Predicting cortical-thalamic functional connectivity using functional near-infrared spectroscopy and graph convolutional networks

Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 29794 - 17
Main Authors Tang, Lingkai, Kebaya, Lilian M. N., Vahidi, Homa, Meyerink, Paige, de Ribaupierre, Sandrine, Bhattacharya, Soume, St. Lawrence, Keith, Duerden, Emma G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.
AbstractList Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.
Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.
Abstract Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.
ArticleNumber 29794
Author de Ribaupierre, Sandrine
Bhattacharya, Soume
Meyerink, Paige
Duerden, Emma G.
Kebaya, Lilian M. N.
Vahidi, Homa
Tang, Lingkai
St. Lawrence, Keith
Author_xml – sequence: 1
  givenname: Lingkai
  surname: Tang
  fullname: Tang, Lingkai
  organization: Biomedical Engineering, Faculty of Engineering, Western University
– sequence: 2
  givenname: Lilian M. N.
  surname: Kebaya
  fullname: Kebaya, Lilian M. N.
  organization: Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, Department of Paediatrics, Division of Neonatal-Perinatal Medicine, Temerty Faculty of Medicine, University of Toronto
– sequence: 3
  givenname: Homa
  surname: Vahidi
  fullname: Vahidi, Homa
  organization: Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University
– sequence: 4
  givenname: Paige
  surname: Meyerink
  fullname: Meyerink, Paige
  organization: Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University
– sequence: 5
  givenname: Sandrine
  surname: de Ribaupierre
  fullname: de Ribaupierre, Sandrine
  organization: Biomedical Engineering, Faculty of Engineering, Western University, Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, Clinical Neurological Sciences, Schulich Faculty of Medicine and Dentistry, Western University, Medical Biophysics, Schulich Faculty of Medicine and Dentistry, Western University
– sequence: 6
  givenname: Soume
  surname: Bhattacharya
  fullname: Bhattacharya, Soume
  organization: Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University
– sequence: 7
  givenname: Keith
  surname: St. Lawrence
  fullname: St. Lawrence, Keith
  organization: Biomedical Engineering, Faculty of Engineering, Western University, Medical Biophysics, Schulich Faculty of Medicine and Dentistry, Western University
– sequence: 8
  givenname: Emma G.
  surname: Duerden
  fullname: Duerden, Emma G.
  email: eduerden@uwo.ca
  organization: Biomedical Engineering, Faculty of Engineering, Western University, Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, Applied Psychology, Faculty of Education, Western University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39616218$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQjlARLaV_gAOKxIVLwM_EOSFUUahUCQ5wtibOJOslay92smiP_PM6TVm2PdQXP77HzHjmZXbivMMse03Je0q4-hAFlbUqCBNFVfOaFPxZdsaIkAXjjJ0cnU-zixjXJC3JakHrF9kpr0taMqrOsr_fA7bWjNb1ufFhtAaGYlzBABtr8m5yCfIOhgQ6h-mys-M-n-LMP0IdQiis6wIkuzxuEzP4aPx2n4Nr8z7AdjVb7PwwHSTjHx9-xVfZ8w6GiBf3-3n28-rzj8uvxc23L9eXn24KIwUdC6lIy1rBgTcgoZIGUVZMAnQlVJRUHaBRTFCDpCZEQNkoQ0TVVQ1KLmrg59n14tt6WOttsBsIe-3B6rsHH3oNc_0DakYNKRE7yspSqLZUrWLYcGgEMsWpSF4fF6_t1GywNejGAMMD04eIsyvd-52mtCSKSZkc3t07BP97wjjqjY0GhwEc-inqFIWompf1HOztI-raTyF94cziQlCuBEusN8cpHXL51-pEYAvBpM7EgN2BQomeR0ovI6XTSOm7kdI8idQjkbEjzB1MZdnhaSlfpDHFcT2G_2k_oboFZaHjsg
CitedBy_id crossref_primary_10_3390_ma18050959
crossref_primary_10_3389_fneur_2025_1542075
Cites_doi 10.1016/S1474-4422(08)70294-1
10.1016/j.neuroimage.2011.02.073
10.1364/BOE.6.001074
10.1117/1.NPh.10.2.023517
10.1523/JNEUROSCI.0867-17.2017
10.1016/j.neuroimage.2021.118774
10.1016/j.neuroimage.2011.09.015
10.1176/appi.ajp.162.7.1256
10.1001/jamapediatrics.2014.3269
10.1073/pnas.0704380104
10.1212/WNL.0000000000010953
10.1016/S0166-4328(05)80189-5
10.1016/j.tins.2017.06.003
10.2147/NDT.S63773
10.1080/09297049.2023.2170340
10.1016/j.clinph.2017.06.254
10.1093/cercor/bhac320
10.1016/j.neuroimage.2011.03.033
10.3174/ajnr.A1256
10.1088/0031-9155/51/5/N02
10.1016/j.neuroimage.2010.08.030
10.1117/1.NPh.8.2.025007
10.1109/TMI.2022.3171778
10.1364/AO.34.003826
10.1002/hbm.23429
10.1016/j.neuroimage.2018.01.054
10.1016/j.neuroimage.2012.03.049
10.1016/j.nicl.2018.11.006
10.1093/cercor/bhq071
10.1080/02699052.2022.2034041
10.1016/j.neuroimage.2013.05.099
10.1016/j.neuroimage.2006.07.006
10.3389/fnins.2016.00123
10.3389/fnins.2023.1132231
10.1117/1.NPh.2.2.025005
10.1523/JNEUROSCI.3479-08.2008
10.1016/S0022-3476(78)80282-0
10.1016/j.conb.2003.10.014
10.1016/bs.pbr.2021.12.001
10.1212/WNL.0b013e3181cff5d5
10.1016/j.neuron.2011.09.006
10.1038/s41598-023-30743-4
10.1016/j.jpeds.2017.12.041
10.1088/0967-3334/31/5/004
10.1016/j.neuroimage.2006.09.024
10.1016/j.neuroimage.2018.07.057
10.1523/JNEUROSCI.5618-09.2010
10.1155/2012/412512
10.3389/fnins.2022.803297
10.1371/journal.pone.0262310
10.1364/AO.48.00D280
10.1093/bib/bbab511
10.3389/fnhum.2018.00371
10.1038/s41598-024-53256-0
10.1117/1.NPh.9.4.040601
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-79390-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_21c06eef126648d68d82eb3ab4e28314
PMC11608255
39616218
10_1038_s41598_024_79390_3
Genre Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  funderid: http://dx.doi.org/10.13039/501100000024
– fundername: Whaley and Harding Postdoctoral fellowship
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Children’s Health Foundation
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-580d2d43a3ba5a75cee5725aaf6a7107faec8241ce09004a6b8c047f7be5349a3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:42 EDT 2025
Thu Aug 21 18:35:59 EDT 2025
Mon Jul 21 10:41:53 EDT 2025
Wed Aug 13 08:19:04 EDT 2025
Wed Feb 19 02:02:36 EST 2025
Tue Jul 01 02:06:17 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Fri Feb 21 02:38:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Functional connectivity
Functional magnetic resonance imaging
Graph convolutional network
Functional near-infrared spectroscopy
Machine learning
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-580d2d43a3ba5a75cee5725aaf6a7107faec8241ce09004a6b8c047f7be5349a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-79390-3
PMID 39616218
PQID 3134413842
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_21c06eef126648d68d82eb3ab4e28314
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11608255
proquest_miscellaneous_3140893694
proquest_journals_3134413842
pubmed_primary_39616218
crossref_primary_10_1038_s41598_024_79390_3
crossref_citationtrail_10_1038_s41598_024_79390_3
springer_journals_10_1038_s41598_024_79390_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-30
PublicationDateYYYYMMDD 2024-11-30
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Feng, Zeng, Chance (CR35) 1995; 34
Gallagher, Wallois, Obrig (CR3) 2023; 10
Fransson, Åden, Blennow, Lagercrantz (CR26) 2011; 21
Wylie (CR25) 2014; 10
Smyser, Wheelock, Limbrick, Neil (CR49) 2019; 185
CR39
CR38
Duerden (CR50) 2019; 21
Sassaroli, Frederick, Tong, Renshaw, Fantini (CR36) 2006; 33
Duerden (CR10) 2018; 38
Jurcak, Tsuzuki, Dan (CR34) 2007; 34
Zhang, Xu, Yu, Li, Wang (CR18) 2023; 17
Li (CR17) 2022; 41
Wang, Kang, Kemmer, Guo (CR30) 2016; 10
Kassab (CR5) 2021; 32
Volpe (CR55) 2009; 8
Jiang (CR52) 2022; 36
CR6
Kang (CR47) 2011; 56
Kocsis, Herman, Eke (CR29) 2006; 51
Kebaya (CR2) 2023; 13
Sommer (CR7) 2003; 13
Little (CR11) 2010; 74
CR44
CR43
CR42
Balters (CR14) 2023; 33
Ferrari, Quaresima (CR1) 2012; 63
Fourdain (CR4) 2023; 29
Douglas-Escobar, Weiss (CR56) 2015; 169
Makropoulos (CR37) 2018; 173
Seeck (CR33) 2017; 128
Smyser, Snyder, Neil (CR22) 2011; 56
Power (CR41) 2011; 72
CR15
Cao, Huang, He (CR20) 2017; 40
Brigadoi, Cooper (CR45) 2015; 2
Lin (CR23) 2008; 29
CR53
Homae (CR24) 2010; 30
CR51
Fransson (CR21) 2007; 104
Duerden (CR9) 2020; 95
Frazier (CR32) 2005; 162
Cunningham, Tomasi, Volkow (CR8) 2017; 38
Zhao (CR16) 2022; 246
Glass (CR12) 2018; 196
Birn (CR48) 2013; 83
Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR31) 2012; 62
Scholkmann, Spichtig, Muehlemann, Wolf (CR28) 2010; 31
Iorio-Morin, Sarica, Elias, Harmsen, Hodaie (CR40) 2022; 270
CR27
Liu, Cui, Bryant, Glover, Reiss (CR13) 2015; 6
Majeed (CR46) 2011; 54
Zhang (CR54) 2021; 8
De Vries, Eken, Dubowitz (CR57) 1992; 49
Knickmeyer (CR19) 2008; 28
Papile, Burstein, Burstein, Koffler (CR58) 1978; 92
LA Papile (79390_CR58) 1978; 92
F Homae (79390_CR24) 2010; 30
Y Li (79390_CR17) 2022; 41
CD Smyser (79390_CR22) 2011; 56
A Gallagher (79390_CR3) 2023; 10
CD Smyser (79390_CR49) 2019; 185
N Liu (79390_CR13) 2015; 6
79390_CR27
P Fransson (79390_CR21) 2007; 104
79390_CR6
M Seeck (79390_CR33) 2017; 128
LS De Vries (79390_CR57) 1992; 49
S Feng (79390_CR35) 1995; 34
79390_CR53
79390_CR51
S Balters (79390_CR14) 2023; 33
79390_CR15
JJ Volpe (79390_CR55) 2009; 8
J Kang (79390_CR47) 2011; 56
V Jurcak (79390_CR34) 2007; 34
S Brigadoi (79390_CR45) 2015; 2
A Makropoulos (79390_CR37) 2018; 173
A Sassaroli (79390_CR36) 2006; 33
W Majeed (79390_CR46) 2011; 54
M Ferrari (79390_CR1) 2012; 63
79390_CR44
A Kassab (79390_CR5) 2021; 32
C Iorio-Morin (79390_CR40) 2022; 270
TJA Glass (79390_CR12) 2018; 196
79390_CR42
H Zhang (79390_CR18) 2023; 17
79390_CR43
MA Sommer (79390_CR7) 2003; 13
KP Wylie (79390_CR25) 2014; 10
S Fourdain (79390_CR4) 2023; 29
JD Power (79390_CR41) 2011; 72
DM Little (79390_CR11) 2010; 74
EG Duerden (79390_CR9) 2020; 95
W Lin (79390_CR23) 2008; 29
RC Knickmeyer (79390_CR19) 2008; 28
M Cao (79390_CR20) 2017; 40
M Jenkinson (79390_CR31) 2012; 62
EG Duerden (79390_CR50) 2019; 21
SI Cunningham (79390_CR8) 2017; 38
RM Birn (79390_CR48) 2013; 83
S Zhang (79390_CR54) 2021; 8
L Jiang (79390_CR52) 2022; 36
K Zhao (79390_CR16) 2022; 246
F Scholkmann (79390_CR28) 2010; 31
LMN Kebaya (79390_CR2) 2023; 13
79390_CR39
JA Frazier (79390_CR32) 2005; 162
79390_CR38
Y Wang (79390_CR30) 2016; 10
P Fransson (79390_CR26) 2011; 21
M Douglas-Escobar (79390_CR56) 2015; 169
EG Duerden (79390_CR10) 2018; 38
L Kocsis (79390_CR29) 2006; 51
References_xml – volume: 8
  start-page: 110
  year: 2009
  end-page: 124
  ident: CR55
  article-title: Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70294-1
– volume: 56
  start-page: 1437
  year: 2011
  ident: CR22
  article-title: Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.073
– ident: CR39
– volume: 6
  start-page: 1074
  year: 2015
  ident: CR13
  article-title: Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.001074
– ident: CR51
– volume: 10
  start-page: 023517
  year: 2023
  ident: CR3
  article-title: Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.10.2.023517
– volume: 38
  start-page: 878
  year: 2018
  end-page: 886
  ident: CR10
  article-title: Early Procedural Pain is Associated with regionally-specific alterations in Thalamic Development in Preterm neonates
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0867-17.2017
– volume: 246
  start-page: 118774
  year: 2022
  ident: CR16
  article-title: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118774
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: CR31
  publication-title: FSL Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 162
  start-page: 1256
  year: 2005
  end-page: 1265
  ident: CR32
  article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.162.7.1256
– volume: 169
  start-page: 397
  year: 2015
  end-page: 403
  ident: CR56
  article-title: Hypoxic-ischemic encephalopathy: A review for the Clinician
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2014.3269
– volume: 104
  start-page: 15531
  year: 2007
  end-page: 15536
  ident: CR21
  article-title: Resting-state networks in the infant brain
  publication-title: PNAS
  doi: 10.1073/pnas.0704380104
– ident: CR42
– volume: 95
  start-page: E3420
  year: 2020
  end-page: E3427
  ident: CR9
  article-title: Association of early skin breaks and neonatal thalamic maturation: A modifiable risk?
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000010953
– volume: 49
  start-page: 1
  year: 1992
  end-page: 6
  ident: CR57
  article-title: The spectrum of leukomalacia using cranial ultrasound
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(05)80189-5
– volume: 40
  start-page: 494
  year: 2017
  end-page: 506
  ident: CR20
  article-title: Developmental Connectomics from Infancy through Early Childhood
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.06.003
– ident: CR15
– volume: 10
  start-page: 1349
  year: 2014
  end-page: 1359
  ident: CR25
  article-title: Reduced brain resting-state network specificity in infants compared with adults
  publication-title: Neuropsychiatr Dis. Treat.
  doi: 10.2147/NDT.S63773
– volume: 29
  start-page: 1088
  year: 2023
  end-page: 1108
  ident: CR4
  article-title: Functional brain connectivity after corrective cardiac surgery for critical congenital heart disease: A preliminary near-infrared spectroscopy (NIRS) report
  publication-title: Child. Neuropsychol.
  doi: 10.1080/09297049.2023.2170340
– volume: 128
  start-page: 2070
  year: 2017
  end-page: 2077
  ident: CR33
  article-title: The standardized EEG electrode array of the IFCN
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.06.254
– volume: 33
  start-page: 3969
  year: 2023
  end-page: 3984
  ident: CR14
  article-title: Towards assessing subcortical deep brain biomarkers of PTSD with functional near-infrared spectroscopy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhac320
– volume: 56
  start-page: 1222
  year: 2011
  end-page: 1234
  ident: CR47
  article-title: Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.033
– volume: 29
  start-page: 1883
  year: 2008
  end-page: 1889
  ident: CR23
  article-title: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1256
– ident: CR43
– volume: 51
  start-page: N91
  year: 2006
  end-page: N98
  ident: CR29
  article-title: The modified Beer-Lambert law revisited
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/5/N02
– volume: 54
  start-page: 1140
  year: 2011
  end-page: 1150
  ident: CR46
  article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.030
– ident: CR53
– volume: 8
  start-page: 025007
  year: 2021
  ident: CR54
  article-title: Resting-state brain networks in neonatal hypoxic-ischemic brain damage: A functional near-infrared spectroscopy study
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.8.2.025007
– volume: 41
  start-page: 2764
  year: 2022
  end-page: 2776
  ident: CR17
  article-title: Brain connectivity based Graph Convolutional Networks and its application to Infant Age Prediction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3171778
– volume: 34
  start-page: 3826
  year: 1995
  ident: CR35
  article-title: Photon migration in the presence of a single defect: A perturbation analysis
  publication-title: Appl. Opt.
  doi: 10.1364/AO.34.003826
– volume: 38
  start-page: 938
  year: 2017
  end-page: 956
  ident: CR8
  article-title: Structural and functional connectivity of the precuneus and thalamus to the default mode network
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23429
– volume: 32
  start-page: 102880
  year: 2021
  ident: CR5
  article-title: Hemodynamic changes associated with common EEG patterns in critically ill patients: Pilot results from continuous EEG-fNIRS study
  publication-title: Neuroimage (Amst)
– ident: CR6
– volume: 173
  start-page: 88
  year: 2018
  end-page: 112
  ident: CR37
  article-title: The developing human connectome project: A minimal processing pipeline for neonatal cortical surface Reconstruction Europe PMC Funders Group
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.054
– volume: 63
  start-page: 921
  year: 2012
  end-page: 935
  ident: CR1
  article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.049
– volume: 21
  start-page: 101596
  year: 2019
  ident: CR50
  article-title: White matter injury predicts disrupted functional connectivity and microstructure in very preterm born neonates
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.11.006
– ident: CR27
– ident: CR44
– volume: 21
  start-page: 145
  year: 2011
  end-page: 154
  ident: CR26
  article-title: The functional architecture of the infant brain as revealed by resting-state fMRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq071
– volume: 36
  start-page: 287
  year: 2022
  end-page: 294
  ident: CR52
  article-title: Alterations in motor functional connectivity in neonatal hypoxic ischemic encephalopathy
  publication-title: Brain Inj
  doi: 10.1080/02699052.2022.2034041
– ident: CR38
– volume: 83
  start-page: 550
  year: 2013
  end-page: 558
  ident: CR48
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.099
– volume: 33
  start-page: 505
  year: 2006
  end-page: 514
  ident: CR36
  article-title: Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.07.006
– volume: 10
  start-page: 123
  year: 2016
  ident: CR30
  article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00123
– volume: 17
  start-page: 1132231
  year: 2023
  ident: CR18
  article-title: Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1132231
– volume: 2
  start-page: 025005
  year: 2015
  ident: CR45
  article-title: How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.2.2.025005
– volume: 28
  start-page: 12176
  year: 2008
  end-page: 12182
  ident: CR19
  article-title: A structural MRI study of human brain development from birth to 2 years
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3479-08.2008
– volume: 92
  start-page: 529
  year: 1978
  end-page: 534
  ident: CR58
  article-title: Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm
  publication-title: J. Pediatr.
  doi: 10.1016/S0022-3476(78)80282-0
– volume: 13
  start-page: 663
  year: 2003
  end-page: 670
  ident: CR7
  article-title: The role of the thalamus in motor control
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2003.10.014
– volume: 270
  start-page: 149
  year: 2022
  end-page: 169
  ident: CR40
  article-title: Neuroimaging of psychiatric disorders
  publication-title: Prog Brain Res.
  doi: 10.1016/bs.pbr.2021.12.001
– volume: 74
  start-page: 558
  year: 2010
  end-page: 564
  ident: CR11
  article-title: Thalamic integrity underlies executive dysfunction in traumatic brain injury
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cff5d5
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: CR41
  article-title: Functional Network Organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 13
  start-page: 1
  year: 2023
  end-page: 13
  ident: CR2
  article-title: Three-dimensional cranial ultrasound and functional near-infrared spectroscopy for bedside monitoring of intraventricular hemorrhage in preterm neonates
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30743-4
– volume: 196
  start-page: 91
  year: 2018
  end-page: 97e1
  ident: CR12
  article-title: Multiple postnatal infections in newborns born Preterm Predict delayed maturation of Motor pathways at Term-Equivalent Age with Poorer Motor outcomes at 3 years
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2017.12.041
– volume: 31
  start-page: 649
  year: 2010
  end-page: 662
  ident: CR28
  article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/5/004
– volume: 34
  start-page: 1600
  year: 2007
  end-page: 1611
  ident: CR34
  article-title: 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.024
– volume: 185
  start-page: 609
  year: 2019
  end-page: 623
  ident: CR49
  article-title: Neonatal brain injury and aberrant connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.057
– volume: 30
  start-page: 4877
  year: 2010
  end-page: 4882
  ident: CR24
  article-title: Development of Global Cortical Networks in early infancy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5618-09.2010
– volume: 162
  start-page: 1256
  year: 2005
  ident: 79390_CR32
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.162.7.1256
– volume: 62
  start-page: 782
  year: 2012
  ident: 79390_CR31
  publication-title: FSL Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 128
  start-page: 2070
  year: 2017
  ident: 79390_CR33
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.06.254
– ident: 79390_CR39
  doi: 10.1155/2012/412512
– volume: 270
  start-page: 149
  year: 2022
  ident: 79390_CR40
  publication-title: Prog Brain Res.
  doi: 10.1016/bs.pbr.2021.12.001
– ident: 79390_CR44
  doi: 10.3389/fnins.2022.803297
– volume: 196
  start-page: 91
  year: 2018
  ident: 79390_CR12
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2017.12.041
– ident: 79390_CR51
  doi: 10.1371/journal.pone.0262310
– volume: 29
  start-page: 1088
  year: 2023
  ident: 79390_CR4
  publication-title: Child. Neuropsychol.
  doi: 10.1080/09297049.2023.2170340
– volume: 34
  start-page: 3826
  year: 1995
  ident: 79390_CR35
  publication-title: Appl. Opt.
  doi: 10.1364/AO.34.003826
– ident: 79390_CR27
  doi: 10.1364/AO.48.00D280
– volume: 56
  start-page: 1222
  year: 2011
  ident: 79390_CR47
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.033
– volume: 30
  start-page: 4877
  year: 2010
  ident: 79390_CR24
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5618-09.2010
– volume: 31
  start-page: 649
  year: 2010
  ident: 79390_CR28
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/5/004
– volume: 32
  start-page: 102880
  year: 2021
  ident: 79390_CR5
  publication-title: Neuroimage (Amst)
– volume: 10
  start-page: 123
  year: 2016
  ident: 79390_CR30
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00123
– volume: 21
  start-page: 101596
  year: 2019
  ident: 79390_CR50
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.11.006
– volume: 17
  start-page: 1132231
  year: 2023
  ident: 79390_CR18
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1132231
– volume: 10
  start-page: 023517
  year: 2023
  ident: 79390_CR3
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.10.2.023517
– volume: 51
  start-page: N91
  year: 2006
  ident: 79390_CR29
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/5/N02
– volume: 74
  start-page: 558
  year: 2010
  ident: 79390_CR11
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cff5d5
– volume: 83
  start-page: 550
  year: 2013
  ident: 79390_CR48
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.099
– ident: 79390_CR6
– volume: 49
  start-page: 1
  year: 1992
  ident: 79390_CR57
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(05)80189-5
– volume: 38
  start-page: 878
  year: 2018
  ident: 79390_CR10
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0867-17.2017
– volume: 33
  start-page: 3969
  year: 2023
  ident: 79390_CR14
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhac320
– ident: 79390_CR15
– volume: 34
  start-page: 1600
  year: 2007
  ident: 79390_CR34
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.024
– volume: 104
  start-page: 15531
  year: 2007
  ident: 79390_CR21
  publication-title: PNAS
  doi: 10.1073/pnas.0704380104
– volume: 56
  start-page: 1437
  year: 2011
  ident: 79390_CR22
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.073
– volume: 8
  start-page: 025007
  year: 2021
  ident: 79390_CR54
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.8.2.025007
– ident: 79390_CR38
  doi: 10.1093/bib/bbab511
– volume: 8
  start-page: 110
  year: 2009
  ident: 79390_CR55
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70294-1
– volume: 21
  start-page: 145
  year: 2011
  ident: 79390_CR26
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq071
– ident: 79390_CR43
  doi: 10.3389/fnhum.2018.00371
– volume: 63
  start-page: 921
  year: 2012
  ident: 79390_CR1
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.049
– ident: 79390_CR53
  doi: 10.1038/s41598-024-53256-0
– volume: 2
  start-page: 025005
  year: 2015
  ident: 79390_CR45
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.2.2.025005
– volume: 38
  start-page: 938
  year: 2017
  ident: 79390_CR8
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23429
– volume: 185
  start-page: 609
  year: 2019
  ident: 79390_CR49
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.057
– volume: 169
  start-page: 397
  year: 2015
  ident: 79390_CR56
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2014.3269
– volume: 13
  start-page: 663
  year: 2003
  ident: 79390_CR7
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2003.10.014
– volume: 246
  start-page: 118774
  year: 2022
  ident: 79390_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118774
– volume: 10
  start-page: 1349
  year: 2014
  ident: 79390_CR25
  publication-title: Neuropsychiatr Dis. Treat.
  doi: 10.2147/NDT.S63773
– volume: 92
  start-page: 529
  year: 1978
  ident: 79390_CR58
  publication-title: J. Pediatr.
  doi: 10.1016/S0022-3476(78)80282-0
– volume: 13
  start-page: 1
  year: 2023
  ident: 79390_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30743-4
– volume: 54
  start-page: 1140
  year: 2011
  ident: 79390_CR46
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.030
– volume: 41
  start-page: 2764
  year: 2022
  ident: 79390_CR17
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3171778
– volume: 33
  start-page: 505
  year: 2006
  ident: 79390_CR36
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.07.006
– volume: 36
  start-page: 287
  year: 2022
  ident: 79390_CR52
  publication-title: Brain Inj
  doi: 10.1080/02699052.2022.2034041
– volume: 173
  start-page: 88
  year: 2018
  ident: 79390_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.054
– ident: 79390_CR42
  doi: 10.1117/1.NPh.9.4.040601
– volume: 28
  start-page: 12176
  year: 2008
  ident: 79390_CR19
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3479-08.2008
– volume: 72
  start-page: 665
  year: 2011
  ident: 79390_CR41
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 95
  start-page: E3420
  year: 2020
  ident: 79390_CR9
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000010953
– volume: 40
  start-page: 494
  year: 2017
  ident: 79390_CR20
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.06.003
– volume: 29
  start-page: 1883
  year: 2008
  ident: 79390_CR23
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1256
– volume: 6
  start-page: 1074
  year: 2015
  ident: 79390_CR13
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.001074
SSID ssj0000529419
Score 2.4455
Snippet Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such...
Abstract Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29794
SubjectTerms 631/114/116/1925
631/114/1305
692/700/1421/65
Adult
Brain Injuries - diagnostic imaging
Brain Injuries - physiopathology
Brain injury
Brain mapping
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Female
Functional connectivity
Functional magnetic resonance imaging
Functional near-infrared spectroscopy
Graph convolutional network
Humanities and Social Sciences
Humans
Infant, Newborn
Infrared spectroscopy
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
multidisciplinary
Neonates
Neural networks
Neural Networks, Computer
Neuroimaging
Prediction models
Science
Science (multidisciplinary)
Spectroscopy, Near-Infrared - methods
Spectrum analysis
Thalamus
Thalamus - diagnostic imaging
Thalamus - physiology
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SKHgRq1VHaxmhNw2d_JzkqKWlCEoPLfQWkkzGCmW27G6FHv3P-14yu92trV6c4yQZMnnfy3tJXr5HyB5PLDRRamqUNVTCQ03sAg2h9Y1sfYp5a-Dbd318Jr-eq_OVVF8YE1bogcvA7XMWG51Sz8CSSNNp0xkOC0AfZALLmFNYc7B5K4upwurNrWR2vCXTCLM_A0uFt8m4pABJC5PPmiXKhP0PeZl_BkveOzHNhujoOXk2epD159LzLfIkDS_IZskpefOS_D6Z4tkLRjPXsLLMW9V0fuEvMfF8jWas7P5BIUyxsSSPqDH8_cdq6QAaQAF9UwxQr_N9TOS9nFzd1H7o6sxzjZ_4NUI3N8kR5bNtcnZ0eHpwTMc8CzQqyeZUmabjnRReBK98q8BuqpYr73vtwQFpe5CYAUsfU2NBp7wOJoIc-zYkJaT14hXZGCZDekPqxEFWIrQsaPAVe2tU06Vep160oteWV4QtxtzFkYQcc2FcunwYLowrcnIgJ5fl5ERFPi7bXBUKjr_W_oKiXNZE-uz8AkDlRlC5f4GqIjsLILhRp2dOMAG-ozAS_uLDshi0EY9Y_JAm11hHNgZzJMInXhfcLHsirGYaPKqKmDVErXV1vWT4eZEZvxnTuJRXFfm0AN9dvx4fi7f_YyzekacctSbTXe6Qjfn0Or0HR2wedrPO3QIuYDFA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2goCBxA6vx2zkhQFQVEogDlfZm2Y7TIlXJsrtF6pF_zozjTVke3ePaiZzMN57JzPgbQl7yxEITpaZWtZZK-FEbu0BDML6RxqeYQwOfPuujY_lxoRYl4LYuZZXbPTFv1N0YMUZ-IJgAyy2s5G-W3yl2jcLsammhcZ3cQOoyRLVZmDnGglksydpyVqYR9mAN9grPlHFJAZgtbEE79ijT9v_L1_y7ZPKPvGk2R4d3yO3iR9ZvJ8HfJdfScI_cnDpLXtwnP7-sMAODNc01fF_mgDXdnPozbD9fozGbYoAwCBttnFpI1FgEf_L76AB6QAGDKyxTr_OpTGS_HJcXtR-6OrNd4y1-FADnS3Jd-foBOT788PX9ES3dFmhUkm2osk3HOym8CF55o8B6KsOV97324IaYHuRmwd7H1LSgWV4HG0GavQlJCdl68ZDsDeOQHpM6cZ2SCIYFDR5j31rVdKnXqRdG9LrlFWHbd-5ioSLHjhhnLqfEhXWTnBzIyWU5OVGRV_M1y4mI48rZ71CU80wk0c5_jKsTV3TScRYbWGjPwEmRttO2szwF4YNM4HQxWZH9LRBc0ey1u8RhRV7Mw6CTmGjxQxrPcY5sLHZKhFs8mnAzr0S0mmnwqypidxC1s9TdkeHbaeb9ZkzjB72qyOst-C7X9f938eTqx3hKbnHUh0xnuU_2Nqvz9AwcrU14nrXpF5_4KQA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qi-CLWD9TW4ngmy5mP7N5PMVSDhRBC31bdpNNK5RcubsW-tj_vDObDz2tgnnM7oZN5jc7k53Z3wC8EZGHolaGWV1ZpvBitm4CC6H0hSp9rNPWwOcv5uhYzU_0yRaI8SxMStpPlJZpmR6zw96v0NDQYTChGCKqwrXjHuwQVTtie2c2m3-bTzsrFLtSvBpOyBTS3jF4wwolsv67PMw_EyV_i5YmI3T4CB4O3mM-6-e7C1uxewz3-3qS10_g5uuS4i6UyZzjX2XapmbrM39ORedzMmH9zh824vJa94Ujckp9P_21tUP0M0TekpLT83QWkzgvFxfXue-aPHFc0yOuBtimISmbfPUUjg8_ff94xIYaC6zWiq-ZtkUjGiW9DF77UqPN1KXQ3rfGo_NRtigti1a-jkWF-uRNsDXKsC1D1FJVXj6D7W7RxReQR2FilKHkwaCf2FZWF01sTWxlKVtTiQz4-M1dPRCQUx2Mc5cC4dK6Xk4O5eSSnJzM4O005qKn3_hn7w8kyqknUWenG4vlqRug5ASvC5xoy9E1UbYxtrEiBumDiuhqcZXB_ggEN-jzykku0W-UVuFbvJ6aURMpvOK7uLikPqqwVB8RH_G8x800E1kZbtCbysBuIGpjqpst3Y-zxPbNuaHfeJ3BuxF8P-f192-x93_dX8IDQfqRSC33YXu9vIwH6G6tw6tBv24BFAkoTQ
  priority: 102
  providerName: Springer Nature
Title Predicting cortical-thalamic functional connectivity using functional near-infrared spectroscopy and graph convolutional networks
URI https://link.springer.com/article/10.1038/s41598-024-79390-3
https://www.ncbi.nlm.nih.gov/pubmed/39616218
https://www.proquest.com/docview/3134413842
https://www.proquest.com/docview/3140893694
https://pubmed.ncbi.nlm.nih.gov/PMC11608255
https://doaj.org/article/21c06eef126648d68d82eb3ab4e28314
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjCpIvIEh_nYeEOqqTVOlTRNQqW-WnTgbUpWOtJvoI_85ZycpFAoiL5Fix7rcR-5sn--H0CvqicsKLrEWucYcLqyL0mHnlM24sr6ISwNn5_J0wsdTMd1BPdxRx8DF1qldwJOaNLO3376uPoDBv2-PjOt3C3BC4aAY5Ri0LYf_yi7aB8-kAqLBWRfut7W-ac4j1kcowo4hmKDdOZrtw2z4qljSf1sc-mc65W97qtFVndxH97oYMx22SvEA7fj6IbrTok6uHqHvF03YnQn5zinMPeNiNl5e2VmApk-Do2vXB6ERfsJFCy-RhgT5y19ba7ARDBxrQgp7Gk9shsqY8-tVausyjZWwwxC3nXLHV2LO-eIxmpwcfx6d4g6JAReCkyUWOitpyZllzgqrBHhWoaiwtpIWQhRVgUw1cLzwWQ5WZ6XTBUi6Us4LxnPLnqC9el77Zyj1VHrPnCJOggyqXIus9JX0FVOskjlNEOl5boquTHlAy5iZuF3OtGnlZEBOJsrJsAS9Xr9z3Rbp-GfvoyDKdc9QYDs-mDeXprNXQ0mRAaEVgQCG61LqUlPvmHXcQ0BGeIIOe0UwvdIaRhhEl0xz-IqX62aw17AJY2s_vwl9eKYDiiIM8bTVmzUlLJdEQsyVIL2hURukbrbUX65iTXBCZJjsiwS96ZXvJ11_58XBf9D5HN2lwShivctDtLdsbvwLiMSWboB21VQN0P5wOP40hvvR8fnFR3g6kqNBXN0YRAP8AQvkNgc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFCC6IN4ECQYITWI2fcQ4I8aq29CEOrbQ3YydOi1Qly-4WtEd-iG9kxkm2LI_emmPsWBPP0zPjGUKe8cB8VkpNjSoMlfBQU1aeep-7TOYulNE1sLevR4fy41iN18jP4S4MplUOMjEK6qot0Ue-KZgAzS2M5K8nXyl2jcLo6tBCoyOLnbD4Dke22avt94Df55xvfTh4N6J9VwFaKsnmVJms4pUUTninXK5AS6icK-dq7UDd5jXAZ0CvlSErgIKc9qYEqOvcByVk4QSse4lcBsWb4WEvH-dLnw5GzSQr-rs5mTCbM9CPeIeNSwqMUIDIW9F_sU3Av2zbv1M0_4jTRvW3dYNc7-3W9E1HaDfJWmhukStdJ8vFbfLj0xQjPphDncJ5NjrI6fzYnWC7-xSVZ-dzhEEQ7GXXsiLFpPuj30cb2GAKND_FtPg03gLFapvtZJG6pkpjdW1c4lvPMPGTmMc-u0MOLwQPd8l60zbhPkkD1yEInzOvwUKtC6OyKtQ61CIXtS54Qtiw57bsS59jB44TG0PwwtgOTxbwZCOerEjIi-U3k67wx7mz3yIqlzOxaHd80U6PbC8DLGdlBoDWDIwiaSptKsODF87LAEYekwnZGAjB9pJkZs_oPiFPl8MgAzCw45rQnuIcmRnszAhL3OvoZgmJKDTTYMclxKxQ1AqoqyPNl-NYZ5wxjQ4ElZCXA_GdwfX_vXhw_m88IVdHB3u7dnd7f-chucaRN2IpzQ2yPp-ehkdg5M3948hZKfl80az8C6_TZjM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Cpbgbgg3qQUCBKcwNr4GeeAEKVdtRRWK0Sl3lzbcdpKKLvd3YL2yG_xdYydZMvy6K05xo418Tw9M55B6AX1xGaOS6xEoTCHBytXWmxtbjKeG--ia-DTUO4e8A-H4nAN_ezuwoS0yk4mRkFdjl3wkfcZYaC5meK0X7VpEaPtwdvJGQ4dpEKktWun0ZDIvl98h-Pb7M3eNuD6JaWDnS_vd3HbYQA7wckcC5WVtOTMMGuEyQVoDJFTYUwlDajevAJYFeg457MCqMlIqxz8QZVbLxgvDIN1r6H1PJyKemh9a2c4-rz08IQYGidFe1MnY6o_A20ZbrRRjoEtChCAK9owNg34l6X7d8LmH1HbqAwHt9Gt1opN3zVkdwet-fouut70tVzcQz9G0xD_CRnVKZxuo7scz08MUN-pS4MqbTyQMAhi3jUNLNKQgn_8-2gNW4yBA6YhST6Nd0JD7c3xZJGaukxjre2wxLeWfeInMat9dh8dXAkmHqBePa79I5R6Kr1nNidWgr1aFUpkpa-kr1jOKlnQBJFuz7VrC6GHfhxfdQzIM6UbPGnAk4540ixBr5bfTJoyIJfO3gqoXM4MJbzji_H0WLcSQVPiMgC0ImAicVVKVSrqLTOWezD5CE_QZkcIupUrM33BBQl6vhwGiRDCPKb24_Mwh2cq9GmEJR42dLOEhBWSSLDqEqRWKGoF1NWR-vQkVh0nRAZ3gkjQ6474LuD6_15sXP4bz9ANYGP9cW-4_xjdpIE1Yl3NTdSbT8_9E7D45vZpy1opOrpqbv4FY8Zrzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+cortical-thalamic+functional+connectivity+using+functional+near-infrared+spectroscopy+and+graph+convolutional+networks&rft.jtitle=Scientific+reports&rft.au=Tang%2C+Lingkai&rft.au=Kebaya%2C+Lilian+M+N&rft.au=Vahidi%2C+Homa&rft.au=Meyerink%2C+Paige&rft.date=2024-11-30&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=29794&rft_id=info:doi/10.1038%2Fs41598-024-79390-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon