Construction of 4D high-definition cortical surface atlases of infants: Methods and applications
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first...
Saved in:
Published in | Medical image analysis Vol. 25; no. 1; pp. 22 - 36 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development. |
---|---|
AbstractList | In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development. In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two years of life, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at 7 time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development. In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development. |
Author | Gilmore, John H. Shen, Dinggang Shi, Feng Wang, Li Lin, Weili Li, Gang |
AuthorAffiliation | 3 Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea 1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA 2 Department of Psychiatry, University of North Carolina at Chapel Hill, NC, 27599, USA |
AuthorAffiliation_xml | – name: 1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA – name: 3 Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea – name: 2 Department of Psychiatry, University of North Carolina at Chapel Hill, NC, 27599, USA |
Author_xml | – sequence: 1 givenname: Gang surname: Li fullname: Li, Gang – sequence: 2 givenname: Li surname: Wang fullname: Wang, Li – sequence: 3 givenname: Feng surname: Shi fullname: Shi, Feng – sequence: 4 givenname: John H. surname: Gilmore fullname: Gilmore, John H. – sequence: 5 givenname: Weili surname: Lin fullname: Lin, Weili – sequence: 6 givenname: Dinggang surname: Shen fullname: Shen, Dinggang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25980388$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuPFCEUhYkZ47z8BSamlm6qvFBQDxcmpnXGSca40TVzoWCaTjW0QE3iv5fueURn4QoC53wnOeeUHPngDSFvKDQUaPd-02zN5LBhQEUDvAEQL8gJbTtaD5y1R093Ko7JaUobAOg5h1fkmIlxgHYYTsjNKviU46KzC74KtuKfq7W7XdeTsc67w6sOMTuNc5WWaFGbCvOMyaS93HmLPqcP1TeT12FKFfqpwt1uLoa9OZ2TlxbnZF4_nGfk58WXH6uv9fX3y6vVp-taC05zLZCNrenN2PIBhk5pqoToJqTKAFOgUWlmwWitmFUcsGU97UYLPU4WlOraM_LxnrtbVOlFG58jznIX3RbjbxnQyX9_vFvL23AnueDQDWMBvHsAxPBrMSnLrUvazDN6E5YkaQ-iNChGVqRv_856CnmstQjGe4GOIaVorNQuH_oo0W6WFOR-QrmRhwnlfkIJXBZ88bbPvI_4_7n-ALZypAc |
CitedBy_id | crossref_primary_10_1093_cercor_bhaa150 crossref_primary_10_1093_cercor_bhy302 crossref_primary_10_7554_eLife_75401 crossref_primary_10_1007_s00429_018_1735_9 crossref_primary_10_1016_j_neuroimage_2016_05_034 crossref_primary_10_1016_j_neuroimage_2018_10_060 crossref_primary_10_1016_j_neuroimage_2018_01_054 crossref_primary_10_1038_s42003_021_02706_w crossref_primary_10_1038_s41467_022_28326_4 crossref_primary_10_1016_j_neuroimage_2018_07_004 crossref_primary_10_3174_ajnr_A7316 crossref_primary_10_1016_j_neuroimage_2021_118799 crossref_primary_10_1109_TMI_2018_2874964 crossref_primary_10_1109_TMI_2021_3050072 crossref_primary_10_1016_j_neuroimage_2018_08_041 crossref_primary_10_1093_brain_awz412 crossref_primary_10_1016_j_dcn_2020_100893 crossref_primary_10_1016_j_neuroimage_2021_118232 crossref_primary_10_1093_cercor_bhab448 crossref_primary_10_1016_j_media_2019_101540 crossref_primary_10_1016_j_media_2018_07_006 crossref_primary_10_3389_fnins_2022_951508 crossref_primary_10_1109_JBHI_2019_2897020 crossref_primary_10_1002_hbm_23003 crossref_primary_10_1039_D4SM01194E crossref_primary_10_3389_fnhum_2022_943341 crossref_primary_10_1109_TMI_2022_3147690 crossref_primary_10_1073_pnas_2121748119 crossref_primary_10_1016_j_neuroimage_2021_118488 crossref_primary_10_1016_j_neuron_2021_06_004 crossref_primary_10_1002_hbm_23555 crossref_primary_10_1002_hbm_24924 crossref_primary_10_1523_JNEUROSCI_0809_24_2024 crossref_primary_10_1016_j_media_2020_101750 crossref_primary_10_1097_NNR_0000000000000241 crossref_primary_10_1016_j_neuroimage_2018_04_052 crossref_primary_10_1016_j_dcn_2017_08_009 crossref_primary_10_1159_000538527 crossref_primary_10_1016_j_neuroimage_2018_06_018 crossref_primary_10_1002_dev_22529 crossref_primary_10_1016_j_bspc_2025_107605 crossref_primary_10_1016_j_neuroimage_2018_03_042 crossref_primary_10_1016_j_imed_2022_06_002 crossref_primary_10_1016_j_neuroimage_2020_116946 crossref_primary_10_1109_TMI_2021_3137280 crossref_primary_10_1073_pnas_1821523116 crossref_primary_10_1016_j_bandl_2024_105461 crossref_primary_10_1016_j_neuroimage_2018_04_003 crossref_primary_10_32604_cmc_2024_047754 crossref_primary_10_1093_brain_awad348 crossref_primary_10_3389_fnins_2022_835964 crossref_primary_10_1002_hbm_23301 crossref_primary_10_1523_JNEUROSCI_1841_22_2023 crossref_primary_10_1002_hbm_24636 crossref_primary_10_1002_hbm_24637 crossref_primary_10_1016_j_neuroimage_2024_120603 crossref_primary_10_1016_j_neuroimage_2022_119097 crossref_primary_10_1016_j_media_2020_101853 crossref_primary_10_1093_cercor_bhae069 crossref_primary_10_1002_hbm_24199 crossref_primary_10_1016_j_nicl_2017_08_015 crossref_primary_10_1109_TMI_2020_3013825 crossref_primary_10_3389_fnins_2022_806268 crossref_primary_10_3390_children11020206 crossref_primary_10_1038_s41467_023_38974_9 crossref_primary_10_1016_j_media_2024_103193 crossref_primary_10_3389_fnins_2021_724391 crossref_primary_10_1016_j_media_2019_03_012 crossref_primary_10_1109_TMI_2021_3069645 crossref_primary_10_1002_hbm_24789 crossref_primary_10_1016_j_neuroimage_2018_06_069 crossref_primary_10_1523_JNEUROSCI_0480_21_2021 crossref_primary_10_3389_fnins_2021_666020 crossref_primary_10_1002_hbm_23536 crossref_primary_10_1016_j_media_2024_103396 crossref_primary_10_3174_ajnr_A7386 |
Cites_doi | 10.1016/j.neuroimage.2012.05.042 10.1097/00004728-199101000-00003 10.1006/nimg.1999.0534 10.1371/journal.pone.0018746 10.1016/j.neuroimage.2013.11.040 10.1016/j.media.2014.06.007 10.1006/nimg.1995.1012 10.1016/j.neuroimage.2006.10.041 10.1002/hbm.22409 10.1523/JNEUROSCI.3976-13.2014 10.1016/j.neuroimage.2011.07.095 10.1093/cercor/bhm180 10.1007/s11263-010-0367-1 10.1016/j.neuroimage.2007.07.030 10.1016/j.neuroimage.2004.06.043 10.1016/j.neuroimage.2008.01.008 10.1073/pnas.1001229107 10.1098/rstb.2001.0915 10.1016/j.neuroimage.2012.01.024 10.1093/cercor/bhs413 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2008.07.060 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.0811221106 10.1073/pnas.1308091110 10.1016/j.neuroimage.2010.06.054 10.1016/j.neuroimage.2004.12.034 10.1093/cercor/bhr053 10.1006/nimg.1996.0003 10.1109/42.668698 10.1016/j.neuroimage.2011.01.051 10.1006/nimg.1998.0396 10.1093/cercor/bhr293 10.1016/j.neuroimage.2007.09.031 10.1523/JNEUROSCI.4682-09.2010 10.1016/j.tins.2013.01.006 10.1136/jamia.2001.0080401 10.1002/hbm.20249 10.1016/j.neuroimage.2010.04.263 10.1109/42.781013 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1016/S1361-8415(02)00054-3 10.1109/TMI.2002.803111 10.1016/j.neuroimage.2005.06.058 10.1523/JNEUROSCI.3479-08.2008 10.1073/pnas.200033797 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2013.08.008 10.1093/cercor/bhp026 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2014.06.004 10.1093/cercor/bhs265 10.1016/j.media.2010.01.005 10.1016/j.neuroimage.2004.07.019 10.1016/j.neuroimage.2010.10.019 10.1016/j.neuroimage.2011.06.064 10.1093/cercor/bhr361 10.1002/hbm.22502 10.1016/j.neuroimage.2007.05.004 10.1016/j.neuroimage.2009.03.039 10.1109/TMI.2012.2224879 10.1016/j.neuroimage.2011.09.062 10.1016/j.neuron.2007.10.015 10.1016/j.media.2008.06.005 10.1371/journal.pone.0044596 10.1016/j.compmedimag.2007.08.009 10.1371/journal.pone.0024678 10.1016/j.neuroimage.2013.12.038 10.1016/j.neuroimage.2004.07.068 10.1002/hbm.22432 10.1093/cercor/bhr327 10.1109/TMI.2009.2030797 10.1016/j.neuroimage.2011.11.012 10.1016/j.neuroimage.2013.03.021 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.media.2015.04.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
EndPage | 36 |
ExternalDocumentID | PMC4540689 25980388 10_1016_j_media_2015_04_005 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: MH088520 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NINDS NIH HHS grantid: NS055754 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NIA NIH HHS grantid: AG042599 – fundername: NIBIB NIH HHS grantid: R03 EB008760 – fundername: NINDS NIH HHS grantid: R01 NS055754 – fundername: NIBIB NIH HHS grantid: EB006733 – fundername: NIBIB NIH HHS grantid: EB008374 – fundername: NIMH NIH HHS grantid: K01 MH107815 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG CITATION COF CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c541t-5a293e7e9348086bc1b556da1be02b0cabc2f0eccb2fb40a327169f07adf0bb63 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Thu Aug 21 14:30:48 EDT 2025 Thu Jul 10 23:21:42 EDT 2025 Mon Jul 21 06:02:41 EDT 2025 Tue Jul 01 02:49:24 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Developmental trajectory Cortical thickness Infant cortical surface Cortical folding 4D atlas |
Language | English |
License | Copyright © 2015 Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c541t-5a293e7e9348086bc1b556da1be02b0cabc2f0eccb2fb40a327169f07adf0bb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.media.2015.04.005 |
PMID | 25980388 |
PQID | 1705000592 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4540689 proquest_miscellaneous_1705000592 pubmed_primary_25980388 crossref_citationtrail_10_1016_j_media_2015_04_005 crossref_primary_10_1016_j_media_2015_04_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2015 |
References | Nie (10.1016/j.media.2015.04.005_bib0048) 2012; 22 Li (10.1016/j.media.2015.04.005_bib0029) 2013; 23 Greitz (10.1016/j.media.2015.04.005_bib0016) 1991; 15 Joshi (10.1016/j.media.2015.04.005_bib0022) 2004; 23 Zilles (10.1016/j.media.2015.04.005_bib0080) 2013; 36 Evans (10.1016/j.media.2015.04.005_bib0008) 2012; 62 Zhang (10.1016/j.media.2015.04.005_bib0078) 2010 Hill (10.1016/j.media.2015.04.005_bib0020) 2010; 30 Fischl (10.1016/j.media.2015.04.005_bib0011) 1999; 9 Li (10.1016/j.media.2015.04.005_bib0032) 2014; 17 Yeo (10.1016/j.media.2015.04.005_bib0076) 2008; 12 Sled (10.1016/j.media.2015.04.005_bib0063) 1998; 17 Han (10.1016/j.media.2015.04.005_bib0019) 2004; 23 Shattuck (10.1016/j.media.2015.04.005_bib0056) 2008; 39 Li (10.1016/j.media.2015.04.005_bib0026) 2009; 46 Wang (10.1016/j.media.2015.04.005_bib0072) 2012; 7 Yap (10.1016/j.media.2015.04.005_bib0075) 2011; 6 Fischl (10.1016/j.media.2015.04.005_bib0010) 2000; 97 Li (10.1016/j.media.2015.04.005_bib0030) 2014; 24 Li (10.1016/j.media.2015.04.005_bib0036) 2010; 52 Gao (10.1016/j.media.2015.04.005_bib0013) 2009; 106 Wang (10.1016/j.media.2015.04.005_bib0069) 2014; 89 Xu (10.1016/j.media.2015.04.005_bib0073) 1999; 18 Panizzon (10.1016/j.media.2015.04.005_bib0052) 2009; 19 Meng (10.1016/j.media.2015.04.005_bib0045) 2014; 100C Fischl (10.1016/j.media.2015.04.005_bib0009) 2012; 62 Lyall (10.1016/j.media.2015.04.005_bib0038) 2014 Smith (10.1016/j.media.2015.04.005_bib0064) 2004; 23 Durrleman (10.1016/j.media.2015.04.005_bib0006) 2009; 12 Dubois (10.1016/j.media.2015.04.005_bib0005) 2008; 18 MacDonald (10.1016/j.media.2015.04.005_bib0040) 2000; 12 Nie (10.1016/j.media.2015.04.005_bib0049) 2014; 35 Li (10.1016/j.media.2015.04.005_bib0027) 2010; 14 Van Essen (10.1016/j.media.2015.04.005_bib0068) 2007; 56 Mazziotta (10.1016/j.media.2015.04.005_bib0044) 1995; 2 Wang (10.1016/j.media.2015.04.005_bib0071) 2011; 58 Eickhoff (10.1016/j.media.2015.04.005_bib0007) 2005; 25 Fischl (10.1016/j.media.2015.04.005_bib0012) 1999; 8 Oishi (10.1016/j.media.2015.04.005_bib0051) 2011; 56 Shi (10.1016/j.media.2015.04.005_bib0061) 2013; 32 Knickmeyer (10.1016/j.media.2015.04.005_bib0024) 2008; 28 Xue (10.1016/j.media.2015.04.005_bib0074) 2007; 38 Habas (10.1016/j.media.2015.04.005_bib0018) 2012; 22 Hill (10.1016/j.media.2015.04.005_bib0021) 2010; 107 Nie (10.1016/j.media.2015.04.005_bib0050) 2007; 31 Kazemi (10.1016/j.media.2015.04.005_bib0023) 2007; 37 Li (10.1016/j.media.2015.04.005_bib0031) 2012; 59 Yeo (10.1016/j.media.2015.04.005_bib0077) 2010; 29 Mazziotta (10.1016/j.media.2015.04.005_bib0043) 2001; 8 Nie (10.1016/j.media.2015.04.005_bib0047) 2013; 76 Rodriguez-Carranza (10.1016/j.media.2015.04.005_bib0053) 2008; 41 Shi (10.1016/j.media.2015.04.005_bib0059) 2014; 35 Benjamini (10.1016/j.media.2015.04.005_bib0002) 1995 Chen (10.1016/j.media.2015.04.005_bib0003) 2013; 110 Van Essen (10.1016/j.media.2015.04.005_bib0067) 2005; 28 Wang (10.1016/j.media.2015.04.005_bib0070) 2014; 84 Liao (10.1016/j.media.2015.04.005_bib0037) 2012; 59 Lyttelton (10.1016/j.media.2015.04.005_bib0039) 2007; 34 Nie (10.1016/j.media.2015.04.005_bib0046) 2012; 22 Shen (10.1016/j.media.2015.04.005_bib0057) 2002; 21 Shiee (10.1016/j.media.2015.04.005_bib0062) 2014; 35 Zhang (10.1016/j.media.2015.04.005_bib0079) 2009; 12 Mazziotta (10.1016/j.media.2015.04.005_bib0042) 2001; 356 Davis (10.1016/j.media.2015.04.005_bib0004) 2010; 90 Li (10.1016/j.media.2015.04.005_bib0033) 2014; 18 Mangin (10.1016/j.media.2015.04.005_bib0041) 2004; 23 Li (10.1016/j.media.2015.04.005_bib0034) 2014 Kuklisova-Murgasova (10.1016/j.media.2015.04.005_bib0025) 2011; 54 Habas (10.1016/j.media.2015.04.005_bib0017) 2010; 53 Shattuck (10.1016/j.media.2015.04.005_bib0055) 2002; 6 Li (10.1016/j.media.2015.04.005_bib0028) 2014; 90 Serag (10.1016/j.media.2015.04.005_bib0054) 2012; 59 Altaye (10.1016/j.media.2015.04.005_bib0001) 2008; 43 Goebel (10.1016/j.media.2015.04.005_bib0015) 2006; 27 Li (10.1016/j.media.2015.04.005_bib0035) 2014; 34 Gilmore (10.1016/j.media.2015.04.005_bib0014) 2012; 22 Shi (10.1016/j.media.2015.04.005_bib0060) 2011; 6 Tzourio-Mazoyer (10.1016/j.media.2015.04.005_bib0066) 2002; 15 Shi (10.1016/j.media.2015.04.005_bib0058) 2012; 62 Thompson (10.1016/j.media.2015.04.005_bib0065) 1996; 3 |
References_xml | – volume: 62 start-page: 1975 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0058 article-title: LABEL: pediatric brain extraction using learning-based meta-algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.042 – volume: 15 start-page: 26 year: 1991 ident: 10.1016/j.media.2015.04.005_bib0016 article-title: A computerized brain atlas – construction, anatomical content, and some applications publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-199101000-00003 – volume: 12 start-page: 340 year: 2000 ident: 10.1016/j.media.2015.04.005_bib0040 article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: Neuroimage doi: 10.1006/nimg.1999.0534 – volume: 6 start-page: e18746 year: 2011 ident: 10.1016/j.media.2015.04.005_bib0060 article-title: Infant brain atlases from neonates to 1- and 2-year-olds publication-title: PLoS One doi: 10.1371/journal.pone.0018746 – volume: 89 start-page: 152 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0069 article-title: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.040 – volume: 18 start-page: 1274 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0033 article-title: Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.06.007 – volume: 2 start-page: 89 year: 1995 ident: 10.1016/j.media.2015.04.005_bib0044 article-title: A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM) publication-title: Neuroimage doi: 10.1006/nimg.1995.1012 – volume: 34 start-page: 1535 year: 2007 ident: 10.1016/j.media.2015.04.005_bib0039 article-title: An unbiased iterative group registration template for cortical surface analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.041 – volume: 35 start-page: 3385 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0062 article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22409 – start-page: 1133 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0078 article-title: Automatic cortical surface parcellation based on fiber density information – volume: 34 start-page: 4228 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0035 article-title: Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3976-13.2014 – volume: 59 start-page: 1275 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0037 article-title: A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.095 – volume: 18 start-page: 1444 year: 2008 ident: 10.1016/j.media.2015.04.005_bib0005 article-title: Mapping the early cortical folding process in the preterm newborn brain publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm180 – volume: 90 start-page: 255 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0004 article-title: Population shape regression from random design data publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-010-0367-1 – volume: 38 start-page: 461 year: 2007 ident: 10.1016/j.media.2015.04.005_bib0074 article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.030 – volume: 12 start-page: 297 year: 2009 ident: 10.1016/j.media.2015.04.005_bib0006 article-title: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 23 start-page: 997 year: 2004 ident: 10.1016/j.media.2015.04.005_bib0019 article-title: CRUISE: cortical reconstruction using implicit surface evolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.06.043 – volume: 17 start-page: 89 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0032 article-title: Constructing 4D infant cortical surface atlases based on dynamic developmental trajectories of the cortex publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 41 start-page: 462 year: 2008 ident: 10.1016/j.media.2015.04.005_bib0053 article-title: A framework for in vivo quantification of regional brain folding in premature neonates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.008 – volume: 107 start-page: 13135 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0021 article-title: Similar patterns of cortical expansion during human development and evolution publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1001229107 – volume: 356 start-page: 1293 year: 2001 ident: 10.1016/j.media.2015.04.005_bib0042 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2001.0915 – volume: 62 start-page: 911 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0008 article-title: Brain templates and atlases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.024 – volume: 24 start-page: 1289 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0030 article-title: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs413 – volume: 23 start-page: S208 issue: Suppl. 1 year: 2004 ident: 10.1016/j.media.2015.04.005_bib0064 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 43 start-page: 721 year: 2008 ident: 10.1016/j.media.2015.04.005_bib0001 article-title: Infant brain probability templates for MRI segmentation and normalization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.07.060 – start-page: 289 year: 1995 ident: 10.1016/j.media.2015.04.005_bib0002 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 106 start-page: 6790 year: 2009 ident: 10.1016/j.media.2015.04.005_bib0013 article-title: Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811221106 – volume: 110 start-page: 17089 year: 2013 ident: 10.1016/j.media.2015.04.005_bib0003 article-title: Genetic topography of brain morphology publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1308091110 – volume: 53 start-page: 460 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0017 article-title: A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.054 – volume: 25 start-page: 1325 year: 2005 ident: 10.1016/j.media.2015.04.005_bib0007 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 22 start-page: 13 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0018 article-title: Early folding patterns and asymmetries of the normal human brain detected from in utero MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr053 – volume: 3 start-page: 19 year: 1996 ident: 10.1016/j.media.2015.04.005_bib0065 article-title: High-resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain publication-title: Neuroimage doi: 10.1006/nimg.1996.0003 – volume: 17 start-page: 87 year: 1998 ident: 10.1016/j.media.2015.04.005_bib0063 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 56 start-page: 8 year: 2011 ident: 10.1016/j.media.2015.04.005_bib0051 article-title: Multi-contrast human neonatal brain atlas: application to normal neonate development analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.051 – volume: 9 start-page: 195 year: 1999 ident: 10.1016/j.media.2015.04.005_bib0011 article-title: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – year: 2014 ident: 10.1016/j.media.2015.04.005_bib0038 article-title: Dynamic development of regional cortical thickness and surface area in early childhood publication-title: Cereb. Cortex In press – volume: 22 start-page: 2272 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0048 article-title: A computational growth model for measuring dynamic cortical development in the first year of life publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr293 – volume: 39 start-page: 1064 year: 2008 ident: 10.1016/j.media.2015.04.005_bib0056 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.031 – volume: 30 start-page: 2268 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0020 article-title: A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4682-09.2010 – volume: 36 start-page: 275 year: 2013 ident: 10.1016/j.media.2015.04.005_bib0080 article-title: Development of cortical folding during evolution and ontogeny publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.01.006 – start-page: 1 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0034 article-title: Cortical thickness and surface area in neonates at high risk for schizophrenia publication-title: Brain Struct. Funct. – volume: 8 start-page: 401 year: 2001 ident: 10.1016/j.media.2015.04.005_bib0043 article-title: A four-dimensional probabilistic atlas of the human brain publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2001.0080401 – volume: 27 start-page: 392 year: 2006 ident: 10.1016/j.media.2015.04.005_bib0015 article-title: Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20249 – volume: 52 start-page: 1202 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0036 article-title: Gyral folding pattern analysis via surface profiling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.263 – volume: 18 start-page: 467 year: 1999 ident: 10.1016/j.media.2015.04.005_bib0073 article-title: Reconstruction of the human cerebral cortex from magnetic resonance images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.781013 – volume: 8 start-page: 272 year: 1999 ident: 10.1016/j.media.2015.04.005_bib0012 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 6 start-page: 129 year: 2002 ident: 10.1016/j.media.2015.04.005_bib0055 article-title: BrainSuite: an automated cortical surface identification tool publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00054-3 – volume: 21 start-page: 1421 year: 2002 ident: 10.1016/j.media.2015.04.005_bib0057 article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.803111 – volume: 28 start-page: 635 year: 2005 ident: 10.1016/j.media.2015.04.005_bib0067 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 28 start-page: 12176 year: 2008 ident: 10.1016/j.media.2015.04.005_bib0024 article-title: A structural MRI study of human brain development from birth to 2 years publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3479-08.2008 – volume: 12 start-page: 184 year: 2009 ident: 10.1016/j.media.2015.04.005_bib0079 article-title: Parametric representation of cortical surface folding based on polynomials publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 97 start-page: 11050 year: 2000 ident: 10.1016/j.media.2015.04.005_bib0010 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.200033797 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.media.2015.04.005_bib0066 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 84 start-page: 141 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0070 article-title: Segmentation of neonatal brain MR images using patch-driven level sets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.008 – volume: 19 start-page: 2728 year: 2009 ident: 10.1016/j.media.2015.04.005_bib0052 article-title: Distinct genetic influences on cortical surface area and cortical thickness publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp026 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0009 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 100C start-page: 206 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0045 article-title: Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.004 – volume: 23 start-page: 2724 year: 2013 ident: 10.1016/j.media.2015.04.005_bib0029 article-title: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs265 – volume: 14 start-page: 343 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0027 article-title: An automated pipeline for cortical sulcal fundi extraction publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.01.005 – volume: 23 start-page: S129 issue: Suppl. 1 year: 2004 ident: 10.1016/j.media.2015.04.005_bib0041 article-title: A framework to study the cortical folding patterns publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.019 – volume: 54 start-page: 2750 year: 2011 ident: 10.1016/j.media.2015.04.005_bib0025 article-title: A dynamic 4D probabilistic atlas of the developing brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.019 – volume: 58 start-page: 805 year: 2011 ident: 10.1016/j.media.2015.04.005_bib0071 article-title: Automatic segmentation of neonatal images using convex optimization and coupled level sets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.064 – volume: 22 start-page: 2831 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0046 article-title: Axonal fiber terminations concentrate on gyri publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr361 – volume: 35 start-page: 4663 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0059 article-title: Neonatal atlas construction using sparse representation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22502 – volume: 37 start-page: 463 year: 2007 ident: 10.1016/j.media.2015.04.005_bib0023 article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.004 – volume: 46 start-page: 923 year: 2009 ident: 10.1016/j.media.2015.04.005_bib0026 article-title: Automatic cortical sulcal parcellation based on surface principal direction flow field tracking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.03.039 – volume: 32 start-page: 511 year: 2013 ident: 10.1016/j.media.2015.04.005_bib0061 article-title: Cortical surface reconstruction via unified Reeb analysis of geometric and topological outliers in magnetic resonance images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2224879 – volume: 59 start-page: 2255 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0054 article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.062 – volume: 56 start-page: 209 year: 2007 ident: 10.1016/j.media.2015.04.005_bib0068 article-title: Surface-based and probabilistic atlases of primate cerebral cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.10.015 – volume: 12 start-page: 603 year: 2008 ident: 10.1016/j.media.2015.04.005_bib0076 article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.06.005 – volume: 7 start-page: e44596 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0072 article-title: 4D multi-modality tissue segmentation of serial infant images publication-title: PLoS One doi: 10.1371/journal.pone.0044596 – volume: 31 start-page: 656 year: 2007 ident: 10.1016/j.media.2015.04.005_bib0050 article-title: Least-square conformal brain mapping with spring energy publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.08.009 – volume: 6 start-page: e24678 year: 2011 ident: 10.1016/j.media.2015.04.005_bib0075 article-title: Development trends of white matter connectivity in the first years of life publication-title: PLoS One doi: 10.1371/journal.pone.0024678 – volume: 90 start-page: 266 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0028 article-title: Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.12.038 – volume: 23 start-page: S151 issue: Suppl. 1 year: 2004 ident: 10.1016/j.media.2015.04.005_bib0022 article-title: Unbiased diffeomorphic atlas construction for computational anatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.068 – volume: 35 start-page: 3726 year: 2014 ident: 10.1016/j.media.2015.04.005_bib0049 article-title: Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22432 – volume: 22 start-page: 2478 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0014 article-title: Longitudinal development of cortical and subcortical gray matter from birth to 2 years publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr327 – volume: 29 start-page: 650 year: 2010 ident: 10.1016/j.media.2015.04.005_bib0077 article-title: Spherical demons: fast diffeomorphic landmark-free surface registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2030797 – volume: 59 start-page: 3805 year: 2012 ident: 10.1016/j.media.2015.04.005_bib0031 article-title: Consistent reconstruction of cortical surfaces from longitudinal brain MR images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.012 – volume: 76 start-page: 216 year: 2013 ident: 10.1016/j.media.2015.04.005_bib0047 article-title: Development of cortical anatomical properties from early childhood to early adulthood publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.021 |
SSID | ssj0007440 |
Score | 2.4735918 |
Snippet | In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 22 |
SubjectTerms | Atlases as Topic Brain - growth & development Brain Mapping - methods Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Infant Infant, Newborn Magnetic Resonance Imaging - methods Neuroimaging - methods |
Title | Construction of 4D high-definition cortical surface atlases of infants: Methods and applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25980388 https://www.proquest.com/docview/1705000592 https://pubmed.ncbi.nlm.nih.gov/PMC4540689 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4ICiv5SUjcVtSJY6dB7eKQpfH9tRKvQU7cdRUbbai6aW_vjN-bbYtCLhEq9jrXeWb2DP2N98Q8j4thRZCQmzSlHCReRKpMi4i1WpmBMlzU71hsZfND_i3Q3G4IrGb7JJBbdWXt-aV_A-qcA9wxSzZf0A2DAo34DPgC1dAGK5_hTFW2_T6r-j18Z0Zyg9HjW673nCxZhBc2t3q84tfrcTsgAH8Zac027fIgsFNgYUpJG31msdn2mPf1Z_pdKfI85FOzSQwegwtYFe6ldDs0dt55EcXtnFMBeEZPMPQabc78VRfQ-KZj7chEhEIbbCK2KkzzZKo4DZ72M-tNql5zYbcRMlunb_tVsLxlkmbQeKdMEK0JjN7GCF6dmoghditQDmb1WIWKIa-6S7ZYBBBsAnZ2P76fb4XlmlURvQyVIbwd-M3USjajbLutdwIRa4zakcuyv4j8tDFFnTbGspjckf3m-TBSHFyk9xbOC7FE_JzbD102VK-Q69ZD_XWQ531UGc92N1Zz0fqbIeC7dCx7TwlB18-73-aR67eRlQLngyRkOD76VyXKS8g0lV1ooTIGpkoHTMV11LVrI3hnVesVTyWKUOppTbOZdPGSmXpMzLpl71-QShrlMZWhWJCNYxVNhxCdS14meu0YFPC_POsaidGjzVRTirPOjyuDB4V4lHFvAI8puRD-NKZ1WL5c_d3HqgK5kw8CJO9Xl6cVyghZZSJ4H88t8CFAT3iU5KvQRo6oB77ekvfHRlddhSzzIry5W_HfEXur16d12QCGOs34NMO6q2zziukXKMo |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+4D+high-definition+cortical+surface+atlases+of+infants%3A+Methods+and+applications&rft.jtitle=Medical+image+analysis&rft.au=Li%2C+Gang&rft.au=Wang%2C+Li&rft.au=Shi%2C+Feng&rft.au=Gilmore%2C+John+H&rft.date=2015-10-01&rft.eissn=1361-8423&rft.volume=25&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1016%2Fj.media.2015.04.005&rft_id=info%3Apmid%2F25980388&rft.externalDocID=25980388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |