Structural Covariance in the Human Cortex
The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structu...
Saved in:
Published in | The Journal of neuroscience Vol. 25; no. 36; pp. 8303 - 8310 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
07.09.2005
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.0357-05.2005 |
Cover
Loading…
Abstract | The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior. |
---|---|
AbstractList | The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior. The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior.The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical regions covary in gray matter density, as a result of mutually trophic influences or common experience-related plasticity. We acquired a structural magnetic resonance imaging scan from 172 subjects and extracted the regional gray matter densities from 12 readily identifiable regions of interest involved in sensorimotor or higher-order cognitive functions. We then used these values to predict regional densities in the remaining areas of the cortex, using voxel-based morphometry. This revealed patterns of positive and negative covariance that provide insight into the topographical organization of multiple cortical regions. We report that the gray matter density of a region is a good predictor of the density of the homotopic region in the contralateral hemisphere, with the striking exception of primary visual cortex. Whereas some regions express patterns of regional covariance that are mirror symmetrical relative to the interhemispheric fissure, other regions express asymmetric patterns of regional covariance. Finally, patterns of covariance are remarkably consistent between males and females, with the exception of the left amygdala, which is positively associated with the left and right anterior inferior temporal cortex in males and with the right angular gyrus in females. Our study establishes that the density of different cortical regions is coordinated within an individual. The coordinated variations we report are likely to be determined by both genetic and environmental factors and may be the basis for differences in individual behavior. |
Author | Frackowiak, Richard S Friston, Karl J Mechelli, Andrea Price, Cathy J |
Author_xml | – sequence: 1 fullname: Mechelli, Andrea – sequence: 2 fullname: Friston, Karl J – sequence: 3 fullname: Frackowiak, Richard S – sequence: 4 fullname: Price, Cathy J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16148238$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlLLDEUhYMo2g5_QXqlvEW1N3MKHsKjcUQUHNYhnU7ZkRp8ScrWf2-adt64CuR-53DuPZtote1ah9AuhhHmhB6cXx7dXV_djM9GQLksgI8IAF9BgzwtC8IAr6IBEAmFYJJtoM0YHwBAApbraAMLzBShaoD-3KTQ29QHUw_H3ZMJ3rTWDX07TDM3PO0b0-b_kNzzNlqrTB3dztu7hW6Pj27Hp8XF1cnZ-N9FYTnDqWBTbkBgXk6wMwwDk5VSEyUMcwBTVfGpsMIqqRSFUnFSTaCSpqKSSCVtRbfQ4dL2sZ80bmpdm3I2_Rh8Y8KL7ozX3yetn-n77kkLSXhOkA323gxC9793MenGR-vq2rSu66MWigtQjPwKYsmAl2WZwd2vkT6yvF8xA2IJ2NDFGFz1iYBe1KU_6tKLujRwvagrC__-EFqfTPLdYjVf_y7fX8pn_n4298Hp2Ji6zjGxns_nhGsqdL4zpa9FfqjE |
CitedBy_id | crossref_primary_10_1016_j_neubiorev_2010_11_004 crossref_primary_10_1002_hbm_23014 crossref_primary_10_1016_j_neurobiolaging_2015_10_015 crossref_primary_10_1016_j_neurobiolaging_2020_05_008 crossref_primary_10_1016_j_schres_2015_08_025 crossref_primary_10_1016_j_euroneuro_2012_09_001 crossref_primary_10_1038_s41380_021_01229_4 crossref_primary_10_3389_fmed_2020_00193 crossref_primary_10_1007_s10519_006_9133_0 crossref_primary_10_1016_j_pscychresns_2019_110989 crossref_primary_10_1016_j_neuroimage_2020_117104 crossref_primary_10_1038_s41598_023_34210_y crossref_primary_10_1111_nmo_12372 crossref_primary_10_1007_s00415_016_8114_3 crossref_primary_10_1089_brain_2022_0038 crossref_primary_10_1371_journal_pone_0049172 crossref_primary_10_1016_j_nicl_2021_102799 crossref_primary_10_1093_cercor_bhr221 crossref_primary_10_1016_j_pneurobio_2012_05_004 crossref_primary_10_1038_s41598_021_88918_w crossref_primary_10_1016_j_nicl_2019_101848 crossref_primary_10_1093_cercor_bhy091 crossref_primary_10_1016_j_yebeh_2006_02_002 crossref_primary_10_1016_j_cub_2007_07_040 crossref_primary_10_1016_j_media_2021_102026 crossref_primary_10_1016_j_jneumeth_2013_10_005 crossref_primary_10_1016_j_neuropsychologia_2017_08_007 crossref_primary_10_1089_brain_2013_0209 crossref_primary_10_1016_j_neuroimage_2018_03_007 crossref_primary_10_1038_s41398_017_0083_5 crossref_primary_10_1016_j_nicl_2017_12_029 crossref_primary_10_1371_journal_pone_0019608 crossref_primary_10_1371_journal_pone_0063131 crossref_primary_10_1523_JNEUROSCI_2433_08_2008 crossref_primary_10_1016_j_dcn_2025_101522 crossref_primary_10_1007_s00429_016_1264_3 crossref_primary_10_1016_j_jad_2017_12_083 crossref_primary_10_1111_gbb_12177 crossref_primary_10_1016_j_neuroimage_2012_10_066 crossref_primary_10_1002_brb3_252 crossref_primary_10_1259_bjr_20230409 crossref_primary_10_1007_s11682_020_00378_4 crossref_primary_10_1016_j_nicl_2021_102780 crossref_primary_10_1016_j_arr_2016_01_003 crossref_primary_10_1038_s41598_018_21568_7 crossref_primary_10_1016_j_neulet_2008_10_102 crossref_primary_10_1016_j_heliyon_2019_e02074 crossref_primary_10_1186_s10194_020_01096_4 crossref_primary_10_1016_j_biopsych_2013_09_016 crossref_primary_10_1016_j_neuroimage_2012_08_082 crossref_primary_10_1016_j_neuroimage_2014_05_030 crossref_primary_10_1016_j_neurobiolaging_2009_03_006 crossref_primary_10_1016_j_neuroimage_2014_12_063 crossref_primary_10_1192_bjp_bp_110_080218 crossref_primary_10_1523_JNEUROSCI_3444_09_2010 crossref_primary_10_1016_j_neubiorev_2021_02_026 crossref_primary_10_1016_j_nicl_2024_103687 crossref_primary_10_1016_j_neuroimage_2021_117945 crossref_primary_10_3389_fncom_2014_00122 crossref_primary_10_1109_TBME_2022_3222072 crossref_primary_10_1177_1073858414537560 crossref_primary_10_1093_sleep_zsaa202 crossref_primary_10_19066_cogsci_2017_28_4_004 crossref_primary_10_1016_j_euroneuro_2012_11_010 crossref_primary_10_1093_neuros_nyab335 crossref_primary_10_1093_scan_nst136 crossref_primary_10_1016_j_neuroimage_2008_05_029 crossref_primary_10_1016_j_pnpbp_2022_110645 crossref_primary_10_1016_j_bpsgos_2021_05_002 crossref_primary_10_1002_hbm_22108 crossref_primary_10_1002_hbm_21054 crossref_primary_10_1038_srep27964 crossref_primary_10_1001_jamaneurol_2023_0001 crossref_primary_10_1002_hbm_24441 crossref_primary_10_1016_j_neuroimage_2023_120453 crossref_primary_10_1016_j_pscychresns_2015_01_006 crossref_primary_10_3389_fnins_2014_00223 crossref_primary_10_1016_j_jaac_2016_01_004 crossref_primary_10_3389_fnana_2017_00034 crossref_primary_10_1002_alz_13714 crossref_primary_10_1371_journal_pcbi_1001006 crossref_primary_10_1016_j_pscychresns_2017_11_006 crossref_primary_10_1017_S003329171300319X crossref_primary_10_1093_schbul_sby132 crossref_primary_10_1177_1073858409334423 crossref_primary_10_1016_j_neuroimage_2013_08_022 crossref_primary_10_1016_j_heares_2014_06_007 crossref_primary_10_1371_journal_pone_0058921 crossref_primary_10_1186_s13195_021_00876_7 crossref_primary_10_1523_ENEURO_0003_15_2015 crossref_primary_10_1002_hbm_22488 crossref_primary_10_1038_mp_2008_32 crossref_primary_10_1016_j_jneumeth_2011_12_014 crossref_primary_10_1097_01_wad_0000213857_89613_10 crossref_primary_10_1002_hbm_23456 crossref_primary_10_1002_hbm_23698 crossref_primary_10_1016_j_neuroscience_2018_03_049 crossref_primary_10_3389_fnhum_2018_00002 crossref_primary_10_1038_nrneurol_2012_182 crossref_primary_10_1093_cercor_bhab481 crossref_primary_10_1111_j_1528_1167_2007_01485_x crossref_primary_10_1016_j_pscychresns_2017_06_009 crossref_primary_10_1016_j_bpsc_2020_07_019 crossref_primary_10_1016_j_schres_2012_08_021 crossref_primary_10_1002_hbm_21232 crossref_primary_10_1002_hbm_21110 crossref_primary_10_1016_j_yebeh_2020_107013 crossref_primary_10_1016_j_jneumeth_2014_09_003 crossref_primary_10_3389_fnagi_2023_1195748 crossref_primary_10_1038_s41380_022_01896_x crossref_primary_10_3389_fnins_2022_898902 crossref_primary_10_1002_hbm_23887 crossref_primary_10_1002_hbm_22313 crossref_primary_10_1007_s11011_018_0254_y crossref_primary_10_1186_s13229_021_00439_5 crossref_primary_10_1371_journal_pone_0074070 crossref_primary_10_3389_fninf_2022_859309 crossref_primary_10_1016_j_schres_2014_01_023 crossref_primary_10_1073_pnas_1003296107 crossref_primary_10_1016_j_jpsychires_2012_11_017 crossref_primary_10_1146_annurev_clinpsy_040510_143934 crossref_primary_10_1007_s11682_020_00298_3 crossref_primary_10_1002_hbm_24728 crossref_primary_10_1002_hbm_22301 crossref_primary_10_1016_j_neuroimage_2011_08_052 crossref_primary_10_1016_j_nbas_2022_100054 crossref_primary_10_1007_s00787_022_02118_z crossref_primary_10_1007_s12474_010_0002_5 crossref_primary_10_1002_hbm_22428 crossref_primary_10_1016_j_bpsc_2017_04_008 crossref_primary_10_1016_j_neuroimage_2009_03_026 crossref_primary_10_1002_hbm_21133 crossref_primary_10_1097_MAO_0000000000002273 crossref_primary_10_1016_j_mri_2009_01_006 crossref_primary_10_1016_j_neuroimage_2010_11_075 crossref_primary_10_1016_j_neuroimage_2019_01_032 crossref_primary_10_1093_cercor_bhp226 crossref_primary_10_1097_WNR_0b013e3282fa6da0 crossref_primary_10_1002_jmri_24780 crossref_primary_10_1007_s11682_018_9939_4 crossref_primary_10_1002_hbm_21246 crossref_primary_10_1038_s42003_022_03880_1 crossref_primary_10_1007_s00429_014_0795_8 crossref_primary_10_1093_cercor_bhaa181 crossref_primary_10_1016_j_neuroimage_2011_11_007 crossref_primary_10_1162_jocn_a_00227 crossref_primary_10_1016_j_neurobiolaging_2006_05_018 crossref_primary_10_1038_s41598_022_22387_7 crossref_primary_10_1016_j_jad_2018_07_053 crossref_primary_10_1016_j_schres_2020_09_021 crossref_primary_10_1002_hbm_21354 crossref_primary_10_1016_j_dcn_2020_100762 crossref_primary_10_1002_hbm_24628 crossref_primary_10_1016_j_neuroimage_2010_10_027 crossref_primary_10_1073_pnas_1608587113 crossref_primary_10_1093_brain_awm282 crossref_primary_10_1523_JNEUROSCI_1929_08_2008 crossref_primary_10_1016_j_pnpbp_2020_110194 crossref_primary_10_1016_j_bandc_2014_03_011 crossref_primary_10_1523_JNEUROSCI_2261_13_2013 crossref_primary_10_1371_journal_pone_0102042 crossref_primary_10_1017_S0033291718001010 crossref_primary_10_3389_fnins_2018_00927 crossref_primary_10_1016_j_pnpbp_2023_110873 crossref_primary_10_1016_j_schres_2006_12_028 crossref_primary_10_1007_s12311_017_0871_8 crossref_primary_10_3390_biomedicines6030080 crossref_primary_10_3389_fnagi_2016_00176 crossref_primary_10_1371_journal_pone_0028817 crossref_primary_10_1042_ETLS20210279 crossref_primary_10_1016_j_neurad_2023_04_001 crossref_primary_10_1016_j_neuroimage_2016_06_007 crossref_primary_10_1089_brain_2016_0434 crossref_primary_10_1089_brain_2012_0132 crossref_primary_10_1016_j_pscychresns_2024_111887 crossref_primary_10_1177_1756286419838673 crossref_primary_10_1007_s40708_015_0009_z crossref_primary_10_1242_jeb_02163 crossref_primary_10_1371_journal_pone_0116687 crossref_primary_10_1007_s00429_019_01994_7 crossref_primary_10_3389_fnins_2024_1381385 crossref_primary_10_1111_epi_13225 crossref_primary_10_3389_fneur_2022_966659 crossref_primary_10_1016_j_neuroimage_2021_118612 crossref_primary_10_3389_fnins_2022_888174 crossref_primary_10_1002_hbm_22533 crossref_primary_10_3389_fpsyt_2024_1349989 crossref_primary_10_1016_j_cub_2010_07_027 crossref_primary_10_1162_NETN_a_00016 crossref_primary_10_1038_sj_mp_4001982 crossref_primary_10_1016_j_nicl_2018_101650 crossref_primary_10_1101_cshperspect_a023622 crossref_primary_10_1016_j_nicl_2019_101828 crossref_primary_10_1371_journal_pone_0253273 crossref_primary_10_1371_journal_pone_0127118 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1556_2006_2022_00044 crossref_primary_10_1002_hbm_20466 crossref_primary_10_1016_j_dcn_2013_06_001 crossref_primary_10_1002_hbm_23610 crossref_primary_10_1007_s11060_016_2328_1 crossref_primary_10_1002_hbm_20588 crossref_primary_10_1002_hbm_22645 crossref_primary_10_1016_j_neuroimage_2016_12_017 crossref_primary_10_1016_j_neuropsychologia_2018_10_017 crossref_primary_10_1016_j_jad_2014_10_041 crossref_primary_10_1142_S0129065722500356 crossref_primary_10_1016_j_neuroscience_2022_02_027 crossref_primary_10_1007_s11682_022_00747_1 crossref_primary_10_1016_j_neurobiolaging_2022_05_010 crossref_primary_10_1007_s00429_012_0391_8 crossref_primary_10_1162_netn_a_00162 crossref_primary_10_1177_0891988710363713 crossref_primary_10_1007_s00330_023_09549_5 crossref_primary_10_1002_hbm_23929 crossref_primary_10_1016_j_neuroimage_2019_02_014 crossref_primary_10_1176_appi_ajp_2019_18040380 crossref_primary_10_3389_fneur_2017_00615 crossref_primary_10_1016_j_visres_2012_06_001 crossref_primary_10_1007_s00415_020_10111_2 crossref_primary_10_1111_jne_12682 crossref_primary_10_3389_fnins_2016_00394 crossref_primary_10_1017_S1092852915000371 crossref_primary_10_1016_j_neuroimage_2011_03_079 crossref_primary_10_1093_braincomms_fcab127 crossref_primary_10_1016_j_neurobiolaging_2017_09_011 crossref_primary_10_1093_cercor_bhx317 crossref_primary_10_1016_j_jad_2025_01_025 crossref_primary_10_1016_j_jocn_2010_12_019 crossref_primary_10_3389_fnagi_2014_00105 crossref_primary_10_7717_peerj_8989 crossref_primary_10_1016_j_pain_2010_01_006 crossref_primary_10_1002_jmri_24143 crossref_primary_10_3389_fpsyt_2021_750798 crossref_primary_10_1089_brain_2012_0086 crossref_primary_10_1016_j_neuropsychologia_2012_02_019 crossref_primary_10_1093_cercor_bhw024 crossref_primary_10_1016_j_euroneuro_2019_09_551 crossref_primary_10_1093_cercor_bhw022 crossref_primary_10_1038_s41598_020_80873_2 crossref_primary_10_1016_j_schres_2017_01_054 crossref_primary_10_1159_000518752 crossref_primary_10_1177_197140091002300104 crossref_primary_10_3389_fphys_2018_00518 crossref_primary_10_1016_j_pain_2011_03_028 crossref_primary_10_1093_cercor_bhl149 crossref_primary_10_1016_j_neurobiolaging_2014_05_040 crossref_primary_10_1159_000531419 crossref_primary_10_1017_pen_2018_11 crossref_primary_10_1093_brain_awp089 crossref_primary_10_1016_j_neuroimage_2019_116149 crossref_primary_10_1177_1073858415595004 crossref_primary_10_1007_s11682_008_9038_z crossref_primary_10_1111_j_1460_9568_2008_06117_x crossref_primary_10_1002_jmri_28974 crossref_primary_10_1093_pm_pnv047 crossref_primary_10_1007_s00330_018_5342_1 crossref_primary_10_1162_netn_a_00253 crossref_primary_10_1016_j_pnpbp_2010_02_025 crossref_primary_10_1038_s41598_024_76680_8 crossref_primary_10_3390_geriatrics2040034 crossref_primary_10_1016_j_jad_2021_03_077 crossref_primary_10_1002_hbm_20425 crossref_primary_10_1002_hbm_22724 crossref_primary_10_1038_nrn1909 crossref_primary_10_1016_j_parkreldis_2024_106985 crossref_primary_10_1088_2057_1976_1_1_015001 crossref_primary_10_1523_JNEUROSCI_2650_08_2008 crossref_primary_10_1038_s41398_018_0256_x crossref_primary_10_1089_brain_2018_0584 crossref_primary_10_1523_JNEUROSCI_1312_06_2006 crossref_primary_10_1002_mds_28638 crossref_primary_10_1016_j_nicl_2022_103286 crossref_primary_10_1016_j_nicl_2022_103283 crossref_primary_10_1016_j_neuroimage_2015_10_057 crossref_primary_10_1093_cercor_bhy336 crossref_primary_10_1172_JCI30413 crossref_primary_10_1097_WNR_0000000000001773 crossref_primary_10_1093_cercor_bhw157 crossref_primary_10_1007_s00429_012_0422_5 crossref_primary_10_1016_j_pnpbp_2010_11_030 crossref_primary_10_1089_brain_2012_0095 crossref_primary_10_1016_j_neuroimage_2011_08_017 crossref_primary_10_1162_imag_a_00050 crossref_primary_10_3389_fpsyt_2021_626677 crossref_primary_10_4236_jbm_2020_812016 crossref_primary_10_1038_s41467_022_31730_5 crossref_primary_10_1016_j_bpsc_2020_06_020 crossref_primary_10_1093_braincomms_fcab289 crossref_primary_10_1016_j_pscychresns_2014_09_005 crossref_primary_10_1093_cercor_bhy002 crossref_primary_10_3389_fneur_2015_00211 crossref_primary_10_1016_j_nicl_2015_02_022 crossref_primary_10_1111_j_1399_5618_2011_00953_x crossref_primary_10_3389_fneur_2015_00219 crossref_primary_10_1186_s13195_024_01448_1 crossref_primary_10_1016_j_msard_2023_104516 crossref_primary_10_1016_j_neuropharm_2021_108562 crossref_primary_10_1002_hbm_20639 crossref_primary_10_3233_JAD_161036 crossref_primary_10_1093_cercor_bhn003 crossref_primary_10_1016_j_neuroimage_2016_04_047 crossref_primary_10_1038_s42003_023_04969_x crossref_primary_10_3389_fnagi_2019_00057 crossref_primary_10_3389_fpsyt_2014_00039 crossref_primary_10_1093_cercor_bhae337 crossref_primary_10_1038_s42003_024_06956_2 crossref_primary_10_1124_pr_109_002071 crossref_primary_10_1371_journal_pone_0140945 crossref_primary_10_1073_pnas_1003109107 crossref_primary_10_1002_hbm_22925 crossref_primary_10_1016_j_jpsychires_2015_08_003 crossref_primary_10_1093_braincomms_fcaa051 crossref_primary_10_1016_j_neuropsychologia_2008_08_024 crossref_primary_10_1093_braincomms_fcaa177 crossref_primary_10_1111_jcpp_12365 crossref_primary_10_1016_j_nicl_2019_101682 crossref_primary_10_1002_hbm_25279 crossref_primary_10_1007_s11434_014_0698_3 crossref_primary_10_1097_WCO_0b013e32833aa567 crossref_primary_10_1371_journal_pone_0011506 crossref_primary_10_1016_j_neuroimage_2016_03_062 crossref_primary_10_1111_biom_13235 crossref_primary_10_1002_hipo_22817 crossref_primary_10_1038_s41467_024_44863_6 crossref_primary_10_1007_s11682_016_9555_0 crossref_primary_10_1016_j_brainres_2024_148986 crossref_primary_10_1038_pr_2016_197 crossref_primary_10_1093_brain_awad288 crossref_primary_10_1167_iovs_64_15_40 crossref_primary_10_9758_cpn_2012_10_1_13 crossref_primary_10_1007_s10548_018_0642_y crossref_primary_10_1016_j_neuroimage_2008_12_017 crossref_primary_10_1016_j_pain_2013_09_020 crossref_primary_10_1038_s41380_021_01215_w crossref_primary_10_1162_imag_a_00371 crossref_primary_10_1016_j_neuroimage_2010_03_059 crossref_primary_10_1093_texcom_tgaa062 crossref_primary_10_1007_s00429_014_0953_z crossref_primary_10_1080_13554790902775492 crossref_primary_10_1016_j_neures_2019_07_002 crossref_primary_10_1111_head_13193 crossref_primary_10_1523_JNEUROSCI_3554_12_2013 crossref_primary_10_1002_brb3_643 crossref_primary_10_1016_j_neuroimage_2012_06_052 crossref_primary_10_1016_j_jpeds_2013_08_011 crossref_primary_10_1093_cercor_bhs187 crossref_primary_10_1523_JNEUROSCI_0141_08_2008 crossref_primary_10_1016_j_neuroimage_2013_05_054 crossref_primary_10_1016_j_biopsycho_2011_09_011 crossref_primary_10_1016_j_neuroimage_2022_119014 crossref_primary_10_3389_fpsyg_2016_00324 crossref_primary_10_1016_j_nicl_2018_03_015 crossref_primary_10_1038_nn_4501 crossref_primary_10_1016_j_nicl_2015_09_006 crossref_primary_10_1016_j_bpsc_2015_11_006 crossref_primary_10_1161_STROKEAHA_114_007146 crossref_primary_10_3389_fnagi_2021_605158 crossref_primary_10_1016_j_pnpbp_2019_01_012 crossref_primary_10_1097_01_wco_0000236622_91495_21 crossref_primary_10_1111_j_1399_5618_2011_00896_x crossref_primary_10_1016_j_neuroimage_2010_01_012 crossref_primary_10_1016_j_neuroimage_2012_03_021 crossref_primary_10_1016_j_neuroimage_2011_01_010 crossref_primary_10_1097_j_pain_0000000000002409 crossref_primary_10_3389_fnins_2016_00064 crossref_primary_10_1016_j_schres_2016_09_036 crossref_primary_10_1016_j_nicl_2021_102871 crossref_primary_10_1016_j_neuroimage_2024_120708 crossref_primary_10_1038_nrn3000 crossref_primary_10_1007_s11682_020_00321_7 crossref_primary_10_1093_cercor_bhv105 crossref_primary_10_1038_jcbfm_2014_165 crossref_primary_10_3389_fneur_2018_00342 crossref_primary_10_1093_cercor_bhae039 crossref_primary_10_1093_braincomms_fcaa102 crossref_primary_10_1177_0271678X231204769 crossref_primary_10_1007_s11682_008_9034_3 crossref_primary_10_1016_j_neuroimage_2016_01_025 crossref_primary_10_1002_hbm_26553 crossref_primary_10_1016_j_neuron_2009_03_024 crossref_primary_10_1016_j_neuropsychologia_2011_05_016 crossref_primary_10_1007_s00429_017_1438_7 crossref_primary_10_1016_j_biopsych_2014_10_023 crossref_primary_10_1016_j_neuroscience_2017_10_033 crossref_primary_10_1016_j_brainres_2014_02_030 crossref_primary_10_1097_WCO_0b013e32835a26b3 crossref_primary_10_1007_s00429_009_0208_6 crossref_primary_10_1016_j_neurobiolaging_2017_09_029 crossref_primary_10_1016_j_neuroimage_2010_01_031 crossref_primary_10_1007_s10803_015_2441_6 crossref_primary_10_1155_2022_1460326 crossref_primary_10_1038_nrn3465 crossref_primary_10_1073_pnas_1705643114 crossref_primary_10_1016_j_neuroscience_2020_08_033 crossref_primary_10_1093_cercor_bhv248 crossref_primary_10_1093_ijnp_pyy100 crossref_primary_10_1016_j_pscychresns_2008_12_003 crossref_primary_10_1177_1073858410386492 crossref_primary_10_1126_sciadv_abm1971 crossref_primary_10_1038_s41398_022_02019_4 crossref_primary_10_1016_j_neuroimage_2009_08_014 crossref_primary_10_1093_cercor_bht180 crossref_primary_10_3389_fnhum_2015_00675 crossref_primary_10_1523_JNEUROSCI_0964_10_2011 crossref_primary_10_1016_j_neuroimage_2017_03_016 crossref_primary_10_1016_j_jagp_2013_03_005 crossref_primary_10_1016_j_neuroimage_2011_10_086 crossref_primary_10_1093_cercor_bhad096 crossref_primary_10_1016_j_jneumeth_2009_05_001 crossref_primary_10_1007_s11682_015_9455_8 crossref_primary_10_1016_j_janxdis_2024_102848 crossref_primary_10_1360_TB_2022_0621 crossref_primary_10_1016_j_heliyon_2023_e18307 crossref_primary_10_1016_j_neuroimage_2006_04_174 crossref_primary_10_1016_j_yebeh_2015_06_005 crossref_primary_10_1016_j_neuroimage_2012_10_029 |
Cites_doi | 10.1016/j.neuroimage.2004.07.030 10.1016/0306-4522(94)00584-R 10.1038/431757a 10.1016/0006-8993(70)90237-4 10.1523/JNEUROSCI.17-08-02859.1997 10.1017/S0033291797005229 10.1007/978-1-4613-2988-6_14 10.1038/30976 10.1093/cercor/12.11.1115 10.1093/cercor/6.4.631 10.1001/archneur.1997.00550180055012 10.1006/nimg.2001.0857 10.1126/science.1086025 10.1093/cercor/bhg125 10.1016/0387-7604(95)00029-B 10.1523/JNEUROSCI.23-27-09240.2003 10.1093/brain/120.2.257 10.1002/cne.902980205 10.1242/dev.121.8.2385 10.1113/jphysiol.1978.sp012269 10.1006/nimg.2002.1288 10.1038/nn758 10.1093/cercor/8.4.372 10.1093/brain/122.2.199 10.1152/jn.2001.85.6.2602 10.1016/S0197-4580(03)00118-0 10.1097/00001756-200101220-00024 10.1002/cne.901640303 10.1006/nlme.2000.3999 10.1016/B978-0-08-042004-2.50005-8 10.1073/pnas.162356599 10.1006/nimg.2001.0961 10.2174/1573405054038726 10.1212/WNL.50.5.1246 10.1101/lm.70504 10.1002/1096-9861(20001211)428:2<278::AID-CNE7>3.0.CO;2-R 10.1073/pnas.070039597 10.1093/cercor/7.3.268 10.1056/NEJM199410063311417 10.1016/S1053-8119(02)91173-0 10.1126/science.281.5380.1188 10.1038/427311a 10.1002/cne.902470309 10.1056/NEJM199003223221201 10.1093/cercor/bhi044 10.1006/nimg.2000.0582 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Society for Neuroscience 0270-6474/05/258303-08.00/0 2005 |
Copyright_xml | – notice: Copyright © 2005 Society for Neuroscience 0270-6474/05/258303-08.00/0 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.0357-05.2005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 8310 |
ExternalDocumentID | PMC6725541 16148238 10_1523_JNEUROSCI_0357_05_2005 www25_36_8303 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 051067 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 .GJ 18M 1CY AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c541t-4d5a06159b1ea41047f88b86a4e00d8f5d6c6c8788309852fb0f7af372787cf3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:08:00 EDT 2025 Fri Jul 11 12:22:26 EDT 2025 Fri Jul 11 15:14:11 EDT 2025 Fri May 30 11:01:28 EDT 2025 Tue Jul 01 02:58:31 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Nov 10 19:18:24 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c541t-4d5a06159b1ea41047f88b86a4e00d8f5d6c6c8788309852fb0f7af372787cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/25/36/8303.full.pdf |
PMID | 16148238 |
PQID | 17405999 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6725541 proquest_miscellaneous_68560842 proquest_miscellaneous_17405999 pubmed_primary_16148238 crossref_primary_10_1523_JNEUROSCI_0357_05_2005 crossref_citationtrail_10_1523_JNEUROSCI_0357_05_2005 highwire_smallpub1_www25_36_8303 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20050907 2005-09-07 2005-Sep-07 |
PublicationDateYYYYMMDD | 2005-09-07 |
PublicationDate_xml | – month: 09 year: 2005 text: 20050907 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2005 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | (2023041303144046000_25.36.8303.44) 1978; 277 2023041303144046000_25.36.8303.40 2023041303144046000_25.36.8303.41 2023041303144046000_25.36.8303.42 2023041303144046000_25.36.8303.45 2023041303144046000_25.36.8303.46 2023041303144046000_25.36.8303.47 2023041303144046000_25.36.8303.48 2023041303144046000_25.36.8303.49 2023041303144046000_25.36.8303.3 2023041303144046000_25.36.8303.1 2023041303144046000_25.36.8303.7 2023041303144046000_25.36.8303.6 2023041303144046000_25.36.8303.5 2023041303144046000_25.36.8303.4 2023041303144046000_25.36.8303.30 2023041303144046000_25.36.8303.31 2023041303144046000_25.36.8303.32 2023041303144046000_25.36.8303.33 2023041303144046000_25.36.8303.34 2023041303144046000_25.36.8303.35 2023041303144046000_25.36.8303.36 2023041303144046000_25.36.8303.37 2023041303144046000_25.36.8303.38 2023041303144046000_25.36.8303.39 2023041303144046000_25.36.8303.19 (2023041303144046000_25.36.8303.16) 2003; 23 (2023041303144046000_25.36.8303.43) 1998; 50 2023041303144046000_25.36.8303.20 2023041303144046000_25.36.8303.21 2023041303144046000_25.36.8303.22 2023041303144046000_25.36.8303.23 2023041303144046000_25.36.8303.9 2023041303144046000_25.36.8303.24 2023041303144046000_25.36.8303.8 2023041303144046000_25.36.8303.25 2023041303144046000_25.36.8303.26 2023041303144046000_25.36.8303.27 (2023041303144046000_25.36.8303.18) 1995; 121 2023041303144046000_25.36.8303.28 2023041303144046000_25.36.8303.29 (2023041303144046000_25.36.8303.12) 2001; 85 2023041303144046000_25.36.8303.10 (2023041303144046000_25.36.8303.2) 1997; 17 2023041303144046000_25.36.8303.11 2023041303144046000_25.36.8303.13 2023041303144046000_25.36.8303.14 2023041303144046000_25.36.8303.15 2023041303144046000_25.36.8303.17 |
References_xml | – ident: 2023041303144046000_25.36.8303.21 doi: 10.1016/j.neuroimage.2004.07.030 – ident: 2023041303144046000_25.36.8303.14 doi: 10.1016/0306-4522(94)00584-R – ident: 2023041303144046000_25.36.8303.27 doi: 10.1038/431757a – ident: 2023041303144046000_25.36.8303.49 doi: 10.1016/0006-8993(70)90237-4 – ident: 2023041303144046000_25.36.8303.32 – volume: 17 start-page: 2859 year: 1997 ident: 2023041303144046000_25.36.8303.2 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-08-02859.1997 – ident: 2023041303144046000_25.36.8303.47 doi: 10.1017/S0033291797005229 – ident: 2023041303144046000_25.36.8303.19 doi: 10.1007/978-1-4613-2988-6_14 – ident: 2023041303144046000_25.36.8303.30 doi: 10.1038/30976 – ident: 2023041303144046000_25.36.8303.29 doi: 10.1093/cercor/12.11.1115 – ident: 2023041303144046000_25.36.8303.31 doi: 10.1093/cercor/6.4.631 – ident: 2023041303144046000_25.36.8303.48 doi: 10.1001/archneur.1997.00550180055012 – ident: 2023041303144046000_25.36.8303.17 doi: 10.1006/nimg.2001.0857 – ident: 2023041303144046000_25.36.8303.38 doi: 10.1126/science.1086025 – ident: 2023041303144046000_25.36.8303.46 doi: 10.1093/cercor/bhg125 – ident: 2023041303144046000_25.36.8303.10 doi: 10.1016/0387-7604(95)00029-B – ident: 2023041303144046000_25.36.8303.6 – volume: 23 start-page: 9240 year: 2003 ident: 2023041303144046000_25.36.8303.16 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-27-09240.2003 – ident: 2023041303144046000_25.36.8303.5 doi: 10.1093/brain/120.2.257 – ident: 2023041303144046000_25.36.8303.11 doi: 10.1002/cne.902980205 – volume: 121 start-page: 2385 year: 1995 ident: 2023041303144046000_25.36.8303.18 publication-title: Development doi: 10.1242/dev.121.8.2385 – volume: 277 start-page: 193 year: 1978 ident: 2023041303144046000_25.36.8303.44 publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1978.sp012269 – ident: 2023041303144046000_25.36.8303.36 doi: 10.1006/nimg.2002.1288 – ident: 2023041303144046000_25.36.8303.41 doi: 10.1038/nn758 – ident: 2023041303144046000_25.36.8303.22 doi: 10.1093/cercor/8.4.372 – ident: 2023041303144046000_25.36.8303.15 doi: 10.1093/brain/122.2.199 – volume: 85 start-page: 2602 year: 2001 ident: 2023041303144046000_25.36.8303.12 publication-title: J Neurophysiol doi: 10.1152/jn.2001.85.6.2602 – ident: 2023041303144046000_25.36.8303.34 doi: 10.1016/S0197-4580(03)00118-0 – ident: 2023041303144046000_25.36.8303.40 doi: 10.1097/00001756-200101220-00024 – ident: 2023041303144046000_25.36.8303.25 doi: 10.1002/cne.901640303 – ident: 2023041303144046000_25.36.8303.7 doi: 10.1006/nlme.2000.3999 – ident: 2023041303144046000_25.36.8303.20 doi: 10.1016/B978-0-08-042004-2.50005-8 – ident: 2023041303144046000_25.36.8303.9 doi: 10.1073/pnas.162356599 – ident: 2023041303144046000_25.36.8303.4 doi: 10.1006/nimg.2001.0961 – ident: 2023041303144046000_25.36.8303.24 – ident: 2023041303144046000_25.36.8303.28 doi: 10.2174/1573405054038726 – volume: 50 start-page: 1246 year: 1998 ident: 2023041303144046000_25.36.8303.43 publication-title: Neurology doi: 10.1212/WNL.50.5.1246 – ident: 2023041303144046000_25.36.8303.8 doi: 10.1101/lm.70504 – ident: 2023041303144046000_25.36.8303.1 doi: 10.1002/1096-9861(20001211)428:2<278::AID-CNE7>3.0.CO;2-R – ident: 2023041303144046000_25.36.8303.26 doi: 10.1073/pnas.070039597 – ident: 2023041303144046000_25.36.8303.33 doi: 10.1093/cercor/7.3.268 – ident: 2023041303144046000_25.36.8303.37 doi: 10.1056/NEJM199410063311417 – ident: 2023041303144046000_25.36.8303.42 doi: 10.1016/S1053-8119(02)91173-0 – ident: 2023041303144046000_25.36.8303.45 doi: 10.1126/science.281.5380.1188 – ident: 2023041303144046000_25.36.8303.13 doi: 10.1038/427311a – ident: 2023041303144046000_25.36.8303.23 doi: 10.1002/cne.902470309 – ident: 2023041303144046000_25.36.8303.39 doi: 10.1056/NEJM199003223221201 – ident: 2023041303144046000_25.36.8303.35 doi: 10.1093/cercor/bhi044 – ident: 2023041303144046000_25.36.8303.3 doi: 10.1006/nimg.2000.0582 |
SSID | ssj0007017 |
Score | 2.3976665 |
Snippet | The morphology of the human cortex varies remarkably across individuals, regardless of overall brain size. It is currently unclear whether related cortical... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8303 |
SubjectTerms | Adult Cerebral Cortex - anatomy & histology Development/Plasticity/Repair Female Frontal Lobe - anatomy & histology Functional Laterality Gyrus Cinguli - anatomy & histology Humans Magnetic Resonance Imaging - methods Male Periaqueductal Gray - anatomy & histology |
Title | Structural Covariance in the Human Cortex |
URI | http://www.jneurosci.org/cgi/content/abstract/25/36/8303 https://www.ncbi.nlm.nih.gov/pubmed/16148238 https://www.proquest.com/docview/17405999 https://www.proquest.com/docview/68560842 https://pubmed.ncbi.nlm.nih.gov/PMC6725541 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq8cILAsZHxpcfEBKa0jmOnTiPU8U0ipiEWqS9WU5ii2pdgrSOUv56zk7ipKN8jJcoiuNT4rtc7uzf_YzQa64FF4axkNIMEhStSaiEEWDLNDGC8VgLW4388Sw5_cym5_x8NNoMUEvXq3xc_NhZV_I_WoVroFdbJXsLzXqhcAHOQb9wBA3D8Z90PHPkr444Y1J_g6zX4f9b5GIzPT-xYNrvwxC0LwZzYeiA0LKHwWqHD114xKP33SeOiqBqy8iWh9Nx36KKi3q9UBeDev3DmW_3-8vbmsNN17Gbb-AOUJUO3BJNIeFkzd46Y926TerWaaKhX20Kmlv7iYdeUsQkHv5x4wbZ-os3545VYnpmQY2zyfsxiXkaEu5mwvr_V7dmf-O35sGGNs0BSdLLkVaOJFw27Ld3KGQYdvOLD596ovmUuM2a_cu2xeUg52j382zHNR3X9K685Sb8dhDPzO-je60F4OPGqh6gka4eov3jSq3qyw1-gx002K257KO3vaHh3tDwosJgaNgZGm4M7RGan7ybT07Ddo-NsOAsWoWs5MpGtVkeacUsb4cRIheJYpqQUhheJkVSiFSAzjLBqcmJSZWBTxk8fWHix2ivqiv9FOG0pBDuqsJkIDkHP1-UStDcgBSRc8ICxLsBkkXLP2-3QVnKPysoQEe-39eGgeWvPXA3_vLqUi2XMNyRXK_XlMs4kdb6AvSq04sEf2oXyVSl6-srCRm6pSzKfn9HIiBLEIwG6Emjx_6xHKtuLAKUbmnY32C53LdbqsUXx-mepJDbs-jg1i_7DN3tv9LnaA_sQb-AOHmVv3QW_RNey7Xd |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Covariance+in+the+Human+Cortex&rft.jtitle=The+Journal+of+neuroscience&rft.au=Mechelli%2C+Andrea&rft.au=Friston%2C+Karl+J.&rft.au=Frackowiak%2C+Richard+S.&rft.au=Price%2C+Cathy+J.&rft.date=2005-09-07&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=25&rft.issue=36&rft.spage=8303&rft.epage=8310&rft_id=info:doi/10.1523%2FJNEUROSCI.0357-05.2005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_0357_05_2005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |