Investigating the function of Gdt1p in yeast Golgi glycosylation

The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function i...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1862; no. 3; pp. 394 - 402
Main Authors Dulary, Eudoxie, Yu, Shin-Yi, Houdou, Marine, de Bettignies, Geoffroy, Decool, Valérie, Potelle, Sven, Duvet, Sandrine, Krzewinski-Recchi, Marie-Ange, Garat, Anne, Matthijs, Gert, Guerardel, Yann, Foulquier, François
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport. •Functional link between Gdt1p and Pmr1p•Gdt1p imports Mn2+ inside the Golgi lumen when Prm1p exclusively transports Ca2+•Ion homeostasis and yeast Golgi glycosylation
AbstractList The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport. •Functional link between Gdt1p and Pmr1p•Gdt1p imports Mn2+ inside the Golgi lumen when Prm1p exclusively transports Ca2+•Ion homeostasis and yeast Golgi glycosylation
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca /Mn homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca . The use of Pmr1p mutants either defective for Ca or Mn transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn inside the Golgi lumen when Pmr1p exclusively transports Ca . Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn /Ca transport.
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.
Author Yu, Shin-Yi
Houdou, Marine
Duvet, Sandrine
Krzewinski-Recchi, Marie-Ange
Potelle, Sven
Dulary, Eudoxie
de Bettignies, Geoffroy
Garat, Anne
Matthijs, Gert
Foulquier, François
Decool, Valérie
Guerardel, Yann
Author_xml – sequence: 1
  givenname: Eudoxie
  surname: Dulary
  fullname: Dulary, Eudoxie
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 2
  givenname: Shin-Yi
  surname: Yu
  fullname: Yu, Shin-Yi
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 3
  givenname: Marine
  surname: Houdou
  fullname: Houdou, Marine
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 4
  givenname: Geoffroy
  surname: de Bettignies
  fullname: de Bettignies, Geoffroy
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 5
  givenname: Valérie
  surname: Decool
  fullname: Decool, Valérie
  organization: Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483 – IMPECS – IMPact de l'Environnement Chimique sur la Santé humaine, F-59000 Lille, France
– sequence: 6
  givenname: Sven
  surname: Potelle
  fullname: Potelle, Sven
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 7
  givenname: Sandrine
  surname: Duvet
  fullname: Duvet, Sandrine
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 8
  givenname: Marie-Ange
  surname: Krzewinski-Recchi
  fullname: Krzewinski-Recchi, Marie-Ange
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 9
  givenname: Anne
  surname: Garat
  fullname: Garat, Anne
  organization: Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483 – IMPECS – IMPact de l'Environnement Chimique sur la Santé humaine, F-59000 Lille, France
– sequence: 10
  givenname: Gert
  surname: Matthijs
  fullname: Matthijs, Gert
  organization: LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory “Laboratory for the Research on Congenital Disorders of Glycosylation – from cellular mechanisms to cure”, France
– sequence: 11
  givenname: Yann
  surname: Guerardel
  fullname: Guerardel, Yann
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
– sequence: 12
  givenname: François
  surname: Foulquier
  fullname: Foulquier, François
  email: francois.foulquier@univ-lille1.fr
  organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29108953$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02371931$$DView record in HAL
BookMark eNqFkc1u1DAUhS1URKeFN0AoS1gk-MZ2ErNAVBVMK43EBtaWf25SjzL2EHtGmrcnQ1oWLKgXtmV95-j6nCtyEWJAQt4CrYBC83FbGaMHDFVNoa0AKkqbF2QFXVuX3Xy_ICvKKC85NOKSXKW0pfMSUrwil7UE2knBVuTLfThiyn7Q2YehyA9Y9Idgs4-hiH2xdhn2hQ_FCXXKxTqOgy-G8WRjOo36TL0mL3s9JnzzeF6Tn9--_ri9Kzff1_e3N5vSCg65FIy3DYqO6d602jkOHMEKo3vbt1aaet6RO20Aa8ZF4wxa51A01lBmZMuuyYfF90GPaj_5nZ5OKmqv7m426vxGa9aCZHCEmX2_sPsp_jrM31M7nyyOow4YD0nVlItWdoyyZ1GQDTSslVzO6LtH9GB26P4O8RTmDHxaADvFlCbslfX5T0h50n5UQNW5ObVVS3Pq3JwCUHNbs5j_I37yf0b2eZHhnP3R46SS9RgsOj-hzcpF_3-D39Z8szk
CitedBy_id crossref_primary_10_1093_jxb_erad004
crossref_primary_10_1371_journal_ppat_1009399
crossref_primary_10_3389_fcell_2019_00093
crossref_primary_10_1016_j_plaphy_2023_108054
crossref_primary_10_1016_j_jbc_2025_108372
crossref_primary_10_1051_medsci_2020128
crossref_primary_10_1016_j_plantsci_2023_111935
crossref_primary_10_1016_j_bbagen_2020_129674
crossref_primary_10_3389_fmicb_2019_03100
crossref_primary_10_1016_j_bbagen_2023_130412
crossref_primary_10_3390_genes10070545
crossref_primary_10_1074_jbc_RA119_012249
crossref_primary_10_3390_jof7030225
crossref_primary_10_3389_fmicb_2022_1022054
crossref_primary_10_1093_plphys_kiac387
crossref_primary_10_1111_nph_17209
crossref_primary_10_1016_j_carbpol_2021_118415
crossref_primary_10_1016_j_biochi_2020_04_017
crossref_primary_10_1111_1462_2920_16128
crossref_primary_10_1074_jbc_RA118_002324
crossref_primary_10_1042_BCJ20190488
crossref_primary_10_1016_j_jbc_2023_104628
crossref_primary_10_4236_jbise_2022_152008
crossref_primary_10_1093_plphys_kiab122
crossref_primary_10_1038_s41467_023_41896_1
Cites_doi 10.1105/tpc.15.00812
10.1093/hmg/ddw026
10.1104/pp.16.01895
10.1016/j.ajhg.2012.05.002
10.1073/pnas.1219871110
10.1016/S0014-5793(01)02488-7
10.1038/srep24282
10.1128/CMR.4.1.1
10.1021/bi9911233
10.1042/BCJ20160910
10.1371/journal.pone.0100851
10.1074/jbc.M002619200
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
DOI 10.1016/j.bbagen.2017.11.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 402
ExternalDocumentID oai_HAL_hal_02371931v1
29108953
10_1016_j_bbagen_2017_11_006
S0304416517303574
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
1XC
ID FETCH-LOGICAL-c541t-53476e583afb7add414e1c5bafcf7c9b2f7ce4dab1e23456dbecdde56cb03b973
IEDL.DBID .~1
ISSN 0304-4165
IngestDate Fri May 09 12:28:49 EDT 2025
Tue Aug 05 10:42:45 EDT 2025
Fri Jul 11 12:08:12 EDT 2025
Thu Apr 03 07:05:36 EDT 2025
Tue Jul 01 00:22:10 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 23 02:34:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Ca2+ homeostasis
Gdt1p
Mn2+ homeostasis
Pmr1p
Golgi glycosylation
Ca(2+) homeostasis
Mn(2+) homeostasis
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-53476e583afb7add414e1c5bafcf7c9b2f7ce4dab1e23456dbecdde56cb03b973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0197-9575
0000-0002-9766-3163
0000-0002-6796-9815
0000-0003-4967-9512
OpenAccessLink https://lirias.kuleuven.be/bitstream/123456789/598720/1/Dulary%20BBA%202017.pdf
PMID 29108953
PQID 1961637949
PQPubID 23479
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_02371931v1
proquest_miscellaneous_2045798303
proquest_miscellaneous_1961637949
pubmed_primary_29108953
crossref_citationtrail_10_1016_j_bbagen_2017_11_006
crossref_primary_10_1016_j_bbagen_2017_11_006
elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_11_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Schneider, Steinberger, Herdean, Gandini, Eisenhut, Kurz, Morper, Hoecker, Rühle, Labs, Flügge, Geimer, Schmidt, Husted, Weber, Spetea, Leister (bb0030) 2016
Colinet, Sengottaiyan, Deschamps, Colsoul, Thines, Demaegd, Duchêne, Foulquier, Hols, Morsomme (bb0015) 2016; 6
Potelle, Dulary, Climer, Duvet, Morelle, Vicogne, Lebredonchelle, Houdou, Spriet, Krzewinski-Recchi, Peanne, Klein, DE Bettignies, Morsomme, Matthijs, Marquardt, Lupashin, Foulquier (bb0025) 2017
Foulquier, Amyere, Jaeken, Zeevaert, Schollen, Race, Bammens, Morelle, Rosnoblet, Legrand, Demaegd, Buist, Cheillan, Guffon, Morsomme, Annaert, Freeze, Van Schaftingen, Vikkula, Matthijs (bb0005) 2012; 91
Munro (bb0040) 2001; 498
Demaegd, Foulquier, Colinet, Gremillon, Legrand, Mariot, Peiter, Van Schaftingen, Matthijs, Morsomme (bb0010) 2013; 110
Mandal, Woolf, Rao (bb0060) 2000; 275
Demaegd, Colinet, Deschamps, Morsomme (bb0065) 2014; 9
Brandenburg, Schoffman, Kurz, Krämer, Keren, Weber, Eisenhut (bb0035) 2017; 173
Dulary, Potelle, Legrand, Foulquier (bb0070) 2016
Nelson, Shibata, Podzorski, Herron (bb0045) 1991; 4
Vinogradov, Petersen, Bock (bb0050) 1998; 307
Ballou (bb0075) 1982
Potelle, Morelle, Dulary, Duvet, Vicogne, Spriet, Krzewinski-Recchi, Morsomme, Jaeken, Matthijs, De Bettignies, Foulquier (bb0020) 2016; 25
Wei, Marchi, Wang, Rao (bb0055) 1999; 38
Demaegd (10.1016/j.bbagen.2017.11.006_bb0010) 2013; 110
Potelle (10.1016/j.bbagen.2017.11.006_bb0025) 2017
Foulquier (10.1016/j.bbagen.2017.11.006_bb0005) 2012; 91
Ballou (10.1016/j.bbagen.2017.11.006_bb0075) 1982
Dulary (10.1016/j.bbagen.2017.11.006_bb0070) 2016
Potelle (10.1016/j.bbagen.2017.11.006_bb0020) 2016; 25
Demaegd (10.1016/j.bbagen.2017.11.006_bb0065) 2014; 9
Colinet (10.1016/j.bbagen.2017.11.006_bb0015) 2016; 6
Vinogradov (10.1016/j.bbagen.2017.11.006_bb0050) 1998; 307
Wei (10.1016/j.bbagen.2017.11.006_bb0055) 1999; 38
Brandenburg (10.1016/j.bbagen.2017.11.006_bb0035) 2017; 173
Schneider (10.1016/j.bbagen.2017.11.006_bb0030) 2016
Mandal (10.1016/j.bbagen.2017.11.006_bb0060) 2000; 275
Nelson (10.1016/j.bbagen.2017.11.006_bb0045) 1991; 4
Munro (10.1016/j.bbagen.2017.11.006_bb0040) 2001; 498
References_xml – volume: 25
  start-page: 1489
  year: 2016
  end-page: 1500
  ident: bb0020
  article-title: Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis
  publication-title: Hum. Mol. Genet.
– volume: 4
  start-page: 1
  year: 1991
  end-page: 19
  ident: bb0045
  article-title: Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action
  publication-title: Clin. Microbiol. Rev.
– start-page: 335
  year: 1982
  end-page: 360
  ident: bb0075
  article-title: Yeast cell wall and cell surface
  publication-title: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression
– volume: 498
  start-page: 223
  year: 2001
  end-page: 227
  ident: bb0040
  article-title: What can yeast tell us about
  publication-title: FEBS Lett.
– volume: 9
  year: 2014
  ident: bb0065
  article-title: Molecular evolution of a novel family of putative calcium transporters
  publication-title: PLoS One
– volume: 6
  year: 2016
  ident: bb0015
  article-title: Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation
  publication-title: Sci. Rep.
– volume: 275
  start-page: 23933
  year: 2000
  end-page: 23938
  ident: bb0060
  article-title: Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport
  publication-title: J. Biol. Chem.
– volume: 110
  start-page: 6859
  year: 2013
  end-page: 6864
  ident: bb0010
  article-title: Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 91
  start-page: 15
  year: 2012
  end-page: 26
  ident: bb0005
  article-title: TMEM165 deficiency causes a congenital disorder of glycosylation
  publication-title: Am. J. Hum. Genet.
– year: 2017
  ident: bb0025
  article-title: Manganese-induced turnover of TMEM165
  publication-title: Biochem. J.
– volume: 173
  start-page: 1798
  year: 2017
  end-page: 1810
  ident: bb0035
  article-title: The synechocystis manganese exporter Mnx is essential for manganese homeostasis in cyanobacteria
  publication-title: Plant Physiol.
– year: 2016
  ident: bb0070
  article-title: TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis
  publication-title: Tissue Cell
– year: 2016
  ident: bb0030
  article-title: The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in arabidopsis
  publication-title: Plant Cell
– volume: 307
  start-page: 177
  year: 1998
  end-page: 183
  ident: bb0050
  article-title: Structural analysis of the intact polysaccharide mannan from Saccharomyces Cerevisiae yeast using 1H and 13C NMR spectroscopy at 750
  publication-title: Carbohydr. Res.
– volume: 38
  start-page: 14534
  year: 1999
  end-page: 14541
  ident: bb0055
  article-title: An
  publication-title: Biochemistry (Mosc)
– year: 2016
  ident: 10.1016/j.bbagen.2017.11.006_bb0030
  article-title: The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00812
– volume: 25
  start-page: 1489
  year: 2016
  ident: 10.1016/j.bbagen.2017.11.006_bb0020
  article-title: Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddw026
– year: 2016
  ident: 10.1016/j.bbagen.2017.11.006_bb0070
  article-title: TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis
  publication-title: Tissue Cell
– volume: 173
  start-page: 1798
  year: 2017
  ident: 10.1016/j.bbagen.2017.11.006_bb0035
  article-title: The synechocystis manganese exporter Mnx is essential for manganese homeostasis in cyanobacteria
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01895
– start-page: 335
  year: 1982
  ident: 10.1016/j.bbagen.2017.11.006_bb0075
  article-title: Yeast cell wall and cell surface
– volume: 91
  start-page: 15
  year: 2012
  ident: 10.1016/j.bbagen.2017.11.006_bb0005
  article-title: TMEM165 deficiency causes a congenital disorder of glycosylation
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2012.05.002
– volume: 307
  start-page: 177
  year: 1998
  ident: 10.1016/j.bbagen.2017.11.006_bb0050
  article-title: Structural analysis of the intact polysaccharide mannan from Saccharomyces Cerevisiae yeast using 1H and 13C NMR spectroscopy at 750MHz
  publication-title: Carbohydr. Res.
– volume: 110
  start-page: 6859
  year: 2013
  ident: 10.1016/j.bbagen.2017.11.006_bb0010
  article-title: Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1219871110
– volume: 498
  start-page: 223
  year: 2001
  ident: 10.1016/j.bbagen.2017.11.006_bb0040
  article-title: What can yeast tell us about N-linked glycosylation in the Golgi apparatus?
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02488-7
– volume: 6
  year: 2016
  ident: 10.1016/j.bbagen.2017.11.006_bb0015
  article-title: Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation
  publication-title: Sci. Rep.
  doi: 10.1038/srep24282
– volume: 4
  start-page: 1
  year: 1991
  ident: 10.1016/j.bbagen.2017.11.006_bb0045
  article-title: Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.4.1.1
– volume: 38
  start-page: 14534
  year: 1999
  ident: 10.1016/j.bbagen.2017.11.006_bb0055
  article-title: An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase
  publication-title: Biochemistry (Mosc)
  doi: 10.1021/bi9911233
– year: 2017
  ident: 10.1016/j.bbagen.2017.11.006_bb0025
  article-title: Manganese-induced turnover of TMEM165
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160910
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2017.11.006_bb0065
  article-title: Molecular evolution of a novel family of putative calcium transporters
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100851
– volume: 275
  start-page: 23933
  year: 2000
  ident: 10.1016/j.bbagen.2017.11.006_bb0060
  article-title: Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002619200
SSID ssj0000595
Score 2.3635592
Snippet The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 394
SubjectTerms Amino Acid Motifs
Binding Sites
Biochemistry, Molecular Biology
Ca2 + homeostasis
calcium
Calcium - metabolism
Calcium Channels - chemistry
Calcium Channels - genetics
Calcium Channels - physiology
Calcium-Transporting ATPases - metabolism
cations
Conserved Sequence
Gdt1p
Glycosylation
Golgi Apparatus - metabolism
Golgi glycosylation
homeostasis
Ion Transport
Life Sciences
manganese
Manganese - metabolism
Mannans - metabolism
Mn2 + homeostasis
Molecular Chaperones - metabolism
Monosaccharides - metabolism
mutants
nuclear magnetic resonance spectroscopy
Nuclear Magnetic Resonance, Biomolecular
Peptide Fragments - metabolism
Pmr1p
Protein Processing, Post-Translational - physiology
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Structural Biology
yeasts
Title Investigating the function of Gdt1p in yeast Golgi glycosylation
URI https://dx.doi.org/10.1016/j.bbagen.2017.11.006
https://www.ncbi.nlm.nih.gov/pubmed/29108953
https://www.proquest.com/docview/1961637949
https://www.proquest.com/docview/2045798303
https://hal.science/hal-02371931
Volume 1862
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6jrG9jLX7aNYPtLFXN5ElWdbbQlibfbQvXaFvwpLlLCXYYU0HednfvrvITldoKfTFYHFC9t3pp5_Q6Q7gU-4rl3pdJCLgbJKDapAYXAqSTAfDy1KmQdB955PTbHwuv12oiw0YdXdhKKyyxf6I6Su0blv6rTb78-m0f0aHekgnFEcnFUpTTlApNXn54d-bMA-kDyqeJMiEpLvrc6sYL-dw0lIWVK4PKZcn1T26e3l68oviJO8joavF6OgVvGxZJBvGD92CjVBvw7NYV3K5Dc9HXRm31_D5v0wa9YQh32O0lpE9WFOx43LB52xasyUV8WHHzWwyZZPZ0jdXyxgm9wbOj778HI2TtmxC4pXki0QJ1EJQuSgqpxG-JJeBe-WKylfaG5fiM8iycDykAvlTiWZEkFOZdwPhjBZvYbNu6rADLC28MPnA-EwUKKnzgBvKzCOtkZnLS9ED0WnL-janOJW2mNkueOzSRh1b0jFuNyzquAfJutc85tR4QF53hrC3fMMi7D_Q8yPabT0IpdIeD39YakOuopG88j-8Bx86s1q0DR2YFHVorq8sohPSVUQsc78MpfPXJkcX7MG76BPr8VLkYrlR4v2jf2AXXuBbHoPe9mBz8fs67CMLWriDlZsfwNPh1-_j03_b8QRc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaFEN3KbbulT21YVcvkSVZ1m1B0NZd01zWAr0JlixnGQI7WNMB-fclYzvrgBUFdvFBpiCbpD59gigS4HPqSxd7nUci4GySw3IYGVwKokQHw4tCxkHQfefzaZJdym9X6moHxt1dGAqrbLG_wfQNWrctg1abg-V8PvhOh3pIJxRHJxVKy13Yo-xUqgd7o9OzbPoHkNWm-ArJR9Shu0G3CfNyDuctJULl-gul86TSR_9eoXZ_UKjkfTx0sx4dP4GDlkiyUfOtT2EnVIfwqCktuT6E_XFXye0ZfL2TTKOaMaR8jJYzMgmrS3ZSrPiSzSu2pjo-7KRezOZstlj7-nrdRMo9h8vjo4txFrWVEyKvJF9FSkidBJWKvHQaEUxyGbhXLi99qb1xMT6DLHLHQyyQQhVoScQ5lXg3FM5o8QJ6VV2FV8Di3AuTDo1PRI6SOg24p0w8MhuZuLQQfRCdtqxv04pTdYuF7eLHftpGx5Z0jDsOizruQ7TttWzSajwgrztD2L_cwyLyP9DzE9ptOwhl085GE0ttSFc08lf-m_fhY2dWi7ahM5O8CvXNtUWAQsaKoGXul6GM_tqk6IV9eNn4xHa8GOlYapR4_d8_8AH2s4vziZ2cTs_ewGN8kzYxcG-ht_p1E94hKVq5963T3wLGDQcN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+function+of+Gdt1p+in+yeast+Golgi+glycosylation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Dulary%2C+Eudoxie&rft.au=Yu%2C+Shin-Yi&rft.au=Houdou%2C+Marine&rft.au=de+Bettignies%2C+Geoffroy&rft.date=2018-03-01&rft.pub=Elsevier&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1862&rft.issue=3&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1016%2Fj.bbagen.2017.11.006&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02371931v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon