Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications

The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 2190 - 10
Main Authors Huang, Xinyu, Zhang, Luman, Tong, Lei, Li, Zheng, Peng, Zhuiri, Lin, Runfeng, Shi, Wenhao, Xue, Kan-Hao, Dai, Hongwei, Cheng, Hui, de Camargo Branco, Danilo, Xu, Jianbin, Han, Junbo, Cheng, Gary J., Miao, Xiangshui, Ye, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe 3 /Fe 3 GeTe 2 heterostructures. The EB field ( H EB , from 29.2 mT to 111.2 mT) and blocking temperature ( T b , from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe 3 GeTe 2 , due to the single-domain nature of Fe 3 GeTe 2 . Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. When an antiferromagnet is in close proximity to a ferromagnet, the antiferromagnet pins the spins of the ferromagnet, resulting in an exchange bias effect. This effect has been instrumental in the development of a variety of spintronic devices. Here, Haung et al. u s e pressure to tune the exchange bias effect in all van der Waals heterostructure composed of FePSe 3 /Fe 3 GeTe 2 .
AbstractList The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe 3 /Fe 3 GeTe 2 heterostructures. The EB field ( H EB , from 29.2 mT to 111.2 mT) and blocking temperature ( T b , from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe 3 GeTe 2 , due to the single-domain nature of Fe 3 GeTe 2 . Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.
Abstract The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (H EB, from 29.2 mT to 111.2 mT) and blocking temperature (T b, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.
The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.When an antiferromagnet is in close proximity to a ferromagnet, the antiferromagnet pins the spins of the ferromagnet, resulting in an exchange bias effect. This effect has been instrumental in the development of a variety of spintronic devices. Here, Haung et al. use pressure to tune the exchange bias effect in all van der Waals heterostructure composed of FePSe3/Fe3GeTe2.
The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe 3 /Fe 3 GeTe 2 heterostructures. The EB field ( H EB , from 29.2 mT to 111.2 mT) and blocking temperature ( T b , from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe 3 GeTe 2 , due to the single-domain nature of Fe 3 GeTe 2 . Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. When an antiferromagnet is in close proximity to a ferromagnet, the antiferromagnet pins the spins of the ferromagnet, resulting in an exchange bias effect. This effect has been instrumental in the development of a variety of spintronic devices. Here, Haung et al. u s e pressure to tune the exchange bias effect in all van der Waals heterostructure composed of FePSe 3 /Fe 3 GeTe 2 .
The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.
The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe /Fe GeTe heterostructures. The EB field (H , from 29.2 mT to 111.2 mT) and blocking temperature (T , from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe GeTe , due to the single-domain nature of Fe GeTe . Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.
ArticleNumber 2190
Author Miao, Xiangshui
Li, Zheng
Cheng, Gary J.
Cheng, Hui
Han, Junbo
Tong, Lei
Peng, Zhuiri
Ye, Lei
Xue, Kan-Hao
Xu, Jianbin
Dai, Hongwei
Zhang, Luman
Lin, Runfeng
de Camargo Branco, Danilo
Huang, Xinyu
Shi, Wenhao
Author_xml – sequence: 1
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Hubei Yangtze Memory Laboratories
– sequence: 2
  givenname: Luman
  surname: Zhang
  fullname: Zhang, Luman
  organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology
– sequence: 3
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 4
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 5
  givenname: Zhuiri
  surname: Peng
  fullname: Peng, Zhuiri
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 6
  givenname: Runfeng
  surname: Lin
  fullname: Lin, Runfeng
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 7
  givenname: Wenhao
  surname: Shi
  fullname: Shi, Wenhao
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 8
  givenname: Kan-Hao
  orcidid: 0000-0002-2894-7912
  surname: Xue
  fullname: Xue, Kan-Hao
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 9
  givenname: Hongwei
  surname: Dai
  fullname: Dai, Hongwei
  organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology
– sequence: 10
  givenname: Hui
  orcidid: 0000-0001-7947-840X
  surname: Cheng
  fullname: Cheng, Hui
  organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology
– sequence: 11
  givenname: Danilo
  orcidid: 0000-0003-2637-6359
  surname: de Camargo Branco
  fullname: de Camargo Branco, Danilo
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 12
  givenname: Jianbin
  orcidid: 0000-0003-0509-9508
  surname: Xu
  fullname: Xu, Jianbin
  organization: Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong
– sequence: 13
  givenname: Junbo
  orcidid: 0000-0002-5072-4897
  surname: Han
  fullname: Han, Junbo
  email: junbo.han@mail.hust.edu.cn
  organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology
– sequence: 14
  givenname: Gary J.
  orcidid: 0000-0002-1184-2946
  surname: Cheng
  fullname: Cheng, Gary J.
  email: gjcheng@purdue.edu
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 15
  givenname: Xiangshui
  orcidid: 0000-0002-3999-7421
  surname: Miao
  fullname: Miao, Xiangshui
  email: miaoxs@hust.edu.cn
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Hubei Yangtze Memory Laboratories
– sequence: 16
  givenname: Lei
  orcidid: 0000-0001-5195-1867
  surname: Ye
  fullname: Ye, Lei
  email: leiye@hust.edu.cn
  organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Hubei Yangtze Memory Laboratories, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37069179$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhE_ArfqwQKgUqFbGBteVxrhOPEjvYCaL_vp6ZFtou6o0t-7tHx_eel9VRiAGq6jVG7zGi8kNmmHHRIEIbKhSWjXhWnRDEcIMFoUf3zsfVWc5bVBYtHGMvqmMqEFdYqJNq-G6Cn9fRLD70Nfy1gwk91Btvcu1DTT7Xk-kDLN7WAyyQ4nYNdvEx1C6mevD90MyQynkywUKd4mbNSz3BFNN1beZ59Nbs8Pyqeu7MmOHsdj-tfn25-Hn-rbn68fXy_NNVY1uGl4aDda0yrWNYUaywQ8pwwR0YZZWyzjClNp2igGXHLZC2I521BHGMDaFO0NPq8qDbRbPVc_KTSdc6Gq_3FzH12qTynRE0Byks6RwnXDEspBLMoI45Lg1uOZCi9fGgNa-bCToLYUlmfCD68CX4Qffxj8YIY9RyWhTe3Sqk-HuFvOjJZwvjaALENWsiEZGSt1gW9O0jdBvXFEqv9hRWkgleqDf3Lf3zcjfRAsgDYFPMOYHT1i_7ERSHfizW9C4_-pAfXfKj9_nRu9aRR6V36k8W0UNRLnCJTvpv-4mqG5b92Kw
CitedBy_id crossref_primary_10_1021_acsnano_4c09142
crossref_primary_10_1021_acsnano_4c14452
crossref_primary_10_1103_PhysRevMaterials_8_114411
crossref_primary_10_1002_adma_202403685
crossref_primary_10_1002_adma_202410816
crossref_primary_10_1063_5_0172724
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_3390_ma17163988
crossref_primary_10_1002_adfm_202417282
crossref_primary_10_1002_smll_202402561
crossref_primary_10_1002_advs_202409210
crossref_primary_10_1002_adfm_202414742
crossref_primary_10_3390_molecules29143244
crossref_primary_10_1039_D3EE03282E
crossref_primary_10_1002_advs_202307034
crossref_primary_10_1039_D3TA07059J
crossref_primary_10_1039_D4RA05238B
crossref_primary_10_1021_acs_nanolett_5c00397
crossref_primary_10_1038_s41467_024_46689_8
crossref_primary_10_1109_TIM_2024_3370771
crossref_primary_10_1039_D3NR04977A
crossref_primary_10_1002_admt_202301973
crossref_primary_10_1039_D4NA00639A
crossref_primary_10_1088_1402_4896_ad6bd0
crossref_primary_10_1002_admi_202400678
crossref_primary_10_1021_acsanm_3c03958
crossref_primary_10_1002_adfm_202501047
crossref_primary_10_1088_1674_1056_ad053d
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1021_acsnano_4c14733
Cites_doi 10.1103/PhysRevB.66.014431
10.1126/sciadv.1603113
10.1038/s41586-019-1573-9
10.1103/PhysRevB.103.104410
10.1126/science.aar4851
10.1021/acs.nanolett.8b03895
10.1002/adma.202002032
10.1007/s12200-020-1011-5
10.1126/science.abg3161
10.1103/PhysRevLett.125.047202
10.1103/PhysRevB.66.054422
10.1016/S0304-8853(98)00266-2
10.1038/s41467-019-13814-x
10.1021/acs.nanolett.2c01370
10.1016/j.mser.2016.04.001
10.1016/j.apmt.2021.100975
10.1038/s41565-019-0607-7
10.1016/j.scib.2020.07.037
10.1021/acsami.1c05265
10.1038/s41563-019-0505-2
10.1126/science.aav1937
10.1021/acs.nanolett.8b04160
10.1109/20.508381
10.1016/S0304-8853(01)00421-8
10.1103/PhysRevB.94.184428
10.1038/nature11458
10.1038/s41563-019-0506-1
10.1021/ic50141a034
10.1038/nature12385
10.1038/s41586-018-0626-9
10.1021/acsanm.0c01273
10.1103/PhysRevB.35.3679
10.1063/1.1661837
10.1038/s41928-018-0087-z
10.1016/S0304-8853(99)00453-9
10.1126/sciadv.aaw0409
10.1021/acs.jpclett.0c01801
10.1126/science.1260139
10.1038/nmat2785
10.1021/acs.nanolett.8b01278
10.1021/acs.nanolett.0c01149
10.1126/science.aac9439
10.1038/s41567-020-1005-7
10.1126/science.aav4450
10.1126/science.1158877
10.1103/PhysRevB.100.174102
10.1038/s41586-019-0975-z
10.1038/s41563-018-0149-7
10.1126/sciadv.aaw8904
10.1021/acsnano.0c05252
10.1002/adma.201900597
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-37918-7
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_6e87c2df62694178974a0d4f68a156e2
PMC10110563
37069179
10_1038_s41467_023_37918_7
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61974050
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61974050
– fundername: ;
  grantid: 61974050
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-6ecf59a5f4193191f09a676fea9c99cfa499bd93e18d6ce25d2dcc20611a23f73
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:39 EDT 2025
Thu Aug 21 18:37:42 EDT 2025
Fri Jul 11 04:28:58 EDT 2025
Wed Aug 13 04:42:56 EDT 2025
Wed Feb 19 02:24:37 EST 2025
Tue Jul 01 00:58:48 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-6ecf59a5f4193191f09a676fea9c99cfa499bd93e18d6ce25d2dcc20611a23f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7947-840X
0000-0002-1184-2946
0000-0002-5072-4897
0000-0003-0509-9508
0000-0003-2637-6359
0000-0001-5195-1867
0000-0002-2894-7912
0000-0002-3999-7421
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-37918-7
PMID 37069179
PQID 2802198476
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6e87c2df62694178974a0d4f68a156e2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10110563
proquest_miscellaneous_2802886518
proquest_journals_2802198476
pubmed_primary_37069179
crossref_citationtrail_10_1038_s41467_023_37918_7
crossref_primary_10_1038_s41467_023_37918_7
springer_journals_10_1038_s41467_023_37918_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-17
PublicationDateYYYYMMDD 2023-04-17
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gao (CR41) 2014; 346
He (CR52) 2010; 9
Song (CR7) 2018; 360
Tong (CR8) 2021; 373
Nogués, Schuller (CR19) 1999; 192
Tran (CR6) 2019; 567
Geim (CR1) 2009; 324
Gong, Zhang (CR9) 2019; 363
Berkowitz, Takano (CR18) 1999; 200
Kumar (CR44) 2019; 19
Motlag (CR43) 2019; 31
Akinwande (CR3) 2019; 573
Chen (CR35) 2019; 366
Fei (CR38) 2018; 17
Chittari (CR46) 2016; 94
Zhong (CR10) 2017; 3
Zhang, Krishnan (CR20) 2016; 105
Mortelmans, De Gendt, Heyns, Merckling (CR29) 2021; 22
Zhang (CR11) 2020; 32
Kiwi (CR36) 2001; 234
Zhu (CR23) 2020; 20
Park (CR47) 2021; 103
Geim, Grigorieva (CR4) 2013; 499
Grimaldi (CR17) 2020; 15
Tong (CR13) 2021; 66
Wang (CR40) 2019; 5
Hu (CR24) 2020; 14
Song (CR16) 2019; 18
Taylor, Steger, Wold, Kostiner (CR37) 1974; 13
Wang (CR32) 2020; 11
Fairand, Wilcox, Gallagher, Williams (CR42) 1972; 43
Lund (CR49) 2002; 66
Novoselov (CR2) 2012; 490
Mustonen, Mackenzie, Lipsanen (CR12) 2020; 13
Albarakati (CR26) 2022; 22
Coak (CR33) 2021; 11
Zheng, Jiang, Xue, Dai, Feng (CR31) 2019; 100
Hu (CR28) 2020; 11
Kools (CR51) 1996; 32
Ghazaryan (CR22) 2018; 1
Xia (CR30) 2020; 17
Albarakati (CR15) 2019; 5
Song (CR21) 2019; 19
Deng (CR39) 2018; 563
Malozemoff (CR50) 1987; 35
Zheng (CR27) 2020; 125
Novoselov, Mishchenko, Carvalho, Castro Neto (CR5) 2016; 353
Li (CR34) 2019; 18
Wang (CR14) 2018; 18
Wang (CR45) 2020; 3
Dai (CR25) 2021; 13
Keller (CR48) 2002; 66
H Dai (37918_CR25) 2021; 13
W Zhang (37918_CR20) 2016; 105
R Zhu (37918_CR23) 2020; 20
Y Deng (37918_CR39) 2018; 563
G Hu (37918_CR24) 2020; 14
C Hu (37918_CR28) 2020; 11
Z Fei (37918_CR38) 2018; 17
J Nogués (37918_CR19) 1999; 192
T Song (37918_CR21) 2019; 19
S Albarakati (37918_CR26) 2022; 22
MJ Coak (37918_CR33) 2021; 11
Z Wang (37918_CR14) 2018; 18
X He (37918_CR52) 2010; 9
BL Chittari (37918_CR46) 2016; 94
AK Geim (37918_CR1) 2009; 324
W Mortelmans (37918_CR29) 2021; 22
AE Berkowitz (37918_CR18) 1999; 200
D Zhong (37918_CR10) 2017; 3
G Zheng (37918_CR27) 2020; 125
D Akinwande (37918_CR3) 2019; 573
T Song (37918_CR16) 2019; 18
AK Geim (37918_CR4) 2013; 499
L Tong (37918_CR13) 2021; 66
KS Novoselov (37918_CR5) 2016; 353
D Ghazaryan (37918_CR22) 2018; 1
M Kiwi (37918_CR36) 2001; 234
K Tran (37918_CR6) 2019; 567
AP Malozemoff (37918_CR50) 1987; 35
JCS Kools (37918_CR51) 1996; 32
L Zhang (37918_CR11) 2020; 32
X Wang (37918_CR40) 2019; 5
MS Lund (37918_CR49) 2002; 66
Y-m Wang (37918_CR45) 2020; 3
S Albarakati (37918_CR15) 2019; 5
M Motlag (37918_CR43) 2019; 31
BP Fairand (37918_CR42) 1972; 43
H Gao (37918_CR41) 2014; 346
P Mustonen (37918_CR12) 2020; 13
T Song (37918_CR7) 2018; 360
P Kumar (37918_CR44) 2019; 19
B Taylor (37918_CR37) 1974; 13
W Chen (37918_CR35) 2019; 366
T-E Park (37918_CR47) 2021; 103
L Tong (37918_CR8) 2021; 373
YS Zheng (37918_CR31) 2019; 100
T Li (37918_CR34) 2019; 18
E Grimaldi (37918_CR17) 2020; 15
J Xia (37918_CR30) 2020; 17
KS Novoselov (37918_CR2) 2012; 490
H Wang (37918_CR32) 2020; 11
C Gong (37918_CR9) 2019; 363
J Keller (37918_CR48) 2002; 66
References_xml – volume: 66
  start-page: 014431
  year: 2002
  ident: CR48
  article-title: Domain state model for exchange bias. II. Experiments
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.014431
– volume: 3
  start-page: e1603113
  year: 2017
  ident: CR10
  article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 573
  start-page: 507
  year: 2019
  end-page: 518
  ident: CR3
  article-title: Graphene and two-dimensional materials for silicon technology
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– volume: 103
  start-page: 104410
  year: 2021
  ident: CR47
  article-title: Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.104410
– volume: 360
  start-page: 1214
  year: 2018
  end-page: 1218
  ident: CR7
  article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 19
  start-page: 283
  year: 2019
  end-page: 291
  ident: CR44
  article-title: Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moire superlattices
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03895
– volume: 32
  start-page: e2002032
  year: 2020
  ident: CR11
  article-title: Proximity-coupling-induced significant enhancement of coercive field and Curie temperature in 2D van der Waals heterostructures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002032
– volume: 13
  start-page: 91
  year: 2020
  end-page: 113
  ident: CR12
  article-title: Review of fabrication methods of large-area transparent graphene electrodes for industry
  publication-title: Front. Optoelectron.
  doi: 10.1007/s12200-020-1011-5
– volume: 373
  start-page: 1353
  year: 2021
  end-page: 1358
  ident: CR8
  article-title: 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware
  publication-title: Science
  doi: 10.1126/science.abg3161
– volume: 125
  start-page: 047202
  year: 2020
  ident: CR27
  article-title: Gate-tuned interlayer coupling in van der Waals ferromagnet Fe GeTe nanoflakes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.047202
– volume: 66
  start-page: 054422
  year: 2002
  ident: CR49
  article-title: Effect of anisotropy on the critical antiferromagnet thickness in exchange-biased bilayers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.054422
– volume: 192
  start-page: 203
  year: 1999
  end-page: 232
  ident: CR19
  article-title: Exchange bias
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00266-2
– volume: 11
  year: 2020
  ident: CR28
  article-title: A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13814-x
– volume: 22
  start-page: 6166
  year: 2022
  end-page: 6172
  ident: CR26
  article-title: Electric control of exchange bias effect in FePS -Fe GeTe van der Waals heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01370
– volume: 105
  start-page: 1
  year: 2016
  end-page: 20
  ident: CR20
  article-title: Epitaxial exchange-bias systems: from fundamentals to future spin-orbitronics
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2016.04.001
– volume: 22
  start-page: 100975
  year: 2021
  ident: CR29
  article-title: Epitaxy of 2D chalcogenides: aspects and consequences of weak van der Waals coupling
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2021.100975
– volume: 15
  start-page: 111
  year: 2020
  end-page: 117
  ident: CR17
  article-title: Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0607-7
– volume: 66
  start-page: 139
  year: 2021
  end-page: 146
  ident: CR13
  article-title: Hole-dominated Fowler–Nordheim tunneling in 2D heterojunctions for infrared imaging
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.07.037
– volume: 13
  start-page: 24314
  year: 2021
  end-page: 24320
  ident: CR25
  article-title: Enhancement of the coercive field and exchange bias effect in Fe GeTe /MnPX (X = S and Se) van der Waals heterostructures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c05265
– volume: 18
  start-page: 1298
  year: 2019
  end-page: 1302
  ident: CR16
  article-title: Switching 2D magnetic states via pressure tuning of layer stacking
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0505-2
– volume: 366
  start-page: 983
  year: 2019
  end-page: 987
  ident: CR35
  article-title: Direct observation of van der Waals stacking-dependent interlayer magnetism
  publication-title: Science
  doi: 10.1126/science.aav1937
– volume: 19
  start-page: 915
  year: 2019
  end-page: 920
  ident: CR21
  article-title: Voltage control of a van der Waals spin-filter magnetic tunnel junction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04160
– volume: 32
  start-page: 3165
  year: 1996
  end-page: 3184
  ident: CR51
  article-title: Exchange-biased spin-valves for magnetic storage
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.508381
– volume: 11
  start-page: 174102
  year: 2021
  ident: CR33
  article-title: Emergent magnetic phases in pressure-tuned van der Waals antiferromagnet FePS
  publication-title: Phys. Rev. X
– volume: 234
  start-page: 584
  year: 2001
  end-page: 595
  ident: CR36
  article-title: Exchange bias theory
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(01)00421-8
– volume: 94
  start-page: 184428
  year: 2016
  ident: CR46
  article-title: Electronic and magnetic properties of single-layer MPX metal phosphorous trichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.184428
– volume: 490
  start-page: 192
  year: 2012
  end-page: 200
  ident: CR2
  article-title: A roadmap for graphene
  publication-title: Nature
  doi: 10.1038/nature11458
– volume: 18
  start-page: 1303
  year: 2019
  end-page: 1308
  ident: CR34
  article-title: Pressure-controlled interlayer magnetism in atomically thin CrI
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0506-1
– volume: 13
  start-page: 2719
  year: 1974
  end-page: 2721
  ident: CR37
  article-title: Preparation and properties of iron phosphorus triselenide, FePSe
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50141a034
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR4
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 563
  start-page: 94
  year: 2018
  end-page: 99
  ident: CR39
  article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 3
  start-page: 7713
  year: 2020
  end-page: 7719
  ident: CR45
  article-title: Controllable soliton pairs in few-layer FePSe nanosheets-based optical-intensity modulators
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01273
– volume: 35
  start-page: 3679
  year: 1987
  end-page: 3682
  ident: CR50
  article-title: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.35.3679
– volume: 43
  start-page: 3893
  year: 1972
  end-page: 3895
  ident: CR42
  article-title: Laser shock‐induced microstructural and mechanical property changes in 7075 aluminum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1661837
– volume: 1
  start-page: 344
  year: 2018
  end-page: 349
  ident: CR22
  article-title: Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0087-z
– volume: 200
  start-page: 552
  year: 1999
  end-page: 570
  ident: CR18
  article-title: Exchange anisotropy—a review
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(99)00453-9
– volume: 5
  start-page: eaaw0409
  year: 2019
  ident: CR15
  article-title: Antisymmetric magnetoresistance in van der Waals Fe GeTe /graphite/Fe GeTe trilayer heterostructures
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw0409
– volume: 11
  start-page: 7313
  year: 2020
  end-page: 7319
  ident: CR32
  article-title: Pressure-dependent intermediate magnetic phase in thin Fe GeTe flakes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01801
– volume: 346
  start-page: 1352
  year: 2014
  end-page: 1356
  ident: CR41
  article-title: Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures
  publication-title: Science
  doi: 10.1126/science.1260139
– volume: 9
  start-page: 579
  year: 2010
  end-page: 585
  ident: CR52
  article-title: Robust isothermal electric control of exchange bias at room temperature
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2785
– volume: 18
  start-page: 4303
  year: 2018
  end-page: 4308
  ident: CR14
  article-title: Tunneling spin valves based on Fe GeTe /hBN/Fe GeTe van der Waals heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01278
– volume: 20
  start-page: 5030
  year: 2020
  end-page: 5035
  ident: CR23
  article-title: Exchange bias in van der Waals CrCl /Fe GeTe heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01149
– volume: 353
  start-page: aac9439
  year: 2016
  ident: CR5
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 17
  start-page: 92
  year: 2020
  end-page: 98
  ident: CR30
  article-title: Strong coupling and pressure engineering in WSe –MoSe heterobilayers
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-1005-7
– volume: 363
  start-page: eaav4450
  year: 2019
  ident: CR9
  article-title: Two-dimensional magnetic crystals and emergent heterostructure devices
  publication-title: Science
  doi: 10.1126/science.aav4450
– volume: 324
  start-page: 1530
  year: 2009
  end-page: 1534
  ident: CR1
  article-title: Graphene: status and prospects
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 100
  start-page: 174102
  year: 2019
  ident: CR31
  article-title: Ab initio study of pressure-driven phase transition in FePS and FePSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.174102
– volume: 567
  start-page: 71
  year: 2019
  end-page: 75
  ident: CR6
  article-title: Evidence for moire excitons in van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
– volume: 17
  start-page: 778
  year: 2018
  end-page: 782
  ident: CR38
  article-title: Two-dimensional itinerant ferromagnetism in atomically thin Fe GeTe
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 5
  start-page: eaaw8904
  year: 2019
  ident: CR40
  article-title: Current-driven magnetization switching in a van der Waals ferromagnet Fe GeTe
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw8904
– volume: 14
  start-page: 12037
  year: 2020
  end-page: 12044
  ident: CR24
  article-title: Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS /Fe GeTe stacking heterostructure
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05252
– volume: 31
  start-page: e1900597
  year: 2019
  ident: CR43
  article-title: Asymmetric 3D elastic-plastic strain-modulated electron energy structure in monolayer graphene by laser shocking
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900597
– volume: 567
  start-page: 71
  year: 2019
  ident: 37918_CR6
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
– volume: 22
  start-page: 6166
  year: 2022
  ident: 37918_CR26
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01370
– volume: 18
  start-page: 1298
  year: 2019
  ident: 37918_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0505-2
– volume: 11
  year: 2020
  ident: 37918_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13814-x
– volume: 32
  start-page: 3165
  year: 1996
  ident: 37918_CR51
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.508381
– volume: 13
  start-page: 2719
  year: 1974
  ident: 37918_CR37
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50141a034
– volume: 20
  start-page: 5030
  year: 2020
  ident: 37918_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01149
– volume: 100
  start-page: 174102
  year: 2019
  ident: 37918_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.174102
– volume: 22
  start-page: 100975
  year: 2021
  ident: 37918_CR29
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2021.100975
– volume: 17
  start-page: 92
  year: 2020
  ident: 37918_CR30
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-1005-7
– volume: 490
  start-page: 192
  year: 2012
  ident: 37918_CR2
  publication-title: Nature
  doi: 10.1038/nature11458
– volume: 15
  start-page: 111
  year: 2020
  ident: 37918_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0607-7
– volume: 32
  start-page: e2002032
  year: 2020
  ident: 37918_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002032
– volume: 3
  start-page: e1603113
  year: 2017
  ident: 37918_CR10
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 94
  start-page: 184428
  year: 2016
  ident: 37918_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.184428
– volume: 19
  start-page: 915
  year: 2019
  ident: 37918_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04160
– volume: 499
  start-page: 419
  year: 2013
  ident: 37918_CR4
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 353
  start-page: aac9439
  year: 2016
  ident: 37918_CR5
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 13
  start-page: 91
  year: 2020
  ident: 37918_CR12
  publication-title: Front. Optoelectron.
  doi: 10.1007/s12200-020-1011-5
– volume: 363
  start-page: eaav4450
  year: 2019
  ident: 37918_CR9
  publication-title: Science
  doi: 10.1126/science.aav4450
– volume: 125
  start-page: 047202
  year: 2020
  ident: 37918_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.047202
– volume: 373
  start-page: 1353
  year: 2021
  ident: 37918_CR8
  publication-title: Science
  doi: 10.1126/science.abg3161
– volume: 200
  start-page: 552
  year: 1999
  ident: 37918_CR18
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(99)00453-9
– volume: 573
  start-page: 507
  year: 2019
  ident: 37918_CR3
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– volume: 11
  start-page: 7313
  year: 2020
  ident: 37918_CR32
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01801
– volume: 3
  start-page: 7713
  year: 2020
  ident: 37918_CR45
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01273
– volume: 14
  start-page: 12037
  year: 2020
  ident: 37918_CR24
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05252
– volume: 18
  start-page: 4303
  year: 2018
  ident: 37918_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01278
– volume: 43
  start-page: 3893
  year: 1972
  ident: 37918_CR42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1661837
– volume: 35
  start-page: 3679
  year: 1987
  ident: 37918_CR50
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.35.3679
– volume: 360
  start-page: 1214
  year: 2018
  ident: 37918_CR7
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 5
  start-page: eaaw8904
  year: 2019
  ident: 37918_CR40
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw8904
– volume: 563
  start-page: 94
  year: 2018
  ident: 37918_CR39
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 324
  start-page: 1530
  year: 2009
  ident: 37918_CR1
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 234
  start-page: 584
  year: 2001
  ident: 37918_CR36
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(01)00421-8
– volume: 17
  start-page: 778
  year: 2018
  ident: 37918_CR38
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 103
  start-page: 104410
  year: 2021
  ident: 37918_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.104410
– volume: 66
  start-page: 139
  year: 2021
  ident: 37918_CR13
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.07.037
– volume: 11
  start-page: 174102
  year: 2021
  ident: 37918_CR33
  publication-title: Phys. Rev. X
– volume: 66
  start-page: 054422
  year: 2002
  ident: 37918_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.054422
– volume: 19
  start-page: 283
  year: 2019
  ident: 37918_CR44
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03895
– volume: 13
  start-page: 24314
  year: 2021
  ident: 37918_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c05265
– volume: 105
  start-page: 1
  year: 2016
  ident: 37918_CR20
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2016.04.001
– volume: 18
  start-page: 1303
  year: 2019
  ident: 37918_CR34
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0506-1
– volume: 192
  start-page: 203
  year: 1999
  ident: 37918_CR19
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00266-2
– volume: 9
  start-page: 579
  year: 2010
  ident: 37918_CR52
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2785
– volume: 366
  start-page: 983
  year: 2019
  ident: 37918_CR35
  publication-title: Science
  doi: 10.1126/science.aav1937
– volume: 346
  start-page: 1352
  year: 2014
  ident: 37918_CR41
  publication-title: Science
  doi: 10.1126/science.1260139
– volume: 66
  start-page: 014431
  year: 2002
  ident: 37918_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.014431
– volume: 5
  start-page: eaaw0409
  year: 2019
  ident: 37918_CR15
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw0409
– volume: 1
  start-page: 344
  year: 2018
  ident: 37918_CR22
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0087-z
– volume: 31
  start-page: e1900597
  year: 2019
  ident: 37918_CR43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900597
SSID ssj0000391844
Score 2.5660186
Snippet The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data...
Abstract The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2190
SubjectTerms 140/133
147/135
147/3
639/301/357/1018
639/925/927/1062
Antiferromagnetism
Bias
Data storage
Electronic devices
Electrons
Exchanging
Ferromagnetism
Heterojunctions
Heterostructures
Humanities and Social Sciences
Interlayers
multidisciplinary
Robustness
Science
Science (multidisciplinary)
Spin valves
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEG8ICQkvRgV1EU1NeNOG3W23H4-KEGKCT5Dw1nT7wZ2RHuHuEvnvnbZ7xx2Cvvi67SaT-fxNpjOD0AHtPaBQ1hDeO0eYooao3hoSmKqd6xx4xtScfPadn16wb5fd5cqqr_QmrIwHLow75F4K27rAc8ulkIB_Te1Y4NJA6uGz94WYt5JMZR9MFaQubOiSqak8nLLsEyBEgU3BIRFrkSgP7H8MZf75WPJBxTQHopPn6NmAIPHnQvkLtOHjS7RVdkre7aDRmYnjspQrXmH_q3T24n5spngccfsVX5urmFoX8Sg9hZn8gMiWpIMBvuI0vZjc3DcT4NtJP5_O8HV6kHuHV8vdu-ji5Pj86JQM6xSI7VgzI9zb0CnTBQagDdK0UCvDBQ_eKKuUDQaSn94p6hvp0p6wzrXO2hYCfmNaGgR9hTbjJPo3CLsEDFktlaWWeeaVNMKlkmLbBHAgokLNgrXaDrPG08qLnzrXvKnURRwaxKGzODT883H5z02ZtPHX21-SxJY305Ts_AF0Rw-6o_-lOxXaX8hbD6Y71a0E2KMgaPMKfVgeg9GlSoqJfjIvd6TkXSMr9Lqox5ISKmoOObCqkFxTnDVS10_ieJQHezcJjHWcVujTQsfu6XqaF3v_gxdv0XabjCONsRT7aHN2O_fvAG_N-vfZtH4DuUslQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxNYsexT4hXWSEtJ1bam-X40RaxSWlaafff74yTtpTHXmNHcjJvz8w3hLzmTQAvVBRMNt4zobllunGWRaFz7ysPmhGbk0--yeNT8fWsOhsv3PqxrHKjE5Oi9p3DO_KjUoE10qBL5bvFL4ZTozC7Oo7QuEluFWBpsKRLTb5s71gQ_VwJMfbK5Fwd9SJpBjBUIFmwyOo9e5Rg-__la_5dMvlH3jSZo8k9cnf0I-n7gfD3yY3QPiC3h8mSlw_J7MS282E0Vzul4WLo76XN3PZ03tLyEz230xYbGOkMC2K6H2DfkEYUnFiKGMZssWspoMuuWfcreo5luZf096T3I3I6-fz94zEbhyowV4lixWRwsdK2igJcNwjWYq6trGUMVjutXbQQAjVe81Aoj9PCKl9650ow-4Uteaz5Y3LQdm14SqhH91DkSjvuRBBBK1t7TCyWRQQ1Umek2Pxa40bEcRx88dOkzDdXZiCHAXKYRA4D77zZvrMY8Dau3f0BKbbdiVjZ6UG3nJpR9IwMqnaljzI17dYKIiibexGlshC8hjIjhxt6m1GAe7Njt4y82i6D6GE-xbahWw97lJJVoTLyZGCP7Ul4nUuIhHVG1B7j7B11f6WdzxK8d4EuWSV5Rt5ueGx3rv__i2fXf8ZzcqdEtkeYyvqQHKyW6_AC_KlV8zIJzRWTCx2l
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG9CCzISN4hIbMexj8ujqlYqF6jUm-X4sbuIJtU-JPrvO3ayKQsFiWtiS1ZmxvNNZuYbgDes8YhCeZmLxrmcK2Zy1ViTB64K5yqHN2NsTj79Ik7O-PS8Ot8Duu2FSUX7idIyXdPb6rD3K55MGj0MmoQqZV7fgYNI1Y66fTCZTL9Oxz8rkfNccj50yBRM3rJ5xwslsv7bEOafhZK_ZUuTEzp-APcH9Egm_Xkfwp5vH8Hdfp7k1WOYn5p20Q_kamfE_-y7ekmzMCuyaAn9RC7MrI1ti2Qey2C67-jVomQIQlcSmYvzy5tGArLsms1qTS5iMe4V-TXV_QTOjj9_-3iSD6MUclvxcp0Lb0OlTBU4AjYM0UKhjKhF8EZZpWwwGPg0TjFfShdnhFWOOmspOvvSUBZq9hT22671z4G4CAp5IZVllnvulTS1i-lEWga8POoMyu2n1XbgGY_jLn7olO9mUvfi0CgOncShcc_bcc9lz7Lxz9UfosTGlZEhOz3oljM9aIwWXtaWuiBSq24tMW4yheNBSIMhq6cZHG3lrQezXWkqEfIodNgig9fjazS4mEUxre82_RopRVXKDJ716jGehNWFwPhXZSB3FGfnqLtv2sU8kXqXEYhVgmXwbqtjN-f6-7d48X_LD-EejWYQySrrI9hfLzf-JaKqdfNqMKNrk4cc1g
  priority: 102
  providerName: Springer Nature
Title Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications
URI https://link.springer.com/article/10.1038/s41467-023-37918-7
https://www.ncbi.nlm.nih.gov/pubmed/37069179
https://www.proquest.com/docview/2802198476
https://www.proquest.com/docview/2802886518
https://pubmed.ncbi.nlm.nih.gov/PMC10110563
https://doaj.org/article/6e87c2df62694178974a0d4f68a156e2
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISRe0Phc2KiMxBsEktjxxwNCXVmZKnVCQKW-RY7ttEVbMvohrf89ZyfpKBQkXlopdirLd-f7Xc93P4RekdwCCqVxyHJjQiqJCmWuVVhQGRmTGjgZXXHy8JJdjOhgnI73UEt31GzgYmdo5_ikRvOrt7c_1h_A4N_XJePi3YJ6cwfvA-YiYxHyfXQInok7RoNhA_f9yUxg1PO7JhEsDyaQpo5m989s-Srf0n8XDv3zOuVvOVXvqvpH6EGDMXG3VoqHaM-Wj9C9mnVy_RhNh6qc1bRd5QTb27r2F-cztcCzEicf8bWalK64EU_dZZnqO_g-Jz8MABe7_sbhzV25AZ5X-WqxxNfuyu4a_5oQf4JG_fNvvYuwIVwIdUrjZcisLlKp0oICrINAroikYpwVVkktpS4UhEe5kcTGwjgmsdQkRusEIEGsElJw8hQdlFVpjxE2DjrSSEhNNLXUSqG4cUnHJC7giOEBitutzXTTjdyRYlxlPitORFaLIwNxZF4cGbzzevPOTd2L45-zz5zENjNdH23_oJpPssYsM2YF14kpmC_o5QKiKxUZWjChILC1SYBOW3lnrW5miQBgJMGtswC93AyDWbpciypttarnCMHSWAToWa0em5UQHjGIkmWAxJbibC11e6ScTX3r79jBtZSRAL1pdexuXX_fi-f_tXMn6H7irMB1tOSn6GA5X9kXAL2WeQft8zGHT9H_1EGH3e7g6wC-z84vP3-Bpz3W6_g_NTre7n4CRcktQA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4ia2I5jHxACyrKl3Z5aqbfg2M7uIpos-xDsn-I3MpPHLsujt15jJ3I8r288nhlCnvPcAwoVcShz50KhuQl1bk1YCB05lzjQjJicPDiW_VPx6Sw52yI_u1wYvFbZ6cRaUbvK4hn5HlNgjTToUvlm8i3ErlEYXe1aaDRsceiX38Flm70-2Af6vmCs9-HkfT9suwqENhHxPJTeFok2SSEAu4C3UkTayFQW3mirtS0M-AC509zHymG7rMQxZy0DuxcbxouUw3evkKuCgyXHzPTex9WZDlZbV0K0uTkRV3szUWsiMIwgyTAYphv2r24T8C9s-_cVzT_itLX5690iN1vcSt82jHabbPnyDrnWdLJc3iWjgSnHTSuwckj9jyafmOZjM6PjkrJ9em6GJSZM0hFewKm-gD1FnqAAminWTA4n6xQGOq3yxWxOz_Ea8JL-HmS_R04vZbvvk-2yKv0DQh3CUREpbbkVXnitTOowkMniAtRWGpC429rMthXOsdHG16yOtHOVNeTIgBxZTY4M3nm5emfS1Pe4cPY7pNhqJtbmrh9U02HWinomvUotc4Wsk4RTBR6biZwopDLgLHsWkN2O3lmrMGbZmr0D8mw1DKKO8RtT-mrRzFFKJrEKyE7DHquV8DSS4HnrgKgNxtlY6uZIOR7V5cRjhICJ5AF51fHYel3_34uHF__GU3K9fzI4yo4Ojg8fkRsMRQBLZKa7ZHs-XfjHgOXm-ZNagCj5fNkS-wuetls9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Zb9MwGLdGJxAviJvAACPBE0RNHMexHxBidNXGWDUhJu3NOD7aTltSegj6r_HX8TlHSzn2ttfaiVx_d77jh9DLJLfghdI4ZLkxIRWJCkWuVeioiIxJDWhG35x8NGD7J_TjaXq6hX62vTC-rLLViZWiNqX238i7hIM1EqBLWdc1ZRHHvf67ybfQI0j5TGsLp1GzyKFdfofwbfb2oAe0fkVIf-_Lh_2wQRgIdUrjecisdqlQqaPgx0Dk4iKhWMacVUILoZ2CeCA3IrExNx46KzXEaE3ABsaKJC5L4L3X0Hbmo6IO2t7dGxx_Xn3h8bPXOaVNp06U8O6MVnoJzCTINSyG2YY1rEAD_uXp_l2w-UfWtjKG_dvoVuPF4vc1291BW7a4i67XuJbLe2h0pIpxDQxWDLH9UXcX43ysZnhcYNLDF2pY-PZJPPLlOOUZWFfPIRhcaOwnKIeTdUMDnpb5YjbHF74oeIl_T7nfRydXcuEPUKcoC_sIYeOdUxpxoRNNLbWCq8z4tCaJHSixLEBxe7VSN_POPezGuazy7gmXNTkkkENW5JDwzOvVM5N62selu3c9xVY7_aTu6odyOpSN4EtmeaaJcaxqGc44xG8qMtQxriB0tiRAOy29ZaM-ZnLN7AF6sVoGwffZHFXYclHv4ZylMQ_Qw5o9VidJsohBHC4CxDcYZ-OomyvFeFQNF4-9Q5iyJEBvWh5bn-v_d_H48r_xHN0AaZWfDgaHT9BN4iXAz8vMdlBnPl3Yp-DYzfNnjQRh9PWqhfYXpgxgzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+exchange+bias+in+2D+magnetic+heterojunction+for+high-performance+robust+memory+applications&rft.jtitle=Nature+communications&rft.au=Huang%2C+Xinyu&rft.au=Zhang%2C+Luman&rft.au=Tong%2C+Lei&rft.au=Li%2C+Zheng&rft.date=2023-04-17&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-37918-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_37918_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon