Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease
Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of ren...
Saved in:
Published in | Cell metabolism Vol. 25; no. 3; pp. 713 - 726 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.
[Display omitted]
•Targeting VEGF-B signaling to reduce renal lipotoxicity prevents DKD•The beneficial effect is due to re-sensitizing podocytes to insulin signaling•Renal VEGF-B levels are increased in both experimental models and subjects with DKD•Reducing VEGF-B signaling may be a therapeutic strategy for the treatment of DKD
Human studies have highlighted that hyperglycemia may not be the underlying cause of diabetic kidney disease (DKD). Falkevall et al. highlight a role for VEGF-B in renal lipotoxicity in mouse models and patients, offering a potential novel therapeutic approach to DKD. |
---|---|
AbstractList | Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.
[Display omitted]
•Targeting VEGF-B signaling to reduce renal lipotoxicity prevents DKD•The beneficial effect is due to re-sensitizing podocytes to insulin signaling•Renal VEGF-B levels are increased in both experimental models and subjects with DKD•Reducing VEGF-B signaling may be a therapeutic strategy for the treatment of DKD
Human studies have highlighted that hyperglycemia may not be the underlying cause of diabetic kidney disease (DKD). Falkevall et al. highlight a role for VEGF-B in renal lipotoxicity in mouse models and patients, offering a potential novel therapeutic approach to DKD. Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD.Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. |
Author | Axelsson, Jonas Mehlem, Annika Palombo, Isolde Sundelin, Birgitta Falkevall, Annelie Olauson, Hannes Ebarasi, Lwaki Patrakka, Jaakko Heller Sahlgren, Benjamin Eriksson, Ulf Ytterberg, A. Jimmy Scotney, Pierre He, Liqun Nash, Andrew |
Author_xml | – sequence: 1 givenname: Annelie surname: Falkevall fullname: Falkevall, Annelie organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 2 givenname: Annika surname: Mehlem fullname: Mehlem, Annika organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 3 givenname: Isolde surname: Palombo fullname: Palombo, Isolde organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 4 givenname: Benjamin surname: Heller Sahlgren fullname: Heller Sahlgren, Benjamin organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 5 givenname: Lwaki surname: Ebarasi fullname: Ebarasi, Lwaki organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 6 givenname: Liqun surname: He fullname: He, Liqun organization: Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden – sequence: 7 givenname: A. Jimmy surname: Ytterberg fullname: Ytterberg, A. Jimmy organization: Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 8 givenname: Hannes surname: Olauson fullname: Olauson, Hannes organization: Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, 141 86 Stockholm, Sweden – sequence: 9 givenname: Jonas surname: Axelsson fullname: Axelsson, Jonas organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden – sequence: 10 givenname: Birgitta surname: Sundelin fullname: Sundelin, Birgitta organization: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, 171 76 Stockholm, Sweden – sequence: 11 givenname: Jaakko surname: Patrakka fullname: Patrakka, Jaakko organization: KI/AZ Integrated CardioMetabolic Center (ICMC), Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 57 Huddinge, Sweden – sequence: 12 givenname: Pierre surname: Scotney fullname: Scotney, Pierre organization: CSL Limited, Parkville, VIC 3052, Australia – sequence: 13 givenname: Andrew surname: Nash fullname: Nash, Andrew organization: CSL Limited, Parkville, VIC 3052, Australia – sequence: 14 givenname: Ulf surname: Eriksson fullname: Eriksson, Ulf email: ulf.pe.eriksson@ki.se organization: Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28190774$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318926$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:135241128$$DView record from Swedish Publication Index |
BookMark | eNp9kUuP0zAURiM0iHnAH2CBsmRBgh-pY0tsyrxAVAINMFvrxr6pXNK4Yzsw_ffjqmUWSMzK15_Odxf3nBZHox-xKF5TUlNCxftVbdaYakZoWxNaE9I8K06o4qxqG0aO8jybkaqhnB4XpzGuCOGCK_6iOGaSKtK2zUmBN2gn48ZleXt5fVV9LL-75QjDLpivcXA-QMJY3mAOy4Xb-OTvnXFpW8Joy2_BJzQplrAEN8ZUXjjoMDlTfnF2xG3-R4SIL4vnPQwRXx3es-Ln1eWP80_V4uv15_P5ojKzhqZKyN4YCxIE2F4RrpThnHVyBlxRQohtZE7AGiGMZaIXIFomWdtbAV2HwM-Kar83_sHN1OlNcGsIW-3B6UP0K0-oG6UoazL_7r_8hbudax-Wepo0p1IxkfG3e3wT_N2EMem1iwaHAUb0U9RUilZJKiTP6JsDOnVrtI-b_14-A2wPmOBjDNg_IpTonV690ju9eqdXE6qz3lyS_5SyCkjOjymAG56ufthXMd__t8Ogo3E4GrQuZIXaevdU_QE_hcFU |
CitedBy_id | crossref_primary_10_1038_s41598_020_57599_2 crossref_primary_10_1016_j_biopha_2024_116322 crossref_primary_10_1038_s41467_024_46366_w crossref_primary_10_1155_2020_3650937 crossref_primary_10_1016_j_canlet_2020_12_031 crossref_primary_10_3390_nu11071664 crossref_primary_10_1159_000518132 crossref_primary_10_1038_s41419_021_03850_1 crossref_primary_10_18632_aging_103649 crossref_primary_10_3389_fphar_2024_1285797 crossref_primary_10_2337_db20_1157 crossref_primary_10_1111_apha_13349 crossref_primary_10_1186_s13287_023_03340_5 crossref_primary_10_1097_EC9_0000000000000024 crossref_primary_10_3390_ijms25105418 crossref_primary_10_1507_endocrj_EJ22_0123 crossref_primary_10_3390_ijms24065629 crossref_primary_10_18632_aging_202794 crossref_primary_10_3389_fendo_2021_671566 crossref_primary_10_1093_jpp_rgae102 crossref_primary_10_1186_s12964_024_01502_3 crossref_primary_10_3389_fcell_2021_690079 crossref_primary_10_1155_2021_6109406 crossref_primary_10_3389_fendo_2022_1026938 crossref_primary_10_3390_cancers16101902 crossref_primary_10_1016_j_aquaculture_2023_739793 crossref_primary_10_3389_fendo_2020_00359 crossref_primary_10_1186_s12882_021_02271_8 crossref_primary_10_1038_nrneph_2017_22 crossref_primary_10_1111_cpr_13052 crossref_primary_10_1155_2019_3514574 crossref_primary_10_1038_s41401_021_00660_1 crossref_primary_10_1093_ckj_sfae222 crossref_primary_10_1016_j_jbc_2023_105185 crossref_primary_10_3389_fendo_2023_1274025 crossref_primary_10_1681_ASN_0000000000000438 crossref_primary_10_1016_j_xkme_2020_10_005 crossref_primary_10_4239_wjd_v15_i6_1091 crossref_primary_10_1038_s41467_023_37831_z crossref_primary_10_3390_antiox13121540 crossref_primary_10_3390_ijms21124359 crossref_primary_10_1016_j_biopha_2023_115734 crossref_primary_10_1016_j_metabol_2023_155718 crossref_primary_10_3389_fphar_2021_777395 crossref_primary_10_1371_journal_pone_0316049 crossref_primary_10_1155_2022_6275505 crossref_primary_10_1016_j_trsl_2023_11_002 crossref_primary_10_1016_j_tcb_2020_10_003 crossref_primary_10_34172_jnp_2023_21465 crossref_primary_10_1016_j_cytogfr_2017_11_005 crossref_primary_10_1080_08977194_2019_1626851 crossref_primary_10_1042_BSR20171089 crossref_primary_10_1002_advs_202306365 crossref_primary_10_3390_nu13010241 crossref_primary_10_3390_life13020539 crossref_primary_10_1007_s11695_020_04611_3 crossref_primary_10_3389_fendo_2023_1173933 crossref_primary_10_1016_j_lfs_2021_119401 crossref_primary_10_3389_fmolb_2025_1541440 crossref_primary_10_3390_ijms21072632 crossref_primary_10_1016_j_kint_2021_12_013 crossref_primary_10_1097_MED_0000000000000533 crossref_primary_10_1155_2021_6686617 crossref_primary_10_3390_antiox10071143 crossref_primary_10_4239_wjd_v15_i8_1663 crossref_primary_10_3389_fphar_2024_1500458 crossref_primary_10_3390_antiox12122083 crossref_primary_10_1007_s00216_019_01721_5 crossref_primary_10_1016_j_biopha_2023_115670 crossref_primary_10_1016_j_biopha_2023_114465 crossref_primary_10_1002_dmrr_3789 crossref_primary_10_3389_fphys_2020_00518 crossref_primary_10_3389_fendo_2022_862545 crossref_primary_10_1016_j_apsb_2020_07_002 crossref_primary_10_1096_fj_201800742R crossref_primary_10_3389_fendo_2024_1336402 crossref_primary_10_1007_s00432_020_03384_7 crossref_primary_10_1016_j_metabol_2024_156037 crossref_primary_10_1016_j_phymed_2023_154775 crossref_primary_10_1038_s41581_023_00741_w crossref_primary_10_1155_2017_5724069 crossref_primary_10_7717_peerj_16239 crossref_primary_10_1016_j_ijbiomac_2024_131507 crossref_primary_10_4239_wjd_v12_i5_524 crossref_primary_10_1007_s10753_024_02215_y crossref_primary_10_1038_s41598_017_09806_w crossref_primary_10_1053_j_ackd_2017_12_005 crossref_primary_10_1016_j_kint_2024_11_026 crossref_primary_10_1038_s41420_023_01304_5 crossref_primary_10_1016_j_tem_2024_11_004 crossref_primary_10_1002_cbic_202100463 crossref_primary_10_1016_j_ajpath_2017_10_012 crossref_primary_10_1007_s12079_021_00664_w crossref_primary_10_1002_jcp_28821 crossref_primary_10_1016_j_bbalip_2023_159329 crossref_primary_10_1007_s00467_024_06595_z crossref_primary_10_1681_ASN_0000000511 crossref_primary_10_1038_s41392_022_01036_5 crossref_primary_10_1016_j_biopha_2021_111806 crossref_primary_10_1002_prca_70002 crossref_primary_10_3390_cells11203236 crossref_primary_10_1016_j_phrs_2020_104678 crossref_primary_10_1172_jci_insight_140483 crossref_primary_10_3390_antiox12091715 crossref_primary_10_1016_j_cmet_2020_10_019 crossref_primary_10_1186_s12931_021_01754_4 crossref_primary_10_1101_cshperspect_a041162 crossref_primary_10_1080_0886022X_2024_2378999 crossref_primary_10_1016_j_jhep_2023_01_014 crossref_primary_10_1152_ajpendo_00090_2020 crossref_primary_10_3892_mmr_2022_12801 crossref_primary_10_1038_s41420_018_0065_2 crossref_primary_10_1113_JP277367 crossref_primary_10_1016_j_ijbiomac_2019_12_201 crossref_primary_10_1002_advs_202100275 crossref_primary_10_1681_ASN_2018010050 crossref_primary_10_1042_BST20200991 crossref_primary_10_1002_bit_26518 crossref_primary_10_1038_s41419_020_03199_x crossref_primary_10_2337_db23_0811 crossref_primary_10_1155_2022_9735555 crossref_primary_10_3389_fphys_2021_624698 crossref_primary_10_1097_MNH_0000000000000376 crossref_primary_10_1016_j_celrep_2024_114075 crossref_primary_10_1016_j_jconrel_2024_06_049 crossref_primary_10_15252_embr_201949343 crossref_primary_10_2174_1389201023666220506105026 crossref_primary_10_23736_S2724_6507_21_03370_8 crossref_primary_10_2147_DMSO_S437586 crossref_primary_10_1016_j_intimp_2020_107340 crossref_primary_10_1038_s41581_021_00393_8 crossref_primary_10_1016_j_amjms_2019_11_004 crossref_primary_10_1002_jcp_28924 |
Cites_doi | 10.1152/physrev.00055.2006 10.1161/CIRCRESAHA.108.178459 10.1002/(SICI)1097-0177(199905)215:1<12::AID-DVDY3>3.0.CO;2-N 10.1001/jama.2011.861 10.1016/j.cmet.2016.03.004 10.1038/sj.ki.5002033 10.1038/nature08945 10.1681/ASN.2004080648 10.1038/nature11464 10.2337/db10-1181 10.1016/bs.acc.2014.11.002 10.1016/j.cmet.2010.08.015 10.1007/s00125-013-3095-6 10.1001/archinternmed.2011.2230 10.1038/nprot.2013.055 10.1007/s00441-016-2377-y 10.1194/jlr.M049189 10.1038/nature14132 10.1093/ndt/gfp302 10.2337/db15-1231 10.2337/diabetes.54.8.2328 10.1681/ASN.V1051100 10.1038/nm.3762 10.3389/fendo.2014.00127 10.1016/j.mam.2012.07.010 10.1038/sj.ki.5001620 10.1194/jlr.P040501 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS DF2 D8T ZZAVC |
DOI | 10.1016/j.cmet.2017.01.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles SWEPUB Uppsala universitet SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 726 |
ExternalDocumentID | oai_swepub_ki_se_499124 oai_DiVA_org_uu_318926 28190774 10_1016_j_cmet_2017_01_004 S1550413117300396 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EFKBS EIF NPM 7X8 ADTPV AOWAS DF2 D8T ZZAVC |
ID | FETCH-LOGICAL-c541t-68fccda8a6adf90399c332b85a391000d489c3adc66cd26f6a672827fd6abbea3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Mon Sep 01 03:31:27 EDT 2025 Thu Aug 21 06:45:35 EDT 2025 Mon Jul 21 10:11:13 EDT 2025 Mon Jul 21 06:02:47 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 03:58:16 EDT 2025 Fri Feb 23 02:27:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | diabetic kidney disease albuminuria insulin signaling podocytes lipotoxicity endothelial fatty acid transport vascular endothelial growth factor B renal steatosis |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-68fccda8a6adf90399c332b85a391000d489c3adc66cd26f6a672827fd6abbea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413117300396 |
PMID | 28190774 |
PQID | 1867981683 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_499124 swepub_primary_oai_DiVA_org_uu_318926 proquest_miscellaneous_1867981683 pubmed_primary_28190774 crossref_primary_10_1016_j_cmet_2017_01_004 crossref_citationtrail_10_1016_j_cmet_2017_01_004 elsevier_sciencedirect_doi_10_1016_j_cmet_2017_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-07 |
PublicationDateYYYYMMDD | 2017-03-07 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Jiang, Li, Proctor, McManaman, Lucia, Chua, Levi (bib25) 2005; 54 Herman-Edelstein, Scherzer, Tobar, Levi, Gafter (bib10) 2014; 55 Zhao, Vaziri, Lin (bib28) 2015; 68 Karpanen, Bry, Ollila, Seppänen-Laakso, Liimatta, Leskinen, Kivelä, Helkamaa, Merentie, Jeltsch (bib12) 2008; 103 Muhl, Moessinger, Adzemovic, Dijkstra, Nilsson, Zeitelhofer, Hagberg, Huusko, Falkevall, Ylä-Herttuala, Eriksson (bib17) 2016; 365 Mehlem, Hagberg, Muhl, Eriksson, Falkevall (bib14) 2013; 8 Paeng, Park, Um, Nam, Kang, Kim, Oh, Park, Han, Ryu (bib19) 2016; 32 Patel, Wang, Magomedova, John, Rasheed, Santamaria, Wang, Tsai, Qiu, Orellana (bib20) 2014; 57 Coca, Ismail-Beigi, Haq, Krumholz, Parikh (bib4) 2012; 172 Aase, Lymboussaki, Kaipainen, Olofsson, Alitalo, Eriksson (bib1) 1999; 215 Robciuc, Kivelä, Williams, de Boer, van Dijk, Elamaa, Tigistu-Sahle, Molotkov, Leppänen, Käkelä (bib21) 2016; 23 Anderson, Stahl (bib2) 2013; 34 Shungin, Winkler, Croteau-Chonka, Ferreira, Locke, Mägi, Strawbridge, Pers, Fischer, Justice (bib23) 2015; 518 Haraldsson, Nyström, Deen (bib9) 2008; 88 Merscher, Fornoni (bib16) 2014; 5 Mehlem, Palombo, Wang, Hagberg, Eriksson, Falkevall (bib15) 2016; 65 Nyengaard (bib18) 1999; 10 Hagberg, Mehlem, Falkevall, Muhl, Fam, Ortsäter, Scotney, Nyqvist, Samén, Lu (bib8) 2012; 490 Grove, Voziyan, Spraggins, Wang, Paueksakon, Harris, Hudson, Caprioli (bib6) 2014; 55 Breyer, Böttinger, Brosius, Coffman, Harris, Heilig, Sharma (bib3) 2005; 16 Kang, Ahn, Choi, Ko, Han, Chinga, Park, Tao, Sharma, Pullman (bib11) 2015; 21 Lennon, Pons, Sabin, Wei, Shield, Coward, Tavaré, Mathieson, Saleem, Welsh (bib13) 2009; 24 Welsh, Hale, Eremina, Jeansson, Maezawa, Lennon, Pons, Owen, Satchell, Miles (bib26) 2010; 12 Sarafidis, Bakris (bib22) 2006; 70 Hagberg, Falkevall, Wang, Larsson, Huusko, Nilsson, van Meeteren, Samen, Lu, Vanwildemeersch (bib7) 2010; 464 Takahashi, Boysen, Li, Li, Swenberg (bib24) 2007; 71 Woroniecka, Park, Mohtat, Thomas, Pullman, Susztak (bib27) 2011; 60 de Boer, Rue, Hall, Heagerty, Weiss, Himmelfarb (bib5) 2011; 305 Shungin (10.1016/j.cmet.2017.01.004_bib23) 2015; 518 Wang (10.1016/j.cmet.2017.01.004_bib25) 2005; 54 Karpanen (10.1016/j.cmet.2017.01.004_bib12) 2008; 103 Merscher (10.1016/j.cmet.2017.01.004_bib16) 2014; 5 Aase (10.1016/j.cmet.2017.01.004_bib1) 1999; 215 Mehlem (10.1016/j.cmet.2017.01.004_bib15) 2016; 65 de Boer (10.1016/j.cmet.2017.01.004_bib5) 2011; 305 Anderson (10.1016/j.cmet.2017.01.004_bib2) 2013; 34 Breyer (10.1016/j.cmet.2017.01.004_bib3) 2005; 16 Grove (10.1016/j.cmet.2017.01.004_bib6) 2014; 55 Herman-Edelstein (10.1016/j.cmet.2017.01.004_bib10) 2014; 55 Kang (10.1016/j.cmet.2017.01.004_bib11) 2015; 21 Haraldsson (10.1016/j.cmet.2017.01.004_bib9) 2008; 88 Hagberg (10.1016/j.cmet.2017.01.004_bib7) 2010; 464 Mehlem (10.1016/j.cmet.2017.01.004_bib14) 2013; 8 Robciuc (10.1016/j.cmet.2017.01.004_bib21) 2016; 23 Paeng (10.1016/j.cmet.2017.01.004_bib19) 2016; 32 Sarafidis (10.1016/j.cmet.2017.01.004_bib22) 2006; 70 Takahashi (10.1016/j.cmet.2017.01.004_bib24) 2007; 71 Woroniecka (10.1016/j.cmet.2017.01.004_bib27) 2011; 60 Zhao (10.1016/j.cmet.2017.01.004_bib28) 2015; 68 Lennon (10.1016/j.cmet.2017.01.004_bib13) 2009; 24 Welsh (10.1016/j.cmet.2017.01.004_bib26) 2010; 12 Coca (10.1016/j.cmet.2017.01.004_bib4) 2012; 172 Nyengaard (10.1016/j.cmet.2017.01.004_bib18) 1999; 10 Hagberg (10.1016/j.cmet.2017.01.004_bib8) 2012; 490 Patel (10.1016/j.cmet.2017.01.004_bib20) 2014; 57 Muhl (10.1016/j.cmet.2017.01.004_bib17) 2016; 365 28239170 - Nat Rev Nephrol. 2017 Apr;13(4):194 |
References_xml | – volume: 32 start-page: 61 year: 2016 end-page: 72 ident: bib19 article-title: The locally activated renin-angiotensin system is involved in albumin permeability in glomerular endothelial cells under high glucose conditions publication-title: Nephrol. Dial. Transplant. – volume: 55 start-page: 561 year: 2014 end-page: 572 ident: bib10 article-title: Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy publication-title: J. Lipid Res. – volume: 24 start-page: 3288 year: 2009 end-page: 3296 ident: bib13 article-title: Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy publication-title: Nephrol. Dial. Transplant. – volume: 8 start-page: 1149 year: 2013 end-page: 1154 ident: bib14 article-title: Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease publication-title: Nat. Protoc. – volume: 65 start-page: 861 year: 2016 end-page: 873 ident: bib15 article-title: PGC-1α coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B publication-title: Diabetes – volume: 68 start-page: 153 year: 2015 end-page: 175 ident: bib28 article-title: Lipidomics: new insight into kidney disease publication-title: Adv. Clin. Chem. – volume: 34 start-page: 516 year: 2013 end-page: 528 ident: bib2 article-title: SLC27 fatty acid transport proteins publication-title: Mol. Aspects Med. – volume: 70 start-page: 1223 year: 2006 end-page: 1233 ident: bib22 article-title: Protection of the kidney by thiazolidinediones: an assessment from bench to bedside publication-title: Kidney Int. – volume: 71 start-page: 266 year: 2007 end-page: 271 ident: bib24 article-title: Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate publication-title: Kidney Int. – volume: 55 start-page: 1375 year: 2014 end-page: 1385 ident: bib6 article-title: Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles publication-title: J. Lipid Res. – volume: 10 start-page: 1100 year: 1999 end-page: 1123 ident: bib18 article-title: Stereologic methods and their application in kidney research publication-title: J. Am. Soc. Nephrol. – volume: 12 start-page: 329 year: 2010 end-page: 340 ident: bib26 article-title: Insulin signaling to the glomerular podocyte is critical for normal kidney function publication-title: Cell Metab. – volume: 57 start-page: 435 year: 2014 end-page: 446 ident: bib20 article-title: Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice publication-title: Diabetologia – volume: 518 start-page: 187 year: 2015 end-page: 196 ident: bib23 article-title: New genetic loci link adipose and insulin biology to body fat distribution publication-title: Nature – volume: 60 start-page: 2354 year: 2011 end-page: 2369 ident: bib27 article-title: Transcriptome analysis of human diabetic kidney disease publication-title: Diabetes – volume: 5 start-page: 127 year: 2014 ident: bib16 article-title: Podocyte pathology and nephropathy—sphingolipids in glomerular diseases publication-title: Front. Endocrinol. (Lausanne) – volume: 215 start-page: 12 year: 1999 end-page: 25 ident: bib1 article-title: Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature publication-title: Dev. Dyn. – volume: 54 start-page: 2328 year: 2005 end-page: 2335 ident: bib25 article-title: Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes publication-title: Diabetes – volume: 172 start-page: 761 year: 2012 end-page: 769 ident: bib4 article-title: Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes publication-title: Arch. Intern. Med. – volume: 23 start-page: 712 year: 2016 end-page: 724 ident: bib21 article-title: VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications publication-title: Cell Metab. – volume: 21 start-page: 37 year: 2015 end-page: 46 ident: bib11 article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development publication-title: Nat. Med. – volume: 88 start-page: 451 year: 2008 end-page: 487 ident: bib9 article-title: Properties of the glomerular barrier and mechanisms of proteinuria publication-title: Physiol. Rev. – volume: 103 start-page: 1018 year: 2008 end-page: 1026 ident: bib12 article-title: Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy publication-title: Circ. Res. – volume: 16 start-page: 27 year: 2005 end-page: 45 ident: bib3 article-title: Mouse models of diabetic nephropathy publication-title: J. Am. Soc. Nephrol. – volume: 305 start-page: 2532 year: 2011 end-page: 2539 ident: bib5 article-title: Temporal trends in the prevalence of diabetic kidney disease in the United States publication-title: JAMA – volume: 490 start-page: 426 year: 2012 end-page: 430 ident: bib8 article-title: Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes publication-title: Nature – volume: 464 start-page: 917 year: 2010 end-page: 921 ident: bib7 article-title: Vascular endothelial growth factor B controls endothelial fatty acid uptake publication-title: Nature – volume: 365 start-page: 51 year: 2016 end-page: 63 ident: bib17 article-title: Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney publication-title: Cell Tissue Res. – volume: 88 start-page: 451 year: 2008 ident: 10.1016/j.cmet.2017.01.004_bib9 article-title: Properties of the glomerular barrier and mechanisms of proteinuria publication-title: Physiol. Rev. doi: 10.1152/physrev.00055.2006 – volume: 103 start-page: 1018 year: 2008 ident: 10.1016/j.cmet.2017.01.004_bib12 article-title: Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.178459 – volume: 215 start-page: 12 year: 1999 ident: 10.1016/j.cmet.2017.01.004_bib1 article-title: Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature publication-title: Dev. Dyn. doi: 10.1002/(SICI)1097-0177(199905)215:1<12::AID-DVDY3>3.0.CO;2-N – volume: 305 start-page: 2532 year: 2011 ident: 10.1016/j.cmet.2017.01.004_bib5 article-title: Temporal trends in the prevalence of diabetic kidney disease in the United States publication-title: JAMA doi: 10.1001/jama.2011.861 – volume: 23 start-page: 712 year: 2016 ident: 10.1016/j.cmet.2017.01.004_bib21 article-title: VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.03.004 – volume: 71 start-page: 266 year: 2007 ident: 10.1016/j.cmet.2017.01.004_bib24 article-title: Tandem mass spectrometry measurements of creatinine in mouse plasma and urine for determining glomerular filtration rate publication-title: Kidney Int. doi: 10.1038/sj.ki.5002033 – volume: 464 start-page: 917 year: 2010 ident: 10.1016/j.cmet.2017.01.004_bib7 article-title: Vascular endothelial growth factor B controls endothelial fatty acid uptake publication-title: Nature doi: 10.1038/nature08945 – volume: 16 start-page: 27 year: 2005 ident: 10.1016/j.cmet.2017.01.004_bib3 article-title: Mouse models of diabetic nephropathy publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2004080648 – volume: 490 start-page: 426 year: 2012 ident: 10.1016/j.cmet.2017.01.004_bib8 article-title: Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes publication-title: Nature doi: 10.1038/nature11464 – volume: 60 start-page: 2354 year: 2011 ident: 10.1016/j.cmet.2017.01.004_bib27 article-title: Transcriptome analysis of human diabetic kidney disease publication-title: Diabetes doi: 10.2337/db10-1181 – volume: 32 start-page: 61 year: 2016 ident: 10.1016/j.cmet.2017.01.004_bib19 article-title: The locally activated renin-angiotensin system is involved in albumin permeability in glomerular endothelial cells under high glucose conditions publication-title: Nephrol. Dial. Transplant. – volume: 68 start-page: 153 year: 2015 ident: 10.1016/j.cmet.2017.01.004_bib28 article-title: Lipidomics: new insight into kidney disease publication-title: Adv. Clin. Chem. doi: 10.1016/bs.acc.2014.11.002 – volume: 12 start-page: 329 year: 2010 ident: 10.1016/j.cmet.2017.01.004_bib26 article-title: Insulin signaling to the glomerular podocyte is critical for normal kidney function publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.08.015 – volume: 57 start-page: 435 year: 2014 ident: 10.1016/j.cmet.2017.01.004_bib20 article-title: Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice publication-title: Diabetologia doi: 10.1007/s00125-013-3095-6 – volume: 172 start-page: 761 year: 2012 ident: 10.1016/j.cmet.2017.01.004_bib4 article-title: Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2011.2230 – volume: 8 start-page: 1149 year: 2013 ident: 10.1016/j.cmet.2017.01.004_bib14 article-title: Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.055 – volume: 365 start-page: 51 year: 2016 ident: 10.1016/j.cmet.2017.01.004_bib17 article-title: Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney publication-title: Cell Tissue Res. doi: 10.1007/s00441-016-2377-y – volume: 55 start-page: 1375 year: 2014 ident: 10.1016/j.cmet.2017.01.004_bib6 article-title: Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles publication-title: J. Lipid Res. doi: 10.1194/jlr.M049189 – volume: 518 start-page: 187 year: 2015 ident: 10.1016/j.cmet.2017.01.004_bib23 article-title: New genetic loci link adipose and insulin biology to body fat distribution publication-title: Nature doi: 10.1038/nature14132 – volume: 24 start-page: 3288 year: 2009 ident: 10.1016/j.cmet.2017.01.004_bib13 article-title: Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfp302 – volume: 65 start-page: 861 year: 2016 ident: 10.1016/j.cmet.2017.01.004_bib15 article-title: PGC-1α coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-B publication-title: Diabetes doi: 10.2337/db15-1231 – volume: 54 start-page: 2328 year: 2005 ident: 10.1016/j.cmet.2017.01.004_bib25 article-title: Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.8.2328 – volume: 10 start-page: 1100 year: 1999 ident: 10.1016/j.cmet.2017.01.004_bib18 article-title: Stereologic methods and their application in kidney research publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.V1051100 – volume: 21 start-page: 37 year: 2015 ident: 10.1016/j.cmet.2017.01.004_bib11 article-title: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development publication-title: Nat. Med. doi: 10.1038/nm.3762 – volume: 5 start-page: 127 year: 2014 ident: 10.1016/j.cmet.2017.01.004_bib16 article-title: Podocyte pathology and nephropathy—sphingolipids in glomerular diseases publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2014.00127 – volume: 34 start-page: 516 year: 2013 ident: 10.1016/j.cmet.2017.01.004_bib2 article-title: SLC27 fatty acid transport proteins publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2012.07.010 – volume: 70 start-page: 1223 year: 2006 ident: 10.1016/j.cmet.2017.01.004_bib22 article-title: Protection of the kidney by thiazolidinediones: an assessment from bench to bedside publication-title: Kidney Int. doi: 10.1038/sj.ki.5001620 – volume: 55 start-page: 561 year: 2014 ident: 10.1016/j.cmet.2017.01.004_bib10 article-title: Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy publication-title: J. Lipid Res. doi: 10.1194/jlr.P040501 – reference: 28239170 - Nat Rev Nephrol. 2017 Apr;13(4):194 |
SSID | ssj0036393 |
Score | 2.562677 |
Snippet | Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 713 |
SubjectTerms | Adult Aged albuminuria Albuminuria - complications Albuminuria - metabolism Albuminuria - pathology Animals Antibodies, Neutralizing - administration & dosage Antibodies, Neutralizing - pharmacology Diabetes Mellitus, Experimental - complications Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Experimental - pathology Diabetes Mellitus, Type 1 - complications Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 1 - pathology Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology diabetic kidney disease Diabetic Nephropathies - metabolism Diabetic Nephropathies - pathology Diabetic Nephropathies - prevention & control Disease Models, Animal Disease Progression Dyslipidemias - complications Dyslipidemias - metabolism Dyslipidemias - pathology endothelial fatty acid transport Fatty Acid Transport Proteins - metabolism Female Gene Deletion Humans Insulin - pharmacology insulin signaling Kidney - drug effects Kidney - metabolism Kidney - pathology Kidney - physiopathology Lipids - toxicity lipotoxicity Male Mice, Inbred C57BL Middle Aged podocytes Podocytes - drug effects Podocytes - metabolism Podocytes - pathology renal steatosis Signal Transduction - drug effects Up-Regulation - drug effects vascular endothelial growth factor B Vascular Endothelial Growth Factor B - metabolism Young Adult |
Title | Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease |
URI | https://dx.doi.org/10.1016/j.cmet.2017.01.004 https://www.ncbi.nlm.nih.gov/pubmed/28190774 https://www.proquest.com/docview/1867981683 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318926 http://kipublications.ki.se/Default.aspx?queryparsed=id:135241128 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm5B4QTC-wsdkJOAFRW0Sx40fu48yUYRQx0bfLMd2Ko8tqbZW2v577hKnEjDtgbfEsaPkHN_9Lr77HcB7OUwr7tAtyfO0irlJRVy4qoyN4cKKyibGtAGy38TxKf8yz-dbcNDnwlBYZdD9nU5vtXVoGQRpDpbeD04IXHNiiyHK9UwS7XbGizaJb77fa-MMLXAbZI-dY-odEme6GC9z6SieMhm11J2hWNsdxulf8PkXs2hrjSaP4VGAkWzcPekT2HL1LjzoCkvePgU3I0ZWtErs7OjzJN5nJ35BiBsbxpfugtLyEWKymaObfPXLZtXceIOAnOnasu8dd8M10wvtET6yLmzGGzb1tna3eN7u6jyD08nRj4PjOBRUiE3Ok1UsisoYqwsttK0kykyaLEvLIteZpP_8lhfYoq0RwthUVEKLEbpko8oKXZZOZ89hu25q9xJYVnJrKvRvJR9yzdElz2XiKGu1lM45HkHSS1KZwDZORS8uVB9Wdq5I-oqkr4aJQulH8GkzZtlxbdzbO-8nSP3xxSg0BveOe9fPpsKlRPsjunbN-loRt5-kOiRZBC-6ad48B-03DhEqR_Chm_fNFeLnPvRnY9VcLdR6rVBJylRE8PGOfqHpFx45hb4mgqtX__kar-EhnbXhcKM3sL26Wru3iI9W5R7sjKezn9O9diH8Bo2MEIo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJuUl5GAC4p2kzhOfNyWLlu6VKgv7c1ybGcV2iardlei_56ZOFkJqHrglvgROeN45pt4_A3ABzmMS-7QLUnTuAy5iUWYu7IIjeHCitJGxrQBsgdicsK_zdLZBuz0Z2EorLLT_V6nt9q6Kxl00hwsqmpwROCaE1sMUa4nUtyBu4gGMsrfsDfb7tVxgia4jbLH1iE1707O-CAvc-EooDLKWu7OLlvbDdbpX_T5F7Voa47Gj-BhhyPZyA_1MWy4-gnc85klr5-COyRKVjRL7HT36zjcZkfVnCA3Fowu3Dmdy0eMyQ4dPWRaLZpl86syiMiZri374ckbrpie6wrxI_NxM5Vh-5Wt3TXet9s6z-BkvHu8Mwm7jAqhSXm0DEVeGmN1roW2pUShSZMkcZGnOpH0o9_yHEu0NUIYG4tSaJGhT5aVVuiicDp5Dpt1U7uXwJKCW1Oigyv5kGuOPnkqI0fHVgvpnOMBRL0klenoxinrxbnq48p-KpK-IumrYaRQ-gF8XvdZeLKNW1un_QSpPz4Zhdbg1n7v-9lUuJZog0TXrlldKSL3k5SIJAnghZ_m9Thow3GIWDmAj37e1zVE0P2lOh2p5nKuViuFWlLGIoBPN7Tris7wyil0NhFdbf3na7yD-5Pj71M13TvYfwUPqKaNjctew-bycuXeIFhaFm_bxfAbqe4SBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+VEGF-B+Signaling+Ameliorates+Renal+Lipotoxicity+and+Protects+against+Diabetic+Kidney+Disease&rft.jtitle=Cell+metabolism&rft.au=Falkevall%2C+Annelie&rft.au=Mehlem%2C+Annika&rft.au=Palombo%2C+Isolde&rft.au=Heller+Sahlgren%2C+Benjamin&rft.date=2017-03-07&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=25&rft.issue=3&rft.spage=713&rft.epage=726&rft_id=info:doi/10.1016%2Fj.cmet.2017.01.004&rft.externalDocID=S1550413117300396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |