Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach
Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction model...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 9679 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.06.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (
RMSE
), its mean absolute error (
MAE
), and its coefficient of determination (
R
2
). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower
RMSE
and
MAE
values of the LW-KPLSR model. In addition, it offered the highest R
2
values that could be achieved, reaching 0.9989. |
---|---|
AbstractList | Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R
). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R
values that could be achieved, reaching 0.9989. Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989. Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error ( RMSE ), its mean absolute error ( MAE ), and its coefficient of determination ( R 2 ). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R 2 values that could be achieved, reaching 0.9989. Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989. Abstract Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R 2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989. |
ArticleNumber | 9679 |
Author | Pervez, Md. Nahid Islam, Md. Shahinoor Stylios, George K. Zhao, Yaping Naddeo, Vincenzo Yeo, Wan Sieng Cai, Yingjie Mishu, Mst. Monira Rahman Talukder, Md. Eman Roy, Hridoy |
Author_xml | – sequence: 1 givenname: Md. Nahid surname: Pervez fullname: Pervez, Md. Nahid organization: Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno – sequence: 2 givenname: Wan Sieng surname: Yeo fullname: Yeo, Wan Sieng organization: Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia – sequence: 3 givenname: Mst. Monira Rahman surname: Mishu fullname: Mishu, Mst. Monira Rahman organization: Faculty of Nutrition and Food Science, Patuakhali Science and Technology University – sequence: 4 givenname: Md. Eman surname: Talukder fullname: Talukder, Md. Eman organization: Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University – sequence: 5 givenname: Hridoy surname: Roy fullname: Roy, Hridoy organization: Department of Chemical Engineering, Bangladesh University of Engineering and Technology – sequence: 6 givenname: Md. Shahinoor surname: Islam fullname: Islam, Md. Shahinoor organization: Department of Chemical Engineering, Bangladesh University of Engineering and Technology – sequence: 7 givenname: Yaping surname: Zhao fullname: Zhao, Yaping organization: Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming – sequence: 8 givenname: Yingjie surname: Cai fullname: Cai, Yingjie email: yingjiecai@wtu.edu.cn organization: Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University – sequence: 9 givenname: George K. surname: Stylios fullname: Stylios, George K. email: g.stylios@hw.ac.uk organization: Research Institute for Flexible Materials, School of Textiles and Design, Heriot-Watt University – sequence: 10 givenname: Vincenzo surname: Naddeo fullname: Naddeo, Vincenzo email: vnaddeo@unisa.it organization: Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37322139$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNUREvpF-CALHHhEoj_JLZPCFUFKlXi0rvl2JNdV4kd7ASpl352ZndbaHuoL7bGv_f07Jm31VFMEarqPW0-04arL0XQVqu6YbzmneC0lq-qE9aItmacsaNH5-PqrJSbBlfLtKD6TXXMJdYp1yfV3cUIbsmpzGsk0cY0hB4ymWDqs41AfLATLFiZM_jglpAiWUuIG2KJS1MfIniSocwpFiBlzYN1gPJlm3wa0-aW2OjJZN0WSTKCzXEvnuecsPiuej3YscDZ_X5aXX-_uD7_WV_9-nF5_u2qdq2gS93Kjg4WJHWtotIK5ft-8Ex2WvS9brpWKTcMHrhUTDRCCNaJRmoudcOZp_y0ujzY-mRvzJzDZPOtSTaYfSHljbF5CW4E07daDIopR6ETPTp7zy2XFJ_lOs13Xl8PXvPaT-AdxCXb8Ynp05sYtmaT_hjaMMkYb9Hh071DTr9XKIuZQnEwjvjhaS2GKQRbho9A9OMz9CatOeJX7ahOa4VNRerD40j_sjy0GQF1ABx2umQYjAuL3TUTE4YRo5ndUJnDUBkcKrMfKiNRyp5JH9xfFPGDqCAcN5D_x35B9Rc1yOAE |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_105486 crossref_primary_10_3390_pharmaceutics16040471 crossref_primary_10_1016_j_jddst_2024_106520 crossref_primary_10_3390_w16131896 crossref_primary_10_1016_j_polymer_2024_127549 crossref_primary_10_1021_acsapm_4c00909 crossref_primary_10_3389_fbioe_2025_1493194 crossref_primary_10_3390_membranes14060120 crossref_primary_10_1038_s41598_023_47164_y crossref_primary_10_1016_j_rineng_2024_102826 crossref_primary_10_1002_adem_202401353 crossref_primary_10_1021_acsfoodscitech_4c00226 crossref_primary_10_1080_00986445_2024_2321447 crossref_primary_10_1016_j_ijpharm_2024_125117 crossref_primary_10_3390_ma17010132 crossref_primary_10_1016_j_asoc_2024_111975 crossref_primary_10_1080_15440478_2024_2340065 crossref_primary_10_1016_j_scitotenv_2025_178411 crossref_primary_10_1016_j_rineng_2025_104422 crossref_primary_10_3390_nano15050339 crossref_primary_10_1016_j_scitotenv_2024_173999 crossref_primary_10_1007_s10853_024_09994_7 crossref_primary_10_1007_s12221_024_00486_8 crossref_primary_10_1016_j_jddst_2023_105128 |
Cites_doi | 10.1016/j.patrec.2020.05.011 10.1002/app.48242 10.33263/BRIAC132.184 10.1021/acs.iecr.9b03821 10.1007/s10570-021-04096-y 10.1002/app.24361 10.1080/00986445.2021.1957853 10.1016/j.arabjc.2014.02.006 10.1007/s10853-021-06575-w 10.3390/math9060685 10.3390/nano8060395 10.1016/j.jece.2021.106693 10.1016/j.geoderma.2021.115678 10.1016/j.jwpe.2022.102838 10.1515/ijcre-2015-0029 10.1016/j.matdes.2020.108902 10.1016/j.compositesb.2019.01.094 10.1016/j.marpolbul.2008.05.021 10.1016/j.chemolab.2015.05.007 10.1016/B978-0-12-810448-4.00008-2 10.1039/D2TB02602C 10.1007/s10489-021-02883-5 10.1007/s00521-017-2996-6 10.1252/jcej.12we167 10.1021/mz200047q 10.1002/apj.2422 10.1038/s41598-020-72401-z 10.1016/j.coche.2016.03.001 10.1016/j.compchemeng.2017.04.014 10.1109/GECOST52368.2021.9538723 10.1515/cppm-2017-0022 10.4236/msce.2020.84002 10.3934/mbe.2020379 10.1016/j.jclepro.2020.121301 10.1002/cem.3364 10.1016/S0149-1970(04)90010-8 10.1016/j.heliyon.2023.e12883 10.1016/j.foodhyd.2022.107992 10.1177/15280837211058213 10.1038/s41598-022-18213-9 10.3390/membranes12040413 10.1021/ma060866a 10.1007/978-3-319-42789-8_54-1 10.3390/nano8060383 10.1016/j.polymer.2008.07.033 10.1021/acs.accounts.7b00218 10.1038/s41598-022-09802-9 10.1088/2053-1591/aaba1d 10.20517/wecn.2022.05 10.1002/app.36726 10.1007/s11814-009-0309-1 10.1007/s10570-018-1957-2 10.1007/s10924-023-02837-7 10.3390/ma11030426 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-36431-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_b594f828c1e64b658dd3a371acec6931 PMC10272235 37322139 10_1038_s41598_023_36431_7 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-5761fae71c5817a48dbbfd27694bb906588cffde378240444264079379032d13 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:17:28 EDT 2025 Thu Aug 21 18:36:59 EDT 2025 Fri Jul 11 06:21:47 EDT 2025 Wed Aug 13 08:42:14 EDT 2025 Thu Apr 03 07:13:27 EDT 2025 Tue Jul 01 04:24:52 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 21 02:37:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-5761fae71c5817a48dbbfd27694bb906588cffde378240444264079379032d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/b594f828c1e64b658dd3a371acec6931 |
PMID | 37322139 |
PQID | 2826998052 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b594f828c1e64b658dd3a371acec6931 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10272235 proquest_miscellaneous_2827252426 proquest_journals_2826998052 pubmed_primary_37322139 crossref_citationtrail_10_1038_s41598_023_36431_7 crossref_primary_10_1038_s41598_023_36431_7 springer_journals_10_1038_s41598_023_36431_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Toscano, J. D., Li, Z., Segura, L. J. & Sun, H. In ASME 2020 15th International Manufacturing Science and Engineering Conference. TalukderMEAg nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metalsSci. Rep.20221258142022NatSR..12.5814T1:CAS:528:DC%2BB38Xpt1Wrsbc%3D10.1038/s41598-022-09802-9353881158986829 KhattiTNaderi-ManeshHKalantarSMApplication of ANN and RSM techniques for modeling electrospinning process of polycaprolactoneNeural. Comput. Appl.20193123924810.1007/s00521-017-2996-6 MaHHsiaoBSChuBUltrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in waterACS Macro Lett.201212132161:CAS:528:DC%2BC3MXhs1GrurrE10.1021/mz200047q35578482 Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H. & Bechelany, M. in Handbook of Nanofibers (eds Barhoum, A. et al.) 1–42 (Springer International Publishing, 2018). WangCHsuC-HHwangIHScaling laws and internal structure for characterizing electrospun poly[(R)-3-hydroxybutyrate] fibersPolymer200849418841951:CAS:528:DC%2BD1cXhtVOnt7rL10.1016/j.polymer.2008.07.033 PervezMNStyliosGKLiangYOuyangFCaiYLow-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradationJ. Clean. Prod.20202621213011:CAS:528:DC%2BB3cXmsV2rurc%3D10.1016/j.jclepro.2020.121301 Neill, S. P. & Hashemi, M. R. In Fundamentals of Ocean Renewable Energy (eds Neill, S. P. & Reza Hashemi, M.) 193–235 (Academic Press, 2018). HazamaKKanoMCovariance-based locally weighted partial least squares for high-performance adaptive modelingChemom. Intell. Lab. Syst.201514655621:CAS:528:DC%2BC2MXosFKmsbg%3D10.1016/j.chemolab.2015.05.007 Vempati, S., Vedaldi, A., Zisserman, A. & Jawahar, C. In British Machine Vision Conference, BMVC 2010. 1–11. GhelichRJahannamaMRAbdizadehHTorknikFSVaeziMRCentral composite design (CCD)-response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibersCompos. B. Eng.20191665275411:CAS:528:DC%2BC1MXktlaqtbg%3D10.1016/j.compositesb.2019.01.094 NasouriKBahrambeygiHRabbiAShoushtariAMKaflouAModeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networksJ. Appl. Polym. Sci.20121261271351:CAS:528:DC%2BC38XksV2js7c%3D10.1002/app.36726 PervezMNStyliosGKInvestigating the synthesis and characterization of a novel “green” H2O2-assisted, water-soluble chitosan/polyvinyl alcohol nanofiber for environmental end usesNanomaterials201883951:CAS:528:DC%2BC1cXhtlOmtL%2FF10.3390/nano8060395298651986027504 NasonovaALevyGJRinotOEshelGBorisoverMOrganic matter in aqueous soil extracts: Prediction of compositional attributes from bulk soil mid-IR spectra using partial least square regressionsGeoderma20224111156782022Geode.411k5678N1:CAS:528:DC%2BB38XhtVCht7jL10.1016/j.geoderma.2021.115678 QinX-HWangS-YFiltration properties of electrospinning nanofibersJ. Appl. Polym. Sci.2006102128512901:CAS:528:DC%2BD28Xpt1artb4%3D10.1002/app.24361 XueJXieJLiuWXiaYElectrospun nanofibers: New concepts, materials, and applicationsAcc. Chem. Res.201750197619871:CAS:528:DC%2BC2sXht1Ohur3O10.1021/acs.accounts.7b00218287775356589094 LevadaALMParametric PCA for unsupervised metric learningPattern. Recogn. Lett.20201354254302020PaReL.135..425L10.1016/j.patrec.2020.05.011 PervezMNOne-step fabrication of novel polyethersulfone-based composite electrospun nanofiber membranes for food industry wastewater treatmentMembranes2022124131:CAS:528:DC%2BB38XhtFeqtb%2FI10.3390/membranes12040413354483839028427 KanoMFujiwaraKVirtual sensing technology in process industries: Trends and challenges revealed by recent industrial applicationsJ. Chem. Eng. Jpn.2013461171:CAS:528:DC%2BC3sXmsVGjurc%3D10.1252/jcej.12we167 MorshedMNStatistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial designSci. Rep.202010161332020NatSR..1016133M1:CAS:528:DC%2BB3cXhvFOgsr3P10.1038/s41598-020-72401-z329993007528022 PervezMNShafiqFSarwarZJilaniMMCaiYMulti-response optimization of resin finishing by using a taguchi-based grey relational analysisMaterials.2018114262018Mate...11..426P1:CAS:528:DC%2BC1MXpvVKqsLY%3D10.3390/ma11030426295437245873005 Yeo, W. S., Chan, M. K. & Bukhari, N. A. In Intelligent Computing & Optimization. (eds Vasant, P., Zelinka, I. & Weber, G-W.) 927–937 (Springer International Publishing). PervezMNElectrospun nanofiber membranes for the control of micro/nanoplastics in the environmentWater. Emerg. Contam. Nanoplastics.202211010.20517/wecn.2022.05 LinLSustainable traditional grass cloth fiber dyeing using the Taguchi L16 (4^4) orthogonal designSci. Rep.202212138332022NatSR..1213833L1:CAS:528:DC%2BB38XitFOltb7K10.1038/s41598-022-18213-9359740319381779 ŠkrabánekPMarekJPozdílkováABoscovich fuzzy regression lineMathematics2021968510.3390/math9060685 AmiriNMoradiATabasiSASMovaffaghJModeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodologyMater. Res. Express201850454042018MRE.....5d5404A1:CAS:528:DC%2BC1cXhvValtb7L10.1088/2053-1591/aaba1d MengYMulti-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodologyMath. Biosci. Eng.2020177411742710.3934/mbe.2020379333789031486.74114 ThirugnanasambandhamKSivakumarVPreparation of chitosan based nanofibers: Optimization and modelingInt. J. Chem. React.2016142832881:CAS:528:DC%2BC2sXmtF2nt7o%3D10.1515/ijcre-2015-0029 YeoWSLauWJPredicting the whiteness index of cotton fabric with a least squares modelCellulose202128884188541:CAS:528:DC%2BB38XhtlGrtLc%3D10.1007/s10570-021-04096-y ShafiqFStructural relationships and optimization of resin-finishing parameters using the Taguchi approachCellulose201825617561901:CAS:528:DC%2BC1cXhtl2gsL%2FM10.1007/s10570-018-1957-2 PervezMNPrediction of the diameter of biodegradable electrospun nanofiber membranes: An integrated framework of taguchi design and machine learningJ. Polym. Environ.202310.1007/s10924-023-02837-7 VianaVRFerreiraWHAzeroEGDiasMLAndradeCTOptimization of the electrospinning conditions by Box–Behnken design to prepare poly (vinyl alcohol)/chitosan crosslinked nanofibersJ. Mater. Sci. Chem. Eng.20208131:CAS:528:DC%2BB3cXhvVejtLzF10.4236/msce.2020.84002 ZiabariMMottaghitalabVHaghiAKA new approach for optimization of electrospun nanofiber formation processKorean. J. Chem. Eng.2010273403541:CAS:528:DC%2BC3cXjt1egt7o%3D10.1007/s11814-009-0309-1 PervezMNFabrication of polyethersulfone/polyacrylonitrile electrospun nanofiber membrane for food industry wastewater treatmentJ. Water. Process. Eng.20224710283810.1016/j.jwpe.2022.102838 HeHWangYFarkasBNagyZKMolnarKAnalysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodologyMater. Des.20201941089021:CAS:528:DC%2BB3cXhtlCqsbvK10.1016/j.matdes.2020.108902 KanekoHEstimating the reliability of predictions in locally weighted partial least-squares modelingJ. Chemom.202135e33641:CAS:528:DC%2BB3MXhsVOmsLfE10.1002/cem.3364 VisserDElectrospinning of collagen: Enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structureJ. Mater. Chem. B202311220722181:CAS:528:DC%2BB3sXjtFajtL4%3D10.1039/D2TB02602C36786208 WangCHsuC-HLinJ-HScaling laws in electrospinning of polystyrene solutionsMacromolecules200639766276722006MaMol..39.7662W1:CAS:528:DC%2BD28XhtVCmurbK10.1021/ma060866a YeoWSSaptoroAKumarPAdaptive soft sensor development for non-gaussian and nonlinear processesInd. Eng. Chem. Res.20195820680206911:CAS:528:DC%2BC1MXhvFOrurrI10.1021/acs.iecr.9b03821 YeoWSSaptoroAKumarPDevelopment of adaptive soft sensor using locally weighted kernel partial least square modelChem. Prod. Process. Model.201710.1515/cppm-2017-0022 Cerjak, H. (Taylor & Francis, 2009). YeoWSSaptoroAKumarPMissing data treatment for locally weighted partial least square-based modelling: A comparative studyAsia-Pac. J. Chem. Eng.202015e24221:CAS:528:DC%2BB3cXivFKgtbo%3D10.1002/apj.2422 NguJCYYeoCA Comparative study of different kernel functions applied to LW-KPLS model for nonlinear processesBiointerface. Res. Appl. Chem.20221318410.33263/BRIAC132.184 PalaniSLiongS-YTkalichPAn ANN application for water quality forecastingMar. Pollut. Bull.200856158615971:CAS:528:DC%2BD1cXhtVGltbnK10.1016/j.marpolbul.2008.05.02118635240 VeerasamyRValidation of QSAR models-strategies and importanceInt. J. Drug Des. Discov20113511519 GuimarãesACFLapaCMFFuzzy FMEA applied to PWR chemical and volume control systemProg. Nucl. Energy.20044419121310.1016/S0149-1970(04)90010-8 PervezMNSustainable fashion: Design of the experiment assisted machine learning for the environmental-friendly resin finishing of cotton fabricHeliyon.20239e128831:CAS:528:DC%2BB3sXhsVaisL0%3D10.1016/j.heliyon.2023.e12883366915439860286 PandaPKGangwarAThiteAGOptimization of Nylon 6 electrospun nanofiber diameter in needle-less wire electrode using central composite design and response surface methodologyJ. Ind. Text.2021517279S7292S1:CAS:528:DC%2BB38XitlOms7bK10.1177/15280837211058213 YousefiSHTangCTafreshiHVPourdeyhimiBEmpirical model to simulate morphology of electrospun polycaprolactone matsJ. Appl. Polym.2019136482421:CAS:528:DC%2BC1MXhtlyisLbJ10.1002/app.48242 KhajehsharifiHPourbasheerETavallaliHSarviSSadeghiMThe comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samplesArab. J. Chem.201710S3451S34581:CAS:528:DC%2BC2cXktlGjsrk%3D10.1016/j.arabjc.2014.02.006 GuoYResearch progress, models and simulation of electrospinning technology: A reviewJ. Mater. Sci.202257581042022JMatS..57...58G1:CAS:528:DC%2BB3MXitlSmsrrN10.1007/s10853-021-06575-w34658418 TalukderMEChitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous 36431_CR46 M Kano (36431_CR50) 2013; 46 Y Guo (36431_CR34) 2022; 57 WS Yeo (36431_CR33) 2017 SH Yousefi (36431_CR37) 2019; 136 S Palani (36431_CR59) 2008; 56 ALM Levada (36431_CR49) 2020; 135 C Wang (36431_CR35) 2006; 39 36431_CR52 MN Pervez (36431_CR47) 2022; 12 C Wang (36431_CR36) 2008; 49 H Ma (36431_CR9) 2012; 1 VR Viana (36431_CR39) 2020; 8 MN Pervez (36431_CR15) 2018; 11 MN Pervez (36431_CR5) 2022; 1 MN Pervez (36431_CR48) 2020; 262 X-H Qin (36431_CR10) 2006; 102 J Xue (36431_CR3) 2017; 50 K Hazama (36431_CR29) 2015; 146 PK Panda (36431_CR21) 2021; 51 MN Pervez (36431_CR12) 2022; 47 Z Li (36431_CR25) 2022; 133 P Škrabánek (36431_CR54) 2021; 9 MN Pervez (36431_CR8) 2018; 8 36431_CR42 D Visser (36431_CR26) 2023; 11 36431_CR23 ME Talukder (36431_CR6) 2022; 12 R Veerasamy (36431_CR58) 2011; 3 H Khajehsharifi (36431_CR27) 2017; 10 MN Pervez (36431_CR24) 2023 F Shafiq (36431_CR14) 2018; 25 K Thirugnanasambandham (36431_CR40) 2016; 14 K Nasouri (36431_CR20) 2012; 126 MN Pervez (36431_CR7) 2018; 8 M Ziabari (36431_CR38) 2010; 27 H Kaneko (36431_CR57) 2021; 35 WS Yeo (36431_CR53) 2021; 28 ACF Guimarães (36431_CR55) 2004; 44 Y Meng (36431_CR22) 2020; 17 WS Yeo (36431_CR45) 2020; 15 A Nasonova (36431_CR30) 2022; 411 JCY Ngu (36431_CR32) 2022; 13 36431_CR56 MN Pervez (36431_CR28) 2023; 9 MN Morshed (36431_CR13) 2020; 10 H He (36431_CR19) 2020; 194 L Lin (36431_CR16) 2022; 12 TF Thien (36431_CR44) 2022; 209 X Wang (36431_CR4) 2016; 12 R Ghelich (36431_CR18) 2019; 166 N Amiri (36431_CR41) 2018; 5 T Khatti (36431_CR17) 2019; 31 WS Yeo (36431_CR43) 2019; 58 36431_CR2 36431_CR1 ME Talukder (36431_CR11) 2021; 9 S Yang (36431_CR51) 2022; 52 X Zhang (36431_CR31) 2017; 104 |
References_xml | – reference: YeoWSSaptoroAKumarPDevelopment of adaptive soft sensor using locally weighted kernel partial least square modelChem. Prod. Process. Model.201710.1515/cppm-2017-0022 – reference: KanoMFujiwaraKVirtual sensing technology in process industries: Trends and challenges revealed by recent industrial applicationsJ. Chem. Eng. Jpn.2013461171:CAS:528:DC%2BC3sXmsVGjurc%3D10.1252/jcej.12we167 – reference: WangCHsuC-HHwangIHScaling laws and internal structure for characterizing electrospun poly[(R)-3-hydroxybutyrate] fibersPolymer200849418841951:CAS:528:DC%2BD1cXhtVOnt7rL10.1016/j.polymer.2008.07.033 – reference: ZiabariMMottaghitalabVHaghiAKA new approach for optimization of electrospun nanofiber formation processKorean. J. Chem. Eng.2010273403541:CAS:528:DC%2BC3cXjt1egt7o%3D10.1007/s11814-009-0309-1 – reference: GhelichRJahannamaMRAbdizadehHTorknikFSVaeziMRCentral composite design (CCD)-response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibersCompos. B. Eng.20191665275411:CAS:528:DC%2BC1MXktlaqtbg%3D10.1016/j.compositesb.2019.01.094 – reference: ŠkrabánekPMarekJPozdílkováABoscovich fuzzy regression lineMathematics2021968510.3390/math9060685 – reference: QinX-HWangS-YFiltration properties of electrospinning nanofibersJ. Appl. Polym. Sci.2006102128512901:CAS:528:DC%2BD28Xpt1artb4%3D10.1002/app.24361 – reference: NguJCYYeoCA Comparative study of different kernel functions applied to LW-KPLS model for nonlinear processesBiointerface. Res. Appl. Chem.20221318410.33263/BRIAC132.184 – reference: MorshedMNStatistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial designSci. Rep.202010161332020NatSR..1016133M1:CAS:528:DC%2BB3cXhvFOgsr3P10.1038/s41598-020-72401-z329993007528022 – reference: YeoWSSaptoroAKumarPMissing data treatment for locally weighted partial least square-based modelling: A comparative studyAsia-Pac. J. Chem. Eng.202015e24221:CAS:528:DC%2BB3cXivFKgtbo%3D10.1002/apj.2422 – reference: PervezMNStyliosGKAn experimental approach to the synthesis and optimisation of a ‘green’ nanofibreNanomaterials201883831:CAS:528:DC%2BC1cXhtlOmt7nK10.3390/nano8060383298490136027442 – reference: HazamaKKanoMCovariance-based locally weighted partial least squares for high-performance adaptive modelingChemom. Intell. Lab. Syst.201514655621:CAS:528:DC%2BC2MXosFKmsbg%3D10.1016/j.chemolab.2015.05.007 – reference: VisserDElectrospinning of collagen: Enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structureJ. Mater. Chem. B202311220722181:CAS:528:DC%2BB3sXjtFajtL4%3D10.1039/D2TB02602C36786208 – reference: XueJXieJLiuWXiaYElectrospun nanofibers: New concepts, materials, and applicationsAcc. Chem. Res.201750197619871:CAS:528:DC%2BC2sXht1Ohur3O10.1021/acs.accounts.7b00218287775356589094 – reference: PervezMNStyliosGKLiangYOuyangFCaiYLow-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradationJ. Clean. Prod.20202621213011:CAS:528:DC%2BB3cXmsV2rurc%3D10.1016/j.jclepro.2020.121301 – reference: PervezMNOne-step fabrication of novel polyethersulfone-based composite electrospun nanofiber membranes for food industry wastewater treatmentMembranes2022124131:CAS:528:DC%2BB38XhtFeqtb%2FI10.3390/membranes12040413354483839028427 – reference: YousefiSHTangCTafreshiHVPourdeyhimiBEmpirical model to simulate morphology of electrospun polycaprolactone matsJ. Appl. Polym.2019136482421:CAS:528:DC%2BC1MXhtlyisLbJ10.1002/app.48242 – reference: Yeo, W. S., Chan, M. K. & Bukhari, N. A. In Intelligent Computing & Optimization. (eds Vasant, P., Zelinka, I. & Weber, G-W.) 927–937 (Springer International Publishing). – reference: ThirugnanasambandhamKSivakumarVPreparation of chitosan based nanofibers: Optimization and modelingInt. J. Chem. React.2016142832881:CAS:528:DC%2BC2sXmtF2nt7o%3D10.1515/ijcre-2015-0029 – reference: TalukderMEAg nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metalsSci. Rep.20221258142022NatSR..12.5814T1:CAS:528:DC%2BB38Xpt1Wrsbc%3D10.1038/s41598-022-09802-9353881158986829 – reference: TalukderMEChitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solutionJ. Environ. Chem. Eng.202191066931:CAS:528:DC%2BB3MXisVamurfP10.1016/j.jece.2021.106693 – reference: YeoWSLauWJPredicting the whiteness index of cotton fabric with a least squares modelCellulose202128884188541:CAS:528:DC%2BB38XhtlGrtLc%3D10.1007/s10570-021-04096-y – reference: PervezMNStyliosGKInvestigating the synthesis and characterization of a novel “green” H2O2-assisted, water-soluble chitosan/polyvinyl alcohol nanofiber for environmental end usesNanomaterials201883951:CAS:528:DC%2BC1cXhtlOmtL%2FF10.3390/nano8060395298651986027504 – reference: KhattiTNaderi-ManeshHKalantarSMApplication of ANN and RSM techniques for modeling electrospinning process of polycaprolactoneNeural. Comput. Appl.20193123924810.1007/s00521-017-2996-6 – reference: VianaVRFerreiraWHAzeroEGDiasMLAndradeCTOptimization of the electrospinning conditions by Box–Behnken design to prepare poly (vinyl alcohol)/chitosan crosslinked nanofibersJ. Mater. Sci. Chem. Eng.20208131:CAS:528:DC%2BB3cXhvVejtLzF10.4236/msce.2020.84002 – reference: PervezMNElectrospun nanofiber membranes for the control of micro/nanoplastics in the environmentWater. Emerg. Contam. Nanoplastics.202211010.20517/wecn.2022.05 – reference: AmiriNMoradiATabasiSASMovaffaghJModeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodologyMater. Res. Express201850454042018MRE.....5d5404A1:CAS:528:DC%2BC1cXhvValtb7L10.1088/2053-1591/aaba1d – reference: ShafiqFStructural relationships and optimization of resin-finishing parameters using the Taguchi approachCellulose201825617561901:CAS:528:DC%2BC1cXhtl2gsL%2FM10.1007/s10570-018-1957-2 – reference: PalaniSLiongS-YTkalichPAn ANN application for water quality forecastingMar. Pollut. Bull.200856158615971:CAS:528:DC%2BD1cXhtVGltbnK10.1016/j.marpolbul.2008.05.02118635240 – reference: Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H. & Bechelany, M. in Handbook of Nanofibers (eds Barhoum, A. et al.) 1–42 (Springer International Publishing, 2018). – reference: PandaPKGangwarAThiteAGOptimization of Nylon 6 electrospun nanofiber diameter in needle-less wire electrode using central composite design and response surface methodologyJ. Ind. Text.2021517279S7292S1:CAS:528:DC%2BB38XitlOms7bK10.1177/15280837211058213 – reference: NasonovaALevyGJRinotOEshelGBorisoverMOrganic matter in aqueous soil extracts: Prediction of compositional attributes from bulk soil mid-IR spectra using partial least square regressionsGeoderma20224111156782022Geode.411k5678N1:CAS:528:DC%2BB38XhtVCht7jL10.1016/j.geoderma.2021.115678 – reference: WangXHsiaoBSElectrospun nanofiber membranesCurr. Opin. Chem. Eng.201612628110.1016/j.coche.2016.03.001 – reference: HeHWangYFarkasBNagyZKMolnarKAnalysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodologyMater. Des.20201941089021:CAS:528:DC%2BB3cXhtlCqsbvK10.1016/j.matdes.2020.108902 – reference: VeerasamyRValidation of QSAR models-strategies and importanceInt. J. Drug Des. Discov20113511519 – reference: PervezMNPrediction of the diameter of biodegradable electrospun nanofiber membranes: An integrated framework of taguchi design and machine learningJ. Polym. Environ.202310.1007/s10924-023-02837-7 – reference: Yeo, W. S. In 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). 1–5 (IEEE). – reference: Cerjak, H. (Taylor & Francis, 2009). – reference: LevadaALMParametric PCA for unsupervised metric learningPattern. Recogn. Lett.20201354254302020PaReL.135..425L10.1016/j.patrec.2020.05.011 – reference: LiZElectrospun octenylsuccinylated starch-pullulan nanofiber mats: Adsorption for the odor of oyster peptides and structural characterizationFood Hydrocolloids20221331079921:CAS:528:DC%2BB38XitVCms7bI10.1016/j.foodhyd.2022.107992 – reference: YeoWSSaptoroAKumarPAdaptive soft sensor development for non-gaussian and nonlinear processesInd. Eng. Chem. Res.20195820680206911:CAS:528:DC%2BC1MXhvFOrurrI10.1021/acs.iecr.9b03821 – reference: GuoYResearch progress, models and simulation of electrospinning technology: A reviewJ. Mater. Sci.202257581042022JMatS..57...58G1:CAS:528:DC%2BB3MXitlSmsrrN10.1007/s10853-021-06575-w34658418 – reference: NasouriKBahrambeygiHRabbiAShoushtariAMKaflouAModeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networksJ. Appl. Polym. Sci.20121261271351:CAS:528:DC%2BC38XksV2js7c%3D10.1002/app.36726 – reference: PervezMNFabrication of polyethersulfone/polyacrylonitrile electrospun nanofiber membrane for food industry wastewater treatmentJ. Water. Process. Eng.20224710283810.1016/j.jwpe.2022.102838 – reference: PervezMNShafiqFSarwarZJilaniMMCaiYMulti-response optimization of resin finishing by using a taguchi-based grey relational analysisMaterials.2018114262018Mate...11..426P1:CAS:528:DC%2BC1MXpvVKqsLY%3D10.3390/ma11030426295437245873005 – reference: MaHHsiaoBSChuBUltrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in waterACS Macro Lett.201212132161:CAS:528:DC%2BC3MXhs1GrurrE10.1021/mz200047q35578482 – reference: KhajehsharifiHPourbasheerETavallaliHSarviSSadeghiMThe comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samplesArab. J. Chem.201710S3451S34581:CAS:528:DC%2BC2cXktlGjsrk%3D10.1016/j.arabjc.2014.02.006 – reference: Toscano, J. D., Li, Z., Segura, L. J. & Sun, H. In ASME 2020 15th International Manufacturing Science and Engineering Conference. – reference: ThienTFYeoWSA comparative study between PCR, PLSR, and LW-PLS on the predictive performance at different data splitting ratiosChem. Eng. Commun.2022209143914561:CAS:528:DC%2BB3MXhs1GrtbjE10.1080/00986445.2021.1957853 – reference: ZhangXKanoMLiYLocally weighted kernel partial least squares regression based on sparse nonlinear features for virtual sensing of nonlinear time-varying processesComput. Chem. Eng.20171041641711:CAS:528:DC%2BC2sXntVSrsLY%3D10.1016/j.compchemeng.2017.04.014 – reference: WangCHsuC-HLinJ-HScaling laws in electrospinning of polystyrene solutionsMacromolecules200639766276722006MaMol..39.7662W1:CAS:528:DC%2BD28XhtVCmurbK10.1021/ma060866a – reference: Vempati, S., Vedaldi, A., Zisserman, A. & Jawahar, C. In British Machine Vision Conference, BMVC 2010. 1–11. – reference: Neill, S. P. & Hashemi, M. R. In Fundamentals of Ocean Renewable Energy (eds Neill, S. P. & Reza Hashemi, M.) 193–235 (Academic Press, 2018). – reference: KanekoHEstimating the reliability of predictions in locally weighted partial least-squares modelingJ. Chemom.202135e33641:CAS:528:DC%2BB3MXhsVOmsLfE10.1002/cem.3364 – reference: PervezMNSustainable fashion: Design of the experiment assisted machine learning for the environmental-friendly resin finishing of cotton fabricHeliyon.20239e128831:CAS:528:DC%2BB3sXhsVaisL0%3D10.1016/j.heliyon.2023.e12883366915439860286 – reference: YangSLiHGouXBianCShaoQOptimized Bayesian adaptive resonance theory mapping model using a rational quadratic kernel and Bayesian quadratic regularizationAppl. Intell.2022527777779210.1007/s10489-021-02883-5 – reference: GuimarãesACFLapaCMFFuzzy FMEA applied to PWR chemical and volume control systemProg. Nucl. Energy.20044419121310.1016/S0149-1970(04)90010-8 – reference: MengYMulti-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodologyMath. Biosci. Eng.2020177411742710.3934/mbe.2020379333789031486.74114 – reference: LinLSustainable traditional grass cloth fiber dyeing using the Taguchi L16 (4^4) orthogonal designSci. Rep.202212138332022NatSR..1213833L1:CAS:528:DC%2BB38XitFOltb7K10.1038/s41598-022-18213-9359740319381779 – volume: 135 start-page: 425 year: 2020 ident: 36431_CR49 publication-title: Pattern. Recogn. Lett. doi: 10.1016/j.patrec.2020.05.011 – volume: 136 start-page: 48242 year: 2019 ident: 36431_CR37 publication-title: J. Appl. Polym. doi: 10.1002/app.48242 – volume: 13 start-page: 184 year: 2022 ident: 36431_CR32 publication-title: Biointerface. Res. Appl. Chem. doi: 10.33263/BRIAC132.184 – volume: 58 start-page: 20680 year: 2019 ident: 36431_CR43 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b03821 – volume: 28 start-page: 8841 year: 2021 ident: 36431_CR53 publication-title: Cellulose doi: 10.1007/s10570-021-04096-y – volume: 102 start-page: 1285 year: 2006 ident: 36431_CR10 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.24361 – volume: 209 start-page: 1439 year: 2022 ident: 36431_CR44 publication-title: Chem. Eng. Commun. doi: 10.1080/00986445.2021.1957853 – volume: 10 start-page: S3451 year: 2017 ident: 36431_CR27 publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2014.02.006 – volume: 57 start-page: 58 year: 2022 ident: 36431_CR34 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06575-w – volume: 9 start-page: 685 year: 2021 ident: 36431_CR54 publication-title: Mathematics doi: 10.3390/math9060685 – volume: 8 start-page: 395 year: 2018 ident: 36431_CR7 publication-title: Nanomaterials doi: 10.3390/nano8060395 – volume: 9 start-page: 106693 year: 2021 ident: 36431_CR11 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106693 – volume: 411 start-page: 115678 year: 2022 ident: 36431_CR30 publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115678 – volume: 47 start-page: 102838 year: 2022 ident: 36431_CR12 publication-title: J. Water. Process. Eng. doi: 10.1016/j.jwpe.2022.102838 – volume: 14 start-page: 283 year: 2016 ident: 36431_CR40 publication-title: Int. J. Chem. React. doi: 10.1515/ijcre-2015-0029 – volume: 194 start-page: 108902 year: 2020 ident: 36431_CR19 publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108902 – volume: 166 start-page: 527 year: 2019 ident: 36431_CR18 publication-title: Compos. B. Eng. doi: 10.1016/j.compositesb.2019.01.094 – volume: 56 start-page: 1586 year: 2008 ident: 36431_CR59 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2008.05.021 – volume: 146 start-page: 55 year: 2015 ident: 36431_CR29 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.05.007 – ident: 36431_CR42 doi: 10.1016/B978-0-12-810448-4.00008-2 – volume: 11 start-page: 2207 year: 2023 ident: 36431_CR26 publication-title: J. Mater. Chem. B doi: 10.1039/D2TB02602C – volume: 52 start-page: 7777 year: 2022 ident: 36431_CR51 publication-title: Appl. Intell. doi: 10.1007/s10489-021-02883-5 – volume: 31 start-page: 239 year: 2019 ident: 36431_CR17 publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-017-2996-6 – volume: 46 start-page: 1 year: 2013 ident: 36431_CR50 publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.12we167 – volume: 1 start-page: 213 year: 2012 ident: 36431_CR9 publication-title: ACS Macro Lett. doi: 10.1021/mz200047q – volume: 15 start-page: e2422 year: 2020 ident: 36431_CR45 publication-title: Asia-Pac. J. Chem. Eng. doi: 10.1002/apj.2422 – volume: 10 start-page: 16133 year: 2020 ident: 36431_CR13 publication-title: Sci. Rep. doi: 10.1038/s41598-020-72401-z – volume: 12 start-page: 62 year: 2016 ident: 36431_CR4 publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2016.03.001 – volume: 104 start-page: 164 year: 2017 ident: 36431_CR31 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.04.014 – ident: 36431_CR46 doi: 10.1109/GECOST52368.2021.9538723 – ident: 36431_CR23 – year: 2017 ident: 36431_CR33 publication-title: Chem. Prod. Process. Model. doi: 10.1515/cppm-2017-0022 – volume: 8 start-page: 13 year: 2020 ident: 36431_CR39 publication-title: J. Mater. Sci. Chem. Eng. doi: 10.4236/msce.2020.84002 – volume: 3 start-page: 511 year: 2011 ident: 36431_CR58 publication-title: Int. J. Drug Des. Discov – volume: 17 start-page: 7411 year: 2020 ident: 36431_CR22 publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2020379 – ident: 36431_CR2 – volume: 262 start-page: 121301 year: 2020 ident: 36431_CR48 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121301 – ident: 36431_CR56 – volume: 35 start-page: e3364 year: 2021 ident: 36431_CR57 publication-title: J. Chemom. doi: 10.1002/cem.3364 – ident: 36431_CR52 – volume: 44 start-page: 191 year: 2004 ident: 36431_CR55 publication-title: Prog. Nucl. Energy. doi: 10.1016/S0149-1970(04)90010-8 – volume: 9 start-page: e12883 year: 2023 ident: 36431_CR28 publication-title: Heliyon. doi: 10.1016/j.heliyon.2023.e12883 – volume: 133 start-page: 107992 year: 2022 ident: 36431_CR25 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2022.107992 – volume: 51 start-page: 7279S year: 2021 ident: 36431_CR21 publication-title: J. Ind. Text. doi: 10.1177/15280837211058213 – volume: 12 start-page: 13833 year: 2022 ident: 36431_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-022-18213-9 – volume: 12 start-page: 413 year: 2022 ident: 36431_CR47 publication-title: Membranes doi: 10.3390/membranes12040413 – volume: 39 start-page: 7662 year: 2006 ident: 36431_CR35 publication-title: Macromolecules doi: 10.1021/ma060866a – ident: 36431_CR1 doi: 10.1007/978-3-319-42789-8_54-1 – volume: 8 start-page: 383 year: 2018 ident: 36431_CR8 publication-title: Nanomaterials doi: 10.3390/nano8060383 – volume: 49 start-page: 4188 year: 2008 ident: 36431_CR36 publication-title: Polymer doi: 10.1016/j.polymer.2008.07.033 – volume: 50 start-page: 1976 year: 2017 ident: 36431_CR3 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00218 – volume: 12 start-page: 5814 year: 2022 ident: 36431_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-022-09802-9 – volume: 5 start-page: 045404 year: 2018 ident: 36431_CR41 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaba1d – volume: 1 start-page: 10 year: 2022 ident: 36431_CR5 publication-title: Water. Emerg. Contam. Nanoplastics. doi: 10.20517/wecn.2022.05 – volume: 126 start-page: 127 year: 2012 ident: 36431_CR20 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.36726 – volume: 27 start-page: 340 year: 2010 ident: 36431_CR38 publication-title: Korean. J. Chem. Eng. doi: 10.1007/s11814-009-0309-1 – volume: 25 start-page: 6175 year: 2018 ident: 36431_CR14 publication-title: Cellulose doi: 10.1007/s10570-018-1957-2 – year: 2023 ident: 36431_CR24 publication-title: J. Polym. Environ. doi: 10.1007/s10924-023-02837-7 – volume: 11 start-page: 426 year: 2018 ident: 36431_CR15 publication-title: Materials. doi: 10.3390/ma11030426 |
SSID | ssj0000529419 |
Score | 2.534467 |
Snippet | Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system... Abstract Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9679 |
SubjectTerms | 639/301 639/301/357 Design of experiments Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Prediction models Regression analysis Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t20BRmJG0SNYztOTghQqwoJTkXam-VnQWKzS7J74MJvZ8bxploevSaO4nge_sYzmY-QV0LEWvhGgqXFqgQvyUrbGlMax6XhSnmR6Hw-fW4uvoiPC7nIB25jLqvc-cTkqP3K4Rn5KYQGDYQGlazfrn-UyBqF2dVMoXGb3MHWZVjSpRZqPmPBLJZgXf5XpuLt6Qj7Ff5TVvOSw17MSrW3H6W2_f_Cmn-XTP6RN03b0fkDcj_jSPpuEvxDciv0j8jdiVny52Py62yitxnX2572pgcVsmGgy7CE6LgPFLRiiYUwdD1gpgalQ7EE_ooaCusB4XLwdJjqZwMdt0M0LtCJbjq9gpre02WqxAw0U0_Aw7lD-RNyeX52-eGizFQLpZOCbUqIOlg0QTEnW6aMaL210deq6YS1HcKU1sXoAwdAIbDFXI0JQIA2XcVrz_hTctCv-nBIaGyibFwXpeVGhK5qjZAdoKzIHbgW1RaE7dZbu9yGHNkwvuuUDuetnmSkQUY6yUirgryen1lPTThuHP0exTiPxAba6cJquNLZHrWVnYgQbToWGmHh-7znoJsMFtM1HWcFOdkpgc5WPeprHSzIy_k22CMmWUB4q20ao2qJwKcgzyadmWfCFbhPgNwFafe0aW-q-3f6b19Tz2_AgQqQnCzIm53iXc_r_2txdPNnHJN7NdoCcjHJE3KwGbbhOYCsjX2RLOk37FEkwA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIiQuiDeBgozEDQLr2I7jA0KAWlVI5dRKvVl-FqRudsnuSvTCb2dsZxctLJy4JrbizHzj-UZjzwC84Dw23LcCLS1OatwlaW07Y2rjmDBMSs9zO5-Tz-3xGf90Ls73YN3uaBTgYmdol_pJnQ2Xr79_u3qHBv-2XBnv3izQCaWLYg2rGTpYWstrcB09k0yGejLS_VLru1GcqvHuzO6pW_4pl_HfxT3_PEL5Wx41u6ej23Br5JXkfQHCHdgL_V24UTpNXt2DH4el3c1ivupJb3qElA0DmYYpRst9IIiSaToYQ-ZDytwkbZF0JP6CGIKYxPA5eDKU87SBLFZDNC6Q0n46f4KY3pNpPpkZyNiKAiePFcvvw-nR4enH43psvVA7wemyxiiERhMkdaKj0vDOWxt9I1vFrVWJtnQuRh8YEgyeSs41KSGIVEdNWOMpewD7_awPj4DENorWqSgsMzyoSWe4UMi6InO41ciuArqWt3ZjWfLUHeNS5_Q463TRkUYd6awjLSt4uZkzL0U5_jn6Q1LjZmQqqJ0fzIYLPdqntkLxiNGno6HlFv_Pe4ZYpShM1ypGKzhYg0CvQaoxXG0xXEVYVfB88xrtMyVdUHmzVR4jG5GIUAUPC2Y2K2ESt1Ok4BV0W2jaWur2m_7rl1wDHHmhRGYnKni1Bt6vdf1dFo__hyyewM0mWUzq4CQOYH85rMJTpGZL-yzb20_m0DTy priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WFcGL-LZ1lQjetHHSefZRh10WQU8r7C3kuQpOz9Azc_Dib7eSfsjoKnjtJHQ69VXyVVelCuAV56nhQQrUtLSocZektdPW1tYzYZlSgZdyPh8_yfPP_MOluDyCZroLU4L2S0rLsk1P0WFvt3jQ5MtgDasZHqK0VjfgZk7dnlG9lMv5v0r2XHHajvdjFkxfM_TgDCqp-q_jl3-GSf7mKy1H0NlduDNyR_JumO09OIrdfbg1VJP8_gB-nA4lbbabfUc62yFsXOzJKq7QIu4iQSSscvAL2fTZO5MlQnLY-xWxBFcBTeQYSD_EzEay3ffJ-kiGEtPlFcR2gaxK9GUkY7kJHDxmJX8IF2enF8vzeiyvUHvB6a5GS4MmGxX1QlNluQ7OpdAo2XLn2kxNtE8pRIYkgue0ck12-iGdaResCZQ9guNu3cUnQJJMQvo2Cccsj-1CWy5aZFaJedxOlK6ATutt_Jh6PFfA-GaKC5xpM8jIoIxMkZFRFbyex2yGxBv_7P0-i3HumZNmlwfr_sqMIDJOtDyhhelplNzh94XAEI8UF9PLltEKTiYQmFGTtwZNUokmKcKqgpdzM-pgdqyg8Nb70kc1IpOdCh4PmJlnwhRumUizK9AHaDqY6mFL9_VLyfON3E8hexMVvJmA92tef1-Lp__X_RncbrJu5HpM4gSOd_0-PkeitXMvimb9BAhzIn4 priority: 102 providerName: Springer Nature |
Title | Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach |
URI | https://link.springer.com/article/10.1038/s41598-023-36431-7 https://www.ncbi.nlm.nih.gov/pubmed/37322139 https://www.proquest.com/docview/2826998052 https://www.proquest.com/docview/2827252426 https://pubmed.ncbi.nlm.nih.gov/PMC10272235 https://doaj.org/article/b594f828c1e64b658dd3a371acec6931 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCIkL4s2WEhmJG6war-21fUyjVFWkVgiKlJvlJyCRbZTHgQu_vWN7ExqeFy4bade7sWa-8Xwjj2cQes1YbJhvOVhaHNawSpLaSmNq4yg3VAjPcjuf84v27CObzvjsRquvlBNWygMXwR1brliEsMCR0DIL_tJ7Ch8hxgXXqnyCugGfdyOYKlW9G8WI6k_JDKk8XoGnSqfJGlpT8MKkFnueKBfs_x3L_DVZ8qcd0-yITh-g-z2DxKMy84foVugeobulp-S3x-j7pDS2WS02He5MB-CxYYnnYQ5xcRcw4GGeUmDwYpn2aJJecEp-_4QNBvRBoBw8XpbM2YBXm2UEGeDSaDr_BTadx_Ocgxlw33QCXu5rkz9Bl6eTy_FZ3TdZqB1nZF1DvEGiCYI4LokwTHpro29Eq5i1KhEU6WL0gQKVYKm4XJO2_oDUqCFtPKFP0UF31YXnCMc28tapyC01LKihNIwr4FeROlhUhKwQ2cpbu74AeeqD8VXnjXAqddGRBh3prCMtKvRm986ilN_46-iTpMbdyFQ6O98AQOkeUPpfgKrQ0RYEurfnlYbAtIXAFGBVoVe7x2CJaXsFlHe1yWNEwxPlqdCzgpndTKiAhRPIdoXkHpr2prr_pPvyOVf7BgYogMPxCr3dAu_HvP4si8P_IYsX6F6TLCan7xyhg_VyE14CCVvbAbotZmKA7oxG0w9T-D2ZXLx7D3fH7XiQbRGu50xeA-yiMw8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJniBaHNu5PCDEoFPHtgqhIu3NcnwZSDQtaSu0F_4R_5FjJ-lULnvba-Okjs_nc8k5Ph_Ac85dyk0mcKe5JEYtSeOqUCpWmgnF8tzwQOdzPM5Gn_mHE3GyBb_6szC-rLLXiUFRm5n238h3MTTIMDRIRPpm_j32rFE-u9pTaLSwOLRnPzBkW7w-eI_yfZGm-8PJu1HcsQrEWnC6jNHBpk7ZnGpR0FzxwlSVM2melbyqSm-RC-2csQxtJ_fd1FKf60IrXiYsNZThY6_ANmcYyQxge284_vhp_VHHp804LbvDOQkrdhdoIP0htpTFDI0_jfMNAxh4Av7l3P5do_lHojbYv_2bcKNzXMnbFmm3YMvWt-FqS2V5dgd-Dls-ncV8VZNa1YjZyjZkaqcYjteWIAynvvKGzBufGvJwIL7m_pQoggLA-Nwa0rQFu5YsVo1T2pKW3zr8BVG1IdNQ-mlJx3WBN3ct0e_C5DKkcA8G9ay2D4C4zIlMl05UTHFbJoXiokS3zjGNuiwvIqD9ekvd9T339BvfZMi_s0K2MpIoIxlkJPMIXq7vmbddPy4cvefFuB7pO3aHH2bNqewUgKxEyR2Gt5rajFf4fsYw3AwUF1NnJaMR7PQgkJ0aWchz0EfwbH0ZFYDP6qDwZqswJk-F97QiuN9iZj0TlqO-Rh8_gmIDTRtT3bxSf_0Smoyj45mj6ygieNUD73xe_1-Lhxe_xlO4NpocH8mjg_HhI7ie-n3hiaDEDgyWzco-Rg9vWT3p9hUBeck7-TfKIGBD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaKNYztODggB7aqlUHEo0t4sx4-CxGaX7K5QL_wv_h1jJ9lqefTWa-IkjuftGc8H8Ixzn3NbCJQ0n6WoJWlal1qn2jChmZSWRzifj0fF_mf-fiImW_BrOAsTyioHnRgVtZ2ZsEc-wtCgwNAgE_nI92URn3bHr-ff04AgFTKtA5xGxyKH7vQHhm-LVwe7SOvneT7eO363n_YIA6kRnC5TdLap105SI0oqNS9tXXuby6LidV0F61wa761jaEd56KyWh7wXWvQqY7mlDF97CS5LJmgQMTmR6-2dkEDjtOqP6WSsHC3QVIbjbDlLGboBNJUbpjAiBvzLzf27WvOPlG20hOMbcL13YcmbjuduwpZrbsGVDtTy9Db83OuQdRbzVUMa3SD31q4lUzfFwLxxBBlyGmpwyLwNSaLAGCRU358QTZAUGKk7S9qudNeRxar12jjSIV3HTxDdWDKNRaCO9KgX-HDfHP0OHF8EDe7CdjNr3H0gvvCiMJUXNdPcVVmpuajQwfPMoFaTZQJ0WG9l-g7oAYjjm4qZeFaqjkYKaaQijZRM4MX6mXnX_-Pc0W8DGdcjQ-_ueGHWnqheFahaVNxjoGuoK3iN_2ctQ7GguJimqBhNYGdgAtUrlIU6Y_8Enq5voyoI-R0k3mwVx8hcBJ8rgXsdz6xnwiRqbvT2Eyg3uGljqpt3mq9fYrtxdEElOpEigZcD453N6_9r8eD833gCV1F-1YeDo8OHcC0PYhEQocQObC_blXuErt6yfhyFioC6YCH-DVqwYxM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+nanofiber+membrane+diameter+prediction+using+a+combined+response+surface+methodology+and+machine+learning+approach&rft.jtitle=Scientific+reports&rft.au=Md.+Nahid+Pervez&rft.au=Wan+Sieng+Yeo&rft.au=Mst.+Monira+Rahman+Mishu&rft.au=Md.+Eman+Talukder&rft.date=2023-06-15&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-023-36431-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b594f828c1e64b658dd3a371acec6931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |