Construction of 4D high-definition cortical surface atlases of infants: Methods and applications

In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 25; no. 1; pp. 22 - 36
Main Authors Li, Gang, Wang, Li, Shi, Feng, Gilmore, John H., Lin, Weili, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published Netherlands 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
AbstractList In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two years of life, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at 7 time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
Author Gilmore, John H.
Shen, Dinggang
Shi, Feng
Wang, Li
Lin, Weili
Li, Gang
AuthorAffiliation 3 Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
2 Department of Psychiatry, University of North Carolina at Chapel Hill, NC, 27599, USA
AuthorAffiliation_xml – name: 1 Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
– name: 3 Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
– name: 2 Department of Psychiatry, University of North Carolina at Chapel Hill, NC, 27599, USA
Author_xml – sequence: 1
  givenname: Gang
  surname: Li
  fullname: Li, Gang
– sequence: 2
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 3
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
– sequence: 4
  givenname: John H.
  surname: Gilmore
  fullname: Gilmore, John H.
– sequence: 5
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
– sequence: 6
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25980388$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuPFCEUhYkZ47z8BSamlm6qvFBQDxcmpnXGSca40TVzoWCaTjW0QE3iv5fueURn4QoC53wnOeeUHPngDSFvKDQUaPd-02zN5LBhQEUDvAEQL8gJbTtaD5y1R093Ko7JaUobAOg5h1fkmIlxgHYYTsjNKviU46KzC74KtuKfq7W7XdeTsc67w6sOMTuNc5WWaFGbCvOMyaS93HmLPqcP1TeT12FKFfqpwt1uLoa9OZ2TlxbnZF4_nGfk58WXH6uv9fX3y6vVp-taC05zLZCNrenN2PIBhk5pqoToJqTKAFOgUWlmwWitmFUcsGU97UYLPU4WlOraM_LxnrtbVOlFG58jznIX3RbjbxnQyX9_vFvL23AnueDQDWMBvHsAxPBrMSnLrUvazDN6E5YkaQ-iNChGVqRv_856CnmstQjGe4GOIaVorNQuH_oo0W6WFOR-QrmRhwnlfkIJXBZ88bbPvI_4_7n-ALZypAc
CitedBy_id crossref_primary_10_1093_cercor_bhaa150
crossref_primary_10_1093_cercor_bhy302
crossref_primary_10_7554_eLife_75401
crossref_primary_10_1007_s00429_018_1735_9
crossref_primary_10_1016_j_neuroimage_2016_05_034
crossref_primary_10_1016_j_neuroimage_2018_10_060
crossref_primary_10_1016_j_neuroimage_2018_01_054
crossref_primary_10_1038_s42003_021_02706_w
crossref_primary_10_1038_s41467_022_28326_4
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_3174_ajnr_A7316
crossref_primary_10_1016_j_neuroimage_2021_118799
crossref_primary_10_1109_TMI_2018_2874964
crossref_primary_10_1109_TMI_2021_3050072
crossref_primary_10_1016_j_neuroimage_2018_08_041
crossref_primary_10_1093_brain_awz412
crossref_primary_10_1016_j_dcn_2020_100893
crossref_primary_10_1016_j_neuroimage_2021_118232
crossref_primary_10_1093_cercor_bhab448
crossref_primary_10_1016_j_media_2019_101540
crossref_primary_10_1016_j_media_2018_07_006
crossref_primary_10_3389_fnins_2022_951508
crossref_primary_10_1109_JBHI_2019_2897020
crossref_primary_10_1002_hbm_23003
crossref_primary_10_1039_D4SM01194E
crossref_primary_10_3389_fnhum_2022_943341
crossref_primary_10_1109_TMI_2022_3147690
crossref_primary_10_1073_pnas_2121748119
crossref_primary_10_1016_j_neuroimage_2021_118488
crossref_primary_10_1016_j_neuron_2021_06_004
crossref_primary_10_1002_hbm_23555
crossref_primary_10_1002_hbm_24924
crossref_primary_10_1523_JNEUROSCI_0809_24_2024
crossref_primary_10_1016_j_media_2020_101750
crossref_primary_10_1097_NNR_0000000000000241
crossref_primary_10_1016_j_neuroimage_2018_04_052
crossref_primary_10_1016_j_dcn_2017_08_009
crossref_primary_10_1159_000538527
crossref_primary_10_1016_j_neuroimage_2018_06_018
crossref_primary_10_1002_dev_22529
crossref_primary_10_1016_j_bspc_2025_107605
crossref_primary_10_1016_j_neuroimage_2018_03_042
crossref_primary_10_1016_j_imed_2022_06_002
crossref_primary_10_1016_j_neuroimage_2020_116946
crossref_primary_10_1109_TMI_2021_3137280
crossref_primary_10_1073_pnas_1821523116
crossref_primary_10_1016_j_bandl_2024_105461
crossref_primary_10_1016_j_neuroimage_2018_04_003
crossref_primary_10_32604_cmc_2024_047754
crossref_primary_10_1093_brain_awad348
crossref_primary_10_3389_fnins_2022_835964
crossref_primary_10_1002_hbm_23301
crossref_primary_10_1523_JNEUROSCI_1841_22_2023
crossref_primary_10_1002_hbm_24636
crossref_primary_10_1002_hbm_24637
crossref_primary_10_1016_j_neuroimage_2024_120603
crossref_primary_10_1016_j_neuroimage_2022_119097
crossref_primary_10_1016_j_media_2020_101853
crossref_primary_10_1093_cercor_bhae069
crossref_primary_10_1002_hbm_24199
crossref_primary_10_1016_j_nicl_2017_08_015
crossref_primary_10_1109_TMI_2020_3013825
crossref_primary_10_3389_fnins_2022_806268
crossref_primary_10_3390_children11020206
crossref_primary_10_1038_s41467_023_38974_9
crossref_primary_10_1016_j_media_2024_103193
crossref_primary_10_3389_fnins_2021_724391
crossref_primary_10_1016_j_media_2019_03_012
crossref_primary_10_1109_TMI_2021_3069645
crossref_primary_10_1002_hbm_24789
crossref_primary_10_1016_j_neuroimage_2018_06_069
crossref_primary_10_1523_JNEUROSCI_0480_21_2021
crossref_primary_10_3389_fnins_2021_666020
crossref_primary_10_1002_hbm_23536
crossref_primary_10_1016_j_media_2024_103396
crossref_primary_10_3174_ajnr_A7386
Cites_doi 10.1016/j.neuroimage.2012.05.042
10.1097/00004728-199101000-00003
10.1006/nimg.1999.0534
10.1371/journal.pone.0018746
10.1016/j.neuroimage.2013.11.040
10.1016/j.media.2014.06.007
10.1006/nimg.1995.1012
10.1016/j.neuroimage.2006.10.041
10.1002/hbm.22409
10.1523/JNEUROSCI.3976-13.2014
10.1016/j.neuroimage.2011.07.095
10.1093/cercor/bhm180
10.1007/s11263-010-0367-1
10.1016/j.neuroimage.2007.07.030
10.1016/j.neuroimage.2004.06.043
10.1016/j.neuroimage.2008.01.008
10.1073/pnas.1001229107
10.1098/rstb.2001.0915
10.1016/j.neuroimage.2012.01.024
10.1093/cercor/bhs413
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2008.07.060
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.0811221106
10.1073/pnas.1308091110
10.1016/j.neuroimage.2010.06.054
10.1016/j.neuroimage.2004.12.034
10.1093/cercor/bhr053
10.1006/nimg.1996.0003
10.1109/42.668698
10.1016/j.neuroimage.2011.01.051
10.1006/nimg.1998.0396
10.1093/cercor/bhr293
10.1016/j.neuroimage.2007.09.031
10.1523/JNEUROSCI.4682-09.2010
10.1016/j.tins.2013.01.006
10.1136/jamia.2001.0080401
10.1002/hbm.20249
10.1016/j.neuroimage.2010.04.263
10.1109/42.781013
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1016/S1361-8415(02)00054-3
10.1109/TMI.2002.803111
10.1016/j.neuroimage.2005.06.058
10.1523/JNEUROSCI.3479-08.2008
10.1073/pnas.200033797
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2013.08.008
10.1093/cercor/bhp026
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2014.06.004
10.1093/cercor/bhs265
10.1016/j.media.2010.01.005
10.1016/j.neuroimage.2004.07.019
10.1016/j.neuroimage.2010.10.019
10.1016/j.neuroimage.2011.06.064
10.1093/cercor/bhr361
10.1002/hbm.22502
10.1016/j.neuroimage.2007.05.004
10.1016/j.neuroimage.2009.03.039
10.1109/TMI.2012.2224879
10.1016/j.neuroimage.2011.09.062
10.1016/j.neuron.2007.10.015
10.1016/j.media.2008.06.005
10.1371/journal.pone.0044596
10.1016/j.compmedimag.2007.08.009
10.1371/journal.pone.0024678
10.1016/j.neuroimage.2013.12.038
10.1016/j.neuroimage.2004.07.068
10.1002/hbm.22432
10.1093/cercor/bhr327
10.1109/TMI.2009.2030797
10.1016/j.neuroimage.2011.11.012
10.1016/j.neuroimage.2013.03.021
ContentType Journal Article
Copyright Copyright © 2015 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2015 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.media.2015.04.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 36
ExternalDocumentID PMC4540689
25980388
10_1016_j_media_2015_04_005
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: MH088520
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NINDS NIH HHS
  grantid: NS055754
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIA NIH HHS
  grantid: AG042599
– fundername: NIBIB NIH HHS
  grantid: R03 EB008760
– fundername: NINDS NIH HHS
  grantid: R01 NS055754
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIMH NIH HHS
  grantid: K01 MH107815
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
CITATION
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c541t-5a293e7e9348086bc1b556da1be02b0cabc2f0eccb2fb40a327169f07adf0bb63
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 14:30:48 EDT 2025
Thu Jul 10 23:21:42 EDT 2025
Mon Jul 21 06:02:41 EDT 2025
Tue Jul 01 02:49:24 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Developmental trajectory
Cortical thickness
Infant cortical surface
Cortical folding
4D atlas
Language English
License Copyright © 2015 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-5a293e7e9348086bc1b556da1be02b0cabc2f0eccb2fb40a327169f07adf0bb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.media.2015.04.005
PMID 25980388
PQID 1705000592
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4540689
proquest_miscellaneous_1705000592
pubmed_primary_25980388
crossref_citationtrail_10_1016_j_media_2015_04_005
crossref_primary_10_1016_j_media_2015_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2015
References Nie (10.1016/j.media.2015.04.005_bib0048) 2012; 22
Li (10.1016/j.media.2015.04.005_bib0029) 2013; 23
Greitz (10.1016/j.media.2015.04.005_bib0016) 1991; 15
Joshi (10.1016/j.media.2015.04.005_bib0022) 2004; 23
Zilles (10.1016/j.media.2015.04.005_bib0080) 2013; 36
Evans (10.1016/j.media.2015.04.005_bib0008) 2012; 62
Zhang (10.1016/j.media.2015.04.005_bib0078) 2010
Hill (10.1016/j.media.2015.04.005_bib0020) 2010; 30
Fischl (10.1016/j.media.2015.04.005_bib0011) 1999; 9
Li (10.1016/j.media.2015.04.005_bib0032) 2014; 17
Yeo (10.1016/j.media.2015.04.005_bib0076) 2008; 12
Sled (10.1016/j.media.2015.04.005_bib0063) 1998; 17
Han (10.1016/j.media.2015.04.005_bib0019) 2004; 23
Shattuck (10.1016/j.media.2015.04.005_bib0056) 2008; 39
Li (10.1016/j.media.2015.04.005_bib0026) 2009; 46
Wang (10.1016/j.media.2015.04.005_bib0072) 2012; 7
Yap (10.1016/j.media.2015.04.005_bib0075) 2011; 6
Fischl (10.1016/j.media.2015.04.005_bib0010) 2000; 97
Li (10.1016/j.media.2015.04.005_bib0030) 2014; 24
Li (10.1016/j.media.2015.04.005_bib0036) 2010; 52
Gao (10.1016/j.media.2015.04.005_bib0013) 2009; 106
Wang (10.1016/j.media.2015.04.005_bib0069) 2014; 89
Xu (10.1016/j.media.2015.04.005_bib0073) 1999; 18
Panizzon (10.1016/j.media.2015.04.005_bib0052) 2009; 19
Meng (10.1016/j.media.2015.04.005_bib0045) 2014; 100C
Fischl (10.1016/j.media.2015.04.005_bib0009) 2012; 62
Lyall (10.1016/j.media.2015.04.005_bib0038) 2014
Smith (10.1016/j.media.2015.04.005_bib0064) 2004; 23
Durrleman (10.1016/j.media.2015.04.005_bib0006) 2009; 12
Dubois (10.1016/j.media.2015.04.005_bib0005) 2008; 18
MacDonald (10.1016/j.media.2015.04.005_bib0040) 2000; 12
Nie (10.1016/j.media.2015.04.005_bib0049) 2014; 35
Li (10.1016/j.media.2015.04.005_bib0027) 2010; 14
Van Essen (10.1016/j.media.2015.04.005_bib0068) 2007; 56
Mazziotta (10.1016/j.media.2015.04.005_bib0044) 1995; 2
Wang (10.1016/j.media.2015.04.005_bib0071) 2011; 58
Eickhoff (10.1016/j.media.2015.04.005_bib0007) 2005; 25
Fischl (10.1016/j.media.2015.04.005_bib0012) 1999; 8
Oishi (10.1016/j.media.2015.04.005_bib0051) 2011; 56
Shi (10.1016/j.media.2015.04.005_bib0061) 2013; 32
Knickmeyer (10.1016/j.media.2015.04.005_bib0024) 2008; 28
Xue (10.1016/j.media.2015.04.005_bib0074) 2007; 38
Habas (10.1016/j.media.2015.04.005_bib0018) 2012; 22
Hill (10.1016/j.media.2015.04.005_bib0021) 2010; 107
Nie (10.1016/j.media.2015.04.005_bib0050) 2007; 31
Kazemi (10.1016/j.media.2015.04.005_bib0023) 2007; 37
Li (10.1016/j.media.2015.04.005_bib0031) 2012; 59
Yeo (10.1016/j.media.2015.04.005_bib0077) 2010; 29
Mazziotta (10.1016/j.media.2015.04.005_bib0043) 2001; 8
Nie (10.1016/j.media.2015.04.005_bib0047) 2013; 76
Rodriguez-Carranza (10.1016/j.media.2015.04.005_bib0053) 2008; 41
Shi (10.1016/j.media.2015.04.005_bib0059) 2014; 35
Benjamini (10.1016/j.media.2015.04.005_bib0002) 1995
Chen (10.1016/j.media.2015.04.005_bib0003) 2013; 110
Van Essen (10.1016/j.media.2015.04.005_bib0067) 2005; 28
Wang (10.1016/j.media.2015.04.005_bib0070) 2014; 84
Liao (10.1016/j.media.2015.04.005_bib0037) 2012; 59
Lyttelton (10.1016/j.media.2015.04.005_bib0039) 2007; 34
Nie (10.1016/j.media.2015.04.005_bib0046) 2012; 22
Shen (10.1016/j.media.2015.04.005_bib0057) 2002; 21
Shiee (10.1016/j.media.2015.04.005_bib0062) 2014; 35
Zhang (10.1016/j.media.2015.04.005_bib0079) 2009; 12
Mazziotta (10.1016/j.media.2015.04.005_bib0042) 2001; 356
Davis (10.1016/j.media.2015.04.005_bib0004) 2010; 90
Li (10.1016/j.media.2015.04.005_bib0033) 2014; 18
Mangin (10.1016/j.media.2015.04.005_bib0041) 2004; 23
Li (10.1016/j.media.2015.04.005_bib0034) 2014
Kuklisova-Murgasova (10.1016/j.media.2015.04.005_bib0025) 2011; 54
Habas (10.1016/j.media.2015.04.005_bib0017) 2010; 53
Shattuck (10.1016/j.media.2015.04.005_bib0055) 2002; 6
Li (10.1016/j.media.2015.04.005_bib0028) 2014; 90
Serag (10.1016/j.media.2015.04.005_bib0054) 2012; 59
Altaye (10.1016/j.media.2015.04.005_bib0001) 2008; 43
Goebel (10.1016/j.media.2015.04.005_bib0015) 2006; 27
Li (10.1016/j.media.2015.04.005_bib0035) 2014; 34
Gilmore (10.1016/j.media.2015.04.005_bib0014) 2012; 22
Shi (10.1016/j.media.2015.04.005_bib0060) 2011; 6
Tzourio-Mazoyer (10.1016/j.media.2015.04.005_bib0066) 2002; 15
Shi (10.1016/j.media.2015.04.005_bib0058) 2012; 62
Thompson (10.1016/j.media.2015.04.005_bib0065) 1996; 3
References_xml – volume: 62
  start-page: 1975
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0058
  article-title: LABEL: pediatric brain extraction using learning-based meta-algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.042
– volume: 15
  start-page: 26
  year: 1991
  ident: 10.1016/j.media.2015.04.005_bib0016
  article-title: A computerized brain atlas – construction, anatomical content, and some applications
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199101000-00003
– volume: 12
  start-page: 340
  year: 2000
  ident: 10.1016/j.media.2015.04.005_bib0040
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0534
– volume: 6
  start-page: e18746
  year: 2011
  ident: 10.1016/j.media.2015.04.005_bib0060
  article-title: Infant brain atlases from neonates to 1- and 2-year-olds
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018746
– volume: 89
  start-page: 152
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0069
  article-title: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.040
– volume: 18
  start-page: 1274
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0033
  article-title: Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.06.007
– volume: 2
  start-page: 89
  year: 1995
  ident: 10.1016/j.media.2015.04.005_bib0044
  article-title: A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1012
– volume: 34
  start-page: 1535
  year: 2007
  ident: 10.1016/j.media.2015.04.005_bib0039
  article-title: An unbiased iterative group registration template for cortical surface analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.041
– volume: 35
  start-page: 3385
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0062
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22409
– start-page: 1133
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0078
  article-title: Automatic cortical surface parcellation based on fiber density information
– volume: 34
  start-page: 4228
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0035
  article-title: Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3976-13.2014
– volume: 59
  start-page: 1275
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0037
  article-title: A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.095
– volume: 18
  start-page: 1444
  year: 2008
  ident: 10.1016/j.media.2015.04.005_bib0005
  article-title: Mapping the early cortical folding process in the preterm newborn brain
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm180
– volume: 90
  start-page: 255
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0004
  article-title: Population shape regression from random design data
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0367-1
– volume: 38
  start-page: 461
  year: 2007
  ident: 10.1016/j.media.2015.04.005_bib0074
  article-title: Automatic segmentation and reconstruction of the cortex from neonatal MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.030
– volume: 12
  start-page: 297
  year: 2009
  ident: 10.1016/j.media.2015.04.005_bib0006
  article-title: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 23
  start-page: 997
  year: 2004
  ident: 10.1016/j.media.2015.04.005_bib0019
  article-title: CRUISE: cortical reconstruction using implicit surface evolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.06.043
– volume: 17
  start-page: 89
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0032
  article-title: Constructing 4D infant cortical surface atlases based on dynamic developmental trajectories of the cortex
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 41
  start-page: 462
  year: 2008
  ident: 10.1016/j.media.2015.04.005_bib0053
  article-title: A framework for in vivo quantification of regional brain folding in premature neonates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.008
– volume: 107
  start-page: 13135
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0021
  article-title: Similar patterns of cortical expansion during human development and evolution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1001229107
– volume: 356
  start-page: 1293
  year: 2001
  ident: 10.1016/j.media.2015.04.005_bib0042
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2001.0915
– volume: 62
  start-page: 911
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0008
  article-title: Brain templates and atlases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.024
– volume: 24
  start-page: 1289
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0030
  article-title: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs413
– volume: 23
  start-page: S208
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.media.2015.04.005_bib0064
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 43
  start-page: 721
  year: 2008
  ident: 10.1016/j.media.2015.04.005_bib0001
  article-title: Infant brain probability templates for MRI segmentation and normalization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.060
– start-page: 289
  year: 1995
  ident: 10.1016/j.media.2015.04.005_bib0002
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 106
  start-page: 6790
  year: 2009
  ident: 10.1016/j.media.2015.04.005_bib0013
  article-title: Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811221106
– volume: 110
  start-page: 17089
  year: 2013
  ident: 10.1016/j.media.2015.04.005_bib0003
  article-title: Genetic topography of brain morphology
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1308091110
– volume: 53
  start-page: 460
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0017
  article-title: A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.054
– volume: 25
  start-page: 1325
  year: 2005
  ident: 10.1016/j.media.2015.04.005_bib0007
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 22
  start-page: 13
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0018
  article-title: Early folding patterns and asymmetries of the normal human brain detected from in utero MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr053
– volume: 3
  start-page: 19
  year: 1996
  ident: 10.1016/j.media.2015.04.005_bib0065
  article-title: High-resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0003
– volume: 17
  start-page: 87
  year: 1998
  ident: 10.1016/j.media.2015.04.005_bib0063
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 56
  start-page: 8
  year: 2011
  ident: 10.1016/j.media.2015.04.005_bib0051
  article-title: Multi-contrast human neonatal brain atlas: application to normal neonate development analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.051
– volume: 9
  start-page: 195
  year: 1999
  ident: 10.1016/j.media.2015.04.005_bib0011
  article-title: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0038
  article-title: Dynamic development of regional cortical thickness and surface area in early childhood
  publication-title: Cereb. Cortex In press
– volume: 22
  start-page: 2272
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0048
  article-title: A computational growth model for measuring dynamic cortical development in the first year of life
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr293
– volume: 39
  start-page: 1064
  year: 2008
  ident: 10.1016/j.media.2015.04.005_bib0056
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.031
– volume: 30
  start-page: 2268
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0020
  article-title: A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4682-09.2010
– volume: 36
  start-page: 275
  year: 2013
  ident: 10.1016/j.media.2015.04.005_bib0080
  article-title: Development of cortical folding during evolution and ontogeny
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2013.01.006
– start-page: 1
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0034
  article-title: Cortical thickness and surface area in neonates at high risk for schizophrenia
  publication-title: Brain Struct. Funct.
– volume: 8
  start-page: 401
  year: 2001
  ident: 10.1016/j.media.2015.04.005_bib0043
  article-title: A four-dimensional probabilistic atlas of the human brain
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2001.0080401
– volume: 27
  start-page: 392
  year: 2006
  ident: 10.1016/j.media.2015.04.005_bib0015
  article-title: Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20249
– volume: 52
  start-page: 1202
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0036
  article-title: Gyral folding pattern analysis via surface profiling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.263
– volume: 18
  start-page: 467
  year: 1999
  ident: 10.1016/j.media.2015.04.005_bib0073
  article-title: Reconstruction of the human cerebral cortex from magnetic resonance images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.781013
– volume: 8
  start-page: 272
  year: 1999
  ident: 10.1016/j.media.2015.04.005_bib0012
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 6
  start-page: 129
  year: 2002
  ident: 10.1016/j.media.2015.04.005_bib0055
  article-title: BrainSuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00054-3
– volume: 21
  start-page: 1421
  year: 2002
  ident: 10.1016/j.media.2015.04.005_bib0057
  article-title: HAMMER: hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 28
  start-page: 635
  year: 2005
  ident: 10.1016/j.media.2015.04.005_bib0067
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 28
  start-page: 12176
  year: 2008
  ident: 10.1016/j.media.2015.04.005_bib0024
  article-title: A structural MRI study of human brain development from birth to 2 years
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3479-08.2008
– volume: 12
  start-page: 184
  year: 2009
  ident: 10.1016/j.media.2015.04.005_bib0079
  article-title: Parametric representation of cortical surface folding based on polynomials
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 97
  start-page: 11050
  year: 2000
  ident: 10.1016/j.media.2015.04.005_bib0010
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.200033797
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.media.2015.04.005_bib0066
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 84
  start-page: 141
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0070
  article-title: Segmentation of neonatal brain MR images using patch-driven level sets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.008
– volume: 19
  start-page: 2728
  year: 2009
  ident: 10.1016/j.media.2015.04.005_bib0052
  article-title: Distinct genetic influences on cortical surface area and cortical thickness
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp026
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0009
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 100C
  start-page: 206
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0045
  article-title: Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.004
– volume: 23
  start-page: 2724
  year: 2013
  ident: 10.1016/j.media.2015.04.005_bib0029
  article-title: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs265
– volume: 14
  start-page: 343
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0027
  article-title: An automated pipeline for cortical sulcal fundi extraction
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.01.005
– volume: 23
  start-page: S129
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.media.2015.04.005_bib0041
  article-title: A framework to study the cortical folding patterns
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.019
– volume: 54
  start-page: 2750
  year: 2011
  ident: 10.1016/j.media.2015.04.005_bib0025
  article-title: A dynamic 4D probabilistic atlas of the developing brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.019
– volume: 58
  start-page: 805
  year: 2011
  ident: 10.1016/j.media.2015.04.005_bib0071
  article-title: Automatic segmentation of neonatal images using convex optimization and coupled level sets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.064
– volume: 22
  start-page: 2831
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0046
  article-title: Axonal fiber terminations concentrate on gyri
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr361
– volume: 35
  start-page: 4663
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0059
  article-title: Neonatal atlas construction using sparse representation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22502
– volume: 37
  start-page: 463
  year: 2007
  ident: 10.1016/j.media.2015.04.005_bib0023
  article-title: A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.004
– volume: 46
  start-page: 923
  year: 2009
  ident: 10.1016/j.media.2015.04.005_bib0026
  article-title: Automatic cortical sulcal parcellation based on surface principal direction flow field tracking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.039
– volume: 32
  start-page: 511
  year: 2013
  ident: 10.1016/j.media.2015.04.005_bib0061
  article-title: Cortical surface reconstruction via unified Reeb analysis of geometric and topological outliers in magnetic resonance images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2224879
– volume: 59
  start-page: 2255
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0054
  article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.062
– volume: 56
  start-page: 209
  year: 2007
  ident: 10.1016/j.media.2015.04.005_bib0068
  article-title: Surface-based and probabilistic atlases of primate cerebral cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.10.015
– volume: 12
  start-page: 603
  year: 2008
  ident: 10.1016/j.media.2015.04.005_bib0076
  article-title: Effects of registration regularization and atlas sharpness on segmentation accuracy
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.06.005
– volume: 7
  start-page: e44596
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0072
  article-title: 4D multi-modality tissue segmentation of serial infant images
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044596
– volume: 31
  start-page: 656
  year: 2007
  ident: 10.1016/j.media.2015.04.005_bib0050
  article-title: Least-square conformal brain mapping with spring energy
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.08.009
– volume: 6
  start-page: e24678
  year: 2011
  ident: 10.1016/j.media.2015.04.005_bib0075
  article-title: Development trends of white matter connectivity in the first years of life
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024678
– volume: 90
  start-page: 266
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0028
  article-title: Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.038
– volume: 23
  start-page: S151
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.media.2015.04.005_bib0022
  article-title: Unbiased diffeomorphic atlas construction for computational anatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.068
– volume: 35
  start-page: 3726
  year: 2014
  ident: 10.1016/j.media.2015.04.005_bib0049
  article-title: Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22432
– volume: 22
  start-page: 2478
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0014
  article-title: Longitudinal development of cortical and subcortical gray matter from birth to 2 years
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr327
– volume: 29
  start-page: 650
  year: 2010
  ident: 10.1016/j.media.2015.04.005_bib0077
  article-title: Spherical demons: fast diffeomorphic landmark-free surface registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2030797
– volume: 59
  start-page: 3805
  year: 2012
  ident: 10.1016/j.media.2015.04.005_bib0031
  article-title: Consistent reconstruction of cortical surfaces from longitudinal brain MR images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.012
– volume: 76
  start-page: 216
  year: 2013
  ident: 10.1016/j.media.2015.04.005_bib0047
  article-title: Development of cortical anatomical properties from early childhood to early adulthood
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.021
SSID ssj0007440
Score 2.4735918
Snippet In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 22
SubjectTerms Atlases as Topic
Brain - growth & development
Brain Mapping - methods
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Infant
Infant, Newborn
Magnetic Resonance Imaging - methods
Neuroimaging - methods
Title Construction of 4D high-definition cortical surface atlases of infants: Methods and applications
URI https://www.ncbi.nlm.nih.gov/pubmed/25980388
https://www.proquest.com/docview/1705000592
https://pubmed.ncbi.nlm.nih.gov/PMC4540689
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4ICiv5SUjcVtSJY6dB7eKQpfH9tRKvQU7cdRUbbai6aW_vjN-bbYtCLhEq9jrXeWb2DP2N98Q8j4thRZCQmzSlHCReRKpMi4i1WpmBMlzU71hsZfND_i3Q3G4IrGb7JJBbdWXt-aV_A-qcA9wxSzZf0A2DAo34DPgC1dAGK5_hTFW2_T6r-j18Z0Zyg9HjW673nCxZhBc2t3q84tfrcTsgAH8Zac027fIgsFNgYUpJG31msdn2mPf1Z_pdKfI85FOzSQwegwtYFe6ldDs0dt55EcXtnFMBeEZPMPQabc78VRfQ-KZj7chEhEIbbCK2KkzzZKo4DZ72M-tNql5zYbcRMlunb_tVsLxlkmbQeKdMEK0JjN7GCF6dmoghditQDmb1WIWKIa-6S7ZYBBBsAnZ2P76fb4XlmlURvQyVIbwd-M3USjajbLutdwIRa4zakcuyv4j8tDFFnTbGspjckf3m-TBSHFyk9xbOC7FE_JzbD102VK-Q69ZD_XWQ531UGc92N1Zz0fqbIeC7dCx7TwlB18-73-aR67eRlQLngyRkOD76VyXKS8g0lV1ooTIGpkoHTMV11LVrI3hnVesVTyWKUOppTbOZdPGSmXpMzLpl71-QShrlMZWhWJCNYxVNhxCdS14meu0YFPC_POsaidGjzVRTirPOjyuDB4V4lHFvAI8puRD-NKZ1WL5c_d3HqgK5kw8CJO9Xl6cVyghZZSJ4H88t8CFAT3iU5KvQRo6oB77ekvfHRlddhSzzIry5W_HfEXur16d12QCGOs34NMO6q2zziukXKMo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+4D+high-definition+cortical+surface+atlases+of+infants%3A+Methods+and+applications&rft.jtitle=Medical+image+analysis&rft.au=Li%2C+Gang&rft.au=Wang%2C+Li&rft.au=Shi%2C+Feng&rft.au=Gilmore%2C+John+H&rft.date=2015-10-01&rft.eissn=1361-8423&rft.volume=25&rft.issue=1&rft.spage=22&rft_id=info:doi/10.1016%2Fj.media.2015.04.005&rft_id=info%3Apmid%2F25980388&rft.externalDocID=25980388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon