Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis

Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a gene...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 3226 - 14
Main Authors Tian, Danping, Hao, Ruipeng, Zhang, Xiaoming, Shi, Hu, Wang, Yuwei, Liang, Linfeng, Liu, Haichao, Yang, Hengquan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors.
AbstractList Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors.
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors. The cell-like structures and the ability of assembling catalytic species are interesting features of bioinspired multicompartment architectures but it remains a challenge to build them. Here, the authors describe a Pickering double emulsion-directed interfacial synthesis to fabricate multi-compartmented metal-organic framework microreactors.
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
Abstract Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid–liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb’ catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24–5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
ArticleNumber 3226
Author Zhang, Xiaoming
Tian, Danping
Liu, Haichao
Yang, Hengquan
Hao, Ruipeng
Liang, Linfeng
Shi, Hu
Wang, Yuwei
Author_xml – sequence: 1
  givenname: Danping
  surname: Tian
  fullname: Tian, Danping
  organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University
– sequence: 2
  givenname: Ruipeng
  surname: Hao
  fullname: Hao, Ruipeng
  organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University
– sequence: 3
  givenname: Xiaoming
  orcidid: 0000-0002-1529-8829
  surname: Zhang
  fullname: Zhang, Xiaoming
  email: xmzhang4400@sxu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University
– sequence: 4
  givenname: Hu
  orcidid: 0000-0002-5466-5783
  surname: Shi
  fullname: Shi, Hu
  organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University
– sequence: 5
  givenname: Yuwei
  surname: Wang
  fullname: Wang, Yuwei
  organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University
– sequence: 6
  givenname: Linfeng
  surname: Liang
  fullname: Liang, Linfeng
  organization: Institute of Crystalline Materials, Shanxi University
– sequence: 7
  givenname: Haichao
  orcidid: 0000-0001-9175-3371
  surname: Liu
  fullname: Liu, Haichao
  email: hcliu@pku.edu.cn
  organization: Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University
– sequence: 8
  givenname: Hengquan
  orcidid: 0000-0001-7955-0512
  surname: Yang
  fullname: Yang, Hengquan
  email: hqyang@sxu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37270555$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URMvQF2CBIrFhE_Bf7GSFUNVCpVZlAWvrxr6ZekjiwU5aDU-PZ6aFtotm49g-5_Ox731NDsYwIiFvGf3IqKg_Jcmk0iXlohR1I5vy9gU54lSykmkuDh78H5LjlFY0f6JhtZSvyKHQXNOqqo5Iupz7yZc2DGuI04DjBH1xeXVWDN7GEBHsFGIqHEZ_g67oYhiK797-yvNxWbgwtz0WOMx98mFMRRdiYa9xCCWOfzYDTN4WFpIFh3nM7E3y6Q152UGf8PhuXJCfZ6c_Tr6VF1dfz0--XJS2kmwqpbOouNaNqjhVVtatdRqcqlXe0YCgJJVWQQ1OatXmK7FKdJ1rG21pq4VYkPM91wVYmXX0A8SNCeDNbiHEpcl39rZHQyGf4lRnaVdJKVijQQFSpiVvhROQWZ_3rPXcDpiTjVOE_hH08c7or80y3BiWK9TIWmfChztCDL9nTJMZfLLY9zBimJPhNedC1Vv9grx_Il2FOY75rXYqSqXQW-C7h5H-ZbkvbhbUe0GuZEoRO2P9lEsStgl9n6OZbSuZfSuZfLDZtZK5zVb-xHpPf9Yk9qa03nYHxv-xn3H9Bdqy3gI
CitedBy_id crossref_primary_10_1002_smll_202308264
crossref_primary_10_1021_acs_chemmater_4c01698
crossref_primary_10_1021_acsami_4c21031
crossref_primary_10_1007_s12274_024_6929_2
crossref_primary_10_1021_acs_langmuir_4c04555
crossref_primary_10_1002_adfm_202304794
crossref_primary_10_1016_j_ces_2024_120689
crossref_primary_10_1002_cctc_202400856
crossref_primary_10_1021_acsmaterialslett_4c01209
crossref_primary_10_1002_chem_202403363
crossref_primary_10_1002_ange_202403539
crossref_primary_10_1016_j_foodchem_2024_140466
crossref_primary_10_1002_adhm_202401834
crossref_primary_10_1002_smll_202400714
crossref_primary_10_1039_D3MA00690E
crossref_primary_10_2147_IJN_S417543
crossref_primary_10_1039_D3GC02512H
crossref_primary_10_1021_acs_jpcc_3c02598
crossref_primary_10_1016_j_checat_2023_100894
crossref_primary_10_1016_j_desal_2024_118193
crossref_primary_10_1002_anie_202421341
crossref_primary_10_1002_aic_18549
crossref_primary_10_1021_jacsau_3c00344
crossref_primary_10_1002_anie_202403539
crossref_primary_10_1016_j_jclepro_2024_140638
crossref_primary_10_1039_D3TA07814K
crossref_primary_10_1016_j_mcat_2024_114735
crossref_primary_10_1021_cbe_3c00091
crossref_primary_10_1039_D4RA06058J
crossref_primary_10_1002_syst_202400005
crossref_primary_10_1016_j_ccr_2025_216615
crossref_primary_10_1039_D4CC05851H
crossref_primary_10_1016_j_apcata_2023_119426
crossref_primary_10_1021_acs_langmuir_4c01784
crossref_primary_10_1002_ange_202421341
crossref_primary_10_1039_D5QM00079C
crossref_primary_10_1016_j_cej_2025_160844
crossref_primary_10_1002_cbic_202300781
crossref_primary_10_1038_s41467_024_47175_x
crossref_primary_10_1002_smll_202411300
crossref_primary_10_1016_j_foodchem_2025_143399
crossref_primary_10_1002_agt2_724
crossref_primary_10_1021_acs_chemmater_4c01063
crossref_primary_10_1021_jacs_4c09259
crossref_primary_10_1002_adfm_202309383
crossref_primary_10_1016_j_ccr_2023_215572
crossref_primary_10_1016_j_cej_2024_153583
crossref_primary_10_1002_smll_202408844
crossref_primary_10_1021_acsapm_4c01242
crossref_primary_10_1021_acscentsci_5c00022
crossref_primary_10_1016_j_ijbiomac_2025_141346
Cites_doi 10.1038/nmat2608
10.1002/anie.201916474
10.1038/srep21401
10.1021/jacs.6b03673
10.1039/D1CS01025E
10.1021/acs.accounts.8b00297
10.1039/C6CS00250A
10.1038/s41929-018-0117-2
10.1002/anie.201916578
10.1038/s41467-022-27983-9
10.1002/adma.202004804
10.1002/adfm.201802479
10.1039/D0GC01989E
10.1021/acs.chemmater.0c00684
10.1038/s41467-018-03650-w
10.1002/adhm.201700917
10.1002/anie.202211163
10.1038/s41467-019-13153-x
10.1038/s41586-022-05223-w
10.1038/s41929-017-0010-4
10.1039/D1CS00968K
10.1002/adma.202005172
10.1002/anie.202113784
10.1021/acs.langmuir.7b04085
10.1021/jacs.1c07107
10.1002/adsc.201100403
10.1039/C2CS35312A
10.1038/s41467-022-32941-6
10.1002/smll.201300125
10.1021/acsnano.1c04219
10.1038/nchem.2459
10.1002/anie.201805022
10.1038/s41467-022-28100-6
10.1021/ja401758c
10.1002/anie.201806049
10.1021/acs.chemrev.0c01029
10.1021/ja0713577
10.1002/adma.201502389
10.1038/s41929-020-0433-1
10.1002/marc.201800580
10.1038/nchembio.975
10.1002/anie.201204829
10.1021/acscentsci.0c00687
10.1002/anie.202014002
10.1002/anie.201612280
10.1021/acsami.9b13080
10.1021/acs.chemmater.5b02847
10.1021/bm1001125
10.1021/ja503123m
10.1021/jacs.8b10302
10.1038/nchem.1026
10.1039/C6SC01438K
10.1038/s41563-018-0183-5
10.1021/jacs.7b03113
10.1021/acsami.1c09052
10.1002/anie.201308141
10.1021/jacs.1c00257
10.1016/j.tcb.2012.07.002
10.1002/admi.201500392
10.1021/jacs.1c07482
10.3389/fbioe.2020.00950
10.1002/anie.202213974
10.1038/s41427-018-0083-9
10.1021/acs.nanolett.2c01154
10.1038/ncomms6305
10.1038/s41929-019-0305-8
10.1038/s41467-017-00757-4
10.1002/smll.200900357
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-38949-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_0a965d6fc0f5443197a6ae01742b3d3a
PMC10239487
37270555
10_1038_s41467_023_38949_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21925203; 22072078
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 21925203; 22072078
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-4dce6277965206c48bcd7ad6864dc7aea6404c6a8ad476b727153ffdb97c0b733
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:53 EDT 2025
Thu Aug 21 18:38:29 EDT 2025
Thu Jul 10 23:35:27 EDT 2025
Wed Aug 13 07:38:35 EDT 2025
Wed Feb 19 02:23:41 EST 2025
Tue Jul 01 00:58:54 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 21 02:39:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4dce6277965206c48bcd7ad6864dc7aea6404c6a8ad476b727153ffdb97c0b733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5466-5783
0000-0001-9175-3371
0000-0001-7955-0512
0000-0002-1529-8829
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-38949-w
PMID 37270555
PQID 2822004377
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0a965d6fc0f5443197a6ae01742b3d3a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10239487
proquest_miscellaneous_2822368102
proquest_journals_2822004377
pubmed_primary_37270555
crossref_citationtrail_10_1038_s41467_023_38949_w
crossref_primary_10_1038_s41467_023_38949_w
springer_journals_10_1038_s41467_023_38949_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-03
PublicationDateYYYYMMDD 2023-06-03
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Huang, Liang, Wang, Cao (CR32) 2017; 46
Shetty (CR14) 2021; 15
Chen, González, Zoabi, Reziq, Willner (CR34) 2018; 1
Hsu (CR56) 2021; 13
Huang (CR41) 2022; 61
Lei, Qi, Luo (CR52) 2020; 8
Li (CR48) 2019; 2
Lian, Chen, Liu, Zhou (CR40) 2016; 7
Marguet, Bonduelle, Lecommandoux (CR7) 2013; 42
Schoonen, van Hest (CR5) 2016; 28
Bäumler, Georgieva (CR11) 2010; 11
Hong, Wenzel, Salguero, Day, Grubbs (CR67) 2007; 129
Rudroff (CR47) 2018; 1
Xu (CR53) 2018; 28
Zhang (CR60) 2016; 6
Liu (CR21) 2022; 13
Zhang (CR22) 2022; 13
Jiang, Caire da Silva, Ivanov, Mottola, Landfester (CR23) 2022; 61
Xu (CR37) 2021; 33
Qu, Kuepfert, Hashmi, Weck (CR17) 2021; 143
Tsotsalas (CR62) 2016; 3
Dos Santos (CR54) 2020; 32
Chen (CR10) 2014; 136
Wei, Yan, Wang, Yang (CR26) 2018; 10
Vázquez-González, Wang, Willner (CR6) 2020; 3
Hastings, Adams, Bushi, Kolb (CR64) 2020; 22
Xu, Martin, Li, Mann (CR1) 2022; 609
Li (CR44) 2016; 138
Tian (CR50) 2021; 143
Gao (CR25) 2017; 56
Wang, Lan, Ma (CR31) 2020; 6
Liu (CR33) 2022; 51
Wang, Zhao, Haag, Wu (CR9) 2022; 61
Tan (CR18) 2017; 8
Dutta (CR35) 2020; 59
Chen, Silver (CR3) 2012; 22
Peng (CR57) 2018; 9
Liu (CR27) 2018; 57
Hosta-Rigau, Shimoni, Städler, Caruso (CR19) 2013; 9
Zhang, Xu, Ge (CR66) 2022; 22
Drake, Ji, Lin (CR30) 2018; 51
Tian, He, Zhao, Niu, Duan (CR39) 2013; 135
Xu (CR51) 2020; 32
Sun, Glebe, Charan, Böker, Wu (CR20) 2018; 57
Jeong (CR63) 2015; 27
Yang (CR24) 2012; 51
CR59
Elani, Law, Ces (CR13) 2014; 5
Shang, Ye, Li, Zhao (CR4) 2022; 51
Horcajada (CR61) 2010; 9
Li (CR45) 2021; 143
Peters (CR15) 2014; 53
Liang (CR42) 2019; 141
Gobbo (CR55) 2018; 17
Tan (CR68) 2019; 11
Wheeldon (CR8) 2016; 8
Wu (CR43) 2019; 10
Godoy-Gallardo, York-Duran, Hosta-Rigau (CR12) 2018; 7
Liang (CR38) 2021; 60
Nollet, Laurichesse, Besse, Soubabère, Schmitt (CR58) 2018; 34
Tenbrink, Seβler, Schatz, Gröger (CR65) 2011; 353
Womble, Kuepfert, Cohen, Weck (CR16) 2019; 40
Man (CR46) 2022; 13
Ameloot (CR49) 2011; 3
Xia (CR36) 2017; 139
Huang, Kou, Shen, Chen, Ouyang (CR29) 2020; 59
Liang (CR28) 2021; 121
Agapakis, Boyle, Silver (CR2) 2012; 8
S Peng (38949_CR57) 2018; 9
CM Agapakis (38949_CR2) 2012; 8
ZW Chen (38949_CR10) 2014; 136
XZ Lian (38949_CR40) 2016; 7
M Tsotsalas (38949_CR62) 2016; 3
M Marguet (38949_CR7) 2013; 42
T Drake (38949_CR30) 2018; 51
R Ameloot (38949_CR49) 2011; 3
P Gobbo (38949_CR55) 2018; 17
WH Tan (38949_CR68) 2019; 11
ZY Sun (38949_CR20) 2018; 57
Z Xu (38949_CR53) 2018; 28
I Wheeldon (38949_CR8) 2016; 8
C Xu (38949_CR1) 2022; 609
XY Li (38949_CR48) 2019; 2
S Jiang (38949_CR23) 2022; 61
J Liang (38949_CR38) 2021; 60
XL Wu (38949_CR43) 2019; 10
WB Liang (38949_CR28) 2021; 121
M Zhang (38949_CR22) 2022; 13
T Man (38949_CR46) 2022; 13
SY Liu (38949_CR21) 2022; 13
SC Shetty (38949_CR14) 2021; 15
L Schoonen (38949_CR5) 2016; 28
EC Dos Santos (38949_CR54) 2020; 32
SM Huang (38949_CR29) 2020; 59
H Huang (38949_CR41) 2022; 61
Z Xu (38949_CR51) 2020; 32
SH Hong (38949_CR67) 2007; 129
P Horcajada (38949_CR61) 2010; 9
D Liu (38949_CR27) 2018; 57
D Tian (38949_CR50) 2021; 143
PY Qu (38949_CR17) 2021; 143
QX Tian (38949_CR39) 2013; 135
P Li (38949_CR44) 2016; 138
M Nollet (38949_CR58) 2018; 34
AH Chen (38949_CR3) 2012; 22
RJRW Peters (38949_CR15) 2014; 53
XL Wang (38949_CR31) 2020; 6
38949_CR59
S Dutta (38949_CR35) 2020; 59
M Godoy-Gallardo (38949_CR12) 2018; 7
YB Huang (38949_CR32) 2017; 46
GY Jeong (38949_CR63) 2015; 27
L Hosta-Rigau (38949_CR19) 2013; 9
K Tenbrink (38949_CR65) 2011; 353
BX Zhang (38949_CR60) 2016; 6
H Tan (38949_CR18) 2017; 8
WH Chen (38949_CR34) 2018; 1
L Shang (38949_CR4) 2022; 51
M Vázquez-González (38949_CR6) 2020; 3
W Xu (38949_CR37) 2021; 33
L Wei (38949_CR26) 2018; 10
H Bäumler (38949_CR11) 2010; 11
N Gao (38949_CR25) 2017; 56
YM Li (38949_CR45) 2021; 143
F Rudroff (38949_CR47) 2018; 1
Y Elani (38949_CR13) 2014; 5
J Liu (38949_CR33) 2022; 51
YY Zhang (38949_CR66) 2022; 22
CT Womble (38949_CR16) 2019; 40
CJ Hastings (38949_CR64) 2020; 22
Y Yang (38949_CR24) 2012; 51
PH Hsu (38949_CR56) 2021; 13
Y Wang (38949_CR9) 2022; 61
W Liang (38949_CR42) 2019; 141
Q Xia (38949_CR36) 2017; 139
JQ Lei (38949_CR52) 2020; 8
References_xml – volume: 9
  start-page: 172
  year: 2010
  end-page: 178
  ident: CR61
  article-title: Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2608
– volume: 59
  start-page: 8786
  year: 2020
  end-page: 8798
  ident: CR29
  article-title: “Armor-plating” enzymes with metal-organic frameworks (MOFs)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916474
– volume: 6
  year: 2016
  ident: CR60
  article-title: High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels
  publication-title: Sci. Rep.
  doi: 10.1038/srep21401
– volume: 138
  start-page: 8052
  year: 2016
  end-page: 8055
  ident: CR44
  article-title: Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03673
– volume: 51
  start-page: 4075
  year: 2022
  end-page: 4093
  ident: CR4
  article-title: Spatial confinement toward creating artificial living systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS01025E
– volume: 51
  start-page: 2129
  year: 2018
  end-page: 2138
  ident: CR30
  article-title: Site Isolation in metal-organic frameworks enables novel transition metal catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00297
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  ident: CR32
  article-title: Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00250A
– volume: 1
  start-page: 689
  year: 2018
  end-page: 695
  ident: CR34
  article-title: Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0117-2
– volume: 59
  start-page: 3416
  year: 2020
  end-page: 3422
  ident: CR35
  article-title: Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916578
– volume: 13
  year: 2022
  ident: CR46
  article-title: Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-27983-9
– volume: 32
  start-page: 2004804
  year: 2020
  ident: CR54
  article-title: Combinatorial strategy for studying biochemical pathways in double emulsion templated cell-sized compartments
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004804
– volume: 28
  start-page: 1802479
  year: 2018
  ident: CR53
  article-title: Compartmentalization within self-assembled metal-organic framework nanoparticles for tandem reactions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802479
– volume: 22
  start-page: 6187
  year: 2020
  end-page: 6193
  ident: CR64
  article-title: One-pot chemoenzymatic reactions in water enabled by micellar encapsulation
  publication-title: Green. Chem.
  doi: 10.1039/D0GC01989E
– volume: 32
  start-page: 3553
  year: 2020
  end-page: 3560
  ident: CR51
  article-title: Encapsulation of hydrophobic guests within metal-organic framework capsules for regulating host-guest interaction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00684
– volume: 9
  year: 2018
  ident: CR57
  article-title: Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03650-w
– volume: 7
  start-page: 1700917
  year: 2018
  ident: CR12
  article-title: Recent progress in micro/nanoreactors toward the creation of artificial organelles
  publication-title: Adv. Health Mater.
  doi: 10.1002/adhm.201700917
– volume: 61
  start-page: e202211163
  year: 2022
  ident: CR41
  article-title: Large-scale self-assembly of MOFs colloidosomes for bubble-propelled micromotors and stirring-free environmental remediation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202211163
– volume: 10
  year: 2019
  ident: CR43
  article-title: Packaging and delivering enzymes by amorphous metal-organic frameworks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13153-x
– volume: 609
  start-page: 1029
  year: 2022
  end-page: 1037
  ident: CR1
  article-title: Living material assembly of bacteriogenic protocells
  publication-title: Nature
  doi: 10.1038/s41586-022-05223-w
– volume: 1
  start-page: 12
  year: 2018
  end-page: 22
  ident: CR47
  article-title: Opportunities and challenges for combining chemo- and biocatalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0010-4
– volume: 51
  start-page: 1045
  year: 2022
  end-page: 1097
  ident: CR33
  article-title: MOF-enabled confinement and related effects for chemical catalyst presentation and utilization
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00968K
– volume: 33
  start-page: 2005172
  year: 2021
  ident: CR37
  article-title: Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005172
– volume: 61
  start-page: e202113784
  year: 2022
  ident: CR23
  article-title: Synthetic silica nano-organelles for regulation of cascade reactions in multi-compartmentalized systems
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113784
– volume: 34
  start-page: 2823
  year: 2018
  end-page: 2833
  ident: CR58
  article-title: Determination of formulation conditions allowing double emulsions stabilized by PGPR and sodium caseinate to be used as capsules
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04085
– volume: 143
  start-page: 15378
  year: 2021
  end-page: 15390
  ident: CR45
  article-title: Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07107
– volume: 353
  start-page: 2363
  year: 2011
  end-page: 2367
  ident: CR65
  article-title: Combination of olefin metathesis and enzymatic ester hydrolysis in aqueous media in a one-pot synthesis
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201100403
– volume: 42
  start-page: 512
  year: 2013
  end-page: 529
  ident: CR7
  article-title: Multi-compartmentalized polymeric systems: towards biomimetic cellular structure and function
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35312A
– volume: 13
  year: 2022
  ident: CR21
  article-title: Signal processing and generation of bioactive nitric oxide in a model prototissue
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32941-6
– volume: 9
  start-page: 3573
  year: 2013
  end-page: 3583
  ident: CR19
  article-title: Advanced subcompartmentalized microreactors: polymer hydrogel carriers encapsulating polymer capsules and liposomes
  publication-title: Small
  doi: 10.1002/smll.201300125
– volume: 15
  start-page: 15656
  year: 2021
  end-page: 15666
  ident: CR14
  article-title: Directed signaling cascades in monodisperse artificial eukaryotic cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04219
– volume: 8
  start-page: 299
  year: 2016
  end-page: 309
  ident: CR8
  article-title: Substrate channelling as an approach to cascade reactions
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2459
– volume: 57
  start-page: 10899
  year: 2018
  end-page: 10904
  ident: CR27
  article-title: Surfactant assembly within Pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805022
– volume: 13
  year: 2022
  ident: CR22
  article-title: Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28100-6
– volume: 135
  start-page: 10186
  year: 2013
  end-page: 10189
  ident: CR39
  article-title: Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401758c
– volume: 57
  start-page: 13810
  year: 2018
  end-page: 13814
  ident: CR20
  article-title: Enzyme-polymer conjugates as robust Pickering interfacial biocatalysts for efficient biotransformations and one-pot cascade reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806049
– volume: 121
  start-page: 1077
  year: 2021
  end-page: 1129
  ident: CR28
  article-title: Metal-organic framework-based enzyme biocomposites
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01029
– volume: 129
  start-page: 7961
  year: 2007
  end-page: 7968
  ident: CR67
  article-title: Decomposition of ruthenium olefin metathesis catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0713577
– volume: 28
  start-page: 1109
  year: 2016
  end-page: 1128
  ident: CR5
  article-title: Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502389
– volume: 3
  start-page: 256
  year: 2020
  end-page: 273
  ident: CR6
  article-title: Biocatalytic cascades operating on macromolecular scaffolds and in confined environments
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0433-1
– volume: 40
  start-page: 1800580
  year: 2019
  ident: CR16
  article-title: Multicompartment polymeric nanoreactors for non-orthogonal cascade catalysis
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800580
– volume: 8
  start-page: 527
  year: 2012
  end-page: 535
  ident: CR2
  article-title: Natural strategies for the spatial optimization of metabolism in synthetic biology
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.975
– volume: 51
  start-page: 9164
  year: 2012
  end-page: 9168
  ident: CR24
  article-title: A Yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204829
– volume: 6
  start-page: 1497
  year: 2020
  end-page: 1506
  ident: CR31
  article-title: Metal-organic frameworks for enzyme immobilization: beyond host matrix materials
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00687
– volume: 60
  start-page: 5421
  year: 2021
  end-page: 5428
  ident: CR38
  article-title: Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014002
– volume: 56
  start-page: 3880
  year: 2017
  end-page: 3885
  ident: CR25
  article-title: Efficient construction of well-defined multicompartment porous systems in a modular and chemically orthogonal fashion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612280
– volume: 11
  start-page: 36782
  year: 2019
  end-page: 36788
  ident: CR68
  article-title: Electrostatic interaction-induced formation of enzyme-on-MOF as chemo-biocatalyst for cascade reaction with unexpectedly acid-stable catalytic performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13080
– volume: 27
  start-page: 7903
  year: 2015
  end-page: 7909
  ident: CR63
  article-title: Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02847
– volume: 11
  start-page: 1480
  year: 2010
  end-page: 1487
  ident: CR11
  article-title: Coupled enzyme reactions in multicompartment microparticles
  publication-title: Biomacromolecules
  doi: 10.1021/bm1001125
– volume: 136
  start-page: 7498
  year: 2014
  end-page: 7504
  ident: CR10
  article-title: Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503123m
– volume: 141
  start-page: 2348
  year: 2019
  end-page: 2355
  ident: CR42
  article-title: Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10302
– volume: 3
  start-page: 382
  year: 2011
  end-page: 387
  ident: CR49
  article-title: Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1026
– volume: 7
  start-page: 6969
  year: 2016
  end-page: 6973
  ident: CR40
  article-title: Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01438K
– volume: 17
  start-page: 1145
  year: 2018
  end-page: 1153
  ident: CR55
  article-title: Programmed assembly of synthetic protocells into thermoresponsive prototissues
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0183-5
– volume: 139
  start-page: 8259
  year: 2017
  end-page: 8266
  ident: CR36
  article-title: Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03113
– volume: 13
  start-page: 52014
  year: 2021
  end-page: 52022
  ident: CR56
  article-title: Rapid fabrication of biocomposites by encapsulating enzymes into Zn-MOF-74 via a mild water-based approach
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09052
– volume: 53
  start-page: 146
  year: 2014
  end-page: 150
  ident: CR15
  article-title: Cascade reactions in multicompartmentalized polymersomes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308141
– volume: 143
  start-page: 4705
  year: 2021
  end-page: 4713
  ident: CR17
  article-title: Compartmentalization and photoregulating pathways for incompatible tandem catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00257
– volume: 22
  start-page: 662
  year: 2012
  end-page: 670
  ident: CR3
  article-title: Designing biological compartmentalization
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.07.002
– volume: 3
  start-page: 1500392
  year: 2016
  ident: CR62
  article-title: Freestanding MOF microsheets with defined size and geometry using superhydrophobic-superhydrophilic arrays
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500392
– volume: 143
  start-page: 16641
  year: 2021
  end-page: 16652
  ident: CR50
  article-title: Pickering-droplet-derived MOF microreactors for continuous-flow biocatalysis with size selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07482
– volume: 8
  start-page: 950
  year: 2020
  ident: CR52
  article-title: Pickering emulsion-based microreactors for size-selective interfacial enzymatic catalysis
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00950
– volume: 61
  start-page: e202213974
  year: 2022
  ident: CR9
  article-title: Biocatalytic synthesis using self-assembled polymeric nano- and microreactors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213974
– volume: 10
  start-page: 899
  year: 2018
  end-page: 911
  ident: CR26
  article-title: Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO capture and catalysis
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0083-9
– volume: 22
  start-page: 5029
  year: 2022
  end-page: 5036
  ident: CR66
  article-title: Multienzyme system in amorphous metal-organic frameworks for intracellular lactate detection
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01154
– volume: 5
  year: 2014
  ident: CR13
  article-title: Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6305
– ident: CR59
– volume: 2
  start-page: 718
  year: 2019
  end-page: 725
  ident: CR48
  article-title: Highly active enzyme-metal nanohybrids synthesized in protein-polymer conjugates
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0305-8
– volume: 8
  year: 2017
  ident: CR18
  article-title: Heterogeneous Multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00757-4
– volume: 136
  start-page: 7498
  year: 2014
  ident: 38949_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503123m
– volume: 9
  start-page: 172
  year: 2010
  ident: 38949_CR61
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2608
– volume: 353
  start-page: 2363
  year: 2011
  ident: 38949_CR65
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201100403
– volume: 6
  start-page: 1497
  year: 2020
  ident: 38949_CR31
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00687
– volume: 51
  start-page: 2129
  year: 2018
  ident: 38949_CR30
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00297
– volume: 3
  start-page: 382
  year: 2011
  ident: 38949_CR49
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1026
– volume: 59
  start-page: 3416
  year: 2020
  ident: 38949_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916578
– volume: 13
  year: 2022
  ident: 38949_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32941-6
– ident: 38949_CR59
  doi: 10.1002/smll.200900357
– volume: 13
  year: 2022
  ident: 38949_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-27983-9
– volume: 13
  year: 2022
  ident: 38949_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28100-6
– volume: 609
  start-page: 1029
  year: 2022
  ident: 38949_CR1
  publication-title: Nature
  doi: 10.1038/s41586-022-05223-w
– volume: 28
  start-page: 1802479
  year: 2018
  ident: 38949_CR53
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802479
– volume: 28
  start-page: 1109
  year: 2016
  ident: 38949_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502389
– volume: 46
  start-page: 126
  year: 2017
  ident: 38949_CR32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00250A
– volume: 61
  start-page: e202211163
  year: 2022
  ident: 38949_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202211163
– volume: 8
  year: 2017
  ident: 38949_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00757-4
– volume: 1
  start-page: 689
  year: 2018
  ident: 38949_CR34
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0117-2
– volume: 5
  year: 2014
  ident: 38949_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6305
– volume: 61
  start-page: e202113784
  year: 2022
  ident: 38949_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113784
– volume: 7
  start-page: 6969
  year: 2016
  ident: 38949_CR40
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01438K
– volume: 22
  start-page: 5029
  year: 2022
  ident: 38949_CR66
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01154
– volume: 121
  start-page: 1077
  year: 2021
  ident: 38949_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01029
– volume: 11
  start-page: 36782
  year: 2019
  ident: 38949_CR68
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13080
– volume: 22
  start-page: 6187
  year: 2020
  ident: 38949_CR64
  publication-title: Green. Chem.
  doi: 10.1039/D0GC01989E
– volume: 32
  start-page: 3553
  year: 2020
  ident: 38949_CR51
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c00684
– volume: 60
  start-page: 5421
  year: 2021
  ident: 38949_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014002
– volume: 10
  year: 2019
  ident: 38949_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13153-x
– volume: 57
  start-page: 13810
  year: 2018
  ident: 38949_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806049
– volume: 2
  start-page: 718
  year: 2019
  ident: 38949_CR48
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0305-8
– volume: 6
  year: 2016
  ident: 38949_CR60
  publication-title: Sci. Rep.
  doi: 10.1038/srep21401
– volume: 139
  start-page: 8259
  year: 2017
  ident: 38949_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03113
– volume: 10
  start-page: 899
  year: 2018
  ident: 38949_CR26
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0083-9
– volume: 11
  start-page: 1480
  year: 2010
  ident: 38949_CR11
  publication-title: Biomacromolecules
  doi: 10.1021/bm1001125
– volume: 53
  start-page: 146
  year: 2014
  ident: 38949_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308141
– volume: 3
  start-page: 256
  year: 2020
  ident: 38949_CR6
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0433-1
– volume: 138
  start-page: 8052
  year: 2016
  ident: 38949_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03673
– volume: 3
  start-page: 1500392
  year: 2016
  ident: 38949_CR62
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500392
– volume: 51
  start-page: 4075
  year: 2022
  ident: 38949_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS01025E
– volume: 27
  start-page: 7903
  year: 2015
  ident: 38949_CR63
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02847
– volume: 33
  start-page: 2005172
  year: 2021
  ident: 38949_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005172
– volume: 7
  start-page: 1700917
  year: 2018
  ident: 38949_CR12
  publication-title: Adv. Health Mater.
  doi: 10.1002/adhm.201700917
– volume: 22
  start-page: 662
  year: 2012
  ident: 38949_CR3
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.07.002
– volume: 34
  start-page: 2823
  year: 2018
  ident: 38949_CR58
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04085
– volume: 13
  start-page: 52014
  year: 2021
  ident: 38949_CR56
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09052
– volume: 51
  start-page: 9164
  year: 2012
  ident: 38949_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204829
– volume: 135
  start-page: 10186
  year: 2013
  ident: 38949_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401758c
– volume: 143
  start-page: 15378
  year: 2021
  ident: 38949_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07107
– volume: 8
  start-page: 527
  year: 2012
  ident: 38949_CR2
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.975
– volume: 8
  start-page: 299
  year: 2016
  ident: 38949_CR8
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2459
– volume: 61
  start-page: e202213974
  year: 2022
  ident: 38949_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202213974
– volume: 15
  start-page: 15656
  year: 2021
  ident: 38949_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04219
– volume: 59
  start-page: 8786
  year: 2020
  ident: 38949_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916474
– volume: 57
  start-page: 10899
  year: 2018
  ident: 38949_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805022
– volume: 51
  start-page: 1045
  year: 2022
  ident: 38949_CR33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00968K
– volume: 143
  start-page: 4705
  year: 2021
  ident: 38949_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00257
– volume: 9
  start-page: 3573
  year: 2013
  ident: 38949_CR19
  publication-title: Small
  doi: 10.1002/smll.201300125
– volume: 8
  start-page: 950
  year: 2020
  ident: 38949_CR52
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00950
– volume: 9
  year: 2018
  ident: 38949_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03650-w
– volume: 17
  start-page: 1145
  year: 2018
  ident: 38949_CR55
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0183-5
– volume: 129
  start-page: 7961
  year: 2007
  ident: 38949_CR67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0713577
– volume: 32
  start-page: 2004804
  year: 2020
  ident: 38949_CR54
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004804
– volume: 56
  start-page: 3880
  year: 2017
  ident: 38949_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612280
– volume: 143
  start-page: 16641
  year: 2021
  ident: 38949_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07482
– volume: 40
  start-page: 1800580
  year: 2019
  ident: 38949_CR16
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800580
– volume: 42
  start-page: 512
  year: 2013
  ident: 38949_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35312A
– volume: 141
  start-page: 2348
  year: 2019
  ident: 38949_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10302
– volume: 1
  start-page: 12
  year: 2018
  ident: 38949_CR47
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0010-4
SSID ssj0000391844
Score 2.6238537
Snippet Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic...
Abstract Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3226
SubjectTerms 639/638/298/921
639/638/77/603
639/638/77/887
Cascade chemical reactions
Catalysis
Catalysts
Cellular structure
Contact angle
Controllability
Double emulsions
Efficiency
Emulsions
Engineering
Enzymes
Fabrication
Glucose oxidase
Glucose Oxidase - chemistry
Humanities and Social Sciences
Hydrophobicity
Inactivation
Laboratories
Lipase - metabolism
Metabolic engineering
Metabolism
Metal-organic frameworks
Metathesis
Microreactors
multidisciplinary
Nanoparticles
Oxidation
Oxidation-Reduction
Permeability
Porous materials
Porphyrins
Science
Science (multidisciplinary)
Substrates
Synthesis
Transesterification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmA1iR3bOQJiVSEVOFCpN8tPUWk3W5FdqvbXM2Nnly7PC9fYUSbz8IztmW8IeZFsG7s6WtZb5Zno6sBcVIGB8wuhB58RE9Y7H3-QRyfi_Wl3eq3VF-aEFXjgwrjD2vayCzL5OiFUW9MrK20EPRKt44Hn0Ah83rXNVF6DeQ9bFzFVydRcH44irwngohj4aNGzix1PlAH7fxdl_pos-dONaXZEszvk9hRB0teF8n1yIw53yc3SU_LyHhlzSS0rueWrAt1Pjz_O6AJT7yBEzP11aADN-xYDxfIS-ukMkyvgazQs124eaVys53iMNlKIaSnIdbFkcbi6zPiu1NsRs-ppPvpBRJP75GT27vPbIzZ1VmC-E82KCfgb2SoFrG1r6YV2PigbpJYwomy0UtTCS6ttEEo6iHFgYUwpuF752inOH5C9YTnER4S2Stbedaq3MQmZw62UdNIhuCbCfqUizYbLxk-w49j9Ym7y9TfXpkjGgGRMloy5qMjL7TvnBXTjr7PfoPC2MxEwOz8ANTKTGpl_qVFFDjaiN5MVjwZTbDP4k6rI8-0w2B9eqtghLtdlDkdQt7YiD4umbCnhwDgEVKuI3tGhHVJ3R4azLxnju8k96zV8-NVG3X7Q9WdePP4fvHhCbrVoJ3jWxA_I3urrOj6F0GvlnmUr-w5e4CxU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCAkOCMorpSAjcQOreTi2c0KAWCqkAgcq9Wb5CZV2k9Lstiq_nhknm7I8eo0dxfY8MzP-hpAX0ZShzoNhjZGO8Tr3zAbpGRg_7xuwGSHifeeDT2L_kH88qo_GgFs_llWudWJS1L5zGCPfw3LHBMQjX5_8YNg1CrOrYwuN6-RGAZYGS7rU7MMUY0H0c8X5eFcmr9Rez5NmAEPFwFLzhp1v2KME2_8vX_Pvksk_8qbJHM3ukjujH0nfDIS_R66FdpvcHDpLXmyT27_hDN4nfbpmy4Z68-UA508PPs_oAsvxwG1MPXeoh-lnwVO8ckK_HGPBBbxOfbey80DDYjXH0FpPwc-lQOtFx0L78yJhvlJneqy0pykchCgnD8jh7P3Xd_ts7LbAXM2LJeOwN1FK2Yi6zIXjyjovjRdKwIg0wQiecyeMMp5LYcHvAWUZo7eNdLmVVfWQbLVdGx4TWkqRO1vLxoTIRXLBYlRReW-LAP8wGSnWZ67dCEWOHTHmOqXEK6UHOmmgk0500ucZeTm9czIAcVw5-y2ScpqJINrpQXf6TY8yqXMDe_UiujwiCmDRSCNMABXFS1v5ymRkd80IepTsXl_yYUaeT8Mgk5hoMW3oVsOcCoHeyow8GvhmWkkFB4cgaxlRGxy1sdTNkfb4e8L9LlIfewUffrVmvst1_f8sdq7exhNyq0R5wMhStUu2lqer8BQcraV9lqTpF8F7KK0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-N3VKhF80-B-ZJPs4yke5aAqaKFvIZ9auNuV7p2l_vVOsnsrp1XwdZOQj5nJzE5mfgPwIujS17nXtNHCUlbnjhovHEXl51yDOsOHmO988p4fn7LFWX22B-U2FyYF7SdIy3RNb6PDXvcsiTRqGIoqljX08gYcRKh25O2D2WzxaTF5ViLmuWRszJDJK3nN4B0tlMD6r7Mw_wyU_O21NCmh-R24PVqPZDas9y7s-fYe3BzqSV7dhz6l09Ihrnw9wPaTkw9zsophd2gepto6xCHXffeOxNQS8vE8BlbgbMR1G7P0xK82y-hC6wnaswRpuuqob39cJWxXYnUfI-pJcvtENJMHcDp_9_ntMR2rKlBbs2JNGe6Gl0I0vC5zbpk01gntuOTYIrTXnOXMci21Y4IbtG_wUgzBmUbY3Iiqegj7bdf6QyCl4Lk1tWi0D4wnUysEGaRzpvD4r5JBsT1lZUfI8Vj5YqnS03cl1UAZhZRRiTLqMoOX05hvA-DGP3u_icSbekaw7PShu_iiRuZRuca9Oh5sHiLaX9EIzbXHq4iVpnKVzuBoS3o1SnCvYnhtAn4SGTyfmlH24oOKbn23GfpUEdCtzODRwCnTSio8uAimloHc4aGdpe62tOdfE753kerVS5z41Zbdfq3r72fx-P-6P4FbZZSI6FGqjmB_fbHxT9HAWptno0T9BLyyI_c
  priority: 102
  providerName: Springer Nature
Title Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis
URI https://link.springer.com/article/10.1038/s41467-023-38949-w
https://www.ncbi.nlm.nih.gov/pubmed/37270555
https://www.proquest.com/docview/2822004377
https://www.proquest.com/docview/2822368102
https://pubmed.ncbi.nlm.nih.gov/PMC10239487
https://doaj.org/article/0a965d6fc0f5443197a6ae01742b3d3a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JGJWReANDPhw7eUCoq1amSh0TUKlvkRPbY1KbsKZllL-es5MUFQriJZFiJ3Z8d76zffc7gBdGhjr2taSpFAVlsa9oroWiqPyUSlFnaGPjncfn_GzCRtN4ugdduqN2AOudSzubT2qymL3-fr1-hwL_tgkZT97UzIk7ah-K6pel9GYfDlEzCZvRYNya-25mjlJc0NiD5tBnAcUKURtHs_szW7rKQfrvskP_dKf87UzVqarhXbjT2pik3zDFPdjT5X241WSdXD-A2gXd0sb7fNmA-5PxhyGZW-c8NCJdBh6ikDe_aUVsAAq5uLLuF9gaUdUqn2mi56uZ3WirCVq9BCk_r6guf6wdAiwpZG397onbHLKYJw9hMjz9PDijbe4FWsQsWFKGf8NDIVIehz4vWJIXSkjFE44lQmrJmc8KLhOpmOA5WkE4dRqj8lQUfi6i6BEclFWpnwAJBfeLPBap1IZxZ5AZk5hEqTzQuKLxIOhGOStaYHKbH2OWuQPyKMkaymRImcxRJrvx4OXmna8NLMc_a59Y4m1qWkht96BaXGathGa-xH9V3BS-sZiAQSoklxonLBbmkYqkB8cd6bOOTTPrhOvgoYQHzzfFKKH22EWWulo1dSIL-xZ68LjhlE1PIhw4C7nmQbLFQ1td3S4pr744FPDAZbVPsOFXHbv96tffx-LoP_r5FG6HVgzsZlN0DAfLxUo_Q9trmfdgX0wFXpPh-x4c9vujTyO8n5yeX3zEpwM-6LldjZ4TvJ_3bjJH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQcEJRXoICR4ARWs4ljJweEeC1b2i0cWqk317EdqLSblGaX1fKj-I3MOI-yPHrrNbYlxzOeGc_jG0KeFjpySeg0y7Q0jCehZbmTloHyszYDneEKrHce74nRAf94mByukZ9dLQymVXYy0QtqWxn0kW9huqMH4pGvTr4x7BqF0dWuhUbDFjtuuYAnW_1y-x3Q91kUDd_vvx2xtqsAMwkfzBi3xolIykwkUSgMT3NjpbYiFTAitdOCh9wInWrLpchBv4NQKAqbZ9KEuUQHKIj8SzwGTY6V6cMPvU8H0dZTztvanDBOt2ruJREoRgaWAc_YYkX_-TYB_7Jt_07R_CNO69Xf8Aa53tqt9HXDaDfJmis3yOWmk-Vyg1z7DdfwFql9WS9r8ttnTfsAOv40pFNM_wMz1ff4oRamf3eWYokL_XyMCR6wnNpqnk8cddP5BF15NQW7mgJvTSvmyh9LjzFLja4xs5969xOiqtwmBxdChztkvaxKd4_QSIrQ5InMtCu48CZfUaRFam0-cPBmCsigO3NlWuhz7MAxUT4EH6eqoZMCOilPJ7UIyPN-zUkD_HHu7DdIyn4mgnb7D9XpF9XKABVq-FcrChMWiDo4yKQW2oFI5FEe21gHZLNjBNVKklqd8X1AnvTDIAMwsKNLV82bOTECy0UBudvwTb-TGA4OQd0Ckq5w1MpWV0fK468eZxxRPTJ40AbkRcd8Z_v6_1ncP_83HpMro_3xrtrd3tt5QK5GeDfQqxVvkvXZ6dw9BCNvlj_yN4uSo4u-yr8A-Fhl1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTSB4QDC-AgOMBE9gNU0cO3lAiLFVG2OlQkzam3FsBya1yVhaqvKn8ddx5yQd5WNve41tyfF9-nz3O0KeFTpySeg0y7Q0jCehZbmTloHxszYDm-EKrHc-HIq9I_7uODleIz-7WhhMq-x0olfUtjIYI-9huqMH4pG9ok2LGO0MXp9-Y9hBCl9au3YaDYscuMUcrm_1q_0doPXzKBrsfnq7x9oOA8wkvD9l3BonIikzkUShMDzNjZXailTAiNROCx5yI3SqLZciB1sPCqIobJ5JE-YSg6Gg_jck3orWycb27nD0cRnhQez1lPO2UieM017NvV4CM8nAT-AZm69YQ9804F-e7t8Jm3-82npjOLhJbrReLH3TsN0tsubKTXKl6Wu52CTXf0M5vE1qX-TLmmz3adNMgB5-GNAJJgOC0-o7_lAL0787S7HghY5OMN0DllNbzfKxo24yG2Ngr6bgZVPgtEnFXPlj4RFnqdE15vlTH4xCjJU75OhSKHGXrJdV6e4TGkkRmjyRmXYFF94BLIq0SK3N-w5uUAHpd2euTAuEjv04xso_yMepauikgE7K00nNA_Jiuea0gQG5cPY2knI5EyG8_Yfq7ItqNYIKNfyrFYUJC8Qg7GdSC-1AQfIoj22sA7LVMYJq9UqtzqUgIE-Xw6AR8JlHl66aNXNihJmLAnKv4ZvlTmI4OIR4C0i6wlErW10dKU--etRxxPjI4HobkJcd853v6_9n8eDi33hCroIYq_f7w4OH5FqEooEhrniLrE_PZu4ReHzT_HErWpR8vmxp_gWRsGtn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-compartmental+MOF+microreactors+derived+from+Pickering+double+emulsions+for+chemo-enzymatic+cascade+catalysis&rft.jtitle=Nature+communications&rft.au=Tian%2C+Danping&rft.au=Hao%2C+Ruipeng&rft.au=Zhang%2C+Xiaoming&rft.au=Shi%2C+Hu&rft.date=2023-06-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=3226&rft_id=info:doi/10.1038%2Fs41467-023-38949-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon