6dJk87HJox6Wq6gvttK3kN0ktSB75e6K-N87k_2Q0yr4uklgMpnJ_LKT_AbgZVSChWjRkRK6m_SaV9ZzXTVCSN-2qVENvR3--EkvT-X7M3W2B_X0FiZf2s-Ulnmbnm6HHW4w0NBjsFpWGPG5qvCYfoOo28mqF3ox_1ehzJXkdnwfw4S5ZuhODMpU_dfhyz-vSf6WK80h6OgO3B6xY_lmkPYu7MX-Htwcqkn-uA_6Ax20v-d_nWUikgjEkaEc60KclwhPy88nx5vD5fGX8nJNGRpalQdwevTuZLGsxrIIVack36IaWRNUyzy3QSLgwT3L1ylZJqw0xDVjg0fUJzS6oowiet5KJrvQ1B7nElrxEPb7VR8fQxk5HlFTINQVZBujtarrusCU8jlnWACfFOW6kTOcSld8czl3LYwblOtQuS4r17ECXs1jLgfGjH_2fkv6n3sS23X-sFqfu3H1HQ9tNLbueBBR6sRskj51olYhobRGFnAwrZ4bXXDjaquNRn1wnMWLuRmdhzIivo-rK-qD8I34Mm0Bj4bFniURRjHRGGwxO2awI-puS3_xNRN0c0a1dbUu4PVkMb_k-rsunvxf96dwqyajpsuF9gD2t-ur-AwR0rZ9nl3iJyfzB_0
  priority: 102
  providerName: Springer Nature
Title Lightweight federated learning for STIs/HIV prediction
URI https://link.springer.com/article/10.1038/s41598-024-56115-0
https://www.ncbi.nlm.nih.gov/pubmed/38503789
https://www.proquest.com/docview/2968689418
https://www.proquest.com/docview/2972704729
https://pubmed.ncbi.nlm.nih.gov/PMC10950866
https://doaj.org/article/1dbe892c1d3e46f09f4afc325dfccd84
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLXGJiReEN9kjCpIvEGYHX8kfkCoqzZ1FZsQW1HfLCe2B9KUbm0n2L_nXictKhQkniLZTuQc3xsf59rnEvLaS06d1-BIAdxNWMUybZnKCs6FrapQyALPDp-cquFYjCZyskWW6Y46AOcbl3aYT2o8u3z34_r2Azj8-_bIeLk_h0kID4rlIgM2wGQGS_gdmJkKdNSTju63Wt-5FjHXB4qwZ0Am8u4czebHrM1VUdJ_Ew_9czvlbzHVOFUdPSD3O46Z9lujeEi2fPOI3G2zTt4-JuojLsi_x3-iaUAxCeCbLu3yR1ykQGPTs_Pj-f7w-Et6NcNIDo7eEzI-OjwfDLMufUJWS8EWADctnKyoZdoJIEbwbbN5CJpyLUrUpNHOAjvkClxWeO4tqwQVtStyC-_iKv6UbDfTxj8nqWewlA0O2ZkTlfday7quHZXSxthiQtgSKFN32uKY4uLSxBg3L00LrgFwTQTX0IS8Wd1z1Spr_LP1AeK_aomq2LFgOrswnZMZ5ipf6rxmjnuhAtVB2FDzXLoAvS1FQvaWo2eWlmZyrUoFeDB4i1eranAyjJzYxk9vsA3QPNTV1Al51g72qie8lJQXJdSUa2aw1tX1mubb1yjkzSjm4FUqIW-XFvOrX3_HYve_kHtB7uVo07gHUe-R7cXsxr8EIrWoeuROMSl6ZKffH52N4HpwePrpM5QO1KAXf070ov_8BKfCGNw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBgQJniCqHduJ_YAQg00t6yoEG9qbcWJnIKG2tJ2m_VP8jdzlo1P52NteYye6nH9n_-zz3QE8D0owHwwaUoXmJl3GE-N4luRCSFcUVa5yih3eH2eDQ_nhSB1twK8uFoauVXZzYj1R-2lJZ-T91GQ600Zy_Wb2M6GqUeRd7UpoNLDYC2enuGVbvB6-x_F9kaa7OwfvBklbVSApleRLlILlXhXMceMl8gU0eZdWlWHCSE2pWox3SJpEhkiWQQTHC8lk6fPUBV_6QuB3r8CmFLiV6cHm9s7446fVqQ75zSQ3bXQOE7q_wBWSothSmSBV4SphaytgXSjgX-z270uaf3hq6wVw9ybcaJlr_LaB2i3YCJPbcLWpZXl2B7IRbfNP65PWuKIUFchifdxWpTiOkRzHnw-Gi_5g-CWezck_RJi4C4eXor570JtMJ-EBxIHjBrnyxPm8LEIwRpVl6ZlSrvZYRsA7RdmyzVhOhTN-2NpzLrRtlGtRubZWrmURvFy9M2vydVzYe5v0v-pJubbrB9P5sW1N13JfBG3SknsRZFYxU0lXlSJVvkJptYxgqxs9204AC3sO1wierZrRdMkf4yZhekJ9kDxStk4Twf1msFeSCK2YyDW26DUYrIm63jL5_q1OD84ZVfbNsghedYg5l-v_unh48W88hWuDg_2RHQ3He4_gekqApmuNZgt6y_lJeIzcbFk8aQ0ihq-XbYO_AZmGR0o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaK1YzuxDwgBZbVLS4VEi3ozTmwXJLS77G5V9a_x65jJY6vl0VuvsRNNxvPZnz2eGYBnQQnmg0EgRYSbdAXPjONFVgohXVXFUpUUO_xxrxgdyA-H6nADfvWxMHStsp8Tm4naT2s6Ix_kptCFNpLrQeyuRXzaHr6e_cyoghR5WvtyGq2J7ITTE9y-LV6Nt3Gsn-f58P3-u1HWVRjIaiX5EiVipVcVc9x4idwB4e_yGA0TRmpK22K8QwIlCrRqGURwvJJM1r7MXfC1rwR-9xJcLoXihLHysFyd75AHTXLTxekwoQcLXCspni2XGZIWrjK2thY2JQP-xXP_vq75h8-2WQqHN-B6x2HTN63R3YSNMLkFV9qqlqe3odilDf9Jc-aaRkpWgXzWp119iqMUaXL6eX-8GIzGX9LZnDxFZB134OBClHcXNifTSbgPaeC4VY6e2J-XVQjGqLquPVPKNb7LBHivKFt3ucuphMYP2_jQhbatci0q1zbKtSyBF6t3Zm3mjnN7vyX9r3pS1u3mwXR-ZDsQW-6roE1ecy-CLCIzUbpYi1z5iNJqmcBWP3q2mwoW9sxwE3i6akYQk2fGTcL0mPogjaS8nSaBe-1gryQRWjFRamzRa2awJup6y-T7tyZROGdU47coEnjZW8yZXP_XxYPzf-MJXEXk2d3x3s5DuJaTPdP9RrMFm8v5cXiEJG1ZPW7QkMLXi4bfb2z_Sho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+federated+learning+for+STIs%2FHIV+prediction&rft.jtitle=Scientific+reports&rft.au=Nguyen%2C+Thi+Phuoc+Van&rft.au=Yang%2C+Wencheng&rft.au=Tang%2C+Zhaohui&rft.au=Xia%2C+Xiaoyu&rft.date=2024-03-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-56115-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_56115_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon