Scalable multifunctional MOFs-textiles via diazonium chemistry
Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (M...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5297 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against
E. coli
and
S. aureus
. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.
Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Here, authors report a generic strategy to achieve highly stable, large-scale, and multifunctional MOFs-textiles via diazonium chemistry. |
---|---|
AbstractList | Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against
E. coli
and
S. aureus
. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.
Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Here, authors report a generic strategy to achieve highly stable, large-scale, and multifunctional MOFs-textiles via diazonium chemistry. Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Here, authors report a generic strategy to achieve highly stable, large-scale, and multifunctional MOFs-textiles via diazonium chemistry. Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears. Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears. Abstract Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears. Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus . Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears. |
ArticleNumber | 5297 |
Author | Yu, Zhen Xin, Jiwu Wei, Lei Wang, Shuai Li, Zhanxiong Tan, Swee Ching Lv, Cun He, Bing Liu, Yanting Wang, Zhixun Zhang, Yaoxin Li, Wulong He, Xiaoxiang Yuan, Shixing Zhou, Tianzhu |
Author_xml | – sequence: 1 givenname: Wulong orcidid: 0000-0002-2824-845X surname: Li fullname: Li, Wulong organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Department of Materials Science and Engineering, National University of Singapore – sequence: 2 givenname: Zhen surname: Yu fullname: Yu, Zhen organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University – sequence: 3 givenname: Yaoxin surname: Zhang fullname: Zhang, Yaoxin organization: China-UK Low Carbon College, Shanghai Jiao Tong University – sequence: 4 givenname: Cun surname: Lv fullname: Lv, Cun organization: College of Textile and Clothing Engineering, Soochow University – sequence: 5 givenname: Xiaoxiang surname: He fullname: He, Xiaoxiang organization: College of Textile and Clothing Engineering, Soochow University – sequence: 6 givenname: Shuai surname: Wang fullname: Wang, Shuai organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 7 givenname: Zhixun orcidid: 0000-0001-9918-9939 surname: Wang fullname: Wang, Zhixun organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 8 givenname: Bing surname: He fullname: He, Bing organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 9 givenname: Shixing surname: Yuan fullname: Yuan, Shixing organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 10 givenname: Jiwu surname: Xin fullname: Xin, Jiwu organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 11 givenname: Yanting surname: Liu fullname: Liu, Yanting organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 12 givenname: Tianzhu surname: Zhou fullname: Zhou, Tianzhu organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 13 givenname: Zhanxiong orcidid: 0000-0002-4850-8810 surname: Li fullname: Li, Zhanxiong email: lizhanxiong@suda.edu.cn organization: College of Textile and Clothing Engineering, Soochow University, National Engineering Laboratory for Modern Silk, Soochow University – sequence: 14 givenname: Swee Ching orcidid: 0000-0003-2074-8385 surname: Tan fullname: Tan, Swee Ching email: msetansc@nus.edu.sg organization: Department of Materials Science and Engineering, National University of Singapore – sequence: 15 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei email: wei.lei@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38906900$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9PFTEUxScGI4h8ARdmEjduBvt_2o2GEFESDAvZN3c6dx596UyxnSHip7e8Bwgs6KZNe84vJ7fnbbUzxQmr6j0lh5Rw_TkLKlTbECYaYRRXjXlV7TEiaENbxncenXerg5zXpCxuqBbiTbXLtSHKELJXffnlIEAXsB6XMPthmdzs4wSh_nl-kpsZ_8w-YK6vPdS9h79x8stYu0scfZ7Tzbvq9QAh48Hdvl9dnHy7OP7RnJ1_Pz0-OmucFHRuJDPICDFS0lbxzgnAgUgHSIcBVet6qZxyRDLOW-C8E1CS9rrt9ACEdXy_Ot1i-whre5X8COnGRvB2cxHTykKavQtowfUEWmkUikFoQE0pdq7XQ0eBCckL6-uWdbV0I_YOpzlBeAJ9-jL5S7uK15ZSalgZWiF8uiOk-HvBPNsyDIchwIRxyZaTlhKtNFNF-vGZdB2XVMa7UREtW83aovrwONJDlvtvKgK9FbgUc044WOdnuP2oktAHS4m9LYXdlsKWUthNKawpVvbMek9_0cS3plzE0wrT_9gvuP4BJ_TJJw |
CitedBy_id | crossref_primary_10_1002_adma_202417022 crossref_primary_10_1002_adfm_202420340 crossref_primary_10_1039_D4TA06000H crossref_primary_10_1126_sciadv_ads4711 crossref_primary_10_1002_adma_202413665 crossref_primary_10_1039_D4MH01304B crossref_primary_10_1039_D4CS00673A crossref_primary_10_1016_j_jece_2025_116053 crossref_primary_10_1002_advs_202416169 crossref_primary_10_1016_j_seppur_2024_129921 crossref_primary_10_3390_polym16233244 |
Cites_doi | 10.1039/c0cs00179a 10.1016/j.cej.2022.137195 10.1002/adma.201301626 10.1021/acsanm.0c00702 10.1021/acsnano.2c05624 10.1038/nchem.2505 10.1021/acsami.8b16845 10.1021/acs.chemmater.0c02379 10.1021/jacs.9b07301 10.1002/anie.201511063 10.1002/ange.201902229 10.1021/ja061439f 10.9767/bcrec.16.3.10281.571-580 10.1016/j.jelechem.2016.11.043 10.1002/ange.201606656 10.1002/adfm.202105395 10.1021/jacs.9b11172 10.1016/j.cej.2018.08.113 10.1016/j.porgcoat.2023.107721 10.1038/s41578-021-00291-2 10.1002/ange.202309078 10.1021/jacs.7b08840 10.1021/jacs.2c05510 10.1126/science.aam8743 10.1016/j.jenvman.2022.115972 10.1021/acsenergylett.8b01675 10.1021/jacs.7b11589 10.1039/D2CS00031H 10.1016/j.colsurfa.2021.127570 10.1038/s41565-022-01278-y 10.1021/accountsmr.2c00200 10.1002/adma.200900235 10.1038/s41467-022-34512-1 10.1007/s10570-021-03717-w 10.1039/C4TA05501B 10.1038/s41563-023-01545-w 10.1016/j.matt.2019.11.005 10.1039/C9CC02614B 10.1021/jacs.6b02553 10.1021/acsami.0c14883 10.1039/C7CS00315C 10.1016/j.ccr.2022.214496 10.1038/s41565-020-0673-x 10.1002/adma.202300951 10.1002/smll.202311272 10.1016/j.cej.2023.144376 10.1038/s41893-023-01121-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-49636-9 |
DatabaseName | Open Access Journals from Springer Nature CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_acd0a7596e4f48ae811ebcd8fb1a2453 PMC11192900 38906900 10_1038_s41467_024_49636_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: A*STAR | Singapore Institute of Manufacturing Technology (Singapore Institute of Manufacturing Technology - A STAR) grantid: A2083c0062, IAF-ICP Programme I2001E0067 funderid: https://doi.org/10.13039/501100001471 – fundername: Ministry of Education - Singapore (MOE) grantid: MOE2019-T2-2-127, MOE-T2EP50120-0002, MOE-T2EP50123-0014 and RG62/22 funderid: https://doi.org/10.13039/501100001459 – fundername: Ministry of Education - Singapore (MOE) grantid: MOE2019-T2-2-127, MOE-T2EP50120-0002, MOE-T2EP50123-0014 and RG62/22 – fundername: A*STAR | Singapore Institute of Manufacturing Technology (Singapore Institute of Manufacturing Technology - A STAR) grantid: A2083c0062, IAF-ICP Programme I2001E0067 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-529e2009551763bc4aef05cae1ffe67cd56c6c052337a33b4a918d87b8fa02b3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:45 EDT 2025 Thu Aug 21 18:33:37 EDT 2025 Fri Jul 11 08:17:31 EDT 2025 Wed Aug 13 09:50:57 EDT 2025 Thu Apr 03 07:05:46 EDT 2025 Tue Jul 01 02:11:14 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Fri Feb 21 02:37:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-529e2009551763bc4aef05cae1ffe67cd56c6c052337a33b4a918d87b8fa02b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0819-8325 0000-0001-9918-9939 0000-0002-2824-845X 0000-0003-2074-8385 0000-0002-4850-8810 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49636-9 |
PMID | 38906900 |
PQID | 3070857827 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_acd0a7596e4f48ae811ebcd8fb1a2453 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11192900 proquest_miscellaneous_3071086826 proquest_journals_3070857827 pubmed_primary_38906900 crossref_citationtrail_10_1038_s41467_024_49636_9 crossref_primary_10_1038_s41467_024_49636_9 springer_journals_10_1038_s41467_024_49636_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-21 |
PublicationDateYYYYMMDD | 2024-06-21 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhang (CR32) 2016; 138 CR18 Peterson (CR7) 2021; 6 CR16 Zhuang (CR12) 2013; 25 Mahouche-Chergui, Gam-Derouich, Mangeney, Chehimi (CR22) 2011; 40 Zhao (CR28) 2016; 128 Li (CR43) 2022; 446 CR10 Smith, Mirica (CR15) 2017; 139 Li, Wang, Li (CR24) 2021; 630 Ryder (CR25) 2016; 8 Martin (CR21) 2009; 21 Ma (CR8) 2020; 32 Cheng (CR9) 2022; 51 Zhang (CR36) 2021; 28 Lu (CR44) 2022; 461 Liu, Wöll (CR3) 2017; 46 Chen (CR29) 2019; 141 Eagleton (CR31) 2022; 144 Yang (CR6) 2023; 22 Qiao (CR37) 2022; 321 Kim (CR2) 2017; 356 Jiang, Sumpter, Dai (CR26) 2006; 128 Chen (CR33) 2016; 55 Zhang (CR45) 2020; 12 Mia (CR47) 2019; 5 Li (CR38) 2022; 16 Zhao (CR40) 2015; 3 Lee, Jamir, Peterson, Parsons (CR13) 2020; 2 Hu (CR39) 2018; 10 Zhang (CR14) 2021; 31 Eagleton (CR11) 2023; 135 Che, Li, Wu, Li (CR48) 2023; 183 CR20 Ma (CR27) 2019; 141 Hanikel, Prévot, Yaghi (CR4) 2020; 15 Ma (CR42) 2023; 4 Wiyantoko, Rusitasari, Putri (CR46) 2021; 16 Jiang (CR23) 2017; 785 Li (CR34) 2018; 3 Cheng (CR19) 2019; 355 Saliba (CR41) 2018; 140 Wang (CR35) 2022; 13 Zhang (CR5) 2020; 3 Masoomi, Morsali, Dhakshinamoorthy, Garcia (CR1) 2019; 131 Qian (CR17) 2023; 18 Zhang (CR30) 2019; 55 S Wang (49636_CR35) 2022; 13 C Li (49636_CR34) 2018; 3 49636_CR18 Z Hu (49636_CR39) 2018; 10 D Saliba (49636_CR41) 2018; 140 W Li (49636_CR43) 2022; 446 Y Che (49636_CR48) 2023; 183 MY Masoomi (49636_CR1) 2019; 131 Y Cheng (49636_CR19) 2019; 355 Z Zhang (49636_CR45) 2020; 12 J Liu (49636_CR3) 2017; 46 B Wiyantoko (49636_CR46) 2021; 16 D-e Jiang (49636_CR26) 2006; 128 W Li (49636_CR38) 2022; 16 B Zhang (49636_CR14) 2021; 31 AM Eagleton (49636_CR31) 2022; 144 K Zhang (49636_CR5) 2020; 3 GW Peterson (49636_CR7) 2021; 6 Y Lu (49636_CR44) 2022; 461 S Zhang (49636_CR36) 2021; 28 J Qian (49636_CR17) 2023; 18 X Qiao (49636_CR37) 2022; 321 49636_CR20 Y Cheng (49636_CR9) 2022; 51 Y Chen (49636_CR33) 2016; 55 J Zhao (49636_CR28) 2016; 128 AM Eagleton (49636_CR11) 2023; 135 R Mia (49636_CR47) 2019; 5 CR Ryder (49636_CR25) 2016; 8 K Ma (49636_CR27) 2019; 141 H Kim (49636_CR2) 2017; 356 DT Lee (49636_CR13) 2020; 2 K Ma (49636_CR42) 2023; 4 J Zhao (49636_CR40) 2015; 3 C Martin (49636_CR21) 2009; 21 Z Yang (49636_CR6) 2023; 22 K Ma (49636_CR8) 2020; 32 JL Zhuang (49636_CR12) 2013; 25 Z Chen (49636_CR29) 2019; 141 Y Zhang (49636_CR32) 2016; 138 MK Smith (49636_CR15) 2017; 139 N Hanikel (49636_CR4) 2020; 15 W Li (49636_CR24) 2021; 630 49636_CR16 S Mahouche-Chergui (49636_CR22) 2011; 40 49636_CR10 C Jiang (49636_CR23) 2017; 785 L Zhang (49636_CR30) 2019; 55 |
References_xml | – volume: 40 start-page: 4143 year: 2011 end-page: 4166 ident: CR22 article-title: Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00179a – volume: 446 year: 2022 ident: CR43 article-title: A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137195 – volume: 25 start-page: 4631 year: 2013 end-page: 4635 ident: CR12 article-title: Patterned deposition of metal‐organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution publication-title: Adv. Mater. doi: 10.1002/adma.201301626 – volume: 3 start-page: 3964 year: 2020 end-page: 3990 ident: CR5 article-title: Extended metal–organic frameworks on diverse supports as electrode nanomaterials for electrochemical energy storage publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00702 – ident: CR18 – volume: 16 start-page: 14779 year: 2022 end-page: 14791 ident: CR38 article-title: In situ growth of a stable metal–organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications publication-title: ACS Nano doi: 10.1021/acsnano.2c05624 – volume: 8 start-page: 597 year: 2016 end-page: 602 ident: CR25 article-title: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry publication-title: Nat. Chem. doi: 10.1038/nchem.2505 – volume: 10 start-page: 43262 year: 2018 end-page: 43274 ident: CR39 article-title: Construction of anti-ultraviolet “shielding clothes” on poly (p-phenylene benzobisoxazole) fibers: metal organic framework-mediated absorption strategy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16845 – volume: 32 start-page: 7120 year: 2020 end-page: 7140 ident: CR8 article-title: Fiber composites of metal–organic frameworks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02379 – ident: CR16 – volume: 141 start-page: 15626 year: 2019 end-page: 15633 ident: CR27 article-title: Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07301 – volume: 55 start-page: 3419 year: 2016 end-page: 3423 ident: CR33 article-title: A solvent‐free hot‐pressing method for preparing metal–organic‐framework coatings publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511063 – volume: 131 start-page: 15330 year: 2019 end-page: 15347 ident: CR1 article-title: Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201902229 – ident: CR10 – volume: 128 start-page: 6030 year: 2006 end-page: 6031 ident: CR26 article-title: Structure and bonding between an aryl group and metal surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061439f – volume: 16 start-page: 571 year: 2021 end-page: 580 ident: CR46 article-title: Study of hydrolysis process from pineapple leaf fibers using sulfuric acid, nitric acid, and bentonite catalysts publication-title: Bull. Chem. React. Eng. Catal. doi: 10.9767/bcrec.16.3.10281.571-580 – volume: 785 start-page: 265 year: 2017 end-page: 278 ident: CR23 article-title: Aryldiazonium salt derived mixed organic layers: from surface chemistry to their applications publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.11.043 – volume: 128 start-page: 13418 year: 2016 end-page: 13422 ident: CR28 article-title: Ultra‐fast degradation of chemical warfare agents using MOF–nanofiber kebabs publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201606656 – volume: 31 start-page: 2105395 year: 2021 ident: CR14 article-title: CelluMOFs: green, facile, and flexible metal‐organic frameworks for versatile applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105395 – volume: 141 start-page: 20016 year: 2019 end-page: 20021 ident: CR29 article-title: Integration of metal–organic frameworks on protective layers for destruction of nerve agents under relevant conditions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11172 – volume: 355 start-page: 290 year: 2019 end-page: 298 ident: CR19 article-title: A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.113 – volume: 183 start-page: 107721 year: 2023 ident: CR48 article-title: Preparation of fluorine-free robust superhydrophobic fabric via diazonium radical graft polymerization publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2023.107721 – volume: 6 start-page: 605 year: 2021 end-page: 621 ident: CR7 article-title: Fibre-based composites from the integration of metal–organic frameworks and polymers publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00291-2 – volume: 135 year: 2023 ident: CR11 article-title: Fiber integrated metal‐organic frameworks as functional components in smart textiles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202309078 – volume: 139 start-page: 16759 year: 2017 end-page: 16767 ident: CR15 article-title: Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08840 – volume: 144 start-page: 23297 year: 2022 end-page: 23312 ident: CR31 article-title: Fabrication of multifunctional electronic textiles using oxidative restructuring of copper into a Cu-based metal–organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05510 – volume: 356 start-page: 430 year: 2017 end-page: 434 ident: CR2 article-title: Water harvesting from air with metal-organic frameworks powered by natural sunlight publication-title: Science doi: 10.1126/science.aam8743 – volume: 321 year: 2022 ident: CR37 article-title: Preparation of zeolitic imidazolate framework-67/wool fabric and its adsorption capacity for reactive dyes publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115972 – volume: 3 start-page: 2761 year: 2018 end-page: 2768 ident: CR34 article-title: High-performance quasi-solid-state flexible aqueous rechargeable Ag–Zn battery based on metal–organic framework-derived Ag nanowires publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01675 – volume: 140 start-page: 1812 year: 2018 end-page: 1823 ident: CR41 article-title: Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11589 – volume: 51 start-page: 8300 year: 2022 end-page: 8350 ident: CR9 article-title: Advances in metal–organic framework-based membranes publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00031H – volume: 630 start-page: 127570 year: 2021 ident: CR24 article-title: A facile strategy for fabricating robust superhydrophobic and superoleophilic metal mesh via diazonium chemistry publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.127570 – volume: 18 start-page: 168 year: 2023 end-page: 176 ident: CR17 article-title: Highly stable, antiviral, antibacterial cotton textiles via molecular engineering publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01278-y – volume: 4 start-page: 168 year: 2023 end-page: 179 ident: CR42 article-title: Protection against chemical warfare agents and biological threats using metal–organic frameworks as active layers publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00200 – volume: 21 start-page: 4735 year: 2009 end-page: 4741 ident: CR21 article-title: Graphite‐grafted silicon nanocomposite as a negative electrode for lithium‐ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.200900235 – volume: 13 year: 2022 ident: CR35 article-title: Soft nanobrush-directed multifunctional MOF nanoarrays publication-title: Nat. Commun. doi: 10.1038/s41467-022-34512-1 – volume: 28 start-page: 3585 year: 2021 end-page: 3598 ident: CR36 article-title: Facile in situ synthesis of ZIF-67/cellulose hybrid membrane for activating peroxymonosulfate to degrade organic contaminants publication-title: Cellulose doi: 10.1007/s10570-021-03717-w – volume: 3 start-page: 1458 year: 2015 end-page: 1464 ident: CR40 article-title: Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05501B – volume: 22 start-page: 1 year: 2023 end-page: 7 ident: CR6 article-title: ZIF-62 glass foam self-supported membranes to address CH /N separations publication-title: Nat. Mater. doi: 10.1038/s41563-023-01545-w – volume: 2 start-page: 404 year: 2020 end-page: 415 ident: CR13 article-title: Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification publication-title: Matter doi: 10.1016/j.matt.2019.11.005 – volume: 55 start-page: 8293 year: 2019 end-page: 8296 ident: CR30 article-title: Fabrication of 2D metal–organic framework nanosheet@fiber composites by spray technique publication-title: Chem. Commun. doi: 10.1039/C9CC02614B – volume: 138 start-page: 5785 year: 2016 end-page: 5788 ident: CR32 article-title: Preparation of nanofibrous metal–organic framework filters for efficient air pollution control publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02553 – volume: 12 start-page: 49416 year: 2020 end-page: 49430 ident: CR45 article-title: Daylight-induced antibacterial and antiviral nanofibrous membranes containing vitamin K derivatives for personal protective equipment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14883 – volume: 46 start-page: 5730 year: 2017 end-page: 5770 ident: CR3 article-title: Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00315C – volume: 461 year: 2022 ident: CR44 article-title: Recent advances in metal organic framework and cellulose nanomaterial composites publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214496 – volume: 5 start-page: 220 year: 2019 end-page: 226 ident: CR47 article-title: Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation publication-title: J. Tex. Eng. Fash. Technol. – volume: 15 start-page: 348 year: 2020 end-page: 355 ident: CR4 article-title: MOF water harvesters publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0673-x – ident: CR20 – volume: 144 start-page: 23297 year: 2022 ident: 49636_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05510 – volume: 55 start-page: 3419 year: 2016 ident: 49636_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511063 – volume: 40 start-page: 4143 year: 2011 ident: 49636_CR22 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00179a – volume: 55 start-page: 8293 year: 2019 ident: 49636_CR30 publication-title: Chem. Commun. doi: 10.1039/C9CC02614B – volume: 21 start-page: 4735 year: 2009 ident: 49636_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.200900235 – volume: 3 start-page: 1458 year: 2015 ident: 49636_CR40 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05501B – volume: 4 start-page: 168 year: 2023 ident: 49636_CR42 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00200 – volume: 13 year: 2022 ident: 49636_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34512-1 – volume: 22 start-page: 1 year: 2023 ident: 49636_CR6 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01545-w – volume: 139 start-page: 16759 year: 2017 ident: 49636_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08840 – volume: 461 year: 2022 ident: 49636_CR44 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214496 – volume: 3 start-page: 3964 year: 2020 ident: 49636_CR5 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00702 – volume: 630 start-page: 127570 year: 2021 ident: 49636_CR24 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.127570 – volume: 446 year: 2022 ident: 49636_CR43 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137195 – volume: 6 start-page: 605 year: 2021 ident: 49636_CR7 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00291-2 – volume: 46 start-page: 5730 year: 2017 ident: 49636_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00315C – ident: 49636_CR10 doi: 10.1002/adma.202300951 – volume: 5 start-page: 220 year: 2019 ident: 49636_CR47 publication-title: J. Tex. Eng. Fash. Technol. – volume: 10 start-page: 43262 year: 2018 ident: 49636_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16845 – volume: 183 start-page: 107721 year: 2023 ident: 49636_CR48 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2023.107721 – volume: 51 start-page: 8300 year: 2022 ident: 49636_CR9 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00031H – volume: 141 start-page: 15626 year: 2019 ident: 49636_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07301 – volume: 128 start-page: 6030 year: 2006 ident: 49636_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061439f – volume: 18 start-page: 168 year: 2023 ident: 49636_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01278-y – ident: 49636_CR16 doi: 10.1002/smll.202311272 – volume: 3 start-page: 2761 year: 2018 ident: 49636_CR34 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01675 – volume: 32 start-page: 7120 year: 2020 ident: 49636_CR8 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02379 – volume: 25 start-page: 4631 year: 2013 ident: 49636_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201301626 – ident: 49636_CR20 doi: 10.1016/j.cej.2023.144376 – volume: 28 start-page: 3585 year: 2021 ident: 49636_CR36 publication-title: Cellulose doi: 10.1007/s10570-021-03717-w – volume: 16 start-page: 14779 year: 2022 ident: 49636_CR38 publication-title: ACS Nano doi: 10.1021/acsnano.2c05624 – volume: 355 start-page: 290 year: 2019 ident: 49636_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.113 – volume: 140 start-page: 1812 year: 2018 ident: 49636_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11589 – volume: 16 start-page: 571 year: 2021 ident: 49636_CR46 publication-title: Bull. Chem. React. Eng. Catal. doi: 10.9767/bcrec.16.3.10281.571-580 – volume: 2 start-page: 404 year: 2020 ident: 49636_CR13 publication-title: Matter doi: 10.1016/j.matt.2019.11.005 – volume: 141 start-page: 20016 year: 2019 ident: 49636_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11172 – volume: 128 start-page: 13418 year: 2016 ident: 49636_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201606656 – volume: 138 start-page: 5785 year: 2016 ident: 49636_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02553 – volume: 135 year: 2023 ident: 49636_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202309078 – ident: 49636_CR18 doi: 10.1038/s41893-023-01121-9 – volume: 8 start-page: 597 year: 2016 ident: 49636_CR25 publication-title: Nat. Chem. doi: 10.1038/nchem.2505 – volume: 356 start-page: 430 year: 2017 ident: 49636_CR2 publication-title: Science doi: 10.1126/science.aam8743 – volume: 15 start-page: 348 year: 2020 ident: 49636_CR4 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0673-x – volume: 131 start-page: 15330 year: 2019 ident: 49636_CR1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201902229 – volume: 12 start-page: 49416 year: 2020 ident: 49636_CR45 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14883 – volume: 31 start-page: 2105395 year: 2021 ident: 49636_CR14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105395 – volume: 321 year: 2022 ident: 49636_CR37 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115972 – volume: 785 start-page: 265 year: 2017 ident: 49636_CR23 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.11.043 |
SSID | ssj0000391844 |
Score | 2.5525067 |
Snippet | Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose... Abstract Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5297 |
SubjectTerms | 639/166/898 639/638/298/921 Antibacterial activity Antifouling substances Biodegradability Biodegradation Carvacrol Cellulose Cellulose fibers Chemistry Coatings Cotton fibers E coli Essential oils Fabrication Fibers Humanities and Social Sciences Hydrophobicity Materials selection Metal-organic frameworks multidisciplinary Pore size Science Science (multidisciplinary) Species diversity Tethering Textiles Wastewater purification Water purification |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hpEpcKqC0TXkolbi1EXbsOM4FiSJWqBLlUCpxs8aOrSK1WdTdRYJfz9jJLmzp48Ilh8SORt-MZ8avbwD220pZ4UosXKtVIWt6NIFh4QUPnglEm27xn31Rp9_k58vq8lGpr3gmrKcH7oE7QNcyrKtGeRmkRq8595Z-HCzHUlaJ55Ni3qPJVPLBoqGpixxuyTChDyYy-QQKSYUkoyORliJRIuz_U5b59LDkbzumKRCN1uHlkEHmR73kG7Diu0140deUvH0Fh18J9XgfKk9nBWPc6pf78rPz0aSIBz3IEUzymyvMyTbuaEzPfuZuXvdtCy5GJxfHp8VQJKFwleRTmkg2vkxEcpxchXUSfWCVQ89D8Kp2pAynXFz8FTUKYSUSMq2urQ7ISitew2o37vxbyCU65p13mvQjgy1RSKGU5batneONzIDP8TJuIBCPdSx-mLSRLbTpMTaEsUkYmyaDD4s-1z19xj9bf4pqWLSM1NfpBRmEGQzC_M8gMtiZK9EM43FiomfTkbm_zuD94jMBG7dHsPPjWWoTy07RfCuDN73OF5JQWhcpnVkGeskalkRd_tJdfU9s3RRMKAWNXT_ODedBrr9j8e45sNiGtTJaPFNFyXdgdfpr5ncpiZravTRe7gGFpBk7 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgCLELgvFVGKhI3CBa06RtegHBxGNCGhwY0m5RkiYwCfq29T0k-Oux07TT42OXHpqkSm3HdhznZ4BnXVVb4UrDXKdqJht8tKEwzAsefCGMsfEW_-GH-uCzfH9cHaeA25DSKiedGBV1t3QUI98j2VSEvd68Oj1jVDWKTldTCY2rcI2jpaGULrV4N8dYCP1cSZnuyhRC7Q0yagY0TEyi6OHENuxRhO3_l6_5d8rkH-em0RwtbsHN5Efmr0fG34Yrvt-B62NlyZ87cGN_KuR2B15-Qj7QDak8Zg-SJRsDgPnhx8XAKPUDVcOQ_zgxOUrLL1zl6--5mz5wF44Wb4_2D1gqm8BcJfkKt5atLyO0HEflYZ00PhSVM56H4OvGIXtc7SgcLBojhJUGqdSpxqpgitKKe7DVL3v_AHJpXOGddwo5JoMtjZCiri23XeMcb2UGfKKddglSnCpbfNPxaFsoPdJbI711pLduM3g-jzkdATUu7f2GWDL3JDDs-GJ5_kWntaWN6wrTVG3tZZDKeMW5tyh7wXJTykpksDsxVKcVOugLecrg6dyMhKUDE9P75Tr2oUJUuAPL4P7I_3km6OgRyHORgdqQjI2pbrb0J18jfjeaF3RKaeiLSYgu5vV_Wjy8_DcewXZJcl3UrOS7sLU6X_vH6DCt7JO4Kn4DCyYTaw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-O3aKiv4povJJpvNvgjX4lEOqg-t0LcwySZaqHvSuxP0r-8k-yGnVfBlHzaTJcz8kplNJr8BeNVWygpXYuFarQpZ06MJDAsvePBMINp0i__kgzr-JBfn1fkOlONdmJS0nygt0zI9Zoe9Xck0pcmjFJIwQ1-8BXuRqp2wvTebLU4X085K5DzXUg43ZJjQN3Te8kKJrP-mCPPPRMnfTkuTE5rfg7tD9JjP-vHehx3fPYDbfT3JHw_h3SlpPN6FylOeYPRZ_VZffvJxvipikgctAqv8-wXmhIufNJ83X3M31nx7BGfz92dHx8VQIKFwleRr-olsfJlI5DgtE9ZJ9IFVDj0PwavakSGccnHjV9QohJVImml1bXVAVlrxGHa7ZeefQi7RMe-802QbGWyJQgqlLLdt7RxvZAZ81JdxA3l4rGFxadIhttCm17EhHZukY9Nk8Hrq862nzvin9GE0wyQZaa_Ti-XVZzPAwKBrGdZVo7wMUqPXnHtLKAuWY0lYyOBgNKIZ5uLKxFVNR9b-OoOXUzMpNh6NYOeXmyQTS07Rv1YGT3qbTyOhkC7SObMM9BYatoa63dJdfElM3eRIKPyMXd-MwPk1rr_r4tn_ie_DnTJim6mi5Aewu77a-OcUKq3ti2FuXAMPfQ7O priority: 102 providerName: Springer Nature |
Title | Scalable multifunctional MOFs-textiles via diazonium chemistry |
URI | https://link.springer.com/article/10.1038/s41467-024-49636-9 https://www.ncbi.nlm.nih.gov/pubmed/38906900 https://www.proquest.com/docview/3070857827 https://www.proquest.com/docview/3071086826 https://pubmed.ncbi.nlm.nih.gov/PMC11192900 https://doaj.org/article/acd0a7596e4f48ae811ebcd8fb1a2453 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQPIfEyje-wUQWJNwjEsWM7D4C6amWq1IHYJvXNsh2HTRop9AMxfj1nJykqFMRLItnnxLoP353tuwN4VubcUJvpxJaSJ0zgo6hSnThKKpdSrU2I4h-f8pMLNprkky3oyh21CJxvdO18PamL2fXL719v3qLAv25CxuWrOQvijtomYchP-Ldt2EXNJHxFg3Fr7oeVmRbo0PiD5ixlJEEA2sbRbP7Mmq4KKf032aF_Xqf87Uw1qKrhPuy1Nmbcb5jiDmy5-i7caqpO3tyDN2dIFx8xFYfbhF6zNRuC8fj9cJ74qyC4VMzjb1c6Ru75gVK__BzbrjLcfTgfHp8PTpK2jEJic0YW6GoWLgup5gguJsYy7ao0t9qRqnJcWCSX5dZvD1OhKTVMI5ZKKYysdJoZ-gB26mntHkHMtE2ddVYiBVllMk0Z5dwQUwprScEiIB2-lG1TjPtKF9cqHHVTqRocK8SxCjhWRQTPV2O-NAk2_gl95MmwgvTJsUPDdPZJtbKmtC1TLfKCO1YxqZ0kxBnkxcoQnbGcRnDYEVF1DKf82id9bn8RwdNVNyLWH6Do2k2XAcYXpkKPLIKHDc1XM0HDzyd9TiOQa9ywNtX1nvrqMuTzRnWDRqof-qJjnF_z-jsuHv_HPA_gduYZOuVJRg5hZzFbuidoRS1MD7bFROBTDt_1YLffH52N8H10fPrhI7YO-KAX9id6QYR-Asm4HWc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCMorUCBIcIKocewkzgEQFJYt7ZYDi9SbZTsOrVSypdkFlf_Ef2TGeVTLo7deckhsy5n5PDMee2YAnpRpZrhNdGRLmUUix0dRxTpynFUu5lobH8U_2cvGn8WH_XR_BX71sTB0rbKXiV5QlzNLPvJNwqak3Ov5q-NvEVWNotPVvoRGC4sdd_oDt2zNi-23yN-nSTJ6N90aR11Vgcimgs1x51W4xGdeY7i2jBXaVXFqtWNV5bLc4uxtZslbynPNuRG6YLKUuZGVjhPDcdhLcFlwVOQUmD56P7h0KNm6FKILzYm53GyEF0SoByOBSEc6LKk_XyXgX6bt3zc0_zim9dpvdB2udWZr-LrF2Q1YcfU6XGkLWZ6uw9pWXzfuJrz8hGyngKzQX1Ykxdn6G8PJx1ET0U0TlERN-P1QhwjOnyhUFl9D2w9wC6YXQc_bsFrPancXQqFt7KyzEgEiKpNoLniWGWbK3FpWiABYTztluwzmVEjjSPmTdC5VS2-F9Fae3qoI4NnQ57jN33Fu6zfEkqEl5d72L2YnX1S3lJW2ZazztMicqITUTjLmDEK9MkwnIuUBbPQMVZ1AaNQZfAN4PHxGwtL5jK7dbOHbUN0r3PAFcKfl_zATtCspp3QcgFxCxtJUl7_Uhwc-XThqM7SBqevzHkRn8_o_Le6d_xuPYG08neyq3e29nftwNSGMx1mUsA1YnZ8s3AO01ebmoV8hIagLXpG_AV_JT5U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qU7FcEJQtUCBIcIJo4thJnAMguoxaSocKWqk3y3YcqASZ0pkBlX_Gv-M9Z6mGpbdecogdy_n8vcXbewBPyzQz3CY6sqXMIpHjo6hiHTnOKhdzrY2_xb87zrYOxNvD9HAJfnV3YehYZacTvaIuJ5bWyIfETUmx1_Nh1R6L2NsYvT7-FlEGKdpp7dJpNBTZcac_cPo2fbm9gWP9LElGm_vrW1GbYSCyqWAznIUVLvFR2BjKmbFCuypOrXasqlyWW_wTm1laOeW55twIXTBZytzISseJ4djsJVjOaVI0gOW1zfHeh36Bh0KvSyHaizoxl8Op8GoJrWIkkPeIyoIx9DkD_uXo_n1e849NW28LRzfgeuvEhm8a1t2EJVevwOUmreXpClxd77LI3YJXH5EEdD0r9EcXyYw2q4_h7vvRNCKAUS9Nw-9HOkSq_kQVM_8a2q6B27B_EYjegUE9qd09CIW2sbPOSqSLqEyiueBZZpgpc2tZIQJgHXbKtvHMKa3GF-X31blUDd4K8VYeb1UE8Lz_5riJ5nFu7TUakr4mReL2LyYnn1Qr2ErbMtZ5WmROVEJqJxlzBolfGaYTkfIAVrsBVa16mKozMgfwpC9GYGm3RtduMvd1KAsWTv8CuNuMf98T9DIpwnQcgFxgxkJXF0vqo88-eDjaNvSI6dMXHYnO-vV_LO6f_xuP4QpKo3q3Pd55ANcSonicRQlbhcHsZO4eouM2M49aEQlBXbBQ_gauqFUn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+multifunctional+MOFs-textiles+via+diazonium+chemistry&rft.jtitle=Nature+communications&rft.au=Li%2C+Wulong&rft.au=Yu%2C+Zhen&rft.au=Zhang%2C+Yaoxin&rft.au=Lv%2C+Cun&rft.date=2024-06-21&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5297&rft_id=info:doi/10.1038%2Fs41467-024-49636-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |