Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment
Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and m...
Saved in:
Published in | Skeletal radiology Vol. 49; no. 3; pp. 387 - 395 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.
Materials and methods
We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.
Results
The CNN model with data augmentation of
N
= 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).
Conclusions
Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. |
---|---|
AbstractList | Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and methods We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. Results The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Conclusions Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.OBJECTIVETo develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.MATERIALS AND METHODSWe manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).RESULTSThe CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies.CONCLUSIONSOur CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. ObjectiveTo develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard.Materials and methodsWe manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations.ResultsThe CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU).ConclusionsOur CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized that a deep CNN approach would achieve high accuracy when compared to manual segmentations as the reference standard. Materials and methods We manually segmented 200 axial CT images at the supra-acetabular level in 200 subjects, labeling background, subcutaneous adipose tissue (SAT), muscle, inter-muscular adipose tissue (IMAT), bone, and miscellaneous intra-pelvic content. The dataset was randomly divided into training (180/200) and test (20/200) datasets. Data augmentation was utilized to enlarge the training dataset and all images underwent preprocessing with histogram equalization. Our model was trained for 50 epochs using the U-Net architecture with batch size of 8, learning rate of 0.0001, Adadelta optimizer and a dropout of 0.20. The Dice (F1) score was used to assess similarity between the manual segmentations and the CNN predicted segmentations. Results The CNN model with data augmentation of N = 3000 achieved accurate segmentation of body composition for all classes. The Dice scores were as follows: background (1.00), miscellaneous intra-pelvic content (0.98), SAT (0.97), muscle (0.95), IMAT (0.91), and bone (0.92). Mean time to automatically segment one CT image was 0.07 s (GPU) and 2.51 s (CPU). Conclusions Our CNN-based model enables accurate automated segmentation of multiple tissues on pelvic CT images, with promising implications for body composition studies. |
Audience | Academic |
Author | Wang, Benjamin Torriani, Martin Hemke, Robert Buckless, Colleen G. Tsao, Andrew |
AuthorAffiliation | 1 Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA 2 Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands |
AuthorAffiliation_xml | – name: 1 Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA – name: 2 Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands |
Author_xml | – sequence: 1 givenname: Robert surname: Hemke fullname: Hemke, Robert organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam Movement Sciences – sequence: 2 givenname: Colleen G. surname: Buckless fullname: Buckless, Colleen G. organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 3 givenname: Andrew surname: Tsao fullname: Tsao, Andrew organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 4 givenname: Benjamin surname: Wang fullname: Wang, Benjamin organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School – sequence: 5 givenname: Martin surname: Torriani fullname: Torriani, Martin email: mtorriani@mgh.harvard.edu organization: Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31396667$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAURkVJaSZp_0AXRdBNF3Gqhy1Lm0KYPiHQTboWGvnKVbClqWQH5t9HM06aJpTghcE-35Hu4wQdhRgAobeUnFNC2o-ZENaIilBVEc6kquQLtKI1ZxWjgh6hFeGirhiv5TE6yfmaENq2jXiFjjnlSgjRrtDuM8AWD2BS8KHHLiZs5imOZoIOZ-hHCJOZfAw4OryF4cZbPM7ZDpDPsDPTGTahw5tyMexSHPH6Cudp7jzkg2sTux22cdzG7A8WkzPkvLe-Ri-dGTK8uXufol9fv1ytv1eXP7_9WF9cVrap6VQ11hkA1XR1p0Aqt2FWSa6Iax1j3Lna1NZIzoQ04KxxlpSc5NxSQ7saGn6KPi3e7bwZobPl6GQGvU1-NGmno_H68Z_gf-s-3mihJGkIL4IPd4IU_8yQJz36bGEYTIA4Z81YWzpLOCEFff8EvY5zCqW8QgnVSsYUf6B6M4D2wcVyrt1L9UVbRiNoK2Whzv9DlaeD0dvScOfL90eBd_8W-rfC-2EXQC6ATTHnBE5bvwy3mP2gKdH7vdLLXumyV_qwV3rvZk-i9_ZnQ3wJ5QKHHtJDN55J3QICX-Da |
CitedBy_id | crossref_primary_10_1007_s00167_021_06838_8 crossref_primary_10_1016_j_ejrad_2021_109943 crossref_primary_10_1016_j_ejrad_2022_110218 crossref_primary_10_1016_j_rcl_2021_11_011 crossref_primary_10_1155_2022_3289663 crossref_primary_10_1016_j_cpet_2021_09_012 crossref_primary_10_3390_nu16030384 crossref_primary_10_2214_AJR_20_22874 crossref_primary_10_1186_s12864_025_11399_y crossref_primary_10_1055_s_0040_1708824 crossref_primary_10_1016_j_nut_2021_111227 crossref_primary_10_1016_j_injury_2022_05_004 crossref_primary_10_1148_radiol_2020201640 crossref_primary_10_1016_j_slast_2021_10_014 crossref_primary_10_53903_01212095_280 crossref_primary_10_1038_s41366_021_00907_1 crossref_primary_10_3390_diagnostics13050968 crossref_primary_10_3390_s21062083 crossref_primary_10_1038_s41598_024_83031_0 crossref_primary_10_3390_jpm12050776 crossref_primary_10_1016_j_bspc_2021_103172 crossref_primary_10_1111_1754_9485_13261 crossref_primary_10_1155_2022_1819841 crossref_primary_10_3390_diagnostics13071295 crossref_primary_10_1007_s00330_020_07070_7 crossref_primary_10_3390_jcm13030689 crossref_primary_10_1007_s00330_022_08829_w crossref_primary_10_1007_s00256_021_03880_y crossref_primary_10_3390_bioengineering10020225 crossref_primary_10_1007_s10237_020_01367_8 crossref_primary_10_1002_jcsm_13728 crossref_primary_10_1002_mp_15440 crossref_primary_10_3390_biology11121727 crossref_primary_10_3390_diagnostics10100781 crossref_primary_10_1007_s11914_022_00743_w crossref_primary_10_1016_j_jmbbm_2022_105576 crossref_primary_10_1007_s00256_021_03873_x crossref_primary_10_1016_j_compmedimag_2024_102412 crossref_primary_10_1007_s11548_021_02363_8 crossref_primary_10_1055_a_1241_9765 crossref_primary_10_3390_bioengineering10020137 crossref_primary_10_1177_02841851231187373 crossref_primary_10_1186_s12859_023_05462_2 crossref_primary_10_1002_jso_26793 crossref_primary_10_1186_s41747_023_00357_6 crossref_primary_10_1016_j_euf_2021_03_013 crossref_primary_10_1007_s00256_020_03463_3 crossref_primary_10_1038_s41598_024_79915_w crossref_primary_10_1016_j_redii_2024_100044 crossref_primary_10_1590_1517_8692202127082021_0349 crossref_primary_10_1007_s00256_023_04283_x crossref_primary_10_1007_s11934_023_01157_6 |
Cites_doi | 10.1148/radiol.2353040403 10.1016/j.math.2009.07.004 10.1007/s10067-015-2943-9 10.2519/jospt.2008.2685 10.1016/j.surg.2017.03.014 10.2307/1932409 10.1016/j.nmd.2014.07.004 10.1007/s12603-010-0081-2 10.1002/jcsm.12379 10.1007/s00421-010-1728-8 10.1007/s00256-017-2848-6 10.1093/gerona/60.3.324 10.1016/j.archger.2014.07.013 10.1109/TMI.2015.2479252 10.1038/s41598-018-29825-5 10.1186/s12891-017-1828-2 10.1080/17512433.2017.1347503 10.1016/j.cmpb.2017.03.017 10.1007/s10278-017-9988-z 10.1016/j.ejca.2015.12.030 10.1007/s10278-012-9488-0 10.1371/journal.pone.0183515 10.1002/jcsm.12107 10.1038/s41598-017-08925-8 10.1148/radiol.2018181432 10.1016/j.arth.2015.10.036 10.1046/j.1532-5415.2002.50216.x 10.1016/S0003-9993(96)90066-0 10.1117/12.812412 10.1007/978-3-319-24574-4_28 |
ContentType | Journal Article |
Copyright | ISS 2019 COPYRIGHT 2020 Springer Skeletal Radiology is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: ISS 2019 – notice: COPYRIGHT 2020 Springer – notice: Skeletal Radiology is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7X7 7XB 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00256-019-03289-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-2161 |
EndPage | 395 |
ExternalDocumentID | PMC6980503 A731361788 31396667 10_1007_s00256_019_03289_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases grantid: P30 DK040561 funderid: http://dx.doi.org/10.13039/100000062 – fundername: NIDDK NIH HHS grantid: P30 DK040561 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 04C 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3O- 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIHBH EIOEI EJD EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J5H JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW X7M YLTOR Z45 Z7U Z7X Z82 Z87 Z8O Z8V Z91 Z92 ZGI ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QP 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c541t-5cfaee95d4d9e89fb2c98390f7f223ff4a4ca83268aefcafc0c54833c1a1d4e53 |
IEDL.DBID | 7X7 |
ISSN | 0364-2348 1432-2161 |
IngestDate | Thu Aug 21 17:38:33 EDT 2025 Fri Jul 11 04:00:48 EDT 2025 Fri Jul 25 09:39:29 EDT 2025 Tue Jun 17 21:47:38 EDT 2025 Tue Jun 10 20:17:13 EDT 2025 Mon Jul 21 06:01:20 EDT 2025 Tue Jul 01 03:14:57 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Fri Feb 21 02:28:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Muscle Segmentation Computed tomography Pelvis Body composition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-5cfaee95d4d9e89fb2c98390f7f223ff4a4ca83268aefcafc0c54833c1a1d4e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6980503 |
PMID | 31396667 |
PQID | 2269782293 |
PQPubID | 54043 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6980503 proquest_miscellaneous_2270010300 proquest_journals_2269782293 gale_infotracmisc_A731361788 gale_infotracacademiconefile_A731361788 pubmed_primary_31396667 crossref_citationtrail_10_1007_s00256_019_03289_8 crossref_primary_10_1007_s00256_019_03289_8 springer_journals_10_1007_s00256_019_03289_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Journal of the International Skeletal Society A Journal of Radiology, Pathology and Orthopedics |
PublicationTitle | Skeletal radiology |
PublicationTitleAbbrev | Skeletal Radiol |
PublicationTitleAlternate | Skeletal Radiol |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Dice (CR23) 1945; 26 Grimby, Kvist, Grangård (CR31) 1996; 77 Marcus, Addison, Kidde, Dibble, Lastayo (CR7) 2010; 14 Woodley, Nicholson, Livingstone, Doyle, Meikle, Macintosh (CR3) 2008; 38 Kiyoshige, Watanabe (CR6) 2015; 60 Momose, Inaba, Choe, Kobayashi, Tezuka, Saito (CR18) 2017; 18 Janssen, Heymsfield, Ross (CR13) 2002; 50 Derstine, Holcombe, Ross, Wang, Su, Wang (CR33) 2018; 8 Visser, Goodpaster, Kritchevsky, Newman, Nevitt, Rubin (CR8) 2005; 60 Wang, Qiu, Thai, Moore, Liu, Zheng (CR15) 2017; 144 Popuri, Cobzas, Esfandiari, Baracos, Jägersand (CR27) 2016; 35 Hopkins, Sawyer (CR25) 2017; 10 Pfirrmann, Notzli, Dora, Hodler, Zanetti (CR4) 2005; 235 Yang, Chong, Tay, Yew, Yeo, Tan (CR17) 2016; 29 Oliveira, Vaz (CR9) 2015; 34 Grimaldi, Richardson, Stanton, Durbridge, Donnelly, Hides (CR1) 2009; 14 Chang, Wu, Mhuircheartaigh, Hochman, Rodriguez, Appleton (CR10) 2018; 47 Uemura, Takao, Sakai, Nishii, Sugano (CR19) 2016; 31 Weston, Korfiatis, Kline, Philbrick, Kostandy, Sakinis (CR14) 2019; 290 Kullberg, Hedström, Brandberg, Strand, Johansson, Bergström (CR30) 2017; 7 Kim, Lee, Kim, Park, Choi, Kim (CR28) 2013; 26 Brown, Cespedes Feliciano, Caan (CR11) 2018; 9 Yoo, Lo, Evans (CR12) 2017; 162 Parikh, Coletta, Yu, Rauch, Cheung, Court, Klopp (CR29) 2017; 12 CR26 CR22 CR21 Rutten, van Dijk, Kruitwagen, Beets-Tan, Olde Damink, van Gorp (CR20) 2016; 7 Strulov Shachar, Williams, Muss, Nishijima (CR24) 2016; 57 Shen, Punyanitya, Wang, Gallagher, St-Onge, Albu (CR32) 2004; 97 Ikezoe, Mori, Nakamura, Ichihashi (CR5) 2011; 111 ten Dam, van der Kooi, Rövekamp, Linssen, de Visser (CR2) 2014; 24 Lee, Troschel, Tajmir, Fuchs, Mario, Fintelmann (CR16) 2017; 30 SJ Woodley (3289_CR3) 2008; 38 S Strulov Shachar (3289_CR24) 2016; 57 Aaroh M. Parikh (3289_CR29) 2017; 12 W Shen (3289_CR32) 2004; 97 JJ Hopkins (3289_CR25) 2017; 10 IJG Rutten (3289_CR20) 2016; 7 Y Kiyoshige (3289_CR6) 2015; 60 H Lee (3289_CR16) 2017; 30 M Visser (3289_CR8) 2005; 60 AD Weston (3289_CR14) 2019; 290 JC Brown (3289_CR11) 2018; 9 I Janssen (3289_CR13) 2002; 50 T Momose (3289_CR18) 2017; 18 J Kullberg (3289_CR30) 2017; 7 K Uemura (3289_CR19) 2016; 31 LR Dice (3289_CR23) 1945; 26 T Ikezoe (3289_CR5) 2011; 111 RL Marcus (3289_CR7) 2010; 14 BA Derstine (3289_CR33) 2018; 8 YJ Kim (3289_CR28) 2013; 26 A Oliveira (3289_CR9) 2015; 34 T Yoo (3289_CR12) 2017; 162 3289_CR26 L ten Dam (3289_CR2) 2014; 24 CWA Pfirrmann (3289_CR4) 2005; 235 C-D Chang (3289_CR10) 2018; 47 G Grimby (3289_CR31) 1996; 77 3289_CR21 K Popuri (3289_CR27) 2016; 35 3289_CR22 A Grimaldi (3289_CR1) 2009; 14 Y Wang (3289_CR15) 2017; 144 YX Yang (3289_CR17) 2016; 29 |
References_xml | – ident: CR22 – volume: 235 start-page: 969 year: 2005 end-page: 976 ident: CR4 article-title: Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients publication-title: Radiology doi: 10.1148/radiol.2353040403 – volume: 14 start-page: 605 year: 2009 end-page: 610 ident: CR1 article-title: The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles publication-title: Man Ther doi: 10.1016/j.math.2009.07.004 – volume: 34 start-page: 1673 year: 2015 end-page: 1680 ident: CR9 article-title: The role of sarcopenia in the risk of osteoporotic hip fracture publication-title: Clin Rheumatol doi: 10.1007/s10067-015-2943-9 – volume: 38 start-page: 313 year: 2008 end-page: 328 ident: CR3 article-title: Lateral hip pain: findings from magnetic resonance imaging and clinical examination publication-title: J Orthop Sports Phys Ther doi: 10.2519/jospt.2008.2685 – volume: 162 start-page: 377 year: 2017 end-page: 384 ident: CR12 article-title: Computed tomography measured psoas density predicts outcomes in trauma publication-title: Surgery doi: 10.1016/j.surg.2017.03.014 – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: CR23 article-title: Measures of the amount of ecologic association between species publication-title: Ecology. doi: 10.2307/1932409 – volume: 24 start-page: 1097 year: 2014 end-page: 1102 ident: CR2 article-title: Comparing clinical data and muscle imaging of DYSF and ANO5-related muscular dystrophies publication-title: Neuromuscul Disord doi: 10.1016/j.nmd.2014.07.004 – volume: 14 start-page: 362 year: 2010 end-page: 366 ident: CR7 article-title: Skeletal muscle fat infiltration: impact of age, inactivity, and exercise publication-title: J Nutr Health Aging doi: 10.1007/s12603-010-0081-2 – volume: 9 start-page: 1200 year: 2018 end-page: 1208 ident: CR11 article-title: The evolution of body composition in oncology-epidemiology, clinical trials, and the future of patient care: facts and numbers publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12379 – volume: 111 start-page: 989 year: 2011 end-page: 995 ident: CR5 article-title: Atrophy of the lower limbs in elderly women: is it related to walking ability? publication-title: Eur J Appl Physiol doi: 10.1007/s00421-010-1728-8 – volume: 47 start-page: 771 year: 2018 end-page: 777 ident: CR10 article-title: Effect of sarcopenia on clinical and surgical outcome in elderly patients with proximal femur fractures publication-title: Skelet Radiol doi: 10.1007/s00256-017-2848-6 – volume: 60 start-page: 324 year: 2005 end-page: 333 ident: CR8 article-title: Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/60.3.324 – volume: 60 start-page: 59 year: 2015 end-page: 61 ident: CR6 article-title: Fatty degeneration of gluteus minimus muscle as a predictor of falls publication-title: Arch Gerontol Geriatr doi: 10.1016/j.archger.2014.07.013 – volume: 35 start-page: 512 year: 2016 end-page: 520 ident: CR27 article-title: Body composition assessment in axial CT images using FEM-based automatic segmentation of skeletal muscle publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2479252 – volume: 8 year: 2018 ident: CR33 article-title: Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population publication-title: Sci Rep doi: 10.1038/s41598-018-29825-5 – volume: 18 start-page: 457 year: 2017 ident: CR18 article-title: CT-based analysis of muscle volume and degeneration of gluteus medius in patients with unilateral hip osteoarthritis publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-017-1828-2 – volume: 10 start-page: 947 year: 2017 end-page: 956 ident: CR25 article-title: A review of body composition and pharmacokinetics in oncology publication-title: Expert Rev Clin Pharmacol doi: 10.1080/17512433.2017.1347503 – volume: 144 start-page: 97 year: 2017 end-page: 104 ident: CR15 article-title: A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2017.03.017 – volume: 30 start-page: 487 year: 2017 end-page: 498 ident: CR16 article-title: Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis publication-title: J Digit Imaging doi: 10.1007/s10278-017-9988-z – volume: 29 start-page: 723 year: 2016 end-page: 731 ident: CR17 article-title: Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images publication-title: Magma (New York, NY) – volume: 57 start-page: 58 year: 2016 end-page: 67 ident: CR24 article-title: Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review publication-title: Eur J Cancer doi: 10.1016/j.ejca.2015.12.030 – ident: CR21 – volume: 26 start-page: 155 year: 2013 end-page: 162 ident: CR28 article-title: Body fat assessment method using CT images with separation mask algorithm publication-title: J Digit Imaging doi: 10.1007/s10278-012-9488-0 – volume: 12 start-page: e0183515 issue: 8 year: 2017 ident: CR29 article-title: Development and validation of a rapid and robust method to determine visceral adipose tissue volume using computed tomography images publication-title: PLOS ONE doi: 10.1371/journal.pone.0183515 – volume: 7 start-page: 458 year: 2016 end-page: 466 ident: CR20 article-title: Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12107 – volume: 7 year: 2017 ident: CR30 article-title: Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies publication-title: Sci Rep doi: 10.1038/s41598-017-08925-8 – volume: 97 start-page: 2333 year: 2004 end-page: 2338 ident: CR32 article-title: Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image publication-title: J Appl Physiol (Bethesda, Md : 1985) – volume: 290 start-page: 669 year: 2019 end-page: 679 ident: CR14 article-title: Automated abdominal segmentation of CT scans for body composition analysis using deep learning publication-title: Radiology doi: 10.1148/radiol.2018181432 – volume: 31 start-page: 906 year: 2016 end-page: 912.e1 ident: CR19 article-title: Volume increases of the gluteus maximus, gluteus medius, and thigh muscles after hip arthroplasty publication-title: J Arthroplast doi: 10.1016/j.arth.2015.10.036 – volume: 50 start-page: 889 year: 2002 end-page: 896 ident: CR13 article-title: Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability publication-title: J Am Geriatr Soc doi: 10.1046/j.1532-5415.2002.50216.x – ident: CR26 – volume: 77 start-page: 1044 year: 1996 end-page: 1048 ident: CR31 article-title: Reduction in thigh muscle cross-sectional area and strength in a 4-year follow-up in late polio publication-title: Arch Phys Med Rehabil doi: 10.1016/S0003-9993(96)90066-0 – volume: 34 start-page: 1673 year: 2015 ident: 3289_CR9 publication-title: Clin Rheumatol doi: 10.1007/s10067-015-2943-9 – volume: 235 start-page: 969 year: 2005 ident: 3289_CR4 publication-title: Radiology doi: 10.1148/radiol.2353040403 – volume: 18 start-page: 457 year: 2017 ident: 3289_CR18 publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-017-1828-2 – volume: 7 year: 2017 ident: 3289_CR30 publication-title: Sci Rep doi: 10.1038/s41598-017-08925-8 – volume: 144 start-page: 97 year: 2017 ident: 3289_CR15 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2017.03.017 – volume: 30 start-page: 487 year: 2017 ident: 3289_CR16 publication-title: J Digit Imaging doi: 10.1007/s10278-017-9988-z – volume: 162 start-page: 377 year: 2017 ident: 3289_CR12 publication-title: Surgery doi: 10.1016/j.surg.2017.03.014 – volume: 38 start-page: 313 year: 2008 ident: 3289_CR3 publication-title: J Orthop Sports Phys Ther doi: 10.2519/jospt.2008.2685 – volume: 97 start-page: 2333 year: 2004 ident: 3289_CR32 publication-title: J Appl Physiol (Bethesda, Md : 1985) – volume: 7 start-page: 458 year: 2016 ident: 3289_CR20 publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12107 – ident: 3289_CR26 doi: 10.1117/12.812412 – volume: 77 start-page: 1044 year: 1996 ident: 3289_CR31 publication-title: Arch Phys Med Rehabil doi: 10.1016/S0003-9993(96)90066-0 – volume: 50 start-page: 889 year: 2002 ident: 3289_CR13 publication-title: J Am Geriatr Soc doi: 10.1046/j.1532-5415.2002.50216.x – volume: 57 start-page: 58 year: 2016 ident: 3289_CR24 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2015.12.030 – volume: 12 start-page: e0183515 issue: 8 year: 2017 ident: 3289_CR29 publication-title: PLOS ONE doi: 10.1371/journal.pone.0183515 – volume: 24 start-page: 1097 year: 2014 ident: 3289_CR2 publication-title: Neuromuscul Disord doi: 10.1016/j.nmd.2014.07.004 – volume: 111 start-page: 989 year: 2011 ident: 3289_CR5 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-010-1728-8 – volume: 29 start-page: 723 year: 2016 ident: 3289_CR17 publication-title: Magma (New York, NY) – volume: 10 start-page: 947 year: 2017 ident: 3289_CR25 publication-title: Expert Rev Clin Pharmacol doi: 10.1080/17512433.2017.1347503 – ident: 3289_CR22 – volume: 290 start-page: 669 year: 2019 ident: 3289_CR14 publication-title: Radiology doi: 10.1148/radiol.2018181432 – ident: 3289_CR21 doi: 10.1007/978-3-319-24574-4_28 – volume: 60 start-page: 59 year: 2015 ident: 3289_CR6 publication-title: Arch Gerontol Geriatr doi: 10.1016/j.archger.2014.07.013 – volume: 47 start-page: 771 year: 2018 ident: 3289_CR10 publication-title: Skelet Radiol doi: 10.1007/s00256-017-2848-6 – volume: 31 start-page: 906 year: 2016 ident: 3289_CR19 publication-title: J Arthroplast doi: 10.1016/j.arth.2015.10.036 – volume: 8 year: 2018 ident: 3289_CR33 publication-title: Sci Rep doi: 10.1038/s41598-018-29825-5 – volume: 9 start-page: 1200 year: 2018 ident: 3289_CR11 publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12379 – volume: 26 start-page: 155 year: 2013 ident: 3289_CR28 publication-title: J Digit Imaging doi: 10.1007/s10278-012-9488-0 – volume: 14 start-page: 362 year: 2010 ident: 3289_CR7 publication-title: J Nutr Health Aging doi: 10.1007/s12603-010-0081-2 – volume: 14 start-page: 605 year: 2009 ident: 3289_CR1 publication-title: Man Ther doi: 10.1016/j.math.2009.07.004 – volume: 35 start-page: 512 year: 2016 ident: 3289_CR27 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2479252 – volume: 60 start-page: 324 year: 2005 ident: 3289_CR8 publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/60.3.324 – volume: 26 start-page: 297 year: 1945 ident: 3289_CR23 publication-title: Ecology. doi: 10.2307/1932409 |
SSID | ssj0017756 |
Score | 2.4978952 |
Snippet | Objective
To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We... To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We hypothesized... Objective To develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We... ObjectiveTo develop a deep convolutional neural network (CNN) to automatically segment an axial CT image of the pelvis for body composition measures. We... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 387 |
SubjectTerms | Acetabulum Adipose tissue Adipose Tissue - diagnostic imaging Adipose tissues Artificial neural networks Automation Body Composition Bone composition Computed tomography Contrast Media CT imaging Data augmentation Datasets Datasets as Topic Deep learning Equalization Female Histograms Humans Image processing Image segmentation Imaging Male Medical imaging equipment Medicine Medicine & Public Health Middle Aged Muscle, Skeletal - diagnostic imaging Muscles Neural networks Neural Networks, Computer Nuclear Medicine Orthopedics Pathology Pelvis Pelvis - diagnostic imaging Physiological aspects Radiology Retrospective Studies Scientific Article Tomography, X-Ray Computed Training |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA-6gngRv62uEkHw4Av0I2mT42N1WYT1tA_2FtJksgq77cP2Hfa_d5KXVvtQwXMmIXRmkl86v5kh5L1wpa9lIVhhPT5QIG9Z651idW4dSOHRrkK-8_nX-mzDv1yKy5QUNkxs9ykkGU_qOdktXs_49FUs1IBTTN4l9wS-3QORa1Ou59hB04gUoeSsrLhMqTJ_XmNxHR0eyr_dSoeMyYOwabyNTh-RhwlG0vVe74_JHeiekPvnKVD-lNx-AtjS1BLiiiIypWY39ghPwdEBrm5SylFHe0-3cI3nBb3ZDYEit6LejCtqOkfbvgMaElDoyQUd9ozDuFbbu1sa2OiJ8kXNXODzGdmcfr44OWOpywKzghcjE9YbACUcdwqk8m1pFaKm3DceoYP33HBr0O9racBb422O82RV2cIUjoOonpOjDrfzklAlhbJ4uiJEajmUYKQ0xhYlWON4w-uMFNPH1jaVIA-dMK71XDw5KkijgnRUkJYZ-TjP2e4LcPxT-kPQoQ7eiStbk5IMcH-hzpVeN1VRhaxIlDxeSKJX2eXwZAU6efWgEaqqgKhUlZF383CYGZhqHfS7INPE3hl5npEXe6OZ942L4-uybjLSLMxpFgi1vpcj3fdvseZ3rWSo3JOR1WR4v7b198_x6v_EX5MHZfidECl2x-Ro_LGDN4i5xvZtdLGfz2gj1A priority: 102 providerName: Springer Nature |
Title | Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment |
URI | https://link.springer.com/article/10.1007/s00256-019-03289-8 https://www.ncbi.nlm.nih.gov/pubmed/31396667 https://www.proquest.com/docview/2269782293 https://www.proquest.com/docview/2270010300 https://pubmed.ncbi.nlm.nih.gov/PMC6980503 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkxAviO9ljMlISDzQiHw4if2E2tFuAq1CaJXKU-T4YyBtSVnSh_333LluRiqxl_jBZ8uxz3dn--53hLzPdGJzHmdhrCwcUExUhZXVIswjpQ3PLPAVxjufz_OzBfu6zJb-wq31bpVbmegEtW4U3pF_AjNBoDYT6efVnxCzRuHrqk-h8ZDsI3QZcnWx7A9ccVFk_q2ShUnKuA-acaFzTtnDQVqEiCgnQj5QTLvi-R_9tOs7ufOA6vTS7Cl54g1KOt5wwDPywNTPyaNz_2T-gtx-MWZFfXKISwo2KpXrrgFD1WjamstrH3xU08bSlbkCyUGv1y06y42old2IylrTqqkNxVAUenJB243voeuravQtRb907_xFZQ_1-ZIsZtOLk7PQ51sIVcbiLsyUlcaITDMtDBe2SpQA-ymyhQUjwlommZIgAXIujVXSqgja8TRVsYw1M1n6iuzVMJwDQgXPhAI5C8ZSxUxiJOdSqjgxSmpWsDwg8XayS-XByDEnxlXZwyi7BSphgUq3QCUPyMe-zWoDxXEv9QdcwxL3KfSspA83gPEh4lU5LtI4xfhIoDwaUML-UsPqLReUfn-35R03BuRdX40t0WetNs0aaQqXRSOKAvJ6wzT9uKFzOGfmRUCKATv1BIj6Paypf_9y6N-54IjhE5DRlvHuhvX_6Ti8_y_ekMcJXiQ457ojstfdrM1bsLa66thtKfjy2ekx2R_PJpM5lqc_v02hnEzn339A7SIZ_wWbXS1m |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJtAASOBOLBR83AS-4BQ1bJsabenrdRbcPwoSG2ysFmh_VP8Rma8TkpWoreePbaczHhm7Jn5hpC3mU5szuMsjJWFC4qJqrCyWoR5pLThmQW5wnrn6Uk-OWVfz7KzLfKnq4XBtMpOJzpFrRuFb-S74CYItGYi_TT_GWLXKIyudi001mJxZFa_4cq2-Hh4APx9lyTjz7P9Sei7CoQqY3EbZspKY0SmmRaGC1slSoCXENnCgqm0lkmmJMh5zqWxSloVwTyepiqWsWYGu0SAyr_FUrDkWJk-_tJHLYoi87FRFiYp475Ix5XqOecCLu4iRAQ7EfKBIdw0B__Yw81czY2ArbOD4_vknndg6d5a4h6QLVM_JLenPkT_iKwOjJlT34zinIJPTOWybcAxNpouzPmlL3aqaWPp3FyApqKXywUm542ole2IylrTqqkNxdIXuj-ji3Wuo1uravSKYh68TzajsocWfUxOb4QTT8h2Ddt5RqjgmVCg18E5q5hJjORcShUnRknNCpYHJO5-dqk8-Dn24Lgoe9hmx6ASGFQ6BpU8IB_6OfM19Me11O-RhyXqBVhZSV_eAPtDhK1yr0jjFOsxgXJnQAnnWQ2HOykovT5ZlFfSH5A3_TDOxBy52jRLpClc144oCsjTtdD0-4bF4V6bFwEpBuLUEyDK-HCk_vHdoY3ngiNmUEBGneBdbev_v-P59V_xmtyZzKbH5fHhydELcjfBRwyX2LdDtttfS_MSPL22euWOFyXfbvo8_wWHy2Xx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdChbKL6Id6NVR1B8cENzmSQzDyK126W1dinSQt_iZC5VaJPVzSL7a36d5yST1CzYtz7PmWGSc59zI-RNoiOb8jDxQ2XBQTFB4RdWCz8NlDY8sUBXWO98PEsPztjn8-R8g_zpamEwrbKTiY2g1pXCN_IdMBMEajMR71iXFnEymX6c__RxghRGWrtxGi2JHJnVb3DfFh8OJ4Drt1E03T_dO_DdhAFfJSys_URZaYxINNPCcGGLSAmwGAKbWVCb1jLJlASaT7k0VkmrAtjH41iFMtTM4MQIEP-bGXpFI7L5aX928rWPYWRZ4iKlzI9ixl3JTlO415ga4MYLH_vZCZ8P1OK6cvhHO65nbq6FbxutOL1H7jpzlu629HefbJjyAdk6dgH7h2Q1MWZO3WiKCwoWMpXLugIz2Wi6MBdXrvSppJWlc3MJcoteLReYqjemVtZjKktNi6o0FAth6N4pXbSZj81ZRaVXFLPiXeoZlX2j0Ufk7FZw8ZiMSrjOU0IFT4QCKQ-mWsFMZCTnUqowMkpqlrHUI2H3s3PlWqHjRI7LvG_i3CAoBwTlDYJy7pH3_Z552wjkRuh3iMMcpQScrKQrdoD7Yb-tfDeLwxirMwFyewAJ3K2Gyx0V5E66LPJrXvDI634Zd2LGXGmqJcJkzQyPIPDIk5Zo-nvD4eDlpplHsgE59QDYc3y4Uv743vQeTwXHDkIeGXeEd32t__-OZzd_xSuyBbycfzmcHT0ndyJ80Wiy_LbJqP61NC_A7KuLl46_KPl22yz9FzeVa4M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+automated+segmentation+of+pelvic+muscles%2C+fat%2C+and+bone+from+CT+studies+for+body+composition+assessment&rft.jtitle=Skeletal+radiology&rft.au=Hemke%2C+Robert&rft.au=Buckless%2C+Colleen+G.&rft.au=Tsao%2C+Andrew&rft.au=Wang%2C+Benjamin&rft.date=2020-03-01&rft.issn=0364-2348&rft.eissn=1432-2161&rft.volume=49&rft.issue=3&rft.spage=387&rft.epage=395&rft_id=info:doi/10.1007%2Fs00256-019-03289-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00256_019_03289_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-2348&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-2348&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-2348&client=summon |