Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment

Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and m...

Full description

Saved in:
Bibliographic Details
Published inSkeletal radiology Vol. 49; no. 3; pp. 387 - 395
Main Authors Hemke, Robert, Buckless, Colleen G., Tsao, Andrew, Wang, Benjamin, Torriani, Martin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and methods We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. Results The CNN model with data augmentation of N  = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Conclusions Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
AbstractList Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and methods We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. Results The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Conclusions Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.OBJECTIVETo develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.MATERIALS AND METHODSWe manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).RESULTSThe CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.CONCLUSIONSOur CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
ObjectiveTo develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.Materials and methodsWe manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.ResultsThe CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).ConclusionsOur CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and methods We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. Results The CNN model with data augmentation of N  = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Conclusions Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.
Audience Academic
Author Wang, Benjamin
Torriani, Martin
Hemke, Robert
Buckless, Colleen G.
Tsao, Andrew
AuthorAffiliation 1 Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
2 Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
AuthorAffiliation_xml – name: 1 Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
– name: 2 Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands
Author_xml – sequence: 1
  givenname: Robert
  surname: Hemke
  fullname: Hemke, Robert
  organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Movement Sciences
– sequence: 2
  givenname: Colleen G.
  surname: Buckless
  fullname: Buckless, Colleen G.
  organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 3
  givenname: Andrew
  surname: Tsao
  fullname: Tsao, Andrew
  organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 4
  givenname: Benjamin
  surname: Wang
  fullname: Wang, Benjamin
  organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School
– sequence: 5
  givenname: Martin
  surname: Torriani
  fullname: Torriani, Martin
  email: mtorriani@mgh.harvard.edu
  organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31396667$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAURkVJaSZp_0AXRdBNF3Gqhy1Lm0KYPiHQTboWGvnKVbClqWQH5t9HM06aJpTghcE-35Hu4wQdhRgAobeUnFNC2o-ZENaIilBVEc6kquQLtKI1ZxWjgh6hFeGirhiv5TE6yfmaENq2jXiFjjnlSgjRrtDuM8AWD2BS8KHHLiZs5imOZoIOZ-hHCJOZfAw4OryF4cZbPM7ZDpDPsDPTGTahw5tyMexSHPH6Cudp7jzkg2sTux22cdzG7A8WkzPkvLe-Ri-dGTK8uXufol9fv1ytv1eXP7_9WF9cVrap6VQ11hkA1XR1p0Aqt2FWSa6Iax1j3Lna1NZIzoQ04KxxlpSc5NxSQ7saGn6KPi3e7bwZobPl6GQGvU1-NGmno_H68Z_gf-s-3mihJGkIL4IPd4IU_8yQJz36bGEYTIA4Z81YWzpLOCEFff8EvY5zCqW8QgnVSsYUf6B6M4D2wcVyrt1L9UVbRiNoK2Whzv9DlaeD0dvScOfL90eBd_8W-rfC-2EXQC6ATTHnBE5bvwy3mP2gKdH7vdLLXumyV_qwV3rvZk-i9_ZnQ3wJ5QKHHtJDN55J3QICX-Da
CitedBy_id crossref_primary_10_1007_s00167_021_06838_8
crossref_primary_10_1016_j_ejrad_2021_109943
crossref_primary_10_1016_j_ejrad_2022_110218
crossref_primary_10_1016_j_rcl_2021_11_011
crossref_primary_10_1155_2022_3289663
crossref_primary_10_1016_j_cpet_2021_09_012
crossref_primary_10_3390_nu16030384
crossref_primary_10_2214_AJR_20_22874
crossref_primary_10_1186_s12864_025_11399_y
crossref_primary_10_1055_s_0040_1708824
crossref_primary_10_1016_j_nut_2021_111227
crossref_primary_10_1016_j_injury_2022_05_004
crossref_primary_10_1148_radiol_2020201640
crossref_primary_10_1016_j_slast_2021_10_014
crossref_primary_10_53903_01212095_280
crossref_primary_10_1038_s41366_021_00907_1
crossref_primary_10_3390_diagnostics13050968
crossref_primary_10_3390_s21062083
crossref_primary_10_1038_s41598_024_83031_0
crossref_primary_10_3390_jpm12050776
crossref_primary_10_1016_j_bspc_2021_103172
crossref_primary_10_1111_1754_9485_13261
crossref_primary_10_1155_2022_1819841
crossref_primary_10_3390_diagnostics13071295
crossref_primary_10_1007_s00330_020_07070_7
crossref_primary_10_3390_jcm13030689
crossref_primary_10_1007_s00330_022_08829_w
crossref_primary_10_1007_s00256_021_03880_y
crossref_primary_10_3390_bioengineering10020225
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_1002_jcsm_13728
crossref_primary_10_1002_mp_15440
crossref_primary_10_3390_biology11121727
crossref_primary_10_3390_diagnostics10100781
crossref_primary_10_1007_s11914_022_00743_w
crossref_primary_10_1016_j_jmbbm_2022_105576
crossref_primary_10_1007_s00256_021_03873_x
crossref_primary_10_1016_j_compmedimag_2024_102412
crossref_primary_10_1007_s11548_021_02363_8
crossref_primary_10_1055_a_1241_9765
crossref_primary_10_3390_bioengineering10020137
crossref_primary_10_1177_02841851231187373
crossref_primary_10_1186_s12859_023_05462_2
crossref_primary_10_1002_jso_26793
crossref_primary_10_1186_s41747_023_00357_6
crossref_primary_10_1016_j_euf_2021_03_013
crossref_primary_10_1007_s00256_020_03463_3
crossref_primary_10_1038_s41598_024_79915_w
crossref_primary_10_1016_j_redii_2024_100044
crossref_primary_10_1590_1517_8692202127082021_0349
crossref_primary_10_1007_s00256_023_04283_x
crossref_primary_10_1007_s11934_023_01157_6
Cites_doi 10.1148/radiol.2353040403
10.1016/j.math.2009.07.004
10.1007/s10067-015-2943-9
10.2519/jospt.2008.2685
10.1016/j.surg.2017.03.014
10.2307/1932409
10.1016/j.nmd.2014.07.004
10.1007/s12603-010-0081-2
10.1002/jcsm.12379
10.1007/s00421-010-1728-8
10.1007/s00256-017-2848-6
10.1093/gerona/60.3.324
10.1016/j.archger.2014.07.013
10.1109/TMI.2015.2479252
10.1038/s41598-018-29825-5
10.1186/s12891-017-1828-2
10.1080/17512433.2017.1347503
10.1016/j.cmpb.2017.03.017
10.1007/s10278-017-9988-z
10.1016/j.ejca.2015.12.030
10.1007/s10278-012-9488-0
10.1371/journal.pone.0183515
10.1002/jcsm.12107
10.1038/s41598-017-08925-8
10.1148/radiol.2018181432
10.1016/j.arth.2015.10.036
10.1046/j.1532-5415.2002.50216.x
10.1016/S0003-9993(96)90066-0
10.1117/12.812412
10.1007/978-3-319-24574-4_28
ContentType Journal Article
Copyright ISS 2019
COPYRIGHT 2020 Springer
Skeletal Radiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: ISS 2019
– notice: COPYRIGHT 2020 Springer
– notice: Skeletal Radiology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RV
7X7
7XB
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00256-019-03289-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Central Student
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-2161
EndPage 395
ExternalDocumentID PMC6980503
A731361788
31396667
10_1007_s00256_019_03289_8
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  grantid: P30 DK040561
  funderid: http://dx.doi.org/10.13039/100000062
– fundername: NIDDK NIH HHS
  grantid: P30 DK040561
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
X7M
YLTOR
Z45
Z7U
Z7X
Z82
Z87
Z8O
Z8V
Z91
Z92
ZGI
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QP
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c541t-5cfaee95d4d9e89fb2c98390f7f223ff4a4ca83268aefcafc0c54833c1a1d4e53
IEDL.DBID 7X7
ISSN 0364-2348
1432-2161
IngestDate Thu Aug 21 17:38:33 EDT 2025
Fri Jul 11 04:00:48 EDT 2025
Fri Jul 25 09:39:29 EDT 2025
Tue Jun 17 21:47:38 EDT 2025
Tue Jun 10 20:17:13 EDT 2025
Mon Jul 21 06:01:20 EDT 2025
Tue Jul 01 03:14:57 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 21 02:28:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Muscle
Segmentation
Computed tomography
Pelvis
Body composition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-5cfaee95d4d9e89fb2c98390f7f223ff4a4ca83268aefcafc0c54833c1a1d4e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6980503
PMID 31396667
PQID 2269782293
PQPubID 54043
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6980503
proquest_miscellaneous_2270010300
proquest_journals_2269782293
gale_infotracmisc_A731361788
gale_infotracacademiconefile_A731361788
pubmed_primary_31396667
crossref_citationtrail_10_1007_s00256_019_03289_8
crossref_primary_10_1007_s00256_019_03289_8
springer_journals_10_1007_s00256_019_03289_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Journal of the International Skeletal Society A Journal of Radiology, Pathology and Orthopedics
PublicationTitle Skeletal radiology
PublicationTitleAbbrev Skeletal Radiol
PublicationTitleAlternate Skeletal Radiol
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Dice (CR23) 1945; 26
Grimby, Kvist, Grangård (CR31) 1996; 77
Marcus, Addison, Kidde, Dibble, Lastayo (CR7) 2010; 14
Woodley, Nicholson, Livingstone, Doyle, Meikle, Macintosh (CR3) 2008; 38
Kiyoshige, Watanabe (CR6) 2015; 60
Momose, Inaba, Choe, Kobayashi, Tezuka, Saito (CR18) 2017; 18
Janssen, Heymsfield, Ross (CR13) 2002; 50
Derstine, Holcombe, Ross, Wang, Su, Wang (CR33) 2018; 8
Visser, Goodpaster, Kritchevsky, Newman, Nevitt, Rubin (CR8) 2005; 60
Wang, Qiu, Thai, Moore, Liu, Zheng (CR15) 2017; 144
Popuri, Cobzas, Esfandiari, Baracos, Jägersand (CR27) 2016; 35
Hopkins, Sawyer (CR25) 2017; 10
Pfirrmann, Notzli, Dora, Hodler, Zanetti (CR4) 2005; 235
Yang, Chong, Tay, Yew, Yeo, Tan (CR17) 2016; 29
Oliveira, Vaz (CR9) 2015; 34
Grimaldi, Richardson, Stanton, Durbridge, Donnelly, Hides (CR1) 2009; 14
Chang, Wu, Mhuircheartaigh, Hochman, Rodriguez, Appleton (CR10) 2018; 47
Uemura, Takao, Sakai, Nishii, Sugano (CR19) 2016; 31
Weston, Korfiatis, Kline, Philbrick, Kostandy, Sakinis (CR14) 2019; 290
Kullberg, Hedström, Brandberg, Strand, Johansson, Bergström (CR30) 2017; 7
Kim, Lee, Kim, Park, Choi, Kim (CR28) 2013; 26
Brown, Cespedes Feliciano, Caan (CR11) 2018; 9
Yoo, Lo, Evans (CR12) 2017; 162
Parikh, Coletta, Yu, Rauch, Cheung, Court, Klopp (CR29) 2017; 12
CR26
CR22
CR21
Rutten, van Dijk, Kruitwagen, Beets-Tan, Olde Damink, van Gorp (CR20) 2016; 7
Strulov Shachar, Williams, Muss, Nishijima (CR24) 2016; 57
Shen, Punyanitya, Wang, Gallagher, St-Onge, Albu (CR32) 2004; 97
Ikezoe, Mori, Nakamura, Ichihashi (CR5) 2011; 111
ten Dam, van der Kooi, Rövekamp, Linssen, de Visser (CR2) 2014; 24
Lee, Troschel, Tajmir, Fuchs, Mario, Fintelmann (CR16) 2017; 30
SJ Woodley (3289_CR3) 2008; 38
S Strulov Shachar (3289_CR24) 2016; 57
Aaroh M. Parikh (3289_CR29) 2017; 12
W Shen (3289_CR32) 2004; 97
JJ Hopkins (3289_CR25) 2017; 10
IJG Rutten (3289_CR20) 2016; 7
Y Kiyoshige (3289_CR6) 2015; 60
H Lee (3289_CR16) 2017; 30
M Visser (3289_CR8) 2005; 60
AD Weston (3289_CR14) 2019; 290
JC Brown (3289_CR11) 2018; 9
I Janssen (3289_CR13) 2002; 50
T Momose (3289_CR18) 2017; 18
J Kullberg (3289_CR30) 2017; 7
K Uemura (3289_CR19) 2016; 31
LR Dice (3289_CR23) 1945; 26
T Ikezoe (3289_CR5) 2011; 111
RL Marcus (3289_CR7) 2010; 14
BA Derstine (3289_CR33) 2018; 8
YJ Kim (3289_CR28) 2013; 26
A Oliveira (3289_CR9) 2015; 34
T Yoo (3289_CR12) 2017; 162
3289_CR26
L ten Dam (3289_CR2) 2014; 24
CWA Pfirrmann (3289_CR4) 2005; 235
C-D Chang (3289_CR10) 2018; 47
G Grimby (3289_CR31) 1996; 77
3289_CR21
K Popuri (3289_CR27) 2016; 35
3289_CR22
A Grimaldi (3289_CR1) 2009; 14
Y Wang (3289_CR15) 2017; 144
YX Yang (3289_CR17) 2016; 29
References_xml – ident: CR22
– volume: 235
  start-page: 969
  year: 2005
  end-page: 976
  ident: CR4
  article-title: Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients
  publication-title: Radiology
  doi: 10.1148/radiol.2353040403
– volume: 14
  start-page: 605
  year: 2009
  end-page: 610
  ident: CR1
  article-title: The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles
  publication-title: Man Ther
  doi: 10.1016/j.math.2009.07.004
– volume: 34
  start-page: 1673
  year: 2015
  end-page: 1680
  ident: CR9
  article-title: The role of sarcopenia in the risk of osteoporotic hip fracture
  publication-title: Clin Rheumatol
  doi: 10.1007/s10067-015-2943-9
– volume: 38
  start-page: 313
  year: 2008
  end-page: 328
  ident: CR3
  article-title: Lateral hip pain: findings from magnetic resonance imaging and clinical examination
  publication-title: J Orthop Sports Phys Ther
  doi: 10.2519/jospt.2008.2685
– volume: 162
  start-page: 377
  year: 2017
  end-page: 384
  ident: CR12
  article-title: Computed tomography measured psoas density predicts outcomes in trauma
  publication-title: Surgery
  doi: 10.1016/j.surg.2017.03.014
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: CR23
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology.
  doi: 10.2307/1932409
– volume: 24
  start-page: 1097
  year: 2014
  end-page: 1102
  ident: CR2
  article-title: Comparing clinical data and muscle imaging of DYSF and ANO5-related muscular dystrophies
  publication-title: Neuromuscul Disord
  doi: 10.1016/j.nmd.2014.07.004
– volume: 14
  start-page: 362
  year: 2010
  end-page: 366
  ident: CR7
  article-title: Skeletal muscle fat infiltration: impact of age, inactivity, and exercise
  publication-title: J Nutr Health Aging
  doi: 10.1007/s12603-010-0081-2
– volume: 9
  start-page: 1200
  year: 2018
  end-page: 1208
  ident: CR11
  article-title: The evolution of body composition in oncology-epidemiology, clinical trials, and the future of patient care: facts and numbers
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12379
– volume: 111
  start-page: 989
  year: 2011
  end-page: 995
  ident: CR5
  article-title: Atrophy of the lower limbs in elderly women: is it related to walking ability?
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1728-8
– volume: 47
  start-page: 771
  year: 2018
  end-page: 777
  ident: CR10
  article-title: Effect of sarcopenia on clinical and surgical outcome in elderly patients with proximal femur fractures
  publication-title: Skelet Radiol
  doi: 10.1007/s00256-017-2848-6
– volume: 60
  start-page: 324
  year: 2005
  end-page: 333
  ident: CR8
  article-title: Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/60.3.324
– volume: 60
  start-page: 59
  year: 2015
  end-page: 61
  ident: CR6
  article-title: Fatty degeneration of gluteus minimus muscle as a predictor of falls
  publication-title: Arch Gerontol Geriatr
  doi: 10.1016/j.archger.2014.07.013
– volume: 35
  start-page: 512
  year: 2016
  end-page: 520
  ident: CR27
  article-title: Body composition assessment in axial CT images using FEM-based automatic segmentation of skeletal muscle
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2479252
– volume: 8
  year: 2018
  ident: CR33
  article-title: Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-29825-5
– volume: 18
  start-page: 457
  year: 2017
  ident: CR18
  article-title: CT-based analysis of muscle volume and degeneration of gluteus medius in patients with unilateral hip osteoarthritis
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-017-1828-2
– volume: 10
  start-page: 947
  year: 2017
  end-page: 956
  ident: CR25
  article-title: A review of body composition and pharmacokinetics in oncology
  publication-title: Expert Rev Clin Pharmacol
  doi: 10.1080/17512433.2017.1347503
– volume: 144
  start-page: 97
  year: 2017
  end-page: 104
  ident: CR15
  article-title: A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2017.03.017
– volume: 30
  start-page: 487
  year: 2017
  end-page: 498
  ident: CR16
  article-title: Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9988-z
– volume: 29
  start-page: 723
  year: 2016
  end-page: 731
  ident: CR17
  article-title: Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images
  publication-title: Magma (New York, NY)
– volume: 57
  start-page: 58
  year: 2016
  end-page: 67
  ident: CR24
  article-title: Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2015.12.030
– ident: CR21
– volume: 26
  start-page: 155
  year: 2013
  end-page: 162
  ident: CR28
  article-title: Body fat assessment method using CT images with separation mask algorithm
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-012-9488-0
– volume: 12
  start-page: e0183515
  issue: 8
  year: 2017
  ident: CR29
  article-title: Development and validation of a rapid and robust method to determine visceral adipose tissue volume using computed tomography images
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0183515
– volume: 7
  start-page: 458
  year: 2016
  end-page: 466
  ident: CR20
  article-title: Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12107
– volume: 7
  year: 2017
  ident: CR30
  article-title: Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-08925-8
– volume: 97
  start-page: 2333
  year: 2004
  end-page: 2338
  ident: CR32
  article-title: Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image
  publication-title: J Appl Physiol (Bethesda, Md : 1985)
– volume: 290
  start-page: 669
  year: 2019
  end-page: 679
  ident: CR14
  article-title: Automated abdominal segmentation of CT scans for body composition analysis using deep learning
  publication-title: Radiology
  doi: 10.1148/radiol.2018181432
– volume: 31
  start-page: 906
  year: 2016
  end-page: 912.e1
  ident: CR19
  article-title: Volume increases of the gluteus maximus, gluteus medius, and thigh muscles after hip arthroplasty
  publication-title: J Arthroplast
  doi: 10.1016/j.arth.2015.10.036
– volume: 50
  start-page: 889
  year: 2002
  end-page: 896
  ident: CR13
  article-title: Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability
  publication-title: J Am Geriatr Soc
  doi: 10.1046/j.1532-5415.2002.50216.x
– ident: CR26
– volume: 77
  start-page: 1044
  year: 1996
  end-page: 1048
  ident: CR31
  article-title: Reduction in thigh muscle cross-sectional area and strength in a 4-year follow-up in late polio
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/S0003-9993(96)90066-0
– volume: 34
  start-page: 1673
  year: 2015
  ident: 3289_CR9
  publication-title: Clin Rheumatol
  doi: 10.1007/s10067-015-2943-9
– volume: 235
  start-page: 969
  year: 2005
  ident: 3289_CR4
  publication-title: Radiology
  doi: 10.1148/radiol.2353040403
– volume: 18
  start-page: 457
  year: 2017
  ident: 3289_CR18
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-017-1828-2
– volume: 7
  year: 2017
  ident: 3289_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-08925-8
– volume: 144
  start-page: 97
  year: 2017
  ident: 3289_CR15
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2017.03.017
– volume: 30
  start-page: 487
  year: 2017
  ident: 3289_CR16
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-9988-z
– volume: 162
  start-page: 377
  year: 2017
  ident: 3289_CR12
  publication-title: Surgery
  doi: 10.1016/j.surg.2017.03.014
– volume: 38
  start-page: 313
  year: 2008
  ident: 3289_CR3
  publication-title: J Orthop Sports Phys Ther
  doi: 10.2519/jospt.2008.2685
– volume: 97
  start-page: 2333
  year: 2004
  ident: 3289_CR32
  publication-title: J Appl Physiol (Bethesda, Md : 1985)
– volume: 7
  start-page: 458
  year: 2016
  ident: 3289_CR20
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12107
– ident: 3289_CR26
  doi: 10.1117/12.812412
– volume: 77
  start-page: 1044
  year: 1996
  ident: 3289_CR31
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/S0003-9993(96)90066-0
– volume: 50
  start-page: 889
  year: 2002
  ident: 3289_CR13
  publication-title: J Am Geriatr Soc
  doi: 10.1046/j.1532-5415.2002.50216.x
– volume: 57
  start-page: 58
  year: 2016
  ident: 3289_CR24
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2015.12.030
– volume: 12
  start-page: e0183515
  issue: 8
  year: 2017
  ident: 3289_CR29
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0183515
– volume: 24
  start-page: 1097
  year: 2014
  ident: 3289_CR2
  publication-title: Neuromuscul Disord
  doi: 10.1016/j.nmd.2014.07.004
– volume: 111
  start-page: 989
  year: 2011
  ident: 3289_CR5
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1728-8
– volume: 29
  start-page: 723
  year: 2016
  ident: 3289_CR17
  publication-title: Magma (New York, NY)
– volume: 10
  start-page: 947
  year: 2017
  ident: 3289_CR25
  publication-title: Expert Rev Clin Pharmacol
  doi: 10.1080/17512433.2017.1347503
– ident: 3289_CR22
– volume: 290
  start-page: 669
  year: 2019
  ident: 3289_CR14
  publication-title: Radiology
  doi: 10.1148/radiol.2018181432
– ident: 3289_CR21
  doi: 10.1007/978-3-319-24574-4_28
– volume: 60
  start-page: 59
  year: 2015
  ident: 3289_CR6
  publication-title: Arch Gerontol Geriatr
  doi: 10.1016/j.archger.2014.07.013
– volume: 47
  start-page: 771
  year: 2018
  ident: 3289_CR10
  publication-title: Skelet Radiol
  doi: 10.1007/s00256-017-2848-6
– volume: 31
  start-page: 906
  year: 2016
  ident: 3289_CR19
  publication-title: J Arthroplast
  doi: 10.1016/j.arth.2015.10.036
– volume: 8
  year: 2018
  ident: 3289_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-29825-5
– volume: 9
  start-page: 1200
  year: 2018
  ident: 3289_CR11
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12379
– volume: 26
  start-page: 155
  year: 2013
  ident: 3289_CR28
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-012-9488-0
– volume: 14
  start-page: 362
  year: 2010
  ident: 3289_CR7
  publication-title: J Nutr Health Aging
  doi: 10.1007/s12603-010-0081-2
– volume: 14
  start-page: 605
  year: 2009
  ident: 3289_CR1
  publication-title: Man Ther
  doi: 10.1016/j.math.2009.07.004
– volume: 35
  start-page: 512
  year: 2016
  ident: 3289_CR27
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2479252
– volume: 60
  start-page: 324
  year: 2005
  ident: 3289_CR8
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/60.3.324
– volume: 26
  start-page: 297
  year: 1945
  ident: 3289_CR23
  publication-title: Ecology.
  doi: 10.2307/1932409
SSID ssj0017756
Score 2.4978952
Snippet Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We...
To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized...
Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We...
ObjectiveTo develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 387
SubjectTerms Acetabulum
Adipose tissue
Adipose Tissue - diagnostic imaging
Adipose tissues
Artificial neural networks
Automation
Body Composition
Bone composition
Computed tomography
Contrast Media
CT imaging
Data augmentation
Datasets
Datasets as Topic
Deep learning
Equalization
Female
Histograms
Humans
Image processing
Image segmentation
Imaging
Male
Medical imaging equipment
Medicine
Medicine & Public Health
Middle Aged
Muscle, Skeletal - diagnostic imaging
Muscles
Neural networks
Neural Networks, Computer
Nuclear Medicine
Orthopedics
Pathology
Pelvis
Pelvis - diagnostic imaging
Physiological aspects
Radiology
Retrospective Studies
Scientific Article
Tomography, X-Ray Computed
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA-6gngRv62uEkHw4Av0I2mT42N1WYT1tA_2FtJksgq77cP2Hfa_d5KXVvtQwXMmIXRmkl86v5kh5L1wpa9lIVhhPT5QIG9Z651idW4dSOHRrkK-8_nX-mzDv1yKy5QUNkxs9ykkGU_qOdktXs_49FUs1IBTTN4l9wS-3QORa1Ou59hB04gUoeSsrLhMqTJ_XmNxHR0eyr_dSoeMyYOwabyNTh-RhwlG0vVe74_JHeiekPvnKVD-lNx-AtjS1BLiiiIypWY39ghPwdEBrm5SylFHe0-3cI3nBb3ZDYEit6LejCtqOkfbvgMaElDoyQUd9ozDuFbbu1sa2OiJ8kXNXODzGdmcfr44OWOpywKzghcjE9YbACUcdwqk8m1pFaKm3DceoYP33HBr0O9racBb422O82RV2cIUjoOonpOjDrfzklAlhbJ4uiJEajmUYKQ0xhYlWON4w-uMFNPH1jaVIA-dMK71XDw5KkijgnRUkJYZ-TjP2e4LcPxT-kPQoQ7eiStbk5IMcH-hzpVeN1VRhaxIlDxeSKJX2eXwZAU6efWgEaqqgKhUlZF383CYGZhqHfS7INPE3hl5npEXe6OZ942L4-uybjLSLMxpFgi1vpcj3fdvseZ3rWSo3JOR1WR4v7b198_x6v_EX5MHZfidECl2x-Ro_LGDN4i5xvZtdLGfz2gj1A
  priority: 102
  providerName: Springer Nature
Title Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment
URI https://link.springer.com/article/10.1007/s00256-019-03289-8
https://www.ncbi.nlm.nih.gov/pubmed/31396667
https://www.proquest.com/docview/2269782293
https://www.proquest.com/docview/2270010300
https://pubmed.ncbi.nlm.nih.gov/PMC6980503
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAviO9ljMlISDzQiHw4if2E2tFuAq1CaJXKU-T4YyBtSVnSh_333LluRiqxl_jBZ8uxz3dn--53hLzPdGJzHmdhrCwcUExUhZXVIswjpQ3PLPAVxjufz_OzBfu6zJb-wq31bpVbmegEtW4U3pF_AjNBoDYT6efVnxCzRuHrqk-h8ZDsI3QZcnWx7A9ccVFk_q2ShUnKuA-acaFzTtnDQVqEiCgnQj5QTLvi-R_9tOs7ufOA6vTS7Cl54g1KOt5wwDPywNTPyaNz_2T-gtx-MWZFfXKISwo2KpXrrgFD1WjamstrH3xU08bSlbkCyUGv1y06y42old2IylrTqqkNxVAUenJB243voeuravQtRb907_xFZQ_1-ZIsZtOLk7PQ51sIVcbiLsyUlcaITDMtDBe2SpQA-ymyhQUjwlommZIgAXIujVXSqgja8TRVsYw1M1n6iuzVMJwDQgXPhAI5C8ZSxUxiJOdSqjgxSmpWsDwg8XayS-XByDEnxlXZwyi7BSphgUq3QCUPyMe-zWoDxXEv9QdcwxL3KfSspA83gPEh4lU5LtI4xfhIoDwaUML-UsPqLReUfn-35R03BuRdX40t0WetNs0aaQqXRSOKAvJ6wzT9uKFzOGfmRUCKATv1BIj6Paypf_9y6N-54IjhE5DRlvHuhvX_6Ti8_y_ekMcJXiQ457ojstfdrM1bsLa66thtKfjy2ekx2R_PJpM5lqc_v02hnEzn339A7SIZ_wWbXS1m
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJtAASOBOLBR83AS-4BQ1bJsabenrdRbcPwoSG2ysFmh_VP8Rma8TkpWoreePbaczHhm7Jn5hpC3mU5szuMsjJWFC4qJqrCyWoR5pLThmQW5wnrn6Uk-OWVfz7KzLfKnq4XBtMpOJzpFrRuFb-S74CYItGYi_TT_GWLXKIyudi001mJxZFa_4cq2-Hh4APx9lyTjz7P9Sei7CoQqY3EbZspKY0SmmRaGC1slSoCXENnCgqm0lkmmJMh5zqWxSloVwTyepiqWsWYGu0SAyr_FUrDkWJk-_tJHLYoi87FRFiYp475Ix5XqOecCLu4iRAQ7EfKBIdw0B__Yw81czY2ArbOD4_vknndg6d5a4h6QLVM_JLenPkT_iKwOjJlT34zinIJPTOWybcAxNpouzPmlL3aqaWPp3FyApqKXywUm542ole2IylrTqqkNxdIXuj-ji3Wuo1uravSKYh68TzajsocWfUxOb4QTT8h2Ddt5RqjgmVCg18E5q5hJjORcShUnRknNCpYHJO5-dqk8-Dn24Lgoe9hmx6ASGFQ6BpU8IB_6OfM19Me11O-RhyXqBVhZSV_eAPtDhK1yr0jjFOsxgXJnQAnnWQ2HOykovT5ZlFfSH5A3_TDOxBy52jRLpClc144oCsjTtdD0-4bF4V6bFwEpBuLUEyDK-HCk_vHdoY3ngiNmUEBGneBdbev_v-P59V_xmtyZzKbH5fHhydELcjfBRwyX2LdDtttfS_MSPL22euWOFyXfbvo8_wWHy2Xx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdChbKL6Id6NVR1B8cENzmSQzDyK126W1dinSQt_iZC5VaJPVzSL7a36d5yST1CzYtz7PmWGSc59zI-RNoiOb8jDxQ2XBQTFB4RdWCz8NlDY8sUBXWO98PEsPztjn8-R8g_zpamEwrbKTiY2g1pXCN_IdMBMEajMR71iXFnEymX6c__RxghRGWrtxGi2JHJnVb3DfFh8OJ4Drt1E03T_dO_DdhAFfJSys_URZaYxINNPCcGGLSAmwGAKbWVCb1jLJlASaT7k0VkmrAtjH41iFMtTM4MQIEP-bGXpFI7L5aX928rWPYWRZ4iKlzI9ixl3JTlO415ga4MYLH_vZCZ8P1OK6cvhHO65nbq6FbxutOL1H7jpzlu629HefbJjyAdk6dgH7h2Q1MWZO3WiKCwoWMpXLugIz2Wi6MBdXrvSppJWlc3MJcoteLReYqjemVtZjKktNi6o0FAth6N4pXbSZj81ZRaVXFLPiXeoZlX2j0Ufk7FZw8ZiMSrjOU0IFT4QCKQ-mWsFMZCTnUqowMkpqlrHUI2H3s3PlWqHjRI7LvG_i3CAoBwTlDYJy7pH3_Z552wjkRuh3iMMcpQScrKQrdoD7Yb-tfDeLwxirMwFyewAJ3K2Gyx0V5E66LPJrXvDI634Zd2LGXGmqJcJkzQyPIPDIk5Zo-nvD4eDlpplHsgE59QDYc3y4Uv743vQeTwXHDkIeGXeEd32t__-OZzd_xSuyBbycfzmcHT0ndyJ80Wiy_LbJqP61NC_A7KuLl46_KPl22yz9FzeVa4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+automated+segmentation+of+pelvic+muscles%2C+fat%2C+and+bone+from+CT+studies+for+body+composition+assessment&rft.jtitle=Skeletal+radiology&rft.au=Hemke%2C+Robert&rft.au=Buckless%2C+Colleen+G.&rft.au=Tsao%2C+Andrew&rft.au=Wang%2C+Benjamin&rft.date=2020-03-01&rft.issn=0364-2348&rft.eissn=1432-2161&rft.volume=49&rft.issue=3&rft.spage=387&rft.epage=395&rft_id=info:doi/10.1007%2Fs00256-019-03289-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00256_019_03289_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-2348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-2348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-2348&client=summon