Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease

Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of ren...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 25; no. 3; pp. 713 - 726
Main Authors Falkevall, Annelie, Mehlem, Annika, Palombo, Isolde, Heller Sahlgren, Benjamin, Ebarasi, Lwaki, He, Liqun, Ytterberg, A. Jimmy, Olauson, Hannes, Axelsson, Jonas, Sundelin, Birgitta, Patrakka, Jaakko, Scotney, Pierre, Nash, Andrew, Eriksson, Ulf
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. [Display omitted] •Targeting VEGF-B signaling to reduce renal lipotoxicity prevents DKD•The beneficial effect is due to re-sensitizing podocytes to insulin signaling•Renal VEGF-B levels are increased in both experimental models and subjects with DKD•Reducing VEGF-B signaling may be a therapeutic strategy for the treatment of DKD Human studies have highlighted that hyperglycemia may not be the underlying cause of diabetic kidney disease (DKD). Falkevall et al. highlight a role for VEGF-B in renal lipotoxicity in mouse models and patients, offering a potential novel therapeutic approach to DKD.
AbstractList Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. [Display omitted] •Targeting VEGF-B signaling to reduce renal lipotoxicity prevents DKD•The beneficial effect is due to re-sensitizing podocytes to insulin signaling•Renal VEGF-B levels are increased in both experimental models and subjects with DKD•Reducing VEGF-B signaling may be a therapeutic strategy for the treatment of DKD Human studies have highlighted that hyperglycemia may not be the underlying cause of diabetic kidney disease (DKD). Falkevall et al. highlight a role for VEGF-B in renal lipotoxicity in mouse models and patients, offering a potential novel therapeutic approach to DKD.
Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.
Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.
Author Axelsson, Jonas
Mehlem, Annika
Palombo, Isolde
Sundelin, Birgitta
Falkevall, Annelie
Olauson, Hannes
Ebarasi, Lwaki
Patrakka, Jaakko
Heller Sahlgren, Benjamin
Eriksson, Ulf
Ytterberg, A. Jimmy
Scotney, Pierre
He, Liqun
Nash, Andrew
Author_xml – sequence: 1
  givenname: Annelie
  surname: Falkevall
  fullname: Falkevall, Annelie
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 2
  givenname: Annika
  surname: Mehlem
  fullname: Mehlem, Annika
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 3
  givenname: Isolde
  surname: Palombo
  fullname: Palombo, Isolde
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 4
  givenname: Benjamin
  surname: Heller Sahlgren
  fullname: Heller Sahlgren, Benjamin
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 5
  givenname: Lwaki
  surname: Ebarasi
  fullname: Ebarasi, Lwaki
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 6
  givenname: Liqun
  surname: He
  fullname: He, Liqun
  organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
– sequence: 7
  givenname: A. Jimmy
  surname: Ytterberg
  fullname: Ytterberg, A. Jimmy
  organization: Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 8
  givenname: Hannes
  surname: Olauson
  fullname: Olauson, Hannes
  organization: Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, 141 86 Stockholm, Sweden
– sequence: 9
  givenname: Jonas
  surname: Axelsson
  fullname: Axelsson, Jonas
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
– sequence: 10
  givenname: Birgitta
  surname: Sundelin
  fullname: Sundelin, Birgitta
  organization: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden
– sequence: 11
  givenname: Jaakko
  surname: Patrakka
  fullname: Patrakka, Jaakko
  organization: KI/AZ Integrated CardioMetabolic Center (ICMC), Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 57 Huddinge, Sweden
– sequence: 12
  givenname: Pierre
  surname: Scotney
  fullname: Scotney, Pierre
  organization: CSL Limited, Parkville, VIC 3052, Australia
– sequence: 13
  givenname: Andrew
  surname: Nash
  fullname: Nash, Andrew
  organization: CSL Limited, Parkville, VIC 3052, Australia
– sequence: 14
  givenname: Ulf
  surname: Eriksson
  fullname: Eriksson, Ulf
  email: ulf.pe.eriksson@ki.se
  organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28190774$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318926$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:135241128$$DView record from Swedish Publication Index
BookMark eNp9kUuP0zAURiM0iHnAH2CBsmRBgh-pY0tsyrxAVAINMFvrxr6pXNK4Yzsw_ffjqmUWSMzK15_Odxf3nBZHox-xKF5TUlNCxftVbdaYakZoWxNaE9I8K06o4qxqG0aO8jybkaqhnB4XpzGuCOGCK_6iOGaSKtK2zUmBN2gn48ZleXt5fVV9LL-75QjDLpivcXA-QMJY3mAOy4Xb-OTvnXFpW8Joy2_BJzQplrAEN8ZUXjjoMDlTfnF2xG3-R4SIL4vnPQwRXx3es-Ln1eWP80_V4uv15_P5ojKzhqZKyN4YCxIE2F4RrpThnHVyBlxRQohtZE7AGiGMZaIXIFomWdtbAV2HwM-Kar83_sHN1OlNcGsIW-3B6UP0K0-oG6UoazL_7r_8hbudax-Wepo0p1IxkfG3e3wT_N2EMem1iwaHAUb0U9RUilZJKiTP6JsDOnVrtI-b_14-A2wPmOBjDNg_IpTonV690ju9eqdXE6qz3lyS_5SyCkjOjymAG56ufthXMd__t8Ogo3E4GrQuZIXaevdU_QE_hcFU
CitedBy_id crossref_primary_10_1038_s41598_020_57599_2
crossref_primary_10_1016_j_biopha_2024_116322
crossref_primary_10_1038_s41467_024_46366_w
crossref_primary_10_1155_2020_3650937
crossref_primary_10_1016_j_canlet_2020_12_031
crossref_primary_10_3390_nu11071664
crossref_primary_10_1159_000518132
crossref_primary_10_1038_s41419_021_03850_1
crossref_primary_10_18632_aging_103649
crossref_primary_10_3389_fphar_2024_1285797
crossref_primary_10_2337_db20_1157
crossref_primary_10_1111_apha_13349
crossref_primary_10_1186_s13287_023_03340_5
crossref_primary_10_1097_EC9_0000000000000024
crossref_primary_10_3390_ijms25105418
crossref_primary_10_1507_endocrj_EJ22_0123
crossref_primary_10_3390_ijms24065629
crossref_primary_10_18632_aging_202794
crossref_primary_10_3389_fendo_2021_671566
crossref_primary_10_1093_jpp_rgae102
crossref_primary_10_1186_s12964_024_01502_3
crossref_primary_10_3389_fcell_2021_690079
crossref_primary_10_1155_2021_6109406
crossref_primary_10_3389_fendo_2022_1026938
crossref_primary_10_3390_cancers16101902
crossref_primary_10_1016_j_aquaculture_2023_739793
crossref_primary_10_3389_fendo_2020_00359
crossref_primary_10_1186_s12882_021_02271_8
crossref_primary_10_1038_nrneph_2017_22
crossref_primary_10_1111_cpr_13052
crossref_primary_10_1155_2019_3514574
crossref_primary_10_1038_s41401_021_00660_1
crossref_primary_10_1093_ckj_sfae222
crossref_primary_10_1016_j_jbc_2023_105185
crossref_primary_10_3389_fendo_2023_1274025
crossref_primary_10_1681_ASN_0000000000000438
crossref_primary_10_1016_j_xkme_2020_10_005
crossref_primary_10_4239_wjd_v15_i6_1091
crossref_primary_10_1038_s41467_023_37831_z
crossref_primary_10_3390_antiox13121540
crossref_primary_10_3390_ijms21124359
crossref_primary_10_1016_j_biopha_2023_115734
crossref_primary_10_1016_j_metabol_2023_155718
crossref_primary_10_3389_fphar_2021_777395
crossref_primary_10_1371_journal_pone_0316049
crossref_primary_10_1155_2022_6275505
crossref_primary_10_1016_j_trsl_2023_11_002
crossref_primary_10_1016_j_tcb_2020_10_003
crossref_primary_10_34172_jnp_2023_21465
crossref_primary_10_1016_j_cytogfr_2017_11_005
crossref_primary_10_1080_08977194_2019_1626851
crossref_primary_10_1042_BSR20171089
crossref_primary_10_1002_advs_202306365
crossref_primary_10_3390_nu13010241
crossref_primary_10_3390_life13020539
crossref_primary_10_1007_s11695_020_04611_3
crossref_primary_10_3389_fendo_2023_1173933
crossref_primary_10_1016_j_lfs_2021_119401
crossref_primary_10_3389_fmolb_2025_1541440
crossref_primary_10_3390_ijms21072632
crossref_primary_10_1016_j_kint_2021_12_013
crossref_primary_10_1097_MED_0000000000000533
crossref_primary_10_1155_2021_6686617
crossref_primary_10_3390_antiox10071143
crossref_primary_10_4239_wjd_v15_i8_1663
crossref_primary_10_3389_fphar_2024_1500458
crossref_primary_10_3390_antiox12122083
crossref_primary_10_1007_s00216_019_01721_5
crossref_primary_10_1016_j_biopha_2023_115670
crossref_primary_10_1016_j_biopha_2023_114465
crossref_primary_10_1002_dmrr_3789
crossref_primary_10_3389_fphys_2020_00518
crossref_primary_10_3389_fendo_2022_862545
crossref_primary_10_1016_j_apsb_2020_07_002
crossref_primary_10_1096_fj_201800742R
crossref_primary_10_3389_fendo_2024_1336402
crossref_primary_10_1007_s00432_020_03384_7
crossref_primary_10_1016_j_metabol_2024_156037
crossref_primary_10_1016_j_phymed_2023_154775
crossref_primary_10_1038_s41581_023_00741_w
crossref_primary_10_1155_2017_5724069
crossref_primary_10_7717_peerj_16239
crossref_primary_10_1016_j_ijbiomac_2024_131507
crossref_primary_10_4239_wjd_v12_i5_524
crossref_primary_10_1007_s10753_024_02215_y
crossref_primary_10_1038_s41598_017_09806_w
crossref_primary_10_1053_j_ackd_2017_12_005
crossref_primary_10_1016_j_kint_2024_11_026
crossref_primary_10_1038_s41420_023_01304_5
crossref_primary_10_1016_j_tem_2024_11_004
crossref_primary_10_1002_cbic_202100463
crossref_primary_10_1016_j_ajpath_2017_10_012
crossref_primary_10_1007_s12079_021_00664_w
crossref_primary_10_1002_jcp_28821
crossref_primary_10_1016_j_bbalip_2023_159329
crossref_primary_10_1007_s00467_024_06595_z
crossref_primary_10_1681_ASN_0000000511
crossref_primary_10_1038_s41392_022_01036_5
crossref_primary_10_1016_j_biopha_2021_111806
crossref_primary_10_1002_prca_70002
crossref_primary_10_3390_cells11203236
crossref_primary_10_1016_j_phrs_2020_104678
crossref_primary_10_1172_jci_insight_140483
crossref_primary_10_3390_antiox12091715
crossref_primary_10_1016_j_cmet_2020_10_019
crossref_primary_10_1186_s12931_021_01754_4
crossref_primary_10_1101_cshperspect_a041162
crossref_primary_10_1080_0886022X_2024_2378999
crossref_primary_10_1016_j_jhep_2023_01_014
crossref_primary_10_1152_ajpendo_00090_2020
crossref_primary_10_3892_mmr_2022_12801
crossref_primary_10_1038_s41420_018_0065_2
crossref_primary_10_1113_JP277367
crossref_primary_10_1016_j_ijbiomac_2019_12_201
crossref_primary_10_1002_advs_202100275
crossref_primary_10_1681_ASN_2018010050
crossref_primary_10_1042_BST20200991
crossref_primary_10_1002_bit_26518
crossref_primary_10_1038_s41419_020_03199_x
crossref_primary_10_2337_db23_0811
crossref_primary_10_1155_2022_9735555
crossref_primary_10_3389_fphys_2021_624698
crossref_primary_10_1097_MNH_0000000000000376
crossref_primary_10_1016_j_celrep_2024_114075
crossref_primary_10_1016_j_jconrel_2024_06_049
crossref_primary_10_15252_embr_201949343
crossref_primary_10_2174_1389201023666220506105026
crossref_primary_10_23736_S2724_6507_21_03370_8
crossref_primary_10_2147_DMSO_S437586
crossref_primary_10_1016_j_intimp_2020_107340
crossref_primary_10_1038_s41581_021_00393_8
crossref_primary_10_1016_j_amjms_2019_11_004
crossref_primary_10_1002_jcp_28924
Cites_doi 10.1152/physrev.00055.2006
10.1161/CIRCRESAHA.108.178459
10.1002/(SICI)1097-0177(199905)215:1<12::AID-DVDY3>3.0.CO;2-N
10.1001/jama.2011.861
10.1016/j.cmet.2016.03.004
10.1038/sj.ki.5002033
10.1038/nature08945
10.1681/ASN.2004080648
10.1038/nature11464
10.2337/db10-1181
10.1016/bs.acc.2014.11.002
10.1016/j.cmet.2010.08.015
10.1007/s00125-013-3095-6
10.1001/archinternmed.2011.2230
10.1038/nprot.2013.055
10.1007/s00441-016-2377-y
10.1194/jlr.M049189
10.1038/nature14132
10.1093/ndt/gfp302
10.2337/db15-1231
10.2337/diabetes.54.8.2328
10.1681/ASN.V1051100
10.1038/nm.3762
10.3389/fendo.2014.00127
10.1016/j.mam.2012.07.010
10.1038/sj.ki.5001620
10.1194/jlr.P040501
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
AOWAS
DF2
D8T
ZZAVC
DOI 10.1016/j.cmet.2017.01.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Uppsala universitet
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 726
ExternalDocumentID oai_swepub_ki_se_499124
oai_DiVA_org_uu_318926
28190774
10_1016_j_cmet_2017_01_004
S1550413117300396
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ADTPV
AOWAS
DF2
D8T
ZZAVC
ID FETCH-LOGICAL-c541t-68fccda8a6adf90399c332b85a391000d489c3adc66cd26f6a672827fd6abbea3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Mon Sep 01 03:31:27 EDT 2025
Thu Aug 21 06:45:35 EDT 2025
Mon Jul 21 10:11:13 EDT 2025
Mon Jul 21 06:02:47 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Tue Jul 01 03:58:16 EDT 2025
Fri Feb 23 02:27:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords diabetic kidney disease
albuminuria
insulin signaling
podocytes
lipotoxicity
endothelial fatty acid transport
vascular endothelial growth factor B
renal steatosis
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-68fccda8a6adf90399c332b85a391000d489c3adc66cd26f6a672827fd6abbea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413117300396
PMID 28190774
PQID 1867981683
PQPubID 23479
PageCount 14
ParticipantIDs swepub_primary_oai_swepub_ki_se_499124
swepub_primary_oai_DiVA_org_uu_318926
proquest_miscellaneous_1867981683
pubmed_primary_28190774
crossref_primary_10_1016_j_cmet_2017_01_004
crossref_citationtrail_10_1016_j_cmet_2017_01_004
elsevier_sciencedirect_doi_10_1016_j_cmet_2017_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-07
PublicationDateYYYYMMDD 2017-03-07
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Jiang, Li, Proctor, McManaman, Lucia, Chua, Levi (bib25) 2005; 54
Herman-Edelstein, Scherzer, Tobar, Levi, Gafter (bib10) 2014; 55
Zhao, Vaziri, Lin (bib28) 2015; 68
Karpanen, Bry, Ollila, Seppänen-Laakso, Liimatta, Leskinen, Kivelä, Helkamaa, Merentie, Jeltsch (bib12) 2008; 103
Muhl, Moessinger, Adzemovic, Dijkstra, Nilsson, Zeitelhofer, Hagberg, Huusko, Falkevall, Ylä-Herttuala, Eriksson (bib17) 2016; 365
Mehlem, Hagberg, Muhl, Eriksson, Falkevall (bib14) 2013; 8
Paeng, Park, Um, Nam, Kang, Kim, Oh, Park, Han, Ryu (bib19) 2016; 32
Patel, Wang, Magomedova, John, Rasheed, Santamaria, Wang, Tsai, Qiu, Orellana (bib20) 2014; 57
Coca, Ismail-Beigi, Haq, Krumholz, Parikh (bib4) 2012; 172
Aase, Lymboussaki, Kaipainen, Olofsson, Alitalo, Eriksson (bib1) 1999; 215
Robciuc, Kivelä, Williams, de Boer, van Dijk, Elamaa, Tigistu-Sahle, Molotkov, Leppänen, Käkelä (bib21) 2016; 23
Anderson, Stahl (bib2) 2013; 34
Shungin, Winkler, Croteau-Chonka, Ferreira, Locke, Mägi, Strawbridge, Pers, Fischer, Justice (bib23) 2015; 518
Haraldsson, Nyström, Deen (bib9) 2008; 88
Merscher, Fornoni (bib16) 2014; 5
Mehlem, Palombo, Wang, Hagberg, Eriksson, Falkevall (bib15) 2016; 65
Nyengaard (bib18) 1999; 10
Hagberg, Mehlem, Falkevall, Muhl, Fam, Ortsäter, Scotney, Nyqvist, Samén, Lu (bib8) 2012; 490
Grove, Voziyan, Spraggins, Wang, Paueksakon, Harris, Hudson, Caprioli (bib6) 2014; 55
Breyer, Böttinger, Brosius, Coffman, Harris, Heilig, Sharma (bib3) 2005; 16
Kang, Ahn, Choi, Ko, Han, Chinga, Park, Tao, Sharma, Pullman (bib11) 2015; 21
Lennon, Pons, Sabin, Wei, Shield, Coward, Tavaré, Mathieson, Saleem, Welsh (bib13) 2009; 24
Welsh, Hale, Eremina, Jeansson, Maezawa, Lennon, Pons, Owen, Satchell, Miles (bib26) 2010; 12
Sarafidis, Bakris (bib22) 2006; 70
Hagberg, Falkevall, Wang, Larsson, Huusko, Nilsson, van Meeteren, Samen, Lu, Vanwildemeersch (bib7) 2010; 464
Takahashi, Boysen, Li, Li, Swenberg (bib24) 2007; 71
Woroniecka, Park, Mohtat, Thomas, Pullman, Susztak (bib27) 2011; 60
de Boer, Rue, Hall, Heagerty, Weiss, Himmelfarb (bib5) 2011; 305
Shungin (10.1016/j.cmet.2017.01.004_bib23) 2015; 518
Wang (10.1016/j.cmet.2017.01.004_bib25) 2005; 54
Karpanen (10.1016/j.cmet.2017.01.004_bib12) 2008; 103
Merscher (10.1016/j.cmet.2017.01.004_bib16) 2014; 5
Aase (10.1016/j.cmet.2017.01.004_bib1) 1999; 215
Mehlem (10.1016/j.cmet.2017.01.004_bib15) 2016; 65
de Boer (10.1016/j.cmet.2017.01.004_bib5) 2011; 305
Anderson (10.1016/j.cmet.2017.01.004_bib2) 2013; 34
Breyer (10.1016/j.cmet.2017.01.004_bib3) 2005; 16
Grove (10.1016/j.cmet.2017.01.004_bib6) 2014; 55
Herman-Edelstein (10.1016/j.cmet.2017.01.004_bib10) 2014; 55
Kang (10.1016/j.cmet.2017.01.004_bib11) 2015; 21
Haraldsson (10.1016/j.cmet.2017.01.004_bib9) 2008; 88
Hagberg (10.1016/j.cmet.2017.01.004_bib7) 2010; 464
Mehlem (10.1016/j.cmet.2017.01.004_bib14) 2013; 8
Robciuc (10.1016/j.cmet.2017.01.004_bib21) 2016; 23
Paeng (10.1016/j.cmet.2017.01.004_bib19) 2016; 32
Sarafidis (10.1016/j.cmet.2017.01.004_bib22) 2006; 70
Takahashi (10.1016/j.cmet.2017.01.004_bib24) 2007; 71
Woroniecka (10.1016/j.cmet.2017.01.004_bib27) 2011; 60
Zhao (10.1016/j.cmet.2017.01.004_bib28) 2015; 68
Lennon (10.1016/j.cmet.2017.01.004_bib13) 2009; 24
Welsh (10.1016/j.cmet.2017.01.004_bib26) 2010; 12
Coca (10.1016/j.cmet.2017.01.004_bib4) 2012; 172
Nyengaard (10.1016/j.cmet.2017.01.004_bib18) 1999; 10
Hagberg (10.1016/j.cmet.2017.01.004_bib8) 2012; 490
Patel (10.1016/j.cmet.2017.01.004_bib20) 2014; 57
Muhl (10.1016/j.cmet.2017.01.004_bib17) 2016; 365
28239170 - Nat Rev Nephrol. 2017 Apr;13(4):194
References_xml – volume: 32
  start-page: 61
  year: 2016
  end-page: 72
  ident: bib19
  article-title: The locally activated renin-angiotensin system is involved in albumin permeability in glomerular endothelial cells under high glucose conditions
  publication-title: Nephrol. Dial. Transplant.
– volume: 55
  start-page: 561
  year: 2014
  end-page: 572
  ident: bib10
  article-title: Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy
  publication-title: J. Lipid Res.
– volume: 24
  start-page: 3288
  year: 2009
  end-page: 3296
  ident: bib13
  article-title: Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy
  publication-title: Nephrol. Dial. Transplant.
– volume: 8
  start-page: 1149
  year: 2013
  end-page: 1154
  ident: bib14
  article-title: Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease
  publication-title: Nat. Protoc.
– volume: 65
  start-page: 861
  year: 2016
  end-page: 873
  ident: bib15
  article-title: PGC-1α coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B
  publication-title: Diabetes
– volume: 68
  start-page: 153
  year: 2015
  end-page: 175
  ident: bib28
  article-title: Lipidomics: new insight into kidney disease
  publication-title: Adv. Clin. Chem.
– volume: 34
  start-page: 516
  year: 2013
  end-page: 528
  ident: bib2
  article-title: SLC27 fatty acid transport proteins
  publication-title: Mol. Aspects Med.
– volume: 70
  start-page: 1223
  year: 2006
  end-page: 1233
  ident: bib22
  article-title: Protection of the kidney by thiazolidinediones: an assessment from bench to bedside
  publication-title: Kidney Int.
– volume: 71
  start-page: 266
  year: 2007
  end-page: 271
  ident: bib24
  article-title: Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate
  publication-title: Kidney Int.
– volume: 55
  start-page: 1375
  year: 2014
  end-page: 1385
  ident: bib6
  article-title: Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles
  publication-title: J. Lipid Res.
– volume: 10
  start-page: 1100
  year: 1999
  end-page: 1123
  ident: bib18
  article-title: Stereologic methods and their application in kidney research
  publication-title: J. Am. Soc. Nephrol.
– volume: 12
  start-page: 329
  year: 2010
  end-page: 340
  ident: bib26
  article-title: Insulin signaling to the glomerular podocyte is critical for normal kidney function
  publication-title: Cell Metab.
– volume: 57
  start-page: 435
  year: 2014
  end-page: 446
  ident: bib20
  article-title: Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice
  publication-title: Diabetologia
– volume: 518
  start-page: 187
  year: 2015
  end-page: 196
  ident: bib23
  article-title: New genetic loci link adipose and insulin biology to body fat distribution
  publication-title: Nature
– volume: 60
  start-page: 2354
  year: 2011
  end-page: 2369
  ident: bib27
  article-title: Transcriptome analysis of human diabetic kidney disease
  publication-title: Diabetes
– volume: 5
  start-page: 127
  year: 2014
  ident: bib16
  article-title: Podocyte pathology and nephropathy—sphingolipids in glomerular diseases
  publication-title: Front. Endocrinol. (Lausanne)
– volume: 215
  start-page: 12
  year: 1999
  end-page: 25
  ident: bib1
  article-title: Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature
  publication-title: Dev. Dyn.
– volume: 54
  start-page: 2328
  year: 2005
  end-page: 2335
  ident: bib25
  article-title: Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes
  publication-title: Diabetes
– volume: 172
  start-page: 761
  year: 2012
  end-page: 769
  ident: bib4
  article-title: Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes
  publication-title: Arch. Intern. Med.
– volume: 23
  start-page: 712
  year: 2016
  end-page: 724
  ident: bib21
  article-title: VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications
  publication-title: Cell Metab.
– volume: 21
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib11
  article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
  publication-title: Nat. Med.
– volume: 88
  start-page: 451
  year: 2008
  end-page: 487
  ident: bib9
  article-title: Properties of the glomerular barrier and mechanisms of proteinuria
  publication-title: Physiol. Rev.
– volume: 103
  start-page: 1018
  year: 2008
  end-page: 1026
  ident: bib12
  article-title: Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy
  publication-title: Circ. Res.
– volume: 16
  start-page: 27
  year: 2005
  end-page: 45
  ident: bib3
  article-title: Mouse models of diabetic nephropathy
  publication-title: J. Am. Soc. Nephrol.
– volume: 305
  start-page: 2532
  year: 2011
  end-page: 2539
  ident: bib5
  article-title: Temporal trends in the prevalence of diabetic kidney disease in the United States
  publication-title: JAMA
– volume: 490
  start-page: 426
  year: 2012
  end-page: 430
  ident: bib8
  article-title: Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes
  publication-title: Nature
– volume: 464
  start-page: 917
  year: 2010
  end-page: 921
  ident: bib7
  article-title: Vascular endothelial growth factor B controls endothelial fatty acid uptake
  publication-title: Nature
– volume: 365
  start-page: 51
  year: 2016
  end-page: 63
  ident: bib17
  article-title: Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney
  publication-title: Cell Tissue Res.
– volume: 88
  start-page: 451
  year: 2008
  ident: 10.1016/j.cmet.2017.01.004_bib9
  article-title: Properties of the glomerular barrier and mechanisms of proteinuria
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00055.2006
– volume: 103
  start-page: 1018
  year: 2008
  ident: 10.1016/j.cmet.2017.01.004_bib12
  article-title: Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.178459
– volume: 215
  start-page: 12
  year: 1999
  ident: 10.1016/j.cmet.2017.01.004_bib1
  article-title: Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature
  publication-title: Dev. Dyn.
  doi: 10.1002/(SICI)1097-0177(199905)215:1<12::AID-DVDY3>3.0.CO;2-N
– volume: 305
  start-page: 2532
  year: 2011
  ident: 10.1016/j.cmet.2017.01.004_bib5
  article-title: Temporal trends in the prevalence of diabetic kidney disease in the United States
  publication-title: JAMA
  doi: 10.1001/jama.2011.861
– volume: 23
  start-page: 712
  year: 2016
  ident: 10.1016/j.cmet.2017.01.004_bib21
  article-title: VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.03.004
– volume: 71
  start-page: 266
  year: 2007
  ident: 10.1016/j.cmet.2017.01.004_bib24
  article-title: Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate
  publication-title: Kidney Int.
  doi: 10.1038/sj.ki.5002033
– volume: 464
  start-page: 917
  year: 2010
  ident: 10.1016/j.cmet.2017.01.004_bib7
  article-title: Vascular endothelial growth factor B controls endothelial fatty acid uptake
  publication-title: Nature
  doi: 10.1038/nature08945
– volume: 16
  start-page: 27
  year: 2005
  ident: 10.1016/j.cmet.2017.01.004_bib3
  article-title: Mouse models of diabetic nephropathy
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2004080648
– volume: 490
  start-page: 426
  year: 2012
  ident: 10.1016/j.cmet.2017.01.004_bib8
  article-title: Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature11464
– volume: 60
  start-page: 2354
  year: 2011
  ident: 10.1016/j.cmet.2017.01.004_bib27
  article-title: Transcriptome analysis of human diabetic kidney disease
  publication-title: Diabetes
  doi: 10.2337/db10-1181
– volume: 32
  start-page: 61
  year: 2016
  ident: 10.1016/j.cmet.2017.01.004_bib19
  article-title: The locally activated renin-angiotensin system is involved in albumin permeability in glomerular endothelial cells under high glucose conditions
  publication-title: Nephrol. Dial. Transplant.
– volume: 68
  start-page: 153
  year: 2015
  ident: 10.1016/j.cmet.2017.01.004_bib28
  article-title: Lipidomics: new insight into kidney disease
  publication-title: Adv. Clin. Chem.
  doi: 10.1016/bs.acc.2014.11.002
– volume: 12
  start-page: 329
  year: 2010
  ident: 10.1016/j.cmet.2017.01.004_bib26
  article-title: Insulin signaling to the glomerular podocyte is critical for normal kidney function
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.08.015
– volume: 57
  start-page: 435
  year: 2014
  ident: 10.1016/j.cmet.2017.01.004_bib20
  article-title: Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-3095-6
– volume: 172
  start-page: 761
  year: 2012
  ident: 10.1016/j.cmet.2017.01.004_bib4
  article-title: Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinternmed.2011.2230
– volume: 8
  start-page: 1149
  year: 2013
  ident: 10.1016/j.cmet.2017.01.004_bib14
  article-title: Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.055
– volume: 365
  start-page: 51
  year: 2016
  ident: 10.1016/j.cmet.2017.01.004_bib17
  article-title: Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-016-2377-y
– volume: 55
  start-page: 1375
  year: 2014
  ident: 10.1016/j.cmet.2017.01.004_bib6
  article-title: Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M049189
– volume: 518
  start-page: 187
  year: 2015
  ident: 10.1016/j.cmet.2017.01.004_bib23
  article-title: New genetic loci link adipose and insulin biology to body fat distribution
  publication-title: Nature
  doi: 10.1038/nature14132
– volume: 24
  start-page: 3288
  year: 2009
  ident: 10.1016/j.cmet.2017.01.004_bib13
  article-title: Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfp302
– volume: 65
  start-page: 861
  year: 2016
  ident: 10.1016/j.cmet.2017.01.004_bib15
  article-title: PGC-1α coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B
  publication-title: Diabetes
  doi: 10.2337/db15-1231
– volume: 54
  start-page: 2328
  year: 2005
  ident: 10.1016/j.cmet.2017.01.004_bib25
  article-title: Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.8.2328
– volume: 10
  start-page: 1100
  year: 1999
  ident: 10.1016/j.cmet.2017.01.004_bib18
  article-title: Stereologic methods and their application in kidney research
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.V1051100
– volume: 21
  start-page: 37
  year: 2015
  ident: 10.1016/j.cmet.2017.01.004_bib11
  article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development
  publication-title: Nat. Med.
  doi: 10.1038/nm.3762
– volume: 5
  start-page: 127
  year: 2014
  ident: 10.1016/j.cmet.2017.01.004_bib16
  article-title: Podocyte pathology and nephropathy—sphingolipids in glomerular diseases
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2014.00127
– volume: 34
  start-page: 516
  year: 2013
  ident: 10.1016/j.cmet.2017.01.004_bib2
  article-title: SLC27 fatty acid transport proteins
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2012.07.010
– volume: 70
  start-page: 1223
  year: 2006
  ident: 10.1016/j.cmet.2017.01.004_bib22
  article-title: Protection of the kidney by thiazolidinediones: an assessment from bench to bedside
  publication-title: Kidney Int.
  doi: 10.1038/sj.ki.5001620
– volume: 55
  start-page: 561
  year: 2014
  ident: 10.1016/j.cmet.2017.01.004_bib10
  article-title: Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.P040501
– reference: 28239170 - Nat Rev Nephrol. 2017 Apr;13(4):194
SSID ssj0036393
Score 2.562677
Snippet Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 713
SubjectTerms Adult
Aged
albuminuria
Albuminuria - complications
Albuminuria - metabolism
Albuminuria - pathology
Animals
Antibodies, Neutralizing - administration & dosage
Antibodies, Neutralizing - pharmacology
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Type 1 - complications
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 1 - pathology
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
diabetic kidney disease
Diabetic Nephropathies - metabolism
Diabetic Nephropathies - pathology
Diabetic Nephropathies - prevention & control
Disease Models, Animal
Disease Progression
Dyslipidemias - complications
Dyslipidemias - metabolism
Dyslipidemias - pathology
endothelial fatty acid transport
Fatty Acid Transport Proteins - metabolism
Female
Gene Deletion
Humans
Insulin - pharmacology
insulin signaling
Kidney - drug effects
Kidney - metabolism
Kidney - pathology
Kidney - physiopathology
Lipids - toxicity
lipotoxicity
Male
Mice, Inbred C57BL
Middle Aged
podocytes
Podocytes - drug effects
Podocytes - metabolism
Podocytes - pathology
renal steatosis
Signal Transduction - drug effects
Up-Regulation - drug effects
vascular endothelial growth factor B
Vascular Endothelial Growth Factor B - metabolism
Young Adult
Title Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease
URI https://dx.doi.org/10.1016/j.cmet.2017.01.004
https://www.ncbi.nlm.nih.gov/pubmed/28190774
https://www.proquest.com/docview/1867981683
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318926
http://kipublications.ki.se/Default.aspx?queryparsed=id:135241128
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm5B4QTC-wsdkJOAFRW0Sx40fu48yUYRQx0bfLMd2Ko8tqbZW2v577hKnEjDtgbfEsaPkHN_9Lr77HcB7OUwr7tAtyfO0irlJRVy4qoyN4cKKyibGtAGy38TxKf8yz-dbcNDnwlBYZdD9nU5vtXVoGQRpDpbeD04IXHNiiyHK9UwS7XbGizaJb77fa-MMLXAbZI-dY-odEme6GC9z6SieMhm11J2hWNsdxulf8PkXs2hrjSaP4VGAkWzcPekT2HL1LjzoCkvePgU3I0ZWtErs7OjzJN5nJ35BiBsbxpfugtLyEWKymaObfPXLZtXceIOAnOnasu8dd8M10wvtET6yLmzGGzb1tna3eN7u6jyD08nRj4PjOBRUiE3Ok1UsisoYqwsttK0kykyaLEvLIteZpP_8lhfYoq0RwthUVEKLEbpko8oKXZZOZ89hu25q9xJYVnJrKvRvJR9yzdElz2XiKGu1lM45HkHSS1KZwDZORS8uVB9Wdq5I-oqkr4aJQulH8GkzZtlxbdzbO-8nSP3xxSg0BveOe9fPpsKlRPsjunbN-loRt5-kOiRZBC-6ad48B-03DhEqR_Chm_fNFeLnPvRnY9VcLdR6rVBJylRE8PGOfqHpFx45hb4mgqtX__kar-EhnbXhcKM3sL26Wru3iI9W5R7sjKezn9O9diH8Bo2MEIo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJuUl5GAC4p2kzhOfNyWLlu6VKgv7c1ybGcV2iardlei_56ZOFkJqHrglvgROeN45pt4_A3ABzmMS-7QLUnTuAy5iUWYu7IIjeHCitJGxrQBsgdicsK_zdLZBuz0Z2EorLLT_V6nt9q6Kxl00hwsqmpwROCaE1sMUa4nUtyBu4gGMsrfsDfb7tVxgia4jbLH1iE1707O-CAvc-EooDLKWu7OLlvbDdbpX_T5F7Voa47Gj-BhhyPZyA_1MWy4-gnc85klr5-COyRKVjRL7HT36zjcZkfVnCA3Fowu3Dmdy0eMyQ4dPWRaLZpl86syiMiZri374ckbrpie6wrxI_NxM5Vh-5Wt3TXet9s6z-BkvHu8Mwm7jAqhSXm0DEVeGmN1roW2pUShSZMkcZGnOpH0o9_yHEu0NUIYG4tSaJGhT5aVVuiicDp5Dpt1U7uXwJKCW1Oigyv5kGuOPnkqI0fHVgvpnOMBRL0klenoxinrxbnq48p-KpK-IumrYaRQ-gF8XvdZeLKNW1un_QSpPz4Zhdbg1n7v-9lUuJZog0TXrlldKSL3k5SIJAnghZ_m9Thow3GIWDmAj37e1zVE0P2lOh2p5nKuViuFWlLGIoBPN7Tris7wyil0NhFdbf3na7yD-5Pj71M13TvYfwUPqKaNjctew-bycuXeIFhaFm_bxfAbqe4SBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+VEGF-B+Signaling+Ameliorates+Renal+Lipotoxicity+and+Protects+against+Diabetic+Kidney+Disease&rft.jtitle=Cell+metabolism&rft.au=Falkevall%2C+Annelie&rft.au=Mehlem%2C+Annika&rft.au=Palombo%2C+Isolde&rft.au=Heller+Sahlgren%2C+Benjamin&rft.date=2017-03-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=25&rft.issue=3&rft.spage=713&rft.epage=726&rft_id=info:doi/10.1016%2Fj.cmet.2017.01.004&rft.externalDocID=S1550413117300396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon