A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound
Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bact...
Saved in:
Published in | Bioactive materials Vol. 17; pp. 248 - 260 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.11.2022
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.
[Display omitted]
•A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties.•Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS.•The S-DCBC/CS composites could promote epidermal growth and collagen production. |
---|---|
AbstractList | Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.
[Display omitted]
•A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties.•Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS.•The S-DCBC/CS composites could promote epidermal growth and collagen production. Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. Image 1 • A network composites from dialdehyde carboxylmethyl BC with chitosan that has good antibacterial properties. • Deep Ⅱ degree infected scald of Bama pig was used to research the antimicrobial and healing properties of S-DCBC/CS. • The S-DCBC/CS composites could promote epidermal growth and collagen production. Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it “directional adhesion antibacterial effects”. In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it "directional adhesion antibacterial effects". In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings.Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect compound of two components and improve antibacterial activity is a major, lingering issue. In this study, a bifunctional group modified bacterial cellulose (DCBC) was prepared by carboxymethylation and selective oxidation. Further, the chitosan (CS) was compounded in the network of DCBC by self-crosslinking to form dialdehyde carboxymethyl bacterial cellulose/chitosan composites (S-DCBC/CS). The aldehyde group can react with amino of CS by Schiff base reaction. The carboxyl group of DCBC and the amorphous distribution of CS molecular chains increase the antimicrobial properties of composites. The bacteriostatic rate of composites could be higher than 95%. Bacteria can be attracted onto the surface of composites, what we call it "directional adhesion antibacterial effects". In particular, a kind of large animal wound model, deep Ⅱ degree infected scald of Bama miniature pig, was used to research the antimicrobial and healing properties of materials. The S-DCBC/CS can effectively inhibit bacterial proliferation of wound and kill the bacteria. The wound healing rate of S-DCBC/CS was up to 80% after three weeks. The composites show better antibacterial and promoting concrescence effects than traditional chitosan dressings. |
Author | Fang, Ziyuan Zheng, Yudong Yang, Huiyi Yue, Lina Zhu, Shihui Tang, Tao Xie, Yajie Qiao, Kun |
Author_xml | – sequence: 1 givenname: Yajie surname: Xie fullname: Xie, Yajie organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Kun surname: Qiao fullname: Qiao, Kun organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Lina surname: Yue fullname: Yue, Lina organization: Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang, 065201, Hebei, China – sequence: 4 givenname: Tao surname: Tang fullname: Tang, Tao organization: Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China – sequence: 5 givenname: Yudong orcidid: 0000-0002-4218-5280 surname: Zheng fullname: Zheng, Yudong email: zhengyudong@mater.ustb.edu.cn organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 6 givenname: Shihui surname: Zhu fullname: Zhu, Shihui email: doctorzhushihui@163.com organization: Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China – sequence: 7 givenname: Huiyi surname: Yang fullname: Yang, Huiyi organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 8 givenname: Ziyuan surname: Fang fullname: Fang, Ziyuan organization: School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35386438$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUs9vFCEUJqbG1tp_QTl6cFaYYRjmoMmmqdqkiRdNvBEGHlNWBlaYqfHqX16229bWSxMCL7zvR_K-9xIdhBgAoTeUrCih_P1mNbio9DypeVWTul4RWo54ho5q1tYV7fsfBw_qQ3SS84YQQrtyke4FOmzaRnDWiCP0d40zeFvpFHP2Lvx0YXyHTVwGD5Vdgp5dDMrjMcVli6donHVg8FDsIbnS0OD94mMGPILHSy5NGxNWYXb_QCoYfAmq6I84WuyChdIy-HdcgnmFnlvlM5zcvsfo-6ezb6dfqouvn89P1xeVbhmdK86sVrymtDfQD5x3jFE2tEAGA50oRatrxXumCHS9NaKFBgZDQTSmwClpjtH5XtdEtZHb5CaV_sionLz5iGmUKs1Oe5CUtoMGYwjwljHRDKxWgjR9o3TTEWuL1se91nYZJjAawpyUfyT6uBPcpRzjlRQ9b4noi8DbW4EUfy2QZzm5vJulChCXLGvOBOFtL0SBvn7odW9yF2IBfNgDbkJMYKV2s9oFV6ydl5TI3d7IjbzfG7nbG0loOTt-9x__zuJp5nrPhJLblYMks3YQyuhcKgmXwbonNa4BeKHl7w |
CitedBy_id | crossref_primary_10_1002_smll_202309057 crossref_primary_10_1021_acsomega_3c07174 crossref_primary_10_1007_s12668_023_01080_7 crossref_primary_10_1002_anbr_202300131 crossref_primary_10_1039_D2BM00620K crossref_primary_10_1016_j_carbpol_2023_121276 crossref_primary_10_1088_1748_605X_ad525f crossref_primary_10_26599_PBM_2023_9260001 crossref_primary_10_3390_polym15071625 crossref_primary_10_1016_j_carbpol_2023_120647 crossref_primary_10_1016_j_cej_2022_138952 crossref_primary_10_3390_polym15020425 crossref_primary_10_1002_macp_202300211 crossref_primary_10_1039_D2RA07673J crossref_primary_10_1039_D2TB02371G crossref_primary_10_1186_s40813_022_00278_7 crossref_primary_10_1002_mabi_202300333 crossref_primary_10_1016_j_carbpol_2023_121082 crossref_primary_10_1002_adfm_202406950 crossref_primary_10_1016_j_carbpol_2025_123407 crossref_primary_10_1021_acsami_3c09449 crossref_primary_10_1002_asia_202200598 crossref_primary_10_1002_adma_202410989 crossref_primary_10_1039_D2TB02671F crossref_primary_10_1007_s10570_024_06278_w crossref_primary_10_1016_j_ijbiomac_2023_124329 crossref_primary_10_1088_1748_605X_ad1df9 crossref_primary_10_1016_j_eurpolymj_2023_112390 crossref_primary_10_1016_j_ijbiomac_2024_129398 crossref_primary_10_1016_j_recm_2023_03_004 crossref_primary_10_1021_acsabm_2c00035 |
Cites_doi | 10.1038/s41467-021-25350-8 10.1016/j.ijbiomac.2020.04.230 10.1039/C6RA26216C 10.1016/j.ijbiomac.2018.09.131 10.1063/1.346600 10.1016/j.carbpol.2009.05.028 10.1039/C6RA07646G 10.1177/0887302X17737177 10.1039/C3RA45407J 10.1016/j.carbpol.2017.06.094 10.1016/j.mser.2021.100623 10.1016/j.carbpol.2013.10.093 10.1016/j.carbpol.2015.06.037 |
ContentType | Journal Article |
Copyright | 2022 The Authors 2022 The Authors. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2022.01.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 260 |
ExternalDocumentID | oai_doaj_org_article_115bcedd0e654483b42a80393ac370ff PMC8965089 35386438 10_1016_j_bioactmat_2022_01_018 S2452199X22000263 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c541t-64fca62119de9b6674414b5e0bde78b5e5c2a694a0e79fd85e3ebd1e83d9b6103 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:28:22 EDT 2025 Thu Aug 21 18:15:54 EDT 2025 Fri Jul 11 08:58:44 EDT 2025 Mon Jul 21 05:46:19 EDT 2025 Tue Jul 01 02:11:29 EDT 2025 Thu Apr 24 22:51:37 EDT 2025 Wed May 17 00:02:33 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bacterial cellulose Wound healing Antimicrobial properties Self-crosslinking Cell migration |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-64fca62119de9b6674414b5e0bde78b5e5c2a694a0e79fd85e3ebd1e83d9b6103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Yajie Xie, Kun Qiao and Lina Yue contributed equally to this work and should be considered as co-first authors. |
ORCID | 0000-0002-4218-5280 |
OpenAccessLink | https://doaj.org/article/115bcedd0e654483b42a80393ac370ff |
PMID | 35386438 |
PQID | 2648065988 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_115bcedd0e654483b42a80393ac370ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_8965089 proquest_miscellaneous_2648065988 pubmed_primary_35386438 crossref_citationtrail_10_1016_j_bioactmat_2022_01_018 crossref_primary_10_1016_j_bioactmat_2022_01_018 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2022_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Lin, Liu, Shen, Chen, Yang (bib9) 2020; 158 Nogi, Yano (bib8) 2008; 20 Salari, Khiabani, Mokarram, Ghanbarzadeh, Kafil (bib38) 2021; 253 Lin, Dufresne (bib20) 2014; 59 Wu, Zheng, Wen, Lin, Chen, Wu (bib21) 2014; 9 Du, Wu, Yan, Jiang, Li, Li, Bai, Wang, Cheng, Kong (bib24) 2021; 12 Fu, Zhang, Yang (bib18) 2013; 92 Cabañas-Romero, Valls, Valenzuela, Roncero, Pastor, Diaz, Martínez (bib36) 2020; 21 Wang, You, Hu, Zheng, Li, Feng, Sun, Gao, Han (bib45) 2013; 9 Ifuku, Nogi, Abe, Handa, Nakatsubo, Yano (bib7) 2007; 8 Caro-Astorga, Walker, Herrera, Lee, Ellis (bib11) 2021; 12 Hadisi, Nourmohammadi, Nassiri (bib4) 2018; 107 Wu, Zheng, Yang, Lin, Qiao, Chen (bib42) 2014; 4 García, Aldana, Tártara, Alovero, Strumia, Manzo, Martinelli, Jimenez-Kairuz (bib5) 2017; 175 Poonguzhali, Basha (bib27) 2018 Ristić, Zabret, Zemljič, Cellulose (bib48) 2016; 24 Lin, Lin, Jiang, Zhang, o A C C (bib44) 2002 Yoshino, Matsuoka, Nogami, Yamanaka, Watanabe, Takahashi, Honma (bib47) 1990; 68 Pasaribu, Gea, Ilyas, Tamrin, Radecka (bib29) 2020; 10 (bib51) 2018; 184 Fernandes, Oliveira, Freire, Silvestre, Neto, Gandini, Desbriéres (bib13) 2009; 11 Silva, Rodrigues, Almeida, Costa, Rosado, Neto, Silvestre, Freire (bib16) 2014; 106 Chan, Shin, Jiang (bib10) 2018; 36 Zahedmanesh, Mackle, Sellborn, Drotz (bib15) 2015; 97B Shariatinia (bib50) 2018; 120 Poonguzhali, Basha, Kumari (bib1) 2018; 112 Nge, Nogi, Yano, Sugiyama (bib33) 2010; 17 Gregory, Tripathi, Fricker, Asare, Orlando, Raghavendran, Roy (bib12) 2021; 145 Rashki, Asgarpour, Tarrahimofrad, Hashemipour, Ebrahimi, Fathizadeh, Khorshidi, Khan, Salavati-Niasari, Mirzaei (bib26) 2020 Lin, Dufresne (bib14) 2014; 59 Yue, Zheng, Xie, Liu, Guo, Yang, Tang (bib43) 2016; 6 Rouabhia, Asselin, Tazi, Messaddeq, Levinson, Zhang (bib19) 2014; 6 Phisalaphong, Jatupaiboon (bib39) 2008; 74 Ullah, Ul-Islam, Khan, Kim, Park (bib6) 2015; 132 Khamrai, Banerjee, Kundu (bib35) 2017; 174 Kingkaew, Kirdponpattara, Sanchavanakit, Pavasant, Phisalaphong, Engineering (bib34) 2014; 19 Torkaman, Rahmani, Ashori (bib25) 2021 Müller, Ni, Hessler, Wesarg, Müller, Kralisch (bib17) 2013; 102 Fernandes, Oliveira, Freire, Silvestre (bib28) 2009; 11 Xia, Zhang, Yu, Pei, Luo (bib30) 2020; 12 Kim, Cai, Lee, Choi, Lee (bib32) 2011; 18 Maver, Hribernik, Mohan, Smrke, Maver, Stana-Kleinschek (bib2) 2015; 5 Maneerung, Tokura, Rujiravanit (bib22) 2008; 72 Ostadhossein, Mahmoudi, Morales-Cid, Tamjid, Navas-Martos, Soriano-Cuadrado, Paniza, Simchi (bib23) 2015; 8 (bib40) 2018; 171 Liu, Chu, Zhu, Li, Wang, Gao, Ren (bib46) 2017; 7 Dubey, Pandey (bib37) 2005; 251 Wu, Zheng, Song, Luan, Wen, Wu, Chen, Wang, Guo (bib41) 2014; 102 Wu, Su, Jiang, Ye, Liu, Shao (bib3) 2018; 6 Fatemeh, Nafiseh, Gabriel, Elnaz, Francisco, Belén, José, Abdolreza (bib31) 2015; 8 Anitha, Rani, Krishna, Sreeja, Selvamurugan, Nair, Tamura, Jayakumar (bib49) 2009; 78 Anitha (10.1016/j.bioactmat.2022.01.018_bib49) 2009; 78 Maver (10.1016/j.bioactmat.2022.01.018_bib2) 2015; 5 Nogi (10.1016/j.bioactmat.2022.01.018_bib8) 2008; 20 Wu (10.1016/j.bioactmat.2022.01.018_bib42) 2014; 4 Torkaman (10.1016/j.bioactmat.2022.01.018_bib25) 2021 (10.1016/j.bioactmat.2022.01.018_bib51) 2018; 184 Shariatinia (10.1016/j.bioactmat.2022.01.018_bib50) 2018; 120 Wu (10.1016/j.bioactmat.2022.01.018_bib21) 2014; 9 Maneerung (10.1016/j.bioactmat.2022.01.018_bib22) 2008; 72 Caro-Astorga (10.1016/j.bioactmat.2022.01.018_bib11) 2021; 12 Ifuku (10.1016/j.bioactmat.2022.01.018_bib7) 2007; 8 Wu (10.1016/j.bioactmat.2022.01.018_bib41) 2014; 102 Rouabhia (10.1016/j.bioactmat.2022.01.018_bib19) 2014; 6 Kingkaew (10.1016/j.bioactmat.2022.01.018_bib34) 2014; 19 Cabañas-Romero (10.1016/j.bioactmat.2022.01.018_bib36) 2020; 21 Rashki (10.1016/j.bioactmat.2022.01.018_bib26) 2020 Müller (10.1016/j.bioactmat.2022.01.018_bib17) 2013; 102 Fatemeh (10.1016/j.bioactmat.2022.01.018_bib31) 2015; 8 García (10.1016/j.bioactmat.2022.01.018_bib5) 2017; 175 Zahedmanesh (10.1016/j.bioactmat.2022.01.018_bib15) 2015; 97B Poonguzhali (10.1016/j.bioactmat.2022.01.018_bib27) 2018 Lin (10.1016/j.bioactmat.2022.01.018_bib20) 2014; 59 Xia (10.1016/j.bioactmat.2022.01.018_bib30) 2020; 12 Nge (10.1016/j.bioactmat.2022.01.018_bib33) 2010; 17 Dubey (10.1016/j.bioactmat.2022.01.018_bib37) 2005; 251 Yoshino (10.1016/j.bioactmat.2022.01.018_bib47) 1990; 68 Gregory (10.1016/j.bioactmat.2022.01.018_bib12) 2021; 145 Lin (10.1016/j.bioactmat.2022.01.018_bib14) 2014; 59 Salari (10.1016/j.bioactmat.2022.01.018_bib38) 2021; 253 Wang (10.1016/j.bioactmat.2022.01.018_bib45) 2013; 9 Wu (10.1016/j.bioactmat.2022.01.018_bib3) 2018; 6 Silva (10.1016/j.bioactmat.2022.01.018_bib16) 2014; 106 Pasaribu (10.1016/j.bioactmat.2022.01.018_bib29) 2020; 10 Fu (10.1016/j.bioactmat.2022.01.018_bib18) 2013; 92 (10.1016/j.bioactmat.2022.01.018_bib40) 2018; 171 Poonguzhali (10.1016/j.bioactmat.2022.01.018_bib1) 2018; 112 Hadisi (10.1016/j.bioactmat.2022.01.018_bib4) 2018; 107 Fernandes (10.1016/j.bioactmat.2022.01.018_bib13) 2009; 11 Ostadhossein (10.1016/j.bioactmat.2022.01.018_bib23) 2015; 8 Lin (10.1016/j.bioactmat.2022.01.018_bib44) 2002 Fernandes (10.1016/j.bioactmat.2022.01.018_bib28) 2009; 11 Kim (10.1016/j.bioactmat.2022.01.018_bib32) 2011; 18 Phisalaphong (10.1016/j.bioactmat.2022.01.018_bib39) 2008; 74 Chan (10.1016/j.bioactmat.2022.01.018_bib10) 2018; 36 Du (10.1016/j.bioactmat.2022.01.018_bib24) 2021; 12 Khamrai (10.1016/j.bioactmat.2022.01.018_bib35) 2017; 174 Ullah (10.1016/j.bioactmat.2022.01.018_bib6) 2015; 132 Ristić (10.1016/j.bioactmat.2022.01.018_bib48) 2016; 24 Lin (10.1016/j.bioactmat.2022.01.018_bib9) 2020; 158 Yue (10.1016/j.bioactmat.2022.01.018_bib43) 2016; 6 Liu (10.1016/j.bioactmat.2022.01.018_bib46) 2017; 7 |
References_xml | – volume: 12 start-page: 4733 year: 2021 ident: bib24 article-title: Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing – volume: 21 start-page: 1568 year: 2020 end-page: 1577 ident: bib36 article-title: Bacterial cellulose–chitosan paper with antimicrobial and antioxidant activities – year: 2002 ident: bib44 article-title: Preparation, Moisture Adsorbability and Retentivity of 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan – volume: 6 start-page: 68599 year: 2016 end-page: 68605 ident: bib43 article-title: Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization publication-title: RSC Adv. – volume: 19 start-page: 534 year: 2014 end-page: 544 ident: bib34 article-title: Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films – volume: 175 start-page: 75 year: 2017 end-page: 86 ident: bib5 article-title: Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin – volume: 102 start-page: 579 year: 2013 end-page: 592 ident: bib17 article-title: The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin – volume: 11 start-page: 2023 year: 2009 end-page: 2029 ident: bib13 article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose – volume: 8 start-page: 6401 year: 2015 end-page: 6418 ident: bib23 article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing – volume: 251 start-page: 131 year: 2005 end-page: 136 ident: bib37 article-title: Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosanpoly(vinyl alcohol) blends – volume: 6 start-page: 9145 year: 2018 end-page: 9152 ident: bib3 article-title: Engineering, Green and facile preparation of chitosan sponges as potential wound dressings – volume: 17 start-page: 349 year: 2010 end-page: 363 ident: bib33 article-title: Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold – volume: 184 start-page: 323 year: 2018 end-page: 332 ident: bib51 article-title: A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell - ScienceDirect – volume: 102 start-page: 762 year: 2014 end-page: 771 ident: bib41 article-title: In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing publication-title: Carbohydr. Polym. – volume: 36 start-page: 33 year: 2018 end-page: 44 ident: bib10 article-title: Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design publication-title: Cloth. Text. Res. J. – volume: 174 start-page: 580 year: 2017 end-page: 590 ident: bib35 article-title: Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application publication-title: Carbohydr. Polym. – volume: 12 start-page: 24370 year: 2020 end-page: 24379 ident: bib30 article-title: interfaces, Superclear, porous cellulose membranes with chitosan-coated nanofibers for visualized cutaneous wound healing dressing – volume: 24 start-page: 1 year: 2016 end-page: 15 ident: bib48 article-title: Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers – volume: 5 start-page: 77873 year: 2015 end-page: 77884 ident: bib2 article-title: Functional wound dressing materials with highly tunable drug release properties – volume: 72 start-page: 43 year: 2008 end-page: 51 ident: bib22 article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing – volume: 18 start-page: 739 year: 2011 end-page: 744 ident: bib32 article-title: Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application – volume: 4 start-page: 3998 year: 2014 end-page: 4009 ident: bib42 article-title: Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation publication-title: RSC Adv. – volume: 74 start-page: 482 year: 2008 end-page: 488 ident: bib39 article-title: Biosynthesis and characterization of bacteria cellulose–chitosan film – volume: 68 start-page: 1720 year: 1990 end-page: 1725 ident: bib47 article-title: Graphite film prepared by pyrolysis of bacterial cellulose publication-title: J. Appl. Phys. – volume: 11 start-page: 2023 year: 2009 end-page: 2029 ident: bib28 article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose – volume: 6 start-page: 1439 year: 2014 end-page: 1446 ident: bib19 article-title: interfaces, Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin – volume: 97B start-page: 105 year: 2015 end-page: 113 ident: bib15 article-title: Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development – volume: 107 start-page: 2008 year: 2018 end-page: 2019 ident: bib4 article-title: The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound – volume: 120 start-page: 1406 year: 2018 end-page: 1419 ident: bib50 article-title: Carboxymethyl chitosan: properties and biomedical applications publication-title: Int. J. Biol. Macromol. – volume: 145 start-page: 100623 year: 2021 ident: bib12 article-title: Bacterial cellulose: a smart biomaterial with diverse applications publication-title: Mater. Sci. Eng. R Rep. – volume: 78 start-page: 672 year: 2009 end-page: 677 ident: bib49 article-title: Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles publication-title: Carbohydr. Polym. – volume: 59 start-page: 302 year: 2014 end-page: 325 ident: bib14 article-title: Nanocellulose in biomedicine: current status and future prospect – volume: 8 year: 2015 ident: bib31 article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing – volume: 9 start-page: 7822 year: 2013 end-page: 7832 ident: bib45 article-title: The roles of knitted mesh-reinforced collagen–chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats – volume: 8 start-page: 1973 year: 2007 end-page: 1978 ident: bib7 article-title: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS – volume: 112 start-page: 1300 year: 2018 end-page: 1309 ident: bib1 article-title: Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation – start-page: 117675 year: 2021 ident: bib25 article-title: Modification of Chitosan Using Amino Acids for Wound Healing Purposes: A Review – start-page: 112 year: 2018 ident: bib27 article-title: Novel Asymmetric chitosan/PVP/nanocellulose Wound Dressing: in Vitro and in Vivo Evaluation – volume: 158 start-page: 1007 year: 2020 end-page: 1019 ident: bib9 article-title: Bacterial cellulose in food industry: current research and future prospects publication-title: Int. J. Biol. Macromol. – volume: 253 start-page: 117144 year: 2021 ident: bib38 article-title: Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film – start-page: 117108 year: 2020 ident: bib26 article-title: Chitosan-based Nanoparticles against Bacterial Infections – volume: 92 start-page: 1432 year: 2013 end-page: 1442 ident: bib18 article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair – volume: 132 start-page: 286 year: 2015 end-page: 294 ident: bib6 article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line publication-title: Carbohydr. Polym. – volume: 171 start-page: 118 year: 2018 end-page: 132 ident: bib40 article-title: Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration – volume: 106 start-page: 264 year: 2014 end-page: 269 ident: bib16 article-title: Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation publication-title: Studies – volume: 20 start-page: 1849 year: 2008 end-page: 1852 ident: bib8 article-title: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry – volume: 59 start-page: 302 year: 2014 end-page: 325 ident: bib20 article-title: Nanocellulose in biomedicine: current status and future prospect – volume: 7 start-page: 11601 year: 2017 end-page: 11607 ident: bib46 article-title: A novel antibacterial cellulose based biomaterial for hernia mesh applications publication-title: RSC Adv. – volume: 10 start-page: 1511 year: 2020 ident: bib29 article-title: Characterization of bacterial cellulose-based wound dressing in different order impregnation of chitosan and collagen – volume: 12 start-page: 1 year: 2021 end-page: 9 ident: bib11 article-title: Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration publication-title: Nat. Commun. – volume: 9 year: 2014 ident: bib21 article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.bioactmat.2022.01.018_bib11 article-title: Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration publication-title: Nat. Commun. doi: 10.1038/s41467-021-25350-8 – volume: 158 start-page: 1007 year: 2020 ident: 10.1016/j.bioactmat.2022.01.018_bib9 article-title: Bacterial cellulose in food industry: current research and future prospects publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.04.230 – volume: 6 start-page: 1439 issue: 3 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib19 article-title: interfaces, Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin – volume: 97B start-page: 105 issue: 1 year: 2015 ident: 10.1016/j.bioactmat.2022.01.018_bib15 article-title: Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development – volume: 7 start-page: 11601 issue: 19 year: 2017 ident: 10.1016/j.bioactmat.2022.01.018_bib46 article-title: A novel antibacterial cellulose based biomaterial for hernia mesh applications publication-title: RSC Adv. doi: 10.1039/C6RA26216C – volume: 17 start-page: 349 issue: 2 year: 2010 ident: 10.1016/j.bioactmat.2022.01.018_bib33 article-title: Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold – volume: 120 start-page: 1406 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib50 article-title: Carboxymethyl chitosan: properties and biomedical applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.131 – volume: 5 start-page: 77873 issue: 95 year: 2015 ident: 10.1016/j.bioactmat.2022.01.018_bib2 article-title: Functional wound dressing materials with highly tunable drug release properties – volume: 171 start-page: 118 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib40 article-title: Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration – volume: 112 start-page: 1300 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib1 article-title: Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation – volume: 9 issue: 3 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib21 article-title: Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo – volume: 68 start-page: 1720 issue: 4 year: 1990 ident: 10.1016/j.bioactmat.2022.01.018_bib47 article-title: Graphite film prepared by pyrolysis of bacterial cellulose publication-title: J. Appl. Phys. doi: 10.1063/1.346600 – volume: 8 start-page: 6401 issue: 9 year: 2015 ident: 10.1016/j.bioactmat.2022.01.018_bib23 article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing – volume: 78 start-page: 672 issue: 4 year: 2009 ident: 10.1016/j.bioactmat.2022.01.018_bib49 article-title: Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.05.028 – volume: 107 start-page: 2008 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib4 article-title: The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound – volume: 6 start-page: 68599 issue: 73 year: 2016 ident: 10.1016/j.bioactmat.2022.01.018_bib43 article-title: Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization publication-title: RSC Adv. doi: 10.1039/C6RA07646G – volume: 106 start-page: 264 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib16 article-title: Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation publication-title: Studies – volume: 184 start-page: 323 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib51 article-title: A novel microporous oxidized bacterial cellulose/arginine composite and its effect on behavior of fibroblast/endothelial cell - ScienceDirect – volume: 36 start-page: 33 issue: 1 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib10 article-title: Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design publication-title: Cloth. Text. Res. J. doi: 10.1177/0887302X17737177 – volume: 20 start-page: 1849 issue: 10 year: 2008 ident: 10.1016/j.bioactmat.2022.01.018_bib8 article-title: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry – start-page: 117675 year: 2021 ident: 10.1016/j.bioactmat.2022.01.018_bib25 – volume: 4 start-page: 3998 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib42 article-title: Influence of dialdehyde bacterial cellulose with the nonlinear elasticity and topology structure of ECM on cell adhesion and proliferation publication-title: RSC Adv. doi: 10.1039/C3RA45407J – volume: 21 start-page: 1568 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2022.01.018_bib36 article-title: Bacterial cellulose–chitosan paper with antimicrobial and antioxidant activities – volume: 10 start-page: 1511 issue: 11 year: 2020 ident: 10.1016/j.bioactmat.2022.01.018_bib29 article-title: Characterization of bacterial cellulose-based wound dressing in different order impregnation of chitosan and collagen – volume: 6 start-page: 9145 issue: 7 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib3 article-title: Engineering, Green and facile preparation of chitosan sponges as potential wound dressings – volume: 175 start-page: 75 year: 2017 ident: 10.1016/j.bioactmat.2022.01.018_bib5 article-title: Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin – volume: 11 start-page: 2023 issue: 12 year: 2009 ident: 10.1016/j.bioactmat.2022.01.018_bib13 article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose – start-page: 117108 year: 2020 ident: 10.1016/j.bioactmat.2022.01.018_bib26 – volume: 19 start-page: 534 issue: 3 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib34 article-title: Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films – volume: 59 start-page: 302 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib20 article-title: Nanocellulose in biomedicine: current status and future prospect – volume: 59 start-page: 302 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib14 article-title: Nanocellulose in biomedicine: current status and future prospect – volume: 12 start-page: 24370 issue: 21 year: 2020 ident: 10.1016/j.bioactmat.2022.01.018_bib30 article-title: interfaces, Superclear, porous cellulose membranes with chitosan-coated nanofibers for visualized cutaneous wound healing dressing – volume: 8 start-page: 1973 issue: 6 year: 2007 ident: 10.1016/j.bioactmat.2022.01.018_bib7 article-title: Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS – volume: 8 issue: 9 year: 2015 ident: 10.1016/j.bioactmat.2022.01.018_bib31 article-title: Development of chitosan/bacterial cellulose composite films containing nanodiamonds as a potential flexible platform for wound dressing – volume: 9 start-page: 7822 issue: 8 year: 2013 ident: 10.1016/j.bioactmat.2022.01.018_bib45 article-title: The roles of knitted mesh-reinforced collagen–chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats – volume: 24 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.bioactmat.2022.01.018_bib48 article-title: Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers – start-page: 112 year: 2018 ident: 10.1016/j.bioactmat.2022.01.018_bib27 – year: 2002 ident: 10.1016/j.bioactmat.2022.01.018_bib44 – volume: 74 start-page: 482 issue: 3 year: 2008 ident: 10.1016/j.bioactmat.2022.01.018_bib39 article-title: Biosynthesis and characterization of bacteria cellulose–chitosan film – volume: 18 start-page: 739 issue: 4 year: 2011 ident: 10.1016/j.bioactmat.2022.01.018_bib32 article-title: Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application – volume: 174 start-page: 580 year: 2017 ident: 10.1016/j.bioactmat.2022.01.018_bib35 article-title: Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.094 – volume: 145 start-page: 100623 year: 2021 ident: 10.1016/j.bioactmat.2022.01.018_bib12 article-title: Bacterial cellulose: a smart biomaterial with diverse applications publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2021.100623 – volume: 102 start-page: 579 issue: 2 year: 2013 ident: 10.1016/j.bioactmat.2022.01.018_bib17 article-title: The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin – volume: 72 start-page: 43 issue: 1 year: 2008 ident: 10.1016/j.bioactmat.2022.01.018_bib22 article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing – volume: 102 start-page: 762 year: 2014 ident: 10.1016/j.bioactmat.2022.01.018_bib41 article-title: In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.10.093 – volume: 12 start-page: 4733 issue: 1 year: 2021 ident: 10.1016/j.bioactmat.2022.01.018_bib24 article-title: Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing – volume: 132 start-page: 286 year: 2015 ident: 10.1016/j.bioactmat.2022.01.018_bib6 article-title: Innovative production of bio-cellulose using a cell-free system derived from a single cell line publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.06.037 – volume: 253 start-page: 117144 year: 2021 ident: 10.1016/j.bioactmat.2022.01.018_bib38 article-title: Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film – volume: 92 start-page: 1432 issue: 2 year: 2013 ident: 10.1016/j.bioactmat.2022.01.018_bib18 article-title: Present status and applications of bacterial cellulose-based materials for skin tissue repair – volume: 11 start-page: 2023 issue: 12 year: 2009 ident: 10.1016/j.bioactmat.2022.01.018_bib28 article-title: Novel transparent nanocomposite films based on chitosan and bacterial cellulose – volume: 251 start-page: 131 issue: 1–2 year: 2005 ident: 10.1016/j.bioactmat.2022.01.018_bib37 article-title: Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosanpoly(vinyl alcohol) blends |
SSID | ssj0001700007 |
Score | 2.4679978 |
Snippet | Cellulose/chitosan composite, as a mature commercial antibacterial dressing, is an important type of wound repair material. However, how to achieve the perfect... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 248 |
SubjectTerms | Antimicrobial properties Bacterial cellulose Cell migration Self-crosslinking Wound healing |
Title | A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound |
URI | https://dx.doi.org/10.1016/j.bioactmat.2022.01.018 https://www.ncbi.nlm.nih.gov/pubmed/35386438 https://www.proquest.com/docview/2648065988 https://pubmed.ncbi.nlm.nih.gov/PMC8965089 https://doaj.org/article/115bcedd0e654483b42a80393ac370ff |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe-GCQOWxPCojcSQiid_cFtSqooIDomJvlh07kCpNELsRd345M3F2u4HDXpByiOJJYnvGmc_O-BtCXnHnlQmFz1wlZMYVU5lhnGVRMiQ_dy4vcYPzx0_y4op_WInVXqovjAlL9MCp494AYvFVDCGPUsBUgnleOo0bSl3FVF7X-PUFn7c3mbpOpDDo_TCzHBclRlOsZsFdvuldtQFMCDPEshyJOzHtx55rGhn8Zx7qXwT6dyDlnmc6v0_uTZCSLlNTHpA7sTshv5d0Hds6G181JUh4TUM_-DZm6MzSGiAdd3XQmz40NYBR6hN5MxTgiv7Q9utIv8WWDmsoBHxLQRHNrZDrAkWoCQ-nfU1TZBdI_sJkTQ_J1fnZl_cX2ZRvIasELzaZ5HXlJFK-hWi8lAqgEvci5j5EpeFEVKWThrs8KlMHLSKLPhRRswDiRc4ekaOu7-ITQrWQxmkZAME57o0yMjAY6oYzz4zQfkHktqttNZGRY06M1m6jzq7tTkcWdWTzAg69IPnuxh-Jj-PwLe9QlztxJNQeL4CZ2cnM7CEzW5C3W0uwEzZJmAMe1Ryuwcut7VgYvahA18V-WFuML8Q_2xpkHidb2tWTgS8CvAglamZls4bMS7rm-8gQrg0Cb_P0f7T8GbmLTUn7L5-To83PIb4AILbxp-R4efn56-XpOPb-AFGMNIk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-crosslinking%2C+double-functional+group+modified+bacterial+cellulose+gel+used+for+antibacterial+and+healing+of+infected+wound&rft.jtitle=Bioactive+materials&rft.au=Xie%2C+Yajie&rft.au=Qiao%2C+Kun&rft.au=Yue%2C+Lina&rft.au=Tang%2C+Tao&rft.date=2022-11-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=17&rft.spage=248&rft.epage=260&rft_id=info:doi/10.1016%2Fj.bioactmat.2022.01.018&rft_id=info%3Apmid%2F35386438&rft.externalDocID=PMC8965089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |