Scalable multifunctional MOFs-textiles via diazonium chemistry

Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (M...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5297 - 11
Main Authors Li, Wulong, Yu, Zhen, Zhang, Yaoxin, Lv, Cun, He, Xiaoxiang, Wang, Shuai, Wang, Zhixun, He, Bing, Yuan, Shixing, Xin, Jiwu, Liu, Yanting, Zhou, Tianzhu, Li, Zhanxiong, Tan, Swee Ching, Wei, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus . Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Here, authors report a generic strategy to achieve highly stable, large-scale, and multifunctional MOFs-textiles via diazonium chemistry.
AbstractList Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus . Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Here, authors report a generic strategy to achieve highly stable, large-scale, and multifunctional MOFs-textiles via diazonium chemistry.
Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Here, authors report a generic strategy to achieve highly stable, large-scale, and multifunctional MOFs-textiles via diazonium chemistry.
Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.
Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.
Abstract Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.
Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus . Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.
ArticleNumber 5297
Author Yu, Zhen
Xin, Jiwu
Wei, Lei
Wang, Shuai
Li, Zhanxiong
Tan, Swee Ching
Lv, Cun
He, Bing
Liu, Yanting
Wang, Zhixun
Zhang, Yaoxin
Li, Wulong
He, Xiaoxiang
Yuan, Shixing
Zhou, Tianzhu
Author_xml – sequence: 1
  givenname: Wulong
  orcidid: 0000-0002-2824-845X
  surname: Li
  fullname: Li, Wulong
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Department of Materials Science and Engineering, National University of Singapore
– sequence: 2
  givenname: Zhen
  surname: Yu
  fullname: Yu, Zhen
  organization: School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University
– sequence: 3
  givenname: Yaoxin
  surname: Zhang
  fullname: Zhang, Yaoxin
  organization: China-UK Low Carbon College, Shanghai Jiao Tong University
– sequence: 4
  givenname: Cun
  surname: Lv
  fullname: Lv, Cun
  organization: College of Textile and Clothing Engineering, Soochow University
– sequence: 5
  givenname: Xiaoxiang
  surname: He
  fullname: He, Xiaoxiang
  organization: College of Textile and Clothing Engineering, Soochow University
– sequence: 6
  givenname: Shuai
  surname: Wang
  fullname: Wang, Shuai
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 7
  givenname: Zhixun
  orcidid: 0000-0001-9918-9939
  surname: Wang
  fullname: Wang, Zhixun
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 8
  givenname: Bing
  surname: He
  fullname: He, Bing
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 9
  givenname: Shixing
  surname: Yuan
  fullname: Yuan, Shixing
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 10
  givenname: Jiwu
  surname: Xin
  fullname: Xin, Jiwu
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 11
  givenname: Yanting
  surname: Liu
  fullname: Liu, Yanting
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 12
  givenname: Tianzhu
  surname: Zhou
  fullname: Zhou, Tianzhu
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 13
  givenname: Zhanxiong
  orcidid: 0000-0002-4850-8810
  surname: Li
  fullname: Li, Zhanxiong
  email: lizhanxiong@suda.edu.cn
  organization: College of Textile and Clothing Engineering, Soochow University, National Engineering Laboratory for Modern Silk, Soochow University
– sequence: 14
  givenname: Swee Ching
  orcidid: 0000-0003-2074-8385
  surname: Tan
  fullname: Tan, Swee Ching
  email: msetansc@nus.edu.sg
  organization: Department of Materials Science and Engineering, National University of Singapore
– sequence: 15
  givenname: Lei
  orcidid: 0000-0003-0819-8325
  surname: Wei
  fullname: Wei, Lei
  email: wei.lei@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38906900$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9PFTEUxScGI4h8ARdmEjduBvt_2o2GEFESDAvZN3c6dx596UyxnSHip7e8Bwgs6KZNe84vJ7fnbbUzxQmr6j0lh5Rw_TkLKlTbECYaYRRXjXlV7TEiaENbxncenXerg5zXpCxuqBbiTbXLtSHKELJXffnlIEAXsB6XMPthmdzs4wSh_nl-kpsZ_8w-YK6vPdS9h79x8stYu0scfZ7Tzbvq9QAh48Hdvl9dnHy7OP7RnJ1_Pz0-OmucFHRuJDPICDFS0lbxzgnAgUgHSIcBVet6qZxyRDLOW-C8E1CS9rrt9ACEdXy_Ot1i-whre5X8COnGRvB2cxHTykKavQtowfUEWmkUikFoQE0pdq7XQ0eBCckL6-uWdbV0I_YOpzlBeAJ9-jL5S7uK15ZSalgZWiF8uiOk-HvBPNsyDIchwIRxyZaTlhKtNFNF-vGZdB2XVMa7UREtW83aovrwONJDlvtvKgK9FbgUc044WOdnuP2oktAHS4m9LYXdlsKWUthNKawpVvbMek9_0cS3plzE0wrT_9gvuP4BJ_TJJw
CitedBy_id crossref_primary_10_1002_adma_202417022
crossref_primary_10_1002_adfm_202420340
crossref_primary_10_1039_D4TA06000H
crossref_primary_10_1126_sciadv_ads4711
crossref_primary_10_1002_adma_202413665
crossref_primary_10_1039_D4MH01304B
crossref_primary_10_1039_D4CS00673A
crossref_primary_10_1016_j_jece_2025_116053
crossref_primary_10_1002_advs_202416169
crossref_primary_10_1016_j_seppur_2024_129921
crossref_primary_10_3390_polym16233244
Cites_doi 10.1039/c0cs00179a
10.1016/j.cej.2022.137195
10.1002/adma.201301626
10.1021/acsanm.0c00702
10.1021/acsnano.2c05624
10.1038/nchem.2505
10.1021/acsami.8b16845
10.1021/acs.chemmater.0c02379
10.1021/jacs.9b07301
10.1002/anie.201511063
10.1002/ange.201902229
10.1021/ja061439f
10.9767/bcrec.16.3.10281.571-580
10.1016/j.jelechem.2016.11.043
10.1002/ange.201606656
10.1002/adfm.202105395
10.1021/jacs.9b11172
10.1016/j.cej.2018.08.113
10.1016/j.porgcoat.2023.107721
10.1038/s41578-021-00291-2
10.1002/ange.202309078
10.1021/jacs.7b08840
10.1021/jacs.2c05510
10.1126/science.aam8743
10.1016/j.jenvman.2022.115972
10.1021/acsenergylett.8b01675
10.1021/jacs.7b11589
10.1039/D2CS00031H
10.1016/j.colsurfa.2021.127570
10.1038/s41565-022-01278-y
10.1021/accountsmr.2c00200
10.1002/adma.200900235
10.1038/s41467-022-34512-1
10.1007/s10570-021-03717-w
10.1039/C4TA05501B
10.1038/s41563-023-01545-w
10.1016/j.matt.2019.11.005
10.1039/C9CC02614B
10.1021/jacs.6b02553
10.1021/acsami.0c14883
10.1039/C7CS00315C
10.1016/j.ccr.2022.214496
10.1038/s41565-020-0673-x
10.1002/adma.202300951
10.1002/smll.202311272
10.1016/j.cej.2023.144376
10.1038/s41893-023-01121-9
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-49636-9
DatabaseName Open Access Journals from Springer Nature
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_acd0a7596e4f48ae811ebcd8fb1a2453
PMC11192900
38906900
10_1038_s41467_024_49636_9
Genre Journal Article
GrantInformation_xml – fundername: A*STAR | Singapore Institute of Manufacturing Technology (Singapore Institute of Manufacturing Technology - A STAR)
  grantid: A2083c0062, IAF-ICP Programme I2001E0067
  funderid: https://doi.org/10.13039/501100001471
– fundername: Ministry of Education - Singapore (MOE)
  grantid: MOE2019-T2-2-127, MOE-T2EP50120-0002, MOE-T2EP50123-0014 and RG62/22
  funderid: https://doi.org/10.13039/501100001459
– fundername: Ministry of Education - Singapore (MOE)
  grantid: MOE2019-T2-2-127, MOE-T2EP50120-0002, MOE-T2EP50123-0014 and RG62/22
– fundername: A*STAR | Singapore Institute of Manufacturing Technology (Singapore Institute of Manufacturing Technology - A STAR)
  grantid: A2083c0062, IAF-ICP Programme I2001E0067
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-529e2009551763bc4aef05cae1ffe67cd56c6c052337a33b4a918d87b8fa02b3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:45 EDT 2025
Thu Aug 21 18:33:37 EDT 2025
Fri Jul 11 08:17:31 EDT 2025
Wed Aug 13 09:50:57 EDT 2025
Thu Apr 03 07:05:46 EDT 2025
Tue Jul 01 02:11:14 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Fri Feb 21 02:37:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-529e2009551763bc4aef05cae1ffe67cd56c6c052337a33b4a918d87b8fa02b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0819-8325
0000-0001-9918-9939
0000-0002-2824-845X
0000-0003-2074-8385
0000-0002-4850-8810
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49636-9
PMID 38906900
PQID 3070857827
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_acd0a7596e4f48ae811ebcd8fb1a2453
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11192900
proquest_miscellaneous_3071086826
proquest_journals_3070857827
pubmed_primary_38906900
crossref_citationtrail_10_1038_s41467_024_49636_9
crossref_primary_10_1038_s41467_024_49636_9
springer_journals_10_1038_s41467_024_49636_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-21
PublicationDateYYYYMMDD 2024-06-21
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhang (CR32) 2016; 138
CR18
Peterson (CR7) 2021; 6
CR16
Zhuang (CR12) 2013; 25
Mahouche-Chergui, Gam-Derouich, Mangeney, Chehimi (CR22) 2011; 40
Zhao (CR28) 2016; 128
Li (CR43) 2022; 446
CR10
Smith, Mirica (CR15) 2017; 139
Li, Wang, Li (CR24) 2021; 630
Ryder (CR25) 2016; 8
Martin (CR21) 2009; 21
Ma (CR8) 2020; 32
Cheng (CR9) 2022; 51
Zhang (CR36) 2021; 28
Lu (CR44) 2022; 461
Liu, Wöll (CR3) 2017; 46
Chen (CR29) 2019; 141
Eagleton (CR31) 2022; 144
Yang (CR6) 2023; 22
Qiao (CR37) 2022; 321
Kim (CR2) 2017; 356
Jiang, Sumpter, Dai (CR26) 2006; 128
Chen (CR33) 2016; 55
Zhang (CR45) 2020; 12
Mia (CR47) 2019; 5
Li (CR38) 2022; 16
Zhao (CR40) 2015; 3
Lee, Jamir, Peterson, Parsons (CR13) 2020; 2
Hu (CR39) 2018; 10
Zhang (CR14) 2021; 31
Eagleton (CR11) 2023; 135
Che, Li, Wu, Li (CR48) 2023; 183
CR20
Ma (CR27) 2019; 141
Hanikel, Prévot, Yaghi (CR4) 2020; 15
Ma (CR42) 2023; 4
Wiyantoko, Rusitasari, Putri (CR46) 2021; 16
Jiang (CR23) 2017; 785
Li (CR34) 2018; 3
Cheng (CR19) 2019; 355
Saliba (CR41) 2018; 140
Wang (CR35) 2022; 13
Zhang (CR5) 2020; 3
Masoomi, Morsali, Dhakshinamoorthy, Garcia (CR1) 2019; 131
Qian (CR17) 2023; 18
Zhang (CR30) 2019; 55
S Wang (49636_CR35) 2022; 13
C Li (49636_CR34) 2018; 3
49636_CR18
Z Hu (49636_CR39) 2018; 10
D Saliba (49636_CR41) 2018; 140
W Li (49636_CR43) 2022; 446
Y Che (49636_CR48) 2023; 183
MY Masoomi (49636_CR1) 2019; 131
Y Cheng (49636_CR19) 2019; 355
Z Zhang (49636_CR45) 2020; 12
J Liu (49636_CR3) 2017; 46
B Wiyantoko (49636_CR46) 2021; 16
D-e Jiang (49636_CR26) 2006; 128
W Li (49636_CR38) 2022; 16
B Zhang (49636_CR14) 2021; 31
AM Eagleton (49636_CR31) 2022; 144
K Zhang (49636_CR5) 2020; 3
GW Peterson (49636_CR7) 2021; 6
Y Lu (49636_CR44) 2022; 461
S Zhang (49636_CR36) 2021; 28
J Qian (49636_CR17) 2023; 18
X Qiao (49636_CR37) 2022; 321
49636_CR20
Y Cheng (49636_CR9) 2022; 51
Y Chen (49636_CR33) 2016; 55
J Zhao (49636_CR28) 2016; 128
AM Eagleton (49636_CR11) 2023; 135
R Mia (49636_CR47) 2019; 5
CR Ryder (49636_CR25) 2016; 8
K Ma (49636_CR27) 2019; 141
H Kim (49636_CR2) 2017; 356
DT Lee (49636_CR13) 2020; 2
K Ma (49636_CR42) 2023; 4
J Zhao (49636_CR40) 2015; 3
C Martin (49636_CR21) 2009; 21
Z Yang (49636_CR6) 2023; 22
K Ma (49636_CR8) 2020; 32
JL Zhuang (49636_CR12) 2013; 25
Z Chen (49636_CR29) 2019; 141
Y Zhang (49636_CR32) 2016; 138
MK Smith (49636_CR15) 2017; 139
N Hanikel (49636_CR4) 2020; 15
W Li (49636_CR24) 2021; 630
49636_CR16
S Mahouche-Chergui (49636_CR22) 2011; 40
49636_CR10
C Jiang (49636_CR23) 2017; 785
L Zhang (49636_CR30) 2019; 55
References_xml – volume: 40
  start-page: 4143
  year: 2011
  end-page: 4166
  ident: CR22
  article-title: Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00179a
– volume: 446
  year: 2022
  ident: CR43
  article-title: A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137195
– volume: 25
  start-page: 4631
  year: 2013
  end-page: 4635
  ident: CR12
  article-title: Patterned deposition of metal‐organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301626
– volume: 3
  start-page: 3964
  year: 2020
  end-page: 3990
  ident: CR5
  article-title: Extended metal–organic frameworks on diverse supports as electrode nanomaterials for electrochemical energy storage
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00702
– ident: CR18
– volume: 16
  start-page: 14779
  year: 2022
  end-page: 14791
  ident: CR38
  article-title: In situ growth of a stable metal–organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05624
– volume: 8
  start-page: 597
  year: 2016
  end-page: 602
  ident: CR25
  article-title: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2505
– volume: 10
  start-page: 43262
  year: 2018
  end-page: 43274
  ident: CR39
  article-title: Construction of anti-ultraviolet “shielding clothes” on poly (p-phenylene benzobisoxazole) fibers: metal organic framework-mediated absorption strategy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16845
– volume: 32
  start-page: 7120
  year: 2020
  end-page: 7140
  ident: CR8
  article-title: Fiber composites of metal–organic frameworks
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02379
– ident: CR16
– volume: 141
  start-page: 15626
  year: 2019
  end-page: 15633
  ident: CR27
  article-title: Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07301
– volume: 55
  start-page: 3419
  year: 2016
  end-page: 3423
  ident: CR33
  article-title: A solvent‐free hot‐pressing method for preparing metal–organic‐framework coatings
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511063
– volume: 131
  start-page: 15330
  year: 2019
  end-page: 15347
  ident: CR1
  article-title: Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201902229
– ident: CR10
– volume: 128
  start-page: 6030
  year: 2006
  end-page: 6031
  ident: CR26
  article-title: Structure and bonding between an aryl group and metal surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061439f
– volume: 16
  start-page: 571
  year: 2021
  end-page: 580
  ident: CR46
  article-title: Study of hydrolysis process from pineapple leaf fibers using sulfuric acid, nitric acid, and bentonite catalysts
  publication-title: Bull. Chem. React. Eng. Catal.
  doi: 10.9767/bcrec.16.3.10281.571-580
– volume: 785
  start-page: 265
  year: 2017
  end-page: 278
  ident: CR23
  article-title: Aryldiazonium salt derived mixed organic layers: from surface chemistry to their applications
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.11.043
– volume: 128
  start-page: 13418
  year: 2016
  end-page: 13422
  ident: CR28
  article-title: Ultra‐fast degradation of chemical warfare agents using MOF–nanofiber kebabs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201606656
– volume: 31
  start-page: 2105395
  year: 2021
  ident: CR14
  article-title: CelluMOFs: green, facile, and flexible metal‐organic frameworks for versatile applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105395
– volume: 141
  start-page: 20016
  year: 2019
  end-page: 20021
  ident: CR29
  article-title: Integration of metal–organic frameworks on protective layers for destruction of nerve agents under relevant conditions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11172
– volume: 355
  start-page: 290
  year: 2019
  end-page: 298
  ident: CR19
  article-title: A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.113
– volume: 183
  start-page: 107721
  year: 2023
  ident: CR48
  article-title: Preparation of fluorine-free robust superhydrophobic fabric via diazonium radical graft polymerization
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2023.107721
– volume: 6
  start-page: 605
  year: 2021
  end-page: 621
  ident: CR7
  article-title: Fibre-based composites from the integration of metal–organic frameworks and polymers
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00291-2
– volume: 135
  year: 2023
  ident: CR11
  article-title: Fiber integrated metal‐organic frameworks as functional components in smart textiles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202309078
– volume: 139
  start-page: 16759
  year: 2017
  end-page: 16767
  ident: CR15
  article-title: Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08840
– volume: 144
  start-page: 23297
  year: 2022
  end-page: 23312
  ident: CR31
  article-title: Fabrication of multifunctional electronic textiles using oxidative restructuring of copper into a Cu-based metal–organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05510
– volume: 356
  start-page: 430
  year: 2017
  end-page: 434
  ident: CR2
  article-title: Water harvesting from air with metal-organic frameworks powered by natural sunlight
  publication-title: Science
  doi: 10.1126/science.aam8743
– volume: 321
  year: 2022
  ident: CR37
  article-title: Preparation of zeolitic imidazolate framework-67/wool fabric and its adsorption capacity for reactive dyes
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.115972
– volume: 3
  start-page: 2761
  year: 2018
  end-page: 2768
  ident: CR34
  article-title: High-performance quasi-solid-state flexible aqueous rechargeable Ag–Zn battery based on metal–organic framework-derived Ag nanowires
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01675
– volume: 140
  start-page: 1812
  year: 2018
  end-page: 1823
  ident: CR41
  article-title: Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11589
– volume: 51
  start-page: 8300
  year: 2022
  end-page: 8350
  ident: CR9
  article-title: Advances in metal–organic framework-based membranes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00031H
– volume: 630
  start-page: 127570
  year: 2021
  ident: CR24
  article-title: A facile strategy for fabricating robust superhydrophobic and superoleophilic metal mesh via diazonium chemistry
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.127570
– volume: 18
  start-page: 168
  year: 2023
  end-page: 176
  ident: CR17
  article-title: Highly stable, antiviral, antibacterial cotton textiles via molecular engineering
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01278-y
– volume: 4
  start-page: 168
  year: 2023
  end-page: 179
  ident: CR42
  article-title: Protection against chemical warfare agents and biological threats using metal–organic frameworks as active layers
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.2c00200
– volume: 21
  start-page: 4735
  year: 2009
  end-page: 4741
  ident: CR21
  article-title: Graphite‐grafted silicon nanocomposite as a negative electrode for lithium‐ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900235
– volume: 13
  year: 2022
  ident: CR35
  article-title: Soft nanobrush-directed multifunctional MOF nanoarrays
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34512-1
– volume: 28
  start-page: 3585
  year: 2021
  end-page: 3598
  ident: CR36
  article-title: Facile in situ synthesis of ZIF-67/cellulose hybrid membrane for activating peroxymonosulfate to degrade organic contaminants
  publication-title: Cellulose
  doi: 10.1007/s10570-021-03717-w
– volume: 3
  start-page: 1458
  year: 2015
  end-page: 1464
  ident: CR40
  article-title: Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05501B
– volume: 22
  start-page: 1
  year: 2023
  end-page: 7
  ident: CR6
  article-title: ZIF-62 glass foam self-supported membranes to address CH /N separations
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01545-w
– volume: 2
  start-page: 404
  year: 2020
  end-page: 415
  ident: CR13
  article-title: Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification
  publication-title: Matter
  doi: 10.1016/j.matt.2019.11.005
– volume: 55
  start-page: 8293
  year: 2019
  end-page: 8296
  ident: CR30
  article-title: Fabrication of 2D metal–organic framework nanosheet@fiber composites by spray technique
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02614B
– volume: 138
  start-page: 5785
  year: 2016
  end-page: 5788
  ident: CR32
  article-title: Preparation of nanofibrous metal–organic framework filters for efficient air pollution control
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02553
– volume: 12
  start-page: 49416
  year: 2020
  end-page: 49430
  ident: CR45
  article-title: Daylight-induced antibacterial and antiviral nanofibrous membranes containing vitamin K derivatives for personal protective equipment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14883
– volume: 46
  start-page: 5730
  year: 2017
  end-page: 5770
  ident: CR3
  article-title: Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00315C
– volume: 461
  year: 2022
  ident: CR44
  article-title: Recent advances in metal organic framework and cellulose nanomaterial composites
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214496
– volume: 5
  start-page: 220
  year: 2019
  end-page: 226
  ident: CR47
  article-title: Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation
  publication-title: J. Tex. Eng. Fash. Technol.
– volume: 15
  start-page: 348
  year: 2020
  end-page: 355
  ident: CR4
  article-title: MOF water harvesters
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0673-x
– ident: CR20
– volume: 144
  start-page: 23297
  year: 2022
  ident: 49636_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05510
– volume: 55
  start-page: 3419
  year: 2016
  ident: 49636_CR33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511063
– volume: 40
  start-page: 4143
  year: 2011
  ident: 49636_CR22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00179a
– volume: 55
  start-page: 8293
  year: 2019
  ident: 49636_CR30
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02614B
– volume: 21
  start-page: 4735
  year: 2009
  ident: 49636_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900235
– volume: 3
  start-page: 1458
  year: 2015
  ident: 49636_CR40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05501B
– volume: 4
  start-page: 168
  year: 2023
  ident: 49636_CR42
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.2c00200
– volume: 13
  year: 2022
  ident: 49636_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34512-1
– volume: 22
  start-page: 1
  year: 2023
  ident: 49636_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01545-w
– volume: 139
  start-page: 16759
  year: 2017
  ident: 49636_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08840
– volume: 461
  year: 2022
  ident: 49636_CR44
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214496
– volume: 3
  start-page: 3964
  year: 2020
  ident: 49636_CR5
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00702
– volume: 630
  start-page: 127570
  year: 2021
  ident: 49636_CR24
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.127570
– volume: 446
  year: 2022
  ident: 49636_CR43
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137195
– volume: 6
  start-page: 605
  year: 2021
  ident: 49636_CR7
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00291-2
– volume: 46
  start-page: 5730
  year: 2017
  ident: 49636_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00315C
– ident: 49636_CR10
  doi: 10.1002/adma.202300951
– volume: 5
  start-page: 220
  year: 2019
  ident: 49636_CR47
  publication-title: J. Tex. Eng. Fash. Technol.
– volume: 10
  start-page: 43262
  year: 2018
  ident: 49636_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16845
– volume: 183
  start-page: 107721
  year: 2023
  ident: 49636_CR48
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2023.107721
– volume: 51
  start-page: 8300
  year: 2022
  ident: 49636_CR9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00031H
– volume: 141
  start-page: 15626
  year: 2019
  ident: 49636_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07301
– volume: 128
  start-page: 6030
  year: 2006
  ident: 49636_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061439f
– volume: 18
  start-page: 168
  year: 2023
  ident: 49636_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01278-y
– ident: 49636_CR16
  doi: 10.1002/smll.202311272
– volume: 3
  start-page: 2761
  year: 2018
  ident: 49636_CR34
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01675
– volume: 32
  start-page: 7120
  year: 2020
  ident: 49636_CR8
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02379
– volume: 25
  start-page: 4631
  year: 2013
  ident: 49636_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301626
– ident: 49636_CR20
  doi: 10.1016/j.cej.2023.144376
– volume: 28
  start-page: 3585
  year: 2021
  ident: 49636_CR36
  publication-title: Cellulose
  doi: 10.1007/s10570-021-03717-w
– volume: 16
  start-page: 14779
  year: 2022
  ident: 49636_CR38
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05624
– volume: 355
  start-page: 290
  year: 2019
  ident: 49636_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.113
– volume: 140
  start-page: 1812
  year: 2018
  ident: 49636_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11589
– volume: 16
  start-page: 571
  year: 2021
  ident: 49636_CR46
  publication-title: Bull. Chem. React. Eng. Catal.
  doi: 10.9767/bcrec.16.3.10281.571-580
– volume: 2
  start-page: 404
  year: 2020
  ident: 49636_CR13
  publication-title: Matter
  doi: 10.1016/j.matt.2019.11.005
– volume: 141
  start-page: 20016
  year: 2019
  ident: 49636_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11172
– volume: 128
  start-page: 13418
  year: 2016
  ident: 49636_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201606656
– volume: 138
  start-page: 5785
  year: 2016
  ident: 49636_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02553
– volume: 135
  year: 2023
  ident: 49636_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202309078
– ident: 49636_CR18
  doi: 10.1038/s41893-023-01121-9
– volume: 8
  start-page: 597
  year: 2016
  ident: 49636_CR25
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2505
– volume: 356
  start-page: 430
  year: 2017
  ident: 49636_CR2
  publication-title: Science
  doi: 10.1126/science.aam8743
– volume: 15
  start-page: 348
  year: 2020
  ident: 49636_CR4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0673-x
– volume: 131
  start-page: 15330
  year: 2019
  ident: 49636_CR1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201902229
– volume: 12
  start-page: 49416
  year: 2020
  ident: 49636_CR45
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14883
– volume: 31
  start-page: 2105395
  year: 2021
  ident: 49636_CR14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105395
– volume: 321
  year: 2022
  ident: 49636_CR37
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.115972
– volume: 785
  start-page: 265
  year: 2017
  ident: 49636_CR23
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.11.043
SSID ssj0000391844
Score 2.5525067
Snippet Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose...
Abstract Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5297
SubjectTerms 639/166/898
639/638/298/921
Antibacterial activity
Antifouling substances
Biodegradability
Biodegradation
Carvacrol
Cellulose
Cellulose fibers
Chemistry
Coatings
Cotton fibers
E coli
Essential oils
Fabrication
Fibers
Humanities and Social Sciences
Hydrophobicity
Materials selection
Metal-organic frameworks
multidisciplinary
Pore size
Science
Science (multidisciplinary)
Species diversity
Tethering
Textiles
Wastewater purification
Water purification
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hpEpcKqC0TXkolbi1EXbsOM4FiSJWqBLlUCpxs8aOrSK1WdTdRYJfz9jJLmzp48Ilh8SORt-MZ8avbwD220pZ4UosXKtVIWt6NIFh4QUPnglEm27xn31Rp9_k58vq8lGpr3gmrKcH7oE7QNcyrKtGeRmkRq8595Z-HCzHUlaJ55Ni3qPJVPLBoqGpixxuyTChDyYy-QQKSYUkoyORliJRIuz_U5b59LDkbzumKRCN1uHlkEHmR73kG7Diu0140deUvH0Fh18J9XgfKk9nBWPc6pf78rPz0aSIBz3IEUzymyvMyTbuaEzPfuZuXvdtCy5GJxfHp8VQJKFwleRTmkg2vkxEcpxchXUSfWCVQ89D8Kp2pAynXFz8FTUKYSUSMq2urQ7ISitew2o37vxbyCU65p13mvQjgy1RSKGU5batneONzIDP8TJuIBCPdSx-mLSRLbTpMTaEsUkYmyaDD4s-1z19xj9bf4pqWLSM1NfpBRmEGQzC_M8gMtiZK9EM43FiomfTkbm_zuD94jMBG7dHsPPjWWoTy07RfCuDN73OF5JQWhcpnVkGeskalkRd_tJdfU9s3RRMKAWNXT_ODedBrr9j8e45sNiGtTJaPFNFyXdgdfpr5ncpiZravTRe7gGFpBk7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgCLELgvFVGKhI3CBa06RtegHBxGNCGhwY0m5RkiYwCfq29T0k-Oux07TT42OXHpqkSm3HdhznZ4BnXVVb4UrDXKdqJht8tKEwzAsefCGMsfEW_-GH-uCzfH9cHaeA25DSKiedGBV1t3QUI98j2VSEvd68Oj1jVDWKTldTCY2rcI2jpaGULrV4N8dYCP1cSZnuyhRC7Q0yagY0TEyi6OHENuxRhO3_l6_5d8rkH-em0RwtbsHN5Efmr0fG34Yrvt-B62NlyZ87cGN_KuR2B15-Qj7QDak8Zg-SJRsDgPnhx8XAKPUDVcOQ_zgxOUrLL1zl6--5mz5wF44Wb4_2D1gqm8BcJfkKt5atLyO0HEflYZ00PhSVM56H4OvGIXtc7SgcLBojhJUGqdSpxqpgitKKe7DVL3v_AHJpXOGddwo5JoMtjZCiri23XeMcb2UGfKKddglSnCpbfNPxaFsoPdJbI711pLduM3g-jzkdATUu7f2GWDL3JDDs-GJ5_kWntaWN6wrTVG3tZZDKeMW5tyh7wXJTykpksDsxVKcVOugLecrg6dyMhKUDE9P75Tr2oUJUuAPL4P7I_3km6OgRyHORgdqQjI2pbrb0J18jfjeaF3RKaeiLSYgu5vV_Wjy8_DcewXZJcl3UrOS7sLU6X_vH6DCt7JO4Kn4DCyYTaw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-O3aKiv4povJJpvNvgjX4lEOqg-t0LcwySZaqHvSuxP0r-8k-yGnVfBlHzaTJcz8kplNJr8BeNVWygpXYuFarQpZ06MJDAsvePBMINp0i__kgzr-JBfn1fkOlONdmJS0nygt0zI9Zoe9Xck0pcmjFJIwQ1-8BXuRqp2wvTebLU4X085K5DzXUg43ZJjQN3Te8kKJrP-mCPPPRMnfTkuTE5rfg7tD9JjP-vHehx3fPYDbfT3JHw_h3SlpPN6FylOeYPRZ_VZffvJxvipikgctAqv8-wXmhIufNJ83X3M31nx7BGfz92dHx8VQIKFwleRr-olsfJlI5DgtE9ZJ9IFVDj0PwavakSGccnHjV9QohJVImml1bXVAVlrxGHa7ZeefQi7RMe-802QbGWyJQgqlLLdt7RxvZAZ81JdxA3l4rGFxadIhttCm17EhHZukY9Nk8Hrq862nzvin9GE0wyQZaa_Ti-XVZzPAwKBrGdZVo7wMUqPXnHtLKAuWY0lYyOBgNKIZ5uLKxFVNR9b-OoOXUzMpNh6NYOeXmyQTS07Rv1YGT3qbTyOhkC7SObMM9BYatoa63dJdfElM3eRIKPyMXd-MwPk1rr_r4tn_ie_DnTJim6mi5Aewu77a-OcUKq3ti2FuXAMPfQ7O
  priority: 102
  providerName: Springer Nature
Title Scalable multifunctional MOFs-textiles via diazonium chemistry
URI https://link.springer.com/article/10.1038/s41467-024-49636-9
https://www.ncbi.nlm.nih.gov/pubmed/38906900
https://www.proquest.com/docview/3070857827
https://www.proquest.com/docview/3071086826
https://pubmed.ncbi.nlm.nih.gov/PMC11192900
https://doaj.org/article/acd0a7596e4f48ae811ebcd8fb1a2453
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQPIfEyje-wUQWJNwjEsWM7D4C6amWq1IHYJvXNsh2HTRop9AMxfj1nJykqFMRLItnnxLoP353tuwN4VubcUJvpxJaSJ0zgo6hSnThKKpdSrU2I4h-f8pMLNprkky3oyh21CJxvdO18PamL2fXL719v3qLAv25CxuWrOQvijtomYchP-Ldt2EXNJHxFg3Fr7oeVmRbo0PiD5ixlJEEA2sbRbP7Mmq4KKf032aF_Xqf87Uw1qKrhPuy1Nmbcb5jiDmy5-i7caqpO3tyDN2dIFx8xFYfbhF6zNRuC8fj9cJ74qyC4VMzjb1c6Ru75gVK__BzbrjLcfTgfHp8PTpK2jEJic0YW6GoWLgup5gguJsYy7ao0t9qRqnJcWCSX5dZvD1OhKTVMI5ZKKYysdJoZ-gB26mntHkHMtE2ddVYiBVllMk0Z5dwQUwprScEiIB2-lG1TjPtKF9cqHHVTqRocK8SxCjhWRQTPV2O-NAk2_gl95MmwgvTJsUPDdPZJtbKmtC1TLfKCO1YxqZ0kxBnkxcoQnbGcRnDYEVF1DKf82id9bn8RwdNVNyLWH6Do2k2XAcYXpkKPLIKHDc1XM0HDzyd9TiOQa9ywNtX1nvrqMuTzRnWDRqof-qJjnF_z-jsuHv_HPA_gduYZOuVJRg5hZzFbuidoRS1MD7bFROBTDt_1YLffH52N8H10fPrhI7YO-KAX9id6QYR-Asm4HWc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCMorUCBIcIKocewkzgEQFJYt7ZYDi9SbZTsOrVSypdkFlf_Ef2TGeVTLo7deckhsy5n5PDMee2YAnpRpZrhNdGRLmUUix0dRxTpynFUu5lobH8U_2cvGn8WH_XR_BX71sTB0rbKXiV5QlzNLPvJNwqak3Ov5q-NvEVWNotPVvoRGC4sdd_oDt2zNi-23yN-nSTJ6N90aR11Vgcimgs1x51W4xGdeY7i2jBXaVXFqtWNV5bLc4uxtZslbynPNuRG6YLKUuZGVjhPDcdhLcFlwVOQUmD56P7h0KNm6FKILzYm53GyEF0SoByOBSEc6LKk_XyXgX6bt3zc0_zim9dpvdB2udWZr-LrF2Q1YcfU6XGkLWZ6uw9pWXzfuJrz8hGyngKzQX1Ykxdn6G8PJx1ET0U0TlERN-P1QhwjOnyhUFl9D2w9wC6YXQc_bsFrPancXQqFt7KyzEgEiKpNoLniWGWbK3FpWiABYTztluwzmVEjjSPmTdC5VS2-F9Fae3qoI4NnQ57jN33Fu6zfEkqEl5d72L2YnX1S3lJW2ZazztMicqITUTjLmDEK9MkwnIuUBbPQMVZ1AaNQZfAN4PHxGwtL5jK7dbOHbUN0r3PAFcKfl_zATtCspp3QcgFxCxtJUl7_Uhwc-XThqM7SBqevzHkRn8_o_Le6d_xuPYG08neyq3e29nftwNSGMx1mUsA1YnZ8s3AO01ebmoV8hIagLXpG_AV_JT5U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qU7FcEJQtUCBIcIJo4thJnAMguoxaSocKWqk3y3YcqASZ0pkBlX_Gv-M9Z6mGpbdecogdy_n8vcXbewBPyzQz3CY6sqXMIpHjo6hiHTnOKhdzrY2_xb87zrYOxNvD9HAJfnV3YehYZacTvaIuJ5bWyIfETUmx1_Nh1R6L2NsYvT7-FlEGKdpp7dJpNBTZcac_cPo2fbm9gWP9LElGm_vrW1GbYSCyqWAznIUVLvFR2BjKmbFCuypOrXasqlyWW_wTm1laOeW55twIXTBZytzISseJ4djsJVjOaVI0gOW1zfHeh36Bh0KvSyHaizoxl8Op8GoJrWIkkPeIyoIx9DkD_uXo_n1e849NW28LRzfgeuvEhm8a1t2EJVevwOUmreXpClxd77LI3YJXH5EEdD0r9EcXyYw2q4_h7vvRNCKAUS9Nw-9HOkSq_kQVM_8a2q6B27B_EYjegUE9qd09CIW2sbPOSqSLqEyiueBZZpgpc2tZIQJgHXbKtvHMKa3GF-X31blUDd4K8VYeb1UE8Lz_5riJ5nFu7TUakr4mReL2LyYnn1Qr2ErbMtZ5WmROVEJqJxlzBolfGaYTkfIAVrsBVa16mKozMgfwpC9GYGm3RtduMvd1KAsWTv8CuNuMf98T9DIpwnQcgFxgxkJXF0vqo88-eDjaNvSI6dMXHYnO-vV_LO6f_xuP4QpKo3q3Pd55ANcSonicRQlbhcHsZO4eouM2M49aEQlBXbBQ_gauqFUn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+multifunctional+MOFs-textiles+via+diazonium+chemistry&rft.jtitle=Nature+communications&rft.au=Li%2C+Wulong&rft.au=Yu%2C+Zhen&rft.au=Zhang%2C+Yaoxin&rft.au=Lv%2C+Cun&rft.date=2024-06-21&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5297&rft_id=info:doi/10.1038%2Fs41467-024-49636-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon