A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound

Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bact...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 17; pp. 248 - 260
Main Authors Xie, Yajie, Qiao, Kun, Yue, Lina, Tang, Tao, Zheng, Yudong, Zhu, Shihui, Yang, Huiyi, Fang, Ziyuan
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.11.2022
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. [Display omitted] •A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties.•Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS.•The S-DCBC/CS composites could promote epidermal growth and collagen production.
AbstractList Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. [Display omitted] •A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties.•Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS.•The S-DCBC/CS composites could promote epidermal growth and collagen production.
Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. Image 1 • A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties. • Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS. • The S-DCBC/CS composites could promote epidermal growth and collagen production.
Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.
Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it "directional adhesion antibacterial effects". In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it "directional adhesion antibacterial effects". In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.
Author Fang, Ziyuan
Zheng, Yudong
Yang, Huiyi
Yue, Lina
Zhu, Shihui
Tang, Tao
Xie, Yajie
Qiao, Kun
Author_xml – sequence: 1
  givenname: Yajie
  surname: Xie
  fullname: Xie, Yajie
  organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Kun
  surname: Qiao
  fullname: Qiao, Kun
  organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Lina
  surname: Yue
  fullname: Yue, Lina
  organization: Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang, 065201, Hebei, China
– sequence: 4
  givenname: Tao
  surname: Tang
  fullname: Tang, Tao
  organization: Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
– sequence: 5
  givenname: Yudong
  orcidid: 0000-0002-4218-5280
  surname: Zheng
  fullname: Zheng, Yudong
  email: zhengyudong@mater.ustb.edu.cn
  organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 6
  givenname: Shihui
  surname: Zhu
  fullname: Zhu, Shihui
  email: doctorzhushihui@163.com
  organization: Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
– sequence: 7
  givenname: Huiyi
  surname: Yang
  fullname: Yang, Huiyi
  organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 8
  givenname: Ziyuan
  surname: Fang
  fullname: Fang, Ziyuan
  organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35386438$$D View this record in MEDLINE/PubMed
BookMark eNqFUs9vFCEUJqbG1tp_QTl6cFaYYRjmoMmmqdqkiRdNvBEGHlNWBlaYqfHqX16229bWSxMCL7zvR_K-9xIdhBgAoTeUrCih_P1mNbio9DypeVWTul4RWo54ho5q1tYV7fsfBw_qQ3SS84YQQrtyke4FOmzaRnDWiCP0d40zeFvpFHP2Lvx0YXyHTVwGD5Vdgp5dDMrjMcVli6donHVg8FDsIbnS0OD94mMGPILHSy5NGxNWYXb_QCoYfAmq6I84WuyChdIy-HdcgnmFnlvlM5zcvsfo-6ezb6dfqouvn89P1xeVbhmdK86sVrymtDfQD5x3jFE2tEAGA50oRatrxXumCHS9NaKFBgZDQTSmwClpjtH5XtdEtZHb5CaV_sionLz5iGmUKs1Oe5CUtoMGYwjwljHRDKxWgjR9o3TTEWuL1se91nYZJjAawpyUfyT6uBPcpRzjlRQ9b4noi8DbW4EUfy2QZzm5vJulChCXLGvOBOFtL0SBvn7odW9yF2IBfNgDbkJMYKV2s9oFV6ydl5TI3d7IjbzfG7nbG0loOTt-9x__zuJp5nrPhJLblYMks3YQyuhcKgmXwbonNa4BeKHl7w
CitedBy_id crossref_primary_10_1002_smll_202309057
crossref_primary_10_1021_acsomega_3c07174
crossref_primary_10_1007_s12668_023_01080_7
crossref_primary_10_1002_anbr_202300131
crossref_primary_10_1039_D2BM00620K
crossref_primary_10_1016_j_carbpol_2023_121276
crossref_primary_10_1088_1748_605X_ad525f
crossref_primary_10_26599_PBM_2023_9260001
crossref_primary_10_3390_polym15071625
crossref_primary_10_1016_j_carbpol_2023_120647
crossref_primary_10_1016_j_cej_2022_138952
crossref_primary_10_3390_polym15020425
crossref_primary_10_1002_macp_202300211
crossref_primary_10_1039_D2RA07673J
crossref_primary_10_1039_D2TB02371G
crossref_primary_10_1186_s40813_022_00278_7
crossref_primary_10_1002_mabi_202300333
crossref_primary_10_1016_j_carbpol_2023_121082
crossref_primary_10_1002_adfm_202406950
crossref_primary_10_1016_j_carbpol_2025_123407
crossref_primary_10_1021_acsami_3c09449
crossref_primary_10_1002_asia_202200598
crossref_primary_10_1002_adma_202410989
crossref_primary_10_1039_D2TB02671F
crossref_primary_10_1007_s10570_024_06278_w
crossref_primary_10_1016_j_ijbiomac_2023_124329
crossref_primary_10_1088_1748_605X_ad1df9
crossref_primary_10_1016_j_eurpolymj_2023_112390
crossref_primary_10_1016_j_ijbiomac_2024_129398
crossref_primary_10_1016_j_recm_2023_03_004
crossref_primary_10_1021_acsabm_2c00035
Cites_doi 10.1038/s41467-021-25350-8
10.1016/j.ijbiomac.2020.04.230
10.1039/C6RA26216C
10.1016/j.ijbiomac.2018.09.131
10.1063/1.346600
10.1016/j.carbpol.2009.05.028
10.1039/C6RA07646G
10.1177/0887302X17737177
10.1039/C3RA45407J
10.1016/j.carbpol.2017.06.094
10.1016/j.mser.2021.100623
10.1016/j.carbpol.2013.10.093
10.1016/j.carbpol.2015.06.037
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2022.01.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 260
ExternalDocumentID oai_doaj_org_article_115bcedd0e654483b42a80393ac370ff
PMC8965089
35386438
10_1016_j_bioactmat_2022_01_018
S2452199X22000263
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c541t-64fca62119de9b6674414b5e0bde78b5e5c2a694a0e79fd85e3ebd1e83d9b6103
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:28:22 EDT 2025
Thu Aug 21 18:15:54 EDT 2025
Fri Jul 11 08:58:44 EDT 2025
Mon Jul 21 05:46:19 EDT 2025
Tue Jul 01 02:11:29 EDT 2025
Thu Apr 24 22:51:37 EDT 2025
Wed May 17 00:02:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bacterial cellulose
Wound healing
Antimicrobial properties
Self-crosslinking
Cell migration
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-64fca62119de9b6674414b5e0bde78b5e5c2a694a0e79fd85e3ebd1e83d9b6103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Yajie Xie, Kun Qiao and Lina Yue contributed equally to this work and should be considered as co-first authors.
ORCID 0000-0002-4218-5280
OpenAccessLink https://doaj.org/article/115bcedd0e654483b42a80393ac370ff
PMID 35386438
PQID 2648065988
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_115bcedd0e654483b42a80393ac370ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8965089
proquest_miscellaneous_2648065988
pubmed_primary_35386438
crossref_citationtrail_10_1016_j_bioactmat_2022_01_018
crossref_primary_10_1016_j_bioactmat_2022_01_018
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2022_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2022
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Lin, Liu, Shen, Chen, Yang (bib9) 2020; 158
Nogi, Yano (bib8) 2008; 20
Salari, Khiabani, Mokarram, Ghanbarzadeh, Kafil (bib38) 2021; 253
Lin, Dufresne (bib20) 2014; 59
Wu, Zheng, Wen, Lin, Chen, Wu (bib21) 2014; 9
Du, Wu, Yan, Jiang, Li, Li, Bai, Wang, Cheng, Kong (bib24) 2021; 12
Fu, Zhang, Yang (bib18) 2013; 92
Cabañas-Romero, Valls, Valenzuela, Roncero, Pastor, Diaz, Martínez (bib36) 2020; 21
Wang, You, Hu, Zheng, Li, Feng, Sun, Gao, Han (bib45) 2013; 9
Ifuku, Nogi, Abe, Handa, Nakatsubo, Yano (bib7) 2007; 8
Caro-Astorga, Walker, Herrera, Lee, Ellis (bib11) 2021; 12
Hadisi, Nourmohammadi, Nassiri (bib4) 2018; 107
Wu, Zheng, Yang, Lin, Qiao, Chen (bib42) 2014; 4
García, Aldana, Tártara, Alovero, Strumia, Manzo, Martinelli, Jimenez-Kairuz (bib5) 2017; 175
Poonguzhali, Basha (bib27) 2018
Ristić, Zabret, Zemljič, Cellulose (bib48) 2016; 24
Lin, Lin, Jiang, Zhang, o A C C (bib44) 2002
Yoshino, Matsuoka, Nogami, Yamanaka, Watanabe, Takahashi, Honma (bib47) 1990; 68
Pasaribu, Gea, Ilyas, Tamrin, Radecka (bib29) 2020; 10
(bib51) 2018; 184
Fernandes, Oliveira, Freire, Silvestre, Neto, Gandini, Desbriéres (bib13) 2009; 11
Silva, Rodrigues, Almeida, Costa, Rosado, Neto, Silvestre, Freire (bib16) 2014; 106
Chan, Shin, Jiang (bib10) 2018; 36
Zahedmanesh, Mackle, Sellborn, Drotz (bib15) 2015; 97B
Shariatinia (bib50) 2018; 120
Poonguzhali, Basha, Kumari (bib1) 2018; 112
Nge, Nogi, Yano, Sugiyama (bib33) 2010; 17
Gregory, Tripathi, Fricker, Asare, Orlando, Raghavendran, Roy (bib12) 2021; 145
Rashki, Asgarpour, Tarrahimofrad, Hashemipour, Ebrahimi, Fathizadeh, Khorshidi, Khan, Salavati-Niasari, Mirzaei (bib26) 2020
Lin, Dufresne (bib14) 2014; 59
Yue, Zheng, Xie, Liu, Guo, Yang, Tang (bib43) 2016; 6
Rouabhia, Asselin, Tazi, Messaddeq, Levinson, Zhang (bib19) 2014; 6
Phisalaphong, Jatupaiboon (bib39) 2008; 74
Ullah, Ul-Islam, Khan, Kim, Park (bib6) 2015; 132
Khamrai, Banerjee, Kundu (bib35) 2017; 174
Kingkaew, Kirdponpattara, Sanchavanakit, Pavasant, Phisalaphong, Engineering (bib34) 2014; 19
Torkaman, Rahmani, Ashori (bib25) 2021
Müller, Ni, Hessler, Wesarg, Müller, Kralisch (bib17) 2013; 102
Fernandes, Oliveira, Freire, Silvestre (bib28) 2009; 11
Xia, Zhang, Yu, Pei, Luo (bib30) 2020; 12
Kim, Cai, Lee, Choi, Lee (bib32) 2011; 18
Maver, Hribernik, Mohan, Smrke, Maver, Stana-Kleinschek (bib2) 2015; 5
Maneerung, Tokura, Rujiravanit (bib22) 2008; 72
Ostadhossein, Mahmoudi, Morales-Cid, Tamjid, Navas-Martos, Soriano-Cuadrado, Paniza, Simchi (bib23) 2015; 8
(bib40) 2018; 171
Liu, Chu, Zhu, Li, Wang, Gao, Ren (bib46) 2017; 7
Dubey, Pandey (bib37) 2005; 251
Wu, Zheng, Song, Luan, Wen, Wu, Chen, Wang, Guo (bib41) 2014; 102
Wu, Su, Jiang, Ye, Liu, Shao (bib3) 2018; 6
Fatemeh, Nafiseh, Gabriel, Elnaz, Francisco, Belén, José, Abdolreza (bib31) 2015; 8
Anitha, Rani, Krishna, Sreeja, Selvamurugan, Nair, Tamura, Jayakumar (bib49) 2009; 78
Anitha (10.1016/j.bioactmat.2022.01.018_bib49) 2009; 78
Maver (10.1016/j.bioactmat.2022.01.018_bib2) 2015; 5
Nogi (10.1016/j.bioactmat.2022.01.018_bib8) 2008; 20
Wu (10.1016/j.bioactmat.2022.01.018_bib42) 2014; 4
Torkaman (10.1016/j.bioactmat.2022.01.018_bib25) 2021
(10.1016/j.bioactmat.2022.01.018_bib51) 2018; 184
Shariatinia (10.1016/j.bioactmat.2022.01.018_bib50) 2018; 120
Wu (10.1016/j.bioactmat.2022.01.018_bib21) 2014; 9
Maneerung (10.1016/j.bioactmat.2022.01.018_bib22) 2008; 72
Caro-Astorga (10.1016/j.bioactmat.2022.01.018_bib11) 2021; 12
Ifuku (10.1016/j.bioactmat.2022.01.018_bib7) 2007; 8
Wu (10.1016/j.bioactmat.2022.01.018_bib41) 2014; 102
Rouabhia (10.1016/j.bioactmat.2022.01.018_bib19) 2014; 6
Kingkaew (10.1016/j.bioactmat.2022.01.018_bib34) 2014; 19
Cabañas-Romero (10.1016/j.bioactmat.2022.01.018_bib36) 2020; 21
Rashki (10.1016/j.bioactmat.2022.01.018_bib26) 2020
Müller (10.1016/j.bioactmat.2022.01.018_bib17) 2013; 102
Fatemeh (10.1016/j.bioactmat.2022.01.018_bib31) 2015; 8
García (10.1016/j.bioactmat.2022.01.018_bib5) 2017; 175
Zahedmanesh (10.1016/j.bioactmat.2022.01.018_bib15) 2015; 97B
Poonguzhali (10.1016/j.bioactmat.2022.01.018_bib27) 2018
Lin (10.1016/j.bioactmat.2022.01.018_bib20) 2014; 59
Xia (10.1016/j.bioactmat.2022.01.018_bib30) 2020; 12
Nge (10.1016/j.bioactmat.2022.01.018_bib33) 2010; 17
Dubey (10.1016/j.bioactmat.2022.01.018_bib37) 2005; 251
Yoshino (10.1016/j.bioactmat.2022.01.018_bib47) 1990; 68
Gregory (10.1016/j.bioactmat.2022.01.018_bib12) 2021; 145
Lin (10.1016/j.bioactmat.2022.01.018_bib14) 2014; 59
Salari (10.1016/j.bioactmat.2022.01.018_bib38) 2021; 253
Wang (10.1016/j.bioactmat.2022.01.018_bib45) 2013; 9
Wu (10.1016/j.bioactmat.2022.01.018_bib3) 2018; 6
Silva (10.1016/j.bioactmat.2022.01.018_bib16) 2014; 106
Pasaribu (10.1016/j.bioactmat.2022.01.018_bib29) 2020; 10
Fu (10.1016/j.bioactmat.2022.01.018_bib18) 2013; 92
(10.1016/j.bioactmat.2022.01.018_bib40) 2018; 171
Poonguzhali (10.1016/j.bioactmat.2022.01.018_bib1) 2018; 112
Hadisi (10.1016/j.bioactmat.2022.01.018_bib4) 2018; 107
Fernandes (10.1016/j.bioactmat.2022.01.018_bib13) 2009; 11
Ostadhossein (10.1016/j.bioactmat.2022.01.018_bib23) 2015; 8
Lin (10.1016/j.bioactmat.2022.01.018_bib44) 2002
Fernandes (10.1016/j.bioactmat.2022.01.018_bib28) 2009; 11
Kim (10.1016/j.bioactmat.2022.01.018_bib32) 2011; 18
Phisalaphong (10.1016/j.bioactmat.2022.01.018_bib39) 2008; 74
Chan (10.1016/j.bioactmat.2022.01.018_bib10) 2018; 36
Du (10.1016/j.bioactmat.2022.01.018_bib24) 2021; 12
Khamrai (10.1016/j.bioactmat.2022.01.018_bib35) 2017; 174
Ullah (10.1016/j.bioactmat.2022.01.018_bib6) 2015; 132
Ristić (10.1016/j.bioactmat.2022.01.018_bib48) 2016; 24
Lin (10.1016/j.bioactmat.2022.01.018_bib9) 2020; 158
Yue (10.1016/j.bioactmat.2022.01.018_bib43) 2016; 6
Liu (10.1016/j.bioactmat.2022.01.018_bib46) 2017; 7
References_xml – volume: 12
  start-page: 4733
  year: 2021
  ident: bib24
  article-title: Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing
– volume: 21
  start-page: 1568
  year: 2020
  end-page: 1577
  ident: bib36
  article-title: Bacterial cellulose–chitosan paper with antimicrobial and antioxidant activities
– year: 2002
  ident: bib44
  article-title: Preparation, Moisture Adsorbability and Retentivity of 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan
– volume: 6
  start-page: 68599
  year: 2016
  end-page: 68605
  ident: bib43
  article-title: Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization
  publication-title: RSC Adv.
– volume: 19
  start-page: 534
  year: 2014
  end-page: 544
  ident: bib34
  article-title: Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films
– volume: 175
  start-page: 75
  year: 2017
  end-page: 86
  ident: bib5
  article-title: Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin
– volume: 102
  start-page: 579
  year: 2013
  end-page: 592
  ident: bib17
  article-title: The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin
– volume: 11
  start-page: 2023
  year: 2009
  end-page: 2029
  ident: bib13
  article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose
– volume: 8
  start-page: 6401
  year: 2015
  end-page: 6418
  ident: bib23
  article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing
– volume: 251
  start-page: 131
  year: 2005
  end-page: 136
  ident: bib37
  article-title: Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosanpoly(vinyl alcohol) blends
– volume: 6
  start-page: 9145
  year: 2018
  end-page: 9152
  ident: bib3
  article-title: Engineering, Green and facile preparation of chitosan sponges as potential wound dressings
– volume: 17
  start-page: 349
  year: 2010
  end-page: 363
  ident: bib33
  article-title: Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold
– volume: 184
  start-page: 323
  year: 2018
  end-page: 332
  ident: bib51
  article-title: A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell - ScienceDirect
– volume: 102
  start-page: 762
  year: 2014
  end-page: 771
  ident: bib41
  article-title: In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing
  publication-title: Carbohydr. Polym.
– volume: 36
  start-page: 33
  year: 2018
  end-page: 44
  ident: bib10
  article-title: Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design
  publication-title: Cloth. Text. Res. J.
– volume: 174
  start-page: 580
  year: 2017
  end-page: 590
  ident: bib35
  article-title: Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application
  publication-title: Carbohydr. Polym.
– volume: 12
  start-page: 24370
  year: 2020
  end-page: 24379
  ident: bib30
  article-title: interfaces, Superclear, porous cellulose membranes with chitosan-coated nanofibers for visualized cutaneous wound healing dressing
– volume: 24
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib48
  article-title: Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers
– volume: 5
  start-page: 77873
  year: 2015
  end-page: 77884
  ident: bib2
  article-title: Functional wound dressing materials with highly tunable drug release properties
– volume: 72
  start-page: 43
  year: 2008
  end-page: 51
  ident: bib22
  article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing
– volume: 18
  start-page: 739
  year: 2011
  end-page: 744
  ident: bib32
  article-title: Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application
– volume: 4
  start-page: 3998
  year: 2014
  end-page: 4009
  ident: bib42
  article-title: Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation
  publication-title: RSC Adv.
– volume: 74
  start-page: 482
  year: 2008
  end-page: 488
  ident: bib39
  article-title: Biosynthesis and characterization of bacteria cellulose–chitosan film
– volume: 68
  start-page: 1720
  year: 1990
  end-page: 1725
  ident: bib47
  article-title: Graphite film prepared by pyrolysis of bacterial cellulose
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 2023
  year: 2009
  end-page: 2029
  ident: bib28
  article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose
– volume: 6
  start-page: 1439
  year: 2014
  end-page: 1446
  ident: bib19
  article-title: interfaces, Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin
– volume: 97B
  start-page: 105
  year: 2015
  end-page: 113
  ident: bib15
  article-title: Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development
– volume: 107
  start-page: 2008
  year: 2018
  end-page: 2019
  ident: bib4
  article-title: The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound
– volume: 120
  start-page: 1406
  year: 2018
  end-page: 1419
  ident: bib50
  article-title: Carboxymethyl chitosan: properties and biomedical applications
  publication-title: Int. J. Biol. Macromol.
– volume: 145
  start-page: 100623
  year: 2021
  ident: bib12
  article-title: Bacterial cellulose: a smart biomaterial with diverse applications
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 78
  start-page: 672
  year: 2009
  end-page: 677
  ident: bib49
  article-title: Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles
  publication-title: Carbohydr. Polym.
– volume: 59
  start-page: 302
  year: 2014
  end-page: 325
  ident: bib14
  article-title: Nanocellulose in biomedicine: current status and future prospect
– volume: 8
  year: 2015
  ident: bib31
  article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing
– volume: 9
  start-page: 7822
  year: 2013
  end-page: 7832
  ident: bib45
  article-title: The roles of knitted mesh-reinforced collagen–chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats
– volume: 8
  start-page: 1973
  year: 2007
  end-page: 1978
  ident: bib7
  article-title: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS
– volume: 112
  start-page: 1300
  year: 2018
  end-page: 1309
  ident: bib1
  article-title: Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation
– start-page: 117675
  year: 2021
  ident: bib25
  article-title: Modification of Chitosan Using Amino Acids for Wound Healing Purposes: A Review
– start-page: 112
  year: 2018
  ident: bib27
  article-title: Novel Asymmetric chitosan/PVP/nanocellulose Wound Dressing: in Vitro and in Vivo Evaluation
– volume: 158
  start-page: 1007
  year: 2020
  end-page: 1019
  ident: bib9
  article-title: Bacterial cellulose in food industry: current research and future prospects
  publication-title: Int. J. Biol. Macromol.
– volume: 253
  start-page: 117144
  year: 2021
  ident: bib38
  article-title: Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film
– start-page: 117108
  year: 2020
  ident: bib26
  article-title: Chitosan-based Nanoparticles against Bacterial Infections
– volume: 92
  start-page: 1432
  year: 2013
  end-page: 1442
  ident: bib18
  article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair
– volume: 132
  start-page: 286
  year: 2015
  end-page: 294
  ident: bib6
  article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line
  publication-title: Carbohydr. Polym.
– volume: 171
  start-page: 118
  year: 2018
  end-page: 132
  ident: bib40
  article-title: Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration
– volume: 106
  start-page: 264
  year: 2014
  end-page: 269
  ident: bib16
  article-title: Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation
  publication-title: Studies
– volume: 20
  start-page: 1849
  year: 2008
  end-page: 1852
  ident: bib8
  article-title: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry
– volume: 59
  start-page: 302
  year: 2014
  end-page: 325
  ident: bib20
  article-title: Nanocellulose in biomedicine: current status and future prospect
– volume: 7
  start-page: 11601
  year: 2017
  end-page: 11607
  ident: bib46
  article-title: A novel antibacterial cellulose based biomaterial for hernia mesh applications
  publication-title: RSC Adv.
– volume: 10
  start-page: 1511
  year: 2020
  ident: bib29
  article-title: Characterization of bacterial cellulose-based wound dressing in different order impregnation of chitosan and collagen
– volume: 12
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib11
  article-title: Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration
  publication-title: Nat. Commun.
– volume: 9
  year: 2014
  ident: bib21
  article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.bioactmat.2022.01.018_bib11
  article-title: Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25350-8
– volume: 158
  start-page: 1007
  year: 2020
  ident: 10.1016/j.bioactmat.2022.01.018_bib9
  article-title: Bacterial cellulose in food industry: current research and future prospects
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.04.230
– volume: 6
  start-page: 1439
  issue: 3
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib19
  article-title: interfaces, Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin
– volume: 97B
  start-page: 105
  issue: 1
  year: 2015
  ident: 10.1016/j.bioactmat.2022.01.018_bib15
  article-title: Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development
– volume: 7
  start-page: 11601
  issue: 19
  year: 2017
  ident: 10.1016/j.bioactmat.2022.01.018_bib46
  article-title: A novel antibacterial cellulose based biomaterial for hernia mesh applications
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26216C
– volume: 17
  start-page: 349
  issue: 2
  year: 2010
  ident: 10.1016/j.bioactmat.2022.01.018_bib33
  article-title: Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold
– volume: 120
  start-page: 1406
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib50
  article-title: Carboxymethyl chitosan: properties and biomedical applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.09.131
– volume: 5
  start-page: 77873
  issue: 95
  year: 2015
  ident: 10.1016/j.bioactmat.2022.01.018_bib2
  article-title: Functional wound dressing materials with highly tunable drug release properties
– volume: 171
  start-page: 118
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib40
  article-title: Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration
– volume: 112
  start-page: 1300
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib1
  article-title: Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation
– volume: 9
  issue: 3
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib21
  article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo
– volume: 68
  start-page: 1720
  issue: 4
  year: 1990
  ident: 10.1016/j.bioactmat.2022.01.018_bib47
  article-title: Graphite film prepared by pyrolysis of bacterial cellulose
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346600
– volume: 8
  start-page: 6401
  issue: 9
  year: 2015
  ident: 10.1016/j.bioactmat.2022.01.018_bib23
  article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing
– volume: 78
  start-page: 672
  issue: 4
  year: 2009
  ident: 10.1016/j.bioactmat.2022.01.018_bib49
  article-title: Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.05.028
– volume: 107
  start-page: 2008
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib4
  article-title: The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound
– volume: 6
  start-page: 68599
  issue: 73
  year: 2016
  ident: 10.1016/j.bioactmat.2022.01.018_bib43
  article-title: Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07646G
– volume: 106
  start-page: 264
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib16
  article-title: Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation
  publication-title: Studies
– volume: 184
  start-page: 323
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib51
  article-title: A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell - ScienceDirect
– volume: 36
  start-page: 33
  issue: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib10
  article-title: Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design
  publication-title: Cloth. Text. Res. J.
  doi: 10.1177/0887302X17737177
– volume: 20
  start-page: 1849
  issue: 10
  year: 2008
  ident: 10.1016/j.bioactmat.2022.01.018_bib8
  article-title: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry
– start-page: 117675
  year: 2021
  ident: 10.1016/j.bioactmat.2022.01.018_bib25
– volume: 4
  start-page: 3998
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib42
  article-title: Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation
  publication-title: RSC Adv.
  doi: 10.1039/C3RA45407J
– volume: 21
  start-page: 1568
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2022.01.018_bib36
  article-title: Bacterial cellulose–chitosan paper with antimicrobial and antioxidant activities
– volume: 10
  start-page: 1511
  issue: 11
  year: 2020
  ident: 10.1016/j.bioactmat.2022.01.018_bib29
  article-title: Characterization of bacterial cellulose-based wound dressing in different order impregnation of chitosan and collagen
– volume: 6
  start-page: 9145
  issue: 7
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib3
  article-title: Engineering, Green and facile preparation of chitosan sponges as potential wound dressings
– volume: 175
  start-page: 75
  year: 2017
  ident: 10.1016/j.bioactmat.2022.01.018_bib5
  article-title: Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin
– volume: 11
  start-page: 2023
  issue: 12
  year: 2009
  ident: 10.1016/j.bioactmat.2022.01.018_bib13
  article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose
– start-page: 117108
  year: 2020
  ident: 10.1016/j.bioactmat.2022.01.018_bib26
– volume: 19
  start-page: 534
  issue: 3
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib34
  article-title: Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films
– volume: 59
  start-page: 302
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib20
  article-title: Nanocellulose in biomedicine: current status and future prospect
– volume: 59
  start-page: 302
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib14
  article-title: Nanocellulose in biomedicine: current status and future prospect
– volume: 12
  start-page: 24370
  issue: 21
  year: 2020
  ident: 10.1016/j.bioactmat.2022.01.018_bib30
  article-title: interfaces, Superclear, porous cellulose membranes with chitosan-coated nanofibers for visualized cutaneous wound healing dressing
– volume: 8
  start-page: 1973
  issue: 6
  year: 2007
  ident: 10.1016/j.bioactmat.2022.01.018_bib7
  article-title: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS
– volume: 8
  issue: 9
  year: 2015
  ident: 10.1016/j.bioactmat.2022.01.018_bib31
  article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing
– volume: 9
  start-page: 7822
  issue: 8
  year: 2013
  ident: 10.1016/j.bioactmat.2022.01.018_bib45
  article-title: The roles of knitted mesh-reinforced collagen–chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats
– volume: 24
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.bioactmat.2022.01.018_bib48
  article-title: Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers
– start-page: 112
  year: 2018
  ident: 10.1016/j.bioactmat.2022.01.018_bib27
– year: 2002
  ident: 10.1016/j.bioactmat.2022.01.018_bib44
– volume: 74
  start-page: 482
  issue: 3
  year: 2008
  ident: 10.1016/j.bioactmat.2022.01.018_bib39
  article-title: Biosynthesis and characterization of bacteria cellulose–chitosan film
– volume: 18
  start-page: 739
  issue: 4
  year: 2011
  ident: 10.1016/j.bioactmat.2022.01.018_bib32
  article-title: Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application
– volume: 174
  start-page: 580
  year: 2017
  ident: 10.1016/j.bioactmat.2022.01.018_bib35
  article-title: Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.06.094
– volume: 145
  start-page: 100623
  year: 2021
  ident: 10.1016/j.bioactmat.2022.01.018_bib12
  article-title: Bacterial cellulose: a smart biomaterial with diverse applications
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2021.100623
– volume: 102
  start-page: 579
  issue: 2
  year: 2013
  ident: 10.1016/j.bioactmat.2022.01.018_bib17
  article-title: The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin
– volume: 72
  start-page: 43
  issue: 1
  year: 2008
  ident: 10.1016/j.bioactmat.2022.01.018_bib22
  article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing
– volume: 102
  start-page: 762
  year: 2014
  ident: 10.1016/j.bioactmat.2022.01.018_bib41
  article-title: In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.10.093
– volume: 12
  start-page: 4733
  issue: 1
  year: 2021
  ident: 10.1016/j.bioactmat.2022.01.018_bib24
  article-title: Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing
– volume: 132
  start-page: 286
  year: 2015
  ident: 10.1016/j.bioactmat.2022.01.018_bib6
  article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.06.037
– volume: 253
  start-page: 117144
  year: 2021
  ident: 10.1016/j.bioactmat.2022.01.018_bib38
  article-title: Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film
– volume: 92
  start-page: 1432
  issue: 2
  year: 2013
  ident: 10.1016/j.bioactmat.2022.01.018_bib18
  article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair
– volume: 11
  start-page: 2023
  issue: 12
  year: 2009
  ident: 10.1016/j.bioactmat.2022.01.018_bib28
  article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose
– volume: 251
  start-page: 131
  issue: 1–2
  year: 2005
  ident: 10.1016/j.bioactmat.2022.01.018_bib37
  article-title: Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosanpoly(vinyl alcohol) blends
SSID ssj0001700007
Score 2.4679978
Snippet Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 248
SubjectTerms Antimicrobial properties
Bacterial cellulose
Cell migration
Self-crosslinking
Wound healing
Title A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound
URI https://dx.doi.org/10.1016/j.bioactmat.2022.01.018
https://www.ncbi.nlm.nih.gov/pubmed/35386438
https://www.proquest.com/docview/2648065988
https://pubmed.ncbi.nlm.nih.gov/PMC8965089
https://doaj.org/article/115bcedd0e654483b42a80393ac370ff
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe-GCQOWxPCojcSQiid_cFtSqooIDomJvlh07kCpNELsRd345M3F2u4HDXpByiOJJYnvGmc_O-BtCXnHnlQmFz1wlZMYVU5lhnGVRMiQ_dy4vcYPzx0_y4op_WInVXqovjAlL9MCp494AYvFVDCGPUsBUgnleOo0bSl3FVF7X-PUFn7c3mbpOpDDo_TCzHBclRlOsZsFdvuldtQFMCDPEshyJOzHtx55rGhn8Zx7qXwT6dyDlnmc6v0_uTZCSLlNTHpA7sTshv5d0Hds6G181JUh4TUM_-DZm6MzSGiAdd3XQmz40NYBR6hN5MxTgiv7Q9utIv8WWDmsoBHxLQRHNrZDrAkWoCQ-nfU1TZBdI_sJkTQ_J1fnZl_cX2ZRvIasELzaZ5HXlJFK-hWi8lAqgEvci5j5EpeFEVKWThrs8KlMHLSKLPhRRswDiRc4ekaOu7-ITQrWQxmkZAME57o0yMjAY6oYzz4zQfkHktqttNZGRY06M1m6jzq7tTkcWdWTzAg69IPnuxh-Jj-PwLe9QlztxJNQeL4CZ2cnM7CEzW5C3W0uwEzZJmAMe1Ryuwcut7VgYvahA18V-WFuML8Q_2xpkHidb2tWTgS8CvAglamZls4bMS7rm-8gQrg0Cb_P0f7T8GbmLTUn7L5-To83PIb4AILbxp-R4efn56-XpOPb-AFGMNIk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-crosslinking%2C+double-functional+group+modified+bacterial+cellulose+gel+used+for+antibacterial+and+healing+of+infected+wound&rft.jtitle=Bioactive+materials&rft.au=Xie%2C+Yajie&rft.au=Qiao%2C+Kun&rft.au=Yue%2C+Lina&rft.au=Tang%2C+Tao&rft.date=2022-11-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=17&rft.spage=248&rft.epage=260&rft_id=info:doi/10.1016%2Fj.bioactmat.2022.01.018&rft_id=info%3Apmid%2F35386438&rft.externalDocID=PMC8965089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon