Predicting cortical-thalamic functional connectivity using functional near-infrared spectroscopy and graph convolutional networks
Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 29794 - 17 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients. |
---|---|
AbstractList | Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients. Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients.Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients. Abstract Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such as the thalamus, which is involved in several key functional networks. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) to two datasets obtained from healthy adults and neonates with early brain injuries, respectively. Each dataset contained fNIRS connectivity data as input to the predictive models, while the connectivity from functional magnetic resonance imaging (fMRI) served as training targets. GCN models performed better compared to conventional methods, such as support vector machine and feedforward fully connected artificial neural networks, on both identifying the connections as binary classification tasks, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance and that GCN models are resilient to noise in fNIRS data. Our results show it is feasible to identify subcortical activity from cortical fNIRS recordings. The findings can potentially extend the use of fNIRS in clinical settings for brain monitoring in critically ill patients. |
ArticleNumber | 29794 |
Author | de Ribaupierre, Sandrine Bhattacharya, Soume Meyerink, Paige Duerden, Emma G. Kebaya, Lilian M. N. Vahidi, Homa Tang, Lingkai St. Lawrence, Keith |
Author_xml | – sequence: 1 givenname: Lingkai surname: Tang fullname: Tang, Lingkai organization: Biomedical Engineering, Faculty of Engineering, Western University – sequence: 2 givenname: Lilian M. N. surname: Kebaya fullname: Kebaya, Lilian M. N. organization: Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University, Department of Paediatrics, Division of Neonatal-Perinatal Medicine, Temerty Faculty of Medicine, University of Toronto – sequence: 3 givenname: Homa surname: Vahidi fullname: Vahidi, Homa organization: Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University – sequence: 4 givenname: Paige surname: Meyerink fullname: Meyerink, Paige organization: Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University – sequence: 5 givenname: Sandrine surname: de Ribaupierre fullname: de Ribaupierre, Sandrine organization: Biomedical Engineering, Faculty of Engineering, Western University, Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, Clinical Neurological Sciences, Schulich Faculty of Medicine and Dentistry, Western University, Medical Biophysics, Schulich Faculty of Medicine and Dentistry, Western University – sequence: 6 givenname: Soume surname: Bhattacharya fullname: Bhattacharya, Soume organization: Neonatal-Perinatal Medicine, Schulich Faculty of Medicine and Dentistry, Western University – sequence: 7 givenname: Keith surname: St. Lawrence fullname: St. Lawrence, Keith organization: Biomedical Engineering, Faculty of Engineering, Western University, Medical Biophysics, Schulich Faculty of Medicine and Dentistry, Western University – sequence: 8 givenname: Emma G. surname: Duerden fullname: Duerden, Emma G. email: eduerden@uwo.ca organization: Biomedical Engineering, Faculty of Engineering, Western University, Neuroscience, Schulich Faculty of Medicine and Dentistry, Western University, Applied Psychology, Faculty of Education, Western University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39616218$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktv1DAQjlARLaV_gAOKxIVLwM_EOSFUUahUCQ5wtibOJOslay92smiP_PM6TVm2PdQXP77HzHjmZXbivMMse03Je0q4-hAFlbUqCBNFVfOaFPxZdsaIkAXjjJ0cnU-zixjXJC3JakHrF9kpr0taMqrOsr_fA7bWjNb1ufFhtAaGYlzBABtr8m5yCfIOhgQ6h-mys-M-n-LMP0IdQiis6wIkuzxuEzP4aPx2n4Nr8z7AdjVb7PwwHSTjHx9-xVfZ8w6GiBf3-3n28-rzj8uvxc23L9eXn24KIwUdC6lIy1rBgTcgoZIGUVZMAnQlVJRUHaBRTFCDpCZEQNkoQ0TVVQ1KLmrg59n14tt6WOttsBsIe-3B6rsHH3oNc_0DakYNKRE7yspSqLZUrWLYcGgEMsWpSF4fF6_t1GywNejGAMMD04eIsyvd-52mtCSKSZkc3t07BP97wjjqjY0GhwEc-inqFIWompf1HOztI-raTyF94cziQlCuBEusN8cpHXL51-pEYAvBpM7EgN2BQomeR0ovI6XTSOm7kdI8idQjkbEjzB1MZdnhaSlfpDHFcT2G_2k_oboFZaHjsg |
CitedBy_id | crossref_primary_10_3390_ma18050959 crossref_primary_10_3389_fneur_2025_1542075 |
Cites_doi | 10.1016/S1474-4422(08)70294-1 10.1016/j.neuroimage.2011.02.073 10.1364/BOE.6.001074 10.1117/1.NPh.10.2.023517 10.1523/JNEUROSCI.0867-17.2017 10.1016/j.neuroimage.2021.118774 10.1016/j.neuroimage.2011.09.015 10.1176/appi.ajp.162.7.1256 10.1001/jamapediatrics.2014.3269 10.1073/pnas.0704380104 10.1212/WNL.0000000000010953 10.1016/S0166-4328(05)80189-5 10.1016/j.tins.2017.06.003 10.2147/NDT.S63773 10.1080/09297049.2023.2170340 10.1016/j.clinph.2017.06.254 10.1093/cercor/bhac320 10.1016/j.neuroimage.2011.03.033 10.3174/ajnr.A1256 10.1088/0031-9155/51/5/N02 10.1016/j.neuroimage.2010.08.030 10.1117/1.NPh.8.2.025007 10.1109/TMI.2022.3171778 10.1364/AO.34.003826 10.1002/hbm.23429 10.1016/j.neuroimage.2018.01.054 10.1016/j.neuroimage.2012.03.049 10.1016/j.nicl.2018.11.006 10.1093/cercor/bhq071 10.1080/02699052.2022.2034041 10.1016/j.neuroimage.2013.05.099 10.1016/j.neuroimage.2006.07.006 10.3389/fnins.2016.00123 10.3389/fnins.2023.1132231 10.1117/1.NPh.2.2.025005 10.1523/JNEUROSCI.3479-08.2008 10.1016/S0022-3476(78)80282-0 10.1016/j.conb.2003.10.014 10.1016/bs.pbr.2021.12.001 10.1212/WNL.0b013e3181cff5d5 10.1016/j.neuron.2011.09.006 10.1038/s41598-023-30743-4 10.1016/j.jpeds.2017.12.041 10.1088/0967-3334/31/5/004 10.1016/j.neuroimage.2006.09.024 10.1016/j.neuroimage.2018.07.057 10.1523/JNEUROSCI.5618-09.2010 10.1155/2012/412512 10.3389/fnins.2022.803297 10.1371/journal.pone.0262310 10.1364/AO.48.00D280 10.1093/bib/bbab511 10.3389/fnhum.2018.00371 10.1038/s41598-024-53256-0 10.1117/1.NPh.9.4.040601 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-79390-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_21c06eef126648d68d82eb3ab4e28314 PMC11608255 39616218 10_1038_s41598_024_79390_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research funderid: http://dx.doi.org/10.13039/501100000024 – fundername: Whaley and Harding Postdoctoral fellowship – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 – fundername: Children’s Health Foundation |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-580d2d43a3ba5a75cee5725aaf6a7107faec8241ce09004a6b8c047f7be5349a3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:42 EDT 2025 Thu Aug 21 18:35:59 EDT 2025 Mon Jul 21 10:41:53 EDT 2025 Wed Aug 13 08:19:04 EDT 2025 Wed Feb 19 02:02:36 EST 2025 Tue Jul 01 02:06:17 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Fri Feb 21 02:38:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Functional connectivity Functional magnetic resonance imaging Graph convolutional network Functional near-infrared spectroscopy Machine learning |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-580d2d43a3ba5a75cee5725aaf6a7107faec8241ce09004a6b8c047f7be5349a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-79390-3 |
PMID | 39616218 |
PQID | 3134413842 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21c06eef126648d68d82eb3ab4e28314 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11608255 proquest_miscellaneous_3140893694 proquest_journals_3134413842 pubmed_primary_39616218 crossref_primary_10_1038_s41598_024_79390_3 crossref_citationtrail_10_1038_s41598_024_79390_3 springer_journals_10_1038_s41598_024_79390_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-30 |
PublicationDateYYYYMMDD | 2024-11-30 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Feng, Zeng, Chance (CR35) 1995; 34 Gallagher, Wallois, Obrig (CR3) 2023; 10 Fransson, Åden, Blennow, Lagercrantz (CR26) 2011; 21 Wylie (CR25) 2014; 10 Smyser, Wheelock, Limbrick, Neil (CR49) 2019; 185 CR39 CR38 Duerden (CR50) 2019; 21 Sassaroli, Frederick, Tong, Renshaw, Fantini (CR36) 2006; 33 Duerden (CR10) 2018; 38 Jurcak, Tsuzuki, Dan (CR34) 2007; 34 Zhang, Xu, Yu, Li, Wang (CR18) 2023; 17 Li (CR17) 2022; 41 Wang, Kang, Kemmer, Guo (CR30) 2016; 10 Kassab (CR5) 2021; 32 Volpe (CR55) 2009; 8 Jiang (CR52) 2022; 36 CR6 Kang (CR47) 2011; 56 Kocsis, Herman, Eke (CR29) 2006; 51 Kebaya (CR2) 2023; 13 Sommer (CR7) 2003; 13 Little (CR11) 2010; 74 CR44 CR43 CR42 Balters (CR14) 2023; 33 Ferrari, Quaresima (CR1) 2012; 63 Fourdain (CR4) 2023; 29 Douglas-Escobar, Weiss (CR56) 2015; 169 Makropoulos (CR37) 2018; 173 Seeck (CR33) 2017; 128 Smyser, Snyder, Neil (CR22) 2011; 56 Power (CR41) 2011; 72 CR15 Cao, Huang, He (CR20) 2017; 40 Brigadoi, Cooper (CR45) 2015; 2 Lin (CR23) 2008; 29 CR53 Homae (CR24) 2010; 30 CR51 Fransson (CR21) 2007; 104 Duerden (CR9) 2020; 95 Frazier (CR32) 2005; 162 Cunningham, Tomasi, Volkow (CR8) 2017; 38 Zhao (CR16) 2022; 246 Glass (CR12) 2018; 196 Birn (CR48) 2013; 83 Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR31) 2012; 62 Scholkmann, Spichtig, Muehlemann, Wolf (CR28) 2010; 31 Iorio-Morin, Sarica, Elias, Harmsen, Hodaie (CR40) 2022; 270 CR27 Liu, Cui, Bryant, Glover, Reiss (CR13) 2015; 6 Majeed (CR46) 2011; 54 Zhang (CR54) 2021; 8 De Vries, Eken, Dubowitz (CR57) 1992; 49 Knickmeyer (CR19) 2008; 28 Papile, Burstein, Burstein, Koffler (CR58) 1978; 92 LA Papile (79390_CR58) 1978; 92 F Homae (79390_CR24) 2010; 30 Y Li (79390_CR17) 2022; 41 CD Smyser (79390_CR22) 2011; 56 A Gallagher (79390_CR3) 2023; 10 CD Smyser (79390_CR49) 2019; 185 N Liu (79390_CR13) 2015; 6 79390_CR27 P Fransson (79390_CR21) 2007; 104 79390_CR6 M Seeck (79390_CR33) 2017; 128 LS De Vries (79390_CR57) 1992; 49 S Feng (79390_CR35) 1995; 34 79390_CR53 79390_CR51 S Balters (79390_CR14) 2023; 33 79390_CR15 JJ Volpe (79390_CR55) 2009; 8 J Kang (79390_CR47) 2011; 56 V Jurcak (79390_CR34) 2007; 34 S Brigadoi (79390_CR45) 2015; 2 A Makropoulos (79390_CR37) 2018; 173 A Sassaroli (79390_CR36) 2006; 33 W Majeed (79390_CR46) 2011; 54 M Ferrari (79390_CR1) 2012; 63 79390_CR44 A Kassab (79390_CR5) 2021; 32 C Iorio-Morin (79390_CR40) 2022; 270 TJA Glass (79390_CR12) 2018; 196 79390_CR42 H Zhang (79390_CR18) 2023; 17 79390_CR43 MA Sommer (79390_CR7) 2003; 13 KP Wylie (79390_CR25) 2014; 10 S Fourdain (79390_CR4) 2023; 29 JD Power (79390_CR41) 2011; 72 DM Little (79390_CR11) 2010; 74 EG Duerden (79390_CR9) 2020; 95 W Lin (79390_CR23) 2008; 29 RC Knickmeyer (79390_CR19) 2008; 28 M Cao (79390_CR20) 2017; 40 M Jenkinson (79390_CR31) 2012; 62 EG Duerden (79390_CR50) 2019; 21 SI Cunningham (79390_CR8) 2017; 38 RM Birn (79390_CR48) 2013; 83 S Zhang (79390_CR54) 2021; 8 L Jiang (79390_CR52) 2022; 36 K Zhao (79390_CR16) 2022; 246 F Scholkmann (79390_CR28) 2010; 31 LMN Kebaya (79390_CR2) 2023; 13 79390_CR39 JA Frazier (79390_CR32) 2005; 162 79390_CR38 Y Wang (79390_CR30) 2016; 10 P Fransson (79390_CR26) 2011; 21 M Douglas-Escobar (79390_CR56) 2015; 169 EG Duerden (79390_CR10) 2018; 38 L Kocsis (79390_CR29) 2006; 51 |
References_xml | – volume: 8 start-page: 110 year: 2009 end-page: 124 ident: CR55 article-title: Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70294-1 – volume: 56 start-page: 1437 year: 2011 ident: CR22 article-title: Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.073 – ident: CR39 – volume: 6 start-page: 1074 year: 2015 ident: CR13 article-title: Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.001074 – ident: CR51 – volume: 10 start-page: 023517 year: 2023 ident: CR3 article-title: Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications publication-title: Neurophotonics doi: 10.1117/1.NPh.10.2.023517 – volume: 38 start-page: 878 year: 2018 end-page: 886 ident: CR10 article-title: Early Procedural Pain is Associated with regionally-specific alterations in Thalamic Development in Preterm neonates publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0867-17.2017 – volume: 246 start-page: 118774 year: 2022 ident: CR16 article-title: A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118774 – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: CR31 publication-title: FSL Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 162 start-page: 1256 year: 2005 end-page: 1265 ident: CR32 article-title: Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.162.7.1256 – volume: 169 start-page: 397 year: 2015 end-page: 403 ident: CR56 article-title: Hypoxic-ischemic encephalopathy: A review for the Clinician publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2014.3269 – volume: 104 start-page: 15531 year: 2007 end-page: 15536 ident: CR21 article-title: Resting-state networks in the infant brain publication-title: PNAS doi: 10.1073/pnas.0704380104 – ident: CR42 – volume: 95 start-page: E3420 year: 2020 end-page: E3427 ident: CR9 article-title: Association of early skin breaks and neonatal thalamic maturation: A modifiable risk? publication-title: Neurology doi: 10.1212/WNL.0000000000010953 – volume: 49 start-page: 1 year: 1992 end-page: 6 ident: CR57 article-title: The spectrum of leukomalacia using cranial ultrasound publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(05)80189-5 – volume: 40 start-page: 494 year: 2017 end-page: 506 ident: CR20 article-title: Developmental Connectomics from Infancy through Early Childhood publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.06.003 – ident: CR15 – volume: 10 start-page: 1349 year: 2014 end-page: 1359 ident: CR25 article-title: Reduced brain resting-state network specificity in infants compared with adults publication-title: Neuropsychiatr Dis. Treat. doi: 10.2147/NDT.S63773 – volume: 29 start-page: 1088 year: 2023 end-page: 1108 ident: CR4 article-title: Functional brain connectivity after corrective cardiac surgery for critical congenital heart disease: A preliminary near-infrared spectroscopy (NIRS) report publication-title: Child. Neuropsychol. doi: 10.1080/09297049.2023.2170340 – volume: 128 start-page: 2070 year: 2017 end-page: 2077 ident: CR33 article-title: The standardized EEG electrode array of the IFCN publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.06.254 – volume: 33 start-page: 3969 year: 2023 end-page: 3984 ident: CR14 article-title: Towards assessing subcortical deep brain biomarkers of PTSD with functional near-infrared spectroscopy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhac320 – volume: 56 start-page: 1222 year: 2011 end-page: 1234 ident: CR47 article-title: Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.033 – volume: 29 start-page: 1883 year: 2008 end-page: 1889 ident: CR23 article-title: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A1256 – ident: CR43 – volume: 51 start-page: N91 year: 2006 end-page: N98 ident: CR29 article-title: The modified Beer-Lambert law revisited publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/5/N02 – volume: 54 start-page: 1140 year: 2011 end-page: 1150 ident: CR46 article-title: Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.030 – ident: CR53 – volume: 8 start-page: 025007 year: 2021 ident: CR54 article-title: Resting-state brain networks in neonatal hypoxic-ischemic brain damage: A functional near-infrared spectroscopy study publication-title: Neurophotonics doi: 10.1117/1.NPh.8.2.025007 – volume: 41 start-page: 2764 year: 2022 end-page: 2776 ident: CR17 article-title: Brain connectivity based Graph Convolutional Networks and its application to Infant Age Prediction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3171778 – volume: 34 start-page: 3826 year: 1995 ident: CR35 article-title: Photon migration in the presence of a single defect: A perturbation analysis publication-title: Appl. Opt. doi: 10.1364/AO.34.003826 – volume: 38 start-page: 938 year: 2017 end-page: 956 ident: CR8 article-title: Structural and functional connectivity of the precuneus and thalamus to the default mode network publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23429 – volume: 32 start-page: 102880 year: 2021 ident: CR5 article-title: Hemodynamic changes associated with common EEG patterns in critically ill patients: Pilot results from continuous EEG-fNIRS study publication-title: Neuroimage (Amst) – ident: CR6 – volume: 173 start-page: 88 year: 2018 end-page: 112 ident: CR37 article-title: The developing human connectome project: A minimal processing pipeline for neonatal cortical surface Reconstruction Europe PMC Funders Group publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.054 – volume: 63 start-page: 921 year: 2012 end-page: 935 ident: CR1 article-title: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.049 – volume: 21 start-page: 101596 year: 2019 ident: CR50 article-title: White matter injury predicts disrupted functional connectivity and microstructure in very preterm born neonates publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.11.006 – ident: CR27 – ident: CR44 – volume: 21 start-page: 145 year: 2011 end-page: 154 ident: CR26 article-title: The functional architecture of the infant brain as revealed by resting-state fMRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq071 – volume: 36 start-page: 287 year: 2022 end-page: 294 ident: CR52 article-title: Alterations in motor functional connectivity in neonatal hypoxic ischemic encephalopathy publication-title: Brain Inj doi: 10.1080/02699052.2022.2034041 – ident: CR38 – volume: 83 start-page: 550 year: 2013 end-page: 558 ident: CR48 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.099 – volume: 33 start-page: 505 year: 2006 end-page: 514 ident: CR36 article-title: Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.07.006 – volume: 10 start-page: 123 year: 2016 ident: CR30 article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00123 – volume: 17 start-page: 1132231 year: 2023 ident: CR18 article-title: Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1132231 – volume: 2 start-page: 025005 year: 2015 ident: CR45 article-title: How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy publication-title: Neurophotonics doi: 10.1117/1.NPh.2.2.025005 – volume: 28 start-page: 12176 year: 2008 end-page: 12182 ident: CR19 article-title: A structural MRI study of human brain development from birth to 2 years publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3479-08.2008 – volume: 92 start-page: 529 year: 1978 end-page: 534 ident: CR58 article-title: Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm publication-title: J. Pediatr. doi: 10.1016/S0022-3476(78)80282-0 – volume: 13 start-page: 663 year: 2003 end-page: 670 ident: CR7 article-title: The role of the thalamus in motor control publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2003.10.014 – volume: 270 start-page: 149 year: 2022 end-page: 169 ident: CR40 article-title: Neuroimaging of psychiatric disorders publication-title: Prog Brain Res. doi: 10.1016/bs.pbr.2021.12.001 – volume: 74 start-page: 558 year: 2010 end-page: 564 ident: CR11 article-title: Thalamic integrity underlies executive dysfunction in traumatic brain injury publication-title: Neurology doi: 10.1212/WNL.0b013e3181cff5d5 – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: CR41 article-title: Functional Network Organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 13 start-page: 1 year: 2023 end-page: 13 ident: CR2 article-title: Three-dimensional cranial ultrasound and functional near-infrared spectroscopy for bedside monitoring of intraventricular hemorrhage in preterm neonates publication-title: Sci. Rep. doi: 10.1038/s41598-023-30743-4 – volume: 196 start-page: 91 year: 2018 end-page: 97e1 ident: CR12 article-title: Multiple postnatal infections in newborns born Preterm Predict delayed maturation of Motor pathways at Term-Equivalent Age with Poorer Motor outcomes at 3 years publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2017.12.041 – volume: 31 start-page: 649 year: 2010 end-page: 662 ident: CR28 article-title: How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/5/004 – volume: 34 start-page: 1600 year: 2007 end-page: 1611 ident: CR34 article-title: 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.024 – volume: 185 start-page: 609 year: 2019 end-page: 623 ident: CR49 article-title: Neonatal brain injury and aberrant connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.057 – volume: 30 start-page: 4877 year: 2010 end-page: 4882 ident: CR24 article-title: Development of Global Cortical Networks in early infancy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5618-09.2010 – volume: 162 start-page: 1256 year: 2005 ident: 79390_CR32 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.162.7.1256 – volume: 62 start-page: 782 year: 2012 ident: 79390_CR31 publication-title: FSL Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 128 start-page: 2070 year: 2017 ident: 79390_CR33 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.06.254 – ident: 79390_CR39 doi: 10.1155/2012/412512 – volume: 270 start-page: 149 year: 2022 ident: 79390_CR40 publication-title: Prog Brain Res. doi: 10.1016/bs.pbr.2021.12.001 – ident: 79390_CR44 doi: 10.3389/fnins.2022.803297 – volume: 196 start-page: 91 year: 2018 ident: 79390_CR12 publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2017.12.041 – ident: 79390_CR51 doi: 10.1371/journal.pone.0262310 – volume: 29 start-page: 1088 year: 2023 ident: 79390_CR4 publication-title: Child. Neuropsychol. doi: 10.1080/09297049.2023.2170340 – volume: 34 start-page: 3826 year: 1995 ident: 79390_CR35 publication-title: Appl. Opt. doi: 10.1364/AO.34.003826 – ident: 79390_CR27 doi: 10.1364/AO.48.00D280 – volume: 56 start-page: 1222 year: 2011 ident: 79390_CR47 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.033 – volume: 30 start-page: 4877 year: 2010 ident: 79390_CR24 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5618-09.2010 – volume: 31 start-page: 649 year: 2010 ident: 79390_CR28 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/5/004 – volume: 32 start-page: 102880 year: 2021 ident: 79390_CR5 publication-title: Neuroimage (Amst) – volume: 10 start-page: 123 year: 2016 ident: 79390_CR30 publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00123 – volume: 21 start-page: 101596 year: 2019 ident: 79390_CR50 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.11.006 – volume: 17 start-page: 1132231 year: 2023 ident: 79390_CR18 publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1132231 – volume: 10 start-page: 023517 year: 2023 ident: 79390_CR3 publication-title: Neurophotonics doi: 10.1117/1.NPh.10.2.023517 – volume: 51 start-page: N91 year: 2006 ident: 79390_CR29 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/5/N02 – volume: 74 start-page: 558 year: 2010 ident: 79390_CR11 publication-title: Neurology doi: 10.1212/WNL.0b013e3181cff5d5 – volume: 83 start-page: 550 year: 2013 ident: 79390_CR48 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.099 – ident: 79390_CR6 – volume: 49 start-page: 1 year: 1992 ident: 79390_CR57 publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(05)80189-5 – volume: 38 start-page: 878 year: 2018 ident: 79390_CR10 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0867-17.2017 – volume: 33 start-page: 3969 year: 2023 ident: 79390_CR14 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhac320 – ident: 79390_CR15 – volume: 34 start-page: 1600 year: 2007 ident: 79390_CR34 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.024 – volume: 104 start-page: 15531 year: 2007 ident: 79390_CR21 publication-title: PNAS doi: 10.1073/pnas.0704380104 – volume: 56 start-page: 1437 year: 2011 ident: 79390_CR22 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.073 – volume: 8 start-page: 025007 year: 2021 ident: 79390_CR54 publication-title: Neurophotonics doi: 10.1117/1.NPh.8.2.025007 – ident: 79390_CR38 doi: 10.1093/bib/bbab511 – volume: 8 start-page: 110 year: 2009 ident: 79390_CR55 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70294-1 – volume: 21 start-page: 145 year: 2011 ident: 79390_CR26 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq071 – ident: 79390_CR43 doi: 10.3389/fnhum.2018.00371 – volume: 63 start-page: 921 year: 2012 ident: 79390_CR1 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.049 – ident: 79390_CR53 doi: 10.1038/s41598-024-53256-0 – volume: 2 start-page: 025005 year: 2015 ident: 79390_CR45 publication-title: Neurophotonics doi: 10.1117/1.NPh.2.2.025005 – volume: 38 start-page: 938 year: 2017 ident: 79390_CR8 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23429 – volume: 185 start-page: 609 year: 2019 ident: 79390_CR49 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.057 – volume: 169 start-page: 397 year: 2015 ident: 79390_CR56 publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2014.3269 – volume: 13 start-page: 663 year: 2003 ident: 79390_CR7 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2003.10.014 – volume: 246 start-page: 118774 year: 2022 ident: 79390_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118774 – volume: 10 start-page: 1349 year: 2014 ident: 79390_CR25 publication-title: Neuropsychiatr Dis. Treat. doi: 10.2147/NDT.S63773 – volume: 92 start-page: 529 year: 1978 ident: 79390_CR58 publication-title: J. Pediatr. doi: 10.1016/S0022-3476(78)80282-0 – volume: 13 start-page: 1 year: 2023 ident: 79390_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-023-30743-4 – volume: 54 start-page: 1140 year: 2011 ident: 79390_CR46 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.030 – volume: 41 start-page: 2764 year: 2022 ident: 79390_CR17 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3171778 – volume: 33 start-page: 505 year: 2006 ident: 79390_CR36 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.07.006 – volume: 36 start-page: 287 year: 2022 ident: 79390_CR52 publication-title: Brain Inj doi: 10.1080/02699052.2022.2034041 – volume: 173 start-page: 88 year: 2018 ident: 79390_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.054 – ident: 79390_CR42 doi: 10.1117/1.NPh.9.4.040601 – volume: 28 start-page: 12176 year: 2008 ident: 79390_CR19 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3479-08.2008 – volume: 72 start-page: 665 year: 2011 ident: 79390_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 95 start-page: E3420 year: 2020 ident: 79390_CR9 publication-title: Neurology doi: 10.1212/WNL.0000000000010953 – volume: 40 start-page: 494 year: 2017 ident: 79390_CR20 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.06.003 – volume: 29 start-page: 1883 year: 2008 ident: 79390_CR23 publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A1256 – volume: 6 start-page: 1074 year: 2015 ident: 79390_CR13 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.001074 |
SSID | ssj0000529419 |
Score | 2.4455 |
Snippet | Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical structures, such... Abstract Functional near-infrared spectroscopy (fNIRS) measures cortical hemodynamic changes, yet it cannot collect this information from subcortical... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29794 |
SubjectTerms | 631/114/116/1925 631/114/1305 692/700/1421/65 Adult Brain Injuries - diagnostic imaging Brain Injuries - physiopathology Brain injury Brain mapping Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Female Functional connectivity Functional magnetic resonance imaging Functional near-infrared spectroscopy Graph convolutional network Humanities and Social Sciences Humans Infant, Newborn Infrared spectroscopy Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male multidisciplinary Neonates Neural networks Neural Networks, Computer Neuroimaging Prediction models Science Science (multidisciplinary) Spectroscopy, Near-Infrared - methods Spectrum analysis Thalamus Thalamus - diagnostic imaging Thalamus - physiology Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SKHgRq1VHaxmhNw2d_JzkqKWlCEoPLfQWkkzGCmW27G6FHv3P-14yu92trV6c4yQZMnnfy3tJXr5HyB5PLDRRamqUNVTCQ03sAg2h9Y1sfYp5a-Dbd318Jr-eq_OVVF8YE1bogcvA7XMWG51Sz8CSSNNp0xkOC0AfZALLmFNYc7B5K4upwurNrWR2vCXTCLM_A0uFt8m4pABJC5PPmiXKhP0PeZl_BkveOzHNhujoOXk2epD159LzLfIkDS_IZskpefOS_D6Z4tkLRjPXsLLMW9V0fuEvMfF8jWas7P5BIUyxsSSPqDH8_cdq6QAaQAF9UwxQr_N9TOS9nFzd1H7o6sxzjZ_4NUI3N8kR5bNtcnZ0eHpwTMc8CzQqyeZUmabjnRReBK98q8BuqpYr73vtwQFpe5CYAUsfU2NBp7wOJoIc-zYkJaT14hXZGCZDekPqxEFWIrQsaPAVe2tU06Vep160oteWV4QtxtzFkYQcc2FcunwYLowrcnIgJ5fl5ERFPi7bXBUKjr_W_oKiXNZE-uz8AkDlRlC5f4GqIjsLILhRp2dOMAG-ozAS_uLDshi0EY9Y_JAm11hHNgZzJMInXhfcLHsirGYaPKqKmDVErXV1vWT4eZEZvxnTuJRXFfm0AN9dvx4fi7f_YyzekacctSbTXe6Qjfn0Or0HR2wedrPO3QIuYDFA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2goCBxA6vx2zkhQFQVEogDlfZm2Y7TIlXJsrtF6pF_zozjTVke3ePaiZzMN57JzPgbQl7yxEITpaZWtZZK-FEbu0BDML6RxqeYQwOfPuujY_lxoRYl4LYuZZXbPTFv1N0YMUZ-IJgAyy2s5G-W3yl2jcLsammhcZ3cQOoyRLVZmDnGglksydpyVqYR9mAN9grPlHFJAZgtbEE79ijT9v_L1_y7ZPKPvGk2R4d3yO3iR9ZvJ8HfJdfScI_cnDpLXtwnP7-sMAODNc01fF_mgDXdnPozbD9fozGbYoAwCBttnFpI1FgEf_L76AB6QAGDKyxTr_OpTGS_HJcXtR-6OrNd4y1-FADnS3Jd-foBOT788PX9ES3dFmhUkm2osk3HOym8CF55o8B6KsOV97324IaYHuRmwd7H1LSgWV4HG0GavQlJCdl68ZDsDeOQHpM6cZ2SCIYFDR5j31rVdKnXqRdG9LrlFWHbd-5ioSLHjhhnLqfEhXWTnBzIyWU5OVGRV_M1y4mI48rZ71CU80wk0c5_jKsTV3TScRYbWGjPwEmRttO2szwF4YNM4HQxWZH9LRBc0ey1u8RhRV7Mw6CTmGjxQxrPcY5sLHZKhFs8mnAzr0S0mmnwqypidxC1s9TdkeHbaeb9ZkzjB72qyOst-C7X9f938eTqx3hKbnHUh0xnuU_2Nqvz9AwcrU14nrXpF5_4KQA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qi-CLWD9TW4ngmy5mP7N5PMVSDhRBC31bdpNNK5RcubsW-tj_vDObDz2tgnnM7oZN5jc7k53Z3wC8EZGHolaGWV1ZpvBitm4CC6H0hSp9rNPWwOcv5uhYzU_0yRaI8SxMStpPlJZpmR6zw96v0NDQYTChGCKqwrXjHuwQVTtie2c2m3-bTzsrFLtSvBpOyBTS3jF4wwolsv67PMw_EyV_i5YmI3T4CB4O3mM-6-e7C1uxewz3-3qS10_g5uuS4i6UyZzjX2XapmbrM39ORedzMmH9zh824vJa94Ujckp9P_21tUP0M0TekpLT83QWkzgvFxfXue-aPHFc0yOuBtimISmbfPUUjg8_ff94xIYaC6zWiq-ZtkUjGiW9DF77UqPN1KXQ3rfGo_NRtigti1a-jkWF-uRNsDXKsC1D1FJVXj6D7W7RxReQR2FilKHkwaCf2FZWF01sTWxlKVtTiQz4-M1dPRCQUx2Mc5cC4dK6Xk4O5eSSnJzM4O005qKn3_hn7w8kyqknUWenG4vlqRug5ASvC5xoy9E1UbYxtrEiBumDiuhqcZXB_ggEN-jzykku0W-UVuFbvJ6aURMpvOK7uLikPqqwVB8RH_G8x800E1kZbtCbysBuIGpjqpst3Y-zxPbNuaHfeJ3BuxF8P-f192-x93_dX8IDQfqRSC33YXu9vIwH6G6tw6tBv24BFAkoTQ priority: 102 providerName: Springer Nature |
Title | Predicting cortical-thalamic functional connectivity using functional near-infrared spectroscopy and graph convolutional networks |
URI | https://link.springer.com/article/10.1038/s41598-024-79390-3 https://www.ncbi.nlm.nih.gov/pubmed/39616218 https://www.proquest.com/docview/3134413842 https://www.proquest.com/docview/3140893694 https://pubmed.ncbi.nlm.nih.gov/PMC11608255 https://doaj.org/article/21c06eef126648d68d82eb3ab4e28314 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjCpIvIEh_nYeEOqqTVOlTRNQqW-WnTgbUpWOtJvoI_85ZycpFAoiL5Fix7rcR-5sn--H0CvqicsKLrEWucYcLqyL0mHnlM24sr6ISwNn5_J0wsdTMd1BPdxRx8DF1qldwJOaNLO3376uPoDBv2-PjOt3C3BC4aAY5Ri0LYf_yi7aB8-kAqLBWRfut7W-ac4j1kcowo4hmKDdOZrtw2z4qljSf1sc-mc65W97qtFVndxH97oYMx22SvEA7fj6IbrTok6uHqHvF03YnQn5zinMPeNiNl5e2VmApk-Do2vXB6ERfsJFCy-RhgT5y19ba7ARDBxrQgp7Gk9shsqY8-tVausyjZWwwxC3nXLHV2LO-eIxmpwcfx6d4g6JAReCkyUWOitpyZllzgqrBHhWoaiwtpIWQhRVgUw1cLzwWQ5WZ6XTBUi6Us4LxnPLnqC9el77Zyj1VHrPnCJOggyqXIus9JX0FVOskjlNEOl5boquTHlAy5iZuF3OtGnlZEBOJsrJsAS9Xr9z3Rbp-GfvoyDKdc9QYDs-mDeXprNXQ0mRAaEVgQCG61LqUlPvmHXcQ0BGeIIOe0UwvdIaRhhEl0xz-IqX62aw17AJY2s_vwl9eKYDiiIM8bTVmzUlLJdEQsyVIL2hURukbrbUX65iTXBCZJjsiwS96ZXvJ11_58XBf9D5HN2lwShivctDtLdsbvwLiMSWboB21VQN0P5wOP40hvvR8fnFR3g6kqNBXN0YRAP8AQvkNgc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFCC6IN4ECQYITWI2fcQ4I8aq29CEOrbQ3YydOi1Qly-4WtEd-iG9kxkm2LI_emmPsWBPP0zPjGUKe8cB8VkpNjSoMlfBQU1aeep-7TOYulNE1sLevR4fy41iN18jP4S4MplUOMjEK6qot0Ue-KZgAzS2M5K8nXyl2jcLo6tBCoyOLnbD4Dke22avt94Df55xvfTh4N6J9VwFaKsnmVJms4pUUTninXK5AS6icK-dq7UDd5jXAZ0CvlSErgIKc9qYEqOvcByVk4QSse4lcBsWb4WEvH-dLnw5GzSQr-rs5mTCbM9CPeIeNSwqMUIDIW9F_sU3Av2zbv1M0_4jTRvW3dYNc7-3W9E1HaDfJWmhukStdJ8vFbfLj0xQjPphDncJ5NjrI6fzYnWC7-xSVZ-dzhEEQ7GXXsiLFpPuj30cb2GAKND_FtPg03gLFapvtZJG6pkpjdW1c4lvPMPGTmMc-u0MOLwQPd8l60zbhPkkD1yEInzOvwUKtC6OyKtQ61CIXtS54Qtiw57bsS59jB44TG0PwwtgOTxbwZCOerEjIi-U3k67wx7mz3yIqlzOxaHd80U6PbC8DLGdlBoDWDIwiaSptKsODF87LAEYekwnZGAjB9pJkZs_oPiFPl8MgAzCw45rQnuIcmRnszAhL3OvoZgmJKDTTYMclxKxQ1AqoqyPNl-NYZ5wxjQ4ElZCXA_GdwfX_vXhw_m88IVdHB3u7dnd7f-chucaRN2IpzQ2yPp-ehkdg5M3948hZKfl80az8C6_TZjM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0Cpbgbgg3qQUCBKcwNr4GeeAEKVdtRRWK0Sl3lzbcdpKKLvd3YL2yG_xdYydZMvy6K05xo418Tw9M55B6AX1xGaOS6xEoTCHBytXWmxtbjKeG--ia-DTUO4e8A-H4nAN_ezuwoS0yk4mRkFdjl3wkfcZYaC5meK0X7VpEaPtwdvJGQ4dpEKktWun0ZDIvl98h-Pb7M3eNuD6JaWDnS_vd3HbYQA7wckcC5WVtOTMMGuEyQVoDJFTYUwlDajevAJYFeg457MCqMlIqxz8QZVbLxgvDIN1r6H1PJyKemh9a2c4-rz08IQYGidFe1MnY6o_A20ZbrRRjoEtChCAK9owNg34l6X7d8LmH1HbqAwHt9Gt1opN3zVkdwet-fouut70tVzcQz9G0xD_CRnVKZxuo7scz08MUN-pS4MqbTyQMAhi3jUNLNKQgn_8-2gNW4yBA6YhST6Nd0JD7c3xZJGaukxjre2wxLeWfeInMat9dh8dXAkmHqBePa79I5R6Kr1nNidWgr1aFUpkpa-kr1jOKlnQBJFuz7VrC6GHfhxfdQzIM6UbPGnAk4540ixBr5bfTJoyIJfO3gqoXM4MJbzji_H0WLcSQVPiMgC0ImAicVVKVSrqLTOWezD5CE_QZkcIupUrM33BBQl6vhwGiRDCPKb24_Mwh2cq9GmEJR42dLOEhBWSSLDqEqRWKGoF1NWR-vQkVh0nRAZ3gkjQ6474LuD6_15sXP4bz9ANYGP9cW-4_xjdpIE1Yl3NTdSbT8_9E7D45vZpy1opOrpqbv4FY8Zrzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+cortical-thalamic+functional+connectivity+using+functional+near-infrared+spectroscopy+and+graph+convolutional+networks&rft.jtitle=Scientific+reports&rft.au=Tang%2C+Lingkai&rft.au=Kebaya%2C+Lilian+M+N&rft.au=Vahidi%2C+Homa&rft.au=Meyerink%2C+Paige&rft.date=2024-11-30&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=29794&rft_id=info:doi/10.1038%2Fs41598-024-79390-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |