Investigating the function of Gdt1p in yeast Golgi glycosylation
The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function i...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 3; pp. 394 - 402 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.
•Functional link between Gdt1p and Pmr1p•Gdt1p imports Mn2+ inside the Golgi lumen when Prm1p exclusively transports Ca2+•Ion homeostasis and yeast Golgi glycosylation |
---|---|
AbstractList | The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport.The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport. The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport. •Functional link between Gdt1p and Pmr1p•Gdt1p imports Mn2+ inside the Golgi lumen when Prm1p exclusively transports Ca2+•Ion homeostasis and yeast Golgi glycosylation The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca /Mn homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca . The use of Pmr1p mutants either defective for Ca or Mn transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn inside the Golgi lumen when Pmr1p exclusively transports Ca . Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn /Ca transport. The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains incomplete. Gdt1p is a member of the conserved Uncharacterized Protein Family (UPF0016). Our previous work suggested that Gdt1p may function in the Golgi by regulating Golgi Ca2+/Mn2+ homeostasis. NMR structural analysis of the polymannan chains isolated from yeasts showed that the gdt1Δ mutant cultured in presence of high Ca2+ concentration, as well as the pmr1Δ and gdt1Δ/pmr1Δ strains presented strong late Golgi glycosylation defects with a lack of α-1,2 mannoses substitution and α-1,3 mannoses termination. The addition of Mn2+ confirmed the rescue of these defects. Interestingly, our structural data confirmed that the glycosylation defect in pmr1Δ could also completely be suppressed by the addition of Ca2+. The use of Pmr1p mutants either defective for Ca2+ or Mn2+ transport or both revealed that the suppression of the observed glycosylation defect in pmr1Δ strains by the intraluminal Golgi Ca2+ requires the activity of Gdt1p. These data support the hypothesis that Gdt1p, in order to sustain the Golgi glycosylation process, imports Mn2+ inside the Golgi lumen when Pmr1p exclusively transports Ca2+. Our results also reinforce the functional link between Gdt1p and Pmr1p as we highlighted that Gdt1p was a Mn2+ sensitive protein whose abundance was directly dependent on the nature of the ion transported by Pmr1p. Finally, this study demonstrated that the aspartic residues of the two conserved motifs E-x-G-D-[KR], likely constituting the cation binding sites of Gdt1p, play a crucial role in Golgi glycosylation and hence in Mn2+/Ca2+transport. |
Author | Yu, Shin-Yi Houdou, Marine Duvet, Sandrine Krzewinski-Recchi, Marie-Ange Potelle, Sven Dulary, Eudoxie de Bettignies, Geoffroy Garat, Anne Matthijs, Gert Foulquier, François Decool, Valérie Guerardel, Yann |
Author_xml | – sequence: 1 givenname: Eudoxie surname: Dulary fullname: Dulary, Eudoxie organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 2 givenname: Shin-Yi surname: Yu fullname: Yu, Shin-Yi organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 3 givenname: Marine surname: Houdou fullname: Houdou, Marine organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 4 givenname: Geoffroy surname: de Bettignies fullname: de Bettignies, Geoffroy organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 5 givenname: Valérie surname: Decool fullname: Decool, Valérie organization: Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483 – IMPECS – IMPact de l'Environnement Chimique sur la Santé humaine, F-59000 Lille, France – sequence: 6 givenname: Sven surname: Potelle fullname: Potelle, Sven organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 7 givenname: Sandrine surname: Duvet fullname: Duvet, Sandrine organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 8 givenname: Marie-Ange surname: Krzewinski-Recchi fullname: Krzewinski-Recchi, Marie-Ange organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 9 givenname: Anne surname: Garat fullname: Garat, Anne organization: Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483 – IMPECS – IMPact de l'Environnement Chimique sur la Santé humaine, F-59000 Lille, France – sequence: 10 givenname: Gert surname: Matthijs fullname: Matthijs, Gert organization: LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory “Laboratory for the Research on Congenital Disorders of Glycosylation – from cellular mechanisms to cure”, France – sequence: 11 givenname: Yann surname: Guerardel fullname: Guerardel, Yann organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France – sequence: 12 givenname: François surname: Foulquier fullname: Foulquier, François email: francois.foulquier@univ-lille1.fr organization: Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29108953$$D View this record in MEDLINE/PubMed https://hal.science/hal-02371931$$DView record in HAL |
BookMark | eNqFkc1u1DAUhS1URKeFN0AoS1gk-MZ2ErNAVBVMK43EBtaWf25SjzL2EHtGmrcnQ1oWLKgXtmV95-j6nCtyEWJAQt4CrYBC83FbGaMHDFVNoa0AKkqbF2QFXVuX3Xy_ICvKKC85NOKSXKW0pfMSUrwil7UE2knBVuTLfThiyn7Q2YehyA9Y9Idgs4-hiH2xdhn2hQ_FCXXKxTqOgy-G8WRjOo36TL0mL3s9JnzzeF6Tn9--_ri9Kzff1_e3N5vSCg65FIy3DYqO6d602jkOHMEKo3vbt1aaet6RO20Aa8ZF4wxa51A01lBmZMuuyYfF90GPaj_5nZ5OKmqv7m426vxGa9aCZHCEmX2_sPsp_jrM31M7nyyOow4YD0nVlItWdoyyZ1GQDTSslVzO6LtH9GB26P4O8RTmDHxaADvFlCbslfX5T0h50n5UQNW5ObVVS3Pq3JwCUHNbs5j_I37yf0b2eZHhnP3R46SS9RgsOj-hzcpF_3-D39Z8szk |
CitedBy_id | crossref_primary_10_1093_jxb_erad004 crossref_primary_10_1371_journal_ppat_1009399 crossref_primary_10_3389_fcell_2019_00093 crossref_primary_10_1016_j_plaphy_2023_108054 crossref_primary_10_1016_j_jbc_2025_108372 crossref_primary_10_1051_medsci_2020128 crossref_primary_10_1016_j_plantsci_2023_111935 crossref_primary_10_1016_j_bbagen_2020_129674 crossref_primary_10_3389_fmicb_2019_03100 crossref_primary_10_1016_j_bbagen_2023_130412 crossref_primary_10_3390_genes10070545 crossref_primary_10_1074_jbc_RA119_012249 crossref_primary_10_3390_jof7030225 crossref_primary_10_3389_fmicb_2022_1022054 crossref_primary_10_1093_plphys_kiac387 crossref_primary_10_1111_nph_17209 crossref_primary_10_1016_j_carbpol_2021_118415 crossref_primary_10_1016_j_biochi_2020_04_017 crossref_primary_10_1111_1462_2920_16128 crossref_primary_10_1074_jbc_RA118_002324 crossref_primary_10_1042_BCJ20190488 crossref_primary_10_1016_j_jbc_2023_104628 crossref_primary_10_4236_jbise_2022_152008 crossref_primary_10_1093_plphys_kiab122 crossref_primary_10_1038_s41467_023_41896_1 |
Cites_doi | 10.1105/tpc.15.00812 10.1093/hmg/ddw026 10.1104/pp.16.01895 10.1016/j.ajhg.2012.05.002 10.1073/pnas.1219871110 10.1016/S0014-5793(01)02488-7 10.1038/srep24282 10.1128/CMR.4.1.1 10.1021/bi9911233 10.1042/BCJ20160910 10.1371/journal.pone.0100851 10.1074/jbc.M002619200 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.1016/j.bbagen.2017.11.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 402 |
ExternalDocumentID | oai_HAL_hal_02371931v1 29108953 10_1016_j_bbagen_2017_11_006 S0304416517303574 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 1XC |
ID | FETCH-LOGICAL-c541t-53476e583afb7add414e1c5bafcf7c9b2f7ce4dab1e23456dbecdde56cb03b973 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Fri May 09 12:28:49 EDT 2025 Tue Aug 05 10:42:45 EDT 2025 Fri Jul 11 12:08:12 EDT 2025 Thu Apr 03 07:05:36 EDT 2025 Tue Jul 01 00:22:10 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Ca2+ homeostasis Gdt1p Mn2+ homeostasis Pmr1p Golgi glycosylation Ca(2+) homeostasis Mn(2+) homeostasis |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-53476e583afb7add414e1c5bafcf7c9b2f7ce4dab1e23456dbecdde56cb03b973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0197-9575 0000-0002-9766-3163 0000-0002-6796-9815 0000-0003-4967-9512 |
OpenAccessLink | https://lirias.kuleuven.be/bitstream/123456789/598720/1/Dulary%20BBA%202017.pdf |
PMID | 29108953 |
PQID | 1961637949 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_02371931v1 proquest_miscellaneous_2045798303 proquest_miscellaneous_1961637949 pubmed_primary_29108953 crossref_citationtrail_10_1016_j_bbagen_2017_11_006 crossref_primary_10_1016_j_bbagen_2017_11_006 elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_11_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Schneider, Steinberger, Herdean, Gandini, Eisenhut, Kurz, Morper, Hoecker, Rühle, Labs, Flügge, Geimer, Schmidt, Husted, Weber, Spetea, Leister (bb0030) 2016 Colinet, Sengottaiyan, Deschamps, Colsoul, Thines, Demaegd, Duchêne, Foulquier, Hols, Morsomme (bb0015) 2016; 6 Potelle, Dulary, Climer, Duvet, Morelle, Vicogne, Lebredonchelle, Houdou, Spriet, Krzewinski-Recchi, Peanne, Klein, DE Bettignies, Morsomme, Matthijs, Marquardt, Lupashin, Foulquier (bb0025) 2017 Foulquier, Amyere, Jaeken, Zeevaert, Schollen, Race, Bammens, Morelle, Rosnoblet, Legrand, Demaegd, Buist, Cheillan, Guffon, Morsomme, Annaert, Freeze, Van Schaftingen, Vikkula, Matthijs (bb0005) 2012; 91 Munro (bb0040) 2001; 498 Demaegd, Foulquier, Colinet, Gremillon, Legrand, Mariot, Peiter, Van Schaftingen, Matthijs, Morsomme (bb0010) 2013; 110 Mandal, Woolf, Rao (bb0060) 2000; 275 Demaegd, Colinet, Deschamps, Morsomme (bb0065) 2014; 9 Brandenburg, Schoffman, Kurz, Krämer, Keren, Weber, Eisenhut (bb0035) 2017; 173 Dulary, Potelle, Legrand, Foulquier (bb0070) 2016 Nelson, Shibata, Podzorski, Herron (bb0045) 1991; 4 Vinogradov, Petersen, Bock (bb0050) 1998; 307 Ballou (bb0075) 1982 Potelle, Morelle, Dulary, Duvet, Vicogne, Spriet, Krzewinski-Recchi, Morsomme, Jaeken, Matthijs, De Bettignies, Foulquier (bb0020) 2016; 25 Wei, Marchi, Wang, Rao (bb0055) 1999; 38 Demaegd (10.1016/j.bbagen.2017.11.006_bb0010) 2013; 110 Potelle (10.1016/j.bbagen.2017.11.006_bb0025) 2017 Foulquier (10.1016/j.bbagen.2017.11.006_bb0005) 2012; 91 Ballou (10.1016/j.bbagen.2017.11.006_bb0075) 1982 Dulary (10.1016/j.bbagen.2017.11.006_bb0070) 2016 Potelle (10.1016/j.bbagen.2017.11.006_bb0020) 2016; 25 Demaegd (10.1016/j.bbagen.2017.11.006_bb0065) 2014; 9 Colinet (10.1016/j.bbagen.2017.11.006_bb0015) 2016; 6 Vinogradov (10.1016/j.bbagen.2017.11.006_bb0050) 1998; 307 Wei (10.1016/j.bbagen.2017.11.006_bb0055) 1999; 38 Brandenburg (10.1016/j.bbagen.2017.11.006_bb0035) 2017; 173 Schneider (10.1016/j.bbagen.2017.11.006_bb0030) 2016 Mandal (10.1016/j.bbagen.2017.11.006_bb0060) 2000; 275 Nelson (10.1016/j.bbagen.2017.11.006_bb0045) 1991; 4 Munro (10.1016/j.bbagen.2017.11.006_bb0040) 2001; 498 |
References_xml | – volume: 25 start-page: 1489 year: 2016 end-page: 1500 ident: bb0020 article-title: Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis publication-title: Hum. Mol. Genet. – volume: 4 start-page: 1 year: 1991 end-page: 19 ident: bb0045 article-title: Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action publication-title: Clin. Microbiol. Rev. – start-page: 335 year: 1982 end-page: 360 ident: bb0075 article-title: Yeast cell wall and cell surface publication-title: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression – volume: 498 start-page: 223 year: 2001 end-page: 227 ident: bb0040 article-title: What can yeast tell us about publication-title: FEBS Lett. – volume: 9 year: 2014 ident: bb0065 article-title: Molecular evolution of a novel family of putative calcium transporters publication-title: PLoS One – volume: 6 year: 2016 ident: bb0015 article-title: Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation publication-title: Sci. Rep. – volume: 275 start-page: 23933 year: 2000 end-page: 23938 ident: bb0060 article-title: Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport publication-title: J. Biol. Chem. – volume: 110 start-page: 6859 year: 2013 end-page: 6864 ident: bb0010 article-title: Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 91 start-page: 15 year: 2012 end-page: 26 ident: bb0005 article-title: TMEM165 deficiency causes a congenital disorder of glycosylation publication-title: Am. J. Hum. Genet. – year: 2017 ident: bb0025 article-title: Manganese-induced turnover of TMEM165 publication-title: Biochem. J. – volume: 173 start-page: 1798 year: 2017 end-page: 1810 ident: bb0035 article-title: The synechocystis manganese exporter Mnx is essential for manganese homeostasis in cyanobacteria publication-title: Plant Physiol. – year: 2016 ident: bb0070 article-title: TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis publication-title: Tissue Cell – year: 2016 ident: bb0030 article-title: The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in arabidopsis publication-title: Plant Cell – volume: 307 start-page: 177 year: 1998 end-page: 183 ident: bb0050 article-title: Structural analysis of the intact polysaccharide mannan from Saccharomyces Cerevisiae yeast using 1H and 13C NMR spectroscopy at 750 publication-title: Carbohydr. Res. – volume: 38 start-page: 14534 year: 1999 end-page: 14541 ident: bb0055 article-title: An publication-title: Biochemistry (Mosc) – year: 2016 ident: 10.1016/j.bbagen.2017.11.006_bb0030 article-title: The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.15.00812 – volume: 25 start-page: 1489 year: 2016 ident: 10.1016/j.bbagen.2017.11.006_bb0020 article-title: Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw026 – year: 2016 ident: 10.1016/j.bbagen.2017.11.006_bb0070 article-title: TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis publication-title: Tissue Cell – volume: 173 start-page: 1798 year: 2017 ident: 10.1016/j.bbagen.2017.11.006_bb0035 article-title: The synechocystis manganese exporter Mnx is essential for manganese homeostasis in cyanobacteria publication-title: Plant Physiol. doi: 10.1104/pp.16.01895 – start-page: 335 year: 1982 ident: 10.1016/j.bbagen.2017.11.006_bb0075 article-title: Yeast cell wall and cell surface – volume: 91 start-page: 15 year: 2012 ident: 10.1016/j.bbagen.2017.11.006_bb0005 article-title: TMEM165 deficiency causes a congenital disorder of glycosylation publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2012.05.002 – volume: 307 start-page: 177 year: 1998 ident: 10.1016/j.bbagen.2017.11.006_bb0050 article-title: Structural analysis of the intact polysaccharide mannan from Saccharomyces Cerevisiae yeast using 1H and 13C NMR spectroscopy at 750MHz publication-title: Carbohydr. Res. – volume: 110 start-page: 6859 year: 2013 ident: 10.1016/j.bbagen.2017.11.006_bb0010 article-title: Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1219871110 – volume: 498 start-page: 223 year: 2001 ident: 10.1016/j.bbagen.2017.11.006_bb0040 article-title: What can yeast tell us about N-linked glycosylation in the Golgi apparatus? publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02488-7 – volume: 6 year: 2016 ident: 10.1016/j.bbagen.2017.11.006_bb0015 article-title: Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation publication-title: Sci. Rep. doi: 10.1038/srep24282 – volume: 4 start-page: 1 year: 1991 ident: 10.1016/j.bbagen.2017.11.006_bb0045 article-title: Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.4.1.1 – volume: 38 start-page: 14534 year: 1999 ident: 10.1016/j.bbagen.2017.11.006_bb0055 article-title: An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase publication-title: Biochemistry (Mosc) doi: 10.1021/bi9911233 – year: 2017 ident: 10.1016/j.bbagen.2017.11.006_bb0025 article-title: Manganese-induced turnover of TMEM165 publication-title: Biochem. J. doi: 10.1042/BCJ20160910 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2017.11.006_bb0065 article-title: Molecular evolution of a novel family of putative calcium transporters publication-title: PLoS One doi: 10.1371/journal.pone.0100851 – volume: 275 start-page: 23933 year: 2000 ident: 10.1016/j.bbagen.2017.11.006_bb0060 article-title: Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002619200 |
SSID | ssj0000595 |
Score | 2.3635592 |
Snippet | The Golgi ion homeostasis is tightly regulated to ensure essential cellular processes such as glycosylation, yet our understanding of this regulation remains... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 394 |
SubjectTerms | Amino Acid Motifs Binding Sites Biochemistry, Molecular Biology Ca2 + homeostasis calcium Calcium - metabolism Calcium Channels - chemistry Calcium Channels - genetics Calcium Channels - physiology Calcium-Transporting ATPases - metabolism cations Conserved Sequence Gdt1p Glycosylation Golgi Apparatus - metabolism Golgi glycosylation homeostasis Ion Transport Life Sciences manganese Manganese - metabolism Mannans - metabolism Mn2 + homeostasis Molecular Chaperones - metabolism Monosaccharides - metabolism mutants nuclear magnetic resonance spectroscopy Nuclear Magnetic Resonance, Biomolecular Peptide Fragments - metabolism Pmr1p Protein Processing, Post-Translational - physiology Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Structural Biology yeasts |
Title | Investigating the function of Gdt1p in yeast Golgi glycosylation |
URI | https://dx.doi.org/10.1016/j.bbagen.2017.11.006 https://www.ncbi.nlm.nih.gov/pubmed/29108953 https://www.proquest.com/docview/1961637949 https://www.proquest.com/docview/2045798303 https://hal.science/hal-02371931 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6jrG9jLX7aNYPtLFXN5ElWdbbQlibfbQvXaFvwpLlLCXYYU0HednfvrvITldoKfTFYHFC9t3pp5_Q6Q7gU-4rl3pdJCLgbJKDapAYXAqSTAfDy1KmQdB955PTbHwuv12oiw0YdXdhKKyyxf6I6Su0blv6rTb78-m0f0aHekgnFEcnFUpTTlApNXn54d-bMA-kDyqeJMiEpLvrc6sYL-dw0lIWVK4PKZcn1T26e3l68oviJO8joavF6OgVvGxZJBvGD92CjVBvw7NYV3K5Dc9HXRm31_D5v0wa9YQh32O0lpE9WFOx43LB52xasyUV8WHHzWwyZZPZ0jdXyxgm9wbOj778HI2TtmxC4pXki0QJ1EJQuSgqpxG-JJeBe-WKylfaG5fiM8iycDykAvlTiWZEkFOZdwPhjBZvYbNu6rADLC28MPnA-EwUKKnzgBvKzCOtkZnLS9ED0WnL-janOJW2mNkueOzSRh1b0jFuNyzquAfJutc85tR4QF53hrC3fMMi7D_Q8yPabT0IpdIeD39YakOuopG88j-8Bx86s1q0DR2YFHVorq8sohPSVUQsc78MpfPXJkcX7MG76BPr8VLkYrlR4v2jf2AXXuBbHoPe9mBz8fs67CMLWriDlZsfwNPh1-_j03_b8QRc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaFEN3KbbulT21YVcvkSVZ1m1B0NZd01zWAr0JlixnGQI7WNMB-fclYzvrgBUFdvFBpiCbpD59gigS4HPqSxd7nUci4GySw3IYGVwKokQHw4tCxkHQfefzaZJdym9X6moHxt1dGAqrbLG_wfQNWrctg1abg-V8PvhOh3pIJxRHJxVKy13Yo-xUqgd7o9OzbPoHkNWm-ArJR9Shu0G3CfNyDuctJULl-gul86TSR_9eoXZ_UKjkfTx0sx4dP4GDlkiyUfOtT2EnVIfwqCktuT6E_XFXye0ZfL2TTKOaMaR8jJYzMgmrS3ZSrPiSzSu2pjo-7KRezOZstlj7-nrdRMo9h8vjo4txFrWVEyKvJF9FSkidBJWKvHQaEUxyGbhXLi99qb1xMT6DLHLHQyyQQhVoScQ5lXg3FM5o8QJ6VV2FV8Di3AuTDo1PRI6SOg24p0w8MhuZuLQQfRCdtqxv04pTdYuF7eLHftpGx5Z0jDsOizruQ7TttWzSajwgrztD2L_cwyLyP9DzE9ptOwhl085GE0ttSFc08lf-m_fhY2dWi7ahM5O8CvXNtUWAQsaKoGXul6GM_tqk6IV9eNn4xHa8GOlYapR4_d8_8AH2s4vziZ2cTs_ewGN8kzYxcG-ht_p1E94hKVq5963T3wLGDQcN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+function+of+Gdt1p+in+yeast+Golgi+glycosylation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Dulary%2C+Eudoxie&rft.au=Yu%2C+Shin-Yi&rft.au=Houdou%2C+Marine&rft.au=de+Bettignies%2C+Geoffroy&rft.date=2018-03-01&rft.pub=Elsevier&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1862&rft.issue=3&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1016%2Fj.bbagen.2017.11.006&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02371931v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |