Portable, high speed blood flow measurements enabled by long wavelength, interferometric diffuse correlation spectroscopy (LW-iDCS)
Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cere...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 8803 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-36074-8 |
Cover
Loading…
Abstract | Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy. |
---|---|
AbstractList | Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy. Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy. Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy.Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy. Abstract Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy. |
ArticleNumber | 8803 |
Author | Franceschini, Maria Angela Robinson, Mitchell B. Carp, Stefan A. Renna, Marco Ozana, Nisan Martin, Alyssa N. Otic, Nikola |
Author_xml | – sequence: 1 givenname: Mitchell B. surname: Robinson fullname: Robinson, Mitchell B. email: mitchell.robinson@mgh.harvard.edu organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School – sequence: 2 givenname: Marco surname: Renna fullname: Renna, Marco organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School – sequence: 3 givenname: Nisan surname: Ozana fullname: Ozana, Nisan organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Bar-Ilan University – sequence: 4 givenname: Alyssa N. surname: Martin fullname: Martin, Alyssa N. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School – sequence: 5 givenname: Nikola surname: Otic fullname: Otic, Nikola organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Department of Biomedical Engineering, Boston University – sequence: 6 givenname: Stefan A. surname: Carp fullname: Carp, Stefan A. organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School – sequence: 7 givenname: Maria Angela surname: Franceschini fullname: Franceschini, Maria Angela organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37258644$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxKVIDcSO7TinCi1flSqBRCWOlj9esl459mInrfbMH8e7W0rbQ32x5TczHr95L4sDHzwUxWtUv0d1wz8kgmjHqxo3VcPqllT8WXGEa0Ir3GB8cO98WJyktKrzorgjqHtRHDYtppwRclT8-RHiJJWDs3Jph2WZ1gCmVC4EU_Yu3JQjyDRHGMFPqQS_heb6pnTBD-WNvAYHfpiWZ6X1E8QeYhhhilaXxvb9nKDUIUZwcrLBb9X1FEPSYb0pTy9_VfbT4ue7V8XzXroEJ7f7cXH15fPV4lt1-f3rxeLjZaUpQVPFoDWgsKQI9USbvgWKmGpJ33BENdec9zWlgHXDMFeKG2I6hlXXGEUbRJrj4mIva4JciXW0o4wbEaQVu4sQByHjZLUDAYp1XBHGUFcTbnSnVFvLvtcdwYZJlbXO91rrWY1gdO5OlO6B6MOKt0sxhGuBcmCYdDQrnN4qxPB7hjSJ0SYNzkkPYU4Cc4wYqTvGMvTtI-gqzNHnVu1QmFJabwXf3Ld05-Vf1hmA9wCdE0gR-jsIqsV2psR-pkS2KHYzJXgm8UckbaddmPlb1j1NbfbUlN_xA8T_tp9g_QXyJeI8 |
CitedBy_id | crossref_primary_10_1364_BOE_545580 crossref_primary_10_1117_1_JBO_29_3_035002 crossref_primary_10_1016_j_neuroimage_2024_120793 crossref_primary_10_3390_s23239338 crossref_primary_10_1109_JSTQE_2025_3537642 crossref_primary_10_1364_BOE_507730 crossref_primary_10_1364_OE_499473 crossref_primary_10_1109_JSTQE_2024_3512776 crossref_primary_10_1117_1_NPh_11_1_015004 crossref_primary_10_1364_BOE_523514 crossref_primary_10_1117_1_JBO_28_12_126005 crossref_primary_10_3390_bios14080384 crossref_primary_10_3390_ijms241512048 crossref_primary_10_1364_BOE_499274 |
Cites_doi | 10.1117/1.JBO.22.2.027006 10.1364/OPTICA.5.000518 10.1364/BOE.473992 10.1364/BOE.438303 10.1117/1.NPh.7.3.035010 10.1364/BOE.392113 10.1117/1.JBO.25.9.097004 10.1007/s12028-018-0573-1 10.1364/BOE.472643 10.1117/1.NPh.1.1.011009 10.1364/BOE.390322 10.1117/1.JBO.25.9.097003 10.1093/ehjci/jeu202 10.1364/BOE.418882 10.1109/TBME.2021.3131353 10.1364/BOE.381757 10.1117/1.NPh.8.3.035006 10.1364/BOE.5.002769 10.1126/sciadv.abe0150 10.1364/OL.427746 10.1364/BOE.448135 10.1364/BOE.386612 10.1259/bjr.20140454 10.1007/s42399-020-00442-6 10.1063/5.0031225 10.1364/OPTICA.3.001471 10.1103/PhysRevA.44.5215 10.3389/fnins.2022.932119 10.1364/BOE.472263 10.1364/BOE.2.002047 10.1063/5.0021988 10.1161/01.CIR.33.5S2.II-35 10.1364/BOE.6.004871 10.1016/j.jpeds.2021.05.024 10.1364/JOSAA.14.000192 10.1177/0271678X17709166 10.1117/1.NPh.1.1.015005 10.1016/j.xjtc.2021.01.023 10.1364/BOE.7.003461 10.1364/OE.385202 10.1088/1361-6579/aa60b7 10.1364/BOE.400525 10.1364/BOE.9.000322 10.1364/BOE.6.004288 10.1371/journal.pone.0024981 10.1117/1.NPh.5.4.045005 10.1007/s00421-017-3711-0 10.1364/BOE.449046 10.1364/BOE.454346 10.1364/OPTICA.472471 10.1103/PhysRevLett.60.1134 10.1111/ejn.14957 10.3390/brainsci12081025 10.1016/j.ynirp.2021.100021 10.1103/PhysRevA.10.1938 10.1364/OE.17.020178 10.1117/1.NPh.3.3.031412 10.1007/s00421-008-0771-1 10.1088/0031-9155/56/10/008 10.1117/1.JBO.26.3.036008 10.1152/jappl.1991.70.6.2691 10.1364/OPTICA.3.001006 10.1117/1.NPh.2.3.035004 10.1117/1.NPh.8.1.015001 10.1117/12.2252824 10.1117/12.2578986 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-36074-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_eb698b46619048dc9bb70affc942d6ab PMC10232495 37258644 10_1038_s41598_023_36074_8 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: T32EB001680; R01EB033202; U01EB028660 funderid: http://dx.doi.org/10.13039/100000070 – fundername: NIBIB NIH HHS grantid: U01 EB028660 – fundername: NIBIB NIH HHS grantid: R01 EB033202 – fundername: NIBIB NIH HHS grantid: T32 EB001680 – fundername: NIBIB NIH HHS grantid: R21 EB028626 – fundername: NINDS NIH HHS grantid: F31 NS118753 – fundername: ; grantid: T32EB001680; R01EB033202; U01EB028660 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-6e7deb2a511f4cdf7e516b74f3815c8c88f055e2c3628bb8d4d962b93db53143 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:47 EDT 2025 Thu Aug 21 18:36:59 EDT 2025 Fri Jul 11 09:05:42 EDT 2025 Wed Aug 13 08:43:14 EDT 2025 Sun Jul 20 01:30:20 EDT 2025 Tue Jul 01 04:24:47 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Fri Feb 21 02:37:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-6e7deb2a511f4cdf7e516b74f3815c8c88f055e2c3628bb8d4d962b93db53143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2821255505?pq-origsite=%requestingapplication% |
PMID | 37258644 |
PQID | 2821255505 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eb698b46619048dc9bb70affc942d6ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_10232495 proquest_miscellaneous_2821640966 proquest_journals_2821255505 pubmed_primary_37258644 crossref_primary_10_1038_s41598_023_36074_8 crossref_citationtrail_10_1038_s41598_023_36074_8 springer_journals_10_1038_s41598_023_36074_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-31 |
PublicationDateYYYYMMDD | 2023-05-31 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Sakadžic (CR50) 2017; 22 Liu (CR26) 2021; 6 James, Powell, Munro (CR24) 2022; 13 Fischer, Guensch, Friedrich (CR56) 2015; 16 Sie (CR27) 2020; 7 Pine, Weitz, Chaikin, Herbolzheimer (CR47) 1988; 60 Sutin (CR32) 2016; 3 Selb (CR17) 2014; 1 Davis (CR19) 2020 Boas, Yodh (CR1) 1997; 14 Robinson (CR30) 2020; 11 Carp (CR51) 2011; 2 Larsen (CR64) 2021; 1 Dragojević (CR39) 2018; 9 Baker (CR61) 2015; 2 Shang (CR6) 2011; 56 Ling, Gui, Hao, Shang (CR29) 2020; 11 Boas (CR48) 2016; 3 Shang, Li, Yu (CR2) 2017; 38 Robinson, Boas, Sakadzic, Franceschini, Carp (CR23) 2020; 25 Milej (CR11) 2020; 11 CR7 Meyer, Gotoh, Takagi, Kakimi (CR60) 1966; 33 Pagliazzi (CR36) 2021; 12 CR45 Bellini, Glaser, Clark, Degiorgio (CR46) 1991; 44 Poon (CR37) 2022; 13 Skytioti, Søvik, Elstad (CR62) 2017; 117 Beauchamp (CR18) 2011; 6 Zerweck, Hauser, Roder, Klose (CR65) 2020; 2 Wayne (CR28) 2023; 14 Verdecchia, Diop, Morrison, Lee, Lawrence (CR49) 2015; 6 James, Powell (CR69) 2020; 11 Zhou, Kholiqov, Chong, Srinivasan (CR44) 2018; 5 Buckley, Parthasarathy, Grant, Yodh, Franceschini (CR3) 2014; 1 Wu (CR67) 2021; 8 Du Le, Srinivasan (CR52) 2020; 28 Ruesch (CR12) 2020; 11 Robinson (CR43) 2022; 69 Valdes (CR40) 2014; 5 CR55 Wilson (CR59) 1991; 70 Zhao, Sathialingam, Buckley (CR68) 2021; 12 CR54 Carp (CR41) 2020; 25 Tabassum (CR14) 2022; 1 Wu (CR15) 2021; 26 Zhou (CR21) 2021; 7 Zhao, Zhou, Aparanji, Mazumder, Srinivasan (CR34) 2022; 10 Busch (CR10) 2019; 30 Busch (CR8) 2016; 7 Zilpelwar (CR38) 2022; 13 Perini (CR58) 2008; 104 Samaei, Nowacka, Gerega, Pastuszak, Borycki (CR25) 2022; 13 Parkes, Green, Stevens, Clutton-Brock (CR57) 2014; 87 Wu (CR66) 2022; 13 Ozana (CR33) 2022; 16 Koppel (CR53) 1974; 10 Flanders (CR13) 2021; 236 Borycki, Kholiqov, Srinivasan (CR35) 2016; 3 Baker (CR16) 2017; 37 Xu, Jahromi, Brake, Robinson, Yang (CR20) 2020; 5 Ozana (CR42) 2021; 8 Fang, Boas (CR63) 2009; 17 Selb (CR9) 2018; 5 Tsalach (CR31) 2015; 6 Kaya (CR4) 2022; 12 Zhou (CR22) 2021; 46 Zavriyev (CR5) 2021; 7 DF Wilson (36074_CR59) 1991; 70 36074_CR7 H Ling (36074_CR29) 2020; 11 N Ozana (36074_CR42) 2021; 8 H Zhao (36074_CR68) 2021; 12 J Larsen (36074_CR64) 2021; 1 MM Wu (36074_CR66) 2022; 13 D Borycki (36074_CR35) 2016; 3 DR Busch (36074_CR10) 2019; 30 S Zilpelwar (36074_CR38) 2022; 13 DA Boas (36074_CR48) 2016; 3 JS Meyer (36074_CR60) 1966; 33 M Skytioti (36074_CR62) 2017; 117 E James (36074_CR69) 2020; 11 N Ozana (36074_CR33) 2022; 16 SA Carp (36074_CR51) 2011; 2 DR Busch (36074_CR8) 2016; 7 MB Robinson (36074_CR23) 2020; 25 AI Zavriyev (36074_CR5) 2021; 7 MB Robinson (36074_CR30) 2020; 11 DJ Pine (36074_CR47) 1988; 60 L Zerweck (36074_CR65) 2020; 2 K Kaya (36074_CR4) 2022; 12 W Zhou (36074_CR22) 2021; 46 WB Baker (36074_CR61) 2015; 2 EM Buckley (36074_CR3) 2014; 1 TM Flanders (36074_CR13) 2021; 236 J Xu (36074_CR20) 2020; 5 J Selb (36074_CR9) 2018; 5 W Zhou (36074_CR21) 2021; 7 W Zhou (36074_CR44) 2018; 5 S Samaei (36074_CR25) 2022; 13 MA Wayne (36074_CR28) 2023; 14 T Bellini (36074_CR46) 1991; 44 D Koppel (36074_CR53) 1974; 10 E James (36074_CR24) 2022; 13 SA Carp (36074_CR41) 2020; 25 M Zhao (36074_CR34) 2022; 10 NJ Davis (36074_CR19) 2020 J Sutin (36074_CR32) 2016; 3 K Fischer (36074_CR56) 2015; 16 K-C Wu (36074_CR15) 2021; 26 EJ Sie (36074_CR27) 2020; 7 K Verdecchia (36074_CR49) 2015; 6 SM Tabassum (36074_CR14) 2022; 1 MS Beauchamp (36074_CR18) 2011; 6 CP Valdes (36074_CR40) 2014; 5 36074_CR45 J Selb (36074_CR17) 2014; 1 Y Shang (36074_CR2) 2017; 38 T Dragojević (36074_CR39) 2018; 9 MM Wu (36074_CR67) 2021; 8 Y Shang (36074_CR6) 2011; 56 VN Du Le (36074_CR52) 2020; 28 Q Fang (36074_CR63) 2009; 17 A Ruesch (36074_CR12) 2020; 11 MB Robinson (36074_CR43) 2022; 69 WB Baker (36074_CR16) 2017; 37 W Liu (36074_CR26) 2021; 6 D Milej (36074_CR11) 2020; 11 36074_CR55 36074_CR54 DA Boas (36074_CR1) 1997; 14 R Perini (36074_CR58) 2008; 104 MJ Parkes (36074_CR57) 2014; 87 A Tsalach (36074_CR31) 2015; 6 M Pagliazzi (36074_CR36) 2021; 12 C-S Poon (36074_CR37) 2022; 13 S Sakadžic (36074_CR50) 2017; 22 |
References_xml | – ident: CR45 – volume: 22 start-page: 27006 year: 2017 ident: CR50 article-title: Theoretical model of blood flow measurement by diffuse correlation spectroscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.2.027006 – volume: 5 start-page: 518 year: 2018 ident: CR44 article-title: Highly parallel, interferometric diffusing wave spectroscopy for monitoring cerebral blood flow dynamics publication-title: Optica doi: 10.1364/OPTICA.5.000518 – volume: 14 start-page: 703 year: 2023 ident: CR28 article-title: Massively parallel, real-time multispeckle diffuse correlation spectroscopy using a 500 × 500 SPAD camera publication-title: Biomed. Opt. Express doi: 10.1364/BOE.473992 – volume: 12 start-page: 7149 year: 2021 end-page: 7161 ident: CR68 article-title: Accuracy of diffuse correlation spectroscopy measurements of cerebral blood flow when using a three-layer analytical model publication-title: Biomed. Opt. Express doi: 10.1364/BOE.438303 – volume: 7 start-page: 35010 year: 2020 ident: CR27 article-title: High-sensitivity multispeckle diffuse correlation spectroscopy publication-title: Neurophotonics doi: 10.1117/1.NPh.7.3.035010 – volume: 11 start-page: 4571 year: 2020 end-page: 4585 ident: CR11 article-title: Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.392113 – volume: 25 start-page: 97004 year: 2020 ident: CR23 article-title: Interferometric diffuse correlation spectroscopy improves measurements at long source–detector separation and low photon count rate publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.25.9.097004 – volume: 30 start-page: 72 year: 2019 end-page: 80 ident: CR10 article-title: Detection of brain hypoxia based on noninvasive optical monitoring of cerebral blood flow with diffuse correlation spectroscopy publication-title: Neurocrit. Care doi: 10.1007/s12028-018-0573-1 – volume: 13 start-page: 5753 year: 2022 ident: CR25 article-title: Continuous-wave parallel interferometric near-infrared spectroscopy (CW πNIRS) with a fast two-dimensional camera publication-title: Biomed. Opt. Express doi: 10.1364/BOE.472643 – volume: 1 start-page: 11009 year: 2014 ident: CR3 article-title: Diffuse correlation spectroscopy for measurement of cerebral blood flow: Future prospects publication-title: Neurophotonics doi: 10.1117/1.NPh.1.1.011009 – volume: 11 start-page: 3071 year: 2020 ident: CR30 article-title: Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS) publication-title: Biomed. Opt. Express doi: 10.1364/BOE.390322 – volume: 25 start-page: 97003 year: 2020 end-page: 97004 ident: CR41 article-title: Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.25.9.097003 – volume: 16 start-page: 395 year: 2015 end-page: 401 ident: CR56 article-title: Response of myocardial oxygenation to breathing manoeuvres and adenosine infusion publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jeu202 – volume: 12 start-page: 1499 year: 2021 ident: CR36 article-title: Time resolved speckle contrast optical spectroscopy at quasi-null source-detector separation for non-invasive measurement of microvascular blood flow publication-title: Biomed. Opt. Express doi: 10.1364/BOE.418882 – volume: 69 start-page: 1943 year: 2022 end-page: 1953 ident: CR43 article-title: Diffuse correlation spectroscopy beyond the water peak enabled by cross-correlation of the signals from InGaAs/InP single photon detectors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3131353 – ident: CR54 – volume: 11 start-page: 301 year: 2020 ident: CR29 article-title: Enhancement of diffuse correlation spectroscopy tissue blood flow measurement by acoustic radiation force publication-title: Biomed. Opt. Express doi: 10.1364/BOE.381757 – volume: 8 start-page: 35006 year: 2021 ident: CR42 article-title: Superconducting nanowire single-photon sensing of cerebral blood flow publication-title: Neurophotonics doi: 10.1117/1.NPh.8.3.035006 – volume: 5 start-page: 2769 year: 2014 ident: CR40 article-title: Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.002769 – volume: 7 start-page: eabe0150 year: 2021 end-page: eabe0150 ident: CR21 article-title: Functional interferometric diffusing wave spectroscopy of the human brain publication-title: Sci. Adv. doi: 10.1126/sciadv.abe0150 – volume: 46 start-page: 4498 year: 2021 end-page: 4501 ident: CR22 article-title: Multi-exposure interferometric diffusing wave spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.427746 – volume: 13 start-page: 1344 year: 2022 ident: CR37 article-title: First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit publication-title: Biomed. Opt. Express doi: 10.1364/BOE.448135 – volume: 11 start-page: 1462 year: 2020 ident: CR12 article-title: Estimating intracranial pressure using pulsatile cerebral blood flow measured with diffuse correlation spectroscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.386612 – volume: 87 start-page: 20140454 year: 2014 ident: CR57 article-title: Assessing and ensuring patient safety during breath-holding for radiotherapy publication-title: Br. J. Radiol. doi: 10.1259/bjr.20140454 – volume: 2 start-page: 1551 year: 2020 end-page: 1562 ident: CR65 article-title: Investigation of the BOLD-based MRI signal time course during short breath-hold periods for estimation of the cerebrovascular reactivity publication-title: SN Compr. Clin. Med. doi: 10.1007/s42399-020-00442-6 – volume: 6 start-page: 26106 year: 2021 ident: CR26 article-title: Fast and sensitive diffuse correlation spectroscopy with highly parallelized single photon detection publication-title: APL Photonics doi: 10.1063/5.0031225 – volume: 3 start-page: 1471 year: 2016 ident: CR35 article-title: Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media publication-title: Optica doi: 10.1364/OPTICA.3.001471 – volume: 44 start-page: 5215 year: 1991 ident: CR46 article-title: Effects of finite laser coherence in quasielastic multiple scattering publication-title: Phys. Rev. A (Coll Park) doi: 10.1103/PhysRevA.44.5215 – volume: 16 start-page: 1123 year: 2022 ident: CR33 article-title: Functional time domain diffuse correlation spectroscopy publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.932119 – volume: 13 start-page: 6533 year: 2022 end-page: 6549 ident: CR38 article-title: A model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics publication-title: Biomed. Opt. Express doi: 10.1364/BOE.472263 – volume: 2 start-page: 2047 year: 2011 ident: CR51 article-title: Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.002047 – volume: 1 start-page: 20 year: 2022 ident: CR14 article-title: Clinical translation of intracranial pressure sensing with diffuse correlation spectroscopy publication-title: J. Neurosurg. – volume: 5 start-page: 126102 year: 2020 ident: CR20 article-title: Interferometric speckle visibility spectroscopy (ISVS) for human cerebral blood flow monitoring publication-title: APL Photonics doi: 10.1063/5.0021988 – volume: 33 start-page: II-35 year: 1966 ident: CR60 article-title: Cerebral hemodynamics, blood gases, and electrolytes during breath-holding and the Valsalva maneuver publication-title: Circulation doi: 10.1161/01.CIR.33.5S2.II-35 – volume: 6 start-page: 4871 year: 2015 end-page: 4886 ident: CR31 article-title: Depth selective acousto-optic flow measurement publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004871 – volume: 236 start-page: 54 year: 2021 end-page: 61.e1 ident: CR13 article-title: Optical detection of intracranial pressure and perfusion changes in neonates with hydrocephalus publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2021.05.024 – volume: 14 start-page: 192 year: 1997 ident: CR1 article-title: Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.000192 – volume: 37 start-page: 2691 year: 2017 end-page: 2705 ident: CR16 article-title: Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X17709166 – volume: 1 start-page: 15005 year: 2014 ident: CR17 article-title: Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: Simulations and experimental findings during hypercapnia publication-title: Neurophotonics doi: 10.1117/1.NPh.1.1.015005 – volume: 7 start-page: 161 year: 2021 end-page: 177 ident: CR5 article-title: The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests publication-title: JTCVS Tech. doi: 10.1016/j.xjtc.2021.01.023 – volume: 7 start-page: 3461 year: 2016 ident: CR8 article-title: Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.003461 – volume: 28 start-page: 11191 year: 2020 ident: CR52 article-title: Beyond diffuse correlations: Deciphering random flow in time-of-flight resolved light dynamics publication-title: Opt. Express doi: 10.1364/OE.385202 – volume: 38 start-page: R1 year: 2017 end-page: R1 ident: CR2 article-title: Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa60b7 – volume: 11 start-page: 6755 year: 2020 ident: CR69 article-title: Fourier domain diffuse correlation spectroscopy with heterodyne holographic detection publication-title: Biomed. Opt. Express doi: 10.1364/BOE.400525 – volume: 9 start-page: 322 year: 2018 ident: CR39 article-title: Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.000322 – volume: 6 start-page: 4288 year: 2015 ident: CR49 article-title: Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004288 – volume: 6 start-page: e24981 year: 2011 end-page: e24981 ident: CR18 article-title: The developmental trajectory of brain-scalp distance from birth through childhood: Implications for functional neuroimaging publication-title: PLoS ONE doi: 10.1371/journal.pone.0024981 – volume: 5 start-page: 1 year: 2018 ident: CR9 article-title: Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients publication-title: Neurophotonics doi: 10.1117/1.NPh.5.4.045005 – volume: 117 start-page: 2237 year: 2017 end-page: 2249 ident: CR62 article-title: Respiration-related cerebral blood flow variability increases during control-mode non-invasive ventilation in normovolemia and hypovolemia publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-017-3711-0 – volume: 13 start-page: 1131 year: 2022 ident: CR66 article-title: Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models publication-title: Biomed. Opt. Express doi: 10.1364/BOE.449046 – volume: 13 start-page: 3836 year: 2022 ident: CR24 article-title: Performance optimisation of a holographic Fourier domain diffuse correlation spectroscopy instrument publication-title: Biomed. Opt. Express doi: 10.1364/BOE.454346 – volume: 10 start-page: 42 year: 2022 end-page: 52 ident: CR34 article-title: Interferometric diffusing wave spectroscopy imaging with an electronically variable time-of-flight filter publication-title: Optica doi: 10.1364/OPTICA.472471 – volume: 60 start-page: 1134 year: 1988 end-page: 1137 ident: CR47 article-title: Diffusing wave spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.1134 – year: 2020 ident: CR19 article-title: Variance in cortical depth across the brain surface: Implications for transcranial stimulation of the brain publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14957 – volume: 12 start-page: 1025 year: 2022 ident: CR4 article-title: Intraoperative cerebral hemodynamic monitoring during carotid endarterectomy via diffuse correlation spectroscopy and near-infrared spectroscopy publication-title: Brain Sci. doi: 10.3390/brainsci12081025 – volume: 1 start-page: 100021 year: 2021 ident: CR64 article-title: Breath holding for 20 s following extended expiration is a practical, effective and robust standard when measuring cerebrovascular reactivity in healthy adults using BOLD fMRI at 3 T publication-title: Neuroimage Rep. doi: 10.1016/j.ynirp.2021.100021 – volume: 10 start-page: 1938 year: 1974 end-page: 1945 ident: CR53 article-title: Statistical accuracy in FCS publication-title: Phys. Rev. A (Coll Park) doi: 10.1103/PhysRevA.10.1938 – volume: 17 start-page: 20178 year: 2009 end-page: 20190 ident: CR63 article-title: Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units publication-title: Opt. Express doi: 10.1364/OE.17.020178 – volume: 3 start-page: 31412 year: 2016 ident: CR48 article-title: Establishing the diffuse correlation spectroscopy signal relationship with blood flow publication-title: Neurophotonics doi: 10.1117/1.NPh.3.3.031412 – volume: 104 start-page: 1 year: 2008 end-page: 7 ident: CR58 article-title: Heart rate and blood pressure time courses during prolonged dry apnoea in breath-hold divers publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-008-0771-1 – volume: 56 start-page: 3015 year: 2011 end-page: 3032 ident: CR6 article-title: Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram publication-title: Phys. Med. Biol doi: 10.1088/0031-9155/56/10/008 – ident: CR55 – volume: 26 start-page: 36008 year: 2021 end-page: 36009 ident: CR15 article-title: Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.26.3.036008 – ident: CR7 – volume: 70 start-page: 2691 year: 1991 end-page: 2696 ident: CR59 article-title: Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1991.70.6.2691 – volume: 3 start-page: 1006 year: 2016 ident: CR32 article-title: Time-domain diffuse correlation spectroscopy publication-title: Optica doi: 10.1364/OPTICA.3.001006 – volume: 2 start-page: 35004 year: 2015 ident: CR61 article-title: Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts publication-title: Neurophotonics doi: 10.1117/1.NPh.2.3.035004 – volume: 8 start-page: 15001 year: 2021 ident: CR67 article-title: Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling publication-title: Neurophotonics doi: 10.1117/1.NPh.8.1.015001 – volume: 5 start-page: 1 year: 2018 ident: 36074_CR9 publication-title: Neurophotonics doi: 10.1117/1.NPh.5.4.045005 – volume: 60 start-page: 1134 year: 1988 ident: 36074_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.1134 – volume: 14 start-page: 192 year: 1997 ident: 36074_CR1 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.000192 – volume: 26 start-page: 36008 year: 2021 ident: 36074_CR15 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.26.3.036008 – volume: 2 start-page: 35004 year: 2015 ident: 36074_CR61 publication-title: Neurophotonics doi: 10.1117/1.NPh.2.3.035004 – volume: 5 start-page: 2769 year: 2014 ident: 36074_CR40 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.002769 – volume: 87 start-page: 20140454 year: 2014 ident: 36074_CR57 publication-title: Br. J. Radiol. doi: 10.1259/bjr.20140454 – volume: 25 start-page: 97004 year: 2020 ident: 36074_CR23 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.25.9.097004 – volume: 6 start-page: e24981 year: 2011 ident: 36074_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0024981 – volume: 8 start-page: 15001 year: 2021 ident: 36074_CR67 publication-title: Neurophotonics doi: 10.1117/1.NPh.8.1.015001 – volume: 1 start-page: 100021 year: 2021 ident: 36074_CR64 publication-title: Neuroimage Rep. doi: 10.1016/j.ynirp.2021.100021 – volume: 6 start-page: 4288 year: 2015 ident: 36074_CR49 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004288 – volume: 13 start-page: 1344 year: 2022 ident: 36074_CR37 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.448135 – volume: 38 start-page: R1 year: 2017 ident: 36074_CR2 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa60b7 – volume: 37 start-page: 2691 year: 2017 ident: 36074_CR16 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X17709166 – ident: 36074_CR54 – volume: 6 start-page: 4871 year: 2015 ident: 36074_CR31 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004871 – volume: 17 start-page: 20178 year: 2009 ident: 36074_CR63 publication-title: Opt. Express doi: 10.1364/OE.17.020178 – volume: 46 start-page: 4498 year: 2021 ident: 36074_CR22 publication-title: Opt. Lett. doi: 10.1364/OL.427746 – volume: 3 start-page: 1006 year: 2016 ident: 36074_CR32 publication-title: Optica doi: 10.1364/OPTICA.3.001006 – volume: 16 start-page: 1123 year: 2022 ident: 36074_CR33 publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.932119 – volume: 1 start-page: 11009 year: 2014 ident: 36074_CR3 publication-title: Neurophotonics doi: 10.1117/1.NPh.1.1.011009 – volume: 5 start-page: 518 year: 2018 ident: 36074_CR44 publication-title: Optica doi: 10.1364/OPTICA.5.000518 – volume: 8 start-page: 35006 year: 2021 ident: 36074_CR42 publication-title: Neurophotonics doi: 10.1117/1.NPh.8.3.035006 – volume: 16 start-page: 395 year: 2015 ident: 36074_CR56 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jeu202 – volume: 44 start-page: 5215 year: 1991 ident: 36074_CR46 publication-title: Phys. Rev. A (Coll Park) doi: 10.1103/PhysRevA.44.5215 – year: 2020 ident: 36074_CR19 publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14957 – volume: 11 start-page: 3071 year: 2020 ident: 36074_CR30 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.390322 – volume: 11 start-page: 1462 year: 2020 ident: 36074_CR12 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.386612 – volume: 5 start-page: 126102 year: 2020 ident: 36074_CR20 publication-title: APL Photonics doi: 10.1063/5.0021988 – volume: 11 start-page: 301 year: 2020 ident: 36074_CR29 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.381757 – volume: 1 start-page: 20 year: 2022 ident: 36074_CR14 publication-title: J. Neurosurg. – volume: 13 start-page: 5753 year: 2022 ident: 36074_CR25 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.472643 – volume: 11 start-page: 6755 year: 2020 ident: 36074_CR69 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.400525 – volume: 2 start-page: 1551 year: 2020 ident: 36074_CR65 publication-title: SN Compr. Clin. Med. doi: 10.1007/s42399-020-00442-6 – volume: 6 start-page: 26106 year: 2021 ident: 36074_CR26 publication-title: APL Photonics doi: 10.1063/5.0031225 – volume: 28 start-page: 11191 year: 2020 ident: 36074_CR52 publication-title: Opt. Express doi: 10.1364/OE.385202 – ident: 36074_CR55 doi: 10.1117/12.2252824 – volume: 12 start-page: 1025 year: 2022 ident: 36074_CR4 publication-title: Brain Sci. doi: 10.3390/brainsci12081025 – volume: 10 start-page: 1938 year: 1974 ident: 36074_CR53 publication-title: Phys. Rev. A (Coll Park) doi: 10.1103/PhysRevA.10.1938 – volume: 104 start-page: 1 year: 2008 ident: 36074_CR58 publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-008-0771-1 – volume: 3 start-page: 1471 year: 2016 ident: 36074_CR35 publication-title: Optica doi: 10.1364/OPTICA.3.001471 – volume: 12 start-page: 7149 year: 2021 ident: 36074_CR68 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.438303 – volume: 33 start-page: II-35 year: 1966 ident: 36074_CR60 publication-title: Circulation doi: 10.1161/01.CIR.33.5S2.II-35 – volume: 56 start-page: 3015 year: 2011 ident: 36074_CR6 publication-title: Phys. Med. Biol doi: 10.1088/0031-9155/56/10/008 – volume: 236 start-page: 54 year: 2021 ident: 36074_CR13 publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2021.05.024 – volume: 9 start-page: 322 year: 2018 ident: 36074_CR39 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.000322 – volume: 7 start-page: 3461 year: 2016 ident: 36074_CR8 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.003461 – volume: 22 start-page: 27006 year: 2017 ident: 36074_CR50 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.2.027006 – volume: 2 start-page: 2047 year: 2011 ident: 36074_CR51 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.002047 – volume: 7 start-page: 35010 year: 2020 ident: 36074_CR27 publication-title: Neurophotonics doi: 10.1117/1.NPh.7.3.035010 – volume: 10 start-page: 42 year: 2022 ident: 36074_CR34 publication-title: Optica doi: 10.1364/OPTICA.472471 – volume: 30 start-page: 72 year: 2019 ident: 36074_CR10 publication-title: Neurocrit. Care doi: 10.1007/s12028-018-0573-1 – volume: 70 start-page: 2691 year: 1991 ident: 36074_CR59 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1991.70.6.2691 – volume: 11 start-page: 4571 year: 2020 ident: 36074_CR11 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.392113 – volume: 13 start-page: 3836 year: 2022 ident: 36074_CR24 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.454346 – volume: 7 start-page: 161 year: 2021 ident: 36074_CR5 publication-title: JTCVS Tech. doi: 10.1016/j.xjtc.2021.01.023 – volume: 3 start-page: 31412 year: 2016 ident: 36074_CR48 publication-title: Neurophotonics doi: 10.1117/1.NPh.3.3.031412 – volume: 13 start-page: 6533 year: 2022 ident: 36074_CR38 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.472263 – volume: 117 start-page: 2237 year: 2017 ident: 36074_CR62 publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-017-3711-0 – volume: 69 start-page: 1943 year: 2022 ident: 36074_CR43 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3131353 – volume: 12 start-page: 1499 year: 2021 ident: 36074_CR36 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.418882 – volume: 14 start-page: 703 year: 2023 ident: 36074_CR28 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.473992 – volume: 25 start-page: 97003 year: 2020 ident: 36074_CR41 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.25.9.097003 – volume: 13 start-page: 1131 year: 2022 ident: 36074_CR66 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.449046 – volume: 1 start-page: 15005 year: 2014 ident: 36074_CR17 publication-title: Neurophotonics doi: 10.1117/1.NPh.1.1.015005 – ident: 36074_CR7 doi: 10.1117/12.2578986 – volume: 7 start-page: eabe0150 year: 2021 ident: 36074_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe0150 – ident: 36074_CR45 |
SSID | ssj0000529419 |
Score | 2.477827 |
Snippet | Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics... Abstract Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8803 |
SubjectTerms | 631/443/1338/2729 639/166/985 639/624/1075/1083 639/624/1107/527 Adult Blood flow Cerebral blood flow Diagnostic Techniques, Cardiovascular Hemodynamics Humanities and Social Sciences Humans Interferometry multidisciplinary Nanotechnology Science Science (multidisciplinary) Signal-To-Noise Ratio Spectroscopy Spectrum analysis Spectrum Analysis - methods Wavelength |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEAcRGTWLHsY9QqCoEXCiiN8vPttKSrLq7qvbMH2fGzm67PC9cY2c18szsNxPPfEPIc8Nc5QH2Sq-4KTmmO6qKsfRORVMzwFyHzckfP4nDL_z9cXt8ZdQX1oRleuB8cHvBCiUtBxhRYGzwE9Z2lYnRKd54YSz--wLmXUmmMqt3o3itxi6Zism9OSAVdpM1rGQCixDlFhIlwv7fRZm_Fkv-dGOagOjgFrk5RpD0dZb8NrkW-jvkep4pubpLvqfaUDsNE4pUxHQ-A3yiqT6dxulwQb9dfhWc05Bap2B9RadDf0IvDA6i6E8WpxOKTBLnMSCfAdL4U5ylspwH6nCgRy6ho6lREwkxh9mKvvjwtTx7u__55T1ydPDuaP-wHCctlK7l9aIUofOQYhuIviJ3PnahrYXteAQ8b510UsaqbUPjAO6ktdJzr0RjFfMWfJiz-2SnH_rwkFAe6hBCZE45xk3Vms4JDlFda5XwTLUFqdeHrt3IQo7DMKY63YYzqbOiNChKJ0VpWZBXm3dmmYPjr7vfoC43O5E_Oz0Aq9KjVel_WVVBdteWoEennmvITiEcxJSuIM82y-COeMdi-jAs8x4BObMQBXmQDWcjCeuaVkL8WRC5ZVJbom6v9GenifIbCTZwSnhBJmvru5Trz2fx6H-cxWNyo0G3SSUTu2Rncb4MTyASW9inyel-AC_jMS8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGEBIviN-EDWQkHkA0LIkdx35ACAbThBgvbGJvVuzY3aSQdE2r0Wf-ce6ctFOh7LV2JMe-y3dX330fIS9LZpMKYC-uFC9jjumOSryPK6t8mTLAXIvNyUffxOEJ_3Kan26RpdzRsIHdxtQO9aROpvXbXxeL9-Dw7_qWcbnXAQhho1jGYiawvlDeIDcBmQp01KMh3O-5vjPFUzX0zmx-dA2fAo3_ptjz3xLKv-5RAzwd3CV3hriSfugN4R7Zcs19cqtXmlw8IL9Dxaip3YgiQTHtJoBaNFStU1-3l_Tn1X-FHXWhoQrGF7RumzG9LFGeohnPzkYU-SWm3iHLAZL7U1RYmXeOWpT56AvraGjfRJrMdrKgr77-iM8_7X9__ZAcH3w-3j-MB_2F2OY8ncXCFRUk3iXEZJ7byhcuT4UpuAeUz620Uvokz11mAQSlMbLilRKZUawy4NmcPSLbTdu4J4RylzrnPLPKMl4meVlYwSHWy40SFVN5RNLlpms7cJOjREatwx05k7o_KA0HpcNBaRmRN6tnJj0zx7WzP-JZrmYiq3b4oZ2O9eCk2hmhpOEQsij4sIG5GlMkpfdW8awSpYnI7tIS9NJSNeSsECRioheRF6thcFK8eSkb1877OQIyaSEi8rg3nNVKWJHlEqLSiMg1k1pb6vpIc34WiMCRdgO1wyMyWlrf1br-vxdPr3-NHXI7Q4cIJRK7ZHs2nbtnEHnNzPPgTn8AGS4q7w priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJvQgozEAcRGJLHj2EdYqCoEXCiiNyt-bSstyWofqvbcP86M86gWChLX2JZGnhnPTGbmG0Je1sxmDsxe6hSvU47hjspCSJ1Voc4Z2FyLzclfvorj7_zTaXm6R4qhFyYW7UdIy_hMD9Vhb1dgaLAZrGApE1hDKG-QmwjdjlI9FdPxvwpmrniu-v6YjMlrju7YoAjVf51_-WeZ5G-50miCju6SO73vSN911N4je765T2510yS3D8hlrAo1cz-hCEJMVwuwTDRWptMwby_oz6v_gSvqY9MUrG_pvG1m9KLGERTNbH02oYghsQwekQwQwJ_iFJXNylOLozy64jkaWzQRCrNdbOmrzz_S8w_Tb68fkpOjjyfT47SfsZDakufrVPjKQXBdg98VuHWh8mUuTMUDWPLSSitlyMrSFxYMnTRGOu6UKIxizoD2cvaI7Ddt458Qyn3uvQ_MKst4nZV1ZQUHf640SjimyoTkw6Vr2-OP4xiMuY55cCZ1xygNjNKRUVom5M14ZtGhb_xz93vk5bgTkbPjh3Y5070kaW-EkoaDW6Lg8QKRNKbK6hCs4oUTtUnI4SAJulfnlYa4FBxBDOYS8mJcBkXE7Erd-HbT7REQLQuRkMed4IyUsKooJXieCZE7IrVD6u5Kc34Wwb4RWgPngydkMkjfFV1_v4un_7f9gNwuUEFiWcQh2V8vN_4ZeFtr8zyq1y8GEiWc priority: 102 providerName: Springer Nature |
Title | Portable, high speed blood flow measurements enabled by long wavelength, interferometric diffuse correlation spectroscopy (LW-iDCS) |
URI | https://link.springer.com/article/10.1038/s41598-023-36074-8 https://www.ncbi.nlm.nih.gov/pubmed/37258644 https://www.proquest.com/docview/2821255505 https://www.proquest.com/docview/2821640966 https://pubmed.ncbi.nlm.nih.gov/PMC10232495 https://doaj.org/article/eb698b46619048dc9bb70affc942d6ab |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUN9rCxmNqWLEtPI81aSljLWDuWN2PJUlrI7CxOKHneP7472UnIPvpigyWD7LvTne7jd4S8LZiJSlB7Yal4EXI87qjIubA0yhUxA51rsDj57FycfuOjcTruHG5Nl1a53hP9Rl3WBn3kh3A0AF2M9vTH2c8Qu0ZhdLVroXGX7CN0GaZ0ZeNs42PBKBaPVVcrEzF52IC-wpqyhIVMYCqi3NFHHrb_X7bm3ymTf8RNvTo6eUgedHYkHbSEf0Tu2Ooxudd2llw9Ib98hqie2j5FQGLazEBLUZ-lTt20vqE_tr7BhlpfQAXjKzqtqwm9KbAdRTVZXPUp4knMnUVUAwTzp9hRZdlYarCtR5tIR325JsJi1rMVfff5e3j9aXjx_im5PDm-HJ6GXb-F0KQ8XoTCZiUctAuwwRw3pctsGgudcQdaPTXSSOmiNLWJAaUntZYlL5VItGKlBknm7BnZq-rKviCU29ha65hRhvEiSovMCA62XaqVKJlKAxKvf3puOixybIkxzX1MnMm8JVQOhMo9oXIZkA-bd2YtEsets4-QlpuZiKLtH9TzSd4JZW61UFJzMFEUbGTAnlpnUeGcUTwpRaEDcrDmhLwT7SbfMmJA3myGQSgx0lJUtl62cwScnIUIyPOWcTYrYVmSSrBCAyJ3WGpnqbsj1fWVB_5GmA3sFR6Q_pr7tuv6_794eftnvCL3ExQInxJxQPYW86V9DZbWQve8OPXI_mAwuhjB_ej4_MtXeDoUw573XsD1jMvfRGgtiA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuBAUYCCUSjJbGT2A8IsZs61lUIitibFTt2N6kkpWlV9Znfw3_k2Elalcve9ho7keNzfC4-lw-hlxlRQQ5qz885zXxq3R0eGOPnipssJKBzlS1OPh0kva_041l8toV-tbUwNq2ylYlOUOelsnfku-AagC629vT7yQ_fokbZ6GoLoVGzxYleLsBlq94dHwB9X0XR0eFwv-c3qAK-imk48xOd5uBOZmBpGKpyk-o4TGRKDeiuWDHFmAniWEcKRDuTkuU050kkOckl8Csl8NlraJsS8GQ6aHvvcPDp8-pSx4bNaMib4pyAsN0KFKQtYouID2-k1GcbCtDhBPzLuP07R_OPQK3Tf0e30a3GcMUfak67g7Z0cRddr6Esl_fQT5eSKse6i20HZFxNQC1ilxaPzbhc4O_ry8gKa1exBeNLPC6LEV5kFv-iGM3Ou9g2sJgabdsoWPQAbCFc5pXGyuKI1Jl72NWH2j6c5WSJX_e_-RcH-1_e3EfDqyDFA9QpykI_QpjqUGttiOKK0CyIs1QlFIzJWPIkJzz2UNhuulBN83OLwTEWLghPmKgJJYBQwhFKMA-9Xb0zqVt_XDp7z9JyNdO27XYPyulINFJAaJlwJinYRBwkJ5wHKdMgM0ZxGuVJJj2003KCaGRJJdac76EXq2GQAja0kxW6nNdzEnDVk8RDD2vGWa2EpFHMwOz1ENtgqY2lbo4UF-eu07jt62HByT3Ubblvva7_78Xjy3_jObrRG572Rf94cPIE3Yzs4XD5GDuoM5vO9VMw82byWXO4MBJXfJx_A_75ZWk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACOBBKJRk9hx4geEYGXa2JiQGFrfotixu0klKU2rqs_8Kv4d5zhJq3LZ215jt3Jy7j6Xj5AXOdNBAWbPLyTPfY7hjgys9QstbR4ysLkam5M_H4v9b_zTMB5ukV9dLwyWVXY60SnqotJ4R96H0ABsMfrTfduWRXwZ7L2b_PARQQozrR2cRsMih2a5gPCtfnswAFq_jKK9jye7-36LMODrmIczX5ikgNAyB6_Dcl3YxMShUAm3YMdineo0tUEcm0iDmk-VSgteSBEpyQoFvMsZ_O0VcjVhcYgilgyT1fUOJtB4KNs2nYCl_RpMJbazRcxnAqsg0w1T6BAD_uXm_l2t-UfK1lnCvVvkZuvC0vcNz90mW6a8Q641oJbLu-SnK05VY9OjOAuZ1hMwkNQVyFM7rhb0-_pasqbG9W7B-pKOq3JEFzkiYZSj2VmP4iiLqTU4UAFxBCiCucxrQzUiijQ1fNR1iuJEzmqypK-OTv3zwe7X1_fIyWUQ4j7ZLqvSPCSUm9AYY5mWmvE8iPNECw5uZaykKJiMPRJ2Hz3T7Rh0ROMYZy4dz9KsIVQGhMocobLUI29Wv5k0Q0Au3P0BabnaiQO83YNqOspafZAZJWSqOHhHEnQoSIZSSZBbqyWPCpErj-x0nJC1WqXO1jLgkeerZdAHmOTJS1PNmz0CgnYhPPKgYZzVSVgSxSk4wB5JN1hq46ibK-X5mZs5jhM-EKbcI72O-9bn-v-3eHTxazwj10GIs6OD48PH5EaEsuEKM3bI9mw6N0_A35upp06yKMkuWZJ_A5mlaDk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portable%2C+high+speed+blood+flow+measurements+enabled+by+long+wavelength%2C+interferometric+diffuse+correlation+spectroscopy+%28LW-iDCS%29&rft.jtitle=Scientific+reports&rft.au=Robinson%2C+Mitchell+B&rft.au=Renna%2C+Marco&rft.au=Ozana%2C+Nisan&rft.au=Martin%2C+Alyssa+N&rft.date=2023-05-31&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=8803&rft_id=info:doi/10.1038%2Fs41598-023-36074-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |