Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging

Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctiona...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 9; no. 1; pp. 156 - 34
Main Authors Han, Xiangguang, Huang, Mimi, Wu, Zutang, Gao, Yi, Xia, Yong, Yang, Ping, Fan, Shu, Lu, Xuhao, Yang, Xiaokai, Liang, Lin, Su, Wenbi, Wang, Lu, Cui, Zeyu, Zhao, Yihe, Li, Zhikang, Zhao, Libo, Jiang, Zhuangde
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.12.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency ( TCF ) control methods. To improve MEMS sensor integration, different integrated “pressure + x ” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.
AbstractList Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency ( TCF ) control methods. To improve MEMS sensor integration, different integrated “pressure + x ” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.
Abstract Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated “pressure + x” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.
Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated “pressure + x” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.
Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated "pressure + x" sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated "pressure + x" sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.
Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency ( ) control methods. To improve MEMS sensor integration, different integrated "pressure + " sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.
ArticleNumber 156
Author Wu, Zutang
Fan, Shu
Gao, Yi
Huang, Mimi
Lu, Xuhao
Yang, Xiaokai
Yang, Ping
Jiang, Zhuangde
Su, Wenbi
Cui, Zeyu
Han, Xiangguang
Xia, Yong
Li, Zhikang
Wang, Lu
Zhao, Libo
Zhao, Yihe
Liang, Lin
Author_xml – sequence: 1
  givenname: Xiangguang
  surname: Han
  fullname: Han, Xiangguang
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: Mimi
  surname: Huang
  fullname: Huang, Mimi
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: Zutang
  surname: Wu
  fullname: Wu, Zutang
  organization: Northwest Institute of Nuclear Technology
– sequence: 4
  givenname: Yi
  surname: Gao
  fullname: Gao, Yi
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 5
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 6
  givenname: Ping
  surname: Yang
  fullname: Yang, Ping
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 7
  givenname: Shu
  surname: Fan
  fullname: Fan, Shu
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 8
  givenname: Xuhao
  surname: Lu
  fullname: Lu, Xuhao
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 9
  givenname: Xiaokai
  surname: Yang
  fullname: Yang, Xiaokai
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 10
  givenname: Lin
  surname: Liang
  fullname: Liang, Lin
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 11
  givenname: Wenbi
  surname: Su
  fullname: Su, Wenbi
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 12
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 13
  givenname: Zeyu
  surname: Cui
  fullname: Cui, Zeyu
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 14
  givenname: Yihe
  surname: Zhao
  fullname: Zhao, Yihe
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 15
  givenname: Zhikang
  orcidid: 0000-0001-7017-0097
  surname: Li
  fullname: Li, Zhikang
  email: zhikangli@xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 16
  givenname: Libo
  orcidid: 0000-0001-6101-8173
  surname: Zhao
  fullname: Zhao, Libo
  email: libozhao@xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
– sequence: 17
  givenname: Zhuangde
  surname: Jiang
  fullname: Jiang, Zhuangde
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38125202$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4saFoxcYBnBjmqZqkzYu_NgSYJh5POfBCDNN_Pfy3qu17aIr4HLOued-PEcHIQaH0EsM7zBQ8T43mHJRA6E1QEugxk_QEQHGat7Q5uDO_RCd5LwGAMwpl8CeoUMqMGEEyBH6edpd62BdrnyoVn5Y1ZNLfUybbbC6Or_6Vk3J5bwkV2UXckz5Q9W57Ifwtuq1Sd7q2cfy0KGrJm1_6cGH4QV62usxu5Ob8xj9-HT-_exLffn188XZ6WVtWYPnuu2N043VRPPWMCFbbBzmjLXcgOwAC6c7KwmmRrpekg7aHjoOpNBAdELSY3Sx1-2iXqsp-Y1Of1TUXu0CMQ1Kp9nb0SkobgUFSZgxjWlxyUtLS0rWpjVAcdH6uNeaFrNxnXVhTnq8J3r_J_iVGuK1wsApCEGKwpsbhRR_Ly7PauOzdeOog4tLVkRCw3hb6irQ1w-g67ikUHq1RVFOCZasoF7dtXTr5d_8CoDsATbFnJPrbyEY1HZP1H5PVMGq3Z6obaHiAcn6eTfFUpYfH6fSPTWXPGFw6b_tR1h_AXK9z-8
CitedBy_id crossref_primary_10_1209_0295_5075_ad4fbb
crossref_primary_10_1002_admt_202400661
crossref_primary_10_1063_5_0252426
crossref_primary_10_1007_s12613_024_2968_7
crossref_primary_10_3390_s25030600
crossref_primary_10_1021_polymscitech_4c00047
crossref_primary_10_1364_OE_534552
crossref_primary_10_3390_magnetochemistry10050030
crossref_primary_10_1002_smll_202408795
crossref_primary_10_1109_JSEN_2024_3454281
crossref_primary_10_3390_s24165349
crossref_primary_10_1109_LSENS_2024_3502156
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1088_2058_8585_adb85e
crossref_primary_10_1016_j_apsusc_2024_161452
crossref_primary_10_1109_JSEN_2024_3419243
crossref_primary_10_1016_j_bios_2025_117320
crossref_primary_10_1016_j_measurement_2024_115683
crossref_primary_10_3390_mi15111396
crossref_primary_10_1016_j_sna_2024_115745
crossref_primary_10_1007_s12596_024_01918_7
crossref_primary_10_1007_s00542_024_05839_0
crossref_primary_10_1016_j_sna_2025_116219
crossref_primary_10_1016_j_ceramint_2025_02_342
crossref_primary_10_1007_s10853_024_10260_z
crossref_primary_10_1002_adfm_202403528
crossref_primary_10_1109_JSEN_2024_3476478
crossref_primary_10_1021_acsami_4c10872
crossref_primary_10_1088_1361_6501_ad95a9
crossref_primary_10_1002_srin_202400090
crossref_primary_10_1007_s12596_024_01788_z
crossref_primary_10_1016_j_measen_2024_101679
crossref_primary_10_1016_j_jpowsour_2024_235598
crossref_primary_10_1088_1361_6439_ad5563
crossref_primary_10_3390_bios14080385
crossref_primary_10_1002_aisy_202400324
crossref_primary_10_1088_1361_6439_ad5561
crossref_primary_10_3390_s24248037
Cites_doi 10.1007/s12206-008-0105-6
10.1109/JMEMS.2016.2632108
10.1016/j.phpro.2011.10.008
10.3390/s18020439
10.3390/s131217006
10.1177/0020294019858095
10.1143/JJAP.39.5033
10.1016/j.sna.2016.04.027
10.1038/s41378-020-0170-2
10.1109/JSEN.2020.3033813
10.3390/s150922692
10.1063/1.4802799
10.3390/mi14091657
10.3390/s17030599
10.3390/mi9030104
10.3390/mi7090148
10.1038/s41378-020-00207-0
10.1016/j.sna.2012.03.027
10.1088/0960-1317/25/4/045011
10.1016/j.sna.2017.07.044
10.3390/mi14050981
10.1088/0960-1317/22/5/055012
10.1007/s10544-012-9661-8
10.1016/j.sna.2022.113883
10.1109/JSEN.2014.2342716
10.1016/j.snb.2020.127907
10.3390/mi11111022
10.1115/1.4052246
10.1007/s00542-016-2981-5
10.1109/16.22472
10.1016/j.sna.2020.112154
10.1021/acsnano.6b02533
10.1061/(ASCE)0733-9496(2005)131:4(316)
10.3390/s19102272
10.3390/s19183866
10.1109/JMEMS.2010.2100031
10.3390/s130101085
10.1109/JMEMS.2014.2349894
10.1109/ACCESS.2021.3073958
10.1063/1.1324987
10.1016/j.engfailanal.2012.10.020
10.1103/PhysRev.133.A1705
10.1016/j.mejo.2022.105568
10.1109/JSEN.2021.3111310
10.1021/acsami.0c05618
10.1016/j.ijsolstr.2013.06.022
10.3901/JME.2013.20.002
10.1109/JMEMS.2005.845400
10.1016/j.sna.2006.10.040
10.1109/TIE.2017.2784341
10.1016/j.expthermflusci.2012.01.018
10.1088/1674-4926/33/9/092003
10.3390/s20020337
10.3390/s17091965
10.1088/0960-1317/22/5/055024
10.3390/mi10020152
10.1088/1361-6439/ab8909
10.1088/1361-6439/abe20c
10.1088/0960-1317/16/7/031
10.1016/j.sna.2019.111686
10.1103/PhysRev.94.42
10.1016/j.sse.2017.09.012
10.1109/LED.2021.3094319
10.3390/s17091963
10.1016/j.sna.2006.05.011
10.3390/mi13122084
10.3390/s150510048
10.3390/mi12050569
10.1016/j.vacuum.2020.109880
10.1016/j.sna.2018.07.006
10.1016/j.sna.2010.08.024
10.1088/0964-1726/6/5/004
10.1016/j.proche.2009.07.026
10.1088/1361-6439/aab515
10.1088/0022-3727/49/7/075110
10.1109/TED.2022.3152475
10.1108/02602281011072189
10.3788/OPE.20142205.1235
10.1016/0250-6874(85)85004-6
10.1109/T-ED.1982.20656
10.1016/j.sna.2021.112612
10.3390/s16020158
10.1088/0957-0233/27/12/124012
10.1016/j.sna.2019.111705
10.1016/0924-4247(91)85020-O
10.1016/j.sna.2017.02.012
10.1021/nl9037856
10.1016/j.proeng.2010.09.309
10.1109/JMEMS.2012.2205900
10.1109/JMEMS.2018.2823200
10.1016/0924-4247(95)00997-3
10.3390/s22176378
10.1016/j.microrel.2012.05.008
10.3390/mi7100187
10.1016/j.microrel.2016.01.007
10.1109/LED.2012.2182985
10.1109/JSEN.2017.2747140
10.1109/JMEMS.2013.2245400
10.1108/SR-06-2018-0135
10.1007/s00542-014-2108-9
10.1063/1.1702605
10.1109/JMEMS.2014.2344025
10.1186/s40486-021-00129-0
10.1088/0960-1317/16/12/008
10.1007/s00542-020-05175-z
10.1109/LED.2011.2147272
10.1002/adfm.202003491
10.1038/s41378-022-00428-5
10.1016/0924-4247(94)80002-2
10.1016/j.sna.2009.07.015
10.1007/978-3-319-99540-3_12
10.1016/j.materresbull.2015.02.002
10.1109/JSEN.2013.2288681
10.3390/s19010093
10.1007/s00542-013-2064-9
10.1016/j.sna.2014.12.033
10.1063/1.5046879
10.1007/s11071-020-05579-6
10.1109/JSEN.2020.2980326
10.1063/1.5094212
10.3390/s141224244
10.1016/S0924-4247(98)00245-3
10.1016/j.measurement.2013.12.009
10.3390/mi7050087
10.1088/1674-4926/39/7/071005
10.3390/mi10070473
10.1016/j.sna.2012.02.035
10.4028/www.scientific.net/KEM.483.735
10.1016/S0924-4247(99)00065-5
10.1109/MEMSYS.2002.984285
10.1017/CBO9780511812798
10.1109/ICSENS.2013.6688392
10.1109/MEMSYS.2009.4805478
10.1016/S1351-4180(03)00931-0
10.1109/PRIME.2011.5966215
10.1109/MEMSYS.2018.8346528
10.1109/EuroSimE.2013.6529892
10.1109/UGIM.2008.30
10.4028/www.scientific.net/AMR.60-61.298
10.1109/Transducers.2013.6626706
10.1109/ICECET55527.2022.9872990
10.1109/TRANSDUCERS.2017.7994454
10.1007/978-0-387-47318-5
10.1016/B978-044451616-9/50002-3
10.1117/12.2016459
10.1109/ESSCIRC.2013.6649059
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1038/s41378-023-00620-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 34
ExternalDocumentID oai_doaj_org_article_0fab830925bb4b61a4c301758946b031
PMC10730882
38125202
10_1038_s41378_023_00620_1
Genre Journal Article
Review
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
PQGLB
7XB
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-6fbea4ca2a76b58961be175567b09d018eadc9213b9ef92d06f0d702fbe08d893
IEDL.DBID AAJSJ
ISSN 2055-7434
2096-1030
IngestDate Wed Aug 27 01:27:46 EDT 2025
Thu Aug 21 18:37:49 EDT 2025
Fri Jul 11 00:08:27 EDT 2025
Wed Aug 13 03:26:45 EDT 2025
Mon Jul 21 06:06:46 EDT 2025
Tue Jul 01 03:27:12 EDT 2025
Thu Apr 24 23:07:16 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electrical and electronic engineering
Electronic properties and materials
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-6fbea4ca2a76b58961be175567b09d018eadc9213b9ef92d06f0d702fbe08d893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6101-8173
0000-0001-7017-0097
OpenAccessLink https://www.nature.com/articles/s41378-023-00620-1
PMID 38125202
PQID 2903732195
PQPubID 2041946
PageCount 34
ParticipantIDs doaj_primary_oai_doaj_org_article_0fab830925bb4b61a4c301758946b031
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10730882
proquest_miscellaneous_2904576018
proquest_journals_2903732195
pubmed_primary_38125202
crossref_primary_10_1038_s41378_023_00620_1
crossref_citationtrail_10_1038_s41378_023_00620_1
springer_journals_10_1038_s41378_023_00620_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-19
PublicationDateYYYYMMDD 2023-12-19
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Smith (CR9) 1954; 94
Balavalad, Sheeparamatti (CR31) 2015; 187
Kim (CR135) 2007; 136
Pramanik, Saha, Gangopadhyay (CR131) 2006; 16
Welham, Greenwood, Bertioli (CR91) 1999; 76
Assadsangabi, Chen, Brox, Takahata (CR45) 2014; 14
Banerji (CR112) 2017; 17
CR34
Du (CR76) 2016; 16
Li, Cordovilla, Ocaña (CR50) 2018; 139
Soon (CR164) 2010; 5
Roozeboom (CR136) 2015; 24
Shaikh (CR29) 2008; 1
Khan, Tariq, Nawaz, Ahmed (CR38) 2021; 9
Dong (CR172) 2021; 40
Zamanzadeh (CR110) 2020; 100
CR154
Xiao (CR25) 2011; 483
Boehringer, Artmann, Witt (CR145) 2012; 21
Zheng (CR107) 2016; 7
Hasan (CR111) 2018; 28
Tuft, Stelzer (CR17) 1964; 133
Tan (CR15) 2006; 16
Lou (CR162) 2012; 22
CR173
CR174
(CR56) 2009; 2009
CR171
Liu (CR23) 2009; 154
CR47
Dudaicevs (CR139) 1994; 43
Jin (CR182) 2022; 129
CR44
Yu (CR103) 2015; 15
CR41
CR167
Javed, Mansoor, Shah (CR40) 2019; 39
Hao (CR155) 2014; 14
Li, Cordovilla, Jagdheesh, Ocaña (CR62) 2018; 18
Zhao (CR79) 2018; 89
Prümm (CR144) 2012; 188
Zhao (CR169) 2010; 44
Tian, Yin, Miao, Wu (CR179) 2014; 39
Mosser (CR24) 1991; 28
Li (CR158) 2023; 14
Clausen, Sveen (CR141) 2007; 133
Pal (CR14) 2021; 9
Li (CR6) 2012; 179
Su (CR149) 2018; 39
Han (CR95) 2021; 31
Lee, Wise (CR30) 1982; 29
Tian, Zhao, Jiang (CR52) 2010; 30
CR55
CR137
CR138
Zhang (CR177) 2018; 19
Xie, Jin, Tian, Tang, Li (CR183) 2022; 12
Sun, Yuan, Qiao, Sun, Ren (CR75) 2016; 7
Chen (CR186) 2021; 12
Henry, Kamrul, Jim, Stan (CR142) 2001; 681
Singh (CR13) 2015; 223
Wang, Song (CR127) 2019; 10
Otmani, Benmoussa, Benyoucef (CR16) 2011; 21
Ren (CR68) 2022; 346
Ren, Yuan, Qiao, Deng, Sun (CR74) 2013; 13
Han (CR33) 2020; 313
Tran, Zhang, Zhu (CR46) 2018; 65
Ngo (CR11) 2019; 1698
Jiang (CR175) 2013; 53
Wang (CR78) 2017; 17
Jindal (CR115) 2019; 52
Feng (CR187) 2016; 59
Song (CR140) 2020; 20
Tian, Shang, Zhao, Wang (CR36) 2021; 27
Xu (CR104) 2022; 8
Fiorillo, Critello, Pullano (CR10) 2018; 281
Hao, Jia (CR71) 2003; 2003
Kou (CR133) 2020; 311
Waber (CR180) 2014; 20
Ke (CR32) 2021; 184
Zhao (CR35) 2017; 264
CR67
Xu (CR98) 2020; 6
Tian (CR168) 2022; 144
Alper, Akin (CR72) 2005; 14
CR148
Misiunas, Vítkovský, Olsson, Simpson, Lambert (CR117) 2005; 131
CR146
CR63
CR147
Moridi (CR28) 2013; 50
CR61
Han (CR94) 2020; 6
CR60
CR143
Yan (CR93) 2019; 19
Blanco-Gomez (CR101) 2012; 33
Petley (CR26) 2015; 66
Javed, Mansoor, Shah (CR2) 2019; 39
Zhang, Chen, Li, Jin (CR118) 2014; 49
Chen, Cao, Wang, Jiao, Zhang (CR7) 2014; 22
Mizushima, Sato, Taniguchi, Tsunashima (CR153) 2000; 77
Wygant (CR113) 2018; 27
Eaton, Smith (CR5) 1997; 6
Mizushima, Sato, Taniguchi (CR151) 2000; 77
Mohammadi, Graham, Bennington, Chiao (CR132) 2010; 163
Kloeck (CR12) 1989; 36
Zhao (CR80) 2020; 303
Wang, Li (CR157) 2011; 32
Kumar (CR114) 2015; 25
Liang, Zhang, Xu, Yan (CR119) 2013; 31
Su (CR116) 2017; 17
CR73
Luo, Chen, Wang, Li, Chen (CR82) 2014; 14
Jiao, Ni, Wang, Li (CR159) 2020; 30
Basov (CR185) 2020; 303
French, Evans (CR21) 1985; 8
Xu (CR39) 2016; 244
Chen (CR43) 2021; 2021
Su (CR156) 2019; 2019
Chuai (CR22) 2012; 33
CR3
Tian (CR161) 2020; 12
Zhang (CR65) 2023; 14
Zhao (CR96) 2021; 322
Du, Wang, Li, Wang, Sun (CR77) 2017; 26
Kinnell, Craddock (CR59) 2009; 1
CR89
Xu, Zhao, Jiang, Xu, Zhao (CR48) 2016; 49
CR88
CR87
Sato, Mitsutake, Mizushima, Tsunashima (CR150) 2000; 39
CR124
CR85
Smith (CR166) 2016; 10
CR122
Wang, Li, Li, Bao, Zhou (CR129) 2011; 20
CR123
CR120
CR121
Zhang (CR58) 2018; 9
Xiang (CR84) 2020; 11
Basov (CR54) 2021; 21
Chen, Jia, Xiao, Feng, Wu (CR64) 2021; 42
Zhang, Li, Zhao, Li, Han (CR70) 2019; 90
Zhao (CR53) 2016; 27
CR19
Tian, Liu, Li, Yin (CR125) 2013; 50
CR184
Brenner (CR108) 2019; 10
CR181
Li (CR97) 2012; 22
Lu (CR105) 2019; 19
Ni (CR130) 2013; 13
CR99
CR178
Huff (CR27) 2022; 13
CR92
Moon (CR100) 2022; 22
CR176
Yuan, Ren, Deng, Qiao (CR8) 2013; 49
Tufte, Stelzer (CR18) 1963; 34
Watanabe, Sakurai, Saito, Sato (CR69) 2011; 131
Dong, Long, Jiang, Sun (CR128) 2016; 23
Burns, Zook, Horning, Herb, Guckel (CR90) 1995; 48
Neuzil, Wong, Reboud (CR165) 2010; 10
Xu, Zhao, Jiang, Sun (CR126) 2008; 22
Zeng, Wong (CR152) 2015; 24
Zhang (CR163) 2016; 7
Wang, Zhang, He, Yang (CR170) 2016; 53
Cheng (CR83) 2022; 69
Zhu, Ghatkesar, Zhang, Janssen (CR37) 2013; 102
Li, Wang, Luo, Chen, Chen (CR81) 2015; 15
Roozeboom (CR134) 2013; 22
CR102
Li (CR109) 2017; 258
Hasenkamp (CR160) 2012; 14
Zhang, Li, Zhao, Zhang (CR20) 2021; 21
Hurault, Kouidri, Bakir (CR42) 2012; 40
Xu (CR49) 2017; 17
Basov, Prigodskiy (CR51) 2020; 20
Ruth, Feig, Tran, Bao (CR1) 2020; 30
Harada, Ikeda, Kuwayama, Murayama (CR86) 1999; 73
Jayakumar (CR57) 2017; 69
Cheng (CR66) 2014; 21
CR106
Liu, Wang, Li, Peng, Jin (CR4) 2019; 40
HD Ngo (620_CR11) 2019; 1698
620_CR55
K Harada (620_CR86) 1999; 73
YL Hao (620_CR71) 2003; 2003
Z Dong (620_CR172) 2021; 40
L Tian (620_CR179) 2014; 39
Y Tan (620_CR15) 2006; 16
Z Ni (620_CR130) 2013; 13
H Dudaicevs (620_CR139) 1994; 43
ON Tuft (620_CR17) 1964; 133
X Du (620_CR76) 2016; 16
620_CR143
S-E Zhu (620_CR37) 2013; 102
PC Yan (620_CR93) 2019; 19
P Pal (620_CR14) 2021; 9
YS Lee (620_CR30) 1982; 29
X Li (620_CR6) 2012; 179
620_CR148
620_CR147
620_CR146
P Li (620_CR158) 2023; 14
620_CR44
Roozeboom (620_CR134) 2013; 22
J Dong (620_CR128) 2016; 23
X Ke (620_CR32) 2021; 184
620_CR47
A Moridi (620_CR28) 2013; 50
J Moon (620_CR100) 2022; 22
C Zheng (620_CR107) 2016; 7
620_CR41
D Misiunas (620_CR117) 2005; 131
WP Eaton (620_CR5) 1997; 6
GE Sensing and Testing Centers. (620_CR56) 2009; 2009
620_CR154
XG Han (620_CR94) 2020; 6
L Tian (620_CR125) 2013; 50
C Cheng (620_CR83) 2022; 69
L Xu (620_CR98) 2020; 6
L Xiao (620_CR25) 2011; 483
PS Song (620_CR140) 2020; 20
F Zeng (620_CR152) 2015; 24
B Kloeck (620_CR12) 1989; 36
DY Chen (620_CR7) 2014; 22
Q Zhang (620_CR70) 2019; 90
C Xiang (620_CR84) 2020; 11
L Lou (620_CR162) 2012; 22
W Liang (620_CR119) 2013; 31
X Sun (620_CR75) 2016; 7
Y Lu (620_CR105) 2019; 19
J Zhang (620_CR163) 2016; 7
DL Liu (620_CR4) 2019; 40
Q Zhang (620_CR65) 2023; 14
R Otmani (620_CR16) 2011; 21
V Petley (620_CR26) 2015; 66
T Sato (620_CR150) 2000; 39
620_CR73
M Huff (620_CR27) 2022; 13
LB Zhao (620_CR96) 2021; 322
T Xu (620_CR39) 2016; 244
W Wang (620_CR170) 2016; 53
PJ French (620_CR21) 1985; 8
W Hasenkamp (620_CR160) 2012; 14
K Brenner (620_CR108) 2019; 10
A Henry (620_CR142) 2001; 681
H Kou (620_CR133) 2020; 311
H Yu (620_CR103) 2015; 15
B Tian (620_CR52) 2010; 30
DW Burns (620_CR90) 1995; 48
M Boehringer (620_CR145) 2012; 21
V Mosser (620_CR24) 1991; 28
Z Luo (620_CR82) 2014; 14
620_CR167
Z Jin (620_CR182) 2022; 129
T Xu (620_CR48) 2016; 49
620_CR67
K Tian (620_CR161) 2020; 12
K Singh (620_CR13) 2015; 223
AD Smith (620_CR166) 2016; 10
M Basov (620_CR54) 2021; 21
WZ Yuan (620_CR8) 2013; 49
SRA Ruth (620_CR1) 2020; 30
Y Zhang (620_CR118) 2014; 49
620_CR3
620_CR63
620_CR60
620_CR61
Q Wang (620_CR129) 2011; 20
620_CR176
J Zhang (620_CR58) 2018; 9
D Jiao (620_CR159) 2020; 30
620_CR174
620_CR173
L Zhao (620_CR35) 2017; 264
620_CR171
I Mizushima (620_CR153) 2000; 77
R Chuai (620_CR22) 2012; 33
M Zamanzadeh (620_CR110) 2020; 100
AR Mohammadi (620_CR132) 2010; 163
Y Javed (620_CR40) 2019; 39
J Hurault (620_CR42) 2012; 40
W Feng (620_CR187) 2016; 59
X Li (620_CR109) 2017; 258
620_CR178
620_CR99
L Zhao (620_CR53) 2016; 27
L Wang (620_CR78) 2017; 17
W Chen (620_CR64) 2021; 42
X Liu (620_CR23) 2009; 154
I Clausen (620_CR141) 2007; 133
620_CR92
QW Zhang (620_CR20) 2021; 21
J Watanabe (620_CR69) 2011; 131
T Xu (620_CR49) 2017; 17
M Zhang (620_CR177) 2018; 19
Y Javed (620_CR2) 2019; 39
620_CR184
620_CR181
KB Balavalad (620_CR31) 2015; 187
620_CR106
Z Ren (620_CR68) 2022; 346
J Su (620_CR149) 2018; 39
620_CR102
S Banerji (620_CR112) 2017; 17
620_CR88
MS Khan (620_CR38) 2021; 9
620_CR89
620_CR87
C Pramanik (620_CR131) 2006; 16
MZ Shaikh (620_CR29) 2008; 1
MH Hasan (620_CR111) 2018; 28
C Li (620_CR62) 2018; 18
S Su (620_CR116) 2017; 17
620_CR85
IO Wygant (620_CR113) 2018; 27
Z Chen (620_CR43) 2021; 2021
T Jiang (620_CR175) 2013; 53
T Waber (620_CR180) 2014; 20
P Neuzil (620_CR165) 2010; 10
B Assadsangabi (620_CR45) 2014; 14
SK Jindal (620_CR115) 2019; 52
H Li (620_CR97) 2012; 22
A Prümm (620_CR144) 2012; 188
I Mizushima (620_CR151) 2000; 77
BW Soon (620_CR164) 2010; 5
AS Fiorillo (620_CR10) 2018; 281
L Zhao (620_CR80) 2020; 303
Y Li (620_CR81) 2015; 15
620_CR34
XG Han (620_CR95) 2021; 31
Roozeboom (620_CR136) 2015; 24
C Li (620_CR50) 2018; 139
CS Smith (620_CR9) 1954; 94
G Blanco-Gomez (620_CR101) 2012; 33
L Zhao (620_CR169) 2010; 44
620_CR122
J Wang (620_CR157) 2011; 32
620_CR121
620_CR120
J Xu (620_CR126) 2008; 22
M Basov (620_CR51) 2020; 20
J Tian (620_CR168) 2022; 144
R Cheng (620_CR66) 2014; 21
L Xu (620_CR104) 2022; 8
J Su (620_CR156) 2019; 2019
620_CR124
X Hao (620_CR155) 2014; 14
620_CR123
J Wang (620_CR127) 2019; 10
B Tian (620_CR36) 2021; 27
X Han (620_CR33) 2020; 313
S Ren (620_CR74) 2013; 13
M Basov (620_CR185) 2020; 303
L Zhao (620_CR79) 2018; 89
G Xie (620_CR183) 2022; 12
L Kumar (620_CR114) 2015; 25
AV Tran (620_CR46) 2018; 65
J Chen (620_CR186) 2021; 12
620_CR19
SE Alper (620_CR72) 2005; 14
X Du (620_CR77) 2017; 26
CJ Welham (620_CR91) 1999; 76
B Kim (620_CR135) 2007; 136
620_CR138
620_CR137
M Jayakumar (620_CR57) 2017; 69
PK Kinnell (620_CR59) 2009; 1
ON Tufte (620_CR18) 1963; 34
References_xml – volume: 22
  start-page: 731
  year: 2008
  end-page: 739
  ident: CR126
  article-title: Monolithic silicon multisensor for measuring three-axis acceleration, pressure, and temperature
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-008-0105-6
– volume: 26
  start-page: 235
  year: 2017
  end-page: 245
  ident: CR77
  article-title: High-accuracy resonant pressure sensor with balanced mass DETF resonator and twin diaphragms
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2632108
– ident: CR173
– volume: 21
  start-page: 47
  year: 2011
  end-page: 52
  ident: CR16
  article-title: Thermal drift characteristics of piezoresistive pressure sensors
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2011.10.008
– volume: 18
  start-page: 439
  year: 2018
  ident: CR62
  article-title: Design optimization and fabrication of a novel structural SOI piezoresistive pressure sensor with high accuracy
  publication-title: Sensors
  doi: 10.3390/s18020439
– volume: 13
  start-page: 17006
  year: 2013
  end-page: 17024
  ident: CR74
  article-title: Micromachined pressure sensor with integrated resonator operating at atmospheric pressure
  publication-title: Sensors
  doi: 10.3390/s131217006
– volume: 52
  start-page: 1029
  year: 2019
  end-page: 1038
  ident: CR115
  article-title: Inductive-capacitive-circuit-based microelectromechanical system wireless capacitive pressure sensor for avionic applications: Preliminary investigations, theoretical modelling, and simulation examination of the newly proposed methodology
  publication-title: Meas. Control
  doi: 10.1177/0020294019858095
– volume: 39
  start-page: 5033
  year: 2000
  end-page: 5038
  ident: CR150
  article-title: Microstructure transformation of silicon: a newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.39.5033
– volume: 244
  start-page: 66
  year: 2016
  end-page: 76
  ident: CR39
  article-title: A highly sensitive pressure sensor with a novel bossed diaphragm is combined with a peninsular island structure
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2016.04.027
– volume: 6
  start-page: 63
  year: 2020
  ident: CR98
  article-title: Programmable synchronization enhanced MEMS resonant accelerometer
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0170-2
– ident: CR138
– volume: 21
  start-page: 4357
  year: 2021
  end-page: 4364
  ident: CR54
  article-title: Ultra-high sensitivity MEMS pressure sensor utilizing bipolar junction transistor for pressures ranging from 1 to 1 kPa
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3033813
– volume: 15
  start-page: 22692
  year: 2015
  end-page: 22704
  ident: CR103
  article-title: Design and application of a high sensitivity piezoresistive pressure sensor for low pressure conditions
  publication-title: Sensors
  doi: 10.3390/s150922692
– volume: 102
  start-page: 161904
  year: 2013
  ident: CR37
  article-title: Graphene-based piezoresistive pressure sensor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802799
– volume: 14
  start-page: 1657
  year: 2023
  ident: CR65
  article-title: High-precision quartz resonant ultrahigh-pressure sensor with an integrated pressure conversion structure
  publication-title: Micromachines
  doi: 10.3390/mi14091657
– volume: 17
  start-page: 599
  year: 2017
  ident: CR78
  article-title: High-Q wafer-level package based on modified tri-layer anodic bonding and high-performance getter and its evaluation for micro-resonant pressure sensors
  publication-title: Sensors
  doi: 10.3390/s17030599
– ident: CR106
– ident: CR121
– ident: CR167
– volume: 187
  start-page: 120
  year: 2015
  end-page: 128
  ident: CR31
  article-title: Critical review of MEMS capacitive pressure sensors
  publication-title: Sens. Transducers
– volume: 9
  start-page: 104
  year: 2018
  ident: CR58
  article-title: Design, fabrication, and implementation of an array-type MEMS piezoresistive intelligent pressure sensor system
  publication-title: Micromachines
  doi: 10.3390/mi9030104
– volume: 7
  start-page: 148
  year: 2016
  ident: CR75
  article-title: Design and analysis of a new tuning fork structure for resonant pressure sensor
  publication-title: Micromachines
  doi: 10.3390/mi7090148
– volume: 6
  start-page: 95
  year: 2020
  ident: CR94
  article-title: Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane-mode vibration
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00207-0
– volume: 179
  start-page: 277
  year: 2012
  end-page: 282
  ident: CR6
  article-title: High-temperature piezoresistive pressure sensors based on implantation of oxygen into a silicon wafer
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2012.03.027
– ident: CR19
– volume: 25
  start-page: 045011
  year: 2015
  ident: CR114
  article-title: MEMS oscillating squeeze-film pressure sensor with optoelectronic feedback
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/25/4/045011
– volume: 264
  start-page: 63
  year: 2017
  end-page: 75
  ident: CR35
  article-title: Fabrication of capacitive micromachined ultrasonic transducers using low-temperature direct wafer-bonding technology
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.07.044
– ident: CR92
– ident: CR88
– volume: 14
  start-page: 981
  year: 2023
  ident: CR158
  article-title: Single-sided micromachined MPa-scale high-temperature pressure sensors
  publication-title: Micromachines
  doi: 10.3390/mi14050981
– volume: 22
  start-page: 05012
  year: 2012
  ident: CR162
  article-title: Optimization of NEMS pressure sensors with multilayered diaphragms using silicon nanowires as piezoresistive sensing elements
  publication-title: Micromech. Microeng.
  doi: 10.1088/0960-1317/22/5/055012
– ident: CR178
– volume: 69
  start-page: 515
  year: 2017
  end-page: 521
  ident: CR57
  article-title: Problems faced during integrated testing of flush-air data systems (FADS) and their solutions
  publication-title: J. Aerosp. Sci. Technol.
– volume: 14
  start-page: 819
  year: 2012
  end-page: 828
  ident: CR160
  article-title: Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor
  publication-title: Biomed. Microdev.
  doi: 10.1007/s10544-012-9661-8
– volume: 346
  start-page: 113883
  year: 2022
  ident: CR68
  article-title: Composite-structure pressure sensor based on quartz DETF resonator
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2022.113883
– volume: 14
  start-page: 3442
  year: 2014
  end-page: 3447
  ident: CR45
  article-title: Ferrofluid sacrificial microfbrication of capacitive pressure sensors
  publication-title: IEEE Sens.
  doi: 10.1109/JSEN.2014.2342716
– volume: 311
  start-page: 127907
  year: 2020
  ident: CR133
  article-title: A wireless slot antenna integrated with a temperature-pressure-humidity sensor loaded with CSRR for harsh-environment applications
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.127907
– volume: 11
  start-page: 1022
  year: 2020
  ident: CR84
  article-title: Resonant pressure microsensor with a temperature compensation method based on differential outputs and a temperature sensor
  publication-title: Micromachines
  doi: 10.3390/mi11111022
– volume: 144
  start-page: 041005
  year: 2022
  ident: CR168
  article-title: Design and fabrication of leadless package structures for pressure sensors
  publication-title: Packaging
  doi: 10.1115/1.4052246
– ident: CR60
– volume: 23
  start-page: 1563
  year: 2016
  end-page: 1574
  ident: CR128
  article-title: Monolithic-integrated piezoresistive MEMS accelerometer pressure sensor with glass-silicon-glass sandwich structure
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-016-2981-5
– volume: 36
  start-page: 663
  year: 1989
  end-page: 669
  ident: CR12
  article-title: Electrochemical etch stop for high-precision thickness control of silicon membranes
  publication-title: IEEE Trans. Electr. Devices
  doi: 10.1109/16.22472
– ident: CR85
– volume: 313
  start-page: 112154
  year: 2020
  ident: CR33
  article-title: Design and experiment of touch-mode MEMS capacitance vacuum gauge with square diaphragm
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2020.112154
– volume: 10
  start-page: 9879
  year: 2016
  end-page: 9886
  ident: CR166
  article-title: Piezoresistive properties of suspended graphene membranes under uniaxial and biaxial strains in nanoelectromechanical pressure sensors
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.6b02533
– volume: 131
  start-page: 316
  year: 2005
  end-page: 325
  ident: CR117
  article-title: Pipeline break detection using pressure transient monitoring
  publication-title: J. Water Res. Plan. Man.
  doi: 10.1061/(ASCE)0733-9496(2005)131:4(316)
– volume: 19
  start-page: 2272
  year: 2019
  ident: CR105
  article-title: A resonant pressure microsensor with a measurement range of 1 MPa is based on sensitivity-balanced dual resonators
  publication-title: Sensors
  doi: 10.3390/s19102272
– ident: CR147
– volume: 19
  start-page: 3866
  year: 2019
  ident: CR93
  article-title: Temperature-insensitive resonant pressure microsensor based on silicon-on-glass vacuum packaging
  publication-title: Sens.-basel
  doi: 10.3390/s19183866
– volume: 20
  start-page: 42
  year: 2011
  end-page: 52
  ident: CR129
  article-title: On-chip integration of acceleration, pressure, and temperature composite sensors using a single-sided micromachining technique
  publication-title: J. Microelectromech. S.
  doi: 10.1109/JMEMS.2010.2100031
– volume: 13
  start-page: 1085
  year: 2013
  end-page: 1101
  ident: CR130
  article-title: Monolithic composite “pressure+ acceleration+ temperature+ infrared” sensor using a versatile single-sided “SiN/Poly-Si/Al” process-module
  publication-title: Sensors
  doi: 10.3390/s130101085
– ident: CR47
– volume: 24
  start-page: 810
  year: 2015
  end-page: 821
  ident: CR136
  article-title: Multifunctional integrated sensors for multiparameter-monitoring applications
  publication-title: J. Microelectromech. S.
  doi: 10.1109/JMEMS.2014.2349894
– volume: 9
  start-page: 61123
  year: 2021
  end-page: 61149
  ident: CR38
  article-title: MEMS sensors for diagnostics and treatment in the fight against COVID-19 and other pandemics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073958
– ident: CR89
– volume: 77
  start-page: 3290
  year: 2000
  end-page: 3292
  ident: CR151
  article-title: Empty space-in-silicon technique for fabricating silicon-on-nothing structure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1324987
– ident: CR171
– volume: 31
  start-page: 1
  year: 2013
  end-page: 7
  ident: CR119
  article-title: Gas pipeline leakage detection based on acoustic technology
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2012.10.020
– volume: 133
  start-page: A1705
  year: 1964
  ident: CR17
  article-title: Piezoresistive properties of heavily doped n-type Si
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A1705
– ident: CR137
– ident: CR184
– volume: 129
  start-page: 105568
  year: 2022
  ident: CR182
  article-title: Simulation and reliability testing of leadless package high-temperature pressure sensors
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2022.105568
– volume: 77
  start-page: 3290
  year: 2000
  end-page: 3292
  ident: CR153
  article-title: Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1324987
– ident: CR63
– volume: 21
  start-page: 22553
  year: 2021
  end-page: 22561
  ident: CR20
  article-title: Quartz resonant ultrahigh pressure sensor with high precision and stability
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3111310
– volume: 12
  start-page: 20998
  year: 2020
  end-page: 21008
  ident: CR161
  article-title: Ultrasensitive thin-film pressure sensors exhibit a broad dynamic response range and excellent versatility in terms of pressure, vibration, bending, and temperature
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/acsami.0c05618
– volume: 50
  start-page: 3562
  year: 2013
  end-page: 3569
  ident: CR28
  article-title: Residual stresses in thin-film systems: effects of lattice mismatch, thermal mismatch, and interface dislocations
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.06.022
– ident: CR123
– volume: 2003
  start-page: 31
  year: 2003
  end-page: 33
  ident: CR71
  article-title: Nonlinear analysis for micromachined accelerometer based on the resonance principle
  publication-title: Nanoteohnol. Precis. Eng.
– ident: CR44
– volume: 49
  start-page: 2
  year: 2013
  end-page: 9
  ident: CR8
  article-title: Review of silicon micromachined resonant pressure sensors
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2013.20.002
– ident: CR176
– volume: 14
  start-page: 707
  year: 2005
  end-page: 717
  ident: CR72
  article-title: Single-crystal silicon symmetrical and decoupled MEMS gyroscopes on insulating substrate
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2005.845400
– volume: 40
  start-page: 65
  year: 2021
  end-page: 68
  ident: CR172
  article-title: Leadless flip-chip packaging of SOI high-temperature pressure sensors
  publication-title: Transduc. Microsyst. Technol.
– volume: 136
  start-page: 125
  year: 2007
  end-page: 131
  ident: CR135
  article-title: Frequency stability of the wafer-scale film-encapsulated silicon-based MEMS resonators
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2006.10.040
– volume: 65
  start-page: 6487
  year: 2018
  end-page: 6496
  ident: CR46
  article-title: Development of a new piezoresistive pressure sensor for low-pressure applications
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2784341
– ident: CR3
– volume: 40
  start-page: 29
  year: 2012
  end-page: 37
  ident: CR42
  article-title: Experimental investigations on wall pressure measurement on the blade of axial flow fans
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.01.018
– volume: 131
  start-page: 1101
  year: 2011
  end-page: 1107
  ident: CR69
  article-title: High-accuracy pressure sensor using quartz dual-tuning fork resonator
  publication-title: IEEJ Trans. Electron Inf. Syst.
– volume: 33
  start-page: 092003
  year: 2012
  ident: CR22
  article-title: Piezoresistive tunneling model for polysilicon
  publication-title: J. Semiconduc.
  doi: 10.1088/1674-4926/33/9/092003
– volume: 20
  start-page: 337
  year: 2020
  ident: CR140
  article-title: Novel piezoresistive MEMS pressure sensors based on temporary bonding technology
  publication-title: Sens. Basel
  doi: 10.3390/s20020337
– volume: 17
  start-page: 1965
  year: 2017
  ident: CR49
  article-title: Application and optimization of stiffness-absorption structures for pressure sensors with high sensitivity and anti-overload ability
  publication-title: Sensors
  doi: 10.3390/s17091965
– ident: CR55
– volume: 22
  start-page: 055024
  year: 2012
  ident: CR97
  article-title: Study of CMOS micromachined self-oscillating loop using phase-locked loop driving circuit
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/5/055024
– volume: 10
  start-page: 152
  year: 2019
  ident: CR108
  article-title: Advances in capacitive micromachined ultrasonic transducers
  publication-title: Micromachines
  doi: 10.3390/mi10020152
– volume: 30
  start-page: 065012
  year: 2020
  ident: CR159
  article-title: Ultra-small pressure sensors fabricated using scar-free microhole interetch and sealing (MIS) processes
  publication-title: Micromech. Microeng.
  doi: 10.1088/1361-6439/ab8909
– volume: 31
  start-page: 045006
  year: 2021
  ident: CR95
  article-title: High-accuracy differential resonant pressure sensor with linear fitting method
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/abe20c
– ident: CR41
– volume: 16
  start-page: 1340
  year: 2006
  end-page: 1348
  ident: CR131
  article-title: Integrated pressure and temperature sensors based on nanocrystalline porous Si
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/7/031
– volume: 303
  start-page: 111686
  year: 2020
  ident: CR80
  article-title: An immersive resonant sensor with a microcantilever was used for the pressure measurement
  publication-title: Sens. Actuators, A Phys.
  doi: 10.1016/j.sna.2019.111686
– ident: CR120
– volume: 94
  start-page: 42
  year: 1954
  ident: CR9
  article-title: Piezoresistance effect in germanium and silicon
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.42
– volume: 139
  start-page: 39
  year: 2018
  end-page: 47
  ident: CR50
  article-title: Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micropressure measurement
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2017.09.012
– ident: CR148
– ident: CR102
– ident: CR87
– volume: 42
  start-page: 1382
  year: 2021
  end-page: 1385
  ident: CR64
  article-title: Temperature-stable and low-impedance piezoelectric MEMS resonator for drop-in replacement of quartz crystals
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2021.3094319
– volume: 17
  start-page: 1963
  year: 2017
  ident: CR116
  article-title: Slot antenna-integrated re-entrant resonator-based wireless pressure sensors for high-temperature applications
  publication-title: Sensors
  doi: 10.3390/s17091963
– volume: 133
  start-page: 457
  year: 2007
  end-page: 466
  ident: CR141
  article-title: Die separation and packaging of a surface micromachined piezoresistive pressure sensor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2006.05.011
– volume: 39
  start-page: 652
  year: 2019
  end-page: 664
  ident: CR2
  article-title: Review of the principles of MEMS pressure sensing in aerospace applications.
  publication-title: Rev
– volume: 53
  start-page: 249
  year: 2016
  end-page: 254
  ident: CR170
  article-title: MEMS ultrathin dynamic pressure sensors
  publication-title: Micronanoelectron. Technol.
– ident: CR154
– ident: CR61
– volume: 13
  start-page: 2084
  year: 2022
  ident: CR27
  article-title: Residual stresses in deposited thin-film material layers for micro and nanosystem manufacturing
  publication-title: Micromachines
  doi: 10.3390/mi13122084
– volume: 44
  start-page: 50
  year: 2010
  end-page: 54
  ident: CR169
  article-title: Inverted-cup high-temperature and high-frequency piezoresistive pressure sensors
  publication-title: J. Xi’ Jiaotong Univ.
– volume: 15
  start-page: 10048
  year: 2015
  end-page: 10058
  ident: CR81
  article-title: Resonant-pressure microsensor capable of self-temperature compensation
  publication-title: Sensors
  doi: 10.3390/s150510048
– volume: 12
  start-page: 569
  year: 2021
  ident: CR186
  article-title: Three-dimensional arterial pulse signal acquisition in time domain using flexible pressure sensor dense arrays
  publication-title: Micromachines
  doi: 10.3390/mi12050569
– volume: 184
  start-page: 109880
  year: 2021
  ident: CR32
  article-title: Design and fabrication of a differential-pressure MEMS capacitance diaphragm gauge based on a heavily boron-doped technique
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109880
– volume: 281
  start-page: 156
  year: 2018
  end-page: 175
  ident: CR10
  article-title: Theory, technology and applications of piezoresistive sensors: a review
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2018.07.006
– volume: 163
  start-page: 471
  year: 2010
  end-page: 480
  ident: CR132
  article-title: Development of a compensated capacitive pressure and temperature sensor using adhesive bonding and chemical-resistant coating for multiphase chemical reactors
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2010.08.024
– volume: 6
  start-page: 530
  year: 1997
  end-page: 539
  ident: CR5
  article-title: Micromachined pressure sensors: review and recent developments
  publication-title: Smart. Mater. Struct.
  doi: 10.1088/0964-1726/6/5/004
– volume: 1
  start-page: 104
  year: 2009
  end-page: 107
  ident: CR59
  article-title: Advances in silicon resonant pressure transducers
  publication-title: Procedia Chem.
  doi: 10.1016/j.proche.2009.07.026
– ident: CR174
– volume: 28
  start-page: 065007
  year: 2018
  ident: CR111
  article-title: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aab515
– volume: 49
  start-page: 075110
  year: 2016
  ident: CR48
  article-title: Modeling and analysis of a novel combined peninsula–island structure diaphragm for ultra-low-pressure sensing with high sensitivity
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/49/7/075110
– volume: 69
  start-page: 2023
  year: 2022
  end-page: 2029
  ident: CR83
  article-title: Resonant differential pressure microsensor with stress isolation and Au-Au bonding in the packaging
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3152475
– volume: 1
  start-page: 201
  year: 2008
  end-page: 204
  ident: CR29
  article-title: Comparative performance analysis of capacitive and piezoresistive MEMS for pressure measurements
  publication-title: Inter. Comput. Sci. Appl.
– volume: 30
  start-page: 305
  year: 2010
  end-page: 313
  ident: CR52
  article-title: Novel structural design of pressure sensors
  publication-title: Sens. Rev.
  doi: 10.1108/02602281011072189
– volume: 22
  start-page: 1235
  year: 2014
  end-page: 1242
  ident: CR7
  article-title: Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor
  publication-title: Opt. Precis. Eng.
  doi: 10.3788/OPE.20142205.1235
– volume: 8
  start-page: 219
  year: 1985
  end-page: 225
  ident: CR21
  article-title: Polycrystalline silicon strain sensors
  publication-title: Sens. Actuators
  doi: 10.1016/0250-6874(85)85004-6
– volume: 29
  start-page: 42
  year: 1982
  end-page: 48
  ident: CR30
  article-title: Batch-fabricated silicon capacitive pressure transducer with low-temperature sensitivity
  publication-title: IEEE Trans. Electr. Devices
  doi: 10.1109/T-ED.1982.20656
– volume: 322
  start-page: 112612
  year: 2021
  ident: CR96
  article-title: Temperature-insensitive silicon resonant-pressure sensor using thermal stress control
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2021.112612
– ident: CR67
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR156
  article-title: Fabrication of a piezoresistive barometric pressure sensor using silicon-on-nothing technology
  publication-title: Sens
– volume: 16
  start-page: 158
  year: 2016
  ident: CR76
  article-title: Laterally driven resonant pressure sensor with etched silicon dual diaphragms and combined beams
  publication-title: Sensors
  doi: 10.3390/s16020158
– volume: 27
  start-page: 124012
  year: 2016
  ident: CR53
  article-title: Bossed diaphragm piezoresistive pressure sensor with a peninsular island structure for an ultralow-pressure range with high sensitivity
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/12/124012
– volume: 303
  start-page: 111705
  year: 2020
  ident: CR185
  article-title: High-sensitivity MEMS pressure sensor utilizing bipolar junction transistor with temperature compensation
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111705
– volume: 28
  start-page: 113
  year: 1991
  end-page: 132
  ident: CR24
  article-title: Piezoresistive pressure sensors based on polycrystalline silicon
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/0924-4247(91)85020-O
– volume: 258
  start-page: 59
  year: 2017
  end-page: 67
  ident: CR109
  article-title: Study of a 10MHz MEMS oscillator with a TPoS resonator
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.02.012
– volume: 10
  start-page: 1248
  year: 2010
  end-page: 1252
  ident: CR165
  article-title: Electrically controlled giant piezoresistance in silicon nanowires
  publication-title: Nano. Lett.
  doi: 10.1021/nl9037856
– volume: 5
  start-page: 1127
  year: 2010
  end-page: 1130
  ident: CR164
  article-title: An ultrasensitive nanowire pressure sensor was developed
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.09.309
– volume: 50
  start-page: 776
  year: 2013
  end-page: 780
  ident: CR125
  article-title: Oil-filled high-temperature and high-pressure composite sensors of pressure and temperature
  publication-title: Micronanoelectro. Technol.
– volume: 39
  start-page: 921
  year: 2014
  end-page: 925
  ident: CR179
  article-title: Leadless packaging high-temperature pressure sensor
  publication-title: Semicond. Technol.
– volume: 21
  start-page: 1375
  year: 2012
  end-page: 1381
  ident: CR145
  article-title: Porous silicon in a semiconductor manufacturing environment
  publication-title: Microelectromech. S.
  doi: 10.1109/JMEMS.2012.2205900
– volume: 27
  start-page: 448
  year: 2018
  end-page: 456
  ident: CR113
  article-title: Analytical model of the circular capacitive pressure transducers
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2823200
– ident: CR181
– ident: CR99
– ident: CR122
– volume: 48
  start-page: 179
  year: 1995
  end-page: 186
  ident: CR90
  article-title: Sealed-cavity resonant microbeam pressure sensor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(95)00997-3
– volume: 22
  start-page: 6378
  year: 2022
  ident: CR100
  article-title: Novel high-speed resonant frequency tracking method using transient characteristics in a piezoelectric transducer
  publication-title: Sensors
  doi: 10.3390/s22176378
– ident: CR143
– volume: 53
  start-page: 53
  year: 2013
  end-page: 62
  ident: CR175
  article-title: Measurement and analysis of thermal stresses in 3D integrated structures containing through-silicon
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.05.008
– volume: 7
  start-page: 187
  year: 2016
  ident: CR163
  article-title: Design optimization and fabrication of high-sensitivity SOI pressure sensors with high signal-to-noise ratios based on silicon nanowire piezoresistors
  publication-title: Micromachines
  doi: 10.3390/mi7100187
– volume: 59
  start-page: 95
  year: 2016
  end-page: 101
  ident: CR187
  article-title: Validation of TSV thermomechanical simulations using stress measurements
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.01.007
– volume: 33
  start-page: 609
  year: 2012
  end-page: 611
  ident: CR101
  article-title: Hollow square-and ring-plate MEMS oscillators embedded in a phase-locked loop for low limit of detection in liquid
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2182985
– volume: 12
  start-page: 209
  year: 2022
  end-page: 216
  ident: CR183
  article-title: Sintering process and vibration characteristics of leadless package structures for pressure sensors
  publication-title: IEEE T. Comp. Pack. Man.
– volume: 17
  start-page: 6653
  year: 2017
  end-page: 6661
  ident: CR112
  article-title: Characterization of CMOS-MEMS resonant pressure sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2747140
– volume: 22
  start-page: 779
  year: 2013
  end-page: 793
  ident: CR134
  article-title: Integrated multifunctional environmental sensors
  publication-title: J. Microelectromech. S.
  doi: 10.1109/JMEMS.2013.2245400
– volume: 39
  start-page: 652
  year: 2019
  end-page: 664
  ident: CR40
  article-title: Review of the principles of MEMS pressure sensing in aerospace applications
  publication-title: Sens. Rev.
  doi: 10.1108/SR-06-2018-0135
– volume: 21
  start-page: 631
  year: 2014
  end-page: 640
  ident: CR66
  article-title: Design and fabrication of resonant pressure sensor using combination of DETF quartz resonator and silicon diaphragm
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-014-2108-9
– volume: 34
  start-page: 313
  year: 1963
  end-page: 318
  ident: CR18
  article-title: Piezoresistive properties of silicon-diffused layers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702605
– volume: 24
  start-page: 677
  year: 2015
  end-page: 684
  ident: CR152
  article-title: A self-scanning active-matrix tactile sensor was realized using silicon migration technology
  publication-title: Microelectromech. S.
  doi: 10.1109/JMEMS.2014.2344025
– volume: 9
  start-page: 1
  year: 2021
  end-page: 59
  ident: CR14
  article-title: High-speed silicon wet anisotropic etching for applications in bulk micromachining: a review
  publication-title: Micro Nano. Syst. Lett.
  doi: 10.1186/s40486-021-00129-0
– volume: 16
  start-page: 2570
  year: 2006
  ident: CR15
  article-title: Modeling and simulation of the lag effect in the deep reactive ion etching process
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/12/008
– volume: 27
  start-page: 3083
  year: 2021
  end-page: 3093
  ident: CR36
  article-title: Performance optimization of SiC piezoresistive pressure sensor through suitable piezoresistor design
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-020-05175-z
– volume: 32
  start-page: 979
  year: 2011
  end-page: 981
  ident: CR157
  article-title: Single-sided fabricated pressure sensors for IC-foundry-compatible, high-yield, and low-cost volume production
  publication-title: IEEE Electr. Device L.
  doi: 10.1109/LED.2011.2147272
– volume: 30
  start-page: 2003491
  year: 2020
  ident: CR1
  article-title: Microengineering pressure sensor active layers for improved performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003491
– volume: 8
  start-page: 93
  year: 2022
  ident: CR104
  article-title: Fast frequency relocking for synchronization enhanced resonant accelerometer
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00428-5
– volume: 2021
  start-page: 37
  year: 2021
  end-page: 39
  ident: CR43
  article-title: Y. discussed the setting of an intelligent residual-pressure monitoring system for super high-rise buildings
  publication-title: Intell. Build.
– volume: 43
  start-page: 157
  year: 1994
  end-page: 163
  ident: CR139
  article-title: Surface micromachined pressure sensors with integrated CMOS readout electronics
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(94)80002-2
– ident: CR146
– volume: 154
  start-page: 42
  year: 2009
  end-page: 45
  ident: CR23
  article-title: Polysilicon nanofilm pressure sensors
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2009.07.015
– volume: 1698
  start-page: 231
  year: 2019
  end-page: 251
  ident: CR11
  article-title: Piezoresistive pressure sensors for applications in harsh environments: a roadmap
  publication-title: Mod. Sens. Technol.
  doi: 10.1007/978-3-319-99540-3_12
– ident: CR124
– volume: 66
  start-page: 59
  year: 2015
  end-page: 64
  ident: CR26
  article-title: Microstructural and mechanical characteristics of Ni–Cr thin films
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2015.02.002
– volume: 14
  start-page: 808
  year: 2014
  end-page: 815
  ident: CR155
  article-title: Application of a silicon-on-nothing structure to develop a novel capacitive absolute pressure sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2288681
– volume: 19
  start-page: 93
  year: 2018
  ident: CR177
  article-title: Research on 3D encapsulation technique for capacitive MEMS sensors based on silicon vias
  publication-title: Sens.-Basel
  doi: 10.3390/s19010093
– ident: CR73
– volume: 20
  start-page: 861
  year: 2014
  end-page: 867
  ident: CR180
  article-title: Temperature characterization of the flip-chip packaged piezoresistive barometric pressure sensors
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-013-2064-9
– volume: 223
  start-page: 151
  year: 2015
  end-page: 158
  ident: CR13
  article-title: Fabrication of the electron beam physical vapor-deposited polysilicon piezoresistive MEMS pressure sensor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2014.12.033
– volume: 89
  start-page: 125001
  year: 2018
  ident: CR79
  article-title: Temperature compensation in fluid density measurements using microelectromechanical resonant sensor
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5046879
– volume: 100
  start-page: 1105
  year: 2020
  end-page: 1123
  ident: CR110
  article-title: Resonant pressure MEMS sensor based on levitation force excitation detection
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05579-6
– volume: 40
  start-page: 7
  year: 2019
  end-page: 15
  ident: CR4
  article-title: Research status of shockwave overpressure sensors
  publication-title: J. Telem. Track. Command
– volume: 20
  start-page: 7646
  year: 2020
  end-page: 7652
  ident: CR51
  article-title: Investigation of high-sensitivity piezoresistive pressure sensors at ultralow differential pressures
  publication-title: IEEE Sens.
  doi: 10.1109/JSEN.2020.2980326
– volume: 90
  start-page: 065003
  year: 2019
  ident: CR70
  article-title: High-sensitivity quartz resonant pressure sensors with differential output and self-correction
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5094212
– volume: 681
  start-page: 146
  year: 2001
  end-page: 151
  ident: CR142
  article-title: A novel ultraminiature catheter tip pressure sensor was fabricated using silicon and glass thinning techniques
  publication-title: MRS Proc.
– volume: 2009
  start-page: 105
  year: 2009
  end-page: 106
  ident: CR56
  article-title: Applications of pressure sensors and atmospheric data measurement equipment in aviation
  publication-title: Aeronaut. Manuf. Technol.
– volume: 14
  start-page: 24244
  year: 2014
  end-page: 24257
  ident: CR82
  article-title: High-Q resonant-pressure microsensors with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging
  publication-title: Sensors
  doi: 10.3390/s141224244
– volume: 73
  start-page: 261
  year: 1999
  end-page: 266
  ident: CR86
  article-title: Various applications of resonant pressure sensor chip based on 3-D micromachining
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(98)00245-3
– ident: CR34
– volume: 49
  start-page: 382
  year: 2014
  end-page: 389
  ident: CR118
  article-title: Leak detection monitoring system of long-distance oil pipeline based on dynamic pressure transmitter
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.12.009
– volume: 7
  start-page: 87
  year: 2016
  ident: CR107
  article-title: Design and manufacturing of a passive pressure sensor based on LC resonance
  publication-title: Micromachines
  doi: 10.3390/mi7050087
– volume: 39
  start-page: 071005
  year: 2018
  ident: CR149
  article-title: Review: crystalline silicon membranes over sealed cavities for pressure sensors using silicon migration technology
  publication-title: Semicond.
  doi: 10.1088/1674-4926/39/7/071005
– volume: 10
  start-page: 473
  year: 2019
  ident: CR127
  article-title: On-chip integration of pressure plus 2-axis (X/Z) acceleration composite TPMS sensors with a single-sided bulk micromachining technique
  publication-title: Micromachines
  doi: 10.3390/mi10070473
– volume: 188
  start-page: 507
  year: 2012
  end-page: 512
  ident: CR144
  article-title: Monocrystalline thin-film wafer-level encapsulation of microsystems using porous
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2012.02.035
– volume: 483
  start-page: 735
  year: 2011
  end-page: 739
  ident: CR25
  article-title: TCR of Ni-Cr thin-film resistors used in piezoresistive pressure sensors
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.483.735
– volume: 76
  start-page: 298
  year: 1999
  end-page: 304
  ident: CR91
  article-title: High-accuracy resonant pressure sensors fabricated using fusion bonding and trench etching
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(99)00065-5
– volume: 89
  start-page: 125001
  year: 2018
  ident: 620_CR79
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5046879
– volume: 19
  start-page: 3866
  year: 2019
  ident: 620_CR93
  publication-title: Sens.-basel
  doi: 10.3390/s19183866
– ident: 620_CR184
  doi: 10.1109/MEMSYS.2002.984285
– volume: 21
  start-page: 4357
  year: 2021
  ident: 620_CR54
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3033813
– volume: 17
  start-page: 599
  year: 2017
  ident: 620_CR78
  publication-title: Sensors
  doi: 10.3390/s17030599
– volume: 19
  start-page: 2272
  year: 2019
  ident: 620_CR105
  publication-title: Sensors
  doi: 10.3390/s19102272
– volume: 69
  start-page: 2023
  year: 2022
  ident: 620_CR83
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3152475
– volume: 39
  start-page: 652
  year: 2019
  ident: 620_CR2
  publication-title: Rev
– volume: 10
  start-page: 9879
  year: 2016
  ident: 620_CR166
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.6b02533
– ident: 620_CR143
– volume: 139
  start-page: 39
  year: 2018
  ident: 620_CR50
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2017.09.012
– volume: 33
  start-page: 609
  year: 2012
  ident: 620_CR101
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2012.2182985
– ident: 620_CR89
– volume: 66
  start-page: 59
  year: 2015
  ident: 620_CR26
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2015.02.002
– volume: 258
  start-page: 59
  year: 2017
  ident: 620_CR109
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.02.012
– volume: 14
  start-page: 808
  year: 2014
  ident: 620_CR155
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2288681
– volume: 264
  start-page: 63
  year: 2017
  ident: 620_CR35
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.07.044
– ident: 620_CR99
  doi: 10.1017/CBO9780511812798
– volume: 33
  start-page: 092003
  year: 2012
  ident: 620_CR22
  publication-title: J. Semiconduc.
  doi: 10.1088/1674-4926/33/9/092003
– volume: 29
  start-page: 42
  year: 1982
  ident: 620_CR30
  publication-title: IEEE Trans. Electr. Devices
  doi: 10.1109/T-ED.1982.20656
– ident: 620_CR137
– volume: 2019
  start-page: 1
  year: 2019
  ident: 620_CR156
  publication-title: Sens
– volume: 187
  start-page: 120
  year: 2015
  ident: 620_CR31
  publication-title: Sens. Transducers
– volume: 42
  start-page: 1382
  year: 2021
  ident: 620_CR64
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2021.3094319
– volume: 21
  start-page: 631
  year: 2014
  ident: 620_CR66
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-014-2108-9
– ident: 620_CR47
  doi: 10.1109/ICSENS.2013.6688392
– volume: 16
  start-page: 158
  year: 2016
  ident: 620_CR76
  publication-title: Sensors
  doi: 10.3390/s16020158
– volume: 59
  start-page: 95
  year: 2016
  ident: 620_CR187
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2016.01.007
– volume: 30
  start-page: 2003491
  year: 2020
  ident: 620_CR1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003491
– volume: 6
  start-page: 95
  year: 2020
  ident: 620_CR94
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00207-0
– ident: 620_CR148
  doi: 10.1109/MEMSYS.2009.4805478
– volume: 22
  start-page: 05012
  year: 2012
  ident: 620_CR162
  publication-title: Micromech. Microeng.
  doi: 10.1088/0960-1317/22/5/055012
– ident: 620_CR181
– volume: 73
  start-page: 261
  year: 1999
  ident: 620_CR86
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(98)00245-3
– volume: 53
  start-page: 249
  year: 2016
  ident: 620_CR170
  publication-title: Micronanoelectron. Technol.
– volume: 21
  start-page: 47
  year: 2011
  ident: 620_CR16
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2011.10.008
– ident: 620_CR92
  doi: 10.1016/S1351-4180(03)00931-0
– ident: 620_CR61
– volume: 14
  start-page: 707
  year: 2005
  ident: 620_CR72
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2005.845400
– volume: 22
  start-page: 731
  year: 2008
  ident: 620_CR126
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-008-0105-6
– ident: 620_CR174
– volume: 30
  start-page: 065012
  year: 2020
  ident: 620_CR159
  publication-title: Micromech. Microeng.
  doi: 10.1088/1361-6439/ab8909
– volume: 14
  start-page: 1657
  year: 2023
  ident: 620_CR65
  publication-title: Micromachines
  doi: 10.3390/mi14091657
– volume: 65
  start-page: 6487
  year: 2018
  ident: 620_CR46
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2784341
– ident: 620_CR106
  doi: 10.1109/PRIME.2011.5966215
– volume: 10
  start-page: 152
  year: 2019
  ident: 620_CR108
  publication-title: Micromachines
  doi: 10.3390/mi10020152
– volume: 17
  start-page: 6653
  year: 2017
  ident: 620_CR112
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2747140
– volume: 52
  start-page: 1029
  year: 2019
  ident: 620_CR115
  publication-title: Meas. Control
  doi: 10.1177/0020294019858095
– volume: 5
  start-page: 1127
  year: 2010
  ident: 620_CR164
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.09.309
– volume: 1
  start-page: 104
  year: 2009
  ident: 620_CR59
  publication-title: Procedia Chem.
  doi: 10.1016/j.proche.2009.07.026
– volume: 8
  start-page: 219
  year: 1985
  ident: 620_CR21
  publication-title: Sens. Actuators
  doi: 10.1016/0250-6874(85)85004-6
– ident: 620_CR146
  doi: 10.1109/MEMSYS.2018.8346528
– ident: 620_CR122
– volume: 14
  start-page: 3442
  year: 2014
  ident: 620_CR45
  publication-title: IEEE Sens.
  doi: 10.1109/JSEN.2014.2342716
– volume: 346
  start-page: 113883
  year: 2022
  ident: 620_CR68
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2022.113883
– volume: 11
  start-page: 1022
  year: 2020
  ident: 620_CR84
  publication-title: Micromachines
  doi: 10.3390/mi11111022
– volume: 133
  start-page: A1705
  year: 1964
  ident: 620_CR17
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A1705
– volume: 14
  start-page: 819
  year: 2012
  ident: 620_CR160
  publication-title: Biomed. Microdev.
  doi: 10.1007/s10544-012-9661-8
– volume: 24
  start-page: 677
  year: 2015
  ident: 620_CR152
  publication-title: Microelectromech. S.
  doi: 10.1109/JMEMS.2014.2344025
– volume: 179
  start-page: 277
  year: 2012
  ident: 620_CR6
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2012.03.027
– ident: 620_CR176
  doi: 10.1109/EuroSimE.2013.6529892
– volume: 2009
  start-page: 105
  year: 2009
  ident: 620_CR56
  publication-title: Aeronaut. Manuf. Technol.
– ident: 620_CR87
– volume: 36
  start-page: 663
  year: 1989
  ident: 620_CR12
  publication-title: IEEE Trans. Electr. Devices
  doi: 10.1109/16.22472
– volume: 27
  start-page: 3083
  year: 2021
  ident: 620_CR36
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-020-05175-z
– volume: 133
  start-page: 457
  year: 2007
  ident: 620_CR141
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2006.05.011
– ident: 620_CR138
  doi: 10.1109/UGIM.2008.30
– volume: 13
  start-page: 2084
  year: 2022
  ident: 620_CR27
  publication-title: Micromachines
  doi: 10.3390/mi13122084
– volume: 77
  start-page: 3290
  year: 2000
  ident: 620_CR153
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1324987
– volume: 8
  start-page: 93
  year: 2022
  ident: 620_CR104
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00428-5
– volume: 131
  start-page: 1101
  year: 2011
  ident: 620_CR69
  publication-title: IEEJ Trans. Electron Inf. Syst.
– volume: 12
  start-page: 20998
  year: 2020
  ident: 620_CR161
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/acsami.0c05618
– volume: 2003
  start-page: 31
  year: 2003
  ident: 620_CR71
  publication-title: Nanoteohnol. Precis. Eng.
– volume: 7
  start-page: 148
  year: 2016
  ident: 620_CR75
  publication-title: Micromachines
  doi: 10.3390/mi7090148
– volume: 39
  start-page: 921
  year: 2014
  ident: 620_CR179
  publication-title: Semicond. Technol.
– volume: 18
  start-page: 439
  year: 2018
  ident: 620_CR62
  publication-title: Sensors
  doi: 10.3390/s18020439
– volume: 12
  start-page: 209
  year: 2022
  ident: 620_CR183
  publication-title: IEEE T. Comp. Pack. Man.
– volume: 6
  start-page: 530
  year: 1997
  ident: 620_CR5
  publication-title: Smart. Mater. Struct.
  doi: 10.1088/0964-1726/6/5/004
– volume: 40
  start-page: 7
  year: 2019
  ident: 620_CR4
  publication-title: J. Telem. Track. Command
– ident: 620_CR73
  doi: 10.4028/www.scientific.net/AMR.60-61.298
– volume: 22
  start-page: 6378
  year: 2022
  ident: 620_CR100
  publication-title: Sensors
  doi: 10.3390/s22176378
– volume: 2021
  start-page: 37
  year: 2021
  ident: 620_CR43
  publication-title: Intell. Build.
– volume: 49
  start-page: 075110
  year: 2016
  ident: 620_CR48
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/49/7/075110
– volume: 22
  start-page: 1235
  year: 2014
  ident: 620_CR7
  publication-title: Opt. Precis. Eng.
  doi: 10.3788/OPE.20142205.1235
– ident: 620_CR67
– volume: 303
  start-page: 111686
  year: 2020
  ident: 620_CR80
  publication-title: Sens. Actuators, A Phys.
  doi: 10.1016/j.sna.2019.111686
– ident: 620_CR102
  doi: 10.1109/Transducers.2013.6626706
– volume: 20
  start-page: 861
  year: 2014
  ident: 620_CR180
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-013-2064-9
– volume: 7
  start-page: 187
  year: 2016
  ident: 620_CR163
  publication-title: Micromachines
  doi: 10.3390/mi7100187
– volume: 28
  start-page: 113
  year: 1991
  ident: 620_CR24
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/0924-4247(91)85020-O
– volume: 39
  start-page: 5033
  year: 2000
  ident: 620_CR150
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.39.5033
– volume: 144
  start-page: 041005
  year: 2022
  ident: 620_CR168
  publication-title: Packaging
  doi: 10.1115/1.4052246
– volume: 48
  start-page: 179
  year: 1995
  ident: 620_CR90
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(95)00997-3
– volume: 9
  start-page: 1
  year: 2021
  ident: 620_CR14
  publication-title: Micro Nano. Syst. Lett.
  doi: 10.1186/s40486-021-00129-0
– volume: 17
  start-page: 1965
  year: 2017
  ident: 620_CR49
  publication-title: Sensors
  doi: 10.3390/s17091965
– volume: 681
  start-page: 146
  year: 2001
  ident: 620_CR142
  publication-title: MRS Proc.
– volume: 281
  start-page: 156
  year: 2018
  ident: 620_CR10
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2018.07.006
– volume: 49
  start-page: 382
  year: 2014
  ident: 620_CR118
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.12.009
– volume: 26
  start-page: 235
  year: 2017
  ident: 620_CR77
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2632108
– volume: 40
  start-page: 65
  year: 2021
  ident: 620_CR172
  publication-title: Transduc. Microsyst. Technol.
– volume: 16
  start-page: 2570
  year: 2006
  ident: 620_CR15
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/12/008
– volume: 1
  start-page: 201
  year: 2008
  ident: 620_CR29
  publication-title: Inter. Comput. Sci. Appl.
– ident: 620_CR124
– volume: 136
  start-page: 125
  year: 2007
  ident: 620_CR135
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2006.10.040
– ident: 620_CR178
  doi: 10.1109/ICECET55527.2022.9872990
– volume: 43
  start-page: 157
  year: 1994
  ident: 620_CR139
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(94)80002-2
– volume: 49
  start-page: 2
  year: 2013
  ident: 620_CR8
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2013.20.002
– volume: 27
  start-page: 448
  year: 2018
  ident: 620_CR113
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2823200
– volume: 13
  start-page: 1085
  year: 2013
  ident: 620_CR130
  publication-title: Sensors
  doi: 10.3390/s130101085
– volume: 7
  start-page: 87
  year: 2016
  ident: 620_CR107
  publication-title: Micromachines
  doi: 10.3390/mi7050087
– volume: 30
  start-page: 305
  year: 2010
  ident: 620_CR52
  publication-title: Sens. Rev.
  doi: 10.1108/02602281011072189
– volume: 16
  start-page: 1340
  year: 2006
  ident: 620_CR131
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/7/031
– volume: 10
  start-page: 1248
  year: 2010
  ident: 620_CR165
  publication-title: Nano. Lett.
  doi: 10.1021/nl9037856
– volume: 129
  start-page: 105568
  year: 2022
  ident: 620_CR182
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2022.105568
– volume: 303
  start-page: 111705
  year: 2020
  ident: 620_CR185
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111705
– ident: 620_CR85
– volume: 25
  start-page: 045011
  year: 2015
  ident: 620_CR114
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/25/4/045011
– volume: 50
  start-page: 3562
  year: 2013
  ident: 620_CR28
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.06.022
– volume: 10
  start-page: 473
  year: 2019
  ident: 620_CR127
  publication-title: Micromachines
  doi: 10.3390/mi10070473
– volume: 90
  start-page: 065003
  year: 2019
  ident: 620_CR70
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5094212
– ident: 620_CR173
– volume: 39
  start-page: 071005
  year: 2018
  ident: 620_CR149
  publication-title: Semicond.
  doi: 10.1088/1674-4926/39/7/071005
– volume: 32
  start-page: 979
  year: 2011
  ident: 620_CR157
  publication-title: IEEE Electr. Device L.
  doi: 10.1109/LED.2011.2147272
– volume: 322
  start-page: 112612
  year: 2021
  ident: 620_CR96
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2021.112612
– ident: 620_CR3
– volume: 313
  start-page: 112154
  year: 2020
  ident: 620_CR33
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2020.112154
– volume: 188
  start-page: 507
  year: 2012
  ident: 620_CR144
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2012.02.035
– volume: 40
  start-page: 29
  year: 2012
  ident: 620_CR42
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2012.01.018
– volume: 13
  start-page: 17006
  year: 2013
  ident: 620_CR74
  publication-title: Sensors
  doi: 10.3390/s131217006
– ident: 620_CR121
– volume: 163
  start-page: 471
  year: 2010
  ident: 620_CR132
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2010.08.024
– volume: 20
  start-page: 337
  year: 2020
  ident: 620_CR140
  publication-title: Sens. Basel
  doi: 10.3390/s20020337
– volume: 19
  start-page: 93
  year: 2018
  ident: 620_CR177
  publication-title: Sens.-Basel
  doi: 10.3390/s19010093
– volume: 20
  start-page: 7646
  year: 2020
  ident: 620_CR51
  publication-title: IEEE Sens.
  doi: 10.1109/JSEN.2020.2980326
– volume: 53
  start-page: 53
  year: 2013
  ident: 620_CR175
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.05.008
– volume: 184
  start-page: 109880
  year: 2021
  ident: 620_CR32
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109880
– volume: 12
  start-page: 569
  year: 2021
  ident: 620_CR186
  publication-title: Micromachines
  doi: 10.3390/mi12050569
– volume: 94
  start-page: 42
  year: 1954
  ident: 620_CR9
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.42
– volume: 27
  start-page: 124012
  year: 2016
  ident: 620_CR53
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/12/124012
– volume: 102
  start-page: 161904
  year: 2013
  ident: 620_CR37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802799
– volume: 100
  start-page: 1105
  year: 2020
  ident: 620_CR110
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05579-6
– volume: 24
  start-page: 810
  year: 2015
  ident: 620_CR136
  publication-title: J. Microelectromech. S.
  doi: 10.1109/JMEMS.2014.2349894
– ident: 620_CR44
– volume: 15
  start-page: 22692
  year: 2015
  ident: 620_CR103
  publication-title: Sensors
  doi: 10.3390/s150922692
– volume: 14
  start-page: 981
  year: 2023
  ident: 620_CR158
  publication-title: Micromachines
  doi: 10.3390/mi14050981
– volume: 39
  start-page: 652
  year: 2019
  ident: 620_CR40
  publication-title: Sens. Rev.
  doi: 10.1108/SR-06-2018-0135
– volume: 22
  start-page: 055024
  year: 2012
  ident: 620_CR97
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/5/055024
– volume: 31
  start-page: 1
  year: 2013
  ident: 620_CR119
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2012.10.020
– ident: 620_CR55
– ident: 620_CR154
  doi: 10.1109/TRANSDUCERS.2017.7994454
– volume: 14
  start-page: 24244
  year: 2014
  ident: 620_CR82
  publication-title: Sensors
  doi: 10.3390/s141224244
– ident: 620_CR34
  doi: 10.1007/978-0-387-47318-5
– volume: 21
  start-page: 1375
  year: 2012
  ident: 620_CR145
  publication-title: Microelectromech. S.
  doi: 10.1109/JMEMS.2012.2205900
– volume: 6
  start-page: 63
  year: 2020
  ident: 620_CR98
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0170-2
– volume: 76
  start-page: 298
  year: 1999
  ident: 620_CR91
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(99)00065-5
– volume: 31
  start-page: 045006
  year: 2021
  ident: 620_CR95
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/abe20c
– ident: 620_CR41
– volume: 311
  start-page: 127907
  year: 2020
  ident: 620_CR133
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2020.127907
– volume: 21
  start-page: 22553
  year: 2021
  ident: 620_CR20
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3111310
– volume: 154
  start-page: 42
  year: 2009
  ident: 620_CR23
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2009.07.015
– volume: 15
  start-page: 10048
  year: 2015
  ident: 620_CR81
  publication-title: Sensors
  doi: 10.3390/s150510048
– volume: 483
  start-page: 735
  year: 2011
  ident: 620_CR25
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.483.735
– volume: 28
  start-page: 065007
  year: 2018
  ident: 620_CR111
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aab515
– ident: 620_CR171
– ident: 620_CR19
  doi: 10.1016/B978-044451616-9/50002-3
– ident: 620_CR167
  doi: 10.1117/12.2016459
– volume: 34
  start-page: 313
  year: 1963
  ident: 620_CR18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1702605
– ident: 620_CR60
– volume: 17
  start-page: 1963
  year: 2017
  ident: 620_CR116
  publication-title: Sensors
  doi: 10.3390/s17091963
– volume: 1698
  start-page: 231
  year: 2019
  ident: 620_CR11
  publication-title: Mod. Sens. Technol.
  doi: 10.1007/978-3-319-99540-3_12
– volume: 9
  start-page: 61123
  year: 2021
  ident: 620_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073958
– ident: 620_CR147
  doi: 10.1109/ESSCIRC.2013.6649059
– ident: 620_CR123
– volume: 77
  start-page: 3290
  year: 2000
  ident: 620_CR151
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1324987
– volume: 9
  start-page: 104
  year: 2018
  ident: 620_CR58
  publication-title: Micromachines
  doi: 10.3390/mi9030104
– volume: 244
  start-page: 66
  year: 2016
  ident: 620_CR39
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2016.04.027
– volume: 20
  start-page: 42
  year: 2011
  ident: 620_CR129
  publication-title: J. Microelectromech. S.
  doi: 10.1109/JMEMS.2010.2100031
– ident: 620_CR88
– ident: 620_CR63
– volume: 44
  start-page: 50
  year: 2010
  ident: 620_CR169
  publication-title: J. Xi’ Jiaotong Univ.
– ident: 620_CR120
– volume: 22
  start-page: 779
  year: 2013
  ident: 620_CR134
  publication-title: J. Microelectromech. S.
  doi: 10.1109/JMEMS.2013.2245400
– volume: 23
  start-page: 1563
  year: 2016
  ident: 620_CR128
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-016-2981-5
– volume: 223
  start-page: 151
  year: 2015
  ident: 620_CR13
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2014.12.033
– volume: 131
  start-page: 316
  year: 2005
  ident: 620_CR117
  publication-title: J. Water Res. Plan. Man.
  doi: 10.1061/(ASCE)0733-9496(2005)131:4(316)
– volume: 50
  start-page: 776
  year: 2013
  ident: 620_CR125
  publication-title: Micronanoelectro. Technol.
– volume: 69
  start-page: 515
  year: 2017
  ident: 620_CR57
  publication-title: J. Aerosp. Sci. Technol.
SSID ssj0001737905
ssib048324881
Score 2.5242236
SecondaryResourceType review_article
Snippet Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure...
Abstract Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 156
SubjectTerms 639/166/987
639/301/357/995
Accuracy
Avionics
Control methods
Differential pressure
Electronic packaging
Engineering
Microelectromechanical systems
Packaging
Packaging design
Pressure
Pressure sensors
Resonant frequencies
Review
Review Article
Sensors
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBNokZG4sVb9jt1bQa0qpOUCRb1ZceyICpStNrv_n7GT3e7yvHCNbWk0D89MPPMNwJu27aI1tqUpBktVGxx1GXEoNDYahwbFSzHm_KO5uFQfrvTVzqivXBM2wgOPjDtmXROsZE7oEFQwvFEt6iRGuU6ZwEoHtUCft5NMlb8rtczIU1OXDJP2eMDbOoPJCklz3yCjfM8TFcD-30WZvxZL_vRiWhzR-QO4P0WQ5HSk_CHcSf0juLeDK_gYvpyOL_sDue5JBiSmN7f9AWR-Nv9ESv3repnIgHnsYjmckFhqOWYEObGcfuTNSNNHgln1tzLL6Alcnp99fn9BpwEKtNWKr6jpQkJ-NaKpTUCOGR4Ssk6bOjAXGbeoRq0TXAaXOiciMx2LNRN4jNmIkcxTOOgXfXoOREmUaWI6ijoqHbqmFqZDz9aFaC2mXBXwDTN9O6GL5yEX33155ZbWjwLwKABfBOB5BW-3Z25GbI2_7n6XZbTdmXGxywfUFj9pi_-XtlRwuJGwn4x18MIxWUu8unUFr7fLaGb57aTp02Jd9iid64dsBc9GhdhSgkGP0IKJCuyequyRur_SX38tUN4837CY5FQw22jVLV1_5sWL_8GLl3BXZHPggnJ3CAer5TodYYS1Cq-KMf0AhFIfGQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9QgECd6vujDxW97ngYT31xyQIGCL-Y0d7mYrC96Zt9IKa130bRru_v_O1Dadf241wIJZX4zDMzwG4ReV1XjtdIVqb3TRFTOEBMYh1ypvTKgUCwmYy4_qYtL8XElV-nCbUhplZNNjIbad1W4Iz_hhuZFDvol361_klA1KkRXUwmN2-hOoC4LqC5W83YqAK1iYkuPdy5FHvioQr058NxJqLCV3tHQXJ8MYM8D3SzPSXhZSAnb26sipf-__NC_0yn_iKnGrer8PjpMPiY-HUHxAN2q24fo3m_Mg4_Q19Mx9j_g6xYHymKy3r0gwMuz5WccM2S3fY0HOOl2_fAW-5jtscBN6fp01bfAZesxnLu_x2pHj9Hl-dmXDxcklVgglRRsQ1Tj6lJUJS8L5aQ2irkaHAqpCkeNp0wD0CrDWe5M3RjuqWqoLyiHYVR78HWeoIO2a-tnCIscpF5T6XnhhXRNWXDVwN7XOA8yUCJDbFpMWyX-8VAG44eNcfBc21EAFgRgowAsy9Cbecx6ZN-4sff7IKO5Z2DOjh-6_ptNimgprJHOqeHSOeEUg78HGwenJiOUAwuXoeNJwjap82B34MvQq7kZFDFEV8q27raxj5Ahw0hn6OkIiHkm4BZxySnPkN6Dyt5U91va66tI9s2CDYZjUIYWE6p28_r_Whzd_BvP0V0egM44YeYYHWz6bf0CvKuNexlV6BcLSR01
  priority: 102
  providerName: ProQuest
Title Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging
URI https://link.springer.com/article/10.1038/s41378-023-00620-1
https://www.ncbi.nlm.nih.gov/pubmed/38125202
https://www.proquest.com/docview/2903732195
https://www.proquest.com/docview/2904576018
https://pubmed.ncbi.nlm.nih.gov/PMC10730882
https://doaj.org/article/0fab830925bb4b61a4c301758946b031
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7QUeJr4JjMpIvFEL24kdm7eutEwVnRBlqG9RHCcwMaVT0_3_nJ2kpTCQeIml-CzZvg_f2eefAV4XReW00gUtndU0KayhxiMO2Vw7ZVCheEjGnJ-rs4tktpTLAxD9XZiQtB8gLYOZ7rPD3jZobD0WrIipv_bHKEY8Rx6qHWX7aDSaLWa7nZU09qhT3Q0ZFutbGu-tQgGs_zYP889Eyd9OS8MiNL0Px533SEZtfx_AQVk_hHu_YAo-gq-j9lS_IZc18WDE9Hp3N4DMJ_MFCbmvOHbSYAy7WjfviAt5HENS5XbdbeINSV47ghH1j_CO0WO4mE6-jM9o93gCLWTCN1RVtsyTIhd5qqzURnFboqsgVWqZcYxrFKHCCB5bU1ZGOKYq5lImsBnTDr2YJ3BYr-ryGZAkRn6WTDqRukTaKk-FqnBVq6zTGsOtCHg_mVnRIYv7By6usnDCHeusZUCGDMgCAzIewZttm-sWV-Of1KeeR1tKj4kdfqzW37JORjKGc6RjZoS0NrGK4-jRemE8ZBJl0XZFcNJzOOsUtcmEYXEao9mWEbzaVqOK-XOTvC5XN4EmkT53SEfwtBWIbU_Q4RFSMBGB3hOVva7u19SX3wOMN_fWFQOcCIa9VO369fe5eP5_5C_grvCCzwXl5gQON-ub8iX6URs7gDvpMsWvnn4YdErky_fzjwssTyfnnz5j7ViNB2Gn4ickbx2f
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAkaCE2vVdhzHRkKoQJct7fZCi3pz49iBCpRdNrtC_Cl-I2Mn2WV59NZrbEvOPD32zDcIPS3LyimpSuKdVUSUVhMdEIdsoZzUoFAsJmOOD-XoWLw_yU420M--FiakVfY2MRpqNynDHfk21zTNU9Cv7NX0Gwldo8Lrat9CoxWLff_jO4Rszcu9t8DfZ5wPd4_ejEjXVYCUmWBzIivrC1EWvMilzZSWzHrwoZnMLdWOMgW0LTVnqdW-0txRWVGXUw7LqHIqgC-Byb8kUvDkoTJ9-K6XXwHaIXp09njHk6cB_yr0t4NIgYSOXl3dDk3VdgP-I8Db8pSESkZK2JpvjC0E_nXu_Tt984833Ogah9fRte5Mi3daIbyBNnx9E139DenwFvq40-YaNPisxgEimUxXFQt4vDv-gGNG7mLmcQOR9WTWvMAuZpcMcFXYWXe1OMBF7TDE-V9id6Xb6PhCiH8HbdaT2t9DWKQgZZ5mjudOZLYqci4r8LWVdcADKRLEemKassM7D203vpr47p4q0zLAAANMZIBhCXq-XDNt0T7Onf068Gg5MyB1xw-T2SfTKb6hQCOVUs0za4WVDP4ebCpEaVpICxY1QVs9h01nPhqzEvYEPVkOg-KH15yi9pNFnCOykNGkEnS3FYjlTuAYxjNOeYLUmqisbXV9pD77HMHFWbD5EHYlaNBL1Wpf_6fF_fN_4zG6PDoaH5iDvcP9B-gKD0LPOGF6C23OZwv_EE52c_soqhNGpxetv78AnR5aqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkLwgPgmMMBI8ESt2o7j2EgIbazVxmg1AUN7M3GcwARKS9MK8a_x13F2kpbysbe9Jo7k3P3uzmeff4fQkzwvnZIqJ4WziojcaqI945DNlJMaDIqFYszxRB6ciNenyekW-tndhfFllZ1PDI7aTXO_Rz7gmsZpDPaVDMq2LOJ4f_Ry9o34DlL-pLVrp9FA5Kj48R3St_rF4T7o-inno-H7Vwek7TBA8kSwBZGlLTKRZzxLpU2UlswWEE8TmVqqHWUK5JxrzmKri1JzR2VJXUo5fEaVU56ICdz_duqzoh7a3htOjt92aBZgK6Ljag87Pmns2bB8tzvIG4jv79Xe4qGxGtQQTTzZLY-Jv9dICduIlKGhwL9WwX8Xc_5xohsC5egautqucPFuA8nraKuobqArv_Ee3kQfdpvKgxqfVdgTJpPZ-v4CHg_H73Coz13OC1xDnj2d18-xC7UmfVxmdt5uNPZxVjkMWf-X0GvpFjq5EPHfRr1qWhV3ERYxYK6gieOpE4kts5TLEiJvaR3oQIoIsU6YJm_Zz30Tjq8mnMLHyjQKMKAAExRgWISerb6ZNdwf547e8zpajfS83eHBdP7JtG7AUJCRiqnmibXCSgZ_Dx4WcjYtpAX_GqGdTsOmdSa1WUM_Qo9Xr8EN-LOdrCqmyzBGJL6-SUXoTgOI1UxgUcYTTnmE1AZUNqa6-aY6-xyoxpmPAJCERajfoWo9r__L4t75v_EIXQLbNW8OJ0f30WXuMc84YXoH9RbzZfEAlnkL-7C1J4w-XrQJ_wLzxWA7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+high-performance+MEMS+pressure+sensors%3A+design%2C+fabrication%2C+and+packaging&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Han%2C+Xiangguang&rft.au=Huang%2C+Mimi&rft.au=Wu%2C+Zutang&rft.au=Gao%2C+Yi&rft.date=2023-12-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2055-7434&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41378-023-00620-1&rft.externalDocID=10_1038_s41378_023_00620_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon