Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a gene...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 3226 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.06.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. |
---|---|
AbstractList | Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations. Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations. Abstract Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations. |
ArticleNumber | 3226 |
Author | Zhang, Xiaoming Tian, Danping Liu, Haichao Yang, Hengquan Hao, Ruipeng Liang, Linfeng Shi, Hu Wang, Yuwei |
Author_xml | – sequence: 1 givenname: Danping surname: Tian fullname: Tian, Danping organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University – sequence: 2 givenname: Ruipeng surname: Hao fullname: Hao, Ruipeng organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University – sequence: 3 givenname: Xiaoming orcidid: 0000-0002-1529-8829 surname: Zhang fullname: Zhang, Xiaoming email: xmzhang4400@sxu.edu.cn organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University – sequence: 4 givenname: Hu orcidid: 0000-0002-5466-5783 surname: Shi fullname: Shi, Hu organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University – sequence: 5 givenname: Yuwei surname: Wang fullname: Wang, Yuwei organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University – sequence: 6 givenname: Linfeng surname: Liang fullname: Liang, Linfeng organization: Institute of Crystalline Materials, Shanxi University – sequence: 7 givenname: Haichao orcidid: 0000-0001-9175-3371 surname: Liu fullname: Liu, Haichao email: hcliu@pku.edu.cn organization: Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University – sequence: 8 givenname: Hengquan orcidid: 0000-0001-7955-0512 surname: Yang fullname: Yang, Hengquan email: hqyang@sxu.edu.cn organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37270555$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1URMvQF2CBIrFhE_Bf7GSFUNVCpVZlAWvrxr6ZekjiwU5aDU-PZ6aFtotm49g-5_Ox731NDsYwIiFvGf3IqKg_Jcmk0iXlohR1I5vy9gU54lSykmkuDh78H5LjlFY0f6JhtZSvyKHQXNOqqo5Iupz7yZc2DGuI04DjBH1xeXVWDN7GEBHsFGIqHEZ_g67oYhiK797-yvNxWbgwtz0WOMx98mFMRRdiYa9xCCWOfzYDTN4WFpIFh3nM7E3y6Q152UGf8PhuXJCfZ6c_Tr6VF1dfz0--XJS2kmwqpbOouNaNqjhVVtatdRqcqlXe0YCgJJVWQQ1OatXmK7FKdJ1rG21pq4VYkPM91wVYmXX0A8SNCeDNbiHEpcl39rZHQyGf4lRnaVdJKVijQQFSpiVvhROQWZ_3rPXcDpiTjVOE_hH08c7or80y3BiWK9TIWmfChztCDL9nTJMZfLLY9zBimJPhNedC1Vv9grx_Il2FOY75rXYqSqXQW-C7h5H-ZbkvbhbUe0GuZEoRO2P9lEsStgl9n6OZbSuZfSuZfLDZtZK5zVb-xHpPf9Yk9qa03nYHxv-xn3H9Bdqy3gI |
CitedBy_id | crossref_primary_10_1002_smll_202308264 crossref_primary_10_1021_acs_chemmater_4c01698 crossref_primary_10_1021_acsami_4c21031 crossref_primary_10_1007_s12274_024_6929_2 crossref_primary_10_1021_acs_langmuir_4c04555 crossref_primary_10_1002_adfm_202304794 crossref_primary_10_1016_j_ces_2024_120689 crossref_primary_10_1002_cctc_202400856 crossref_primary_10_1021_acsmaterialslett_4c01209 crossref_primary_10_1002_chem_202403363 crossref_primary_10_1002_ange_202403539 crossref_primary_10_1016_j_foodchem_2024_140466 crossref_primary_10_1002_adhm_202401834 crossref_primary_10_1002_smll_202400714 crossref_primary_10_1039_D3MA00690E crossref_primary_10_2147_IJN_S417543 crossref_primary_10_1039_D3GC02512H crossref_primary_10_1021_acs_jpcc_3c02598 crossref_primary_10_1016_j_checat_2023_100894 crossref_primary_10_1016_j_desal_2024_118193 crossref_primary_10_1002_anie_202421341 crossref_primary_10_1002_aic_18549 crossref_primary_10_1021_jacsau_3c00344 crossref_primary_10_1002_anie_202403539 crossref_primary_10_1016_j_jclepro_2024_140638 crossref_primary_10_1039_D3TA07814K crossref_primary_10_1016_j_mcat_2024_114735 crossref_primary_10_1021_cbe_3c00091 crossref_primary_10_1039_D4RA06058J crossref_primary_10_1002_syst_202400005 crossref_primary_10_1016_j_ccr_2025_216615 crossref_primary_10_1039_D4CC05851H crossref_primary_10_1016_j_apcata_2023_119426 crossref_primary_10_1021_acs_langmuir_4c01784 crossref_primary_10_1002_ange_202421341 crossref_primary_10_1039_D5QM00079C crossref_primary_10_1016_j_cej_2025_160844 crossref_primary_10_1002_cbic_202300781 crossref_primary_10_1038_s41467_024_47175_x crossref_primary_10_1002_smll_202411300 crossref_primary_10_1016_j_foodchem_2025_143399 crossref_primary_10_1002_agt2_724 crossref_primary_10_1021_acs_chemmater_4c01063 crossref_primary_10_1021_jacs_4c09259 crossref_primary_10_1002_adfm_202309383 crossref_primary_10_1016_j_ccr_2023_215572 crossref_primary_10_1016_j_cej_2024_153583 crossref_primary_10_1002_smll_202408844 crossref_primary_10_1021_acsapm_4c01242 crossref_primary_10_1021_acscentsci_5c00022 crossref_primary_10_1016_j_ijbiomac_2025_141346 |
Cites_doi | 10.1038/nmat2608 10.1002/anie.201916474 10.1038/srep21401 10.1021/jacs.6b03673 10.1039/D1CS01025E 10.1021/acs.accounts.8b00297 10.1039/C6CS00250A 10.1038/s41929-018-0117-2 10.1002/anie.201916578 10.1038/s41467-022-27983-9 10.1002/adma.202004804 10.1002/adfm.201802479 10.1039/D0GC01989E 10.1021/acs.chemmater.0c00684 10.1038/s41467-018-03650-w 10.1002/adhm.201700917 10.1002/anie.202211163 10.1038/s41467-019-13153-x 10.1038/s41586-022-05223-w 10.1038/s41929-017-0010-4 10.1039/D1CS00968K 10.1002/adma.202005172 10.1002/anie.202113784 10.1021/acs.langmuir.7b04085 10.1021/jacs.1c07107 10.1002/adsc.201100403 10.1039/C2CS35312A 10.1038/s41467-022-32941-6 10.1002/smll.201300125 10.1021/acsnano.1c04219 10.1038/nchem.2459 10.1002/anie.201805022 10.1038/s41467-022-28100-6 10.1021/ja401758c 10.1002/anie.201806049 10.1021/acs.chemrev.0c01029 10.1021/ja0713577 10.1002/adma.201502389 10.1038/s41929-020-0433-1 10.1002/marc.201800580 10.1038/nchembio.975 10.1002/anie.201204829 10.1021/acscentsci.0c00687 10.1002/anie.202014002 10.1002/anie.201612280 10.1021/acsami.9b13080 10.1021/acs.chemmater.5b02847 10.1021/bm1001125 10.1021/ja503123m 10.1021/jacs.8b10302 10.1038/nchem.1026 10.1039/C6SC01438K 10.1038/s41563-018-0183-5 10.1021/jacs.7b03113 10.1021/acsami.1c09052 10.1002/anie.201308141 10.1021/jacs.1c00257 10.1016/j.tcb.2012.07.002 10.1002/admi.201500392 10.1021/jacs.1c07482 10.3389/fbioe.2020.00950 10.1002/anie.202213974 10.1038/s41427-018-0083-9 10.1021/acs.nanolett.2c01154 10.1038/ncomms6305 10.1038/s41929-019-0305-8 10.1038/s41467-017-00757-4 10.1002/smll.200900357 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-38949-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_0a965d6fc0f5443197a6ae01742b3d3a PMC10239487 37270555 10_1038_s41467_023_38949_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21925203; 22072078 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 21925203; 22072078 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-4dce6277965206c48bcd7ad6864dc7aea6404c6a8ad476b727153ffdb97c0b733 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Thu Aug 21 18:38:29 EDT 2025 Thu Jul 10 23:35:27 EDT 2025 Wed Aug 13 07:38:35 EDT 2025 Wed Feb 19 02:23:41 EST 2025 Tue Jul 01 00:58:54 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 21 02:39:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-4dce6277965206c48bcd7ad6864dc7aea6404c6a8ad476b727153ffdb97c0b733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5466-5783 0000-0001-9175-3371 0000-0001-7955-0512 0000-0002-1529-8829 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-38949-w |
PMID | 37270555 |
PQID | 2822004377 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a965d6fc0f5443197a6ae01742b3d3a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10239487 proquest_miscellaneous_2822368102 proquest_journals_2822004377 pubmed_primary_37270555 crossref_citationtrail_10_1038_s41467_023_38949_w crossref_primary_10_1038_s41467_023_38949_w springer_journals_10_1038_s41467_023_38949_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-03 |
PublicationDateYYYYMMDD | 2023-06-03 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Huang, Liang, Wang, Cao (CR32) 2017; 46 Shetty (CR14) 2021; 15 Chen, González, Zoabi, Reziq, Willner (CR34) 2018; 1 Hsu (CR56) 2021; 13 Huang (CR41) 2022; 61 Lei, Qi, Luo (CR52) 2020; 8 Li (CR48) 2019; 2 Lian, Chen, Liu, Zhou (CR40) 2016; 7 Marguet, Bonduelle, Lecommandoux (CR7) 2013; 42 Schoonen, van Hest (CR5) 2016; 28 Bäumler, Georgieva (CR11) 2010; 11 Hong, Wenzel, Salguero, Day, Grubbs (CR67) 2007; 129 Rudroff (CR47) 2018; 1 Xu (CR53) 2018; 28 Zhang (CR60) 2016; 6 Liu (CR21) 2022; 13 Zhang (CR22) 2022; 13 Jiang, Caire da Silva, Ivanov, Mottola, Landfester (CR23) 2022; 61 Xu (CR37) 2021; 33 Qu, Kuepfert, Hashmi, Weck (CR17) 2021; 143 Tsotsalas (CR62) 2016; 3 Dos Santos (CR54) 2020; 32 Chen (CR10) 2014; 136 Wei, Yan, Wang, Yang (CR26) 2018; 10 Vázquez-González, Wang, Willner (CR6) 2020; 3 Hastings, Adams, Bushi, Kolb (CR64) 2020; 22 Xu, Martin, Li, Mann (CR1) 2022; 609 Li (CR44) 2016; 138 Tian (CR50) 2021; 143 Gao (CR25) 2017; 56 Wang, Lan, Ma (CR31) 2020; 6 Liu (CR33) 2022; 51 Wang, Zhao, Haag, Wu (CR9) 2022; 61 Tan (CR18) 2017; 8 Dutta (CR35) 2020; 59 Chen, Silver (CR3) 2012; 22 Peng (CR57) 2018; 9 Liu (CR27) 2018; 57 Hosta-Rigau, Shimoni, Städler, Caruso (CR19) 2013; 9 Zhang, Xu, Ge (CR66) 2022; 22 Drake, Ji, Lin (CR30) 2018; 51 Tian, He, Zhao, Niu, Duan (CR39) 2013; 135 Xu (CR51) 2020; 32 Sun, Glebe, Charan, Böker, Wu (CR20) 2018; 57 Jeong (CR63) 2015; 27 Yang (CR24) 2012; 51 CR59 Elani, Law, Ces (CR13) 2014; 5 Shang, Ye, Li, Zhao (CR4) 2022; 51 Horcajada (CR61) 2010; 9 Li (CR45) 2021; 143 Peters (CR15) 2014; 53 Liang (CR42) 2019; 141 Gobbo (CR55) 2018; 17 Tan (CR68) 2019; 11 Wheeldon (CR8) 2016; 8 Wu (CR43) 2019; 10 Godoy-Gallardo, York-Duran, Hosta-Rigau (CR12) 2018; 7 Liang (CR38) 2021; 60 Nollet, Laurichesse, Besse, Soubabère, Schmitt (CR58) 2018; 34 Tenbrink, Seβler, Schatz, Gröger (CR65) 2011; 353 Womble, Kuepfert, Cohen, Weck (CR16) 2019; 40 Man (CR46) 2022; 13 Ameloot (CR49) 2011; 3 Xia (CR36) 2017; 139 Huang, Kou, Shen, Chen, Ouyang (CR29) 2020; 59 Liang (CR28) 2021; 121 Agapakis, Boyle, Silver (CR2) 2012; 8 S Peng (38949_CR57) 2018; 9 CM Agapakis (38949_CR2) 2012; 8 ZW Chen (38949_CR10) 2014; 136 XZ Lian (38949_CR40) 2016; 7 M Tsotsalas (38949_CR62) 2016; 3 M Marguet (38949_CR7) 2013; 42 T Drake (38949_CR30) 2018; 51 R Ameloot (38949_CR49) 2011; 3 P Gobbo (38949_CR55) 2018; 17 WH Tan (38949_CR68) 2019; 11 ZY Sun (38949_CR20) 2018; 57 Z Xu (38949_CR53) 2018; 28 I Wheeldon (38949_CR8) 2016; 8 C Xu (38949_CR1) 2022; 609 XY Li (38949_CR48) 2019; 2 S Jiang (38949_CR23) 2022; 61 J Liang (38949_CR38) 2021; 60 XL Wu (38949_CR43) 2019; 10 WB Liang (38949_CR28) 2021; 121 M Zhang (38949_CR22) 2022; 13 T Man (38949_CR46) 2022; 13 SY Liu (38949_CR21) 2022; 13 SC Shetty (38949_CR14) 2021; 15 L Schoonen (38949_CR5) 2016; 28 EC Dos Santos (38949_CR54) 2020; 32 SM Huang (38949_CR29) 2020; 59 H Huang (38949_CR41) 2022; 61 Z Xu (38949_CR51) 2020; 32 SH Hong (38949_CR67) 2007; 129 P Horcajada (38949_CR61) 2010; 9 D Liu (38949_CR27) 2018; 57 D Tian (38949_CR50) 2021; 143 PY Qu (38949_CR17) 2021; 143 QX Tian (38949_CR39) 2013; 135 P Li (38949_CR44) 2016; 138 M Nollet (38949_CR58) 2018; 34 AH Chen (38949_CR3) 2012; 22 RJRW Peters (38949_CR15) 2014; 53 XL Wang (38949_CR31) 2020; 6 38949_CR59 S Dutta (38949_CR35) 2020; 59 M Godoy-Gallardo (38949_CR12) 2018; 7 YB Huang (38949_CR32) 2017; 46 GY Jeong (38949_CR63) 2015; 27 L Hosta-Rigau (38949_CR19) 2013; 9 K Tenbrink (38949_CR65) 2011; 353 BX Zhang (38949_CR60) 2016; 6 H Tan (38949_CR18) 2017; 8 WH Chen (38949_CR34) 2018; 1 L Shang (38949_CR4) 2022; 51 M Vázquez-González (38949_CR6) 2020; 3 W Xu (38949_CR37) 2021; 33 L Wei (38949_CR26) 2018; 10 H Bäumler (38949_CR11) 2010; 11 N Gao (38949_CR25) 2017; 56 YM Li (38949_CR45) 2021; 143 F Rudroff (38949_CR47) 2018; 1 Y Elani (38949_CR13) 2014; 5 J Liu (38949_CR33) 2022; 51 YY Zhang (38949_CR66) 2022; 22 CT Womble (38949_CR16) 2019; 40 CJ Hastings (38949_CR64) 2020; 22 Y Yang (38949_CR24) 2012; 51 PH Hsu (38949_CR56) 2021; 13 Y Wang (38949_CR9) 2022; 61 W Liang (38949_CR42) 2019; 141 Q Xia (38949_CR36) 2017; 139 JQ Lei (38949_CR52) 2020; 8 |
References_xml | – volume: 9 start-page: 172 year: 2010 end-page: 178 ident: CR61 article-title: Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging publication-title: Nat. Mater. doi: 10.1038/nmat2608 – volume: 59 start-page: 8786 year: 2020 end-page: 8798 ident: CR29 article-title: “Armor-plating” enzymes with metal-organic frameworks (MOFs) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916474 – volume: 6 year: 2016 ident: CR60 article-title: High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels publication-title: Sci. Rep. doi: 10.1038/srep21401 – volume: 138 start-page: 8052 year: 2016 end-page: 8055 ident: CR44 article-title: Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03673 – volume: 51 start-page: 4075 year: 2022 end-page: 4093 ident: CR4 article-title: Spatial confinement toward creating artificial living systems publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS01025E – volume: 51 start-page: 2129 year: 2018 end-page: 2138 ident: CR30 article-title: Site Isolation in metal-organic frameworks enables novel transition metal catalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00297 – volume: 46 start-page: 126 year: 2017 end-page: 157 ident: CR32 article-title: Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00250A – volume: 1 start-page: 689 year: 2018 end-page: 695 ident: CR34 article-title: Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles publication-title: Nat. Catal. doi: 10.1038/s41929-018-0117-2 – volume: 59 start-page: 3416 year: 2020 end-page: 3422 ident: CR35 article-title: Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916578 – volume: 13 year: 2022 ident: CR46 article-title: Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions publication-title: Nat. Commun. doi: 10.1038/s41467-022-27983-9 – volume: 32 start-page: 2004804 year: 2020 ident: CR54 article-title: Combinatorial strategy for studying biochemical pathways in double emulsion templated cell-sized compartments publication-title: Adv. Mater. doi: 10.1002/adma.202004804 – volume: 28 start-page: 1802479 year: 2018 ident: CR53 article-title: Compartmentalization within self-assembled metal-organic framework nanoparticles for tandem reactions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802479 – volume: 22 start-page: 6187 year: 2020 end-page: 6193 ident: CR64 article-title: One-pot chemoenzymatic reactions in water enabled by micellar encapsulation publication-title: Green. Chem. doi: 10.1039/D0GC01989E – volume: 32 start-page: 3553 year: 2020 end-page: 3560 ident: CR51 article-title: Encapsulation of hydrophobic guests within metal-organic framework capsules for regulating host-guest interaction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00684 – volume: 9 year: 2018 ident: CR57 article-title: Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-03650-w – volume: 7 start-page: 1700917 year: 2018 ident: CR12 article-title: Recent progress in micro/nanoreactors toward the creation of artificial organelles publication-title: Adv. Health Mater. doi: 10.1002/adhm.201700917 – volume: 61 start-page: e202211163 year: 2022 ident: CR41 article-title: Large-scale self-assembly of MOFs colloidosomes for bubble-propelled micromotors and stirring-free environmental remediation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202211163 – volume: 10 year: 2019 ident: CR43 article-title: Packaging and delivering enzymes by amorphous metal-organic frameworks publication-title: Nat. Commun. doi: 10.1038/s41467-019-13153-x – volume: 609 start-page: 1029 year: 2022 end-page: 1037 ident: CR1 article-title: Living material assembly of bacteriogenic protocells publication-title: Nature doi: 10.1038/s41586-022-05223-w – volume: 1 start-page: 12 year: 2018 end-page: 22 ident: CR47 article-title: Opportunities and challenges for combining chemo- and biocatalysis publication-title: Nat. Catal. doi: 10.1038/s41929-017-0010-4 – volume: 51 start-page: 1045 year: 2022 end-page: 1097 ident: CR33 article-title: MOF-enabled confinement and related effects for chemical catalyst presentation and utilization publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00968K – volume: 33 start-page: 2005172 year: 2021 ident: CR37 article-title: Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing publication-title: Adv. Mater. doi: 10.1002/adma.202005172 – volume: 61 start-page: e202113784 year: 2022 ident: CR23 article-title: Synthetic silica nano-organelles for regulation of cascade reactions in multi-compartmentalized systems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202113784 – volume: 34 start-page: 2823 year: 2018 end-page: 2833 ident: CR58 article-title: Determination of formulation conditions allowing double emulsions stabilized by PGPR and sodium caseinate to be used as capsules publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04085 – volume: 143 start-page: 15378 year: 2021 end-page: 15390 ident: CR45 article-title: Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07107 – volume: 353 start-page: 2363 year: 2011 end-page: 2367 ident: CR65 article-title: Combination of olefin metathesis and enzymatic ester hydrolysis in aqueous media in a one-pot synthesis publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100403 – volume: 42 start-page: 512 year: 2013 end-page: 529 ident: CR7 article-title: Multi-compartmentalized polymeric systems: towards biomimetic cellular structure and function publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35312A – volume: 13 year: 2022 ident: CR21 article-title: Signal processing and generation of bioactive nitric oxide in a model prototissue publication-title: Nat. Commun. doi: 10.1038/s41467-022-32941-6 – volume: 9 start-page: 3573 year: 2013 end-page: 3583 ident: CR19 article-title: Advanced subcompartmentalized microreactors: polymer hydrogel carriers encapsulating polymer capsules and liposomes publication-title: Small doi: 10.1002/smll.201300125 – volume: 15 start-page: 15656 year: 2021 end-page: 15666 ident: CR14 article-title: Directed signaling cascades in monodisperse artificial eukaryotic cells publication-title: ACS Nano doi: 10.1021/acsnano.1c04219 – volume: 8 start-page: 299 year: 2016 end-page: 309 ident: CR8 article-title: Substrate channelling as an approach to cascade reactions publication-title: Nat. Chem. doi: 10.1038/nchem.2459 – volume: 57 start-page: 10899 year: 2018 end-page: 10904 ident: CR27 article-title: Surfactant assembly within Pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805022 – volume: 13 year: 2022 ident: CR22 article-title: Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions publication-title: Nat. Commun. doi: 10.1038/s41467-022-28100-6 – volume: 135 start-page: 10186 year: 2013 end-page: 10189 ident: CR39 article-title: Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401758c – volume: 57 start-page: 13810 year: 2018 end-page: 13814 ident: CR20 article-title: Enzyme-polymer conjugates as robust Pickering interfacial biocatalysts for efficient biotransformations and one-pot cascade reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806049 – volume: 121 start-page: 1077 year: 2021 end-page: 1129 ident: CR28 article-title: Metal-organic framework-based enzyme biocomposites publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01029 – volume: 129 start-page: 7961 year: 2007 end-page: 7968 ident: CR67 article-title: Decomposition of ruthenium olefin metathesis catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0713577 – volume: 28 start-page: 1109 year: 2016 end-page: 1128 ident: CR5 article-title: Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics publication-title: Adv. Mater. doi: 10.1002/adma.201502389 – volume: 3 start-page: 256 year: 2020 end-page: 273 ident: CR6 article-title: Biocatalytic cascades operating on macromolecular scaffolds and in confined environments publication-title: Nat. Catal. doi: 10.1038/s41929-020-0433-1 – volume: 40 start-page: 1800580 year: 2019 ident: CR16 article-title: Multicompartment polymeric nanoreactors for non-orthogonal cascade catalysis publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800580 – volume: 8 start-page: 527 year: 2012 end-page: 535 ident: CR2 article-title: Natural strategies for the spatial optimization of metabolism in synthetic biology publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.975 – volume: 51 start-page: 9164 year: 2012 end-page: 9168 ident: CR24 article-title: A Yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204829 – volume: 6 start-page: 1497 year: 2020 end-page: 1506 ident: CR31 article-title: Metal-organic frameworks for enzyme immobilization: beyond host matrix materials publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00687 – volume: 60 start-page: 5421 year: 2021 end-page: 5428 ident: CR38 article-title: Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014002 – volume: 56 start-page: 3880 year: 2017 end-page: 3885 ident: CR25 article-title: Efficient construction of well-defined multicompartment porous systems in a modular and chemically orthogonal fashion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612280 – volume: 11 start-page: 36782 year: 2019 end-page: 36788 ident: CR68 article-title: Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acid-stable catalytic performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13080 – volume: 27 start-page: 7903 year: 2015 end-page: 7909 ident: CR63 article-title: Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02847 – volume: 11 start-page: 1480 year: 2010 end-page: 1487 ident: CR11 article-title: Coupled enzyme reactions in multicompartment microparticles publication-title: Biomacromolecules doi: 10.1021/bm1001125 – volume: 136 start-page: 7498 year: 2014 end-page: 7504 ident: CR10 article-title: Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503123m – volume: 141 start-page: 2348 year: 2019 end-page: 2355 ident: CR42 article-title: Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10302 – volume: 3 start-page: 382 year: 2011 end-page: 387 ident: CR49 article-title: Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability publication-title: Nat. Chem. doi: 10.1038/nchem.1026 – volume: 7 start-page: 6969 year: 2016 end-page: 6973 ident: CR40 article-title: Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF publication-title: Chem. Sci. doi: 10.1039/C6SC01438K – volume: 17 start-page: 1145 year: 2018 end-page: 1153 ident: CR55 article-title: Programmed assembly of synthetic protocells into thermoresponsive prototissues publication-title: Nat. Mater. doi: 10.1038/s41563-018-0183-5 – volume: 139 start-page: 8259 year: 2017 end-page: 8266 ident: CR36 article-title: Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03113 – volume: 13 start-page: 52014 year: 2021 end-page: 52022 ident: CR56 article-title: Rapid fabrication of biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild water-based approach publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09052 – volume: 53 start-page: 146 year: 2014 end-page: 150 ident: CR15 article-title: Cascade reactions in multicompartmentalized polymersomes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308141 – volume: 143 start-page: 4705 year: 2021 end-page: 4713 ident: CR17 article-title: Compartmentalization and photoregulating pathways for incompatible tandem catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00257 – volume: 22 start-page: 662 year: 2012 end-page: 670 ident: CR3 article-title: Designing biological compartmentalization publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.07.002 – volume: 3 start-page: 1500392 year: 2016 ident: CR62 article-title: Freestanding MOF microsheets with defined size and geometry using superhydrophobic-superhydrophilic arrays publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500392 – volume: 143 start-page: 16641 year: 2021 end-page: 16652 ident: CR50 article-title: Pickering-droplet-derived MOF microreactors for continuous-flow biocatalysis with size selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07482 – volume: 8 start-page: 950 year: 2020 ident: CR52 article-title: Pickering emulsion-based microreactors for size-selective interfacial enzymatic catalysis publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00950 – volume: 61 start-page: e202213974 year: 2022 ident: CR9 article-title: Biocatalytic synthesis using self-assembled polymeric nano- and microreactors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213974 – volume: 10 start-page: 899 year: 2018 end-page: 911 ident: CR26 article-title: Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO capture and catalysis publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0083-9 – volume: 22 start-page: 5029 year: 2022 end-page: 5036 ident: CR66 article-title: Multienzyme system in amorphous metal-organic frameworks for intracellular lactate detection publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01154 – volume: 5 year: 2014 ident: CR13 article-title: Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways publication-title: Nat. Commun. doi: 10.1038/ncomms6305 – ident: CR59 – volume: 2 start-page: 718 year: 2019 end-page: 725 ident: CR48 article-title: Highly active enzyme-metal nanohybrids synthesized in protein-polymer conjugates publication-title: Nat. Catal. doi: 10.1038/s41929-019-0305-8 – volume: 8 year: 2017 ident: CR18 article-title: Heterogeneous Multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions publication-title: Nat. Commun. doi: 10.1038/s41467-017-00757-4 – volume: 136 start-page: 7498 year: 2014 ident: 38949_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503123m – volume: 9 start-page: 172 year: 2010 ident: 38949_CR61 publication-title: Nat. Mater. doi: 10.1038/nmat2608 – volume: 353 start-page: 2363 year: 2011 ident: 38949_CR65 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100403 – volume: 6 start-page: 1497 year: 2020 ident: 38949_CR31 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00687 – volume: 51 start-page: 2129 year: 2018 ident: 38949_CR30 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00297 – volume: 3 start-page: 382 year: 2011 ident: 38949_CR49 publication-title: Nat. Chem. doi: 10.1038/nchem.1026 – volume: 59 start-page: 3416 year: 2020 ident: 38949_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916578 – volume: 13 year: 2022 ident: 38949_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32941-6 – ident: 38949_CR59 doi: 10.1002/smll.200900357 – volume: 13 year: 2022 ident: 38949_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-022-27983-9 – volume: 13 year: 2022 ident: 38949_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28100-6 – volume: 609 start-page: 1029 year: 2022 ident: 38949_CR1 publication-title: Nature doi: 10.1038/s41586-022-05223-w – volume: 28 start-page: 1802479 year: 2018 ident: 38949_CR53 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802479 – volume: 28 start-page: 1109 year: 2016 ident: 38949_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201502389 – volume: 46 start-page: 126 year: 2017 ident: 38949_CR32 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00250A – volume: 61 start-page: e202211163 year: 2022 ident: 38949_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202211163 – volume: 8 year: 2017 ident: 38949_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00757-4 – volume: 1 start-page: 689 year: 2018 ident: 38949_CR34 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0117-2 – volume: 5 year: 2014 ident: 38949_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms6305 – volume: 61 start-page: e202113784 year: 2022 ident: 38949_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202113784 – volume: 7 start-page: 6969 year: 2016 ident: 38949_CR40 publication-title: Chem. Sci. doi: 10.1039/C6SC01438K – volume: 22 start-page: 5029 year: 2022 ident: 38949_CR66 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01154 – volume: 121 start-page: 1077 year: 2021 ident: 38949_CR28 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01029 – volume: 11 start-page: 36782 year: 2019 ident: 38949_CR68 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13080 – volume: 22 start-page: 6187 year: 2020 ident: 38949_CR64 publication-title: Green. Chem. doi: 10.1039/D0GC01989E – volume: 32 start-page: 3553 year: 2020 ident: 38949_CR51 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00684 – volume: 60 start-page: 5421 year: 2021 ident: 38949_CR38 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014002 – volume: 10 year: 2019 ident: 38949_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13153-x – volume: 57 start-page: 13810 year: 2018 ident: 38949_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806049 – volume: 2 start-page: 718 year: 2019 ident: 38949_CR48 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0305-8 – volume: 6 year: 2016 ident: 38949_CR60 publication-title: Sci. Rep. doi: 10.1038/srep21401 – volume: 139 start-page: 8259 year: 2017 ident: 38949_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03113 – volume: 10 start-page: 899 year: 2018 ident: 38949_CR26 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0083-9 – volume: 11 start-page: 1480 year: 2010 ident: 38949_CR11 publication-title: Biomacromolecules doi: 10.1021/bm1001125 – volume: 53 start-page: 146 year: 2014 ident: 38949_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308141 – volume: 3 start-page: 256 year: 2020 ident: 38949_CR6 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0433-1 – volume: 138 start-page: 8052 year: 2016 ident: 38949_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03673 – volume: 3 start-page: 1500392 year: 2016 ident: 38949_CR62 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500392 – volume: 51 start-page: 4075 year: 2022 ident: 38949_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS01025E – volume: 27 start-page: 7903 year: 2015 ident: 38949_CR63 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02847 – volume: 33 start-page: 2005172 year: 2021 ident: 38949_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.202005172 – volume: 7 start-page: 1700917 year: 2018 ident: 38949_CR12 publication-title: Adv. Health Mater. doi: 10.1002/adhm.201700917 – volume: 22 start-page: 662 year: 2012 ident: 38949_CR3 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.07.002 – volume: 34 start-page: 2823 year: 2018 ident: 38949_CR58 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04085 – volume: 13 start-page: 52014 year: 2021 ident: 38949_CR56 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09052 – volume: 51 start-page: 9164 year: 2012 ident: 38949_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204829 – volume: 135 start-page: 10186 year: 2013 ident: 38949_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401758c – volume: 143 start-page: 15378 year: 2021 ident: 38949_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07107 – volume: 8 start-page: 527 year: 2012 ident: 38949_CR2 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.975 – volume: 8 start-page: 299 year: 2016 ident: 38949_CR8 publication-title: Nat. Chem. doi: 10.1038/nchem.2459 – volume: 61 start-page: e202213974 year: 2022 ident: 38949_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202213974 – volume: 15 start-page: 15656 year: 2021 ident: 38949_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.1c04219 – volume: 59 start-page: 8786 year: 2020 ident: 38949_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916474 – volume: 57 start-page: 10899 year: 2018 ident: 38949_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805022 – volume: 51 start-page: 1045 year: 2022 ident: 38949_CR33 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00968K – volume: 143 start-page: 4705 year: 2021 ident: 38949_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00257 – volume: 9 start-page: 3573 year: 2013 ident: 38949_CR19 publication-title: Small doi: 10.1002/smll.201300125 – volume: 8 start-page: 950 year: 2020 ident: 38949_CR52 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00950 – volume: 9 year: 2018 ident: 38949_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03650-w – volume: 17 start-page: 1145 year: 2018 ident: 38949_CR55 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0183-5 – volume: 129 start-page: 7961 year: 2007 ident: 38949_CR67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0713577 – volume: 32 start-page: 2004804 year: 2020 ident: 38949_CR54 publication-title: Adv. Mater. doi: 10.1002/adma.202004804 – volume: 56 start-page: 3880 year: 2017 ident: 38949_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612280 – volume: 143 start-page: 16641 year: 2021 ident: 38949_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07482 – volume: 40 start-page: 1800580 year: 2019 ident: 38949_CR16 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800580 – volume: 42 start-page: 512 year: 2013 ident: 38949_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35312A – volume: 141 start-page: 2348 year: 2019 ident: 38949_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10302 – volume: 1 start-page: 12 year: 2018 ident: 38949_CR47 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0010-4 |
SSID | ssj0000391844 |
Score | 2.6238537 |
Snippet | Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic... Abstract Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3226 |
SubjectTerms | 639/638/298/921 639/638/77/603 639/638/77/887 Cascade chemical reactions Catalysis Catalysts Cellular structure Contact angle Controllability Double emulsions Efficiency Emulsions Engineering Enzymes Fabrication Glucose oxidase Glucose Oxidase - chemistry Humanities and Social Sciences Hydrophobicity Inactivation Laboratories Lipase - metabolism Metabolic engineering Metabolism Metal-organic frameworks Metathesis Microreactors multidisciplinary Nanoparticles Oxidation Oxidation-Reduction Permeability Porous materials Porphyrins Science Science (multidisciplinary) Substrates Synthesis Transesterification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmA1iR3bOQJiVSEVOFCpN8tPUWk3W5FdqvbXM2Nnly7PC9fYUSbz8IztmW8IeZFsG7s6WtZb5Zno6sBcVIGB8wuhB58RE9Y7H3-QRyfi_Wl3eq3VF-aEFXjgwrjD2vayCzL5OiFUW9MrK20EPRKt44Hn0Ah83rXNVF6DeQ9bFzFVydRcH44irwngohj4aNGzix1PlAH7fxdl_pos-dONaXZEszvk9hRB0teF8n1yIw53yc3SU_LyHhlzSS0rueWrAt1Pjz_O6AJT7yBEzP11aADN-xYDxfIS-ukMkyvgazQs124eaVys53iMNlKIaSnIdbFkcbi6zPiu1NsRs-ppPvpBRJP75GT27vPbIzZ1VmC-E82KCfgb2SoFrG1r6YV2PigbpJYwomy0UtTCS6ttEEo6iHFgYUwpuF752inOH5C9YTnER4S2Stbedaq3MQmZw62UdNIhuCbCfqUizYbLxk-w49j9Ym7y9TfXpkjGgGRMloy5qMjL7TvnBXTjr7PfoPC2MxEwOz8ANTKTGpl_qVFFDjaiN5MVjwZTbDP4k6rI8-0w2B9eqtghLtdlDkdQt7YiD4umbCnhwDgEVKuI3tGhHVJ3R4azLxnju8k96zV8-NVG3X7Q9WdePP4fvHhCbrVoJ3jWxA_I3urrOj6F0GvlnmUr-w5e4CxU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCAkOCMorpSAjcQOreTi2c0KAWCqkAgcq9Wb5CZV2k9Lstiq_nhknm7I8eo0dxfY8MzP-hpAX0ZShzoNhjZGO8Tr3zAbpGRg_7xuwGSHifeeDT2L_kH88qo_GgFs_llWudWJS1L5zGCPfw3LHBMQjX5_8YNg1CrOrYwuN6-RGAZYGS7rU7MMUY0H0c8X5eFcmr9Rez5NmAEPFwFLzhp1v2KME2_8vX_Pvksk_8qbJHM3ukjujH0nfDIS_R66FdpvcHDpLXmyT27_hDN4nfbpmy4Z68-UA508PPs_oAsvxwG1MPXeoh-lnwVO8ckK_HGPBBbxOfbey80DDYjXH0FpPwc-lQOtFx0L78yJhvlJneqy0pykchCgnD8jh7P3Xd_ts7LbAXM2LJeOwN1FK2Yi6zIXjyjovjRdKwIg0wQiecyeMMp5LYcHvAWUZo7eNdLmVVfWQbLVdGx4TWkqRO1vLxoTIRXLBYlRReW-LAP8wGSnWZ67dCEWOHTHmOqXEK6UHOmmgk0500ucZeTm9czIAcVw5-y2ScpqJINrpQXf6TY8yqXMDe_UiujwiCmDRSCNMABXFS1v5ymRkd80IepTsXl_yYUaeT8Mgk5hoMW3oVsOcCoHeyow8GvhmWkkFB4cgaxlRGxy1sdTNkfb4e8L9LlIfewUffrVmvst1_f8sdq7exhNyq0R5wMhStUu2lqer8BQcraV9lqTpF8F7KK0 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-N3VKhF80-B-ZJPs4yke5aAqaKFvIZ9auNuV7p2l_vVOsnsrp1XwdZOQj5nJzE5mfgPwIujS17nXtNHCUlbnjhovHEXl51yDOsOHmO988p4fn7LFWX22B-U2FyYF7SdIy3RNb6PDXvcsiTRqGIoqljX08gYcRKh25O2D2WzxaTF5ViLmuWRszJDJK3nN4B0tlMD6r7Mw_wyU_O21NCmh-R24PVqPZDas9y7s-fYe3BzqSV7dhz6l09Ihrnw9wPaTkw9zsophd2gepto6xCHXffeOxNQS8vE8BlbgbMR1G7P0xK82y-hC6wnaswRpuuqob39cJWxXYnUfI-pJcvtENJMHcDp_9_ntMR2rKlBbs2JNGe6Gl0I0vC5zbpk01gntuOTYIrTXnOXMci21Y4IbtG_wUgzBmUbY3Iiqegj7bdf6QyCl4Lk1tWi0D4wnUysEGaRzpvD4r5JBsT1lZUfI8Vj5YqnS03cl1UAZhZRRiTLqMoOX05hvA-DGP3u_icSbekaw7PShu_iiRuZRuca9Oh5sHiLaX9EIzbXHq4iVpnKVzuBoS3o1SnCvYnhtAn4SGTyfmlH24oOKbn23GfpUEdCtzODRwCnTSio8uAimloHc4aGdpe62tOdfE753kerVS5z41Zbdfq3r72fx-P-6P4FbZZSI6FGqjmB_fbHxT9HAWptno0T9BLyyI_c priority: 102 providerName: Springer Nature |
Title | Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis |
URI | https://link.springer.com/article/10.1038/s41467-023-38949-w https://www.ncbi.nlm.nih.gov/pubmed/37270555 https://www.proquest.com/docview/2822004377 https://www.proquest.com/docview/2822368102 https://pubmed.ncbi.nlm.nih.gov/PMC10239487 https://doaj.org/article/0a965d6fc0f5443197a6ae01742b3d3a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JGJWReANDPhw7eUCoq1amSh0TUKlvkRPbY1KbsKZllL-es5MUFQriJZFiJ3Z8d76zffc7gBdGhjr2taSpFAVlsa9oroWiqPyUSlFnaGPjncfn_GzCRtN4ugdduqN2AOudSzubT2qymL3-fr1-hwL_tgkZT97UzIk7ah-K6pel9GYfDlEzCZvRYNya-25mjlJc0NiD5tBnAcUKURtHs_szW7rKQfrvskP_dKf87UzVqarhXbjT2pik3zDFPdjT5X241WSdXD-A2gXd0sb7fNmA-5PxhyGZW-c8NCJdBh6ikDe_aUVsAAq5uLLuF9gaUdUqn2mi56uZ3WirCVq9BCk_r6guf6wdAiwpZG397onbHLKYJw9hMjz9PDijbe4FWsQsWFKGf8NDIVIehz4vWJIXSkjFE44lQmrJmc8KLhOpmOA5WkE4dRqj8lQUfi6i6BEclFWpnwAJBfeLPBap1IZxZ5AZk5hEqTzQuKLxIOhGOStaYHKbH2OWuQPyKMkaymRImcxRJrvx4OXmna8NLMc_a59Y4m1qWkht96BaXGathGa-xH9V3BS-sZiAQSoklxonLBbmkYqkB8cd6bOOTTPrhOvgoYQHzzfFKKH22EWWulo1dSIL-xZ68LjhlE1PIhw4C7nmQbLFQ1td3S4pr744FPDAZbVPsOFXHbv96tffx-LoP_r5FG6HVgzsZlN0DAfLxUo_Q9trmfdgX0wFXpPh-x4c9vujTyO8n5yeX3zEpwM-6LldjZ4TvJ_3bjJH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQcEJRXoICR4ARWs4ljJweEeC1b2i0cWqk317EdqLSblGaX1fKj-I3MOI-yPHrrNbYlxzOeGc_jG0KeFjpySeg0y7Q0jCehZbmTloHyszYDneEKrHce74nRAf94mByukZ9dLQymVXYy0QtqWxn0kW9huqMH4pGvTr4x7BqF0dWuhUbDFjtuuYAnW_1y-x3Q91kUDd_vvx2xtqsAMwkfzBi3xolIykwkUSgMT3NjpbYiFTAitdOCh9wInWrLpchBv4NQKAqbZ9KEuUQHKIj8SzwGTY6V6cMPvU8H0dZTztvanDBOt2ruJREoRgaWAc_YYkX_-TYB_7Jt_07R_CNO69Xf8Aa53tqt9HXDaDfJmis3yOWmk-Vyg1z7DdfwFql9WS9r8ttnTfsAOv40pFNM_wMz1ff4oRamf3eWYokL_XyMCR6wnNpqnk8cddP5BF15NQW7mgJvTSvmyh9LjzFLja4xs5969xOiqtwmBxdChztkvaxKd4_QSIrQ5InMtCu48CZfUaRFam0-cPBmCsigO3NlWuhz7MAxUT4EH6eqoZMCOilPJ7UIyPN-zUkD_HHu7DdIyn4mgnb7D9XpF9XKABVq-FcrChMWiDo4yKQW2oFI5FEe21gHZLNjBNVKklqd8X1AnvTDIAMwsKNLV82bOTECy0UBudvwTb-TGA4OQd0Ckq5w1MpWV0fK468eZxxRPTJ40AbkRcd8Z_v6_1ncP_83HpMro_3xrtrd3tt5QK5GeDfQqxVvkvXZ6dw9BCNvlj_yN4uSo4u-yr8A-Fhl1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTSB4QDC-AgOMBE9gNU0cO3lAiLFVG2OlQkzam3FsBya1yVhaqvKn8ddx5yQd5WNve41tyfF9-nz3O0KeFTpySeg0y7Q0jCehZbmTloHxszYDm-EKrHc-HIq9I_7uODleIz-7WhhMq-x0olfUtjIYI-9huqMH4pG9ok2LGO0MXp9-Y9hBCl9au3YaDYscuMUcrm_1q_0doPXzKBrsfnq7x9oOA8wkvD9l3BonIikzkUShMDzNjZXailTAiNROCx5yI3SqLZciB1sPCqIobJ5JE-YSg6Gg_jck3orWycb27nD0cRnhQez1lPO2UieM017NvV4CM8nAT-AZm69YQ9804F-e7t8Jm3-82npjOLhJbrReLH3TsN0tsubKTXKl6Wu52CTXf0M5vE1qX-TLmmz3adNMgB5-GNAJJgOC0-o7_lAL0787S7HghY5OMN0DllNbzfKxo24yG2Ngr6bgZVPgtEnFXPlj4RFnqdE15vlTH4xCjJU75OhSKHGXrJdV6e4TGkkRmjyRmXYFF94BLIq0SK3N-w5uUAHpd2euTAuEjv04xso_yMepauikgE7K00nNA_Jiuea0gQG5cPY2knI5EyG8_Yfq7ItqNYIKNfyrFYUJC8Qg7GdSC-1AQfIoj22sA7LVMYJq9UqtzqUgIE-Xw6AR8JlHl66aNXNihJmLAnKv4ZvlTmI4OIR4C0i6wlErW10dKU--etRxxPjI4HobkJcd853v6_9n8eDi33hCroIYq_f7w4OH5FqEooEhrniLrE_PZu4ReHzT_HErWpR8vmxp_gWRsGtn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-compartmental+MOF+microreactors+derived+from+Pickering+double+emulsions+for+chemo-enzymatic+cascade+catalysis&rft.jtitle=Nature+communications&rft.au=Tian%2C+Danping&rft.au=Hao%2C+Ruipeng&rft.au=Zhang%2C+Xiaoming&rft.au=Shi%2C+Hu&rft.date=2023-06-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=3226&rft_id=info:doi/10.1038%2Fs41467-023-38949-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |