Fractional quantum ferroelectricity
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 135 - 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.01.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In
2
Se
3
, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics. |
---|---|
AbstractList | For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In
2
Se
3
, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. Abstract For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics. For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In Se , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In 2 Se 3 , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics. For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 27 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the “polar” phase, which violates Neumann’s principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In 2 Se 3 , but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics. A concept of fractional quantum ferroelectricity is proposed, where the direction of ferroelectric polarization difference no longer subjects to the symmetry restrictions of Neumann’s principle. It indicates that ferroelectricity can exist in nonpolar systems, which may lead to discovery of many overlooked ferroelectrics. |
ArticleNumber | 135 |
Author | Ji, Junyi Yu, Guoliang Xu, Changsong Xiang, H. J. |
Author_xml | – sequence: 1 givenname: Junyi surname: Ji fullname: Ji, Junyi organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute – sequence: 2 givenname: Guoliang orcidid: 0000-0002-2215-601X surname: Yu fullname: Yu, Guoliang organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute – sequence: 3 givenname: Changsong surname: Xu fullname: Xu, Changsong email: csxu@fudan.edu.cn organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute – sequence: 4 givenname: H. J. orcidid: 0000-0002-9396-3214 surname: Xiang fullname: Xiang, H. J. email: hxiang@fudan.edu.cn organization: Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai Qi Zhi Institute, Collaborative Innovation Center of Advanced Microstructures |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38167841$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9PHSEUxYmxUat-AReNiRs3Y7lcmGFWTfOi1cSkm3ZNgIEnL_MGhZkm79vLc7T-WcgGAuf8OLnnK9kd4uAIOQF6ARTl98yB101FGVacc4HVZoccMMqhgobh7pvzPjnOeUXLwhYk53tkHyXUjeRwQM6ukrZjiIPuTx8mPYzT-tS7lKLrnR1TsGHcHJEvXvfZHT_vh-Tv1eWfxXV1-_vXzeLnbWUFh7ESXghjeAPQydY31AukYCxnXe0ZZ60VtAbTMd-Uz5uaagfWI1rtpPWgEQ_Jzcztol6p-xTWOm1U1EE9XcS0VDqNwfZOgTSacRRMd8i9MG0rwXCHiBq5saywfsys-8msXWfdMCbdv4O-fxnCnVrGfwpoU4OsZSGcPxNSfJhcHtU6ZOv6Xg8uTlmxFii0lNWiSM8-SFdxSmWkWxVtSxESt6pvbyP9z_JSRhHIWWBTzDk5r8r09backjD0JZraVq_m6lWpXj1VrzbFyj5YX-ifmnA25SIeli69xv7E9QgPob9z |
CitedBy_id | crossref_primary_10_1007_s40843_024_3060_1 crossref_primary_10_1063_5_0235723 crossref_primary_10_1103_PhysRevB_110_045435 crossref_primary_10_1103_PhysRevB_110_035419 crossref_primary_10_1002_adfm_202404665 crossref_primary_10_1039_D4MH00306C crossref_primary_10_1002_aelm_202300822 crossref_primary_10_1038_s41467_025_57138_5 crossref_primary_10_1103_PhysRevLett_134_016801 crossref_primary_10_1016_j_cosrev_2024_100676 crossref_primary_10_1103_PhysRevB_111_085417 crossref_primary_10_1360_SSPMA_2024_0053 |
Cites_doi | 10.1103/PhysRevLett.122.135502 10.1038/s41467-020-16623-9 10.1103/PhysRevLett.126.217601 10.1103/PhysRevLett.126.057601 10.1021/am504233d 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.59.1758 10.1038/ncomms14956 10.1103/PhysRevB.50.17953 10.1038/s41467-022-33325-6 10.1021/acs.nanolett.7b01035 10.1080/00150199208016065 10.1088/0256-307X/39/9/097701 10.1063/1.4812323 10.1063/1.4905209 10.1002/adfm.201803738 10.1103/PhysRevB.59.750 10.1103/PhysRevB.108.L180101 10.1524/zkri.2006.221.1.15 10.1063/1.5019779 10.1016/j.scriptamat.2015.07.021 10.1021/acs.jpclett.2c02601 10.1021/acs.nanolett.7b04852 10.1103/PhysRevLett.125.257603 10.1021/acsami.5b00063 10.1103/PhysRevB.47.1651 10.1103/PhysRevB.54.11169 10.1021/acsnano.8b02152 10.1038/358136a0 10.1002/adfm.201901420 10.1039/C9NH00172G 10.1039/D0NR04096G 10.1021/acs.nanolett.7b02198 10.1103/PhysRevLett.120.227601 10.1103/PhysRevB.98.045108 10.1039/C9MH01215J 10.1103/RevModPhys.66.899 10.1063/1.1329672 10.1103/PhysRevLett.131.256801 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-44453-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_18ba24352ad34f5b9981b4e333a34bc2 PMC10761868 38167841 10_1038_s41467_023_44453_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 11825403; 11991061; 12188101; 12274082 funderid: https://doi.org/10.13039/501100011002 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 11991061 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 12274082 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 11825403 – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: 12188101 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-5f55bb4711d89f70f5301bc42d6f2429c5061bd2f7167760ae1cf33cae8cf1a33 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Thu Aug 21 18:42:31 EDT 2025 Fri Jul 11 12:37:43 EDT 2025 Wed Aug 13 03:26:21 EDT 2025 Mon Jul 21 05:59:29 EDT 2025 Tue Jul 01 02:10:51 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Mon Jul 21 06:08:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-5f55bb4711d89f70f5301bc42d6f2429c5061bd2f7167760ae1cf33cae8cf1a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9396-3214 0000-0002-2215-601X |
OpenAccessLink | https://www.nature.com/articles/s41467-023-44453-y |
PMID | 38167841 |
PQID | 2909041835 |
PQPubID | 546298 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18ba24352ad34f5b9981b4e333a34bc2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10761868 proquest_miscellaneous_2910190265 proquest_journals_2909041835 pubmed_primary_38167841 crossref_citationtrail_10_1038_s41467_023_44453_y crossref_primary_10_1038_s41467_023_44453_y springer_journals_10_1038_s41467_023_44453_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-02 |
PublicationDateYYYYMMDD | 2024-01-02 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhou (CR9) 2020; 7 Qi (CR5) 2020; 125 Yang, Bellaiche, Xiang (CR12) 2022; 39 Ding (CR14) 2017; 8 Soleimani, Pourfath (CR15) 2020; 12 Zhao, Zhang, Yuan, Chen (CR25) 2019; 29 Zhou (CR16) 2017; 17 Hu (CR2) 2022; 13 Chandrasekaran, Mishra, Singh (CR24) 2017; 17 CR36 Lee, Cho, Chung (CR22) 2014; 6 Jain (CR31) 2013; 1 Resta (CR28) 1992; 136 Xue (CR19) 2018; 12 Chai (CR6) 2020; 11 Gao, Wu, Zeng (CR11) 2019; 4 King-Smith, Vanderbilt (CR29) 1993; 47 Henkelman, Uberuaga, Jónsson (CR41) 2000; 113 Schutt, Sauceda, Kindermans, Tkatchenko, Muller (CR26) 2018; 148 Togo, Tanaka (CR42) 2015; 108 Perdew, Burke, Ernzerhof (CR38) 1996; 77 Xue (CR18) 2018; 28 Wyckoff (CR32) 1963; 1 Ding, Shao, Li, Wen, Tsymbal (CR4) 2021; 126 Hull, Keen (CR33) 1999; 59 Kresse, Joubert (CR40) 1999; 59 Aroyo (CR21) 2006; 221 Xiao (CR20) 2018; 120 CR8 CR7 Wang, Ren, Wu (CR10) 2022; 13 Blöchl (CR39) 1994; 50 Lee, Hwang, Chung (CR23) 2015; 7 Zarkevich, Johnson (CR27) 2015; 142 Resta (CR30) 1994; 66 Cordero-Edwards, Kianirad, Canalias, Sort, Catalan (CR1) 2019; 122 Gao (CR34) 2018; 98 Seleznev, Singh, Bonini, Rabe, Vanderbilt (CR13) 2023; 108 Kresse, Furthmüller (CR37) 1996; 54 Qi, Rappe (CR3) 2021; 126 Cui (CR17) 2018; 18 Cohen (CR35) 1992; 358 Y Zhao (44453_CR25) 2019; 29 Y Qi (44453_CR5) 2020; 125 PE Blöchl (44453_CR39) 1994; 50 44453_CR36 RD King-Smith (44453_CR29) 1993; 47 W Gao (44453_CR34) 2018; 98 Y Lee (44453_CR23) 2015; 7 JP Perdew (44453_CR38) 1996; 77 R Resta (44453_CR28) 1992; 136 F Xue (44453_CR19) 2018; 12 MI Aroyo (44453_CR21) 2006; 221 Y Yang (44453_CR12) 2022; 39 RE Cohen (44453_CR35) 1992; 358 G Henkelman (44453_CR41) 2000; 113 Y Gao (44453_CR11) 2019; 4 A Chandrasekaran (44453_CR24) 2017; 17 X Chai (44453_CR6) 2020; 11 A Togo (44453_CR42) 2015; 108 W Ding (44453_CR14) 2017; 8 J Xiao (44453_CR20) 2018; 120 R Wyckoff (44453_CR32) 1963; 1 KT Schutt (44453_CR26) 2018; 148 44453_CR7 F Xue (44453_CR18) 2018; 28 Y Lee (44453_CR22) 2014; 6 R Resta (44453_CR30) 1994; 66 Y Zhou (44453_CR16) 2017; 17 C Cui (44453_CR17) 2018; 18 44453_CR8 G Kresse (44453_CR40) 1999; 59 K Cordero-Edwards (44453_CR1) 2019; 122 Y Qi (44453_CR3) 2021; 126 D Seleznev (44453_CR13) 2023; 108 G Kresse (44453_CR37) 1996; 54 S Zhou (44453_CR9) 2020; 7 NA Zarkevich (44453_CR27) 2015; 142 A Jain (44453_CR31) 2013; 1 Y Hu (44453_CR2) 2022; 13 J Ding (44453_CR4) 2021; 126 X Wang (44453_CR10) 2022; 13 M Soleimani (44453_CR15) 2020; 12 S Hull (44453_CR33) 1999; 59 39472578 - Nat Commun. 2024 Oct 29;15(1):9325. doi: 10.1038/s41467-024-53618-2 |
References_xml | – volume: 122 start-page: 135502 year: 2019 ident: CR1 article-title: Flexoelectric fracture-ratchet effect in ferroelectrics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.135502 – volume: 11 year: 2020 ident: CR6 article-title: Nonvolatile ferroelectric field-effect transistors publication-title: Nat. Commun. doi: 10.1038/s41467-020-16623-9 – volume: 126 start-page: 217601 year: 2021 ident: CR3 article-title: Widespread negative longitudinal piezoelectric responses in ferroelectric crystals with layered structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.217601 – volume: 126 start-page: 057601 year: 2021 ident: CR4 article-title: Two-dimensional antiferroelectric tunnel junction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.057601 – volume: 6 start-page: 14724 year: 2014 end-page: 14728 ident: CR22 article-title: Tunable indirect to direct band gap transition of monolayer Sc CO by the strain effect publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504233d – volume: 77 start-page: 3865 year: 1996 ident: CR38 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR40 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – ident: CR8 – volume: 8 year: 2017 ident: CR14 article-title: Prediction of intrinsic two-dimensional ferroelectrics in In Se and other III2-VI3 van der Waals materials publication-title: Nat. Commun. doi: 10.1038/ncomms14956 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR39 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 13 year: 2022 ident: CR2 article-title: Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials publication-title: Nat. Commun. doi: 10.1038/s41467-022-33325-6 – volume: 17 start-page: 3290 year: 2017 end-page: 3296 ident: CR24 article-title: Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01035 – volume: 136 start-page: 51 year: 1992 end-page: 55 ident: CR28 article-title: Theory of the electric polarization in crystals publication-title: Ferroelectrics doi: 10.1080/00150199208016065 – volume: 39 start-page: 097701 year: 2022 ident: CR12 article-title: Ferroelectricity in charge-ordering crystals with centrosymmetric lattices publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/9/097701 – volume: 1 start-page: 011002 year: 2013 ident: CR31 article-title: Commentary: the materials project: a materials genome approach to accelerating materials innovation publication-title: Apl. Mater. doi: 10.1063/1.4812323 – volume: 142 start-page: 024106 year: 2015 ident: CR27 article-title: Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes publication-title: J. Chem. Phys. doi: 10.1063/1.4905209 – volume: 28 start-page: 1803738 year: 2018 ident: CR18 article-title: Room-temperature ferroelectricity in hexagonally layered α-In Se nanoflakes down to the monolayer limit publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803738 – volume: 59 start-page: 750 year: 1999 end-page: 761 ident: CR33 article-title: Pressure-induced phase transitions in AgCl, AgBr, and AgI publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.750 – volume: 108 start-page: L180101 year: 2023 ident: CR13 article-title: Cyclic ferroelectric switching and quantized charge transport in CuInP S publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.L180101 – volume: 221 start-page: 15 year: 2006 end-page: 27 ident: CR21 article-title: Bilbao crystallographic server: i. databases and crystallographic computing programs publication-title: Z. Krist. - Cryst. Mater. doi: 10.1524/zkri.2006.221.1.15 – volume: 148 start-page: 241722 year: 2018 ident: CR26 article-title: SchNet - A deep learning architecture for molecules and materials publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 108 start-page: 1 year: 2015 end-page: 5 ident: CR42 article-title: First principles phonon calculations in materials science publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 13 start-page: 9552 year: 2022 end-page: 9557 ident: CR10 article-title: Unconventional ferroelectricity with quantized polarizations in ionic conductors: High-throughput screening publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c02601 – volume: 18 start-page: 1253 year: 2018 end-page: 1258 ident: CR17 article-title: Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In Se publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04852 – volume: 125 start-page: 257603 year: 2020 ident: CR5 article-title: Stabilization of competing ferroelectric phases of HfO under epitaxial strain publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.257603 – volume: 7 start-page: 7163 year: 2015 end-page: 7169 ident: CR23 article-title: Achieving type I, II, and III heterojunctions using functionalized MXene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00063 – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: CR29 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR37 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 12 start-page: 4976 year: 2018 end-page: 4983 ident: CR19 article-title: Multidirection piezoelectricity in mono- and multilayered hexagonal α-In Se publication-title: ACS Nano doi: 10.1021/acsnano.8b02152 – volume: 1 start-page: 85 year: 1963 end-page: 237 ident: CR32 article-title: Interscience publishers, new york, new york rocksalt structure publication-title: Cryst. Struct. – volume: 358 start-page: 136 year: 1992 end-page: 138 ident: CR35 article-title: Origin of ferroelectricity in perovskite oxides publication-title: Nature doi: 10.1038/358136a0 – ident: CR36 – volume: 29 start-page: 1901420 year: 2019 ident: CR25 article-title: Nonvolatile electrical control and heterointerface‐induced half‐metallicity of 2D ferromagnets publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901420 – ident: CR7 – volume: 4 start-page: 1106 year: 2019 end-page: 1112 ident: CR11 article-title: Phase transitions and ferroelasticity–multiferroicity in bulk and two-dimensional silver and copper monohalides publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00172G – volume: 12 start-page: 22688 year: 2020 end-page: 22697 ident: CR15 article-title: Ferroelectricity and phase transitions in In Se van der Waals material. publication-title: Nanoscale doi: 10.1039/D0NR04096G – volume: 17 start-page: 5508 year: 2017 end-page: 5513 ident: CR16 article-title: Out-of-plane piezoelectricity and ferroelectricity in layered α-In Se nanoflakes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – volume: 120 start-page: 227601 year: 2018 ident: CR20 article-title: Intrinsic two-dimensional ferroelectricity with dipole locking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.227601 – volume: 98 start-page: 045108 year: 2018 ident: CR34 article-title: Quasiparticle band structures of CuCl, CuBr, AgCl, and AgBr: The extreme case publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.045108 – volume: 7 start-page: 263 year: 2020 end-page: 274 ident: CR9 article-title: Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor publication-title: Mater. Horiz. doi: 10.1039/C9MH01215J – volume: 66 start-page: 899 year: 1994 end-page: 915 ident: CR30 article-title: Macroscopic polarization in crystalline dielectrics: the geometric phase approach publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.899 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR41 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 28 start-page: 1803738 year: 2018 ident: 44453_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803738 – volume: 1 start-page: 011002 year: 2013 ident: 44453_CR31 publication-title: Apl. Mater. doi: 10.1063/1.4812323 – volume: 126 start-page: 217601 year: 2021 ident: 44453_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.217601 – volume: 358 start-page: 136 year: 1992 ident: 44453_CR35 publication-title: Nature doi: 10.1038/358136a0 – volume: 126 start-page: 057601 year: 2021 ident: 44453_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.057601 – volume: 47 start-page: 1651 year: 1993 ident: 44453_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 1 start-page: 85 year: 1963 ident: 44453_CR32 publication-title: Cryst. Struct. – volume: 108 start-page: L180101 year: 2023 ident: 44453_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.L180101 – volume: 148 start-page: 241722 year: 2018 ident: 44453_CR26 publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 12 start-page: 22688 year: 2020 ident: 44453_CR15 publication-title: Nanoscale doi: 10.1039/D0NR04096G – volume: 59 start-page: 1758 year: 1999 ident: 44453_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 122 start-page: 135502 year: 2019 ident: 44453_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.135502 – volume: 77 start-page: 3865 year: 1996 ident: 44453_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 66 start-page: 899 year: 1994 ident: 44453_CR30 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.899 – volume: 6 start-page: 14724 year: 2014 ident: 44453_CR22 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504233d – volume: 108 start-page: 1 year: 2015 ident: 44453_CR42 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 17 start-page: 5508 year: 2017 ident: 44453_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – volume: 113 start-page: 9901 year: 2000 ident: 44453_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 11 year: 2020 ident: 44453_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16623-9 – volume: 120 start-page: 227601 year: 2018 ident: 44453_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.227601 – volume: 50 start-page: 17953 year: 1994 ident: 44453_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 54 start-page: 11169 year: 1996 ident: 44453_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 7 start-page: 7163 year: 2015 ident: 44453_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00063 – volume: 13 year: 2022 ident: 44453_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33325-6 – volume: 125 start-page: 257603 year: 2020 ident: 44453_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.257603 – volume: 136 start-page: 51 year: 1992 ident: 44453_CR28 publication-title: Ferroelectrics doi: 10.1080/00150199208016065 – volume: 7 start-page: 263 year: 2020 ident: 44453_CR9 publication-title: Mater. Horiz. doi: 10.1039/C9MH01215J – ident: 44453_CR36 – volume: 39 start-page: 097701 year: 2022 ident: 44453_CR12 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/9/097701 – ident: 44453_CR8 doi: 10.1103/PhysRevLett.131.256801 – volume: 17 start-page: 3290 year: 2017 ident: 44453_CR24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01035 – volume: 221 start-page: 15 year: 2006 ident: 44453_CR21 publication-title: Z. Krist. - Cryst. Mater. doi: 10.1524/zkri.2006.221.1.15 – volume: 29 start-page: 1901420 year: 2019 ident: 44453_CR25 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901420 – volume: 98 start-page: 045108 year: 2018 ident: 44453_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.045108 – ident: 44453_CR7 – volume: 142 start-page: 024106 year: 2015 ident: 44453_CR27 publication-title: J. Chem. Phys. doi: 10.1063/1.4905209 – volume: 4 start-page: 1106 year: 2019 ident: 44453_CR11 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00172G – volume: 18 start-page: 1253 year: 2018 ident: 44453_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04852 – volume: 12 start-page: 4976 year: 2018 ident: 44453_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.8b02152 – volume: 59 start-page: 750 year: 1999 ident: 44453_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.750 – volume: 13 start-page: 9552 year: 2022 ident: 44453_CR10 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c02601 – volume: 8 year: 2017 ident: 44453_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms14956 – reference: 39472578 - Nat Commun. 2024 Oct 29;15(1):9325. doi: 10.1038/s41467-024-53618-2 |
SSID | ssj0000391844 |
Score | 2.5313919 |
Snippet | For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the... Abstract For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 135 |
SubjectTerms | 639/301/119/995 639/301/119/996 Displacements (lattice) Electric polarization Ferroelectric materials Ferroelectricity Ferroelectrics Group theory Humanities and Social Sciences Lattice parameters Linear polarization multidisciplinary Polarization Principles Science Science (multidisciplinary) Symmetry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VSJV6QVAKhNJqUXtrLeKvrH2kFSuERE9F4mbZji2QIAvL7mH_fcd2dsuWAheuyUQavcnMm8nEMwBfkdUt-p8jeqgdEdRbYq1sSWyjkmkpiuTpvPPZr-bkXJxeyIsHq77SP2FlPHAB7pAqZxlyOrMtF1E6LA-oE4FzbrlwPkdf5LwHxVSOwVxj6SL6UzI1V4f3IscEpCgiBGpA5itMlAf2_y_LfPyz5D8d00xEow1Y7zPIwVHRfBPehO49vC07Jedb8GU0KWcVUOZuhrjNbgYxTCbjsvDmymPa_QHOR8e_f56QfhMC8VLQKZFRSueQR2irdBzWUaJfOi9Y20TkWO0l0rJrWcTqZzhsahuoj5x7G5SP1HK-DWvduAu7MJAset7IoNH3hEsxpk4lWOO1ttS5ugK6QMX4fkx42lZxbXK7mitTkDSIpMlImnkF35bP3JYhGc9K_0hgLyXTgOt8Ac1uerObl8xewf7CVKb3unvDdK1rgUFKVnCwvI3-kpogtgvjWZKh6fg8a1Bmp1h2qUlqoqY-bAVqxeYrqq7e6a4u80xumr4HqUZV8H3xevzV62ks9l4Di4_wjmGqlT8MsX1Ym05m4ROmSlP3OXvFHxX7DCo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6o5Zk-0CK4gdX4ldinChCrCglOVNqbZTsxVCpJm9097N8z43hTLY9ek4k0mbdnPDOEvAWv7kD_PDW18VSy4KhzqqGxiVrhUhQlsN_567fq_EJ-WahFTrgt87XKrU1MhrrpA-bIT7kpTSlBANXZ9Q3FrVFYXc0rNO6TBzi6DK901Yt6yrHg9HMtZe6VKYU-XcpkGcBRUSkBD7rZ8UdpbP-_Ys2_r0z-UTdN7mi-Tx7nOHL2YWT8AbnXdk_Iw3Gz5OYpeTMfxo4FgLlZA_XWv2axHYZ-XHtzGSD4fkYu5p-_fzqneR8CDUqyFVVRKe_Bm7BGm1iXUYF2-iB5U0XwtCYocM6-4RHOQHVdla5lIQoRXKtDZE6I52Sv67v2JZkpHoOoVGtAA6VHS1PiQawKxjjmfVkQtqWKDXlYOO6suLKpaC20HSlpgZI2UdJuCvJu-uZ6HJVxJ_RHJPYEiWOu04N--GGz1limveMQ0HHXCBmVh7Mh87IVQjghfeAFOd6yymbdW9pbSSnI6-k1aA2WQlzX9muEYdhEzyuAeTFydsIES6lYjS2I3uH5Dqq7b7rLn2kyN8OskK50Qd5vxeMWr__T4vDu3zgijziEUinxw4_J3mpYtycQCq38qyTvvwGQwgQR priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBFrJ9baznRN41uvnaTB5FWPIpQnzzoW0iyiS3UPbu9g95_7yS7e3J6Cr5uJkv4JZPfzM7ODMArZHWL-ueIrrUjgnpLrJUNiU1UMjVFkTzlO59-qU5m4vOZPNuBsd3RAOD1Vtcu9ZOadZdvb65WH1Dh3_cp4-rdtcjqjuxDhMCXk9UtuI3MVCdFPR3M_Xwzc40OjRhyZ7ZP3eCnXMZ_m-355y-Uv8VRMz1N78O9wa6cHPUHYQ92QvsA7vSdJlcP4eW06zMYUOZqiWguv09i6Lp53wbnwqMx_ghm009fP56QoT8C8VLQBZFRSueQXWijdKzLKFFbnResqSIyr_YSydo1LKJPVNdVaQP1kXNvg_KRWs4fw247b8NTmEgWPa9k0KiRwqWbp0yOWeW1ttS5sgA6omL8UDw89bC4NDmIzZXpkTSIpMlImlUBr9dzfvSlM_4pfZzAXkumstf5wbz7ZgYtMlQ5y9DAY7bhIkqHviJ1InDOLRfOswIOxq0y41EyTJe6FHh1yQJerIdRi1JoxLZhvkwyNCXVswplnvQ7u15JCq2m6GwBamPPN5a6OdJenOdK3TR9JVKVKuDNeDx-revvWOz_n_gzuMvQ1MofhtgB7C66ZXiOptLCHebz_xNIQQwB priority: 102 providerName: Scholars Portal |
Title | Fractional quantum ferroelectricity |
URI | https://link.springer.com/article/10.1038/s41467-023-44453-y https://www.ncbi.nlm.nih.gov/pubmed/38167841 https://www.proquest.com/docview/2909041835 https://www.proquest.com/docview/2910190265 https://pubmed.ncbi.nlm.nih.gov/PMC10761868 https://doaj.org/article/18ba24352ad34f5b9981b4e333a34bc2 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9QwzNqHkHiZxnfZOB2CN6hovtr08XbaMZ20CQGT7i1K0gQmQY91dw_373HSD3SwTeKllRqnsuw4duzYBniLWl2j_Jm0LEqTcmJ1qrWoUl95KUJTFMFCvvP5RX52yecLsdgB2ufCxEv7saRl3Kb722EfbngUadQwKef4g3SzC_uhdHtY1dN8OvhVQsVzyXmXH5MxecvULR0US_XfZl_-e03yr1hpVEGzQzjobMfxpMX2Eey4-jE8aLtJbp7Am1nTZikgzPUaKbb-OfauaZZtq5sriwb3U7icnX6dnqVdD4TUCk5WqfBCGIMahFSy9EXmBUqksZxWuUftWlqBCtlU1OO5pyjyTDtiPWNWO2k90Yw9g716WbsXMBbUW5YLV6LUcRN2lywcvnJblpoYkyVAeqoo2xUID30qfqgYqGZStZRUSEkVKak2Cbwb5vxqy2PcC30SiD1AhtLW8cOy-aY6VisijaZoxFFdMe6FwfMgMdwxxjTjxtIEjntWqU7ebhQtszLjuD2JBF4PwygpIfyha7dcBxgSEudpjjDPW84OmITwaYjAJiC3eL6F6vZIffU9VuMmwRMkc5nA-355_MHrblq8_D_wI3hI0ZyKzh96DHurZu1eoTm0MiPYLRYFPuXs4wj2J5P5lzm-T04vPn0eRdkYRUcDPs-5_A22GQkl |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFQVIbggdgIFHgJOYDXeEueAENvTK11OrfRuxnZiqNQm7VuE3k_xjYydpXosvfUaTyR7ds94ZgBeoVU3KH-WFHlhiaDOEGNkSXzplQxDUSQP9c77B9nkSHydyukG_OprYcKzyl4nRkVdNi7EyLdZkRapQAaU78_OSZgaFbKr_QiNli12q9VPvLLN3-18Rvq-Zmz85fDThHRTBYiTgi6I9FJaizqZlqrweeol8rh1gpWZR3tVOIkmzpbM400iz7PUVNR5zp2plPPUhAAoqvxraHjTIFH5NB9iOqHbuhKiq81Judqei6iJ0DASIfDcZLVm_-KYgH_5tn8_0fwjTxvN3_g23Or81tGHltHuwEZV34Xr7STL1T14OZ61FRIIc75Eai1PR76azZp2zM6xQ2f_PhxdCaYewGbd1NUjGEnmHc9kVaDECxs0WxoufpkrCkOtTROgPVa065qThxkZJzomybnSLSY1YlJHTOpVAm-Gf87a1hyXQn8MyB4gQ1vt-KGZfdedlGqqrGHoQDJTcuGlxbsotaLinBsurGMJbPWk0p2sz_UFZybwYlhGKQ2pF1NXzTLA0FC0zzKEedhSdthJSN2G7G8Cao3ma1tdX6mPf8RO4DREoVSmEnjbs8fFvv6Pi8eXH-M53Jgc7u_pvZ2D3Sdwk6EbF4NObAs2F7Nl9RTdsIV9Fnl_BN-uWth-A1_fQJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKQFwQ76YUWAScINr4lTgHhICyailUHKi0N2M7NlSi2Ta7K7S_xtcx4zyq5dFbr8lEcub98MwQ8gysugH5s2lZlDYV1JnUGFmloQpK4lIUybHf-dNhvnckPkzldIP86nth8FplrxOjoq5mDnPkY1ZmZSaAAeU4dNciPu9OXp-epbhBCiut_TqNlkUO_OonhG_zV_u7QOvnjE3ef3m3l3YbBlInBV2kMkhpLehnWqkyFFmQwO_WCVblAWxX6SSYO1uxAFFFUeSZ8dQFzp3xygVqMBkK6v9KwSVFGSumxZDfwcnrSoiuTyfjajwXUSuBkUyFABykqzVbGFcG_MvP_fu65h8122gKJzfJjc6HHb1pme4W2fD1bXK13Wq5ukOeTpq2WwJgzpZAueXJKPimmbUrd44dOP53ydGlYOoe2axntd8iI8mC47n0JUi_sKjlMgwCc1eWhlqbJYT2WNGuG1SO-zJ-6Fgw50q3mNSASR0xqVcJeTF8c9qO6bgQ-i0ie4DEEdvxwaz5pjuJ1VRZw8CZZKbiIkgLcSm1wnPODRfWsYTs9KTSndzP9TmXJuTJ8BokFsswpvazJcJQbOBnOcDcbyk7nATLuFgJTohao_naUdff1Mff41RwihkplauEvOzZ4_xc_8fF9sW_8ZhcAzHTH_cPDx6Q6ww8uph_Yjtkc9Es_UPwyBb2UWT9Efl62bL2G3bKRMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+quantum+ferroelectricity&rft.jtitle=Nature+communications&rft.au=Ji%2C+Junyi&rft.au=Yu%2C+Guoliang&rft.au=Xu%2C+Changsong&rft.au=Xiang%2C+H.+J.&rft.date=2024-01-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-44453-y&rft.externalDocID=10_1038_s41467_023_44453_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |