Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach

Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction model...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 9679 - 14
Main Authors Pervez, Md. Nahid, Yeo, Wan Sieng, Mishu, Mst. Monira Rahman, Talukder, Md. Eman, Roy, Hridoy, Islam, Md. Shahinoor, Zhao, Yaping, Cai, Yingjie, Stylios, George K., Naddeo, Vincenzo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error ( RMSE ), its mean absolute error ( MAE ), and its coefficient of determination ( R 2 ). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R 2 values that could be achieved, reaching 0.9989.
AbstractList Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R ). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R values that could be achieved, reaching 0.9989.
Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.
Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error ( RMSE ), its mean absolute error ( MAE ), and its coefficient of determination ( R 2 ). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R 2 values that could be achieved, reaching 0.9989.
Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.
Abstract Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system for providing a sustainable and effective electrospinning process by combining the design of experiments with machine learning prediction models. Specifically, in order to estimate the diameter of the electrospun nanofiber membrane, we developed a locally weighted kernel partial least squares regression (LW-KPLSR) model based on a response surface methodology (RSM). The accuracy of the model's predictions was evaluated based on its root mean square error (RMSE), its mean absolute error (MAE), and its coefficient of determination (R 2). In addition to principal component regression (PCR), locally weighted partial least squares regression (LW-PLSR), partial least square regression (PLSR), and least square support vector regression model (LSSVR), some of the other types of regression models used to verify and compare the results were fuzzy modelling and least square support vector regression model (LSSVR). According to the results of our research, the LW-KPLSR model performed far better than other competing models when attempting to forecast the membrane's diameter. This is made clear by the much lower RMSE and MAE values of the LW-KPLSR model. In addition, it offered the highest R2 values that could be achieved, reaching 0.9989.
ArticleNumber 9679
Author Pervez, Md. Nahid
Islam, Md. Shahinoor
Stylios, George K.
Zhao, Yaping
Naddeo, Vincenzo
Yeo, Wan Sieng
Cai, Yingjie
Mishu, Mst. Monira Rahman
Talukder, Md. Eman
Roy, Hridoy
Author_xml – sequence: 1
  givenname: Md. Nahid
  surname: Pervez
  fullname: Pervez, Md. Nahid
  organization: Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno
– sequence: 2
  givenname: Wan Sieng
  surname: Yeo
  fullname: Yeo, Wan Sieng
  organization: Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia
– sequence: 3
  givenname: Mst. Monira Rahman
  surname: Mishu
  fullname: Mishu, Mst. Monira Rahman
  organization: Faculty of Nutrition and Food Science, Patuakhali Science and Technology University
– sequence: 4
  givenname: Md. Eman
  surname: Talukder
  fullname: Talukder, Md. Eman
  organization: Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University
– sequence: 5
  givenname: Hridoy
  surname: Roy
  fullname: Roy, Hridoy
  organization: Department of Chemical Engineering, Bangladesh University of Engineering and Technology
– sequence: 6
  givenname: Md. Shahinoor
  surname: Islam
  fullname: Islam, Md. Shahinoor
  organization: Department of Chemical Engineering, Bangladesh University of Engineering and Technology
– sequence: 7
  givenname: Yaping
  surname: Zhao
  fullname: Zhao, Yaping
  organization: Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming
– sequence: 8
  givenname: Yingjie
  surname: Cai
  fullname: Cai, Yingjie
  email: yingjiecai@wtu.edu.cn
  organization: Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University
– sequence: 9
  givenname: George K.
  surname: Stylios
  fullname: Stylios, George K.
  email: g.stylios@hw.ac.uk
  organization: Research Institute for Flexible Materials, School of Textiles and Design, Heriot-Watt University
– sequence: 10
  givenname: Vincenzo
  surname: Naddeo
  fullname: Naddeo, Vincenzo
  email: vnaddeo@unisa.it
  organization: Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37322139$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpF-CALHHhEoj_JLZPCFUFKlXi0rvl2JNdV4kd7ASpl352ZndbaHuoL7bGv_f07Jm31VFMEarqPW0-04arL0XQVqu6YbzmneC0lq-qE9aItmacsaNH5-PqrJSbBlfLtKD6TXXMJdYp1yfV3cUIbsmpzGsk0cY0hB4ymWDqs41AfLATLFiZM_jglpAiWUuIG2KJS1MfIniSocwpFiBlzYN1gPJlm3wa0-aW2OjJZN0WSTKCzXEvnuecsPiuej3YscDZ_X5aXX-_uD7_WV_9-nF5_u2qdq2gS93Kjg4WJHWtotIK5ft-8Ex2WvS9brpWKTcMHrhUTDRCCNaJRmoudcOZp_y0ujzY-mRvzJzDZPOtSTaYfSHljbF5CW4E07daDIopR6ETPTp7zy2XFJ_lOs13Xl8PXvPaT-AdxCXb8Ynp05sYtmaT_hjaMMkYb9Hh071DTr9XKIuZQnEwjvjhaS2GKQRbho9A9OMz9CatOeJX7ahOa4VNRerD40j_sjy0GQF1ABx2umQYjAuL3TUTE4YRo5ndUJnDUBkcKrMfKiNRyp5JH9xfFPGDqCAcN5D_x35B9Rc1yOAE
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_105486
crossref_primary_10_3390_pharmaceutics16040471
crossref_primary_10_1016_j_jddst_2024_106520
crossref_primary_10_3390_w16131896
crossref_primary_10_1016_j_polymer_2024_127549
crossref_primary_10_1021_acsapm_4c00909
crossref_primary_10_3389_fbioe_2025_1493194
crossref_primary_10_3390_membranes14060120
crossref_primary_10_1038_s41598_023_47164_y
crossref_primary_10_1016_j_rineng_2024_102826
crossref_primary_10_1002_adem_202401353
crossref_primary_10_1021_acsfoodscitech_4c00226
crossref_primary_10_1080_00986445_2024_2321447
crossref_primary_10_1016_j_ijpharm_2024_125117
crossref_primary_10_3390_ma17010132
crossref_primary_10_1016_j_asoc_2024_111975
crossref_primary_10_1080_15440478_2024_2340065
crossref_primary_10_1016_j_scitotenv_2025_178411
crossref_primary_10_1016_j_rineng_2025_104422
crossref_primary_10_3390_nano15050339
crossref_primary_10_1016_j_scitotenv_2024_173999
crossref_primary_10_1007_s10853_024_09994_7
crossref_primary_10_1007_s12221_024_00486_8
crossref_primary_10_1016_j_jddst_2023_105128
Cites_doi 10.1016/j.patrec.2020.05.011
10.1002/app.48242
10.33263/BRIAC132.184
10.1021/acs.iecr.9b03821
10.1007/s10570-021-04096-y
10.1002/app.24361
10.1080/00986445.2021.1957853
10.1016/j.arabjc.2014.02.006
10.1007/s10853-021-06575-w
10.3390/math9060685
10.3390/nano8060395
10.1016/j.jece.2021.106693
10.1016/j.geoderma.2021.115678
10.1016/j.jwpe.2022.102838
10.1515/ijcre-2015-0029
10.1016/j.matdes.2020.108902
10.1016/j.compositesb.2019.01.094
10.1016/j.marpolbul.2008.05.021
10.1016/j.chemolab.2015.05.007
10.1016/B978-0-12-810448-4.00008-2
10.1039/D2TB02602C
10.1007/s10489-021-02883-5
10.1007/s00521-017-2996-6
10.1252/jcej.12we167
10.1021/mz200047q
10.1002/apj.2422
10.1038/s41598-020-72401-z
10.1016/j.coche.2016.03.001
10.1016/j.compchemeng.2017.04.014
10.1109/GECOST52368.2021.9538723
10.1515/cppm-2017-0022
10.4236/msce.2020.84002
10.3934/mbe.2020379
10.1016/j.jclepro.2020.121301
10.1002/cem.3364
10.1016/S0149-1970(04)90010-8
10.1016/j.heliyon.2023.e12883
10.1016/j.foodhyd.2022.107992
10.1177/15280837211058213
10.1038/s41598-022-18213-9
10.3390/membranes12040413
10.1021/ma060866a
10.1007/978-3-319-42789-8_54-1
10.3390/nano8060383
10.1016/j.polymer.2008.07.033
10.1021/acs.accounts.7b00218
10.1038/s41598-022-09802-9
10.1088/2053-1591/aaba1d
10.20517/wecn.2022.05
10.1002/app.36726
10.1007/s11814-009-0309-1
10.1007/s10570-018-1957-2
10.1007/s10924-023-02837-7
10.3390/ma11030426
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-36431-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_b594f828c1e64b658dd3a371acec6931
PMC10272235
37322139
10_1038_s41598_023_36431_7
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-5761fae71c5817a48dbbfd27694bb906588cffde378240444264079379032d13
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:17:28 EDT 2025
Thu Aug 21 18:36:59 EDT 2025
Fri Jul 11 06:21:47 EDT 2025
Wed Aug 13 08:42:14 EDT 2025
Thu Apr 03 07:13:27 EDT 2025
Tue Jul 01 04:24:52 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Fri Feb 21 02:37:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-5761fae71c5817a48dbbfd27694bb906588cffde378240444264079379032d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b594f828c1e64b658dd3a371acec6931
PMID 37322139
PQID 2826998052
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b594f828c1e64b658dd3a371acec6931
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10272235
proquest_miscellaneous_2827252426
proquest_journals_2826998052
pubmed_primary_37322139
crossref_citationtrail_10_1038_s41598_023_36431_7
crossref_primary_10_1038_s41598_023_36431_7
springer_journals_10_1038_s41598_023_36431_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Toscano, J. D., Li, Z., Segura, L. J. & Sun, H. In ASME 2020 15th International Manufacturing Science and Engineering Conference.
TalukderMEAg nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metalsSci. Rep.20221258142022NatSR..12.5814T1:CAS:528:DC%2BB38Xpt1Wrsbc%3D10.1038/s41598-022-09802-9353881158986829
KhattiTNaderi-ManeshHKalantarSMApplication of ANN and RSM techniques for modeling electrospinning process of polycaprolactoneNeural. Comput. Appl.20193123924810.1007/s00521-017-2996-6
MaHHsiaoBSChuBUltrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in waterACS Macro Lett.201212132161:CAS:528:DC%2BC3MXhs1GrurrE10.1021/mz200047q35578482
Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H. & Bechelany, M. in Handbook of Nanofibers (eds Barhoum, A. et al.) 1–42 (Springer International Publishing, 2018).
WangCHsuC-HHwangIHScaling laws and internal structure for characterizing electrospun poly[(R)-3-hydroxybutyrate] fibersPolymer200849418841951:CAS:528:DC%2BD1cXhtVOnt7rL10.1016/j.polymer.2008.07.033
PervezMNStyliosGKLiangYOuyangFCaiYLow-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradationJ. Clean. Prod.20202621213011:CAS:528:DC%2BB3cXmsV2rurc%3D10.1016/j.jclepro.2020.121301
Neill, S. P. & Hashemi, M. R. In Fundamentals of Ocean Renewable Energy (eds Neill, S. P. & Reza Hashemi, M.) 193–235 (Academic Press, 2018).
HazamaKKanoMCovariance-based locally weighted partial least squares for high-performance adaptive modelingChemom. Intell. Lab. Syst.201514655621:CAS:528:DC%2BC2MXosFKmsbg%3D10.1016/j.chemolab.2015.05.007
Vempati, S., Vedaldi, A., Zisserman, A. & Jawahar, C. In British Machine Vision Conference, BMVC 2010. 1–11.
GhelichRJahannamaMRAbdizadehHTorknikFSVaeziMRCentral composite design (CCD)-response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibersCompos. B. Eng.20191665275411:CAS:528:DC%2BC1MXktlaqtbg%3D10.1016/j.compositesb.2019.01.094
NasouriKBahrambeygiHRabbiAShoushtariAMKaflouAModeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networksJ. Appl. Polym. Sci.20121261271351:CAS:528:DC%2BC38XksV2js7c%3D10.1002/app.36726
PervezMNStyliosGKInvestigating the synthesis and characterization of a novel “green” H2O2-assisted, water-soluble chitosan/polyvinyl alcohol nanofiber for environmental end usesNanomaterials201883951:CAS:528:DC%2BC1cXhtlOmtL%2FF10.3390/nano8060395298651986027504
NasonovaALevyGJRinotOEshelGBorisoverMOrganic matter in aqueous soil extracts: Prediction of compositional attributes from bulk soil mid-IR spectra using partial least square regressionsGeoderma20224111156782022Geode.411k5678N1:CAS:528:DC%2BB38XhtVCht7jL10.1016/j.geoderma.2021.115678
QinX-HWangS-YFiltration properties of electrospinning nanofibersJ. Appl. Polym. Sci.2006102128512901:CAS:528:DC%2BD28Xpt1artb4%3D10.1002/app.24361
XueJXieJLiuWXiaYElectrospun nanofibers: New concepts, materials, and applicationsAcc. Chem. Res.201750197619871:CAS:528:DC%2BC2sXht1Ohur3O10.1021/acs.accounts.7b00218287775356589094
LevadaALMParametric PCA for unsupervised metric learningPattern. Recogn. Lett.20201354254302020PaReL.135..425L10.1016/j.patrec.2020.05.011
PervezMNOne-step fabrication of novel polyethersulfone-based composite electrospun nanofiber membranes for food industry wastewater treatmentMembranes2022124131:CAS:528:DC%2BB38XhtFeqtb%2FI10.3390/membranes12040413354483839028427
KanoMFujiwaraKVirtual sensing technology in process industries: Trends and challenges revealed by recent industrial applicationsJ. Chem. Eng. Jpn.2013461171:CAS:528:DC%2BC3sXmsVGjurc%3D10.1252/jcej.12we167
MorshedMNStatistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial designSci. Rep.202010161332020NatSR..1016133M1:CAS:528:DC%2BB3cXhvFOgsr3P10.1038/s41598-020-72401-z329993007528022
PervezMNShafiqFSarwarZJilaniMMCaiYMulti-response optimization of resin finishing by using a taguchi-based grey relational analysisMaterials.2018114262018Mate...11..426P1:CAS:528:DC%2BC1MXpvVKqsLY%3D10.3390/ma11030426295437245873005
Yeo, W. S., Chan, M. K. & Bukhari, N. A. In Intelligent Computing & Optimization. (eds Vasant, P., Zelinka, I. & Weber, G-W.) 927–937 (Springer International Publishing).
PervezMNElectrospun nanofiber membranes for the control of micro/nanoplastics in the environmentWater. Emerg. Contam. Nanoplastics.202211010.20517/wecn.2022.05
LinLSustainable traditional grass cloth fiber dyeing using the Taguchi L16 (4^4) orthogonal designSci. Rep.202212138332022NatSR..1213833L1:CAS:528:DC%2BB38XitFOltb7K10.1038/s41598-022-18213-9359740319381779
ŠkrabánekPMarekJPozdílkováABoscovich fuzzy regression lineMathematics2021968510.3390/math9060685
AmiriNMoradiATabasiSASMovaffaghJModeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodologyMater. Res. Express201850454042018MRE.....5d5404A1:CAS:528:DC%2BC1cXhvValtb7L10.1088/2053-1591/aaba1d
MengYMulti-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodologyMath. Biosci. Eng.2020177411742710.3934/mbe.2020379333789031486.74114
ThirugnanasambandhamKSivakumarVPreparation of chitosan based nanofibers: Optimization and modelingInt. J. Chem. React.2016142832881:CAS:528:DC%2BC2sXmtF2nt7o%3D10.1515/ijcre-2015-0029
YeoWSLauWJPredicting the whiteness index of cotton fabric with a least squares modelCellulose202128884188541:CAS:528:DC%2BB38XhtlGrtLc%3D10.1007/s10570-021-04096-y
ShafiqFStructural relationships and optimization of resin-finishing parameters using the Taguchi approachCellulose201825617561901:CAS:528:DC%2BC1cXhtl2gsL%2FM10.1007/s10570-018-1957-2
PervezMNPrediction of the diameter of biodegradable electrospun nanofiber membranes: An integrated framework of taguchi design and machine learningJ. Polym. Environ.202310.1007/s10924-023-02837-7
VianaVRFerreiraWHAzeroEGDiasMLAndradeCTOptimization of the electrospinning conditions by Box–Behnken design to prepare poly (vinyl alcohol)/chitosan crosslinked nanofibersJ. Mater. Sci. Chem. Eng.20208131:CAS:528:DC%2BB3cXhvVejtLzF10.4236/msce.2020.84002
ZiabariMMottaghitalabVHaghiAKA new approach for optimization of electrospun nanofiber formation processKorean. J. Chem. Eng.2010273403541:CAS:528:DC%2BC3cXjt1egt7o%3D10.1007/s11814-009-0309-1
PervezMNFabrication of polyethersulfone/polyacrylonitrile electrospun nanofiber membrane for food industry wastewater treatmentJ. Water. Process. Eng.20224710283810.1016/j.jwpe.2022.102838
HeHWangYFarkasBNagyZKMolnarKAnalysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodologyMater. Des.20201941089021:CAS:528:DC%2BB3cXhtlCqsbvK10.1016/j.matdes.2020.108902
KanekoHEstimating the reliability of predictions in locally weighted partial least-squares modelingJ. Chemom.202135e33641:CAS:528:DC%2BB3MXhsVOmsLfE10.1002/cem.3364
VisserDElectrospinning of collagen: Enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structureJ. Mater. Chem. B202311220722181:CAS:528:DC%2BB3sXjtFajtL4%3D10.1039/D2TB02602C36786208
WangCHsuC-HLinJ-HScaling laws in electrospinning of polystyrene solutionsMacromolecules200639766276722006MaMol..39.7662W1:CAS:528:DC%2BD28XhtVCmurbK10.1021/ma060866a
YeoWSSaptoroAKumarPAdaptive soft sensor development for non-gaussian and nonlinear processesInd. Eng. Chem. Res.20195820680206911:CAS:528:DC%2BC1MXhvFOrurrI10.1021/acs.iecr.9b03821
YeoWSSaptoroAKumarPDevelopment of adaptive soft sensor using locally weighted kernel partial least square modelChem. Prod. Process. Model.201710.1515/cppm-2017-0022
Cerjak, H. (Taylor & Francis, 2009).
YeoWSSaptoroAKumarPMissing data treatment for locally weighted partial least square-based modelling: A comparative studyAsia-Pac. J. Chem. Eng.202015e24221:CAS:528:DC%2BB3cXivFKgtbo%3D10.1002/apj.2422
NguJCYYeoCA Comparative study of different kernel functions applied to LW-KPLS model for nonlinear processesBiointerface. Res. Appl. Chem.20221318410.33263/BRIAC132.184
PalaniSLiongS-YTkalichPAn ANN application for water quality forecastingMar. Pollut. Bull.200856158615971:CAS:528:DC%2BD1cXhtVGltbnK10.1016/j.marpolbul.2008.05.02118635240
VeerasamyRValidation of QSAR models-strategies and importanceInt. J. Drug Des. Discov20113511519
GuimarãesACFLapaCMFFuzzy FMEA applied to PWR chemical and volume control systemProg. Nucl. Energy.20044419121310.1016/S0149-1970(04)90010-8
PervezMNSustainable fashion: Design of the experiment assisted machine learning for the environmental-friendly resin finishing of cotton fabricHeliyon.20239e128831:CAS:528:DC%2BB3sXhsVaisL0%3D10.1016/j.heliyon.2023.e12883366915439860286
PandaPKGangwarAThiteAGOptimization of Nylon 6 electrospun nanofiber diameter in needle-less wire electrode using central composite design and response surface methodologyJ. Ind. Text.2021517279S7292S1:CAS:528:DC%2BB38XitlOms7bK10.1177/15280837211058213
YousefiSHTangCTafreshiHVPourdeyhimiBEmpirical model to simulate morphology of electrospun polycaprolactone matsJ. Appl. Polym.2019136482421:CAS:528:DC%2BC1MXhtlyisLbJ10.1002/app.48242
KhajehsharifiHPourbasheerETavallaliHSarviSSadeghiMThe comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samplesArab. J. Chem.201710S3451S34581:CAS:528:DC%2BC2cXktlGjsrk%3D10.1016/j.arabjc.2014.02.006
GuoYResearch progress, models and simulation of electrospinning technology: A reviewJ. Mater. Sci.202257581042022JMatS..57...58G1:CAS:528:DC%2BB3MXitlSmsrrN10.1007/s10853-021-06575-w34658418
TalukderMEChitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous
36431_CR46
M Kano (36431_CR50) 2013; 46
Y Guo (36431_CR34) 2022; 57
WS Yeo (36431_CR33) 2017
SH Yousefi (36431_CR37) 2019; 136
S Palani (36431_CR59) 2008; 56
ALM Levada (36431_CR49) 2020; 135
C Wang (36431_CR35) 2006; 39
36431_CR52
MN Pervez (36431_CR47) 2022; 12
C Wang (36431_CR36) 2008; 49
H Ma (36431_CR9) 2012; 1
VR Viana (36431_CR39) 2020; 8
MN Pervez (36431_CR15) 2018; 11
MN Pervez (36431_CR5) 2022; 1
MN Pervez (36431_CR48) 2020; 262
X-H Qin (36431_CR10) 2006; 102
J Xue (36431_CR3) 2017; 50
K Hazama (36431_CR29) 2015; 146
PK Panda (36431_CR21) 2021; 51
MN Pervez (36431_CR12) 2022; 47
Z Li (36431_CR25) 2022; 133
P Škrabánek (36431_CR54) 2021; 9
MN Pervez (36431_CR8) 2018; 8
36431_CR42
D Visser (36431_CR26) 2023; 11
36431_CR23
ME Talukder (36431_CR6) 2022; 12
R Veerasamy (36431_CR58) 2011; 3
H Khajehsharifi (36431_CR27) 2017; 10
MN Pervez (36431_CR24) 2023
F Shafiq (36431_CR14) 2018; 25
K Thirugnanasambandham (36431_CR40) 2016; 14
K Nasouri (36431_CR20) 2012; 126
MN Pervez (36431_CR7) 2018; 8
M Ziabari (36431_CR38) 2010; 27
H Kaneko (36431_CR57) 2021; 35
WS Yeo (36431_CR53) 2021; 28
ACF Guimarães (36431_CR55) 2004; 44
Y Meng (36431_CR22) 2020; 17
WS Yeo (36431_CR45) 2020; 15
A Nasonova (36431_CR30) 2022; 411
JCY Ngu (36431_CR32) 2022; 13
36431_CR56
MN Pervez (36431_CR28) 2023; 9
MN Morshed (36431_CR13) 2020; 10
H He (36431_CR19) 2020; 194
L Lin (36431_CR16) 2022; 12
TF Thien (36431_CR44) 2022; 209
X Wang (36431_CR4) 2016; 12
R Ghelich (36431_CR18) 2019; 166
N Amiri (36431_CR41) 2018; 5
T Khatti (36431_CR17) 2019; 31
WS Yeo (36431_CR43) 2019; 58
36431_CR2
36431_CR1
ME Talukder (36431_CR11) 2021; 9
S Yang (36431_CR51) 2022; 52
X Zhang (36431_CR31) 2017; 104
References_xml – reference: YeoWSSaptoroAKumarPDevelopment of adaptive soft sensor using locally weighted kernel partial least square modelChem. Prod. Process. Model.201710.1515/cppm-2017-0022
– reference: KanoMFujiwaraKVirtual sensing technology in process industries: Trends and challenges revealed by recent industrial applicationsJ. Chem. Eng. Jpn.2013461171:CAS:528:DC%2BC3sXmsVGjurc%3D10.1252/jcej.12we167
– reference: WangCHsuC-HHwangIHScaling laws and internal structure for characterizing electrospun poly[(R)-3-hydroxybutyrate] fibersPolymer200849418841951:CAS:528:DC%2BD1cXhtVOnt7rL10.1016/j.polymer.2008.07.033
– reference: ZiabariMMottaghitalabVHaghiAKA new approach for optimization of electrospun nanofiber formation processKorean. J. Chem. Eng.2010273403541:CAS:528:DC%2BC3cXjt1egt7o%3D10.1007/s11814-009-0309-1
– reference: GhelichRJahannamaMRAbdizadehHTorknikFSVaeziMRCentral composite design (CCD)-response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibersCompos. B. Eng.20191665275411:CAS:528:DC%2BC1MXktlaqtbg%3D10.1016/j.compositesb.2019.01.094
– reference: ŠkrabánekPMarekJPozdílkováABoscovich fuzzy regression lineMathematics2021968510.3390/math9060685
– reference: QinX-HWangS-YFiltration properties of electrospinning nanofibersJ. Appl. Polym. Sci.2006102128512901:CAS:528:DC%2BD28Xpt1artb4%3D10.1002/app.24361
– reference: NguJCYYeoCA Comparative study of different kernel functions applied to LW-KPLS model for nonlinear processesBiointerface. Res. Appl. Chem.20221318410.33263/BRIAC132.184
– reference: MorshedMNStatistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial designSci. Rep.202010161332020NatSR..1016133M1:CAS:528:DC%2BB3cXhvFOgsr3P10.1038/s41598-020-72401-z329993007528022
– reference: YeoWSSaptoroAKumarPMissing data treatment for locally weighted partial least square-based modelling: A comparative studyAsia-Pac. J. Chem. Eng.202015e24221:CAS:528:DC%2BB3cXivFKgtbo%3D10.1002/apj.2422
– reference: PervezMNStyliosGKAn experimental approach to the synthesis and optimisation of a ‘green’ nanofibreNanomaterials201883831:CAS:528:DC%2BC1cXhtlOmt7nK10.3390/nano8060383298490136027442
– reference: HazamaKKanoMCovariance-based locally weighted partial least squares for high-performance adaptive modelingChemom. Intell. Lab. Syst.201514655621:CAS:528:DC%2BC2MXosFKmsbg%3D10.1016/j.chemolab.2015.05.007
– reference: VisserDElectrospinning of collagen: Enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structureJ. Mater. Chem. B202311220722181:CAS:528:DC%2BB3sXjtFajtL4%3D10.1039/D2TB02602C36786208
– reference: XueJXieJLiuWXiaYElectrospun nanofibers: New concepts, materials, and applicationsAcc. Chem. Res.201750197619871:CAS:528:DC%2BC2sXht1Ohur3O10.1021/acs.accounts.7b00218287775356589094
– reference: PervezMNStyliosGKLiangYOuyangFCaiYLow-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradationJ. Clean. Prod.20202621213011:CAS:528:DC%2BB3cXmsV2rurc%3D10.1016/j.jclepro.2020.121301
– reference: PervezMNOne-step fabrication of novel polyethersulfone-based composite electrospun nanofiber membranes for food industry wastewater treatmentMembranes2022124131:CAS:528:DC%2BB38XhtFeqtb%2FI10.3390/membranes12040413354483839028427
– reference: YousefiSHTangCTafreshiHVPourdeyhimiBEmpirical model to simulate morphology of electrospun polycaprolactone matsJ. Appl. Polym.2019136482421:CAS:528:DC%2BC1MXhtlyisLbJ10.1002/app.48242
– reference: Yeo, W. S., Chan, M. K. & Bukhari, N. A. In Intelligent Computing & Optimization. (eds Vasant, P., Zelinka, I. & Weber, G-W.) 927–937 (Springer International Publishing).
– reference: ThirugnanasambandhamKSivakumarVPreparation of chitosan based nanofibers: Optimization and modelingInt. J. Chem. React.2016142832881:CAS:528:DC%2BC2sXmtF2nt7o%3D10.1515/ijcre-2015-0029
– reference: TalukderMEAg nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metalsSci. Rep.20221258142022NatSR..12.5814T1:CAS:528:DC%2BB38Xpt1Wrsbc%3D10.1038/s41598-022-09802-9353881158986829
– reference: TalukderMEChitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solutionJ. Environ. Chem. Eng.202191066931:CAS:528:DC%2BB3MXisVamurfP10.1016/j.jece.2021.106693
– reference: YeoWSLauWJPredicting the whiteness index of cotton fabric with a least squares modelCellulose202128884188541:CAS:528:DC%2BB38XhtlGrtLc%3D10.1007/s10570-021-04096-y
– reference: PervezMNStyliosGKInvestigating the synthesis and characterization of a novel “green” H2O2-assisted, water-soluble chitosan/polyvinyl alcohol nanofiber for environmental end usesNanomaterials201883951:CAS:528:DC%2BC1cXhtlOmtL%2FF10.3390/nano8060395298651986027504
– reference: KhattiTNaderi-ManeshHKalantarSMApplication of ANN and RSM techniques for modeling electrospinning process of polycaprolactoneNeural. Comput. Appl.20193123924810.1007/s00521-017-2996-6
– reference: VianaVRFerreiraWHAzeroEGDiasMLAndradeCTOptimization of the electrospinning conditions by Box–Behnken design to prepare poly (vinyl alcohol)/chitosan crosslinked nanofibersJ. Mater. Sci. Chem. Eng.20208131:CAS:528:DC%2BB3cXhvVejtLzF10.4236/msce.2020.84002
– reference: PervezMNElectrospun nanofiber membranes for the control of micro/nanoplastics in the environmentWater. Emerg. Contam. Nanoplastics.202211010.20517/wecn.2022.05
– reference: AmiriNMoradiATabasiSASMovaffaghJModeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodologyMater. Res. Express201850454042018MRE.....5d5404A1:CAS:528:DC%2BC1cXhvValtb7L10.1088/2053-1591/aaba1d
– reference: ShafiqFStructural relationships and optimization of resin-finishing parameters using the Taguchi approachCellulose201825617561901:CAS:528:DC%2BC1cXhtl2gsL%2FM10.1007/s10570-018-1957-2
– reference: PalaniSLiongS-YTkalichPAn ANN application for water quality forecastingMar. Pollut. Bull.200856158615971:CAS:528:DC%2BD1cXhtVGltbnK10.1016/j.marpolbul.2008.05.02118635240
– reference: Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H. & Bechelany, M. in Handbook of Nanofibers (eds Barhoum, A. et al.) 1–42 (Springer International Publishing, 2018).
– reference: PandaPKGangwarAThiteAGOptimization of Nylon 6 electrospun nanofiber diameter in needle-less wire electrode using central composite design and response surface methodologyJ. Ind. Text.2021517279S7292S1:CAS:528:DC%2BB38XitlOms7bK10.1177/15280837211058213
– reference: NasonovaALevyGJRinotOEshelGBorisoverMOrganic matter in aqueous soil extracts: Prediction of compositional attributes from bulk soil mid-IR spectra using partial least square regressionsGeoderma20224111156782022Geode.411k5678N1:CAS:528:DC%2BB38XhtVCht7jL10.1016/j.geoderma.2021.115678
– reference: WangXHsiaoBSElectrospun nanofiber membranesCurr. Opin. Chem. Eng.201612628110.1016/j.coche.2016.03.001
– reference: HeHWangYFarkasBNagyZKMolnarKAnalysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodologyMater. Des.20201941089021:CAS:528:DC%2BB3cXhtlCqsbvK10.1016/j.matdes.2020.108902
– reference: VeerasamyRValidation of QSAR models-strategies and importanceInt. J. Drug Des. Discov20113511519
– reference: PervezMNPrediction of the diameter of biodegradable electrospun nanofiber membranes: An integrated framework of taguchi design and machine learningJ. Polym. Environ.202310.1007/s10924-023-02837-7
– reference: Yeo, W. S. In 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). 1–5 (IEEE).
– reference: Cerjak, H. (Taylor & Francis, 2009).
– reference: LevadaALMParametric PCA for unsupervised metric learningPattern. Recogn. Lett.20201354254302020PaReL.135..425L10.1016/j.patrec.2020.05.011
– reference: LiZElectrospun octenylsuccinylated starch-pullulan nanofiber mats: Adsorption for the odor of oyster peptides and structural characterizationFood Hydrocolloids20221331079921:CAS:528:DC%2BB38XitVCms7bI10.1016/j.foodhyd.2022.107992
– reference: YeoWSSaptoroAKumarPAdaptive soft sensor development for non-gaussian and nonlinear processesInd. Eng. Chem. Res.20195820680206911:CAS:528:DC%2BC1MXhvFOrurrI10.1021/acs.iecr.9b03821
– reference: GuoYResearch progress, models and simulation of electrospinning technology: A reviewJ. Mater. Sci.202257581042022JMatS..57...58G1:CAS:528:DC%2BB3MXitlSmsrrN10.1007/s10853-021-06575-w34658418
– reference: NasouriKBahrambeygiHRabbiAShoushtariAMKaflouAModeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networksJ. Appl. Polym. Sci.20121261271351:CAS:528:DC%2BC38XksV2js7c%3D10.1002/app.36726
– reference: PervezMNFabrication of polyethersulfone/polyacrylonitrile electrospun nanofiber membrane for food industry wastewater treatmentJ. Water. Process. Eng.20224710283810.1016/j.jwpe.2022.102838
– reference: PervezMNShafiqFSarwarZJilaniMMCaiYMulti-response optimization of resin finishing by using a taguchi-based grey relational analysisMaterials.2018114262018Mate...11..426P1:CAS:528:DC%2BC1MXpvVKqsLY%3D10.3390/ma11030426295437245873005
– reference: MaHHsiaoBSChuBUltrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in waterACS Macro Lett.201212132161:CAS:528:DC%2BC3MXhs1GrurrE10.1021/mz200047q35578482
– reference: KhajehsharifiHPourbasheerETavallaliHSarviSSadeghiMThe comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samplesArab. J. Chem.201710S3451S34581:CAS:528:DC%2BC2cXktlGjsrk%3D10.1016/j.arabjc.2014.02.006
– reference: Toscano, J. D., Li, Z., Segura, L. J. & Sun, H. In ASME 2020 15th International Manufacturing Science and Engineering Conference.
– reference: ThienTFYeoWSA comparative study between PCR, PLSR, and LW-PLS on the predictive performance at different data splitting ratiosChem. Eng. Commun.2022209143914561:CAS:528:DC%2BB3MXhs1GrtbjE10.1080/00986445.2021.1957853
– reference: ZhangXKanoMLiYLocally weighted kernel partial least squares regression based on sparse nonlinear features for virtual sensing of nonlinear time-varying processesComput. Chem. Eng.20171041641711:CAS:528:DC%2BC2sXntVSrsLY%3D10.1016/j.compchemeng.2017.04.014
– reference: WangCHsuC-HLinJ-HScaling laws in electrospinning of polystyrene solutionsMacromolecules200639766276722006MaMol..39.7662W1:CAS:528:DC%2BD28XhtVCmurbK10.1021/ma060866a
– reference: Vempati, S., Vedaldi, A., Zisserman, A. & Jawahar, C. In British Machine Vision Conference, BMVC 2010. 1–11.
– reference: Neill, S. P. & Hashemi, M. R. In Fundamentals of Ocean Renewable Energy (eds Neill, S. P. & Reza Hashemi, M.) 193–235 (Academic Press, 2018).
– reference: KanekoHEstimating the reliability of predictions in locally weighted partial least-squares modelingJ. Chemom.202135e33641:CAS:528:DC%2BB3MXhsVOmsLfE10.1002/cem.3364
– reference: PervezMNSustainable fashion: Design of the experiment assisted machine learning for the environmental-friendly resin finishing of cotton fabricHeliyon.20239e128831:CAS:528:DC%2BB3sXhsVaisL0%3D10.1016/j.heliyon.2023.e12883366915439860286
– reference: YangSLiHGouXBianCShaoQOptimized Bayesian adaptive resonance theory mapping model using a rational quadratic kernel and Bayesian quadratic regularizationAppl. Intell.2022527777779210.1007/s10489-021-02883-5
– reference: GuimarãesACFLapaCMFFuzzy FMEA applied to PWR chemical and volume control systemProg. Nucl. Energy.20044419121310.1016/S0149-1970(04)90010-8
– reference: MengYMulti-objective optimization of peel and shear strengths in ultrasonic metal welding using machine learning-based response surface methodologyMath. Biosci. Eng.2020177411742710.3934/mbe.2020379333789031486.74114
– reference: LinLSustainable traditional grass cloth fiber dyeing using the Taguchi L16 (4^4) orthogonal designSci. Rep.202212138332022NatSR..1213833L1:CAS:528:DC%2BB38XitFOltb7K10.1038/s41598-022-18213-9359740319381779
– volume: 135
  start-page: 425
  year: 2020
  ident: 36431_CR49
  publication-title: Pattern. Recogn. Lett.
  doi: 10.1016/j.patrec.2020.05.011
– volume: 136
  start-page: 48242
  year: 2019
  ident: 36431_CR37
  publication-title: J. Appl. Polym.
  doi: 10.1002/app.48242
– volume: 13
  start-page: 184
  year: 2022
  ident: 36431_CR32
  publication-title: Biointerface. Res. Appl. Chem.
  doi: 10.33263/BRIAC132.184
– volume: 58
  start-page: 20680
  year: 2019
  ident: 36431_CR43
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03821
– volume: 28
  start-page: 8841
  year: 2021
  ident: 36431_CR53
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04096-y
– volume: 102
  start-page: 1285
  year: 2006
  ident: 36431_CR10
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.24361
– volume: 209
  start-page: 1439
  year: 2022
  ident: 36431_CR44
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986445.2021.1957853
– volume: 10
  start-page: S3451
  year: 2017
  ident: 36431_CR27
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2014.02.006
– volume: 57
  start-page: 58
  year: 2022
  ident: 36431_CR34
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06575-w
– volume: 9
  start-page: 685
  year: 2021
  ident: 36431_CR54
  publication-title: Mathematics
  doi: 10.3390/math9060685
– volume: 8
  start-page: 395
  year: 2018
  ident: 36431_CR7
  publication-title: Nanomaterials
  doi: 10.3390/nano8060395
– volume: 9
  start-page: 106693
  year: 2021
  ident: 36431_CR11
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106693
– volume: 411
  start-page: 115678
  year: 2022
  ident: 36431_CR30
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115678
– volume: 47
  start-page: 102838
  year: 2022
  ident: 36431_CR12
  publication-title: J. Water. Process. Eng.
  doi: 10.1016/j.jwpe.2022.102838
– volume: 14
  start-page: 283
  year: 2016
  ident: 36431_CR40
  publication-title: Int. J. Chem. React.
  doi: 10.1515/ijcre-2015-0029
– volume: 194
  start-page: 108902
  year: 2020
  ident: 36431_CR19
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108902
– volume: 166
  start-page: 527
  year: 2019
  ident: 36431_CR18
  publication-title: Compos. B. Eng.
  doi: 10.1016/j.compositesb.2019.01.094
– volume: 56
  start-page: 1586
  year: 2008
  ident: 36431_CR59
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2008.05.021
– volume: 146
  start-page: 55
  year: 2015
  ident: 36431_CR29
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.05.007
– ident: 36431_CR42
  doi: 10.1016/B978-0-12-810448-4.00008-2
– volume: 11
  start-page: 2207
  year: 2023
  ident: 36431_CR26
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D2TB02602C
– volume: 52
  start-page: 7777
  year: 2022
  ident: 36431_CR51
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02883-5
– volume: 31
  start-page: 239
  year: 2019
  ident: 36431_CR17
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-017-2996-6
– volume: 46
  start-page: 1
  year: 2013
  ident: 36431_CR50
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.12we167
– volume: 1
  start-page: 213
  year: 2012
  ident: 36431_CR9
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz200047q
– volume: 15
  start-page: e2422
  year: 2020
  ident: 36431_CR45
  publication-title: Asia-Pac. J. Chem. Eng.
  doi: 10.1002/apj.2422
– volume: 10
  start-page: 16133
  year: 2020
  ident: 36431_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72401-z
– volume: 12
  start-page: 62
  year: 2016
  ident: 36431_CR4
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2016.03.001
– volume: 104
  start-page: 164
  year: 2017
  ident: 36431_CR31
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.04.014
– ident: 36431_CR46
  doi: 10.1109/GECOST52368.2021.9538723
– ident: 36431_CR23
– year: 2017
  ident: 36431_CR33
  publication-title: Chem. Prod. Process. Model.
  doi: 10.1515/cppm-2017-0022
– volume: 8
  start-page: 13
  year: 2020
  ident: 36431_CR39
  publication-title: J. Mater. Sci. Chem. Eng.
  doi: 10.4236/msce.2020.84002
– volume: 3
  start-page: 511
  year: 2011
  ident: 36431_CR58
  publication-title: Int. J. Drug Des. Discov
– volume: 17
  start-page: 7411
  year: 2020
  ident: 36431_CR22
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2020379
– ident: 36431_CR2
– volume: 262
  start-page: 121301
  year: 2020
  ident: 36431_CR48
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121301
– ident: 36431_CR56
– volume: 35
  start-page: e3364
  year: 2021
  ident: 36431_CR57
  publication-title: J. Chemom.
  doi: 10.1002/cem.3364
– ident: 36431_CR52
– volume: 44
  start-page: 191
  year: 2004
  ident: 36431_CR55
  publication-title: Prog. Nucl. Energy.
  doi: 10.1016/S0149-1970(04)90010-8
– volume: 9
  start-page: e12883
  year: 2023
  ident: 36431_CR28
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2023.e12883
– volume: 133
  start-page: 107992
  year: 2022
  ident: 36431_CR25
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2022.107992
– volume: 51
  start-page: 7279S
  year: 2021
  ident: 36431_CR21
  publication-title: J. Ind. Text.
  doi: 10.1177/15280837211058213
– volume: 12
  start-page: 13833
  year: 2022
  ident: 36431_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18213-9
– volume: 12
  start-page: 413
  year: 2022
  ident: 36431_CR47
  publication-title: Membranes
  doi: 10.3390/membranes12040413
– volume: 39
  start-page: 7662
  year: 2006
  ident: 36431_CR35
  publication-title: Macromolecules
  doi: 10.1021/ma060866a
– ident: 36431_CR1
  doi: 10.1007/978-3-319-42789-8_54-1
– volume: 8
  start-page: 383
  year: 2018
  ident: 36431_CR8
  publication-title: Nanomaterials
  doi: 10.3390/nano8060383
– volume: 49
  start-page: 4188
  year: 2008
  ident: 36431_CR36
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.07.033
– volume: 50
  start-page: 1976
  year: 2017
  ident: 36431_CR3
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00218
– volume: 12
  start-page: 5814
  year: 2022
  ident: 36431_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09802-9
– volume: 5
  start-page: 045404
  year: 2018
  ident: 36431_CR41
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaba1d
– volume: 1
  start-page: 10
  year: 2022
  ident: 36431_CR5
  publication-title: Water. Emerg. Contam. Nanoplastics.
  doi: 10.20517/wecn.2022.05
– volume: 126
  start-page: 127
  year: 2012
  ident: 36431_CR20
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.36726
– volume: 27
  start-page: 340
  year: 2010
  ident: 36431_CR38
  publication-title: Korean. J. Chem. Eng.
  doi: 10.1007/s11814-009-0309-1
– volume: 25
  start-page: 6175
  year: 2018
  ident: 36431_CR14
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1957-2
– year: 2023
  ident: 36431_CR24
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-023-02837-7
– volume: 11
  start-page: 426
  year: 2018
  ident: 36431_CR15
  publication-title: Materials.
  doi: 10.3390/ma11030426
SSID ssj0000529419
Score 2.534467
Snippet Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a system...
Abstract Despite the widespread interest in electrospinning technology, very few simulation studies have been conducted. Thus, the current research produced a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9679
SubjectTerms 639/301
639/301/357
Design of experiments
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Prediction models
Regression analysis
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t20BRmJG0SNYztOTghQqwoJTkXam-VnQWKzS7J74MJvZ8bxploevSaO4nge_sYzmY-QV0LEWvhGgqXFqgQvyUrbGlMax6XhSnmR6Hw-fW4uvoiPC7nIB25jLqvc-cTkqP3K4Rn5KYQGDYQGlazfrn-UyBqF2dVMoXGb3MHWZVjSpRZqPmPBLJZgXf5XpuLt6Qj7Ff5TVvOSw17MSrW3H6W2_f_Cmn-XTP6RN03b0fkDcj_jSPpuEvxDciv0j8jdiVny52Py62yitxnX2572pgcVsmGgy7CE6LgPFLRiiYUwdD1gpgalQ7EE_ooaCusB4XLwdJjqZwMdt0M0LtCJbjq9gpre02WqxAw0U0_Aw7lD-RNyeX52-eGizFQLpZOCbUqIOlg0QTEnW6aMaL210deq6YS1HcKU1sXoAwdAIbDFXI0JQIA2XcVrz_hTctCv-nBIaGyibFwXpeVGhK5qjZAdoKzIHbgW1RaE7dZbu9yGHNkwvuuUDuetnmSkQUY6yUirgryen1lPTThuHP0exTiPxAba6cJquNLZHrWVnYgQbToWGmHh-7znoJsMFtM1HWcFOdkpgc5WPeprHSzIy_k22CMmWUB4q20ao2qJwKcgzyadmWfCFbhPgNwFafe0aW-q-3f6b19Tz2_AgQqQnCzIm53iXc_r_2txdPNnHJN7NdoCcjHJE3KwGbbhOYCsjX2RLOk37FEkwA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIiQuiDeBgozEDQLr2I7jA0KAWlVI5dRKvVl-FqRudsnuSvTCb2dsZxctLJy4JrbizHzj-UZjzwC84Dw23LcCLS1OatwlaW07Y2rjmDBMSs9zO5-Tz-3xGf90Ls73YN3uaBTgYmdol_pJnQ2Xr79_u3qHBv-2XBnv3izQCaWLYg2rGTpYWstrcB09k0yGejLS_VLru1GcqvHuzO6pW_4pl_HfxT3_PEL5Wx41u6ej23Br5JXkfQHCHdgL_V24UTpNXt2DH4el3c1ivupJb3qElA0DmYYpRst9IIiSaToYQ-ZDytwkbZF0JP6CGIKYxPA5eDKU87SBLFZDNC6Q0n46f4KY3pNpPpkZyNiKAiePFcvvw-nR4enH43psvVA7wemyxiiERhMkdaKj0vDOWxt9I1vFrVWJtnQuRh8YEgyeSs41KSGIVEdNWOMpewD7_awPj4DENorWqSgsMzyoSWe4UMi6InO41ciuArqWt3ZjWfLUHeNS5_Q463TRkUYd6awjLSt4uZkzL0U5_jn6Q1LjZmQqqJ0fzIYLPdqntkLxiNGno6HlFv_Pe4ZYpShM1ypGKzhYg0CvQaoxXG0xXEVYVfB88xrtMyVdUHmzVR4jG5GIUAUPC2Y2K2ESt1Ok4BV0W2jaWur2m_7rl1wDHHmhRGYnKni1Bt6vdf1dFo__hyyewM0mWUzq4CQOYH85rMJTpGZL-yzb20_m0DTy
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WFcGL-LZ1lQjetHHSefZRh10WQU8r7C3kuQpOz9Azc_Dib7eSfsjoKnjtJHQ69VXyVVelCuAV56nhQQrUtLSocZektdPW1tYzYZlSgZdyPh8_yfPP_MOluDyCZroLU4L2S0rLsk1P0WFvt3jQ5MtgDasZHqK0VjfgZk7dnlG9lMv5v0r2XHHajvdjFkxfM_TgDCqp-q_jl3-GSf7mKy1H0NlduDNyR_JumO09OIrdfbg1VJP8_gB-nA4lbbabfUc62yFsXOzJKq7QIu4iQSSscvAL2fTZO5MlQnLY-xWxBFcBTeQYSD_EzEay3ffJ-kiGEtPlFcR2gaxK9GUkY7kJHDxmJX8IF2enF8vzeiyvUHvB6a5GS4MmGxX1QlNluQ7OpdAo2XLn2kxNtE8pRIYkgue0ck12-iGdaResCZQ9guNu3cUnQJJMQvo2Cccsj-1CWy5aZFaJedxOlK6ATutt_Jh6PFfA-GaKC5xpM8jIoIxMkZFRFbyex2yGxBv_7P0-i3HumZNmlwfr_sqMIDJOtDyhhelplNzh94XAEI8UF9PLltEKTiYQmFGTtwZNUokmKcKqgpdzM-pgdqyg8Nb70kc1IpOdCh4PmJlnwhRumUizK9AHaDqY6mFL9_VLyfON3E8hexMVvJmA92tef1-Lp__X_RncbrJu5HpM4gSOd_0-PkeitXMvimb9BAhzIn4
  priority: 102
  providerName: Springer Nature
Title Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach
URI https://link.springer.com/article/10.1038/s41598-023-36431-7
https://www.ncbi.nlm.nih.gov/pubmed/37322139
https://www.proquest.com/docview/2826998052
https://www.proquest.com/docview/2827252426
https://pubmed.ncbi.nlm.nih.gov/PMC10272235
https://doaj.org/article/b594f828c1e64b658dd3a371acec6931
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCIkL4s2WEhmJG6war-21fUyjVFWkVgiKlJvlJyCRbZTHgQu_vWN7ExqeFy4bade7sWa-8Xwjj2cQes1YbJhvOVhaHNawSpLaSmNq4yg3VAjPcjuf84v27CObzvjsRquvlBNWygMXwR1brliEsMCR0DIL_tJ7Ch8hxgXXqnyCugGfdyOYKlW9G8WI6k_JDKk8XoGnSqfJGlpT8MKkFnueKBfs_x3L_DVZ8qcd0-yITh-g-z2DxKMy84foVugeobulp-S3x-j7pDS2WS02He5MB-CxYYnnYQ5xcRcw4GGeUmDwYpn2aJJecEp-_4QNBvRBoBw8XpbM2YBXm2UEGeDSaDr_BTadx_Ocgxlw33QCXu5rkz9Bl6eTy_FZ3TdZqB1nZF1DvEGiCYI4LokwTHpro29Eq5i1KhEU6WL0gQKVYKm4XJO2_oDUqCFtPKFP0UF31YXnCMc28tapyC01LKihNIwr4FeROlhUhKwQ2cpbu74AeeqD8VXnjXAqddGRBh3prCMtKvRm986ilN_46-iTpMbdyFQ6O98AQOkeUPpfgKrQ0RYEurfnlYbAtIXAFGBVoVe7x2CJaXsFlHe1yWNEwxPlqdCzgpndTKiAhRPIdoXkHpr2prr_pPvyOVf7BgYogMPxCr3dAu_HvP4si8P_IYsX6F6TLCan7xyhg_VyE14CCVvbAbotZmKA7oxG0w9T-D2ZXLx7D3fH7XiQbRGu50xeA-yiMw8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJniBaHNu5PCDEoFPHtgqhIu3NcnwZSDQtaSu0F_4R_5FjJ-lULnvba-Okjs_nc8k5Ph_Ac85dyk0mcKe5JEYtSeOqUCpWmgnF8tzwQOdzPM5Gn_mHE3GyBb_6szC-rLLXiUFRm5n238h3MTTIMDRIRPpm_j32rFE-u9pTaLSwOLRnPzBkW7w-eI_yfZGm-8PJu1HcsQrEWnC6jNHBpk7ZnGpR0FzxwlSVM2melbyqSm-RC-2csQxtJ_fd1FKf60IrXiYsNZThY6_ANmcYyQxge284_vhp_VHHp804LbvDOQkrdhdoIP0htpTFDI0_jfMNAxh4Av7l3P5do_lHojbYv_2bcKNzXMnbFmm3YMvWt-FqS2V5dgd-Dls-ncV8VZNa1YjZyjZkaqcYjteWIAynvvKGzBufGvJwIL7m_pQoggLA-Nwa0rQFu5YsVo1T2pKW3zr8BVG1IdNQ-mlJx3WBN3ct0e_C5DKkcA8G9ay2D4C4zIlMl05UTHFbJoXiokS3zjGNuiwvIqD9ekvd9T339BvfZMi_s0K2MpIoIxlkJPMIXq7vmbddPy4cvefFuB7pO3aHH2bNqewUgKxEyR2Gt5rajFf4fsYw3AwUF1NnJaMR7PQgkJ0aWchz0EfwbH0ZFYDP6qDwZqswJk-F97QiuN9iZj0TlqO-Rh8_gmIDTRtT3bxSf_0Smoyj45mj6ygieNUD73xe_1-Lhxe_xlO4NpocH8mjg_HhI7ie-n3hiaDEDgyWzco-Rg9vWT3p9hUBeck7-TfKIGBD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaKNYztODggB7aqlUHEo0t4sx4-CxGaX7K5QL_wv_h1jJ9lqefTWa-IkjuftGc8H8Ixzn3NbCJQ0n6WoJWlal1qn2jChmZSWRzifj0fF_mf-fiImW_BrOAsTyioHnRgVtZ2ZsEc-wtCgwNAgE_nI92URn3bHr-ff04AgFTKtA5xGxyKH7vQHhm-LVwe7SOvneT7eO363n_YIA6kRnC5TdLap105SI0oqNS9tXXuby6LidV0F61wa761jaEd56KyWh7wXWvQqY7mlDF97CS5LJmgQMTmR6-2dkEDjtOqP6WSsHC3QVIbjbDlLGboBNJUbpjAiBvzLzf27WvOPlG20hOMbcL13YcmbjuduwpZrbsGVDtTy9Db83OuQdRbzVUMa3SD31q4lUzfFwLxxBBlyGmpwyLwNSaLAGCRU358QTZAUGKk7S9qudNeRxar12jjSIV3HTxDdWDKNRaCO9KgX-HDfHP0OHF8EDe7CdjNr3H0gvvCiMJUXNdPcVVmpuajQwfPMoFaTZQJ0WG9l-g7oAYjjm4qZeFaqjkYKaaQijZRM4MX6mXnX_-Pc0W8DGdcjQ-_ueGHWnqheFahaVNxjoGuoK3iN_2ctQ7GguJimqBhNYGdgAtUrlIU6Y_8Enq5voyoI-R0k3mwVx8hcBJ8rgXsdz6xnwiRqbvT2Eyg3uGljqpt3mq9fYrtxdEElOpEigZcD453N6_9r8eD833gCV1F-1YeDo8OHcC0PYhEQocQObC_blXuErt6yfhyFioC6YCH-DVqwYxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+nanofiber+membrane+diameter+prediction+using+a+combined+response+surface+methodology+and+machine+learning+approach&rft.jtitle=Scientific+reports&rft.au=Md.+Nahid+Pervez&rft.au=Wan+Sieng+Yeo&rft.au=Mst.+Monira+Rahman+Mishu&rft.au=Md.+Eman+Talukder&rft.date=2023-06-15&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-023-36431-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b594f828c1e64b658dd3a371acec6931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon