Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications
The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 2190 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.04.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe
3
/Fe
3
GeTe
2
heterostructures. The EB field (
H
EB
, from 29.2 mT to 111.2 mT) and blocking temperature (
T
b
, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe
3
GeTe
2
, due to the single-domain nature of Fe
3
GeTe
2
. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.
When an antiferromagnet is in close proximity to a ferromagnet, the antiferromagnet pins the spins of the ferromagnet, resulting in an exchange bias effect. This effect has been instrumental in the development of a variety of spintronic devices. Here, Haung et al. u
s
e pressure to tune the exchange bias effect in all van der Waals heterostructure composed of FePSe
3
/Fe
3
GeTe
2
. |
---|---|
AbstractList | The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe
3
/Fe
3
GeTe
2
heterostructures. The EB field (
H
EB
, from 29.2 mT to 111.2 mT) and blocking temperature (
T
b
, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe
3
GeTe
2
, due to the single-domain nature of Fe
3
GeTe
2
. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. Abstract The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (H EB, from 29.2 mT to 111.2 mT) and blocking temperature (T b, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.When an antiferromagnet is in close proximity to a ferromagnet, the antiferromagnet pins the spins of the ferromagnet, resulting in an exchange bias effect. This effect has been instrumental in the development of a variety of spintronic devices. Here, Haung et al. use pressure to tune the exchange bias effect in all van der Waals heterostructure composed of FePSe3/Fe3GeTe2. The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe 3 /Fe 3 GeTe 2 heterostructures. The EB field ( H EB , from 29.2 mT to 111.2 mT) and blocking temperature ( T b , from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe 3 GeTe 2 , due to the single-domain nature of Fe 3 GeTe 2 . Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. When an antiferromagnet is in close proximity to a ferromagnet, the antiferromagnet pins the spins of the ferromagnet, resulting in an exchange bias effect. This effect has been instrumental in the development of a variety of spintronic devices. Here, Haung et al. u s e pressure to tune the exchange bias effect in all van der Waals heterostructure composed of FePSe 3 /Fe 3 GeTe 2 . The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future.The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe3/Fe3GeTe2 heterostructures. The EB field (HEB, from 29.2 mT to 111.2 mT) and blocking temperature (Tb, from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe3GeTe2, due to the single-domain nature of Fe3GeTe2. Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data storage. However, the weak EB field, low blocking temperature, as well as the lack of modulation methods, seriously limit the application of EB in van der Waals (vdW) spintronic devices. Here, we utilized pressure engineering to tune the vdW spacing of the two-dimensional (2D) FePSe /Fe GeTe heterostructures. The EB field (H , from 29.2 mT to 111.2 mT) and blocking temperature (T , from 20 K to 110 K) are significantly enhanced, and a highly sensitive and robust spin valve is demonstrated. Interestingly, this enhancement of the EB effect was extended to exposed Fe GeTe , due to the single-domain nature of Fe GeTe . Our findings provide opportunities for the producing, exploring, and tuning of magnetic vdW heterostructures with strong interlayer coupling, thereby enabling customized 2D spintronic devices in the future. |
ArticleNumber | 2190 |
Author | Miao, Xiangshui Li, Zheng Cheng, Gary J. Cheng, Hui Han, Junbo Tong, Lei Peng, Zhuiri Ye, Lei Xue, Kan-Hao Xu, Jianbin Dai, Hongwei Zhang, Luman Lin, Runfeng de Camargo Branco, Danilo Huang, Xinyu Shi, Wenhao |
Author_xml | – sequence: 1 givenname: Xinyu surname: Huang fullname: Huang, Xinyu organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Hubei Yangtze Memory Laboratories – sequence: 2 givenname: Luman surname: Zhang fullname: Zhang, Luman organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology – sequence: 3 givenname: Lei surname: Tong fullname: Tong, Lei organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 4 givenname: Zheng surname: Li fullname: Li, Zheng organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 5 givenname: Zhuiri surname: Peng fullname: Peng, Zhuiri organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 6 givenname: Runfeng surname: Lin fullname: Lin, Runfeng organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 7 givenname: Wenhao surname: Shi fullname: Shi, Wenhao organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 8 givenname: Kan-Hao orcidid: 0000-0002-2894-7912 surname: Xue fullname: Xue, Kan-Hao organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 9 givenname: Hongwei surname: Dai fullname: Dai, Hongwei organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology – sequence: 10 givenname: Hui orcidid: 0000-0001-7947-840X surname: Cheng fullname: Cheng, Hui organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology – sequence: 11 givenname: Danilo orcidid: 0000-0003-2637-6359 surname: de Camargo Branco fullname: de Camargo Branco, Danilo organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 12 givenname: Jianbin orcidid: 0000-0003-0509-9508 surname: Xu fullname: Xu, Jianbin organization: Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong – sequence: 13 givenname: Junbo orcidid: 0000-0002-5072-4897 surname: Han fullname: Han, Junbo email: junbo.han@mail.hust.edu.cn organization: Wuhan National High Magnetic Field Center and Department of Physics, Huazhong University of Science and Technology – sequence: 14 givenname: Gary J. orcidid: 0000-0002-1184-2946 surname: Cheng fullname: Cheng, Gary J. email: gjcheng@purdue.edu organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 15 givenname: Xiangshui orcidid: 0000-0002-3999-7421 surname: Miao fullname: Miao, Xiangshui email: miaoxs@hust.edu.cn organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Hubei Yangtze Memory Laboratories – sequence: 16 givenname: Lei orcidid: 0000-0001-5195-1867 surname: Ye fullname: Ye, Lei email: leiye@hust.edu.cn organization: School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Hubei Yangtze Memory Laboratories, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37069179$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE_ArfqwQKgUqFbGBteVxrhOPEjvYCaL_vp6ZFtou6o0t-7tHx_eel9VRiAGq6jVG7zGi8kNmmHHRIEIbKhSWjXhWnRDEcIMFoUf3zsfVWc5bVBYtHGMvqmMqEFdYqJNq-G6Cn9fRLD70Nfy1gwk91Btvcu1DTT7Xk-kDLN7WAyyQ4nYNdvEx1C6mevD90MyQynkywUKd4mbNSz3BFNN1beZ59Nbs8Pyqeu7MmOHsdj-tfn25-Hn-rbn68fXy_NNVY1uGl4aDda0yrWNYUaywQ8pwwR0YZZWyzjClNp2igGXHLZC2I521BHGMDaFO0NPq8qDbRbPVc_KTSdc6Gq_3FzH12qTynRE0Byks6RwnXDEspBLMoI45Lg1uOZCi9fGgNa-bCToLYUlmfCD68CX4Qffxj8YIY9RyWhTe3Sqk-HuFvOjJZwvjaALENWsiEZGSt1gW9O0jdBvXFEqv9hRWkgleqDf3Lf3zcjfRAsgDYFPMOYHT1i_7ERSHfizW9C4_-pAfXfKj9_nRu9aRR6V36k8W0UNRLnCJTvpv-4mqG5b92Kw |
CitedBy_id | crossref_primary_10_1021_acsnano_4c09142 crossref_primary_10_1021_acsnano_4c14452 crossref_primary_10_1103_PhysRevMaterials_8_114411 crossref_primary_10_1002_adma_202403685 crossref_primary_10_1002_adma_202410816 crossref_primary_10_1063_5_0172724 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_3390_ma17163988 crossref_primary_10_1002_adfm_202417282 crossref_primary_10_1002_smll_202402561 crossref_primary_10_1002_advs_202409210 crossref_primary_10_1002_adfm_202414742 crossref_primary_10_3390_molecules29143244 crossref_primary_10_1039_D3EE03282E crossref_primary_10_1002_advs_202307034 crossref_primary_10_1039_D3TA07059J crossref_primary_10_1039_D4RA05238B crossref_primary_10_1021_acs_nanolett_5c00397 crossref_primary_10_1038_s41467_024_46689_8 crossref_primary_10_1109_TIM_2024_3370771 crossref_primary_10_1039_D3NR04977A crossref_primary_10_1002_admt_202301973 crossref_primary_10_1039_D4NA00639A crossref_primary_10_1088_1402_4896_ad6bd0 crossref_primary_10_1002_admi_202400678 crossref_primary_10_1021_acsanm_3c03958 crossref_primary_10_1002_adfm_202501047 crossref_primary_10_1088_1674_1056_ad053d crossref_primary_10_1002_adma_202305044 crossref_primary_10_1021_acsnano_4c14733 |
Cites_doi | 10.1103/PhysRevB.66.014431 10.1126/sciadv.1603113 10.1038/s41586-019-1573-9 10.1103/PhysRevB.103.104410 10.1126/science.aar4851 10.1021/acs.nanolett.8b03895 10.1002/adma.202002032 10.1007/s12200-020-1011-5 10.1126/science.abg3161 10.1103/PhysRevLett.125.047202 10.1103/PhysRevB.66.054422 10.1016/S0304-8853(98)00266-2 10.1038/s41467-019-13814-x 10.1021/acs.nanolett.2c01370 10.1016/j.mser.2016.04.001 10.1016/j.apmt.2021.100975 10.1038/s41565-019-0607-7 10.1016/j.scib.2020.07.037 10.1021/acsami.1c05265 10.1038/s41563-019-0505-2 10.1126/science.aav1937 10.1021/acs.nanolett.8b04160 10.1109/20.508381 10.1016/S0304-8853(01)00421-8 10.1103/PhysRevB.94.184428 10.1038/nature11458 10.1038/s41563-019-0506-1 10.1021/ic50141a034 10.1038/nature12385 10.1038/s41586-018-0626-9 10.1021/acsanm.0c01273 10.1103/PhysRevB.35.3679 10.1063/1.1661837 10.1038/s41928-018-0087-z 10.1016/S0304-8853(99)00453-9 10.1126/sciadv.aaw0409 10.1021/acs.jpclett.0c01801 10.1126/science.1260139 10.1038/nmat2785 10.1021/acs.nanolett.8b01278 10.1021/acs.nanolett.0c01149 10.1126/science.aac9439 10.1038/s41567-020-1005-7 10.1126/science.aav4450 10.1126/science.1158877 10.1103/PhysRevB.100.174102 10.1038/s41586-019-0975-z 10.1038/s41563-018-0149-7 10.1126/sciadv.aaw8904 10.1021/acsnano.0c05252 10.1002/adma.201900597 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-37918-7 |
DatabaseName | SpringerOpen CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_6e87c2df62694178974a0d4f68a156e2 PMC10110563 37069179 10_1038_s41467_023_37918_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61974050 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61974050 – fundername: ; grantid: 61974050 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-6ecf59a5f4193191f09a676fea9c99cfa499bd93e18d6ce25d2dcc20611a23f73 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:39 EDT 2025 Thu Aug 21 18:37:42 EDT 2025 Fri Jul 11 04:28:58 EDT 2025 Wed Aug 13 04:42:56 EDT 2025 Wed Feb 19 02:24:37 EST 2025 Tue Jul 01 00:58:48 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-6ecf59a5f4193191f09a676fea9c99cfa499bd93e18d6ce25d2dcc20611a23f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7947-840X 0000-0002-1184-2946 0000-0002-5072-4897 0000-0003-0509-9508 0000-0003-2637-6359 0000-0001-5195-1867 0000-0002-2894-7912 0000-0002-3999-7421 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-37918-7 |
PMID | 37069179 |
PQID | 2802198476 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e87c2df62694178974a0d4f68a156e2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10110563 proquest_miscellaneous_2802886518 proquest_journals_2802198476 pubmed_primary_37069179 crossref_citationtrail_10_1038_s41467_023_37918_7 crossref_primary_10_1038_s41467_023_37918_7 springer_journals_10_1038_s41467_023_37918_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-17 |
PublicationDateYYYYMMDD | 2023-04-17 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Gao (CR41) 2014; 346 He (CR52) 2010; 9 Song (CR7) 2018; 360 Tong (CR8) 2021; 373 Nogués, Schuller (CR19) 1999; 192 Tran (CR6) 2019; 567 Geim (CR1) 2009; 324 Gong, Zhang (CR9) 2019; 363 Berkowitz, Takano (CR18) 1999; 200 Kumar (CR44) 2019; 19 Motlag (CR43) 2019; 31 Akinwande (CR3) 2019; 573 Chen (CR35) 2019; 366 Fei (CR38) 2018; 17 Chittari (CR46) 2016; 94 Zhong (CR10) 2017; 3 Zhang, Krishnan (CR20) 2016; 105 Mortelmans, De Gendt, Heyns, Merckling (CR29) 2021; 22 Zhang (CR11) 2020; 32 Kiwi (CR36) 2001; 234 Zhu (CR23) 2020; 20 Park (CR47) 2021; 103 Geim, Grigorieva (CR4) 2013; 499 Grimaldi (CR17) 2020; 15 Tong (CR13) 2021; 66 Wang (CR40) 2019; 5 Hu (CR24) 2020; 14 Song (CR16) 2019; 18 Taylor, Steger, Wold, Kostiner (CR37) 1974; 13 Wang (CR32) 2020; 11 Fairand, Wilcox, Gallagher, Williams (CR42) 1972; 43 Lund (CR49) 2002; 66 Novoselov (CR2) 2012; 490 Mustonen, Mackenzie, Lipsanen (CR12) 2020; 13 Albarakati (CR26) 2022; 22 Coak (CR33) 2021; 11 Zheng, Jiang, Xue, Dai, Feng (CR31) 2019; 100 Hu (CR28) 2020; 11 Kools (CR51) 1996; 32 Ghazaryan (CR22) 2018; 1 Xia (CR30) 2020; 17 Albarakati (CR15) 2019; 5 Song (CR21) 2019; 19 Deng (CR39) 2018; 563 Malozemoff (CR50) 1987; 35 Zheng (CR27) 2020; 125 Novoselov, Mishchenko, Carvalho, Castro Neto (CR5) 2016; 353 Li (CR34) 2019; 18 Wang (CR14) 2018; 18 Wang (CR45) 2020; 3 Dai (CR25) 2021; 13 Keller (CR48) 2002; 66 H Dai (37918_CR25) 2021; 13 W Zhang (37918_CR20) 2016; 105 R Zhu (37918_CR23) 2020; 20 Y Deng (37918_CR39) 2018; 563 G Hu (37918_CR24) 2020; 14 C Hu (37918_CR28) 2020; 11 Z Fei (37918_CR38) 2018; 17 J Nogués (37918_CR19) 1999; 192 T Song (37918_CR21) 2019; 19 S Albarakati (37918_CR26) 2022; 22 MJ Coak (37918_CR33) 2021; 11 Z Wang (37918_CR14) 2018; 18 X He (37918_CR52) 2010; 9 BL Chittari (37918_CR46) 2016; 94 AK Geim (37918_CR1) 2009; 324 W Mortelmans (37918_CR29) 2021; 22 AE Berkowitz (37918_CR18) 1999; 200 D Zhong (37918_CR10) 2017; 3 G Zheng (37918_CR27) 2020; 125 D Akinwande (37918_CR3) 2019; 573 T Song (37918_CR16) 2019; 18 AK Geim (37918_CR4) 2013; 499 L Tong (37918_CR13) 2021; 66 KS Novoselov (37918_CR5) 2016; 353 D Ghazaryan (37918_CR22) 2018; 1 M Kiwi (37918_CR36) 2001; 234 K Tran (37918_CR6) 2019; 567 AP Malozemoff (37918_CR50) 1987; 35 JCS Kools (37918_CR51) 1996; 32 L Zhang (37918_CR11) 2020; 32 X Wang (37918_CR40) 2019; 5 MS Lund (37918_CR49) 2002; 66 Y-m Wang (37918_CR45) 2020; 3 S Albarakati (37918_CR15) 2019; 5 M Motlag (37918_CR43) 2019; 31 BP Fairand (37918_CR42) 1972; 43 H Gao (37918_CR41) 2014; 346 P Mustonen (37918_CR12) 2020; 13 T Song (37918_CR7) 2018; 360 P Kumar (37918_CR44) 2019; 19 B Taylor (37918_CR37) 1974; 13 W Chen (37918_CR35) 2019; 366 T-E Park (37918_CR47) 2021; 103 L Tong (37918_CR8) 2021; 373 YS Zheng (37918_CR31) 2019; 100 T Li (37918_CR34) 2019; 18 E Grimaldi (37918_CR17) 2020; 15 J Xia (37918_CR30) 2020; 17 KS Novoselov (37918_CR2) 2012; 490 H Wang (37918_CR32) 2020; 11 C Gong (37918_CR9) 2019; 363 J Keller (37918_CR48) 2002; 66 |
References_xml | – volume: 66 start-page: 014431 year: 2002 ident: CR48 article-title: Domain state model for exchange bias. II. Experiments publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.014431 – volume: 3 start-page: e1603113 year: 2017 ident: CR10 article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 573 start-page: 507 year: 2019 end-page: 518 ident: CR3 article-title: Graphene and two-dimensional materials for silicon technology publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 103 start-page: 104410 year: 2021 ident: CR47 article-title: Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.104410 – volume: 360 start-page: 1214 year: 2018 end-page: 1218 ident: CR7 article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures publication-title: Science doi: 10.1126/science.aar4851 – volume: 19 start-page: 283 year: 2019 end-page: 291 ident: CR44 article-title: Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moire superlattices publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03895 – volume: 32 start-page: e2002032 year: 2020 ident: CR11 article-title: Proximity-coupling-induced significant enhancement of coercive field and Curie temperature in 2D van der Waals heterostructures publication-title: Adv. Mater. doi: 10.1002/adma.202002032 – volume: 13 start-page: 91 year: 2020 end-page: 113 ident: CR12 article-title: Review of fabrication methods of large-area transparent graphene electrodes for industry publication-title: Front. Optoelectron. doi: 10.1007/s12200-020-1011-5 – volume: 373 start-page: 1353 year: 2021 end-page: 1358 ident: CR8 article-title: 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware publication-title: Science doi: 10.1126/science.abg3161 – volume: 125 start-page: 047202 year: 2020 ident: CR27 article-title: Gate-tuned interlayer coupling in van der Waals ferromagnet Fe GeTe nanoflakes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.047202 – volume: 66 start-page: 054422 year: 2002 ident: CR49 article-title: Effect of anisotropy on the critical antiferromagnet thickness in exchange-biased bilayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.054422 – volume: 192 start-page: 203 year: 1999 end-page: 232 ident: CR19 article-title: Exchange bias publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00266-2 – volume: 11 year: 2020 ident: CR28 article-title: A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling publication-title: Nat. Commun. doi: 10.1038/s41467-019-13814-x – volume: 22 start-page: 6166 year: 2022 end-page: 6172 ident: CR26 article-title: Electric control of exchange bias effect in FePS -Fe GeTe van der Waals heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01370 – volume: 105 start-page: 1 year: 2016 end-page: 20 ident: CR20 article-title: Epitaxial exchange-bias systems: from fundamentals to future spin-orbitronics publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2016.04.001 – volume: 22 start-page: 100975 year: 2021 ident: CR29 article-title: Epitaxy of 2D chalcogenides: aspects and consequences of weak van der Waals coupling publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2021.100975 – volume: 15 start-page: 111 year: 2020 end-page: 117 ident: CR17 article-title: Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0607-7 – volume: 66 start-page: 139 year: 2021 end-page: 146 ident: CR13 article-title: Hole-dominated Fowler–Nordheim tunneling in 2D heterojunctions for infrared imaging publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.07.037 – volume: 13 start-page: 24314 year: 2021 end-page: 24320 ident: CR25 article-title: Enhancement of the coercive field and exchange bias effect in Fe GeTe /MnPX (X = S and Se) van der Waals heterostructures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c05265 – volume: 18 start-page: 1298 year: 2019 end-page: 1302 ident: CR16 article-title: Switching 2D magnetic states via pressure tuning of layer stacking publication-title: Nat. Mater. doi: 10.1038/s41563-019-0505-2 – volume: 366 start-page: 983 year: 2019 end-page: 987 ident: CR35 article-title: Direct observation of van der Waals stacking-dependent interlayer magnetism publication-title: Science doi: 10.1126/science.aav1937 – volume: 19 start-page: 915 year: 2019 end-page: 920 ident: CR21 article-title: Voltage control of a van der Waals spin-filter magnetic tunnel junction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04160 – volume: 32 start-page: 3165 year: 1996 end-page: 3184 ident: CR51 article-title: Exchange-biased spin-valves for magnetic storage publication-title: IEEE Trans. Magn. doi: 10.1109/20.508381 – volume: 11 start-page: 174102 year: 2021 ident: CR33 article-title: Emergent magnetic phases in pressure-tuned van der Waals antiferromagnet FePS publication-title: Phys. Rev. X – volume: 234 start-page: 584 year: 2001 end-page: 595 ident: CR36 article-title: Exchange bias theory publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(01)00421-8 – volume: 94 start-page: 184428 year: 2016 ident: CR46 article-title: Electronic and magnetic properties of single-layer MPX metal phosphorous trichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.184428 – volume: 490 start-page: 192 year: 2012 end-page: 200 ident: CR2 article-title: A roadmap for graphene publication-title: Nature doi: 10.1038/nature11458 – volume: 18 start-page: 1303 year: 2019 end-page: 1308 ident: CR34 article-title: Pressure-controlled interlayer magnetism in atomically thin CrI publication-title: Nat. Mater. doi: 10.1038/s41563-019-0506-1 – volume: 13 start-page: 2719 year: 1974 end-page: 2721 ident: CR37 article-title: Preparation and properties of iron phosphorus triselenide, FePSe publication-title: Inorg. Chem. doi: 10.1021/ic50141a034 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR4 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 563 start-page: 94 year: 2018 end-page: 99 ident: CR39 article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 3 start-page: 7713 year: 2020 end-page: 7719 ident: CR45 article-title: Controllable soliton pairs in few-layer FePSe nanosheets-based optical-intensity modulators publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01273 – volume: 35 start-page: 3679 year: 1987 end-page: 3682 ident: CR50 article-title: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.35.3679 – volume: 43 start-page: 3893 year: 1972 end-page: 3895 ident: CR42 article-title: Laser shock‐induced microstructural and mechanical property changes in 7075 aluminum publication-title: J. Appl. Phys. doi: 10.1063/1.1661837 – volume: 1 start-page: 344 year: 2018 end-page: 349 ident: CR22 article-title: Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr publication-title: Nat. Electron. doi: 10.1038/s41928-018-0087-z – volume: 200 start-page: 552 year: 1999 end-page: 570 ident: CR18 article-title: Exchange anisotropy—a review publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(99)00453-9 – volume: 5 start-page: eaaw0409 year: 2019 ident: CR15 article-title: Antisymmetric magnetoresistance in van der Waals Fe GeTe /graphite/Fe GeTe trilayer heterostructures publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw0409 – volume: 11 start-page: 7313 year: 2020 end-page: 7319 ident: CR32 article-title: Pressure-dependent intermediate magnetic phase in thin Fe GeTe flakes publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01801 – volume: 346 start-page: 1352 year: 2014 end-page: 1356 ident: CR41 article-title: Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures publication-title: Science doi: 10.1126/science.1260139 – volume: 9 start-page: 579 year: 2010 end-page: 585 ident: CR52 article-title: Robust isothermal electric control of exchange bias at room temperature publication-title: Nat. Mater. doi: 10.1038/nmat2785 – volume: 18 start-page: 4303 year: 2018 end-page: 4308 ident: CR14 article-title: Tunneling spin valves based on Fe GeTe /hBN/Fe GeTe van der Waals heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01278 – volume: 20 start-page: 5030 year: 2020 end-page: 5035 ident: CR23 article-title: Exchange bias in van der Waals CrCl /Fe GeTe heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01149 – volume: 353 start-page: aac9439 year: 2016 ident: CR5 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 17 start-page: 92 year: 2020 end-page: 98 ident: CR30 article-title: Strong coupling and pressure engineering in WSe –MoSe heterobilayers publication-title: Nat. Phys. doi: 10.1038/s41567-020-1005-7 – volume: 363 start-page: eaav4450 year: 2019 ident: CR9 article-title: Two-dimensional magnetic crystals and emergent heterostructure devices publication-title: Science doi: 10.1126/science.aav4450 – volume: 324 start-page: 1530 year: 2009 end-page: 1534 ident: CR1 article-title: Graphene: status and prospects publication-title: Science doi: 10.1126/science.1158877 – volume: 100 start-page: 174102 year: 2019 ident: CR31 article-title: Ab initio study of pressure-driven phase transition in FePS and FePSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.174102 – volume: 567 start-page: 71 year: 2019 end-page: 75 ident: CR6 article-title: Evidence for moire excitons in van der Waals heterostructures publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 17 start-page: 778 year: 2018 end-page: 782 ident: CR38 article-title: Two-dimensional itinerant ferromagnetism in atomically thin Fe GeTe publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 5 start-page: eaaw8904 year: 2019 ident: CR40 article-title: Current-driven magnetization switching in a van der Waals ferromagnet Fe GeTe publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw8904 – volume: 14 start-page: 12037 year: 2020 end-page: 12044 ident: CR24 article-title: Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS /Fe GeTe stacking heterostructure publication-title: ACS Nano doi: 10.1021/acsnano.0c05252 – volume: 31 start-page: e1900597 year: 2019 ident: CR43 article-title: Asymmetric 3D elastic-plastic strain-modulated electron energy structure in monolayer graphene by laser shocking publication-title: Adv. Mater. doi: 10.1002/adma.201900597 – volume: 567 start-page: 71 year: 2019 ident: 37918_CR6 publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 22 start-page: 6166 year: 2022 ident: 37918_CR26 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01370 – volume: 18 start-page: 1298 year: 2019 ident: 37918_CR16 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0505-2 – volume: 11 year: 2020 ident: 37918_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13814-x – volume: 32 start-page: 3165 year: 1996 ident: 37918_CR51 publication-title: IEEE Trans. Magn. doi: 10.1109/20.508381 – volume: 13 start-page: 2719 year: 1974 ident: 37918_CR37 publication-title: Inorg. Chem. doi: 10.1021/ic50141a034 – volume: 20 start-page: 5030 year: 2020 ident: 37918_CR23 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01149 – volume: 100 start-page: 174102 year: 2019 ident: 37918_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.174102 – volume: 22 start-page: 100975 year: 2021 ident: 37918_CR29 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2021.100975 – volume: 17 start-page: 92 year: 2020 ident: 37918_CR30 publication-title: Nat. Phys. doi: 10.1038/s41567-020-1005-7 – volume: 490 start-page: 192 year: 2012 ident: 37918_CR2 publication-title: Nature doi: 10.1038/nature11458 – volume: 15 start-page: 111 year: 2020 ident: 37918_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0607-7 – volume: 32 start-page: e2002032 year: 2020 ident: 37918_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202002032 – volume: 3 start-page: e1603113 year: 2017 ident: 37918_CR10 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 94 start-page: 184428 year: 2016 ident: 37918_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.184428 – volume: 19 start-page: 915 year: 2019 ident: 37918_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04160 – volume: 499 start-page: 419 year: 2013 ident: 37918_CR4 publication-title: Nature doi: 10.1038/nature12385 – volume: 353 start-page: aac9439 year: 2016 ident: 37918_CR5 publication-title: Science doi: 10.1126/science.aac9439 – volume: 13 start-page: 91 year: 2020 ident: 37918_CR12 publication-title: Front. Optoelectron. doi: 10.1007/s12200-020-1011-5 – volume: 363 start-page: eaav4450 year: 2019 ident: 37918_CR9 publication-title: Science doi: 10.1126/science.aav4450 – volume: 125 start-page: 047202 year: 2020 ident: 37918_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.047202 – volume: 373 start-page: 1353 year: 2021 ident: 37918_CR8 publication-title: Science doi: 10.1126/science.abg3161 – volume: 200 start-page: 552 year: 1999 ident: 37918_CR18 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(99)00453-9 – volume: 573 start-page: 507 year: 2019 ident: 37918_CR3 publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 11 start-page: 7313 year: 2020 ident: 37918_CR32 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01801 – volume: 3 start-page: 7713 year: 2020 ident: 37918_CR45 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01273 – volume: 14 start-page: 12037 year: 2020 ident: 37918_CR24 publication-title: ACS Nano doi: 10.1021/acsnano.0c05252 – volume: 18 start-page: 4303 year: 2018 ident: 37918_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01278 – volume: 43 start-page: 3893 year: 1972 ident: 37918_CR42 publication-title: J. Appl. Phys. doi: 10.1063/1.1661837 – volume: 35 start-page: 3679 year: 1987 ident: 37918_CR50 publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.35.3679 – volume: 360 start-page: 1214 year: 2018 ident: 37918_CR7 publication-title: Science doi: 10.1126/science.aar4851 – volume: 5 start-page: eaaw8904 year: 2019 ident: 37918_CR40 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw8904 – volume: 563 start-page: 94 year: 2018 ident: 37918_CR39 publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 324 start-page: 1530 year: 2009 ident: 37918_CR1 publication-title: Science doi: 10.1126/science.1158877 – volume: 234 start-page: 584 year: 2001 ident: 37918_CR36 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(01)00421-8 – volume: 17 start-page: 778 year: 2018 ident: 37918_CR38 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 103 start-page: 104410 year: 2021 ident: 37918_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.104410 – volume: 66 start-page: 139 year: 2021 ident: 37918_CR13 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.07.037 – volume: 11 start-page: 174102 year: 2021 ident: 37918_CR33 publication-title: Phys. Rev. X – volume: 66 start-page: 054422 year: 2002 ident: 37918_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.054422 – volume: 19 start-page: 283 year: 2019 ident: 37918_CR44 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03895 – volume: 13 start-page: 24314 year: 2021 ident: 37918_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c05265 – volume: 105 start-page: 1 year: 2016 ident: 37918_CR20 publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2016.04.001 – volume: 18 start-page: 1303 year: 2019 ident: 37918_CR34 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0506-1 – volume: 192 start-page: 203 year: 1999 ident: 37918_CR19 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00266-2 – volume: 9 start-page: 579 year: 2010 ident: 37918_CR52 publication-title: Nat. Mater. doi: 10.1038/nmat2785 – volume: 366 start-page: 983 year: 2019 ident: 37918_CR35 publication-title: Science doi: 10.1126/science.aav1937 – volume: 346 start-page: 1352 year: 2014 ident: 37918_CR41 publication-title: Science doi: 10.1126/science.1260139 – volume: 66 start-page: 014431 year: 2002 ident: 37918_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.014431 – volume: 5 start-page: eaaw0409 year: 2019 ident: 37918_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw0409 – volume: 1 start-page: 344 year: 2018 ident: 37918_CR22 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0087-z – volume: 31 start-page: e1900597 year: 2019 ident: 37918_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.201900597 |
SSID | ssj0000391844 |
Score | 2.5660186 |
Snippet | The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic data... Abstract The exchange bias (EB) effect plays an undisputed role in the development of highly sensitive, robust, and high-density spintronic devices in magnetic... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2190 |
SubjectTerms | 140/133 147/135 147/3 639/301/357/1018 639/925/927/1062 Antiferromagnetism Bias Data storage Electronic devices Electrons Exchanging Ferromagnetism Heterojunctions Heterostructures Humanities and Social Sciences Interlayers multidisciplinary Robustness Science Science (multidisciplinary) Spin valves |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEG8ICQkvRgV1EU1NeNOG3W23H4-KEGKCT5Dw1nT7wZ2RHuHuEvnvnbZ7xx2Cvvi67SaT-fxNpjOD0AHtPaBQ1hDeO0eYooao3hoSmKqd6xx4xtScfPadn16wb5fd5cqqr_QmrIwHLow75F4K27rAc8ulkIB_Te1Y4NJA6uGz94WYt5JMZR9MFaQubOiSqak8nLLsEyBEgU3BIRFrkSgP7H8MZf75WPJBxTQHopPn6NmAIPHnQvkLtOHjS7RVdkre7aDRmYnjspQrXmH_q3T24n5spngccfsVX5urmFoX8Sg9hZn8gMiWpIMBvuI0vZjc3DcT4NtJP5_O8HV6kHuHV8vdu-ji5Pj86JQM6xSI7VgzI9zb0CnTBQagDdK0UCvDBQ_eKKuUDQaSn94p6hvp0p6wzrXO2hYCfmNaGgR9hTbjJPo3CLsEDFktlaWWeeaVNMKlkmLbBHAgokLNgrXaDrPG08qLnzrXvKnURRwaxKGzODT883H5z02ZtPHX21-SxJY305Ts_AF0Rw-6o_-lOxXaX8hbD6Y71a0E2KMgaPMKfVgeg9GlSoqJfjIvd6TkXSMr9Lqox5ISKmoOObCqkFxTnDVS10_ieJQHezcJjHWcVujTQsfu6XqaF3v_gxdv0XabjCONsRT7aHN2O_fvAG_N-vfZtH4DuUslQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxNYsexT4hXWSEtJ1bam-X40RaxSWlaafff74yTtpTHXmNHcjJvz8w3hLzmTQAvVBRMNt4zobllunGWRaFz7ysPmhGbk0--yeNT8fWsOhsv3PqxrHKjE5Oi9p3DO_KjUoE10qBL5bvFL4ZTozC7Oo7QuEluFWBpsKRLTb5s71gQ_VwJMfbK5Fwd9SJpBjBUIFmwyOo9e5Rg-__la_5dMvlH3jSZo8k9cnf0I-n7gfD3yY3QPiC3h8mSlw_J7MS282E0Vzul4WLo76XN3PZ03tLyEz230xYbGOkMC2K6H2DfkEYUnFiKGMZssWspoMuuWfcreo5luZf096T3I3I6-fz94zEbhyowV4lixWRwsdK2igJcNwjWYq6trGUMVjutXbQQAjVe81Aoj9PCKl9650ow-4Uteaz5Y3LQdm14SqhH91DkSjvuRBBBK1t7TCyWRQQ1Umek2Pxa40bEcRx88dOkzDdXZiCHAXKYRA4D77zZvrMY8Dau3f0BKbbdiVjZ6UG3nJpR9IwMqnaljzI17dYKIiibexGlshC8hjIjhxt6m1GAe7Njt4y82i6D6GE-xbahWw97lJJVoTLyZGCP7Ul4nUuIhHVG1B7j7B11f6WdzxK8d4EuWSV5Rt5ueGx3rv__i2fXf8ZzcqdEtkeYyvqQHKyW6_AC_KlV8zIJzRWTCx2l priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG9CCzISN4hIbMexj8ujqlYqF6jUm-X4sbuIJtU-JPrvO3ayKQsFiWtiS1ZmxvNNZuYbgDes8YhCeZmLxrmcK2Zy1ViTB64K5yqHN2NsTj79Ik7O-PS8Ot8Duu2FSUX7idIyXdPb6rD3K55MGj0MmoQqZV7fgYNI1Y66fTCZTL9Oxz8rkfNccj50yBRM3rJ5xwslsv7bEOafhZK_ZUuTEzp-APcH9Egm_Xkfwp5vH8Hdfp7k1WOYn5p20Q_kamfE_-y7ekmzMCuyaAn9RC7MrI1ti2Qey2C67-jVomQIQlcSmYvzy5tGArLsms1qTS5iMe4V-TXV_QTOjj9_-3iSD6MUclvxcp0Lb0OlTBU4AjYM0UKhjKhF8EZZpWwwGPg0TjFfShdnhFWOOmspOvvSUBZq9hT22671z4G4CAp5IZVllnvulTS1i-lEWga8POoMyu2n1XbgGY_jLn7olO9mUvfi0CgOncShcc_bcc9lz7Lxz9UfosTGlZEhOz3oljM9aIwWXtaWuiBSq24tMW4yheNBSIMhq6cZHG3lrQezXWkqEfIodNgig9fjazS4mEUxre82_RopRVXKDJ716jGehNWFwPhXZSB3FGfnqLtv2sU8kXqXEYhVgmXwbqtjN-f6-7d48X_LD-EejWYQySrrI9hfLzf-JaKqdfNqMKNrk4cc1g priority: 102 providerName: Springer Nature |
Title | Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications |
URI | https://link.springer.com/article/10.1038/s41467-023-37918-7 https://www.ncbi.nlm.nih.gov/pubmed/37069179 https://www.proquest.com/docview/2802198476 https://www.proquest.com/docview/2802886518 https://pubmed.ncbi.nlm.nih.gov/PMC10110563 https://doaj.org/article/6e87c2df62694178974a0d4f68a156e2 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISRe0Phc2KiMxBsEktjxxwNCXVmZKnVCQKW-RY7ttEVbMvohrf89ZyfpKBQkXlopdirLd-f7Xc93P4RekdwCCqVxyHJjQiqJCmWuVVhQGRmTGjgZXXHy8JJdjOhgnI73UEt31GzgYmdo5_ikRvOrt7c_1h_A4N_XJePi3YJ6cwfvA-YiYxHyfXQInok7RoNhA_f9yUxg1PO7JhEsDyaQpo5m989s-Srf0n8XDv3zOuVvOVXvqvpH6EGDMXG3VoqHaM-Wj9C9mnVy_RhNh6qc1bRd5QTb27r2F-cztcCzEicf8bWalK64EU_dZZnqO_g-Jz8MABe7_sbhzV25AZ5X-WqxxNfuyu4a_5oQf4JG_fNvvYuwIVwIdUrjZcisLlKp0oICrINAroikYpwVVkktpS4UhEe5kcTGwjgmsdQkRusEIEGsElJw8hQdlFVpjxE2DjrSSEhNNLXUSqG4cUnHJC7giOEBitutzXTTjdyRYlxlPitORFaLIwNxZF4cGbzzevPOTd2L45-zz5zENjNdH23_oJpPssYsM2YF14kpmC_o5QKiKxUZWjChILC1SYBOW3lnrW5miQBgJMGtswC93AyDWbpciypttarnCMHSWAToWa0em5UQHjGIkmWAxJbibC11e6ScTX3r79jBtZSRAL1pdexuXX_fi-f_tXMn6H7irMB1tOSn6GA5X9kXAL2WeQft8zGHT9H_1EGH3e7g6wC-z84vP3-Bpz3W6_g_NTre7n4CRcktQA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4ia2I5jHxACyrKl3Z5aqbfg2M7uIpos-xDsn-I3MpPHLsujt15jJ3I8r288nhlCnvPcAwoVcShz50KhuQl1bk1YCB05lzjQjJicPDiW_VPx6Sw52yI_u1wYvFbZ6cRaUbvK4hn5HlNgjTToUvlm8i3ErlEYXe1aaDRsceiX38Flm70-2Af6vmCs9-HkfT9suwqENhHxPJTeFok2SSEAu4C3UkTayFQW3mirtS0M-AC509zHymG7rMQxZy0DuxcbxouUw3evkKuCgyXHzPTex9WZDlZbV0K0uTkRV3szUWsiMIwgyTAYphv2r24T8C9s-_cVzT_itLX5690iN1vcSt82jHabbPnyDrnWdLJc3iWjgSnHTSuwckj9jyafmOZjM6PjkrJ9em6GJSZM0hFewKm-gD1FnqAAminWTA4n6xQGOq3yxWxOz_Ea8JL-HmS_R04vZbvvk-2yKv0DQh3CUREpbbkVXnitTOowkMniAtRWGpC429rMthXOsdHG16yOtHOVNeTIgBxZTY4M3nm5emfS1Pe4cPY7pNhqJtbmrh9U02HWinomvUotc4Wsk4RTBR6biZwopDLgLHsWkN2O3lmrMGbZmr0D8mw1DKKO8RtT-mrRzFFKJrEKyE7DHquV8DSS4HnrgKgNxtlY6uZIOR7V5cRjhICJ5AF51fHYel3_34uHF__GU3K9fzI4yo4Ojg8fkRsMRQBLZKa7ZHs-XfjHgOXm-ZNagCj5fNkS-wuetls9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Zb9MwGLdGJxAviJvAACPBE0RNHMexHxBidNXGWDUhJu3NOD7aTltSegj6r_HX8TlHSzn2ttfaiVx_d77jh9DLJLfghdI4ZLkxIRWJCkWuVeioiIxJDWhG35x8NGD7J_TjaXq6hX62vTC-rLLViZWiNqX238i7hIM1EqBLWdc1ZRHHvf67ybfQI0j5TGsLp1GzyKFdfofwbfb2oAe0fkVIf-_Lh_2wQRgIdUrjecisdqlQqaPgx0Dk4iKhWMacVUILoZ2CeCA3IrExNx46KzXEaE3ABsaKJC5L4L3X0Hbmo6IO2t7dGxx_Xn3h8bPXOaVNp06U8O6MVnoJzCTINSyG2YY1rEAD_uXp_l2w-UfWtjKG_dvoVuPF4vc1291BW7a4i67XuJbLe2h0pIpxDQxWDLH9UXcX43ysZnhcYNLDF2pY-PZJPPLlOOUZWFfPIRhcaOwnKIeTdUMDnpb5YjbHF74oeIl_T7nfRydXcuEPUKcoC_sIYeOdUxpxoRNNLbWCq8z4tCaJHSixLEBxe7VSN_POPezGuazy7gmXNTkkkENW5JDwzOvVM5N62selu3c9xVY7_aTu6odyOpSN4EtmeaaJcaxqGc44xG8qMtQxriB0tiRAOy29ZaM-ZnLN7AF6sVoGwffZHFXYclHv4ZylMQ_Qw5o9VidJsohBHC4CxDcYZ-OomyvFeFQNF4-9Q5iyJEBvWh5bn-v_d_H48r_xHN0AaZWfDgaHT9BN4iXAz8vMdlBnPl3Yp-DYzfNnjQRh9PWqhfYXpgxgzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+exchange+bias+in+2D+magnetic+heterojunction+for+high-performance+robust+memory+applications&rft.jtitle=Nature+communications&rft.au=Huang%2C+Xinyu&rft.au=Zhang%2C+Luman&rft.au=Tong%2C+Lei&rft.au=Li%2C+Zheng&rft.date=2023-04-17&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-37918-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_37918_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |