Structural Covariance in the Human Cortex

The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structu...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 25; no. 36; pp. 8303 - 8310
Main Authors Mechelli, Andrea, Friston, Karl J, Frackowiak, Richard S, Price, Cathy J
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 07.09.2005
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.0357-05.2005

Cover

Loading…
Abstract The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior.
AbstractList The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior.
The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior.The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior.
Author Frackowiak, Richard S
Friston, Karl J
Mechelli, Andrea
Price, Cathy J
Author_xml – sequence: 1
  fullname: Mechelli, Andrea
– sequence: 2
  fullname: Friston, Karl J
– sequence: 3
  fullname: Frackowiak, Richard S
– sequence: 4
  fullname: Price, Cathy J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16148238$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlLLDEUhYMo2g5_QXqlvEW1N3MKHsKjcUQUHNYhnU7ZkRp8ScrWf2-adt64CuR-53DuPZtote1ah9AuhhHmhB6cXx7dXV_djM9GQLksgI8IAF9BgzwtC8IAr6IBEAmFYJJtoM0YHwBAApbraAMLzBShaoD-3KTQ29QHUw_H3ZMJ3rTWDX07TDM3PO0b0-b_kNzzNlqrTB3dztu7hW6Pj27Hp8XF1cnZ-N9FYTnDqWBTbkBgXk6wMwwDk5VSEyUMcwBTVfGpsMIqqRSFUnFSTaCSpqKSSCVtRbfQ4dL2sZ80bmpdm3I2_Rh8Y8KL7ozX3yetn-n77kkLSXhOkA323gxC9793MenGR-vq2rSu66MWigtQjPwKYsmAl2WZwd2vkT6yvF8xA2IJ2NDFGFz1iYBe1KU_6tKLujRwvagrC__-EFqfTPLdYjVf_y7fX8pn_n4298Hp2Ji6zjGxns_nhGsqdL4zpa9FfqjE
CitedBy_id crossref_primary_10_1016_j_neubiorev_2010_11_004
crossref_primary_10_1002_hbm_23014
crossref_primary_10_1016_j_neurobiolaging_2015_10_015
crossref_primary_10_1016_j_neurobiolaging_2020_05_008
crossref_primary_10_1016_j_schres_2015_08_025
crossref_primary_10_1016_j_euroneuro_2012_09_001
crossref_primary_10_1038_s41380_021_01229_4
crossref_primary_10_3389_fmed_2020_00193
crossref_primary_10_1007_s10519_006_9133_0
crossref_primary_10_1016_j_pscychresns_2019_110989
crossref_primary_10_1016_j_neuroimage_2020_117104
crossref_primary_10_1038_s41598_023_34210_y
crossref_primary_10_1111_nmo_12372
crossref_primary_10_1007_s00415_016_8114_3
crossref_primary_10_1089_brain_2022_0038
crossref_primary_10_1371_journal_pone_0049172
crossref_primary_10_1016_j_nicl_2021_102799
crossref_primary_10_1093_cercor_bhr221
crossref_primary_10_1016_j_pneurobio_2012_05_004
crossref_primary_10_1038_s41598_021_88918_w
crossref_primary_10_1016_j_nicl_2019_101848
crossref_primary_10_1093_cercor_bhy091
crossref_primary_10_1016_j_yebeh_2006_02_002
crossref_primary_10_1016_j_cub_2007_07_040
crossref_primary_10_1016_j_media_2021_102026
crossref_primary_10_1016_j_jneumeth_2013_10_005
crossref_primary_10_1016_j_neuropsychologia_2017_08_007
crossref_primary_10_1089_brain_2013_0209
crossref_primary_10_1016_j_neuroimage_2018_03_007
crossref_primary_10_1038_s41398_017_0083_5
crossref_primary_10_1016_j_nicl_2017_12_029
crossref_primary_10_1371_journal_pone_0019608
crossref_primary_10_1371_journal_pone_0063131
crossref_primary_10_1523_JNEUROSCI_2433_08_2008
crossref_primary_10_1016_j_dcn_2025_101522
crossref_primary_10_1007_s00429_016_1264_3
crossref_primary_10_1016_j_jad_2017_12_083
crossref_primary_10_1111_gbb_12177
crossref_primary_10_1016_j_neuroimage_2012_10_066
crossref_primary_10_1002_brb3_252
crossref_primary_10_1259_bjr_20230409
crossref_primary_10_1007_s11682_020_00378_4
crossref_primary_10_1016_j_nicl_2021_102780
crossref_primary_10_1016_j_arr_2016_01_003
crossref_primary_10_1038_s41598_018_21568_7
crossref_primary_10_1016_j_neulet_2008_10_102
crossref_primary_10_1016_j_heliyon_2019_e02074
crossref_primary_10_1186_s10194_020_01096_4
crossref_primary_10_1016_j_biopsych_2013_09_016
crossref_primary_10_1016_j_neuroimage_2012_08_082
crossref_primary_10_1016_j_neuroimage_2014_05_030
crossref_primary_10_1016_j_neurobiolaging_2009_03_006
crossref_primary_10_1016_j_neuroimage_2014_12_063
crossref_primary_10_1192_bjp_bp_110_080218
crossref_primary_10_1523_JNEUROSCI_3444_09_2010
crossref_primary_10_1016_j_neubiorev_2021_02_026
crossref_primary_10_1016_j_nicl_2024_103687
crossref_primary_10_1016_j_neuroimage_2021_117945
crossref_primary_10_3389_fncom_2014_00122
crossref_primary_10_1109_TBME_2022_3222072
crossref_primary_10_1177_1073858414537560
crossref_primary_10_1093_sleep_zsaa202
crossref_primary_10_19066_cogsci_2017_28_4_004
crossref_primary_10_1016_j_euroneuro_2012_11_010
crossref_primary_10_1093_neuros_nyab335
crossref_primary_10_1093_scan_nst136
crossref_primary_10_1016_j_neuroimage_2008_05_029
crossref_primary_10_1016_j_pnpbp_2022_110645
crossref_primary_10_1016_j_bpsgos_2021_05_002
crossref_primary_10_1002_hbm_22108
crossref_primary_10_1002_hbm_21054
crossref_primary_10_1038_srep27964
crossref_primary_10_1001_jamaneurol_2023_0001
crossref_primary_10_1002_hbm_24441
crossref_primary_10_1016_j_neuroimage_2023_120453
crossref_primary_10_1016_j_pscychresns_2015_01_006
crossref_primary_10_3389_fnins_2014_00223
crossref_primary_10_1016_j_jaac_2016_01_004
crossref_primary_10_3389_fnana_2017_00034
crossref_primary_10_1002_alz_13714
crossref_primary_10_1371_journal_pcbi_1001006
crossref_primary_10_1016_j_pscychresns_2017_11_006
crossref_primary_10_1017_S003329171300319X
crossref_primary_10_1093_schbul_sby132
crossref_primary_10_1177_1073858409334423
crossref_primary_10_1016_j_neuroimage_2013_08_022
crossref_primary_10_1016_j_heares_2014_06_007
crossref_primary_10_1371_journal_pone_0058921
crossref_primary_10_1186_s13195_021_00876_7
crossref_primary_10_1523_ENEURO_0003_15_2015
crossref_primary_10_1002_hbm_22488
crossref_primary_10_1038_mp_2008_32
crossref_primary_10_1016_j_jneumeth_2011_12_014
crossref_primary_10_1097_01_wad_0000213857_89613_10
crossref_primary_10_1002_hbm_23456
crossref_primary_10_1002_hbm_23698
crossref_primary_10_1016_j_neuroscience_2018_03_049
crossref_primary_10_3389_fnhum_2018_00002
crossref_primary_10_1038_nrneurol_2012_182
crossref_primary_10_1093_cercor_bhab481
crossref_primary_10_1111_j_1528_1167_2007_01485_x
crossref_primary_10_1016_j_pscychresns_2017_06_009
crossref_primary_10_1016_j_bpsc_2020_07_019
crossref_primary_10_1016_j_schres_2012_08_021
crossref_primary_10_1002_hbm_21232
crossref_primary_10_1002_hbm_21110
crossref_primary_10_1016_j_yebeh_2020_107013
crossref_primary_10_1016_j_jneumeth_2014_09_003
crossref_primary_10_3389_fnagi_2023_1195748
crossref_primary_10_1038_s41380_022_01896_x
crossref_primary_10_3389_fnins_2022_898902
crossref_primary_10_1002_hbm_23887
crossref_primary_10_1002_hbm_22313
crossref_primary_10_1007_s11011_018_0254_y
crossref_primary_10_1186_s13229_021_00439_5
crossref_primary_10_1371_journal_pone_0074070
crossref_primary_10_3389_fninf_2022_859309
crossref_primary_10_1016_j_schres_2014_01_023
crossref_primary_10_1073_pnas_1003296107
crossref_primary_10_1016_j_jpsychires_2012_11_017
crossref_primary_10_1146_annurev_clinpsy_040510_143934
crossref_primary_10_1007_s11682_020_00298_3
crossref_primary_10_1002_hbm_24728
crossref_primary_10_1002_hbm_22301
crossref_primary_10_1016_j_neuroimage_2011_08_052
crossref_primary_10_1016_j_nbas_2022_100054
crossref_primary_10_1007_s00787_022_02118_z
crossref_primary_10_1007_s12474_010_0002_5
crossref_primary_10_1002_hbm_22428
crossref_primary_10_1016_j_bpsc_2017_04_008
crossref_primary_10_1016_j_neuroimage_2009_03_026
crossref_primary_10_1002_hbm_21133
crossref_primary_10_1097_MAO_0000000000002273
crossref_primary_10_1016_j_mri_2009_01_006
crossref_primary_10_1016_j_neuroimage_2010_11_075
crossref_primary_10_1016_j_neuroimage_2019_01_032
crossref_primary_10_1093_cercor_bhp226
crossref_primary_10_1097_WNR_0b013e3282fa6da0
crossref_primary_10_1002_jmri_24780
crossref_primary_10_1007_s11682_018_9939_4
crossref_primary_10_1002_hbm_21246
crossref_primary_10_1038_s42003_022_03880_1
crossref_primary_10_1007_s00429_014_0795_8
crossref_primary_10_1093_cercor_bhaa181
crossref_primary_10_1016_j_neuroimage_2011_11_007
crossref_primary_10_1162_jocn_a_00227
crossref_primary_10_1016_j_neurobiolaging_2006_05_018
crossref_primary_10_1038_s41598_022_22387_7
crossref_primary_10_1016_j_jad_2018_07_053
crossref_primary_10_1016_j_schres_2020_09_021
crossref_primary_10_1002_hbm_21354
crossref_primary_10_1016_j_dcn_2020_100762
crossref_primary_10_1002_hbm_24628
crossref_primary_10_1016_j_neuroimage_2010_10_027
crossref_primary_10_1073_pnas_1608587113
crossref_primary_10_1093_brain_awm282
crossref_primary_10_1523_JNEUROSCI_1929_08_2008
crossref_primary_10_1016_j_pnpbp_2020_110194
crossref_primary_10_1016_j_bandc_2014_03_011
crossref_primary_10_1523_JNEUROSCI_2261_13_2013
crossref_primary_10_1371_journal_pone_0102042
crossref_primary_10_1017_S0033291718001010
crossref_primary_10_3389_fnins_2018_00927
crossref_primary_10_1016_j_pnpbp_2023_110873
crossref_primary_10_1016_j_schres_2006_12_028
crossref_primary_10_1007_s12311_017_0871_8
crossref_primary_10_3390_biomedicines6030080
crossref_primary_10_3389_fnagi_2016_00176
crossref_primary_10_1371_journal_pone_0028817
crossref_primary_10_1042_ETLS20210279
crossref_primary_10_1016_j_neurad_2023_04_001
crossref_primary_10_1016_j_neuroimage_2016_06_007
crossref_primary_10_1089_brain_2016_0434
crossref_primary_10_1089_brain_2012_0132
crossref_primary_10_1016_j_pscychresns_2024_111887
crossref_primary_10_1177_1756286419838673
crossref_primary_10_1007_s40708_015_0009_z
crossref_primary_10_1242_jeb_02163
crossref_primary_10_1371_journal_pone_0116687
crossref_primary_10_1007_s00429_019_01994_7
crossref_primary_10_3389_fnins_2024_1381385
crossref_primary_10_1111_epi_13225
crossref_primary_10_3389_fneur_2022_966659
crossref_primary_10_1016_j_neuroimage_2021_118612
crossref_primary_10_3389_fnins_2022_888174
crossref_primary_10_1002_hbm_22533
crossref_primary_10_3389_fpsyt_2024_1349989
crossref_primary_10_1016_j_cub_2010_07_027
crossref_primary_10_1162_NETN_a_00016
crossref_primary_10_1038_sj_mp_4001982
crossref_primary_10_1016_j_nicl_2018_101650
crossref_primary_10_1101_cshperspect_a023622
crossref_primary_10_1016_j_nicl_2019_101828
crossref_primary_10_1371_journal_pone_0253273
crossref_primary_10_1371_journal_pone_0127118
crossref_primary_10_1093_brain_awy252
crossref_primary_10_1556_2006_2022_00044
crossref_primary_10_1002_hbm_20466
crossref_primary_10_1016_j_dcn_2013_06_001
crossref_primary_10_1002_hbm_23610
crossref_primary_10_1007_s11060_016_2328_1
crossref_primary_10_1002_hbm_20588
crossref_primary_10_1002_hbm_22645
crossref_primary_10_1016_j_neuroimage_2016_12_017
crossref_primary_10_1016_j_neuropsychologia_2018_10_017
crossref_primary_10_1016_j_jad_2014_10_041
crossref_primary_10_1142_S0129065722500356
crossref_primary_10_1016_j_neuroscience_2022_02_027
crossref_primary_10_1007_s11682_022_00747_1
crossref_primary_10_1016_j_neurobiolaging_2022_05_010
crossref_primary_10_1007_s00429_012_0391_8
crossref_primary_10_1162_netn_a_00162
crossref_primary_10_1177_0891988710363713
crossref_primary_10_1007_s00330_023_09549_5
crossref_primary_10_1002_hbm_23929
crossref_primary_10_1016_j_neuroimage_2019_02_014
crossref_primary_10_1176_appi_ajp_2019_18040380
crossref_primary_10_3389_fneur_2017_00615
crossref_primary_10_1016_j_visres_2012_06_001
crossref_primary_10_1007_s00415_020_10111_2
crossref_primary_10_1111_jne_12682
crossref_primary_10_3389_fnins_2016_00394
crossref_primary_10_1017_S1092852915000371
crossref_primary_10_1016_j_neuroimage_2011_03_079
crossref_primary_10_1093_braincomms_fcab127
crossref_primary_10_1016_j_neurobiolaging_2017_09_011
crossref_primary_10_1093_cercor_bhx317
crossref_primary_10_1016_j_jad_2025_01_025
crossref_primary_10_1016_j_jocn_2010_12_019
crossref_primary_10_3389_fnagi_2014_00105
crossref_primary_10_7717_peerj_8989
crossref_primary_10_1016_j_pain_2010_01_006
crossref_primary_10_1002_jmri_24143
crossref_primary_10_3389_fpsyt_2021_750798
crossref_primary_10_1089_brain_2012_0086
crossref_primary_10_1016_j_neuropsychologia_2012_02_019
crossref_primary_10_1093_cercor_bhw024
crossref_primary_10_1016_j_euroneuro_2019_09_551
crossref_primary_10_1093_cercor_bhw022
crossref_primary_10_1038_s41598_020_80873_2
crossref_primary_10_1016_j_schres_2017_01_054
crossref_primary_10_1159_000518752
crossref_primary_10_1177_197140091002300104
crossref_primary_10_3389_fphys_2018_00518
crossref_primary_10_1016_j_pain_2011_03_028
crossref_primary_10_1093_cercor_bhl149
crossref_primary_10_1016_j_neurobiolaging_2014_05_040
crossref_primary_10_1159_000531419
crossref_primary_10_1017_pen_2018_11
crossref_primary_10_1093_brain_awp089
crossref_primary_10_1016_j_neuroimage_2019_116149
crossref_primary_10_1177_1073858415595004
crossref_primary_10_1007_s11682_008_9038_z
crossref_primary_10_1111_j_1460_9568_2008_06117_x
crossref_primary_10_1002_jmri_28974
crossref_primary_10_1093_pm_pnv047
crossref_primary_10_1007_s00330_018_5342_1
crossref_primary_10_1162_netn_a_00253
crossref_primary_10_1016_j_pnpbp_2010_02_025
crossref_primary_10_1038_s41598_024_76680_8
crossref_primary_10_3390_geriatrics2040034
crossref_primary_10_1016_j_jad_2021_03_077
crossref_primary_10_1002_hbm_20425
crossref_primary_10_1002_hbm_22724
crossref_primary_10_1038_nrn1909
crossref_primary_10_1016_j_parkreldis_2024_106985
crossref_primary_10_1088_2057_1976_1_1_015001
crossref_primary_10_1523_JNEUROSCI_2650_08_2008
crossref_primary_10_1038_s41398_018_0256_x
crossref_primary_10_1089_brain_2018_0584
crossref_primary_10_1523_JNEUROSCI_1312_06_2006
crossref_primary_10_1002_mds_28638
crossref_primary_10_1016_j_nicl_2022_103286
crossref_primary_10_1016_j_nicl_2022_103283
crossref_primary_10_1016_j_neuroimage_2015_10_057
crossref_primary_10_1093_cercor_bhy336
crossref_primary_10_1172_JCI30413
crossref_primary_10_1097_WNR_0000000000001773
crossref_primary_10_1093_cercor_bhw157
crossref_primary_10_1007_s00429_012_0422_5
crossref_primary_10_1016_j_pnpbp_2010_11_030
crossref_primary_10_1089_brain_2012_0095
crossref_primary_10_1016_j_neuroimage_2011_08_017
crossref_primary_10_1162_imag_a_00050
crossref_primary_10_3389_fpsyt_2021_626677
crossref_primary_10_4236_jbm_2020_812016
crossref_primary_10_1038_s41467_022_31730_5
crossref_primary_10_1016_j_bpsc_2020_06_020
crossref_primary_10_1093_braincomms_fcab289
crossref_primary_10_1016_j_pscychresns_2014_09_005
crossref_primary_10_1093_cercor_bhy002
crossref_primary_10_3389_fneur_2015_00211
crossref_primary_10_1016_j_nicl_2015_02_022
crossref_primary_10_1111_j_1399_5618_2011_00953_x
crossref_primary_10_3389_fneur_2015_00219
crossref_primary_10_1186_s13195_024_01448_1
crossref_primary_10_1016_j_msard_2023_104516
crossref_primary_10_1016_j_neuropharm_2021_108562
crossref_primary_10_1002_hbm_20639
crossref_primary_10_3233_JAD_161036
crossref_primary_10_1093_cercor_bhn003
crossref_primary_10_1016_j_neuroimage_2016_04_047
crossref_primary_10_1038_s42003_023_04969_x
crossref_primary_10_3389_fnagi_2019_00057
crossref_primary_10_3389_fpsyt_2014_00039
crossref_primary_10_1093_cercor_bhae337
crossref_primary_10_1038_s42003_024_06956_2
crossref_primary_10_1124_pr_109_002071
crossref_primary_10_1371_journal_pone_0140945
crossref_primary_10_1073_pnas_1003109107
crossref_primary_10_1002_hbm_22925
crossref_primary_10_1016_j_jpsychires_2015_08_003
crossref_primary_10_1093_braincomms_fcaa051
crossref_primary_10_1016_j_neuropsychologia_2008_08_024
crossref_primary_10_1093_braincomms_fcaa177
crossref_primary_10_1111_jcpp_12365
crossref_primary_10_1016_j_nicl_2019_101682
crossref_primary_10_1002_hbm_25279
crossref_primary_10_1007_s11434_014_0698_3
crossref_primary_10_1097_WCO_0b013e32833aa567
crossref_primary_10_1371_journal_pone_0011506
crossref_primary_10_1016_j_neuroimage_2016_03_062
crossref_primary_10_1111_biom_13235
crossref_primary_10_1002_hipo_22817
crossref_primary_10_1038_s41467_024_44863_6
crossref_primary_10_1007_s11682_016_9555_0
crossref_primary_10_1016_j_brainres_2024_148986
crossref_primary_10_1038_pr_2016_197
crossref_primary_10_1093_brain_awad288
crossref_primary_10_1167_iovs_64_15_40
crossref_primary_10_9758_cpn_2012_10_1_13
crossref_primary_10_1007_s10548_018_0642_y
crossref_primary_10_1016_j_neuroimage_2008_12_017
crossref_primary_10_1016_j_pain_2013_09_020
crossref_primary_10_1038_s41380_021_01215_w
crossref_primary_10_1162_imag_a_00371
crossref_primary_10_1016_j_neuroimage_2010_03_059
crossref_primary_10_1093_texcom_tgaa062
crossref_primary_10_1007_s00429_014_0953_z
crossref_primary_10_1080_13554790902775492
crossref_primary_10_1016_j_neures_2019_07_002
crossref_primary_10_1111_head_13193
crossref_primary_10_1523_JNEUROSCI_3554_12_2013
crossref_primary_10_1002_brb3_643
crossref_primary_10_1016_j_neuroimage_2012_06_052
crossref_primary_10_1016_j_jpeds_2013_08_011
crossref_primary_10_1093_cercor_bhs187
crossref_primary_10_1523_JNEUROSCI_0141_08_2008
crossref_primary_10_1016_j_neuroimage_2013_05_054
crossref_primary_10_1016_j_biopsycho_2011_09_011
crossref_primary_10_1016_j_neuroimage_2022_119014
crossref_primary_10_3389_fpsyg_2016_00324
crossref_primary_10_1016_j_nicl_2018_03_015
crossref_primary_10_1038_nn_4501
crossref_primary_10_1016_j_nicl_2015_09_006
crossref_primary_10_1016_j_bpsc_2015_11_006
crossref_primary_10_1161_STROKEAHA_114_007146
crossref_primary_10_3389_fnagi_2021_605158
crossref_primary_10_1016_j_pnpbp_2019_01_012
crossref_primary_10_1097_01_wco_0000236622_91495_21
crossref_primary_10_1111_j_1399_5618_2011_00896_x
crossref_primary_10_1016_j_neuroimage_2010_01_012
crossref_primary_10_1016_j_neuroimage_2012_03_021
crossref_primary_10_1016_j_neuroimage_2011_01_010
crossref_primary_10_1097_j_pain_0000000000002409
crossref_primary_10_3389_fnins_2016_00064
crossref_primary_10_1016_j_schres_2016_09_036
crossref_primary_10_1016_j_nicl_2021_102871
crossref_primary_10_1016_j_neuroimage_2024_120708
crossref_primary_10_1038_nrn3000
crossref_primary_10_1007_s11682_020_00321_7
crossref_primary_10_1093_cercor_bhv105
crossref_primary_10_1038_jcbfm_2014_165
crossref_primary_10_3389_fneur_2018_00342
crossref_primary_10_1093_cercor_bhae039
crossref_primary_10_1093_braincomms_fcaa102
crossref_primary_10_1177_0271678X231204769
crossref_primary_10_1007_s11682_008_9034_3
crossref_primary_10_1016_j_neuroimage_2016_01_025
crossref_primary_10_1002_hbm_26553
crossref_primary_10_1016_j_neuron_2009_03_024
crossref_primary_10_1016_j_neuropsychologia_2011_05_016
crossref_primary_10_1007_s00429_017_1438_7
crossref_primary_10_1016_j_biopsych_2014_10_023
crossref_primary_10_1016_j_neuroscience_2017_10_033
crossref_primary_10_1016_j_brainres_2014_02_030
crossref_primary_10_1097_WCO_0b013e32835a26b3
crossref_primary_10_1007_s00429_009_0208_6
crossref_primary_10_1016_j_neurobiolaging_2017_09_029
crossref_primary_10_1016_j_neuroimage_2010_01_031
crossref_primary_10_1007_s10803_015_2441_6
crossref_primary_10_1155_2022_1460326
crossref_primary_10_1038_nrn3465
crossref_primary_10_1073_pnas_1705643114
crossref_primary_10_1016_j_neuroscience_2020_08_033
crossref_primary_10_1093_cercor_bhv248
crossref_primary_10_1093_ijnp_pyy100
crossref_primary_10_1016_j_pscychresns_2008_12_003
crossref_primary_10_1177_1073858410386492
crossref_primary_10_1126_sciadv_abm1971
crossref_primary_10_1038_s41398_022_02019_4
crossref_primary_10_1016_j_neuroimage_2009_08_014
crossref_primary_10_1093_cercor_bht180
crossref_primary_10_3389_fnhum_2015_00675
crossref_primary_10_1523_JNEUROSCI_0964_10_2011
crossref_primary_10_1016_j_neuroimage_2017_03_016
crossref_primary_10_1016_j_jagp_2013_03_005
crossref_primary_10_1016_j_neuroimage_2011_10_086
crossref_primary_10_1093_cercor_bhad096
crossref_primary_10_1016_j_jneumeth_2009_05_001
crossref_primary_10_1007_s11682_015_9455_8
crossref_primary_10_1016_j_janxdis_2024_102848
crossref_primary_10_1360_TB_2022_0621
crossref_primary_10_1016_j_heliyon_2023_e18307
crossref_primary_10_1016_j_neuroimage_2006_04_174
crossref_primary_10_1016_j_yebeh_2015_06_005
crossref_primary_10_1016_j_neuroimage_2012_10_029
Cites_doi 10.1016/j.neuroimage.2004.07.030
10.1016/0306-4522(94)00584-R
10.1038/431757a
10.1016/0006-8993(70)90237-4
10.1523/JNEUROSCI.17-08-02859.1997
10.1017/S0033291797005229
10.1007/978-1-4613-2988-6_14
10.1038/30976
10.1093/cercor/12.11.1115
10.1093/cercor/6.4.631
10.1001/archneur.1997.00550180055012
10.1006/nimg.2001.0857
10.1126/science.1086025
10.1093/cercor/bhg125
10.1016/0387-7604(95)00029-B
10.1523/JNEUROSCI.23-27-09240.2003
10.1093/brain/120.2.257
10.1002/cne.902980205
10.1242/dev.121.8.2385
10.1113/jphysiol.1978.sp012269
10.1006/nimg.2002.1288
10.1038/nn758
10.1093/cercor/8.4.372
10.1093/brain/122.2.199
10.1152/jn.2001.85.6.2602
10.1016/S0197-4580(03)00118-0
10.1097/00001756-200101220-00024
10.1002/cne.901640303
10.1006/nlme.2000.3999
10.1016/B978-0-08-042004-2.50005-8
10.1073/pnas.162356599
10.1006/nimg.2001.0961
10.2174/1573405054038726
10.1212/WNL.50.5.1246
10.1101/lm.70504
10.1002/1096-9861(20001211)428:2<278::AID-CNE7>3.0.CO;2-R
10.1073/pnas.070039597
10.1093/cercor/7.3.268
10.1056/NEJM199410063311417
10.1016/S1053-8119(02)91173-0
10.1126/science.281.5380.1188
10.1038/427311a
10.1002/cne.902470309
10.1056/NEJM199003223221201
10.1093/cercor/bhi044
10.1006/nimg.2000.0582
ContentType Journal Article
Copyright Copyright © 2005 Society for Neuroscience 0270-6474/05/258303-08.00/0 2005
Copyright_xml – notice: Copyright © 2005 Society for Neuroscience 0270-6474/05/258303-08.00/0 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.0357-05.2005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Neurosciences Abstracts
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 8310
ExternalDocumentID PMC6725541
16148238
10_1523_JNEUROSCI_0357_05_2005
www25_36_8303
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 051067
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
.GJ
18M
1CY
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c541t-4d5a06159b1ea41047f88b86a4e00d8f5d6c6c8788309852fb0f7af372787cf3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:08:00 EDT 2025
Fri Jul 11 12:22:26 EDT 2025
Fri Jul 11 15:14:11 EDT 2025
Fri May 30 11:01:28 EDT 2025
Tue Jul 01 02:58:31 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Nov 10 19:18:24 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-4d5a06159b1ea41047f88b86a4e00d8f5d6c6c8788309852fb0f7af372787cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/25/36/8303.full.pdf
PMID 16148238
PQID 17405999
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725541
proquest_miscellaneous_68560842
proquest_miscellaneous_17405999
pubmed_primary_16148238
crossref_primary_10_1523_JNEUROSCI_0357_05_2005
crossref_citationtrail_10_1523_JNEUROSCI_0357_05_2005
highwire_smallpub1_www25_36_8303
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20050907
2005-09-07
2005-Sep-07
PublicationDateYYYYMMDD 2005-09-07
PublicationDate_xml – month: 09
  year: 2005
  text: 20050907
  day: 07
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2005
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References (2023041303144046000_25.36.8303.44) 1978; 277
2023041303144046000_25.36.8303.40
2023041303144046000_25.36.8303.41
2023041303144046000_25.36.8303.42
2023041303144046000_25.36.8303.45
2023041303144046000_25.36.8303.46
2023041303144046000_25.36.8303.47
2023041303144046000_25.36.8303.48
2023041303144046000_25.36.8303.49
2023041303144046000_25.36.8303.3
2023041303144046000_25.36.8303.1
2023041303144046000_25.36.8303.7
2023041303144046000_25.36.8303.6
2023041303144046000_25.36.8303.5
2023041303144046000_25.36.8303.4
2023041303144046000_25.36.8303.30
2023041303144046000_25.36.8303.31
2023041303144046000_25.36.8303.32
2023041303144046000_25.36.8303.33
2023041303144046000_25.36.8303.34
2023041303144046000_25.36.8303.35
2023041303144046000_25.36.8303.36
2023041303144046000_25.36.8303.37
2023041303144046000_25.36.8303.38
2023041303144046000_25.36.8303.39
2023041303144046000_25.36.8303.19
(2023041303144046000_25.36.8303.16) 2003; 23
(2023041303144046000_25.36.8303.43) 1998; 50
2023041303144046000_25.36.8303.20
2023041303144046000_25.36.8303.21
2023041303144046000_25.36.8303.22
2023041303144046000_25.36.8303.23
2023041303144046000_25.36.8303.9
2023041303144046000_25.36.8303.24
2023041303144046000_25.36.8303.8
2023041303144046000_25.36.8303.25
2023041303144046000_25.36.8303.26
2023041303144046000_25.36.8303.27
(2023041303144046000_25.36.8303.18) 1995; 121
2023041303144046000_25.36.8303.28
2023041303144046000_25.36.8303.29
(2023041303144046000_25.36.8303.12) 2001; 85
2023041303144046000_25.36.8303.10
(2023041303144046000_25.36.8303.2) 1997; 17
2023041303144046000_25.36.8303.11
2023041303144046000_25.36.8303.13
2023041303144046000_25.36.8303.14
2023041303144046000_25.36.8303.15
2023041303144046000_25.36.8303.17
References_xml – ident: 2023041303144046000_25.36.8303.21
  doi: 10.1016/j.neuroimage.2004.07.030
– ident: 2023041303144046000_25.36.8303.14
  doi: 10.1016/0306-4522(94)00584-R
– ident: 2023041303144046000_25.36.8303.27
  doi: 10.1038/431757a
– ident: 2023041303144046000_25.36.8303.49
  doi: 10.1016/0006-8993(70)90237-4
– ident: 2023041303144046000_25.36.8303.32
– volume: 17
  start-page: 2859
  year: 1997
  ident: 2023041303144046000_25.36.8303.2
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-08-02859.1997
– ident: 2023041303144046000_25.36.8303.47
  doi: 10.1017/S0033291797005229
– ident: 2023041303144046000_25.36.8303.19
  doi: 10.1007/978-1-4613-2988-6_14
– ident: 2023041303144046000_25.36.8303.30
  doi: 10.1038/30976
– ident: 2023041303144046000_25.36.8303.29
  doi: 10.1093/cercor/12.11.1115
– ident: 2023041303144046000_25.36.8303.31
  doi: 10.1093/cercor/6.4.631
– ident: 2023041303144046000_25.36.8303.48
  doi: 10.1001/archneur.1997.00550180055012
– ident: 2023041303144046000_25.36.8303.17
  doi: 10.1006/nimg.2001.0857
– ident: 2023041303144046000_25.36.8303.38
  doi: 10.1126/science.1086025
– ident: 2023041303144046000_25.36.8303.46
  doi: 10.1093/cercor/bhg125
– ident: 2023041303144046000_25.36.8303.10
  doi: 10.1016/0387-7604(95)00029-B
– ident: 2023041303144046000_25.36.8303.6
– volume: 23
  start-page: 9240
  year: 2003
  ident: 2023041303144046000_25.36.8303.16
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-27-09240.2003
– ident: 2023041303144046000_25.36.8303.5
  doi: 10.1093/brain/120.2.257
– ident: 2023041303144046000_25.36.8303.11
  doi: 10.1002/cne.902980205
– volume: 121
  start-page: 2385
  year: 1995
  ident: 2023041303144046000_25.36.8303.18
  publication-title: Development
  doi: 10.1242/dev.121.8.2385
– volume: 277
  start-page: 193
  year: 1978
  ident: 2023041303144046000_25.36.8303.44
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1978.sp012269
– ident: 2023041303144046000_25.36.8303.36
  doi: 10.1006/nimg.2002.1288
– ident: 2023041303144046000_25.36.8303.41
  doi: 10.1038/nn758
– ident: 2023041303144046000_25.36.8303.22
  doi: 10.1093/cercor/8.4.372
– ident: 2023041303144046000_25.36.8303.15
  doi: 10.1093/brain/122.2.199
– volume: 85
  start-page: 2602
  year: 2001
  ident: 2023041303144046000_25.36.8303.12
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.6.2602
– ident: 2023041303144046000_25.36.8303.34
  doi: 10.1016/S0197-4580(03)00118-0
– ident: 2023041303144046000_25.36.8303.40
  doi: 10.1097/00001756-200101220-00024
– ident: 2023041303144046000_25.36.8303.25
  doi: 10.1002/cne.901640303
– ident: 2023041303144046000_25.36.8303.7
  doi: 10.1006/nlme.2000.3999
– ident: 2023041303144046000_25.36.8303.20
  doi: 10.1016/B978-0-08-042004-2.50005-8
– ident: 2023041303144046000_25.36.8303.9
  doi: 10.1073/pnas.162356599
– ident: 2023041303144046000_25.36.8303.4
  doi: 10.1006/nimg.2001.0961
– ident: 2023041303144046000_25.36.8303.24
– ident: 2023041303144046000_25.36.8303.28
  doi: 10.2174/1573405054038726
– volume: 50
  start-page: 1246
  year: 1998
  ident: 2023041303144046000_25.36.8303.43
  publication-title: Neurology
  doi: 10.1212/WNL.50.5.1246
– ident: 2023041303144046000_25.36.8303.8
  doi: 10.1101/lm.70504
– ident: 2023041303144046000_25.36.8303.1
  doi: 10.1002/1096-9861(20001211)428:2<278::AID-CNE7>3.0.CO;2-R
– ident: 2023041303144046000_25.36.8303.26
  doi: 10.1073/pnas.070039597
– ident: 2023041303144046000_25.36.8303.33
  doi: 10.1093/cercor/7.3.268
– ident: 2023041303144046000_25.36.8303.37
  doi: 10.1056/NEJM199410063311417
– ident: 2023041303144046000_25.36.8303.42
  doi: 10.1016/S1053-8119(02)91173-0
– ident: 2023041303144046000_25.36.8303.45
  doi: 10.1126/science.281.5380.1188
– ident: 2023041303144046000_25.36.8303.13
  doi: 10.1038/427311a
– ident: 2023041303144046000_25.36.8303.23
  doi: 10.1002/cne.902470309
– ident: 2023041303144046000_25.36.8303.39
  doi: 10.1056/NEJM199003223221201
– ident: 2023041303144046000_25.36.8303.35
  doi: 10.1093/cercor/bhi044
– ident: 2023041303144046000_25.36.8303.3
  doi: 10.1006/nimg.2000.0582
SSID ssj0007017
Score 2.3976665
Snippet The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8303
SubjectTerms Adult
Cerebral Cortex - anatomy & histology
Development/Plasticity/Repair
Female
Frontal Lobe - anatomy & histology
Functional Laterality
Gyrus Cinguli - anatomy & histology
Humans
Magnetic Resonance Imaging - methods
Male
Periaqueductal Gray - anatomy & histology
Title Structural Covariance in the Human Cortex
URI http://www.jneurosci.org/cgi/content/abstract/25/36/8303
https://www.ncbi.nlm.nih.gov/pubmed/16148238
https://www.proquest.com/docview/17405999
https://www.proquest.com/docview/68560842
https://pubmed.ncbi.nlm.nih.gov/PMC6725541
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq8cILAsZHxpcfEBKa0jmOnTiPU8U0ipiEWqS9WU5ii2pdgrSOUv56zk7ipKN8jJcoiuNT4rtc7uzf_YzQa64FF4axkNIMEhStSaiEEWDLNDGC8VgLW4388Sw5_cym5_x8NNoMUEvXq3xc_NhZV_I_WoVroFdbJXsLzXqhcAHOQb9wBA3D8Z90PHPkr444Y1J_g6zX4f9b5GIzPT-xYNrvwxC0LwZzYeiA0LKHwWqHD114xKP33SeOiqBqy8iWh9Nx36KKi3q9UBeDev3DmW_3-8vbmsNN17Gbb-AOUJUO3BJNIeFkzd46Y926TerWaaKhX20Kmlv7iYdeUsQkHv5x4wbZ-os3545VYnpmQY2zyfsxiXkaEu5mwvr_V7dmf-O35sGGNs0BSdLLkVaOJFw27Ld3KGQYdvOLD596ovmUuM2a_cu2xeUg52j382zHNR3X9K685Sb8dhDPzO-je60F4OPGqh6gka4eov3jSq3qyw1-gx002K257KO3vaHh3tDwosJgaNgZGm4M7RGan7ybT07Ddo-NsOAsWoWs5MpGtVkeacUsb4cRIheJYpqQUhheJkVSiFSAzjLBqcmJSZWBTxk8fWHix2ivqiv9FOG0pBDuqsJkIDkHP1-UStDcgBSRc8ICxLsBkkXLP2-3QVnKPysoQEe-39eGgeWvPXA3_vLqUi2XMNyRXK_XlMs4kdb6AvSq04sEf2oXyVSl6-srCRm6pSzKfn9HIiBLEIwG6Emjx_6xHKtuLAKUbmnY32C53LdbqsUXx-mepJDbs-jg1i_7DN3tv9LnaA_sQb-AOHmVv3QW_RNey7Xd
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Covariance+in+the+Human+Cortex&rft.jtitle=The+Journal+of+neuroscience&rft.au=Mechelli%2C+Andrea&rft.au=Friston%2C+Karl+J.&rft.au=Frackowiak%2C+Richard+S.&rft.au=Price%2C+Cathy+J.&rft.date=2005-09-07&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=25&rft.issue=36&rft.spage=8303&rft.epage=8310&rft_id=info:doi/10.1523%2FJNEUROSCI.0357-05.2005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_0357_05_2005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon