Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging
Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctiona...
Saved in:
Published in | Microsystems & nanoengineering Vol. 9; no. 1; pp. 156 - 34 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.12.2023
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (
TCF
) control methods. To improve MEMS sensor integration, different integrated “pressure +
x
” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed. |
---|---|
AbstractList | Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (
TCF
) control methods. To improve MEMS sensor integration, different integrated “pressure +
x
” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed. Abstract Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated “pressure + x” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed. Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the “beam-membrane-island” sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated “pressure + x” sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed. Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated "pressure + x" sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed.Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency (TCF) control methods. To improve MEMS sensor integration, different integrated "pressure + x" sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed. Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure sensors have been widely used for decades, new trends in pressure sensors, including higher sensitivity, higher accuracy, better multifunctionality, smaller chip size, and smaller package size, have recently emerged. The demand for performance upgradation has led to breakthroughs in sensor materials, design, fabrication, and packaging methods, which have emerged frequently in recent decades. This paper reviews common new trends in MEMS pressure sensors, including minute differential pressure sensors (MDPSs), resonant pressure sensors (RPSs), integrated pressure sensors, miniaturized pressure chips, and leadless pressure sensors. To realize an extremely sensitive MDPS with broad application potential, including in medical ventilators and fire residual pressure monitors, the "beam-membrane-island" sensor design exhibits the best performance of 66 μV/V/kPa with a natural frequency of 11.3 kHz. In high-accuracy applications, silicon and quartz RPS are analyzed, and both materials show ±0.01%FS accuracy with respect to varying temperature coefficient of frequency ( ) control methods. To improve MEMS sensor integration, different integrated "pressure + " sensor designs and fabrication methods are compared. In this realm, the intercoupling effect still requires further investigation. Typical fabrication methods for microsized pressure sensor chips are also reviewed. To date, the chip thickness size can be controlled to be <0.1 mm, which is advantageous for implant sensors. Furthermore, a leadless pressure sensor was analyzed, offering an extremely small package size and harsh environmental compatibility. This review is structured as follows. The background of pressure sensors is first presented. Then, an in-depth introduction to MEMS pressure sensors based on different application scenarios is provided. Additionally, their respective characteristics and significant advancements are analyzed and summarized. Finally, development trends of MEMS pressure sensors in different fields are analyzed. |
ArticleNumber | 156 |
Author | Wu, Zutang Fan, Shu Gao, Yi Huang, Mimi Lu, Xuhao Yang, Xiaokai Yang, Ping Jiang, Zhuangde Su, Wenbi Cui, Zeyu Han, Xiangguang Xia, Yong Li, Zhikang Wang, Lu Zhao, Libo Zhao, Yihe Liang, Lin |
Author_xml | – sequence: 1 givenname: Xiangguang surname: Han fullname: Han, Xiangguang organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 2 givenname: Mimi surname: Huang fullname: Huang, Mimi organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 3 givenname: Zutang surname: Wu fullname: Wu, Zutang organization: Northwest Institute of Nuclear Technology – sequence: 4 givenname: Yi surname: Gao fullname: Gao, Yi organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 5 givenname: Yong surname: Xia fullname: Xia, Yong organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 6 givenname: Ping surname: Yang fullname: Yang, Ping organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 7 givenname: Shu surname: Fan fullname: Fan, Shu organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 8 givenname: Xuhao surname: Lu fullname: Lu, Xuhao organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 9 givenname: Xiaokai surname: Yang fullname: Yang, Xiaokai organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 10 givenname: Lin surname: Liang fullname: Liang, Lin organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 11 givenname: Wenbi surname: Su fullname: Su, Wenbi organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 12 givenname: Lu surname: Wang fullname: Wang, Lu organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 13 givenname: Zeyu surname: Cui fullname: Cui, Zeyu organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 14 givenname: Yihe surname: Zhao fullname: Zhao, Yihe organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 15 givenname: Zhikang orcidid: 0000-0001-7017-0097 surname: Li fullname: Li, Zhikang email: zhikangli@xjtu.edu.cn organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 16 givenname: Libo orcidid: 0000-0001-6101-8173 surname: Zhao fullname: Zhao, Libo email: libozhao@xjtu.edu.cn organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University – sequence: 17 givenname: Zhuangde surname: Jiang fullname: Jiang, Zhuangde organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38125202$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MJM4saFoxcYBnBjmqZqkzYu_NgSYJh5POfBCDNN_Pfy3qu17aIr4HLOued-PEcHIQaH0EsM7zBQ8T43mHJRA6E1QEugxk_QEQHGat7Q5uDO_RCd5LwGAMwpl8CeoUMqMGEEyBH6edpd62BdrnyoVn5Y1ZNLfUybbbC6Or_6Vk3J5bwkV2UXckz5Q9W57Ifwtuq1Sd7q2cfy0KGrJm1_6cGH4QV62usxu5Ob8xj9-HT-_exLffn188XZ6WVtWYPnuu2N043VRPPWMCFbbBzmjLXcgOwAC6c7KwmmRrpekg7aHjoOpNBAdELSY3Sx1-2iXqsp-Y1Of1TUXu0CMQ1Kp9nb0SkobgUFSZgxjWlxyUtLS0rWpjVAcdH6uNeaFrNxnXVhTnq8J3r_J_iVGuK1wsApCEGKwpsbhRR_Ly7PauOzdeOog4tLVkRCw3hb6irQ1w-g67ikUHq1RVFOCZasoF7dtXTr5d_8CoDsATbFnJPrbyEY1HZP1H5PVMGq3Z6obaHiAcn6eTfFUpYfH6fSPTWXPGFw6b_tR1h_AXK9z-8 |
CitedBy_id | crossref_primary_10_1209_0295_5075_ad4fbb crossref_primary_10_1002_admt_202400661 crossref_primary_10_1063_5_0252426 crossref_primary_10_1007_s12613_024_2968_7 crossref_primary_10_3390_s25030600 crossref_primary_10_1021_polymscitech_4c00047 crossref_primary_10_1364_OE_534552 crossref_primary_10_3390_magnetochemistry10050030 crossref_primary_10_1002_smll_202408795 crossref_primary_10_1109_JSEN_2024_3454281 crossref_primary_10_3390_s24165349 crossref_primary_10_1109_LSENS_2024_3502156 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1088_2058_8585_adb85e crossref_primary_10_1016_j_apsusc_2024_161452 crossref_primary_10_1109_JSEN_2024_3419243 crossref_primary_10_1016_j_bios_2025_117320 crossref_primary_10_1016_j_measurement_2024_115683 crossref_primary_10_3390_mi15111396 crossref_primary_10_1016_j_sna_2024_115745 crossref_primary_10_1007_s12596_024_01918_7 crossref_primary_10_1007_s00542_024_05839_0 crossref_primary_10_1016_j_sna_2025_116219 crossref_primary_10_1016_j_ceramint_2025_02_342 crossref_primary_10_1007_s10853_024_10260_z crossref_primary_10_1002_adfm_202403528 crossref_primary_10_1109_JSEN_2024_3476478 crossref_primary_10_1021_acsami_4c10872 crossref_primary_10_1088_1361_6501_ad95a9 crossref_primary_10_1002_srin_202400090 crossref_primary_10_1007_s12596_024_01788_z crossref_primary_10_1016_j_measen_2024_101679 crossref_primary_10_1016_j_jpowsour_2024_235598 crossref_primary_10_1088_1361_6439_ad5563 crossref_primary_10_3390_bios14080385 crossref_primary_10_1002_aisy_202400324 crossref_primary_10_1088_1361_6439_ad5561 crossref_primary_10_3390_s24248037 |
Cites_doi | 10.1007/s12206-008-0105-6 10.1109/JMEMS.2016.2632108 10.1016/j.phpro.2011.10.008 10.3390/s18020439 10.3390/s131217006 10.1177/0020294019858095 10.1143/JJAP.39.5033 10.1016/j.sna.2016.04.027 10.1038/s41378-020-0170-2 10.1109/JSEN.2020.3033813 10.3390/s150922692 10.1063/1.4802799 10.3390/mi14091657 10.3390/s17030599 10.3390/mi9030104 10.3390/mi7090148 10.1038/s41378-020-00207-0 10.1016/j.sna.2012.03.027 10.1088/0960-1317/25/4/045011 10.1016/j.sna.2017.07.044 10.3390/mi14050981 10.1088/0960-1317/22/5/055012 10.1007/s10544-012-9661-8 10.1016/j.sna.2022.113883 10.1109/JSEN.2014.2342716 10.1016/j.snb.2020.127907 10.3390/mi11111022 10.1115/1.4052246 10.1007/s00542-016-2981-5 10.1109/16.22472 10.1016/j.sna.2020.112154 10.1021/acsnano.6b02533 10.1061/(ASCE)0733-9496(2005)131:4(316) 10.3390/s19102272 10.3390/s19183866 10.1109/JMEMS.2010.2100031 10.3390/s130101085 10.1109/JMEMS.2014.2349894 10.1109/ACCESS.2021.3073958 10.1063/1.1324987 10.1016/j.engfailanal.2012.10.020 10.1103/PhysRev.133.A1705 10.1016/j.mejo.2022.105568 10.1109/JSEN.2021.3111310 10.1021/acsami.0c05618 10.1016/j.ijsolstr.2013.06.022 10.3901/JME.2013.20.002 10.1109/JMEMS.2005.845400 10.1016/j.sna.2006.10.040 10.1109/TIE.2017.2784341 10.1016/j.expthermflusci.2012.01.018 10.1088/1674-4926/33/9/092003 10.3390/s20020337 10.3390/s17091965 10.1088/0960-1317/22/5/055024 10.3390/mi10020152 10.1088/1361-6439/ab8909 10.1088/1361-6439/abe20c 10.1088/0960-1317/16/7/031 10.1016/j.sna.2019.111686 10.1103/PhysRev.94.42 10.1016/j.sse.2017.09.012 10.1109/LED.2021.3094319 10.3390/s17091963 10.1016/j.sna.2006.05.011 10.3390/mi13122084 10.3390/s150510048 10.3390/mi12050569 10.1016/j.vacuum.2020.109880 10.1016/j.sna.2018.07.006 10.1016/j.sna.2010.08.024 10.1088/0964-1726/6/5/004 10.1016/j.proche.2009.07.026 10.1088/1361-6439/aab515 10.1088/0022-3727/49/7/075110 10.1109/TED.2022.3152475 10.1108/02602281011072189 10.3788/OPE.20142205.1235 10.1016/0250-6874(85)85004-6 10.1109/T-ED.1982.20656 10.1016/j.sna.2021.112612 10.3390/s16020158 10.1088/0957-0233/27/12/124012 10.1016/j.sna.2019.111705 10.1016/0924-4247(91)85020-O 10.1016/j.sna.2017.02.012 10.1021/nl9037856 10.1016/j.proeng.2010.09.309 10.1109/JMEMS.2012.2205900 10.1109/JMEMS.2018.2823200 10.1016/0924-4247(95)00997-3 10.3390/s22176378 10.1016/j.microrel.2012.05.008 10.3390/mi7100187 10.1016/j.microrel.2016.01.007 10.1109/LED.2012.2182985 10.1109/JSEN.2017.2747140 10.1109/JMEMS.2013.2245400 10.1108/SR-06-2018-0135 10.1007/s00542-014-2108-9 10.1063/1.1702605 10.1109/JMEMS.2014.2344025 10.1186/s40486-021-00129-0 10.1088/0960-1317/16/12/008 10.1007/s00542-020-05175-z 10.1109/LED.2011.2147272 10.1002/adfm.202003491 10.1038/s41378-022-00428-5 10.1016/0924-4247(94)80002-2 10.1016/j.sna.2009.07.015 10.1007/978-3-319-99540-3_12 10.1016/j.materresbull.2015.02.002 10.1109/JSEN.2013.2288681 10.3390/s19010093 10.1007/s00542-013-2064-9 10.1016/j.sna.2014.12.033 10.1063/1.5046879 10.1007/s11071-020-05579-6 10.1109/JSEN.2020.2980326 10.1063/1.5094212 10.3390/s141224244 10.1016/S0924-4247(98)00245-3 10.1016/j.measurement.2013.12.009 10.3390/mi7050087 10.1088/1674-4926/39/7/071005 10.3390/mi10070473 10.1016/j.sna.2012.02.035 10.4028/www.scientific.net/KEM.483.735 10.1016/S0924-4247(99)00065-5 10.1109/MEMSYS.2002.984285 10.1017/CBO9780511812798 10.1109/ICSENS.2013.6688392 10.1109/MEMSYS.2009.4805478 10.1016/S1351-4180(03)00931-0 10.1109/PRIME.2011.5966215 10.1109/MEMSYS.2018.8346528 10.1109/EuroSimE.2013.6529892 10.1109/UGIM.2008.30 10.4028/www.scientific.net/AMR.60-61.298 10.1109/Transducers.2013.6626706 10.1109/ICECET55527.2022.9872990 10.1109/TRANSDUCERS.2017.7994454 10.1007/978-0-387-47318-5 10.1016/B978-044451616-9/50002-3 10.1117/12.2016459 10.1109/ESSCIRC.2013.6649059 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1038/s41378-023-00620-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7434 |
EndPage | 34 |
ExternalDocumentID | oai_doaj_org_article_0fab830925bb4b61a4c301758946b031 PMC10730882 38125202 10_1038_s41378_023_00620_1 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM PQGLB 7XB 8FK AARCD AZQEC COVID DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-6fbea4ca2a76b58961be175567b09d018eadc9213b9ef92d06f0d702fbe08d893 |
IEDL.DBID | AAJSJ |
ISSN | 2055-7434 2096-1030 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Thu Aug 21 18:37:49 EDT 2025 Fri Jul 11 00:08:27 EDT 2025 Wed Aug 13 03:26:45 EDT 2025 Mon Jul 21 06:06:46 EDT 2025 Tue Jul 01 03:27:12 EDT 2025 Thu Apr 24 23:07:16 EDT 2025 Fri Feb 21 02:38:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electrical and electronic engineering Electronic properties and materials |
Language | English |
License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-6fbea4ca2a76b58961be175567b09d018eadc9213b9ef92d06f0d702fbe08d893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6101-8173 0000-0001-7017-0097 |
OpenAccessLink | https://www.nature.com/articles/s41378-023-00620-1 |
PMID | 38125202 |
PQID | 2903732195 |
PQPubID | 2041946 |
PageCount | 34 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fab830925bb4b61a4c301758946b031 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10730882 proquest_miscellaneous_2904576018 proquest_journals_2903732195 pubmed_primary_38125202 crossref_primary_10_1038_s41378_023_00620_1 crossref_citationtrail_10_1038_s41378_023_00620_1 springer_journals_10_1038_s41378_023_00620_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-19 |
PublicationDateYYYYMMDD | 2023-12-19 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Smith (CR9) 1954; 94 Balavalad, Sheeparamatti (CR31) 2015; 187 Kim (CR135) 2007; 136 Pramanik, Saha, Gangopadhyay (CR131) 2006; 16 Welham, Greenwood, Bertioli (CR91) 1999; 76 Assadsangabi, Chen, Brox, Takahata (CR45) 2014; 14 Banerji (CR112) 2017; 17 CR34 Du (CR76) 2016; 16 Li, Cordovilla, Ocaña (CR50) 2018; 139 Soon (CR164) 2010; 5 Roozeboom (CR136) 2015; 24 Shaikh (CR29) 2008; 1 Khan, Tariq, Nawaz, Ahmed (CR38) 2021; 9 Dong (CR172) 2021; 40 Zamanzadeh (CR110) 2020; 100 CR154 Xiao (CR25) 2011; 483 Boehringer, Artmann, Witt (CR145) 2012; 21 Zheng (CR107) 2016; 7 Hasan (CR111) 2018; 28 Tuft, Stelzer (CR17) 1964; 133 Tan (CR15) 2006; 16 Lou (CR162) 2012; 22 CR173 CR174 (CR56) 2009; 2009 CR171 Liu (CR23) 2009; 154 CR47 Dudaicevs (CR139) 1994; 43 Jin (CR182) 2022; 129 CR44 Yu (CR103) 2015; 15 CR41 CR167 Javed, Mansoor, Shah (CR40) 2019; 39 Hao (CR155) 2014; 14 Li, Cordovilla, Jagdheesh, Ocaña (CR62) 2018; 18 Zhao (CR79) 2018; 89 Prümm (CR144) 2012; 188 Zhao (CR169) 2010; 44 Tian, Yin, Miao, Wu (CR179) 2014; 39 Mosser (CR24) 1991; 28 Li (CR158) 2023; 14 Clausen, Sveen (CR141) 2007; 133 Pal (CR14) 2021; 9 Li (CR6) 2012; 179 Su (CR149) 2018; 39 Han (CR95) 2021; 31 Lee, Wise (CR30) 1982; 29 Tian, Zhao, Jiang (CR52) 2010; 30 CR55 CR137 CR138 Zhang (CR177) 2018; 19 Xie, Jin, Tian, Tang, Li (CR183) 2022; 12 Sun, Yuan, Qiao, Sun, Ren (CR75) 2016; 7 Chen (CR186) 2021; 12 Henry, Kamrul, Jim, Stan (CR142) 2001; 681 Singh (CR13) 2015; 223 Wang, Song (CR127) 2019; 10 Otmani, Benmoussa, Benyoucef (CR16) 2011; 21 Ren (CR68) 2022; 346 Ren, Yuan, Qiao, Deng, Sun (CR74) 2013; 13 Han (CR33) 2020; 313 Tran, Zhang, Zhu (CR46) 2018; 65 Ngo (CR11) 2019; 1698 Jiang (CR175) 2013; 53 Wang (CR78) 2017; 17 Jindal (CR115) 2019; 52 Feng (CR187) 2016; 59 Song (CR140) 2020; 20 Tian, Shang, Zhao, Wang (CR36) 2021; 27 Xu (CR104) 2022; 8 Fiorillo, Critello, Pullano (CR10) 2018; 281 Hao, Jia (CR71) 2003; 2003 Kou (CR133) 2020; 311 Waber (CR180) 2014; 20 Ke (CR32) 2021; 184 Zhao (CR35) 2017; 264 CR67 Xu (CR98) 2020; 6 Tian (CR168) 2022; 144 Alper, Akin (CR72) 2005; 14 CR148 Misiunas, Vítkovský, Olsson, Simpson, Lambert (CR117) 2005; 131 CR146 CR63 CR147 Moridi (CR28) 2013; 50 CR61 Han (CR94) 2020; 6 CR60 CR143 Yan (CR93) 2019; 19 Blanco-Gomez (CR101) 2012; 33 Petley (CR26) 2015; 66 Javed, Mansoor, Shah (CR2) 2019; 39 Zhang, Chen, Li, Jin (CR118) 2014; 49 Chen, Cao, Wang, Jiao, Zhang (CR7) 2014; 22 Mizushima, Sato, Taniguchi, Tsunashima (CR153) 2000; 77 Wygant (CR113) 2018; 27 Eaton, Smith (CR5) 1997; 6 Mizushima, Sato, Taniguchi (CR151) 2000; 77 Mohammadi, Graham, Bennington, Chiao (CR132) 2010; 163 Kloeck (CR12) 1989; 36 Zhao (CR80) 2020; 303 Wang, Li (CR157) 2011; 32 Kumar (CR114) 2015; 25 Liang, Zhang, Xu, Yan (CR119) 2013; 31 Su (CR116) 2017; 17 CR73 Luo, Chen, Wang, Li, Chen (CR82) 2014; 14 Jiao, Ni, Wang, Li (CR159) 2020; 30 Basov (CR185) 2020; 303 French, Evans (CR21) 1985; 8 Xu (CR39) 2016; 244 Chen (CR43) 2021; 2021 Su (CR156) 2019; 2019 Chuai (CR22) 2012; 33 CR3 Tian (CR161) 2020; 12 Zhang (CR65) 2023; 14 Zhao (CR96) 2021; 322 Du, Wang, Li, Wang, Sun (CR77) 2017; 26 Kinnell, Craddock (CR59) 2009; 1 CR89 Xu, Zhao, Jiang, Xu, Zhao (CR48) 2016; 49 CR88 CR87 Sato, Mitsutake, Mizushima, Tsunashima (CR150) 2000; 39 CR124 CR85 Smith (CR166) 2016; 10 CR122 Wang, Li, Li, Bao, Zhou (CR129) 2011; 20 CR123 CR120 CR121 Zhang (CR58) 2018; 9 Xiang (CR84) 2020; 11 Basov (CR54) 2021; 21 Chen, Jia, Xiao, Feng, Wu (CR64) 2021; 42 Zhang, Li, Zhao, Li, Han (CR70) 2019; 90 Zhao (CR53) 2016; 27 CR19 Tian, Liu, Li, Yin (CR125) 2013; 50 CR184 Brenner (CR108) 2019; 10 CR181 Li (CR97) 2012; 22 Lu (CR105) 2019; 19 Ni (CR130) 2013; 13 CR99 CR178 Huff (CR27) 2022; 13 CR92 Moon (CR100) 2022; 22 CR176 Yuan, Ren, Deng, Qiao (CR8) 2013; 49 Tufte, Stelzer (CR18) 1963; 34 Watanabe, Sakurai, Saito, Sato (CR69) 2011; 131 Dong, Long, Jiang, Sun (CR128) 2016; 23 Burns, Zook, Horning, Herb, Guckel (CR90) 1995; 48 Neuzil, Wong, Reboud (CR165) 2010; 10 Xu, Zhao, Jiang, Sun (CR126) 2008; 22 Zeng, Wong (CR152) 2015; 24 Zhang (CR163) 2016; 7 Wang, Zhang, He, Yang (CR170) 2016; 53 Cheng (CR83) 2022; 69 Zhu, Ghatkesar, Zhang, Janssen (CR37) 2013; 102 Li, Wang, Luo, Chen, Chen (CR81) 2015; 15 Roozeboom (CR134) 2013; 22 CR102 Li (CR109) 2017; 258 Hasenkamp (CR160) 2012; 14 Zhang, Li, Zhao, Zhang (CR20) 2021; 21 Hurault, Kouidri, Bakir (CR42) 2012; 40 Xu (CR49) 2017; 17 Basov, Prigodskiy (CR51) 2020; 20 Ruth, Feig, Tran, Bao (CR1) 2020; 30 Harada, Ikeda, Kuwayama, Murayama (CR86) 1999; 73 Jayakumar (CR57) 2017; 69 Cheng (CR66) 2014; 21 CR106 Liu, Wang, Li, Peng, Jin (CR4) 2019; 40 HD Ngo (620_CR11) 2019; 1698 620_CR55 K Harada (620_CR86) 1999; 73 YL Hao (620_CR71) 2003; 2003 Z Dong (620_CR172) 2021; 40 L Tian (620_CR179) 2014; 39 Y Tan (620_CR15) 2006; 16 Z Ni (620_CR130) 2013; 13 H Dudaicevs (620_CR139) 1994; 43 ON Tuft (620_CR17) 1964; 133 X Du (620_CR76) 2016; 16 620_CR143 S-E Zhu (620_CR37) 2013; 102 PC Yan (620_CR93) 2019; 19 P Pal (620_CR14) 2021; 9 YS Lee (620_CR30) 1982; 29 X Li (620_CR6) 2012; 179 620_CR148 620_CR147 620_CR146 P Li (620_CR158) 2023; 14 620_CR44 Roozeboom (620_CR134) 2013; 22 J Dong (620_CR128) 2016; 23 X Ke (620_CR32) 2021; 184 620_CR47 A Moridi (620_CR28) 2013; 50 J Moon (620_CR100) 2022; 22 C Zheng (620_CR107) 2016; 7 620_CR41 D Misiunas (620_CR117) 2005; 131 WP Eaton (620_CR5) 1997; 6 GE Sensing and Testing Centers. (620_CR56) 2009; 2009 620_CR154 XG Han (620_CR94) 2020; 6 L Tian (620_CR125) 2013; 50 C Cheng (620_CR83) 2022; 69 L Xu (620_CR98) 2020; 6 L Xiao (620_CR25) 2011; 483 PS Song (620_CR140) 2020; 20 F Zeng (620_CR152) 2015; 24 B Kloeck (620_CR12) 1989; 36 DY Chen (620_CR7) 2014; 22 Q Zhang (620_CR70) 2019; 90 C Xiang (620_CR84) 2020; 11 L Lou (620_CR162) 2012; 22 W Liang (620_CR119) 2013; 31 X Sun (620_CR75) 2016; 7 Y Lu (620_CR105) 2019; 19 J Zhang (620_CR163) 2016; 7 DL Liu (620_CR4) 2019; 40 Q Zhang (620_CR65) 2023; 14 R Otmani (620_CR16) 2011; 21 V Petley (620_CR26) 2015; 66 T Sato (620_CR150) 2000; 39 620_CR73 M Huff (620_CR27) 2022; 13 LB Zhao (620_CR96) 2021; 322 T Xu (620_CR39) 2016; 244 W Wang (620_CR170) 2016; 53 PJ French (620_CR21) 1985; 8 W Hasenkamp (620_CR160) 2012; 14 K Brenner (620_CR108) 2019; 10 A Henry (620_CR142) 2001; 681 H Kou (620_CR133) 2020; 311 H Yu (620_CR103) 2015; 15 B Tian (620_CR52) 2010; 30 DW Burns (620_CR90) 1995; 48 M Boehringer (620_CR145) 2012; 21 V Mosser (620_CR24) 1991; 28 Z Luo (620_CR82) 2014; 14 620_CR167 Z Jin (620_CR182) 2022; 129 T Xu (620_CR48) 2016; 49 620_CR67 K Tian (620_CR161) 2020; 12 K Singh (620_CR13) 2015; 223 AD Smith (620_CR166) 2016; 10 M Basov (620_CR54) 2021; 21 WZ Yuan (620_CR8) 2013; 49 SRA Ruth (620_CR1) 2020; 30 Y Zhang (620_CR118) 2014; 49 620_CR3 620_CR63 620_CR60 620_CR61 Q Wang (620_CR129) 2011; 20 620_CR176 J Zhang (620_CR58) 2018; 9 D Jiao (620_CR159) 2020; 30 620_CR174 620_CR173 L Zhao (620_CR35) 2017; 264 620_CR171 I Mizushima (620_CR153) 2000; 77 R Chuai (620_CR22) 2012; 33 M Zamanzadeh (620_CR110) 2020; 100 AR Mohammadi (620_CR132) 2010; 163 Y Javed (620_CR40) 2019; 39 J Hurault (620_CR42) 2012; 40 W Feng (620_CR187) 2016; 59 X Li (620_CR109) 2017; 258 620_CR178 620_CR99 L Zhao (620_CR53) 2016; 27 L Wang (620_CR78) 2017; 17 W Chen (620_CR64) 2021; 42 X Liu (620_CR23) 2009; 154 I Clausen (620_CR141) 2007; 133 620_CR92 QW Zhang (620_CR20) 2021; 21 J Watanabe (620_CR69) 2011; 131 T Xu (620_CR49) 2017; 17 M Zhang (620_CR177) 2018; 19 Y Javed (620_CR2) 2019; 39 620_CR184 620_CR181 KB Balavalad (620_CR31) 2015; 187 620_CR106 Z Ren (620_CR68) 2022; 346 J Su (620_CR149) 2018; 39 620_CR102 S Banerji (620_CR112) 2017; 17 620_CR88 MS Khan (620_CR38) 2021; 9 620_CR89 620_CR87 C Pramanik (620_CR131) 2006; 16 MZ Shaikh (620_CR29) 2008; 1 MH Hasan (620_CR111) 2018; 28 C Li (620_CR62) 2018; 18 S Su (620_CR116) 2017; 17 620_CR85 IO Wygant (620_CR113) 2018; 27 Z Chen (620_CR43) 2021; 2021 T Jiang (620_CR175) 2013; 53 T Waber (620_CR180) 2014; 20 P Neuzil (620_CR165) 2010; 10 B Assadsangabi (620_CR45) 2014; 14 SK Jindal (620_CR115) 2019; 52 H Li (620_CR97) 2012; 22 A Prümm (620_CR144) 2012; 188 I Mizushima (620_CR151) 2000; 77 BW Soon (620_CR164) 2010; 5 AS Fiorillo (620_CR10) 2018; 281 L Zhao (620_CR80) 2020; 303 Y Li (620_CR81) 2015; 15 620_CR34 XG Han (620_CR95) 2021; 31 Roozeboom (620_CR136) 2015; 24 C Li (620_CR50) 2018; 139 CS Smith (620_CR9) 1954; 94 G Blanco-Gomez (620_CR101) 2012; 33 L Zhao (620_CR169) 2010; 44 620_CR122 J Wang (620_CR157) 2011; 32 620_CR121 620_CR120 J Xu (620_CR126) 2008; 22 M Basov (620_CR51) 2020; 20 J Tian (620_CR168) 2022; 144 R Cheng (620_CR66) 2014; 21 L Xu (620_CR104) 2022; 8 J Su (620_CR156) 2019; 2019 620_CR124 X Hao (620_CR155) 2014; 14 620_CR123 J Wang (620_CR127) 2019; 10 B Tian (620_CR36) 2021; 27 X Han (620_CR33) 2020; 313 S Ren (620_CR74) 2013; 13 M Basov (620_CR185) 2020; 303 L Zhao (620_CR79) 2018; 89 G Xie (620_CR183) 2022; 12 L Kumar (620_CR114) 2015; 25 AV Tran (620_CR46) 2018; 65 J Chen (620_CR186) 2021; 12 620_CR19 SE Alper (620_CR72) 2005; 14 X Du (620_CR77) 2017; 26 CJ Welham (620_CR91) 1999; 76 B Kim (620_CR135) 2007; 136 620_CR138 620_CR137 M Jayakumar (620_CR57) 2017; 69 PK Kinnell (620_CR59) 2009; 1 ON Tufte (620_CR18) 1963; 34 |
References_xml | – volume: 22 start-page: 731 year: 2008 end-page: 739 ident: CR126 article-title: Monolithic silicon multisensor for measuring three-axis acceleration, pressure, and temperature publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-008-0105-6 – volume: 26 start-page: 235 year: 2017 end-page: 245 ident: CR77 article-title: High-accuracy resonant pressure sensor with balanced mass DETF resonator and twin diaphragms publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2016.2632108 – ident: CR173 – volume: 21 start-page: 47 year: 2011 end-page: 52 ident: CR16 article-title: Thermal drift characteristics of piezoresistive pressure sensors publication-title: Phys. Proc. doi: 10.1016/j.phpro.2011.10.008 – volume: 18 start-page: 439 year: 2018 ident: CR62 article-title: Design optimization and fabrication of a novel structural SOI piezoresistive pressure sensor with high accuracy publication-title: Sensors doi: 10.3390/s18020439 – volume: 13 start-page: 17006 year: 2013 end-page: 17024 ident: CR74 article-title: Micromachined pressure sensor with integrated resonator operating at atmospheric pressure publication-title: Sensors doi: 10.3390/s131217006 – volume: 52 start-page: 1029 year: 2019 end-page: 1038 ident: CR115 article-title: Inductive-capacitive-circuit-based microelectromechanical system wireless capacitive pressure sensor for avionic applications: Preliminary investigations, theoretical modelling, and simulation examination of the newly proposed methodology publication-title: Meas. Control doi: 10.1177/0020294019858095 – volume: 39 start-page: 5033 year: 2000 end-page: 5038 ident: CR150 article-title: Microstructure transformation of silicon: a newly developed transformation technology for patterning silicon surfaces using the surface migration of silicon atoms by hydrogen annealing publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.39.5033 – volume: 244 start-page: 66 year: 2016 end-page: 76 ident: CR39 article-title: A highly sensitive pressure sensor with a novel bossed diaphragm is combined with a peninsular island structure publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2016.04.027 – volume: 6 start-page: 63 year: 2020 ident: CR98 article-title: Programmable synchronization enhanced MEMS resonant accelerometer publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0170-2 – ident: CR138 – volume: 21 start-page: 4357 year: 2021 end-page: 4364 ident: CR54 article-title: Ultra-high sensitivity MEMS pressure sensor utilizing bipolar junction transistor for pressures ranging from 1 to 1 kPa publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3033813 – volume: 15 start-page: 22692 year: 2015 end-page: 22704 ident: CR103 article-title: Design and application of a high sensitivity piezoresistive pressure sensor for low pressure conditions publication-title: Sensors doi: 10.3390/s150922692 – volume: 102 start-page: 161904 year: 2013 ident: CR37 article-title: Graphene-based piezoresistive pressure sensor publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802799 – volume: 14 start-page: 1657 year: 2023 ident: CR65 article-title: High-precision quartz resonant ultrahigh-pressure sensor with an integrated pressure conversion structure publication-title: Micromachines doi: 10.3390/mi14091657 – volume: 17 start-page: 599 year: 2017 ident: CR78 article-title: High-Q wafer-level package based on modified tri-layer anodic bonding and high-performance getter and its evaluation for micro-resonant pressure sensors publication-title: Sensors doi: 10.3390/s17030599 – ident: CR106 – ident: CR121 – ident: CR167 – volume: 187 start-page: 120 year: 2015 end-page: 128 ident: CR31 article-title: Critical review of MEMS capacitive pressure sensors publication-title: Sens. Transducers – volume: 9 start-page: 104 year: 2018 ident: CR58 article-title: Design, fabrication, and implementation of an array-type MEMS piezoresistive intelligent pressure sensor system publication-title: Micromachines doi: 10.3390/mi9030104 – volume: 7 start-page: 148 year: 2016 ident: CR75 article-title: Design and analysis of a new tuning fork structure for resonant pressure sensor publication-title: Micromachines doi: 10.3390/mi7090148 – volume: 6 start-page: 95 year: 2020 ident: CR94 article-title: Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane-mode vibration publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00207-0 – volume: 179 start-page: 277 year: 2012 end-page: 282 ident: CR6 article-title: High-temperature piezoresistive pressure sensors based on implantation of oxygen into a silicon wafer publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2012.03.027 – ident: CR19 – volume: 25 start-page: 045011 year: 2015 ident: CR114 article-title: MEMS oscillating squeeze-film pressure sensor with optoelectronic feedback publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/4/045011 – volume: 264 start-page: 63 year: 2017 end-page: 75 ident: CR35 article-title: Fabrication of capacitive micromachined ultrasonic transducers using low-temperature direct wafer-bonding technology publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.07.044 – ident: CR92 – ident: CR88 – volume: 14 start-page: 981 year: 2023 ident: CR158 article-title: Single-sided micromachined MPa-scale high-temperature pressure sensors publication-title: Micromachines doi: 10.3390/mi14050981 – volume: 22 start-page: 05012 year: 2012 ident: CR162 article-title: Optimization of NEMS pressure sensors with multilayered diaphragms using silicon nanowires as piezoresistive sensing elements publication-title: Micromech. Microeng. doi: 10.1088/0960-1317/22/5/055012 – ident: CR178 – volume: 69 start-page: 515 year: 2017 end-page: 521 ident: CR57 article-title: Problems faced during integrated testing of flush-air data systems (FADS) and their solutions publication-title: J. Aerosp. Sci. Technol. – volume: 14 start-page: 819 year: 2012 end-page: 828 ident: CR160 article-title: Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor publication-title: Biomed. Microdev. doi: 10.1007/s10544-012-9661-8 – volume: 346 start-page: 113883 year: 2022 ident: CR68 article-title: Composite-structure pressure sensor based on quartz DETF resonator publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2022.113883 – volume: 14 start-page: 3442 year: 2014 end-page: 3447 ident: CR45 article-title: Ferrofluid sacrificial microfbrication of capacitive pressure sensors publication-title: IEEE Sens. doi: 10.1109/JSEN.2014.2342716 – volume: 311 start-page: 127907 year: 2020 ident: CR133 article-title: A wireless slot antenna integrated with a temperature-pressure-humidity sensor loaded with CSRR for harsh-environment applications publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.127907 – volume: 11 start-page: 1022 year: 2020 ident: CR84 article-title: Resonant pressure microsensor with a temperature compensation method based on differential outputs and a temperature sensor publication-title: Micromachines doi: 10.3390/mi11111022 – volume: 144 start-page: 041005 year: 2022 ident: CR168 article-title: Design and fabrication of leadless package structures for pressure sensors publication-title: Packaging doi: 10.1115/1.4052246 – ident: CR60 – volume: 23 start-page: 1563 year: 2016 end-page: 1574 ident: CR128 article-title: Monolithic-integrated piezoresistive MEMS accelerometer pressure sensor with glass-silicon-glass sandwich structure publication-title: Microsyst. Technol. doi: 10.1007/s00542-016-2981-5 – volume: 36 start-page: 663 year: 1989 end-page: 669 ident: CR12 article-title: Electrochemical etch stop for high-precision thickness control of silicon membranes publication-title: IEEE Trans. Electr. Devices doi: 10.1109/16.22472 – ident: CR85 – volume: 313 start-page: 112154 year: 2020 ident: CR33 article-title: Design and experiment of touch-mode MEMS capacitance vacuum gauge with square diaphragm publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2020.112154 – volume: 10 start-page: 9879 year: 2016 end-page: 9886 ident: CR166 article-title: Piezoresistive properties of suspended graphene membranes under uniaxial and biaxial strains in nanoelectromechanical pressure sensors publication-title: ACS Nano. doi: 10.1021/acsnano.6b02533 – volume: 131 start-page: 316 year: 2005 end-page: 325 ident: CR117 article-title: Pipeline break detection using pressure transient monitoring publication-title: J. Water Res. Plan. Man. doi: 10.1061/(ASCE)0733-9496(2005)131:4(316) – volume: 19 start-page: 2272 year: 2019 ident: CR105 article-title: A resonant pressure microsensor with a measurement range of 1 MPa is based on sensitivity-balanced dual resonators publication-title: Sensors doi: 10.3390/s19102272 – ident: CR147 – volume: 19 start-page: 3866 year: 2019 ident: CR93 article-title: Temperature-insensitive resonant pressure microsensor based on silicon-on-glass vacuum packaging publication-title: Sens.-basel doi: 10.3390/s19183866 – volume: 20 start-page: 42 year: 2011 end-page: 52 ident: CR129 article-title: On-chip integration of acceleration, pressure, and temperature composite sensors using a single-sided micromachining technique publication-title: J. Microelectromech. S. doi: 10.1109/JMEMS.2010.2100031 – volume: 13 start-page: 1085 year: 2013 end-page: 1101 ident: CR130 article-title: Monolithic composite “pressure+ acceleration+ temperature+ infrared” sensor using a versatile single-sided “SiN/Poly-Si/Al” process-module publication-title: Sensors doi: 10.3390/s130101085 – ident: CR47 – volume: 24 start-page: 810 year: 2015 end-page: 821 ident: CR136 article-title: Multifunctional integrated sensors for multiparameter-monitoring applications publication-title: J. Microelectromech. S. doi: 10.1109/JMEMS.2014.2349894 – volume: 9 start-page: 61123 year: 2021 end-page: 61149 ident: CR38 article-title: MEMS sensors for diagnostics and treatment in the fight against COVID-19 and other pandemics publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073958 – ident: CR89 – volume: 77 start-page: 3290 year: 2000 end-page: 3292 ident: CR151 article-title: Empty space-in-silicon technique for fabricating silicon-on-nothing structure publication-title: Appl. Phys. Lett. doi: 10.1063/1.1324987 – ident: CR171 – volume: 31 start-page: 1 year: 2013 end-page: 7 ident: CR119 article-title: Gas pipeline leakage detection based on acoustic technology publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2012.10.020 – volume: 133 start-page: A1705 year: 1964 ident: CR17 article-title: Piezoresistive properties of heavily doped n-type Si publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A1705 – ident: CR137 – ident: CR184 – volume: 129 start-page: 105568 year: 2022 ident: CR182 article-title: Simulation and reliability testing of leadless package high-temperature pressure sensors publication-title: Microelectron. J. doi: 10.1016/j.mejo.2022.105568 – volume: 77 start-page: 3290 year: 2000 end-page: 3292 ident: CR153 article-title: Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure publication-title: Appl. Phys. Lett. doi: 10.1063/1.1324987 – ident: CR63 – volume: 21 start-page: 22553 year: 2021 end-page: 22561 ident: CR20 article-title: Quartz resonant ultrahigh pressure sensor with high precision and stability publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3111310 – volume: 12 start-page: 20998 year: 2020 end-page: 21008 ident: CR161 article-title: Ultrasensitive thin-film pressure sensors exhibit a broad dynamic response range and excellent versatility in terms of pressure, vibration, bending, and temperature publication-title: ACS Appl. Mater. interfaces doi: 10.1021/acsami.0c05618 – volume: 50 start-page: 3562 year: 2013 end-page: 3569 ident: CR28 article-title: Residual stresses in thin-film systems: effects of lattice mismatch, thermal mismatch, and interface dislocations publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.06.022 – ident: CR123 – volume: 2003 start-page: 31 year: 2003 end-page: 33 ident: CR71 article-title: Nonlinear analysis for micromachined accelerometer based on the resonance principle publication-title: Nanoteohnol. Precis. Eng. – ident: CR44 – volume: 49 start-page: 2 year: 2013 end-page: 9 ident: CR8 article-title: Review of silicon micromachined resonant pressure sensors publication-title: J. Mech. Eng. doi: 10.3901/JME.2013.20.002 – ident: CR176 – volume: 14 start-page: 707 year: 2005 end-page: 717 ident: CR72 article-title: Single-crystal silicon symmetrical and decoupled MEMS gyroscopes on insulating substrate publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.845400 – volume: 40 start-page: 65 year: 2021 end-page: 68 ident: CR172 article-title: Leadless flip-chip packaging of SOI high-temperature pressure sensors publication-title: Transduc. Microsyst. Technol. – volume: 136 start-page: 125 year: 2007 end-page: 131 ident: CR135 article-title: Frequency stability of the wafer-scale film-encapsulated silicon-based MEMS resonators publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2006.10.040 – volume: 65 start-page: 6487 year: 2018 end-page: 6496 ident: CR46 article-title: Development of a new piezoresistive pressure sensor for low-pressure applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2784341 – ident: CR3 – volume: 40 start-page: 29 year: 2012 end-page: 37 ident: CR42 article-title: Experimental investigations on wall pressure measurement on the blade of axial flow fans publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2012.01.018 – volume: 131 start-page: 1101 year: 2011 end-page: 1107 ident: CR69 article-title: High-accuracy pressure sensor using quartz dual-tuning fork resonator publication-title: IEEJ Trans. Electron Inf. Syst. – volume: 33 start-page: 092003 year: 2012 ident: CR22 article-title: Piezoresistive tunneling model for polysilicon publication-title: J. Semiconduc. doi: 10.1088/1674-4926/33/9/092003 – volume: 20 start-page: 337 year: 2020 ident: CR140 article-title: Novel piezoresistive MEMS pressure sensors based on temporary bonding technology publication-title: Sens. Basel doi: 10.3390/s20020337 – volume: 17 start-page: 1965 year: 2017 ident: CR49 article-title: Application and optimization of stiffness-absorption structures for pressure sensors with high sensitivity and anti-overload ability publication-title: Sensors doi: 10.3390/s17091965 – ident: CR55 – volume: 22 start-page: 055024 year: 2012 ident: CR97 article-title: Study of CMOS micromachined self-oscillating loop using phase-locked loop driving circuit publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/5/055024 – volume: 10 start-page: 152 year: 2019 ident: CR108 article-title: Advances in capacitive micromachined ultrasonic transducers publication-title: Micromachines doi: 10.3390/mi10020152 – volume: 30 start-page: 065012 year: 2020 ident: CR159 article-title: Ultra-small pressure sensors fabricated using scar-free microhole interetch and sealing (MIS) processes publication-title: Micromech. Microeng. doi: 10.1088/1361-6439/ab8909 – volume: 31 start-page: 045006 year: 2021 ident: CR95 article-title: High-accuracy differential resonant pressure sensor with linear fitting method publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/abe20c – ident: CR41 – volume: 16 start-page: 1340 year: 2006 end-page: 1348 ident: CR131 article-title: Integrated pressure and temperature sensors based on nanocrystalline porous Si publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/7/031 – volume: 303 start-page: 111686 year: 2020 ident: CR80 article-title: An immersive resonant sensor with a microcantilever was used for the pressure measurement publication-title: Sens. Actuators, A Phys. doi: 10.1016/j.sna.2019.111686 – ident: CR120 – volume: 94 start-page: 42 year: 1954 ident: CR9 article-title: Piezoresistance effect in germanium and silicon publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.42 – volume: 139 start-page: 39 year: 2018 end-page: 47 ident: CR50 article-title: Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micropressure measurement publication-title: Solid State Electron. doi: 10.1016/j.sse.2017.09.012 – ident: CR148 – ident: CR102 – ident: CR87 – volume: 42 start-page: 1382 year: 2021 end-page: 1385 ident: CR64 article-title: Temperature-stable and low-impedance piezoelectric MEMS resonator for drop-in replacement of quartz crystals publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2021.3094319 – volume: 17 start-page: 1963 year: 2017 ident: CR116 article-title: Slot antenna-integrated re-entrant resonator-based wireless pressure sensors for high-temperature applications publication-title: Sensors doi: 10.3390/s17091963 – volume: 133 start-page: 457 year: 2007 end-page: 466 ident: CR141 article-title: Die separation and packaging of a surface micromachined piezoresistive pressure sensor publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.05.011 – volume: 39 start-page: 652 year: 2019 end-page: 664 ident: CR2 article-title: Review of the principles of MEMS pressure sensing in aerospace applications. publication-title: Rev – volume: 53 start-page: 249 year: 2016 end-page: 254 ident: CR170 article-title: MEMS ultrathin dynamic pressure sensors publication-title: Micronanoelectron. Technol. – ident: CR154 – ident: CR61 – volume: 13 start-page: 2084 year: 2022 ident: CR27 article-title: Residual stresses in deposited thin-film material layers for micro and nanosystem manufacturing publication-title: Micromachines doi: 10.3390/mi13122084 – volume: 44 start-page: 50 year: 2010 end-page: 54 ident: CR169 article-title: Inverted-cup high-temperature and high-frequency piezoresistive pressure sensors publication-title: J. Xi’ Jiaotong Univ. – volume: 15 start-page: 10048 year: 2015 end-page: 10058 ident: CR81 article-title: Resonant-pressure microsensor capable of self-temperature compensation publication-title: Sensors doi: 10.3390/s150510048 – volume: 12 start-page: 569 year: 2021 ident: CR186 article-title: Three-dimensional arterial pulse signal acquisition in time domain using flexible pressure sensor dense arrays publication-title: Micromachines doi: 10.3390/mi12050569 – volume: 184 start-page: 109880 year: 2021 ident: CR32 article-title: Design and fabrication of a differential-pressure MEMS capacitance diaphragm gauge based on a heavily boron-doped technique publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109880 – volume: 281 start-page: 156 year: 2018 end-page: 175 ident: CR10 article-title: Theory, technology and applications of piezoresistive sensors: a review publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.07.006 – volume: 163 start-page: 471 year: 2010 end-page: 480 ident: CR132 article-title: Development of a compensated capacitive pressure and temperature sensor using adhesive bonding and chemical-resistant coating for multiphase chemical reactors publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2010.08.024 – volume: 6 start-page: 530 year: 1997 end-page: 539 ident: CR5 article-title: Micromachined pressure sensors: review and recent developments publication-title: Smart. Mater. Struct. doi: 10.1088/0964-1726/6/5/004 – volume: 1 start-page: 104 year: 2009 end-page: 107 ident: CR59 article-title: Advances in silicon resonant pressure transducers publication-title: Procedia Chem. doi: 10.1016/j.proche.2009.07.026 – ident: CR174 – volume: 28 start-page: 065007 year: 2018 ident: CR111 article-title: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aab515 – volume: 49 start-page: 075110 year: 2016 ident: CR48 article-title: Modeling and analysis of a novel combined peninsula–island structure diaphragm for ultra-low-pressure sensing with high sensitivity publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/49/7/075110 – volume: 69 start-page: 2023 year: 2022 end-page: 2029 ident: CR83 article-title: Resonant differential pressure microsensor with stress isolation and Au-Au bonding in the packaging publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3152475 – volume: 1 start-page: 201 year: 2008 end-page: 204 ident: CR29 article-title: Comparative performance analysis of capacitive and piezoresistive MEMS for pressure measurements publication-title: Inter. Comput. Sci. Appl. – volume: 30 start-page: 305 year: 2010 end-page: 313 ident: CR52 article-title: Novel structural design of pressure sensors publication-title: Sens. Rev. doi: 10.1108/02602281011072189 – volume: 22 start-page: 1235 year: 2014 end-page: 1242 ident: CR7 article-title: Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor publication-title: Opt. Precis. Eng. doi: 10.3788/OPE.20142205.1235 – volume: 8 start-page: 219 year: 1985 end-page: 225 ident: CR21 article-title: Polycrystalline silicon strain sensors publication-title: Sens. Actuators doi: 10.1016/0250-6874(85)85004-6 – volume: 29 start-page: 42 year: 1982 end-page: 48 ident: CR30 article-title: Batch-fabricated silicon capacitive pressure transducer with low-temperature sensitivity publication-title: IEEE Trans. Electr. Devices doi: 10.1109/T-ED.1982.20656 – volume: 322 start-page: 112612 year: 2021 ident: CR96 article-title: Temperature-insensitive silicon resonant-pressure sensor using thermal stress control publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2021.112612 – ident: CR67 – volume: 2019 start-page: 1 year: 2019 end-page: 10 ident: CR156 article-title: Fabrication of a piezoresistive barometric pressure sensor using silicon-on-nothing technology publication-title: Sens – volume: 16 start-page: 158 year: 2016 ident: CR76 article-title: Laterally driven resonant pressure sensor with etched silicon dual diaphragms and combined beams publication-title: Sensors doi: 10.3390/s16020158 – volume: 27 start-page: 124012 year: 2016 ident: CR53 article-title: Bossed diaphragm piezoresistive pressure sensor with a peninsular island structure for an ultralow-pressure range with high sensitivity publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/12/124012 – volume: 303 start-page: 111705 year: 2020 ident: CR185 article-title: High-sensitivity MEMS pressure sensor utilizing bipolar junction transistor with temperature compensation publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111705 – volume: 28 start-page: 113 year: 1991 end-page: 132 ident: CR24 article-title: Piezoresistive pressure sensors based on polycrystalline silicon publication-title: Sens. Actuators A: Phys. doi: 10.1016/0924-4247(91)85020-O – volume: 258 start-page: 59 year: 2017 end-page: 67 ident: CR109 article-title: Study of a 10MHz MEMS oscillator with a TPoS resonator publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.02.012 – volume: 10 start-page: 1248 year: 2010 end-page: 1252 ident: CR165 article-title: Electrically controlled giant piezoresistance in silicon nanowires publication-title: Nano. Lett. doi: 10.1021/nl9037856 – volume: 5 start-page: 1127 year: 2010 end-page: 1130 ident: CR164 article-title: An ultrasensitive nanowire pressure sensor was developed publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.09.309 – volume: 50 start-page: 776 year: 2013 end-page: 780 ident: CR125 article-title: Oil-filled high-temperature and high-pressure composite sensors of pressure and temperature publication-title: Micronanoelectro. Technol. – volume: 39 start-page: 921 year: 2014 end-page: 925 ident: CR179 article-title: Leadless packaging high-temperature pressure sensor publication-title: Semicond. Technol. – volume: 21 start-page: 1375 year: 2012 end-page: 1381 ident: CR145 article-title: Porous silicon in a semiconductor manufacturing environment publication-title: Microelectromech. S. doi: 10.1109/JMEMS.2012.2205900 – volume: 27 start-page: 448 year: 2018 end-page: 456 ident: CR113 article-title: Analytical model of the circular capacitive pressure transducers publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2823200 – ident: CR181 – ident: CR99 – ident: CR122 – volume: 48 start-page: 179 year: 1995 end-page: 186 ident: CR90 article-title: Sealed-cavity resonant microbeam pressure sensor publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(95)00997-3 – volume: 22 start-page: 6378 year: 2022 ident: CR100 article-title: Novel high-speed resonant frequency tracking method using transient characteristics in a piezoelectric transducer publication-title: Sensors doi: 10.3390/s22176378 – ident: CR143 – volume: 53 start-page: 53 year: 2013 end-page: 62 ident: CR175 article-title: Measurement and analysis of thermal stresses in 3D integrated structures containing through-silicon publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.05.008 – volume: 7 start-page: 187 year: 2016 ident: CR163 article-title: Design optimization and fabrication of high-sensitivity SOI pressure sensors with high signal-to-noise ratios based on silicon nanowire piezoresistors publication-title: Micromachines doi: 10.3390/mi7100187 – volume: 59 start-page: 95 year: 2016 end-page: 101 ident: CR187 article-title: Validation of TSV thermomechanical simulations using stress measurements publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2016.01.007 – volume: 33 start-page: 609 year: 2012 end-page: 611 ident: CR101 article-title: Hollow square-and ring-plate MEMS oscillators embedded in a phase-locked loop for low limit of detection in liquid publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2182985 – volume: 12 start-page: 209 year: 2022 end-page: 216 ident: CR183 article-title: Sintering process and vibration characteristics of leadless package structures for pressure sensors publication-title: IEEE T. Comp. Pack. Man. – volume: 17 start-page: 6653 year: 2017 end-page: 6661 ident: CR112 article-title: Characterization of CMOS-MEMS resonant pressure sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2747140 – volume: 22 start-page: 779 year: 2013 end-page: 793 ident: CR134 article-title: Integrated multifunctional environmental sensors publication-title: J. Microelectromech. S. doi: 10.1109/JMEMS.2013.2245400 – volume: 39 start-page: 652 year: 2019 end-page: 664 ident: CR40 article-title: Review of the principles of MEMS pressure sensing in aerospace applications publication-title: Sens. Rev. doi: 10.1108/SR-06-2018-0135 – volume: 21 start-page: 631 year: 2014 end-page: 640 ident: CR66 article-title: Design and fabrication of resonant pressure sensor using combination of DETF quartz resonator and silicon diaphragm publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2108-9 – volume: 34 start-page: 313 year: 1963 end-page: 318 ident: CR18 article-title: Piezoresistive properties of silicon-diffused layers publication-title: J. Appl. Phys. doi: 10.1063/1.1702605 – volume: 24 start-page: 677 year: 2015 end-page: 684 ident: CR152 article-title: A self-scanning active-matrix tactile sensor was realized using silicon migration technology publication-title: Microelectromech. S. doi: 10.1109/JMEMS.2014.2344025 – volume: 9 start-page: 1 year: 2021 end-page: 59 ident: CR14 article-title: High-speed silicon wet anisotropic etching for applications in bulk micromachining: a review publication-title: Micro Nano. Syst. Lett. doi: 10.1186/s40486-021-00129-0 – volume: 16 start-page: 2570 year: 2006 ident: CR15 article-title: Modeling and simulation of the lag effect in the deep reactive ion etching process publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/12/008 – volume: 27 start-page: 3083 year: 2021 end-page: 3093 ident: CR36 article-title: Performance optimization of SiC piezoresistive pressure sensor through suitable piezoresistor design publication-title: Microsyst. Technol. doi: 10.1007/s00542-020-05175-z – volume: 32 start-page: 979 year: 2011 end-page: 981 ident: CR157 article-title: Single-sided fabricated pressure sensors for IC-foundry-compatible, high-yield, and low-cost volume production publication-title: IEEE Electr. Device L. doi: 10.1109/LED.2011.2147272 – volume: 30 start-page: 2003491 year: 2020 ident: CR1 article-title: Microengineering pressure sensor active layers for improved performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003491 – volume: 8 start-page: 93 year: 2022 ident: CR104 article-title: Fast frequency relocking for synchronization enhanced resonant accelerometer publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00428-5 – volume: 2021 start-page: 37 year: 2021 end-page: 39 ident: CR43 article-title: Y. discussed the setting of an intelligent residual-pressure monitoring system for super high-rise buildings publication-title: Intell. Build. – volume: 43 start-page: 157 year: 1994 end-page: 163 ident: CR139 article-title: Surface micromachined pressure sensors with integrated CMOS readout electronics publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(94)80002-2 – ident: CR146 – volume: 154 start-page: 42 year: 2009 end-page: 45 ident: CR23 article-title: Polysilicon nanofilm pressure sensors publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2009.07.015 – volume: 1698 start-page: 231 year: 2019 end-page: 251 ident: CR11 article-title: Piezoresistive pressure sensors for applications in harsh environments: a roadmap publication-title: Mod. Sens. Technol. doi: 10.1007/978-3-319-99540-3_12 – ident: CR124 – volume: 66 start-page: 59 year: 2015 end-page: 64 ident: CR26 article-title: Microstructural and mechanical characteristics of Ni–Cr thin films publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.02.002 – volume: 14 start-page: 808 year: 2014 end-page: 815 ident: CR155 article-title: Application of a silicon-on-nothing structure to develop a novel capacitive absolute pressure sensor publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2288681 – volume: 19 start-page: 93 year: 2018 ident: CR177 article-title: Research on 3D encapsulation technique for capacitive MEMS sensors based on silicon vias publication-title: Sens.-Basel doi: 10.3390/s19010093 – ident: CR73 – volume: 20 start-page: 861 year: 2014 end-page: 867 ident: CR180 article-title: Temperature characterization of the flip-chip packaged piezoresistive barometric pressure sensors publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2064-9 – volume: 223 start-page: 151 year: 2015 end-page: 158 ident: CR13 article-title: Fabrication of the electron beam physical vapor-deposited polysilicon piezoresistive MEMS pressure sensor publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2014.12.033 – volume: 89 start-page: 125001 year: 2018 ident: CR79 article-title: Temperature compensation in fluid density measurements using microelectromechanical resonant sensor publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5046879 – volume: 100 start-page: 1105 year: 2020 end-page: 1123 ident: CR110 article-title: Resonant pressure MEMS sensor based on levitation force excitation detection publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05579-6 – volume: 40 start-page: 7 year: 2019 end-page: 15 ident: CR4 article-title: Research status of shockwave overpressure sensors publication-title: J. Telem. Track. Command – volume: 20 start-page: 7646 year: 2020 end-page: 7652 ident: CR51 article-title: Investigation of high-sensitivity piezoresistive pressure sensors at ultralow differential pressures publication-title: IEEE Sens. doi: 10.1109/JSEN.2020.2980326 – volume: 90 start-page: 065003 year: 2019 ident: CR70 article-title: High-sensitivity quartz resonant pressure sensors with differential output and self-correction publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5094212 – volume: 681 start-page: 146 year: 2001 end-page: 151 ident: CR142 article-title: A novel ultraminiature catheter tip pressure sensor was fabricated using silicon and glass thinning techniques publication-title: MRS Proc. – volume: 2009 start-page: 105 year: 2009 end-page: 106 ident: CR56 article-title: Applications of pressure sensors and atmospheric data measurement equipment in aviation publication-title: Aeronaut. Manuf. Technol. – volume: 14 start-page: 24244 year: 2014 end-page: 24257 ident: CR82 article-title: High-Q resonant-pressure microsensors with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging publication-title: Sensors doi: 10.3390/s141224244 – volume: 73 start-page: 261 year: 1999 end-page: 266 ident: CR86 article-title: Various applications of resonant pressure sensor chip based on 3-D micromachining publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(98)00245-3 – ident: CR34 – volume: 49 start-page: 382 year: 2014 end-page: 389 ident: CR118 article-title: Leak detection monitoring system of long-distance oil pipeline based on dynamic pressure transmitter publication-title: Measurement doi: 10.1016/j.measurement.2013.12.009 – volume: 7 start-page: 87 year: 2016 ident: CR107 article-title: Design and manufacturing of a passive pressure sensor based on LC resonance publication-title: Micromachines doi: 10.3390/mi7050087 – volume: 39 start-page: 071005 year: 2018 ident: CR149 article-title: Review: crystalline silicon membranes over sealed cavities for pressure sensors using silicon migration technology publication-title: Semicond. doi: 10.1088/1674-4926/39/7/071005 – volume: 10 start-page: 473 year: 2019 ident: CR127 article-title: On-chip integration of pressure plus 2-axis (X/Z) acceleration composite TPMS sensors with a single-sided bulk micromachining technique publication-title: Micromachines doi: 10.3390/mi10070473 – volume: 188 start-page: 507 year: 2012 end-page: 512 ident: CR144 article-title: Monocrystalline thin-film wafer-level encapsulation of microsystems using porous publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2012.02.035 – volume: 483 start-page: 735 year: 2011 end-page: 739 ident: CR25 article-title: TCR of Ni-Cr thin-film resistors used in piezoresistive pressure sensors publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.483.735 – volume: 76 start-page: 298 year: 1999 end-page: 304 ident: CR91 article-title: High-accuracy resonant pressure sensors fabricated using fusion bonding and trench etching publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(99)00065-5 – volume: 89 start-page: 125001 year: 2018 ident: 620_CR79 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5046879 – volume: 19 start-page: 3866 year: 2019 ident: 620_CR93 publication-title: Sens.-basel doi: 10.3390/s19183866 – ident: 620_CR184 doi: 10.1109/MEMSYS.2002.984285 – volume: 21 start-page: 4357 year: 2021 ident: 620_CR54 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3033813 – volume: 17 start-page: 599 year: 2017 ident: 620_CR78 publication-title: Sensors doi: 10.3390/s17030599 – volume: 19 start-page: 2272 year: 2019 ident: 620_CR105 publication-title: Sensors doi: 10.3390/s19102272 – volume: 69 start-page: 2023 year: 2022 ident: 620_CR83 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3152475 – volume: 39 start-page: 652 year: 2019 ident: 620_CR2 publication-title: Rev – volume: 10 start-page: 9879 year: 2016 ident: 620_CR166 publication-title: ACS Nano. doi: 10.1021/acsnano.6b02533 – ident: 620_CR143 – volume: 139 start-page: 39 year: 2018 ident: 620_CR50 publication-title: Solid State Electron. doi: 10.1016/j.sse.2017.09.012 – volume: 33 start-page: 609 year: 2012 ident: 620_CR101 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2182985 – ident: 620_CR89 – volume: 66 start-page: 59 year: 2015 ident: 620_CR26 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.02.002 – volume: 258 start-page: 59 year: 2017 ident: 620_CR109 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.02.012 – volume: 14 start-page: 808 year: 2014 ident: 620_CR155 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2288681 – volume: 264 start-page: 63 year: 2017 ident: 620_CR35 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.07.044 – ident: 620_CR99 doi: 10.1017/CBO9780511812798 – volume: 33 start-page: 092003 year: 2012 ident: 620_CR22 publication-title: J. Semiconduc. doi: 10.1088/1674-4926/33/9/092003 – volume: 29 start-page: 42 year: 1982 ident: 620_CR30 publication-title: IEEE Trans. Electr. Devices doi: 10.1109/T-ED.1982.20656 – ident: 620_CR137 – volume: 2019 start-page: 1 year: 2019 ident: 620_CR156 publication-title: Sens – volume: 187 start-page: 120 year: 2015 ident: 620_CR31 publication-title: Sens. Transducers – volume: 42 start-page: 1382 year: 2021 ident: 620_CR64 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2021.3094319 – volume: 21 start-page: 631 year: 2014 ident: 620_CR66 publication-title: Microsyst. Technol. doi: 10.1007/s00542-014-2108-9 – ident: 620_CR47 doi: 10.1109/ICSENS.2013.6688392 – volume: 16 start-page: 158 year: 2016 ident: 620_CR76 publication-title: Sensors doi: 10.3390/s16020158 – volume: 59 start-page: 95 year: 2016 ident: 620_CR187 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2016.01.007 – volume: 30 start-page: 2003491 year: 2020 ident: 620_CR1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003491 – volume: 6 start-page: 95 year: 2020 ident: 620_CR94 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00207-0 – ident: 620_CR148 doi: 10.1109/MEMSYS.2009.4805478 – volume: 22 start-page: 05012 year: 2012 ident: 620_CR162 publication-title: Micromech. Microeng. doi: 10.1088/0960-1317/22/5/055012 – ident: 620_CR181 – volume: 73 start-page: 261 year: 1999 ident: 620_CR86 publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(98)00245-3 – volume: 53 start-page: 249 year: 2016 ident: 620_CR170 publication-title: Micronanoelectron. Technol. – volume: 21 start-page: 47 year: 2011 ident: 620_CR16 publication-title: Phys. Proc. doi: 10.1016/j.phpro.2011.10.008 – ident: 620_CR92 doi: 10.1016/S1351-4180(03)00931-0 – ident: 620_CR61 – volume: 14 start-page: 707 year: 2005 ident: 620_CR72 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.845400 – volume: 22 start-page: 731 year: 2008 ident: 620_CR126 publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-008-0105-6 – ident: 620_CR174 – volume: 30 start-page: 065012 year: 2020 ident: 620_CR159 publication-title: Micromech. Microeng. doi: 10.1088/1361-6439/ab8909 – volume: 14 start-page: 1657 year: 2023 ident: 620_CR65 publication-title: Micromachines doi: 10.3390/mi14091657 – volume: 65 start-page: 6487 year: 2018 ident: 620_CR46 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2784341 – ident: 620_CR106 doi: 10.1109/PRIME.2011.5966215 – volume: 10 start-page: 152 year: 2019 ident: 620_CR108 publication-title: Micromachines doi: 10.3390/mi10020152 – volume: 17 start-page: 6653 year: 2017 ident: 620_CR112 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2747140 – volume: 52 start-page: 1029 year: 2019 ident: 620_CR115 publication-title: Meas. Control doi: 10.1177/0020294019858095 – volume: 5 start-page: 1127 year: 2010 ident: 620_CR164 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.09.309 – volume: 1 start-page: 104 year: 2009 ident: 620_CR59 publication-title: Procedia Chem. doi: 10.1016/j.proche.2009.07.026 – volume: 8 start-page: 219 year: 1985 ident: 620_CR21 publication-title: Sens. Actuators doi: 10.1016/0250-6874(85)85004-6 – ident: 620_CR146 doi: 10.1109/MEMSYS.2018.8346528 – ident: 620_CR122 – volume: 14 start-page: 3442 year: 2014 ident: 620_CR45 publication-title: IEEE Sens. doi: 10.1109/JSEN.2014.2342716 – volume: 346 start-page: 113883 year: 2022 ident: 620_CR68 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2022.113883 – volume: 11 start-page: 1022 year: 2020 ident: 620_CR84 publication-title: Micromachines doi: 10.3390/mi11111022 – volume: 133 start-page: A1705 year: 1964 ident: 620_CR17 publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A1705 – volume: 14 start-page: 819 year: 2012 ident: 620_CR160 publication-title: Biomed. Microdev. doi: 10.1007/s10544-012-9661-8 – volume: 24 start-page: 677 year: 2015 ident: 620_CR152 publication-title: Microelectromech. S. doi: 10.1109/JMEMS.2014.2344025 – volume: 179 start-page: 277 year: 2012 ident: 620_CR6 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2012.03.027 – ident: 620_CR176 doi: 10.1109/EuroSimE.2013.6529892 – volume: 2009 start-page: 105 year: 2009 ident: 620_CR56 publication-title: Aeronaut. Manuf. Technol. – ident: 620_CR87 – volume: 36 start-page: 663 year: 1989 ident: 620_CR12 publication-title: IEEE Trans. Electr. Devices doi: 10.1109/16.22472 – volume: 27 start-page: 3083 year: 2021 ident: 620_CR36 publication-title: Microsyst. Technol. doi: 10.1007/s00542-020-05175-z – volume: 133 start-page: 457 year: 2007 ident: 620_CR141 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.05.011 – ident: 620_CR138 doi: 10.1109/UGIM.2008.30 – volume: 13 start-page: 2084 year: 2022 ident: 620_CR27 publication-title: Micromachines doi: 10.3390/mi13122084 – volume: 77 start-page: 3290 year: 2000 ident: 620_CR153 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1324987 – volume: 8 start-page: 93 year: 2022 ident: 620_CR104 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00428-5 – volume: 131 start-page: 1101 year: 2011 ident: 620_CR69 publication-title: IEEJ Trans. Electron Inf. Syst. – volume: 12 start-page: 20998 year: 2020 ident: 620_CR161 publication-title: ACS Appl. Mater. interfaces doi: 10.1021/acsami.0c05618 – volume: 2003 start-page: 31 year: 2003 ident: 620_CR71 publication-title: Nanoteohnol. Precis. Eng. – volume: 7 start-page: 148 year: 2016 ident: 620_CR75 publication-title: Micromachines doi: 10.3390/mi7090148 – volume: 39 start-page: 921 year: 2014 ident: 620_CR179 publication-title: Semicond. Technol. – volume: 18 start-page: 439 year: 2018 ident: 620_CR62 publication-title: Sensors doi: 10.3390/s18020439 – volume: 12 start-page: 209 year: 2022 ident: 620_CR183 publication-title: IEEE T. Comp. Pack. Man. – volume: 6 start-page: 530 year: 1997 ident: 620_CR5 publication-title: Smart. Mater. Struct. doi: 10.1088/0964-1726/6/5/004 – volume: 40 start-page: 7 year: 2019 ident: 620_CR4 publication-title: J. Telem. Track. Command – ident: 620_CR73 doi: 10.4028/www.scientific.net/AMR.60-61.298 – volume: 22 start-page: 6378 year: 2022 ident: 620_CR100 publication-title: Sensors doi: 10.3390/s22176378 – volume: 2021 start-page: 37 year: 2021 ident: 620_CR43 publication-title: Intell. Build. – volume: 49 start-page: 075110 year: 2016 ident: 620_CR48 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/49/7/075110 – volume: 22 start-page: 1235 year: 2014 ident: 620_CR7 publication-title: Opt. Precis. Eng. doi: 10.3788/OPE.20142205.1235 – ident: 620_CR67 – volume: 303 start-page: 111686 year: 2020 ident: 620_CR80 publication-title: Sens. Actuators, A Phys. doi: 10.1016/j.sna.2019.111686 – ident: 620_CR102 doi: 10.1109/Transducers.2013.6626706 – volume: 20 start-page: 861 year: 2014 ident: 620_CR180 publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2064-9 – volume: 7 start-page: 187 year: 2016 ident: 620_CR163 publication-title: Micromachines doi: 10.3390/mi7100187 – volume: 28 start-page: 113 year: 1991 ident: 620_CR24 publication-title: Sens. Actuators A: Phys. doi: 10.1016/0924-4247(91)85020-O – volume: 39 start-page: 5033 year: 2000 ident: 620_CR150 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.39.5033 – volume: 144 start-page: 041005 year: 2022 ident: 620_CR168 publication-title: Packaging doi: 10.1115/1.4052246 – volume: 48 start-page: 179 year: 1995 ident: 620_CR90 publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(95)00997-3 – volume: 9 start-page: 1 year: 2021 ident: 620_CR14 publication-title: Micro Nano. Syst. Lett. doi: 10.1186/s40486-021-00129-0 – volume: 17 start-page: 1965 year: 2017 ident: 620_CR49 publication-title: Sensors doi: 10.3390/s17091965 – volume: 681 start-page: 146 year: 2001 ident: 620_CR142 publication-title: MRS Proc. – volume: 281 start-page: 156 year: 2018 ident: 620_CR10 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.07.006 – volume: 49 start-page: 382 year: 2014 ident: 620_CR118 publication-title: Measurement doi: 10.1016/j.measurement.2013.12.009 – volume: 26 start-page: 235 year: 2017 ident: 620_CR77 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2016.2632108 – volume: 40 start-page: 65 year: 2021 ident: 620_CR172 publication-title: Transduc. Microsyst. Technol. – volume: 16 start-page: 2570 year: 2006 ident: 620_CR15 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/12/008 – volume: 1 start-page: 201 year: 2008 ident: 620_CR29 publication-title: Inter. Comput. Sci. Appl. – ident: 620_CR124 – volume: 136 start-page: 125 year: 2007 ident: 620_CR135 publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2006.10.040 – ident: 620_CR178 doi: 10.1109/ICECET55527.2022.9872990 – volume: 43 start-page: 157 year: 1994 ident: 620_CR139 publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(94)80002-2 – volume: 49 start-page: 2 year: 2013 ident: 620_CR8 publication-title: J. Mech. Eng. doi: 10.3901/JME.2013.20.002 – volume: 27 start-page: 448 year: 2018 ident: 620_CR113 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2823200 – volume: 13 start-page: 1085 year: 2013 ident: 620_CR130 publication-title: Sensors doi: 10.3390/s130101085 – volume: 7 start-page: 87 year: 2016 ident: 620_CR107 publication-title: Micromachines doi: 10.3390/mi7050087 – volume: 30 start-page: 305 year: 2010 ident: 620_CR52 publication-title: Sens. Rev. doi: 10.1108/02602281011072189 – volume: 16 start-page: 1340 year: 2006 ident: 620_CR131 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/7/031 – volume: 10 start-page: 1248 year: 2010 ident: 620_CR165 publication-title: Nano. Lett. doi: 10.1021/nl9037856 – volume: 129 start-page: 105568 year: 2022 ident: 620_CR182 publication-title: Microelectron. J. doi: 10.1016/j.mejo.2022.105568 – volume: 303 start-page: 111705 year: 2020 ident: 620_CR185 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111705 – ident: 620_CR85 – volume: 25 start-page: 045011 year: 2015 ident: 620_CR114 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/4/045011 – volume: 50 start-page: 3562 year: 2013 ident: 620_CR28 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.06.022 – volume: 10 start-page: 473 year: 2019 ident: 620_CR127 publication-title: Micromachines doi: 10.3390/mi10070473 – volume: 90 start-page: 065003 year: 2019 ident: 620_CR70 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5094212 – ident: 620_CR173 – volume: 39 start-page: 071005 year: 2018 ident: 620_CR149 publication-title: Semicond. doi: 10.1088/1674-4926/39/7/071005 – volume: 32 start-page: 979 year: 2011 ident: 620_CR157 publication-title: IEEE Electr. Device L. doi: 10.1109/LED.2011.2147272 – volume: 322 start-page: 112612 year: 2021 ident: 620_CR96 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2021.112612 – ident: 620_CR3 – volume: 313 start-page: 112154 year: 2020 ident: 620_CR33 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2020.112154 – volume: 188 start-page: 507 year: 2012 ident: 620_CR144 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2012.02.035 – volume: 40 start-page: 29 year: 2012 ident: 620_CR42 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2012.01.018 – volume: 13 start-page: 17006 year: 2013 ident: 620_CR74 publication-title: Sensors doi: 10.3390/s131217006 – ident: 620_CR121 – volume: 163 start-page: 471 year: 2010 ident: 620_CR132 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2010.08.024 – volume: 20 start-page: 337 year: 2020 ident: 620_CR140 publication-title: Sens. Basel doi: 10.3390/s20020337 – volume: 19 start-page: 93 year: 2018 ident: 620_CR177 publication-title: Sens.-Basel doi: 10.3390/s19010093 – volume: 20 start-page: 7646 year: 2020 ident: 620_CR51 publication-title: IEEE Sens. doi: 10.1109/JSEN.2020.2980326 – volume: 53 start-page: 53 year: 2013 ident: 620_CR175 publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2012.05.008 – volume: 184 start-page: 109880 year: 2021 ident: 620_CR32 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109880 – volume: 12 start-page: 569 year: 2021 ident: 620_CR186 publication-title: Micromachines doi: 10.3390/mi12050569 – volume: 94 start-page: 42 year: 1954 ident: 620_CR9 publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.42 – volume: 27 start-page: 124012 year: 2016 ident: 620_CR53 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/12/124012 – volume: 102 start-page: 161904 year: 2013 ident: 620_CR37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802799 – volume: 100 start-page: 1105 year: 2020 ident: 620_CR110 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05579-6 – volume: 24 start-page: 810 year: 2015 ident: 620_CR136 publication-title: J. Microelectromech. S. doi: 10.1109/JMEMS.2014.2349894 – ident: 620_CR44 – volume: 15 start-page: 22692 year: 2015 ident: 620_CR103 publication-title: Sensors doi: 10.3390/s150922692 – volume: 14 start-page: 981 year: 2023 ident: 620_CR158 publication-title: Micromachines doi: 10.3390/mi14050981 – volume: 39 start-page: 652 year: 2019 ident: 620_CR40 publication-title: Sens. Rev. doi: 10.1108/SR-06-2018-0135 – volume: 22 start-page: 055024 year: 2012 ident: 620_CR97 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/5/055024 – volume: 31 start-page: 1 year: 2013 ident: 620_CR119 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2012.10.020 – ident: 620_CR55 – ident: 620_CR154 doi: 10.1109/TRANSDUCERS.2017.7994454 – volume: 14 start-page: 24244 year: 2014 ident: 620_CR82 publication-title: Sensors doi: 10.3390/s141224244 – ident: 620_CR34 doi: 10.1007/978-0-387-47318-5 – volume: 21 start-page: 1375 year: 2012 ident: 620_CR145 publication-title: Microelectromech. S. doi: 10.1109/JMEMS.2012.2205900 – volume: 6 start-page: 63 year: 2020 ident: 620_CR98 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0170-2 – volume: 76 start-page: 298 year: 1999 ident: 620_CR91 publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(99)00065-5 – volume: 31 start-page: 045006 year: 2021 ident: 620_CR95 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/abe20c – ident: 620_CR41 – volume: 311 start-page: 127907 year: 2020 ident: 620_CR133 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.127907 – volume: 21 start-page: 22553 year: 2021 ident: 620_CR20 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3111310 – volume: 154 start-page: 42 year: 2009 ident: 620_CR23 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2009.07.015 – volume: 15 start-page: 10048 year: 2015 ident: 620_CR81 publication-title: Sensors doi: 10.3390/s150510048 – volume: 483 start-page: 735 year: 2011 ident: 620_CR25 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.483.735 – volume: 28 start-page: 065007 year: 2018 ident: 620_CR111 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aab515 – ident: 620_CR171 – ident: 620_CR19 doi: 10.1016/B978-044451616-9/50002-3 – ident: 620_CR167 doi: 10.1117/12.2016459 – volume: 34 start-page: 313 year: 1963 ident: 620_CR18 publication-title: J. Appl. Phys. doi: 10.1063/1.1702605 – ident: 620_CR60 – volume: 17 start-page: 1963 year: 2017 ident: 620_CR116 publication-title: Sensors doi: 10.3390/s17091963 – volume: 1698 start-page: 231 year: 2019 ident: 620_CR11 publication-title: Mod. Sens. Technol. doi: 10.1007/978-3-319-99540-3_12 – volume: 9 start-page: 61123 year: 2021 ident: 620_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073958 – ident: 620_CR147 doi: 10.1109/ESSCIRC.2013.6649059 – ident: 620_CR123 – volume: 77 start-page: 3290 year: 2000 ident: 620_CR151 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1324987 – volume: 9 start-page: 104 year: 2018 ident: 620_CR58 publication-title: Micromachines doi: 10.3390/mi9030104 – volume: 244 start-page: 66 year: 2016 ident: 620_CR39 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2016.04.027 – volume: 20 start-page: 42 year: 2011 ident: 620_CR129 publication-title: J. Microelectromech. S. doi: 10.1109/JMEMS.2010.2100031 – ident: 620_CR88 – ident: 620_CR63 – volume: 44 start-page: 50 year: 2010 ident: 620_CR169 publication-title: J. Xi’ Jiaotong Univ. – ident: 620_CR120 – volume: 22 start-page: 779 year: 2013 ident: 620_CR134 publication-title: J. Microelectromech. S. doi: 10.1109/JMEMS.2013.2245400 – volume: 23 start-page: 1563 year: 2016 ident: 620_CR128 publication-title: Microsyst. Technol. doi: 10.1007/s00542-016-2981-5 – volume: 223 start-page: 151 year: 2015 ident: 620_CR13 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2014.12.033 – volume: 131 start-page: 316 year: 2005 ident: 620_CR117 publication-title: J. Water Res. Plan. Man. doi: 10.1061/(ASCE)0733-9496(2005)131:4(316) – volume: 50 start-page: 776 year: 2013 ident: 620_CR125 publication-title: Micronanoelectro. Technol. – volume: 69 start-page: 515 year: 2017 ident: 620_CR57 publication-title: J. Aerosp. Sci. Technol. |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5242236 |
SecondaryResourceType | review_article |
Snippet | Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based pressure... Abstract Pressure sensors play a vital role in aerospace, automotive, medical, and consumer electronics. Although microelectromechanical system (MEMS)-based... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 156 |
SubjectTerms | 639/166/987 639/301/357/995 Accuracy Avionics Control methods Differential pressure Electronic packaging Engineering Microelectromechanical systems Packaging Packaging design Pressure Pressure sensors Resonant frequencies Review Review Article Sensors Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBNokZG4sVb9jt1bQa0qpOUCRb1ZceyICpStNrv_n7GT3e7yvHCNbWk0D89MPPMNwJu27aI1tqUpBktVGxx1GXEoNDYahwbFSzHm_KO5uFQfrvTVzqivXBM2wgOPjDtmXROsZE7oEFQwvFEt6iRGuU6ZwEoHtUCft5NMlb8rtczIU1OXDJP2eMDbOoPJCklz3yCjfM8TFcD-30WZvxZL_vRiWhzR-QO4P0WQ5HSk_CHcSf0juLeDK_gYvpyOL_sDue5JBiSmN7f9AWR-Nv9ESv3repnIgHnsYjmckFhqOWYEObGcfuTNSNNHgln1tzLL6Alcnp99fn9BpwEKtNWKr6jpQkJ-NaKpTUCOGR4Ssk6bOjAXGbeoRq0TXAaXOiciMx2LNRN4jNmIkcxTOOgXfXoOREmUaWI6ijoqHbqmFqZDz9aFaC2mXBXwDTN9O6GL5yEX33155ZbWjwLwKABfBOB5BW-3Z25GbI2_7n6XZbTdmXGxywfUFj9pi_-XtlRwuJGwn4x18MIxWUu8unUFr7fLaGb57aTp02Jd9iid64dsBc9GhdhSgkGP0IKJCuyequyRur_SX38tUN4837CY5FQw22jVLV1_5sWL_8GLl3BXZHPggnJ3CAer5TodYYS1Cq-KMf0AhFIfGQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9QgECd6vujDxW97ngYT31xyQIGCL-Y0d7mYrC96Zt9IKa130bRru_v_O1Dadf241wIJZX4zDMzwG4ReV1XjtdIVqb3TRFTOEBMYh1ypvTKgUCwmYy4_qYtL8XElV-nCbUhplZNNjIbad1W4Iz_hhuZFDvol361_klA1KkRXUwmN2-hOoC4LqC5W83YqAK1iYkuPdy5FHvioQr058NxJqLCV3tHQXJ8MYM8D3SzPSXhZSAnb26sipf-__NC_0yn_iKnGrer8PjpMPiY-HUHxAN2q24fo3m_Mg4_Q19Mx9j_g6xYHymKy3r0gwMuz5WccM2S3fY0HOOl2_fAW-5jtscBN6fp01bfAZesxnLu_x2pHj9Hl-dmXDxcklVgglRRsQ1Tj6lJUJS8L5aQ2irkaHAqpCkeNp0wD0CrDWe5M3RjuqWqoLyiHYVR78HWeoIO2a-tnCIscpF5T6XnhhXRNWXDVwN7XOA8yUCJDbFpMWyX-8VAG44eNcfBc21EAFgRgowAsy9Cbecx6ZN-4sff7IKO5Z2DOjh-6_ptNimgprJHOqeHSOeEUg78HGwenJiOUAwuXoeNJwjap82B34MvQq7kZFDFEV8q27raxj5Ahw0hn6OkIiHkm4BZxySnPkN6Dyt5U91va66tI9s2CDYZjUIYWE6p28_r_Whzd_BvP0V0egM44YeYYHWz6bf0CvKuNexlV6BcLSR01 priority: 102 providerName: ProQuest |
Title | Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging |
URI | https://link.springer.com/article/10.1038/s41378-023-00620-1 https://www.ncbi.nlm.nih.gov/pubmed/38125202 https://www.proquest.com/docview/2903732195 https://www.proquest.com/docview/2904576018 https://pubmed.ncbi.nlm.nih.gov/PMC10730882 https://doaj.org/article/0fab830925bb4b61a4c301758946b031 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7QUeJr4JjMpIvFEL24kdm7eutEwVnRBlqG9RHCcwMaVT0_3_nJ2kpTCQeIml-CzZvg_f2eefAV4XReW00gUtndU0KayhxiMO2Vw7ZVCheEjGnJ-rs4tktpTLAxD9XZiQtB8gLYOZ7rPD3jZobD0WrIipv_bHKEY8Rx6qHWX7aDSaLWa7nZU09qhT3Q0ZFutbGu-tQgGs_zYP889Eyd9OS8MiNL0Px533SEZtfx_AQVk_hHu_YAo-gq-j9lS_IZc18WDE9Hp3N4DMJ_MFCbmvOHbSYAy7WjfviAt5HENS5XbdbeINSV47ghH1j_CO0WO4mE6-jM9o93gCLWTCN1RVtsyTIhd5qqzURnFboqsgVWqZcYxrFKHCCB5bU1ZGOKYq5lImsBnTDr2YJ3BYr-ryGZAkRn6WTDqRukTaKk-FqnBVq6zTGsOtCHg_mVnRIYv7By6usnDCHeusZUCGDMgCAzIewZttm-sWV-Of1KeeR1tKj4kdfqzW37JORjKGc6RjZoS0NrGK4-jRemE8ZBJl0XZFcNJzOOsUtcmEYXEao9mWEbzaVqOK-XOTvC5XN4EmkT53SEfwtBWIbU_Q4RFSMBGB3hOVva7u19SX3wOMN_fWFQOcCIa9VO369fe5eP5_5C_grvCCzwXl5gQON-ub8iX6URs7gDvpMsWvnn4YdErky_fzjwssTyfnnz5j7ViNB2Gn4ickbx2f |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDeBAkaCE2vVdhzHRkKoQJct7fZCi3pz49iBCpRdNrtC_Cl-I2Mn2WV59NZrbEvOPD32zDcIPS3LyimpSuKdVUSUVhMdEIdsoZzUoFAsJmOOD-XoWLw_yU420M--FiakVfY2MRpqNynDHfk21zTNU9Cv7NX0Gwldo8Lrat9CoxWLff_jO4Rszcu9t8DfZ5wPd4_ejEjXVYCUmWBzIivrC1EWvMilzZSWzHrwoZnMLdWOMgW0LTVnqdW-0txRWVGXUw7LqHIqgC-Byb8kUvDkoTJ9-K6XXwHaIXp09njHk6cB_yr0t4NIgYSOXl3dDk3VdgP-I8Db8pSESkZK2JpvjC0E_nXu_Tt984833Ogah9fRte5Mi3daIbyBNnx9E139DenwFvq40-YaNPisxgEimUxXFQt4vDv-gGNG7mLmcQOR9WTWvMAuZpcMcFXYWXe1OMBF7TDE-V9id6Xb6PhCiH8HbdaT2t9DWKQgZZ5mjudOZLYqci4r8LWVdcADKRLEemKassM7D203vpr47p4q0zLAAANMZIBhCXq-XDNt0T7Onf068Gg5MyB1xw-T2SfTKb6hQCOVUs0za4WVDP4ebCpEaVpICxY1QVs9h01nPhqzEvYEPVkOg-KH15yi9pNFnCOykNGkEnS3FYjlTuAYxjNOeYLUmqisbXV9pD77HMHFWbD5EHYlaNBL1Wpf_6fF_fN_4zG6PDoaH5iDvcP9B-gKD0LPOGF6C23OZwv_EE52c_soqhNGpxetv78AnR5aqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkLwgPgmMMBI8ESt2o7j2EgIbazVxmg1AUN7M3GcwARKS9MK8a_x13F2kpbysbe9Jo7k3P3uzmeff4fQkzwvnZIqJ4WziojcaqI945DNlJMaDIqFYszxRB6ciNenyekW-tndhfFllZ1PDI7aTXO_Rz7gmsZpDPaVDMq2LOJ4f_Ry9o34DlL-pLVrp9FA5Kj48R3St_rF4T7o-inno-H7Vwek7TBA8kSwBZGlLTKRZzxLpU2UlswWEE8TmVqqHWUK5JxrzmKri1JzR2VJXUo5fEaVU56ICdz_duqzoh7a3htOjt92aBZgK6Ljag87Pmns2bB8tzvIG4jv79Xe4qGxGtQQTTzZLY-Jv9dICduIlKGhwL9WwX8Xc_5xohsC5egautqucPFuA8nraKuobqArv_Ee3kQfdpvKgxqfVdgTJpPZ-v4CHg_H73Coz13OC1xDnj2d18-xC7UmfVxmdt5uNPZxVjkMWf-X0GvpFjq5EPHfRr1qWhV3ERYxYK6gieOpE4kts5TLEiJvaR3oQIoIsU6YJm_Zz30Tjq8mnMLHyjQKMKAAExRgWISerb6ZNdwf547e8zpajfS83eHBdP7JtG7AUJCRiqnmibXCSgZ_Dx4WcjYtpAX_GqGdTsOmdSa1WUM_Qo9Xr8EN-LOdrCqmyzBGJL6-SUXoTgOI1UxgUcYTTnmE1AZUNqa6-aY6-xyoxpmPAJCERajfoWo9r__L4t75v_EIXQLbNW8OJ0f30WXuMc84YXoH9RbzZfEAlnkL-7C1J4w-XrQJ_wLzxWA7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+high-performance+MEMS+pressure+sensors%3A+design%2C+fabrication%2C+and+packaging&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Han%2C+Xiangguang&rft.au=Huang%2C+Mimi&rft.au=Wu%2C+Zutang&rft.au=Gao%2C+Yi&rft.date=2023-12-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2055-7434&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41378-023-00620-1&rft.externalDocID=10_1038_s41378_023_00620_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |