Fractional quantum ferroelectricity

For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 135 - 6
Main Authors Ji, Junyi, Yu, Guoliang, Xu, Changsong, Xiang, H. J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In 2 Se 3 , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics.
AbstractList For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In 2 Se 3 , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
Abstract For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics.
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In Se , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In 2 Se 3 , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics.
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In 2 Se 3 , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics.
ArticleNumber 135
Author Ji, Junyi
Yu, Guoliang
Xu, Changsong
Xiang, H. J.
Author_xml – sequence: 1
  givenname: Junyi
  surname: Ji
  fullname: Ji, Junyi
  organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute
– sequence: 2
  givenname: Guoliang
  orcidid: 0000-0002-2215-601X
  surname: Yu
  fullname: Yu, Guoliang
  organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute
– sequence: 3
  givenname: Changsong
  surname: Xu
  fullname: Xu, Changsong
  email: csxu@fudan.edu.cn
  organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute
– sequence: 4
  givenname: H. J.
  orcidid: 0000-0002-9396-3214
  surname: Xiang
  fullname: Xiang, H. J.
  email: hxiang@fudan.edu.cn
  organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute, Collaborative Innovation Center of Advanced Microstructures
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38167841$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PHSEUxYmxUat-AReNiRs3Y7lcmGFWTfOi1cSkm3ZNgIEnL_MGhZkm79vLc7T-WcgGAuf8OLnnK9kd4uAIOQF6ARTl98yB101FGVacc4HVZoccMMqhgobh7pvzPjnOeUXLwhYk53tkHyXUjeRwQM6ukrZjiIPuTx8mPYzT-tS7lKLrnR1TsGHcHJEvXvfZHT_vh-Tv1eWfxXV1-_vXzeLnbWUFh7ESXghjeAPQydY31AukYCxnXe0ZZ60VtAbTMd-Uz5uaagfWI1rtpPWgEQ_Jzcztol6p-xTWOm1U1EE9XcS0VDqNwfZOgTSacRRMd8i9MG0rwXCHiBq5saywfsys-8msXWfdMCbdv4O-fxnCnVrGfwpoU4OsZSGcPxNSfJhcHtU6ZOv6Xg8uTlmxFii0lNWiSM8-SFdxSmWkWxVtSxESt6pvbyP9z_JSRhHIWWBTzDk5r8r09backjD0JZraVq_m6lWpXj1VrzbFyj5YX-ifmnA25SIeli69xv7E9QgPob9z
CitedBy_id crossref_primary_10_1007_s40843_024_3060_1
crossref_primary_10_1063_5_0235723
crossref_primary_10_1103_PhysRevB_110_045435
crossref_primary_10_1103_PhysRevB_110_035419
crossref_primary_10_1002_adfm_202404665
crossref_primary_10_1039_D4MH00306C
crossref_primary_10_1002_aelm_202300822
crossref_primary_10_1038_s41467_025_57138_5
crossref_primary_10_1103_PhysRevLett_134_016801
crossref_primary_10_1016_j_cosrev_2024_100676
crossref_primary_10_1103_PhysRevB_111_085417
crossref_primary_10_1360_SSPMA_2024_0053
Cites_doi 10.1103/PhysRevLett.122.135502
10.1038/s41467-020-16623-9
10.1103/PhysRevLett.126.217601
10.1103/PhysRevLett.126.057601
10.1021/am504233d
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.59.1758
10.1038/ncomms14956
10.1103/PhysRevB.50.17953
10.1038/s41467-022-33325-6
10.1021/acs.nanolett.7b01035
10.1080/00150199208016065
10.1088/0256-307X/39/9/097701
10.1063/1.4812323
10.1063/1.4905209
10.1002/adfm.201803738
10.1103/PhysRevB.59.750
10.1103/PhysRevB.108.L180101
10.1524/zkri.2006.221.1.15
10.1063/1.5019779
10.1016/j.scriptamat.2015.07.021
10.1021/acs.jpclett.2c02601
10.1021/acs.nanolett.7b04852
10.1103/PhysRevLett.125.257603
10.1021/acsami.5b00063
10.1103/PhysRevB.47.1651
10.1103/PhysRevB.54.11169
10.1021/acsnano.8b02152
10.1038/358136a0
10.1002/adfm.201901420
10.1039/C9NH00172G
10.1039/D0NR04096G
10.1021/acs.nanolett.7b02198
10.1103/PhysRevLett.120.227601
10.1103/PhysRevB.98.045108
10.1039/C9MH01215J
10.1103/RevModPhys.66.899
10.1063/1.1329672
10.1103/PhysRevLett.131.256801
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-44453-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 6
ExternalDocumentID oai_doaj_org_article_18ba24352ad34f5b9981b4e333a34bc2
PMC10761868
38167841
10_1038_s41467_023_44453_y
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 11825403; 11991061; 12188101; 12274082
  funderid: https://doi.org/10.13039/501100011002
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 11991061
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 12274082
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 11825403
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: 12188101
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-5f55bb4711d89f70f5301bc42d6f2429c5061bd2f7167760ae1cf33cae8cf1a33
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:49 EDT 2025
Thu Aug 21 18:42:31 EDT 2025
Fri Jul 11 12:37:43 EDT 2025
Wed Aug 13 03:26:21 EDT 2025
Mon Jul 21 05:59:29 EDT 2025
Tue Jul 01 02:10:51 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Mon Jul 21 06:08:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-5f55bb4711d89f70f5301bc42d6f2429c5061bd2f7167760ae1cf33cae8cf1a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9396-3214
0000-0002-2215-601X
OpenAccessLink https://www.nature.com/articles/s41467-023-44453-y
PMID 38167841
PQID 2909041835
PQPubID 546298
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_18ba24352ad34f5b9981b4e333a34bc2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10761868
proquest_miscellaneous_2910190265
proquest_journals_2909041835
pubmed_primary_38167841
crossref_citationtrail_10_1038_s41467_023_44453_y
crossref_primary_10_1038_s41467_023_44453_y
springer_journals_10_1038_s41467_023_44453_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhou (CR9) 2020; 7
Qi (CR5) 2020; 125
Yang, Bellaiche, Xiang (CR12) 2022; 39
Ding (CR14) 2017; 8
Soleimani, Pourfath (CR15) 2020; 12
Zhao, Zhang, Yuan, Chen (CR25) 2019; 29
Zhou (CR16) 2017; 17
Hu (CR2) 2022; 13
Chandrasekaran, Mishra, Singh (CR24) 2017; 17
CR36
Lee, Cho, Chung (CR22) 2014; 6
Jain (CR31) 2013; 1
Resta (CR28) 1992; 136
Xue (CR19) 2018; 12
Chai (CR6) 2020; 11
Gao, Wu, Zeng (CR11) 2019; 4
King-Smith, Vanderbilt (CR29) 1993; 47
Henkelman, Uberuaga, Jónsson (CR41) 2000; 113
Schutt, Sauceda, Kindermans, Tkatchenko, Muller (CR26) 2018; 148
Togo, Tanaka (CR42) 2015; 108
Perdew, Burke, Ernzerhof (CR38) 1996; 77
Xue (CR18) 2018; 28
Wyckoff (CR32) 1963; 1
Ding, Shao, Li, Wen, Tsymbal (CR4) 2021; 126
Hull, Keen (CR33) 1999; 59
Kresse, Joubert (CR40) 1999; 59
Aroyo (CR21) 2006; 221
Xiao (CR20) 2018; 120
CR8
CR7
Wang, Ren, Wu (CR10) 2022; 13
Blöchl (CR39) 1994; 50
Lee, Hwang, Chung (CR23) 2015; 7
Zarkevich, Johnson (CR27) 2015; 142
Resta (CR30) 1994; 66
Cordero-Edwards, Kianirad, Canalias, Sort, Catalan (CR1) 2019; 122
Gao (CR34) 2018; 98
Seleznev, Singh, Bonini, Rabe, Vanderbilt (CR13) 2023; 108
Kresse, Furthmüller (CR37) 1996; 54
Qi, Rappe (CR3) 2021; 126
Cui (CR17) 2018; 18
Cohen (CR35) 1992; 358
Y Zhao (44453_CR25) 2019; 29
Y Qi (44453_CR5) 2020; 125
PE Blöchl (44453_CR39) 1994; 50
44453_CR36
RD King-Smith (44453_CR29) 1993; 47
W Gao (44453_CR34) 2018; 98
Y Lee (44453_CR23) 2015; 7
JP Perdew (44453_CR38) 1996; 77
R Resta (44453_CR28) 1992; 136
F Xue (44453_CR19) 2018; 12
MI Aroyo (44453_CR21) 2006; 221
Y Yang (44453_CR12) 2022; 39
RE Cohen (44453_CR35) 1992; 358
G Henkelman (44453_CR41) 2000; 113
Y Gao (44453_CR11) 2019; 4
A Chandrasekaran (44453_CR24) 2017; 17
X Chai (44453_CR6) 2020; 11
A Togo (44453_CR42) 2015; 108
W Ding (44453_CR14) 2017; 8
J Xiao (44453_CR20) 2018; 120
R Wyckoff (44453_CR32) 1963; 1
KT Schutt (44453_CR26) 2018; 148
44453_CR7
F Xue (44453_CR18) 2018; 28
Y Lee (44453_CR22) 2014; 6
R Resta (44453_CR30) 1994; 66
Y Zhou (44453_CR16) 2017; 17
C Cui (44453_CR17) 2018; 18
44453_CR8
G Kresse (44453_CR40) 1999; 59
K Cordero-Edwards (44453_CR1) 2019; 122
Y Qi (44453_CR3) 2021; 126
D Seleznev (44453_CR13) 2023; 108
G Kresse (44453_CR37) 1996; 54
S Zhou (44453_CR9) 2020; 7
NA Zarkevich (44453_CR27) 2015; 142
A Jain (44453_CR31) 2013; 1
Y Hu (44453_CR2) 2022; 13
J Ding (44453_CR4) 2021; 126
X Wang (44453_CR10) 2022; 13
M Soleimani (44453_CR15) 2020; 12
S Hull (44453_CR33) 1999; 59
39472578 - Nat Commun. 2024 Oct 29;15(1):9325. doi: 10.1038/s41467-024-53618-2
References_xml – volume: 122
  start-page: 135502
  year: 2019
  ident: CR1
  article-title: Flexoelectric fracture-ratchet effect in ferroelectrics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.135502
– volume: 11
  year: 2020
  ident: CR6
  article-title: Nonvolatile ferroelectric field-effect transistors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16623-9
– volume: 126
  start-page: 217601
  year: 2021
  ident: CR3
  article-title: Widespread negative longitudinal piezoelectric responses in ferroelectric crystals with layered structures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.217601
– volume: 126
  start-page: 057601
  year: 2021
  ident: CR4
  article-title: Two-dimensional antiferroelectric tunnel junction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.057601
– volume: 6
  start-page: 14724
  year: 2014
  end-page: 14728
  ident: CR22
  article-title: Tunable indirect to direct band gap transition of monolayer Sc CO by the strain effect
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504233d
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR38
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR40
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– ident: CR8
– volume: 8
  year: 2017
  ident: CR14
  article-title: Prediction of intrinsic two-dimensional ferroelectrics in In Se and other III2-VI3 van der Waals materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14956
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR39
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 13
  year: 2022
  ident: CR2
  article-title: Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33325-6
– volume: 17
  start-page: 3290
  year: 2017
  end-page: 3296
  ident: CR24
  article-title: Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01035
– volume: 136
  start-page: 51
  year: 1992
  end-page: 55
  ident: CR28
  article-title: Theory of the electric polarization in crystals
  publication-title: Ferroelectrics
  doi: 10.1080/00150199208016065
– volume: 39
  start-page: 097701
  year: 2022
  ident: CR12
  article-title: Ferroelectricity in charge-ordering crystals with centrosymmetric lattices
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/9/097701
– volume: 1
  start-page: 011002
  year: 2013
  ident: CR31
  article-title: Commentary: the materials project: a materials genome approach to accelerating materials innovation
  publication-title: Apl. Mater.
  doi: 10.1063/1.4812323
– volume: 142
  start-page: 024106
  year: 2015
  ident: CR27
  article-title: Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4905209
– volume: 28
  start-page: 1803738
  year: 2018
  ident: CR18
  article-title: Room-temperature ferroelectricity in hexagonally layered α-In Se nanoflakes down to the monolayer limit
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803738
– volume: 59
  start-page: 750
  year: 1999
  end-page: 761
  ident: CR33
  article-title: Pressure-induced phase transitions in AgCl, AgBr, and AgI
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.750
– volume: 108
  start-page: L180101
  year: 2023
  ident: CR13
  article-title: Cyclic ferroelectric switching and quantized charge transport in CuInP S
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.L180101
– volume: 221
  start-page: 15
  year: 2006
  end-page: 27
  ident: CR21
  article-title: Bilbao crystallographic server: i. databases and crystallographic computing programs
  publication-title: Z. Krist. - Cryst. Mater.
  doi: 10.1524/zkri.2006.221.1.15
– volume: 148
  start-page: 241722
  year: 2018
  ident: CR26
  article-title: SchNet - A deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– volume: 108
  start-page: 1
  year: 2015
  end-page: 5
  ident: CR42
  article-title: First principles phonon calculations in materials science
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
– volume: 13
  start-page: 9552
  year: 2022
  end-page: 9557
  ident: CR10
  article-title: Unconventional ferroelectricity with quantized polarizations in ionic conductors: High-throughput screening
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c02601
– volume: 18
  start-page: 1253
  year: 2018
  end-page: 1258
  ident: CR17
  article-title: Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In Se
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04852
– volume: 125
  start-page: 257603
  year: 2020
  ident: CR5
  article-title: Stabilization of competing ferroelectric phases of HfO under epitaxial strain
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.257603
– volume: 7
  start-page: 7163
  year: 2015
  end-page: 7169
  ident: CR23
  article-title: Achieving type I, II, and III heterojunctions using functionalized MXene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00063
– volume: 47
  start-page: 1651
  year: 1993
  end-page: 1654
  ident: CR29
  article-title: Theory of polarization of crystalline solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR37
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 12
  start-page: 4976
  year: 2018
  end-page: 4983
  ident: CR19
  article-title: Multidirection piezoelectricity in mono- and multilayered hexagonal α-In Se
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02152
– volume: 1
  start-page: 85
  year: 1963
  end-page: 237
  ident: CR32
  article-title: Interscience publishers, new york, new york rocksalt structure
  publication-title: Cryst. Struct.
– volume: 358
  start-page: 136
  year: 1992
  end-page: 138
  ident: CR35
  article-title: Origin of ferroelectricity in perovskite oxides
  publication-title: Nature
  doi: 10.1038/358136a0
– ident: CR36
– volume: 29
  start-page: 1901420
  year: 2019
  ident: CR25
  article-title: Nonvolatile electrical control and heterointerface‐induced half‐metallicity of 2D ferromagnets
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901420
– ident: CR7
– volume: 4
  start-page: 1106
  year: 2019
  end-page: 1112
  ident: CR11
  article-title: Phase transitions and ferroelasticity–multiferroicity in bulk and two-dimensional silver and copper monohalides
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00172G
– volume: 12
  start-page: 22688
  year: 2020
  end-page: 22697
  ident: CR15
  article-title: Ferroelectricity and phase transitions in In Se van der Waals material.
  publication-title: Nanoscale
  doi: 10.1039/D0NR04096G
– volume: 17
  start-page: 5508
  year: 2017
  end-page: 5513
  ident: CR16
  article-title: Out-of-plane piezoelectricity and ferroelectricity in layered α-In Se nanoflakes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– volume: 120
  start-page: 227601
  year: 2018
  ident: CR20
  article-title: Intrinsic two-dimensional ferroelectricity with dipole locking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.227601
– volume: 98
  start-page: 045108
  year: 2018
  ident: CR34
  article-title: Quasiparticle band structures of CuCl, CuBr, AgCl, and AgBr: The extreme case
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.045108
– volume: 7
  start-page: 263
  year: 2020
  end-page: 274
  ident: CR9
  article-title: Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01215J
– volume: 66
  start-page: 899
  year: 1994
  end-page: 915
  ident: CR30
  article-title: Macroscopic polarization in crystalline dielectrics: the geometric phase approach
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.899
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR41
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 28
  start-page: 1803738
  year: 2018
  ident: 44453_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803738
– volume: 1
  start-page: 011002
  year: 2013
  ident: 44453_CR31
  publication-title: Apl. Mater.
  doi: 10.1063/1.4812323
– volume: 126
  start-page: 217601
  year: 2021
  ident: 44453_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.217601
– volume: 358
  start-page: 136
  year: 1992
  ident: 44453_CR35
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 126
  start-page: 057601
  year: 2021
  ident: 44453_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.057601
– volume: 47
  start-page: 1651
  year: 1993
  ident: 44453_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 1
  start-page: 85
  year: 1963
  ident: 44453_CR32
  publication-title: Cryst. Struct.
– volume: 108
  start-page: L180101
  year: 2023
  ident: 44453_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.L180101
– volume: 148
  start-page: 241722
  year: 2018
  ident: 44453_CR26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– volume: 12
  start-page: 22688
  year: 2020
  ident: 44453_CR15
  publication-title: Nanoscale
  doi: 10.1039/D0NR04096G
– volume: 59
  start-page: 1758
  year: 1999
  ident: 44453_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 122
  start-page: 135502
  year: 2019
  ident: 44453_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.135502
– volume: 77
  start-page: 3865
  year: 1996
  ident: 44453_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 66
  start-page: 899
  year: 1994
  ident: 44453_CR30
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.899
– volume: 6
  start-page: 14724
  year: 2014
  ident: 44453_CR22
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504233d
– volume: 108
  start-page: 1
  year: 2015
  ident: 44453_CR42
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
– volume: 17
  start-page: 5508
  year: 2017
  ident: 44453_CR16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– volume: 113
  start-page: 9901
  year: 2000
  ident: 44453_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 11
  year: 2020
  ident: 44453_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16623-9
– volume: 120
  start-page: 227601
  year: 2018
  ident: 44453_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.227601
– volume: 50
  start-page: 17953
  year: 1994
  ident: 44453_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 54
  start-page: 11169
  year: 1996
  ident: 44453_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 7
  start-page: 7163
  year: 2015
  ident: 44453_CR23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00063
– volume: 13
  year: 2022
  ident: 44453_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33325-6
– volume: 125
  start-page: 257603
  year: 2020
  ident: 44453_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.257603
– volume: 136
  start-page: 51
  year: 1992
  ident: 44453_CR28
  publication-title: Ferroelectrics
  doi: 10.1080/00150199208016065
– volume: 7
  start-page: 263
  year: 2020
  ident: 44453_CR9
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01215J
– ident: 44453_CR36
– volume: 39
  start-page: 097701
  year: 2022
  ident: 44453_CR12
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/9/097701
– ident: 44453_CR8
  doi: 10.1103/PhysRevLett.131.256801
– volume: 17
  start-page: 3290
  year: 2017
  ident: 44453_CR24
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01035
– volume: 221
  start-page: 15
  year: 2006
  ident: 44453_CR21
  publication-title: Z. Krist. - Cryst. Mater.
  doi: 10.1524/zkri.2006.221.1.15
– volume: 29
  start-page: 1901420
  year: 2019
  ident: 44453_CR25
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901420
– volume: 98
  start-page: 045108
  year: 2018
  ident: 44453_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.045108
– ident: 44453_CR7
– volume: 142
  start-page: 024106
  year: 2015
  ident: 44453_CR27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4905209
– volume: 4
  start-page: 1106
  year: 2019
  ident: 44453_CR11
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00172G
– volume: 18
  start-page: 1253
  year: 2018
  ident: 44453_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04852
– volume: 12
  start-page: 4976
  year: 2018
  ident: 44453_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02152
– volume: 59
  start-page: 750
  year: 1999
  ident: 44453_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.750
– volume: 13
  start-page: 9552
  year: 2022
  ident: 44453_CR10
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c02601
– volume: 8
  year: 2017
  ident: 44453_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14956
– reference: 39472578 - Nat Commun. 2024 Oct 29;15(1):9325. doi: 10.1038/s41467-024-53618-2
SSID ssj0000391844
Score 2.5313919
Snippet For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the...
Abstract For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135
SubjectTerms 639/301/119/995
639/301/119/996
Displacements (lattice)
Electric polarization
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Group theory
Humanities and Social Sciences
Lattice parameters
Linear polarization
multidisciplinary
Polarization
Principles
Science
Science (multidisciplinary)
Symmetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VSJV6QVAKhNJqUXtrLeKvrH2kFSuERE9F4mbZji2QIAvL7mH_fcd2dsuWAheuyUQavcnMm8nEMwBfkdUt-p8jeqgdEdRbYq1sSWyjkmkpiuTpvPPZr-bkXJxeyIsHq77SP2FlPHAB7pAqZxlyOrMtF1E6LA-oE4FzbrlwPkdf5LwHxVSOwVxj6SL6UzI1V4f3IscEpCgiBGpA5itMlAf2_y_LfPyz5D8d00xEow1Y7zPIwVHRfBPehO49vC07Jedb8GU0KWcVUOZuhrjNbgYxTCbjsvDmymPa_QHOR8e_f56QfhMC8VLQKZFRSueQR2irdBzWUaJfOi9Y20TkWO0l0rJrWcTqZzhsahuoj5x7G5SP1HK-DWvduAu7MJAset7IoNH3hEsxpk4lWOO1ttS5ugK6QMX4fkx42lZxbXK7mitTkDSIpMlImnkF35bP3JYhGc9K_0hgLyXTgOt8Ac1uerObl8xewf7CVKb3unvDdK1rgUFKVnCwvI3-kpogtgvjWZKh6fg8a1Bmp1h2qUlqoqY-bAVqxeYrqq7e6a4u80xumr4HqUZV8H3xevzV62ks9l4Di4_wjmGqlT8MsX1Ym05m4ROmSlP3OXvFHxX7DCo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6o5Zk-0CK4gdX4ldinChCrCglOVNqbZTsxVCpJm9097N8z43hTLY9ek4k0mbdnPDOEvAWv7kD_PDW18VSy4KhzqqGxiVrhUhQlsN_567fq_EJ-WahFTrgt87XKrU1MhrrpA-bIT7kpTSlBANXZ9Q3FrVFYXc0rNO6TBzi6DK901Yt6yrHg9HMtZe6VKYU-XcpkGcBRUSkBD7rZ8UdpbP-_Ys2_r0z-UTdN7mi-Tx7nOHL2YWT8AbnXdk_Iw3Gz5OYpeTMfxo4FgLlZA_XWv2axHYZ-XHtzGSD4fkYu5p-_fzqneR8CDUqyFVVRKe_Bm7BGm1iXUYF2-iB5U0XwtCYocM6-4RHOQHVdla5lIQoRXKtDZE6I52Sv67v2JZkpHoOoVGtAA6VHS1PiQawKxjjmfVkQtqWKDXlYOO6suLKpaC20HSlpgZI2UdJuCvJu-uZ6HJVxJ_RHJPYEiWOu04N--GGz1limveMQ0HHXCBmVh7Mh87IVQjghfeAFOd6yymbdW9pbSSnI6-k1aA2WQlzX9muEYdhEzyuAeTFydsIES6lYjS2I3uH5Dqq7b7rLn2kyN8OskK50Qd5vxeMWr__T4vDu3zgijziEUinxw4_J3mpYtycQCq38qyTvvwGQwgQR
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBFrJ9baznRN41uvnaTB5FWPIpQnzzoW0iyiS3UPbu9g95_7yS7e3J6Cr5uJkv4JZPfzM7ODMArZHWL-ueIrrUjgnpLrJUNiU1UMjVFkTzlO59-qU5m4vOZPNuBsd3RAOD1Vtcu9ZOadZdvb65WH1Dh3_cp4-rdtcjqjuxDhMCXk9UtuI3MVCdFPR3M_Xwzc40OjRhyZ7ZP3eCnXMZ_m-355y-Uv8VRMz1N78O9wa6cHPUHYQ92QvsA7vSdJlcP4eW06zMYUOZqiWguv09i6Lp53wbnwqMx_ghm009fP56QoT8C8VLQBZFRSueQXWijdKzLKFFbnResqSIyr_YSydo1LKJPVNdVaQP1kXNvg_KRWs4fw247b8NTmEgWPa9k0KiRwqWbp0yOWeW1ttS5sgA6omL8UDw89bC4NDmIzZXpkTSIpMlImlUBr9dzfvSlM_4pfZzAXkumstf5wbz7ZgYtMlQ5y9DAY7bhIkqHviJ1InDOLRfOswIOxq0y41EyTJe6FHh1yQJerIdRi1JoxLZhvkwyNCXVswplnvQ7u15JCq2m6GwBamPPN5a6OdJenOdK3TR9JVKVKuDNeDx-revvWOz_n_gzuMvQ1MofhtgB7C66ZXiOptLCHebz_xNIQQwB
  priority: 102
  providerName: Scholars Portal
Title Fractional quantum ferroelectricity
URI https://link.springer.com/article/10.1038/s41467-023-44453-y
https://www.ncbi.nlm.nih.gov/pubmed/38167841
https://www.proquest.com/docview/2909041835
https://www.proquest.com/docview/2910190265
https://pubmed.ncbi.nlm.nih.gov/PMC10761868
https://doaj.org/article/18ba24352ad34f5b9981b4e333a34bc2
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9QwzNqHkHiZxnfZOB2CN6hovtr08XbaMZ20CQGT7i1K0gQmQY91dw_373HSD3SwTeKllRqnsuw4duzYBniLWl2j_Jm0LEqTcmJ1qrWoUl95KUJTFMFCvvP5RX52yecLsdgB2ufCxEv7saRl3Kb722EfbngUadQwKef4g3SzC_uhdHtY1dN8OvhVQsVzyXmXH5MxecvULR0US_XfZl_-e03yr1hpVEGzQzjobMfxpMX2Eey4-jE8aLtJbp7Am1nTZikgzPUaKbb-OfauaZZtq5sriwb3U7icnX6dnqVdD4TUCk5WqfBCGIMahFSy9EXmBUqksZxWuUftWlqBCtlU1OO5pyjyTDtiPWNWO2k90Yw9g716WbsXMBbUW5YLV6LUcRN2lywcvnJblpoYkyVAeqoo2xUID30qfqgYqGZStZRUSEkVKak2Cbwb5vxqy2PcC30SiD1AhtLW8cOy-aY6VisijaZoxFFdMe6FwfMgMdwxxjTjxtIEjntWqU7ebhQtszLjuD2JBF4PwygpIfyha7dcBxgSEudpjjDPW84OmITwaYjAJiC3eL6F6vZIffU9VuMmwRMkc5nA-355_MHrblq8_D_wI3hI0ZyKzh96DHurZu1eoTm0MiPYLRYFPuXs4wj2J5P5lzm-T04vPn0eRdkYRUcDPs-5_A22GQkl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFQVIbggdgIFHgJOYDXeEueAENvTK11OrfRuxnZiqNQm7VuE3k_xjYydpXosvfUaTyR7ds94ZgBeoVU3KH-WFHlhiaDOEGNkSXzplQxDUSQP9c77B9nkSHydyukG_OprYcKzyl4nRkVdNi7EyLdZkRapQAaU78_OSZgaFbKr_QiNli12q9VPvLLN3-18Rvq-Zmz85fDThHRTBYiTgi6I9FJaizqZlqrweeol8rh1gpWZR3tVOIkmzpbM400iz7PUVNR5zp2plPPUhAAoqvxraHjTIFH5NB9iOqHbuhKiq81Judqei6iJ0DASIfDcZLVm_-KYgH_5tn8_0fwjTxvN3_g23Or81tGHltHuwEZV34Xr7STL1T14OZ61FRIIc75Eai1PR76azZp2zM6xQ2f_PhxdCaYewGbd1NUjGEnmHc9kVaDECxs0WxoufpkrCkOtTROgPVa065qThxkZJzomybnSLSY1YlJHTOpVAm-Gf87a1hyXQn8MyB4gQ1vt-KGZfdedlGqqrGHoQDJTcuGlxbsotaLinBsurGMJbPWk0p2sz_UFZybwYlhGKQ2pF1NXzTLA0FC0zzKEedhSdthJSN2G7G8Cao3ma1tdX6mPf8RO4DREoVSmEnjbs8fFvv6Pi8eXH-M53Jgc7u_pvZ2D3Sdwk6EbF4NObAs2F7Nl9RTdsIV9Fnl_BN-uWth-A1_fQJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKQFwQ76YUWAScINr4lTgHhICyailUHKi0N2M7NlSi2Ta7K7S_xtcx4zyq5dFbr8lEcub98MwQ8gysugH5s2lZlDYV1JnUGFmloQpK4lIUybHf-dNhvnckPkzldIP86nth8FplrxOjoq5mDnPkY1ZmZSaAAeU4dNciPu9OXp-epbhBCiut_TqNlkUO_OonhG_zV_u7QOvnjE3ef3m3l3YbBlInBV2kMkhpLehnWqkyFFmQwO_WCVblAWxX6SSYO1uxAFFFUeSZ8dQFzp3xygVqMBkK6v9KwSVFGSumxZDfwcnrSoiuTyfjajwXUSuBkUyFABykqzVbGFcG_MvP_fu65h8122gKJzfJjc6HHb1pme4W2fD1bXK13Wq5ukOeTpq2WwJgzpZAueXJKPimmbUrd44dOP53ydGlYOoe2axntd8iI8mC47n0JUi_sKjlMgwCc1eWhlqbJYT2WNGuG1SO-zJ-6Fgw50q3mNSASR0xqVcJeTF8c9qO6bgQ-i0ie4DEEdvxwaz5pjuJ1VRZw8CZZKbiIkgLcSm1wnPODRfWsYTs9KTSndzP9TmXJuTJ8BokFsswpvazJcJQbOBnOcDcbyk7nATLuFgJTohao_naUdff1Mff41RwihkplauEvOzZ4_xc_8fF9sW_8ZhcAzHTH_cPDx6Q6ww8uph_Yjtkc9Es_UPwyBb2UWT9Efl62bL2G3bKRMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+quantum+ferroelectricity&rft.jtitle=Nature+communications&rft.au=Ji%2C+Junyi&rft.au=Yu%2C+Guoliang&rft.au=Xu%2C+Changsong&rft.au=Xiang%2C+H.+J.&rft.date=2024-01-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-44453-y&rft.externalDocID=10_1038_s41467_023_44453_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon