Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions
Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of delet...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 3594 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.06.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-39313-8 |
Cover
Loading…
Abstract | Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.
Most of the mutations accumulated in cancer cells are deleterious, and it is unclear how such alterations are tolerated. Here, the authors propose that copy number amplifications could increase the tolerance to deleterious mutations, and analyse the features that could determine the underlying selection process. |
---|---|
AbstractList | Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations. Abstract Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations. Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations. Most of the mutations accumulated in cancer cells are deleterious, and it is unclear how such alterations are tolerated. Here, the authors propose that copy number amplifications could increase the tolerance to deleterious mutations, and analyse the features that could determine the underlying selection process. Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations. Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.Most of the mutations accumulated in cancer cells are deleterious, and it is unclear how such alterations are tolerated. Here, the authors propose that copy number amplifications could increase the tolerance to deleterious mutations, and analyse the features that could determine the underlying selection process. |
ArticleNumber | 3594 |
Author | Alfieri, Fabio Schaefer, Martin H. Caravagna, Giulio |
Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0001-7173-0105 surname: Alfieri fullname: Alfieri, Fabio organization: Department of Experimental Oncology, IEO European Institute of Oncology IRCCS – sequence: 2 givenname: Giulio surname: Caravagna fullname: Caravagna, Giulio organization: Department of Mathematics and Geosciences, University of Trieste – sequence: 3 givenname: Martin H. orcidid: 0000-0001-7503-6364 surname: Schaefer fullname: Schaefer, Martin H. email: martin.schaefer@ieo.it organization: Department of Experimental Oncology, IEO European Institute of Oncology IRCCS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37328455$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_oH-CAInHhEvBn7JwQWgGtVIkLnC0nGWe9SuxgO6D993g3S2l7qC-2xs-883o8l8WZ8w6K4g1GHzCi8mNkmNWiQoRWtKGYVvJFcUEQwxUWhJ49OJ8X1zHuUF60wZKxV8U5FZRIxvlFkTbadRDKAZyfIJbJjxB0grKHERIE65dYdr63biinJelkvcvUNvhl2JbRTznSZWDel26Z2qykp3m0xnYn1Jvyjx37Ku1nKAMMh-Dr4qXRY4Tr035V_Pz65cfmprr7_u128_mu6jjDqWKsrhmqqSA9Ji0XEgwxIA2hBEiD61YSCggJ0xNMe0nausGYceAMkYY2gl4Vt6tu7_VOzcFOOuyV11YdAz4MSofsfwSFBeOYM93rVrDWMM2AUiDGICkpb3jW-rRqzUs7Qd-BS0GPj0Qf3zi7VYP_rTAiokZIZoX3J4Xgfy0Qk5ps7GActYPcZUUkESSX4gfj756gO78El3t1pBDimczU24eW7r38-90MkBXogo8xgLlHMFKHKVLrFKk8Reo4RepgUz5J6uz67_lZdnw-la6pMddxA4T_tp_J-gtxMNvN |
CitedBy_id | crossref_primary_10_3389_fimmu_2024_1385762 crossref_primary_10_1038_s41467_025_56301_2 crossref_primary_10_1038_s41467_023_39313_8 crossref_primary_10_3390_biomedicines12081759 crossref_primary_10_1186_s13059_024_03225_7 |
Cites_doi | 10.6084/m9.figshare.19700056.v2 10.1038/nature09529 10.1038/ng.3984 10.1016/j.cell.2018.02.037 10.1016/j.bbrc.2016.11.047 10.1016/j.xinn.2021.100141 10.1016/j.ccell.2018.03.007 10.1038/nmeth0410-248 10.1016/j.cell.2013.10.011 10.1093/molbev/msu111 10.1038/s41586-020-1969-6 10.1016/j.cancergencyto.2007.07.015 10.1093/nar/gkaa1100 10.1038/nature08822 10.1093/genetics/139.3.1441 10.1093/nar/gkaa1033 10.1073/pnas.1213968110 10.1016/j.cell.2017.10.039 10.18129/B9.bioc.DNAcopy 10.1038/nmeth.2642 10.1016/j.cels.2018.03.002 10.1534/g3.113.009845 10.1038/s41467-019-10489-2 10.1038/s41598-019-56847-4 10.1371/journal.pgen.1004239 10.1016/j.cell.2010.08.038 10.1093/nar/gky1015 10.1371/journal.pgen.1000083 10.1016/j.trecan.2016.03.003 10.1016/j.cell.2017.09.042 10.1101/2021.02.13.429885 10.1016/j.cell.2017.01.018 10.1038/nbt1012 10.1016/j.pt.2016.08.006 10.1038/s41576-019-0171-x 10.1038/s41588-018-0217-6 10.1016/j.tig.2011.07.003 10.1038/s41467-023-39313-8 10.1038/nrg3123 10.1038/nrc1299 10.1038/s41588-019-0532-6 10.1126/science.1142210 10.1038/ng.3987 10.1093/molbev/msl123 10.1038/nature19057 10.1371/journal.pone.0021800 10.1093/oxfordjournals.jhered.a111354 10.1186/gb-2002-3-2-research0008 10.1093/nar/gkv474 10.1016/j.ceb.2006.10.002 10.1016/0027-5107(64)90047-8 10.7554/eLife.03023 10.1016/j.cell.2012.11.043 10.2307/2410218 10.1371/journal.pgen.1007615 10.1146/annurev-cellbio-092910-154234 10.1186/s13059-018-1434-0 10.1038/s41588-018-0258-x 10.1038/s41588-020-0584-7 10.1093/oxfordjournals.molbev.a004039 10.1093/nar/gky1016 10.1038/ng.3489 10.1534/genetics.106.057570 10.7554/eLife.75526 10.1038/s41586-019-1186-3 10.1038/nature07943 10.1158/0008-5472.CAN-15-3283-T 10.1126/science.1160058 10.1038/s41586-022-04823-w 10.1093/oxfordjournals.molbev.a026239 10.1016/j.cell.2015.10.069 10.1017/S0016672306008123 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 2023. The Author(s). The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-39313-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_1745154adab74bf4a4e33e2ff0883595 PMC10276008 37328455 10_1038_s41467_023_39313_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fondazione AIRC MFAG21791 – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-4466406372d12b578ef2fe8f232e2916b823e007fd213d82b691145e540293973 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:08:10 EDT 2025 Thu Aug 21 18:37:00 EDT 2025 Tue Aug 05 09:49:19 EDT 2025 Wed Aug 13 05:11:38 EDT 2025 Thu Apr 03 06:56:55 EDT 2025 Tue Jul 01 00:58:55 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Fri Feb 21 02:40:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-4466406372d12b578ef2fe8f232e2916b823e007fd213d82b691145e540293973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7503-6364 0000-0001-7173-0105 |
OpenAccessLink | https://doaj.org/article/1745154adab74bf4a4e33e2ff0883595 |
PMID | 37328455 |
PQID | 2827005725 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1745154adab74bf4a4e33e2ff0883595 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10276008 proquest_miscellaneous_2827259557 proquest_journals_2827005725 pubmed_primary_37328455 crossref_primary_10_1038_s41467_023_39313_8 crossref_citationtrail_10_1038_s41467_023_39313_8 springer_journals_10_1038_s41467_023_39313_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-16 |
PublicationDateYYYYMMDD | 2023-06-16 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | SupekFBošnjakMŠkuncaNŠmucTREVIGO summarizes and visualizes long lists of gene ontology termsPLoS ONE20116e218002011PLoSO...621800S1:CAS:528:DC%2BC3MXhtVeht7zI21789182313875210.1371/journal.pone.0021800 Antonello Alice & Caravagna Giulio. Integrated quality control of allele-specific copy numbers, mutations and tumour purity from cancer whole genome sequencing assays. Zenodo.https://zenodo.org/record/6410935#.ZGTAHOxBx_l (2022). SheltzerJMAneuploidy drives genomic instability in yeastScience (1979)2011333102610301:CAS:528:DC%2BC3MXhtVWrtr7F MeyersRMComputational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cellsNat. Genet.201749177917841:CAS:528:DC%2BC2sXhslehtrjI29083409570919310.1038/ng.3984 OstrowSLBarshirRDeGregoriJYeger-LotemEHershbergRCancer evolution is associated with pervasive positive selection on globally expressed genesPLoS Genet.201410e100423924603726394529710.1371/journal.pgen.1004239 BeroukhimRThe landscape of somatic copy-number alteration across human cancersNature20104638999052010Natur.463..899B1:CAS:528:DC%2BC3cXitFemsr0%3D20164920282670910.1038/nature08822 Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 606, 725–731 (2022). Davoli, T. & De Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011). AdlerMAnjumMBergOGAnderssonDISandegrenLHigh fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanismsMol. Biol. Evol.201431152615351:CAS:528:DC%2BC2cXosFSmtL8%3D2465981510.1093/molbev/msu111 Alfieri F. mutation_compensation_NCOMM-230517. Zenodo. https://github.com/fabio-alfieri/mutation_compensation/releases/tag/vNCOMM (2023). KristofichJCSynonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzymePLoS Genet.201814e100761530148850612864910.1371/journal.pgen.1007615 Van den EyndenJJiménez-SánchezAMillerMLLarssonELack of detectable neoantigen depletion signals in the untreated cancer genomeNat. Genet.2019511741174831768072688755710.1038/s41588-019-0532-6 BakhoumSFLandauDACancer evolution: no room for negative selectionCell20171719879891:CAS:528:DC%2BC2sXhvFOhs7jM2914961210.1016/j.cell.2017.10.039 SteinbergJHontiFMeaderSWebberCHaploinsufficiency predictions without study biasNucleic Acids Res.201543e10126001969455190910.1093/nar/gkv474 McConkeyDJThe integrated stress response and proteotoxicity in cancer therapyBiochem. Biophys. Res. Commun.20174824504531:CAS:528:DC%2BC2sXislOls7c%3D28212730531973210.1016/j.bbrc.2016.11.047 LynchMButcherDBürgerRGabrielWThe mutational meltdown in asexual populationsJ. Hered.1993843393441:STN:280:DyaK2c%2FhsVartA%3D%3D840935510.1093/oxfordjournals.jhered.a111354 EllrottKScalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic PipelinesCell Syst.20186271281.e71:CAS:528:DC%2BC1cXpslOktr0%3D29596782607571710.1016/j.cels.2018.03.002 WangTOncoVar: an integrated database and analysis platform for oncogenic driver variants in cancersNucleic Acids Res.202149D1289D13011:CAS:528:DC%2BB3MXisFOnsLnE3317973810.1093/nar/gkaa1033 DepMap, Broad. DepMap 22Q2 Public. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19700056.v2 (2022). PCAWG | ICGC Data Portal. International Cancer Genome Consortium. https://dcc.icgc.org/pcawg/ (2021). LoeweLQuantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNAGenet. Res.2006871331592006JMagR.182..133L1:CAS:528:DC%2BD28Xksleltbc%3D1670927510.1017/S0016672306008123 WeaverBAClevelandDWDoes aneuploidy cause cancer?Curr. Opin. Cell Biol.2006186586671:CAS:528:DC%2BD28XhtF2qtbnN1704623210.1016/j.ceb.2006.10.002 DephoureNQuantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeastElife2014312710.7554/eLife.03023 BoykoARAssessing the evolutionary impact of amino acid mutations in the human genomePLoS Genet.20084e100008318516229237733910.1371/journal.pgen.1000083 Seshan, V. E. & Olshen, A. Bioconductor. DNAcopy: DNA copy Number Data Analysis. R package version 1.74.1. https://doi.org/10.18129/B9.bioc.DNAcopy (2023). FutrealPAA census of human cancer genesNat. Rev. Cancer200441771831:CAS:528:DC%2BD2cXhs1Ggsrg%3D14993899266528510.1038/nrc1299 Gonzalez-PerezAIntOGen-mutations identifies cancer drivers across tumor typesNat. Methods201310108110841:CAS:528:DC%2BC3sXhsVeqs7%2FP24037244575804210.1038/nmeth.2642 McFarlandCDThe damaging effect of passenger mutations on cancer progressionCancer Res.201777476347721:CAS:528:DC%2BC2sXhsV2lsrfP28536279563969110.1158/0008-5472.CAN-15-3283-T MartincorenaIUniversal patterns of selection in cancer and somatic tissuesCell201717110291041.e211:CAS:528:DC%2BC2sXhs12lsLzO29056346572039510.1016/j.cell.2017.09.042 McGranahanNSwantonCClonal heterogeneity and tumor evolution: past, present, and the futureCell20171686136281:CAS:528:DC%2BC2sXis1ygtLg%3D2818728410.1016/j.cell.2017.01.018 KondrashovFARogozinIBWolfYIKooninEVSelection in the evolution of gene duplicationsGenome Biol.200231910.1186/gb-2002-3-2-research0008 LekMAnalysis of protein-coding genetic variation in 60,706 humansNature20165362852911:CAS:528:DC%2BC28XhtlOnsbbP27535533501820710.1038/nature19057 Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 67 (2018). MaciverSKAsexual amoebae escape muller’s ratchet through polyploidyTrends Parasitol.2016328558622759963210.1016/j.pt.2016.08.006 Eyre-WalkerAKeightleyPDSmithNGCGaffneyDQuantifying the slightly deleterious mutation model of molecular evolutionMol. Biol. Evol.200219214221491:CAS:528:DC%2BD38Xps12hs7o%3D1244680610.1093/oxfordjournals.molbev.a004039 MullerHJThe relation of recombination to mutational advanceMutat. Res.196412910.1016/0027-5107(64)90047-8 WilliamsBRAneuploidy affects proliferation and spontaneous immortalization in mammalian cellsScience20083227037092008Sci...322..703W1:CAS:528:DC%2BD1cXht12ltb7O18974345270151110.1126/science.1160058 WilliamsMJWernerBBarnesCPGrahamTASottorivaAIdentification of neutral tumor evolution across cancer typesNat. Genet.2016482382441:CAS:528:DC%2BC28Xps1Cqtg%3D%3D26780609493460310.1038/ng.3489 StrattonMRCampbellPJFutrealPAThe cancer genomeNature20094587197242009Natur.458..719S1:CAS:528:DC%2BD1MXksVehtb8%3D19360079282168910.1038/nature07943 DavoliTCumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genomeCell20131559481:CAS:528:DC%2BC3sXhslWmur3K24183448389105210.1016/j.cell.2013.10.011 FireBrowse. Broad Institute of MIT & Harvard. http://firebrowse.org/ (2019). GhandiMNext-generation characterization of the Cancer Cell Line EncyclopediaNature20195695035082019Natur.569..503G1:CAS:528:DC%2BC1MXptlOhtLc%3D31068700669710310.1038/s41586-019-1186-3 BignoldLPAneuploidy as a counter to ‘Muller’s ratchet’ in cancer cellsCancer Genet. Cytogenet.20071781731741:CAS:528:DC%2BD2sXhtF2lsr3E1795427810.1016/j.cancergencyto.2007.07.015 WeghornDSunyaevSBayesian inference of negative and positive selection in human cancersNat. Genet.201749178517881:CAS:528:DC%2BC2sXhslKmur3P2910641610.1038/ng.3987 YCTAAGene copy-number alterations: a cost-benefit analysisCell201315239440510.1016/j.cell.2012.11.043 Fernandez-EscamillaAMRousseauFSchymkowitzJSerranoLPrediction of sequence-dependent and mutational effects on the aggregation of peptides and proteinsNat. Biotechnol.200422130213061:CAS:528:DC%2BD2cXotFGqtb8%3D1536188210.1038/nbt1012 Bioinformatics Pipeline: Copy Number Variation Analysis - GDC Docs. v37.0. Copy Number Variation Analysis Pipeline. https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/ (2023). McDonaldTOChakrabartiSMichorFCurrently available bulk sequencing data do not necessarily support a model of neutral tumor evolutionNat. Genet.201850162016231:CAS:528:DC%2BC1cXitVCitL%2FI30374067646705510.1038/s41588-018-0217-6 DuretLMouchiroudDDeterminants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rateMol. Biol. Evol.20001768741:CAS:528:DC%2BD3cXotF2quw%3D%3D1066670710.1093/oxfordjournals.molbev.a026239 Eyre-WalkerAWoolfitMPhelpsTThe distribution of fitness effects of new deleterious amino acid mutations in humansGenetics20061738911:CAS:528:DC%2BD28Xns12qs7Y%3D16547091152649510.1534/genetics.106.057570 GabrielWLynchMBurgerRMuller’s ratchet and mutational meltdownsEvolution199347174417571:STN:280:DC%2BC1cnjs1alsw%3D%3D2856799410.2307/2410218 TaylorAMGenomic and functional approaches to understanding cancer aneuploidyCancer Cell201833676689.e31:CAS:528:DC%2BC1cXmvVGrur0%3D29622463602819010.1016/j.ccell.2018.03.007 TorresEMIdentification of aneuploidy-tolerating mutationsCell201014371831:CAS:528:DC%2BC3cXht1Cmu73E20850176299324410.1016/j.cell.2010.08.038 TateJGCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res.201947D941D9471:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015 OrrHASomatic mutation favors the evolution of diploidyGenetics1995139144114471:STN:280:DyaK2M3os1Sluw%3D%3D7768451120646910.1093/genetics/139.3.1441 Ben-DavidUAmonAContext is everything: aneuploidy in cancerNat. Rev. Genet.20192144623154865910.1038/s41576-019-0171-x CeredaMMourikisTPCiccarelliFDGenetic redundancy, functional compensation, and cancer vulnerabilityTrends Cancer201621601622874156810.1016/j.trecan.2016.03.003 SharmaYA pan-cancer analysis of synonymous mutationsNat. Commun.2019101142019SSCom.296....1S406389810.1038/s41467-019-10489-2 TorresEMEffects of aneuploidy on cellular physiology and cell division in haploid yeastScience20073179169242007Sci...317..916T1:CAS:528:DC%2BD2sXptVaisro%3D1770293710.1126/science.1142210 PavelkaNAneuploidy confers quantitative proteome changes and phenotypic variation in budding yeastNature20104683213252010Natur.468..321P1:CAS:528:DC%2BC3cXhtlWmu7vM20962780297875610.1038/nature09529 SubramanianSKum CD McFarland (39313_CR7) 2013; 110 DJ McConkey (39313_CR44) 2017; 482 RM Meyers (39313_CR11) 2017; 49 M Ghandi (39313_CR50) 2019; 569 R Beroukhim (39313_CR60) 2010; 463 LM Sack (39313_CR47) 2018; 173 FA Kondrashov (39313_CR33) 2002; 3 U Ben-David (39313_CR36) 2019; 21 T Wang (39313_CR75) 2021; 49 IA Adzhubei (39313_CR42) 2010; 7 JG Tate (39313_CR71) 2019; 47 TO McDonald (39313_CR19) 2018; 50 39313_CR66 W Gabriel (39313_CR25) 1993; 47 39313_CR62 M Cereda (39313_CR65) 2016; 2 BA Weaver (39313_CR63) 2006; 18 N Takeuchi (39313_CR32) 2014; 4 J Steinberg (39313_CR41) 2015; 43 N Dephoure (39313_CR57) 2014; 3 AM Fernandez-Escamilla (39313_CR45) 2004; 22 S Subramanian (39313_CR22) 2006; 23 D Weghorn (39313_CR16) 2017; 49 A Eyre-Walker (39313_CR21) 2002; 19 39313_CR49 CD McFarland (39313_CR9) 2017; 77 SL Ostrow (39313_CR20) 2014; 10 EM Torres (39313_CR58) 2010; 143 M Lek (39313_CR40) 2016; 536 39313_CR48 G Wang (39313_CR64) 2020; 10 39313_CR53 T YC (39313_CR38) 2013; 152 M Adler (39313_CR52) 2014; 31 G Liu (39313_CR31) 2015; 163 39313_CR10 I Martincorena (39313_CR5) 2017; 171 BR Williams (39313_CR55) 2008; 322 N Pavelka (39313_CR59) 2010; 468 39313_CR51 HA Orr (39313_CR28) 1995; 139 L Loewe (39313_CR26) 2006; 87 P Rentzsch (39313_CR43) 2019; 47 A Bateman (39313_CR70) 2021; 49 F Supek (39313_CR74) 2011; 6 M Tarabichi (39313_CR18) 2018; 50 L Duret (39313_CR23) 2000; 17 LP Bignold (39313_CR29) 2007; 178 39313_CR78 Y Sharma (39313_CR12) 2019; 10 SF Bakhoum (39313_CR17) 2017; 171 J Van den Eynden (39313_CR15) 2019; 51 HJ Muller (39313_CR24) 1964; 1 MR Stratton (39313_CR3) 2009; 458 JC Kristofich (39313_CR8) 2018; 14 AM Taylor (39313_CR37) 2018; 33 M Lynch (39313_CR27) 1993; 84 PA Futreal (39313_CR2) 2004; 4 EM Torres (39313_CR56) 2007; 317 JM Sheltzer (39313_CR35) 2011; 333 AR Boyko (39313_CR14) 2008; 4 N McGranahan (39313_CR61) 2017; 168 A Eyre-Walker (39313_CR13) 2006; 173 T Davoli (39313_CR46) 2013; 155 K Ellrott (39313_CR67) 2018; 6 39313_CR1 S López (39313_CR34) 2020; 52 SK Maciver (39313_CR30) 2016; 32 39313_CR68 MJ Williams (39313_CR6) 2016; 48 39313_CR4 JM Sheltzer (39313_CR39) 2011; 27 39313_CR69 DJ Gordon (39313_CR54) 2012; 13 39313_CR77 39313_CR76 A Gonzalez-Perez (39313_CR72) 2013; 10 39313_CR73 37479721 - Nat Commun. 2023 Jul 21;14(1):4423 |
References_xml | – reference: LiuGGene essentiality is a quantitative property linked to cellular evolvabilityCell2015163138813991:CAS:528:DC%2BC2MXhvFagur3L2662773610.1016/j.cell.2015.10.069 – reference: PCAWG | ICGC Data Portal. International Cancer Genome Consortium. https://dcc.icgc.org/pcawg/ (2021). – reference: KondrashovFARogozinIBWolfYIKooninEVSelection in the evolution of gene duplicationsGenome Biol.200231910.1186/gb-2002-3-2-research0008 – reference: StrattonMRCampbellPJFutrealPAThe cancer genomeNature20094587197242009Natur.458..719S1:CAS:528:DC%2BD1MXksVehtb8%3D19360079282168910.1038/nature07943 – reference: TaylorAMGenomic and functional approaches to understanding cancer aneuploidyCancer Cell201833676689.e31:CAS:528:DC%2BC1cXmvVGrur0%3D29622463602819010.1016/j.ccell.2018.03.007 – reference: MeyersRMComputational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cellsNat. Genet.201749177917841:CAS:528:DC%2BC2sXhslehtrjI29083409570919310.1038/ng.3984 – reference: BatemanAUniProt: the universal protein knowledgebase in 2021Nucleic Acids Res.202149D480D4892021mwna.book.....B10.1093/nar/gkaa1100 – reference: TateJGCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res.201947D941D9471:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015 – reference: MartincorenaIUniversal patterns of selection in cancer and somatic tissuesCell201717110291041.e211:CAS:528:DC%2BC2sXhs12lsLzO29056346572039510.1016/j.cell.2017.09.042 – reference: Eyre-WalkerAWoolfitMPhelpsTThe distribution of fitness effects of new deleterious amino acid mutations in humansGenetics20061738911:CAS:528:DC%2BD28Xns12qs7Y%3D16547091152649510.1534/genetics.106.057570 – reference: KristofichJCSynonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzymePLoS Genet.201814e100761530148850612864910.1371/journal.pgen.1007615 – reference: LoeweLQuantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNAGenet. Res.2006871331592006JMagR.182..133L1:CAS:528:DC%2BD28Xksleltbc%3D1670927510.1017/S0016672306008123 – reference: PavelkaNAneuploidy confers quantitative proteome changes and phenotypic variation in budding yeastNature20104683213252010Natur.468..321P1:CAS:528:DC%2BC3cXhtlWmu7vM20962780297875610.1038/nature09529 – reference: SheltzerJMAmonAThe aneuploidy paradox: costs and benefits of an incorrect karyotypeTrends Genet.2011274464531:CAS:528:DC%2BC3MXhtlakur7L21872963319782210.1016/j.tig.2011.07.003 – reference: GordonDJResioBPellmanDCauses and consequences of aneuploidy in cancerNat. Rev. Genet.2012131892031:CAS:528:DC%2BC38XhtFSnu7k%3D2226990710.1038/nrg3123 – reference: SackLMProfound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patternsCell2018173499514.e231:CAS:528:DC%2BC1cXlvVOhtb0%3D29576454664328310.1016/j.cell.2018.02.037 – reference: Househam, J. et al. Integrated quality control of allele-specific copy numbers, mutations and tumour purity from cancer whole genome sequencing assays. bioRxiv. https://doi.org/10.1101/2021.02.13.429885 (2023). – reference: BeroukhimRThe landscape of somatic copy-number alteration across human cancersNature20104638999052010Natur.463..899B1:CAS:528:DC%2BC3cXitFemsr0%3D20164920282670910.1038/nature08822 – reference: Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 67 (2018). – reference: CeredaMMourikisTPCiccarelliFDGenetic redundancy, functional compensation, and cancer vulnerabilityTrends Cancer201621601622874156810.1016/j.trecan.2016.03.003 – reference: GabrielWLynchMBurgerRMuller’s ratchet and mutational meltdownsEvolution199347174417571:STN:280:DC%2BC1cnjs1alsw%3D%3D2856799410.2307/2410218 – reference: DepMap, Broad. DepMap 22Q2 Public. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19700056.v2 (2022). – reference: BakhoumSFLandauDACancer evolution: no room for negative selectionCell20171719879891:CAS:528:DC%2BC2sXhvFOhs7jM2914961210.1016/j.cell.2017.10.039 – reference: LynchMButcherDBürgerRGabrielWThe mutational meltdown in asexual populationsJ. Hered.1993843393441:STN:280:DyaK2c%2FhsVartA%3D%3D840935510.1093/oxfordjournals.jhered.a111354 – reference: SteinbergJHontiFMeaderSWebberCHaploinsufficiency predictions without study biasNucleic Acids Res.201543e10126001969455190910.1093/nar/gkv474 – reference: EllrottKScalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic PipelinesCell Syst.20186271281.e71:CAS:528:DC%2BC1cXpslOktr0%3D29596782607571710.1016/j.cels.2018.03.002 – reference: WeghornDSunyaevSBayesian inference of negative and positive selection in human cancersNat. Genet.201749178517881:CAS:528:DC%2BC2sXhslKmur3P2910641610.1038/ng.3987 – reference: WangTOncoVar: an integrated database and analysis platform for oncogenic driver variants in cancersNucleic Acids Res.202149D1289D13011:CAS:528:DC%2BB3MXisFOnsLnE3317973810.1093/nar/gkaa1033 – reference: Antonello Alice & Caravagna Giulio. Integrated quality control of allele-specific copy numbers, mutations and tumour purity from cancer whole genome sequencing assays. Zenodo.https://zenodo.org/record/6410935#.ZGTAHOxBx_l (2022). – reference: Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature578, 82–93 (2020). – reference: LópezSInterplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolutionNat. Genet.20205228329332139907711678410.1038/s41588-020-0584-7 – reference: WilliamsBRAneuploidy affects proliferation and spontaneous immortalization in mammalian cellsScience20083227037092008Sci...322..703W1:CAS:528:DC%2BD1cXht12ltb7O18974345270151110.1126/science.1160058 – reference: TorresEMIdentification of aneuploidy-tolerating mutationsCell201014371831:CAS:528:DC%2BC3cXht1Cmu73E20850176299324410.1016/j.cell.2010.08.038 – reference: Senger, G., Santaguida, S. & Schaefer, M. H. Regulation of protein complex partners as a compensatory mechanism in aneuploid tumors. Elife11, e75526 (2022). – reference: SubramanianSKumarSHigher intensity of purifying selection on >90% of the human genes revealed by the intrinsic replacement mutation ratesMol. Biol. Evol.200623228322871:CAS:528:DC%2BD28Xht1ejtbzF1698281910.1093/molbev/msl123 – reference: Gonzalez-PerezAIntOGen-mutations identifies cancer drivers across tumor typesNat. Methods201310108110841:CAS:528:DC%2BC3sXhsVeqs7%2FP24037244575804210.1038/nmeth.2642 – reference: FutrealPAA census of human cancer genesNat. Rev. Cancer200441771831:CAS:528:DC%2BD2cXhs1Ggsrg%3D14993899266528510.1038/nrc1299 – reference: McDonaldTOChakrabartiSMichorFCurrently available bulk sequencing data do not necessarily support a model of neutral tumor evolutionNat. Genet.201850162016231:CAS:528:DC%2BC1cXitVCitL%2FI30374067646705510.1038/s41588-018-0217-6 – reference: OstrowSLBarshirRDeGregoriJYeger-LotemEHershbergRCancer evolution is associated with pervasive positive selection on globally expressed genesPLoS Genet.201410e100423924603726394529710.1371/journal.pgen.1004239 – reference: YCTAAGene copy-number alterations: a cost-benefit analysisCell201315239440510.1016/j.cell.2012.11.043 – reference: BignoldLPAneuploidy as a counter to ‘Muller’s ratchet’ in cancer cellsCancer Genet. Cytogenet.20071781731741:CAS:528:DC%2BD2sXhtF2lsr3E1795427810.1016/j.cancergencyto.2007.07.015 – reference: TakeuchiNKanekoKKooninEVHorizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivisionG3: Genes Genomes Genet.201443253391:CAS:528:DC%2BC2cXhs1SitrfP10.1534/g3.113.009845 – reference: LekMAnalysis of protein-coding genetic variation in 60,706 humansNature20165362852911:CAS:528:DC%2BC28XhtlOnsbbP27535533501820710.1038/nature19057 – reference: AdzhubeiIAA method and server for predicting damaging missense mutationsNat. Methods201072482491:CAS:528:DC%2BC3cXjvFKqu78%3D20354512285588910.1038/nmeth0410-248 – reference: FireBrowse. Broad Institute of MIT & Harvard. http://firebrowse.org/ (2019). – reference: McGranahanNSwantonCClonal heterogeneity and tumor evolution: past, present, and the futureCell20171686136281:CAS:528:DC%2BC2sXis1ygtLg%3D2818728410.1016/j.cell.2017.01.018 – reference: RentzschPWittenDCooperGMShendureJKircherMCADD: predicting the deleteriousness of variants throughout the human genomeNucleic Acids Res.201947D886D8941:CAS:528:DC%2BC1MXhs1CgtL%2FI3037182710.1093/nar/gky1016 – reference: OrrHASomatic mutation favors the evolution of diploidyGenetics1995139144114471:STN:280:DyaK2M3os1Sluw%3D%3D7768451120646910.1093/genetics/139.3.1441 – reference: SupekFBošnjakMŠkuncaNŠmucTREVIGO summarizes and visualizes long lists of gene ontology termsPLoS ONE20116e218002011PLoSO...621800S1:CAS:528:DC%2BC3MXhtVeht7zI21789182313875210.1371/journal.pone.0021800 – reference: Seshan, V. E. & Olshen, A. Bioconductor. DNAcopy: DNA copy Number Data Analysis. R package version 1.74.1. https://doi.org/10.18129/B9.bioc.DNAcopy (2023). – reference: Davoli, T. & De Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011). – reference: WeaverBAClevelandDWDoes aneuploidy cause cancer?Curr. Opin. Cell Biol.2006186586671:CAS:528:DC%2BD28XhtF2qtbnN1704623210.1016/j.ceb.2006.10.002 – reference: McFarlandCDKorolevKSKryukovGVSunyaevSRMirnyLAImpact of deleterious passenger mutations on cancer progressionProc. Natl. Acad. Sci. USA2013110291029152013PNAS..110.2910M1:CAS:528:DC%2BC3sXjvFelt74%3D23388632358188310.1073/pnas.1213968110 – reference: DephoureNQuantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeastElife2014312710.7554/eLife.03023 – reference: MaciverSKAsexual amoebae escape muller’s ratchet through polyploidyTrends Parasitol.2016328558622759963210.1016/j.pt.2016.08.006 – reference: Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 606, 725–731 (2022). – reference: Ben-DavidUAmonAContext is everything: aneuploidy in cancerNat. Rev. Genet.20192144623154865910.1038/s41576-019-0171-x – reference: Alfieri F. & Schaefer M. Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions. Zenodo. https://zenodo.org/record/7079420#.ZGTAZuxBx_k (2023). – reference: AdlerMAnjumMBergOGAnderssonDISandegrenLHigh fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanismsMol. Biol. Evol.201431152615351:CAS:528:DC%2BC2cXosFSmtL8%3D2465981510.1093/molbev/msu111 – reference: Bioinformatics Pipeline: Copy Number Variation Analysis - GDC Docs. v37.0. Copy Number Variation Analysis Pipeline. https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/ (2023). – reference: Alfieri F. mutation_compensation_NCOMM-230517. Zenodo. https://github.com/fabio-alfieri/mutation_compensation/releases/tag/vNCOMM (2023). – reference: Eyre-WalkerAKeightleyPDSmithNGCGaffneyDQuantifying the slightly deleterious mutation model of molecular evolutionMol. Biol. Evol.200219214221491:CAS:528:DC%2BD38Xps12hs7o%3D1244680610.1093/oxfordjournals.molbev.a004039 – reference: TorresEMEffects of aneuploidy on cellular physiology and cell division in haploid yeastScience20073179169242007Sci...317..916T1:CAS:528:DC%2BD2sXptVaisro%3D1770293710.1126/science.1142210 – reference: Fernandez-EscamillaAMRousseauFSchymkowitzJSerranoLPrediction of sequence-dependent and mutational effects on the aggregation of peptides and proteinsNat. Biotechnol.200422130213061:CAS:528:DC%2BD2cXotFGqtb8%3D1536188210.1038/nbt1012 – reference: GhandiMNext-generation characterization of the Cancer Cell Line EncyclopediaNature20195695035082019Natur.569..503G1:CAS:528:DC%2BC1MXptlOhtLc%3D31068700669710310.1038/s41586-019-1186-3 – reference: WangGAnastassiouDPan-cancer driver copy number alterations identified by joint expression/CNA data analysisSci. Rep.2020101101:CAS:528:DC%2BB38XhtVOgsLrJ – reference: DuretLMouchiroudDDeterminants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rateMol. Biol. Evol.20001768741:CAS:528:DC%2BD3cXotF2quw%3D%3D1066670710.1093/oxfordjournals.molbev.a026239 – reference: MullerHJThe relation of recombination to mutational advanceMutat. Res.196412910.1016/0027-5107(64)90047-8 – reference: TarabichiMNeutral tumor evolution?Nat. Genet.201850163016331:CAS:528:DC%2BC1cXitVCitLzM30374075654855810.1038/s41588-018-0258-x – reference: McConkeyDJThe integrated stress response and proteotoxicity in cancer therapyBiochem. Biophys. Res. Commun.20174824504531:CAS:528:DC%2BC2sXislOls7c%3D28212730531973210.1016/j.bbrc.2016.11.047 – reference: Van den EyndenJJiménez-SánchezAMillerMLLarssonELack of detectable neoantigen depletion signals in the untreated cancer genomeNat. Genet.2019511741174831768072688755710.1038/s41588-019-0532-6 – reference: DavoliTCumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genomeCell20131559481:CAS:528:DC%2BC3sXhslWmur3K24183448389105210.1016/j.cell.2013.10.011 – reference: Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation2, 100141 (2021). – reference: McFarlandCDThe damaging effect of passenger mutations on cancer progressionCancer Res.201777476347721:CAS:528:DC%2BC2sXhsV2lsrfP28536279563969110.1158/0008-5472.CAN-15-3283-T – reference: BoykoARAssessing the evolutionary impact of amino acid mutations in the human genomePLoS Genet.20084e100008318516229237733910.1371/journal.pgen.1000083 – reference: SharmaYA pan-cancer analysis of synonymous mutationsNat. Commun.2019101142019SSCom.296....1S406389810.1038/s41467-019-10489-2 – reference: SheltzerJMAneuploidy drives genomic instability in yeastScience (1979)2011333102610301:CAS:528:DC%2BC3MXhtVWrtr7F – reference: WilliamsMJWernerBBarnesCPGrahamTASottorivaAIdentification of neutral tumor evolution across cancer typesNat. Genet.2016482382441:CAS:528:DC%2BC28Xps1Cqtg%3D%3D26780609493460310.1038/ng.3489 – ident: 39313_CR51 doi: 10.6084/m9.figshare.19700056.v2 – volume: 468 start-page: 321 year: 2010 ident: 39313_CR59 publication-title: Nature doi: 10.1038/nature09529 – volume: 49 start-page: 1779 year: 2017 ident: 39313_CR11 publication-title: Nat. Genet. doi: 10.1038/ng.3984 – volume: 173 start-page: 499 year: 2018 ident: 39313_CR47 publication-title: Cell doi: 10.1016/j.cell.2018.02.037 – volume: 482 start-page: 450 year: 2017 ident: 39313_CR44 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.11.047 – ident: 39313_CR73 doi: 10.1016/j.xinn.2021.100141 – volume: 33 start-page: 676 year: 2018 ident: 39313_CR37 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.007 – volume: 7 start-page: 248 year: 2010 ident: 39313_CR42 publication-title: Nat. Methods doi: 10.1038/nmeth0410-248 – volume: 155 start-page: 948 year: 2013 ident: 39313_CR46 publication-title: Cell doi: 10.1016/j.cell.2013.10.011 – volume: 31 start-page: 1526 year: 2014 ident: 39313_CR52 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu111 – ident: 39313_CR1 doi: 10.1038/s41586-020-1969-6 – volume: 178 start-page: 173 year: 2007 ident: 39313_CR29 publication-title: Cancer Genet. Cytogenet. doi: 10.1016/j.cancergencyto.2007.07.015 – volume: 49 start-page: D480 year: 2021 ident: 39313_CR70 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1100 – volume: 463 start-page: 899 year: 2010 ident: 39313_CR60 publication-title: Nature doi: 10.1038/nature08822 – volume: 139 start-page: 1441 year: 1995 ident: 39313_CR28 publication-title: Genetics doi: 10.1093/genetics/139.3.1441 – volume: 49 start-page: D1289 year: 2021 ident: 39313_CR75 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1033 – volume: 110 start-page: 2910 year: 2013 ident: 39313_CR7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1213968110 – volume: 171 start-page: 987 year: 2017 ident: 39313_CR17 publication-title: Cell doi: 10.1016/j.cell.2017.10.039 – ident: 39313_CR68 doi: 10.18129/B9.bioc.DNAcopy – ident: 39313_CR78 – volume: 10 start-page: 1081 year: 2013 ident: 39313_CR72 publication-title: Nat. Methods doi: 10.1038/nmeth.2642 – volume: 6 start-page: 271 year: 2018 ident: 39313_CR67 publication-title: Cell Syst. doi: 10.1016/j.cels.2018.03.002 – volume: 4 start-page: 325 year: 2014 ident: 39313_CR32 publication-title: G3: Genes Genomes Genet. doi: 10.1534/g3.113.009845 – volume: 10 start-page: 1 year: 2019 ident: 39313_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10489-2 – volume: 10 start-page: 1 year: 2020 ident: 39313_CR64 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56847-4 – volume: 10 start-page: e1004239 year: 2014 ident: 39313_CR20 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004239 – volume: 143 start-page: 71 year: 2010 ident: 39313_CR58 publication-title: Cell doi: 10.1016/j.cell.2010.08.038 – volume: 47 start-page: D941 year: 2019 ident: 39313_CR71 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1015 – volume: 4 start-page: e1000083 year: 2008 ident: 39313_CR14 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000083 – volume: 2 start-page: 160 year: 2016 ident: 39313_CR65 publication-title: Trends Cancer doi: 10.1016/j.trecan.2016.03.003 – volume: 171 start-page: 1029 year: 2017 ident: 39313_CR5 publication-title: Cell doi: 10.1016/j.cell.2017.09.042 – ident: 39313_CR49 doi: 10.1101/2021.02.13.429885 – volume: 168 start-page: 613 year: 2017 ident: 39313_CR61 publication-title: Cell doi: 10.1016/j.cell.2017.01.018 – volume: 22 start-page: 1302 year: 2004 ident: 39313_CR45 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1012 – volume: 32 start-page: 855 year: 2016 ident: 39313_CR30 publication-title: Trends Parasitol. doi: 10.1016/j.pt.2016.08.006 – volume: 21 start-page: 44 year: 2019 ident: 39313_CR36 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0171-x – volume: 50 start-page: 1620 year: 2018 ident: 39313_CR19 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0217-6 – volume: 27 start-page: 446 year: 2011 ident: 39313_CR39 publication-title: Trends Genet. doi: 10.1016/j.tig.2011.07.003 – ident: 39313_CR77 doi: 10.1038/s41467-023-39313-8 – volume: 13 start-page: 189 year: 2012 ident: 39313_CR54 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3123 – volume: 4 start-page: 177 year: 2004 ident: 39313_CR2 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1299 – volume: 51 start-page: 1741 year: 2019 ident: 39313_CR15 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0532-6 – volume: 333 start-page: 1026 year: 2011 ident: 39313_CR35 publication-title: Science (1979) – volume: 317 start-page: 916 year: 2007 ident: 39313_CR56 publication-title: Science doi: 10.1126/science.1142210 – volume: 49 start-page: 1785 year: 2017 ident: 39313_CR16 publication-title: Nat. Genet. doi: 10.1038/ng.3987 – volume: 23 start-page: 2283 year: 2006 ident: 39313_CR22 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl123 – volume: 536 start-page: 285 year: 2016 ident: 39313_CR40 publication-title: Nature doi: 10.1038/nature19057 – volume: 6 start-page: e21800 year: 2011 ident: 39313_CR74 publication-title: PLoS ONE doi: 10.1371/journal.pone.0021800 – volume: 84 start-page: 339 year: 1993 ident: 39313_CR27 publication-title: J. Hered. doi: 10.1093/oxfordjournals.jhered.a111354 – volume: 3 start-page: 1 year: 2002 ident: 39313_CR33 publication-title: Genome Biol. doi: 10.1186/gb-2002-3-2-research0008 – volume: 43 start-page: e101 year: 2015 ident: 39313_CR41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv474 – volume: 18 start-page: 658 year: 2006 ident: 39313_CR63 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2006.10.002 – volume: 1 start-page: 2 year: 1964 ident: 39313_CR24 publication-title: Mutat. Res. doi: 10.1016/0027-5107(64)90047-8 – volume: 3 start-page: 1 year: 2014 ident: 39313_CR57 publication-title: Elife doi: 10.7554/eLife.03023 – volume: 152 start-page: 394 year: 2013 ident: 39313_CR38 publication-title: Cell doi: 10.1016/j.cell.2012.11.043 – ident: 39313_CR66 – volume: 47 start-page: 1744 year: 1993 ident: 39313_CR25 publication-title: Evolution doi: 10.2307/2410218 – volume: 14 start-page: e1007615 year: 2018 ident: 39313_CR8 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007615 – ident: 39313_CR62 doi: 10.1146/annurev-cellbio-092910-154234 – ident: 39313_CR4 doi: 10.1186/s13059-018-1434-0 – volume: 50 start-page: 1630 year: 2018 ident: 39313_CR18 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0258-x – volume: 52 start-page: 283 year: 2020 ident: 39313_CR34 publication-title: Nat. Genet. doi: 10.1038/s41588-020-0584-7 – volume: 19 start-page: 2142 year: 2002 ident: 39313_CR21 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a004039 – ident: 39313_CR76 – volume: 47 start-page: D886 year: 2019 ident: 39313_CR43 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1016 – volume: 48 start-page: 238 year: 2016 ident: 39313_CR6 publication-title: Nat. Genet. doi: 10.1038/ng.3489 – volume: 173 start-page: 891 year: 2006 ident: 39313_CR13 publication-title: Genetics doi: 10.1534/genetics.106.057570 – ident: 39313_CR53 doi: 10.7554/eLife.75526 – ident: 39313_CR48 – volume: 569 start-page: 503 year: 2019 ident: 39313_CR50 publication-title: Nature doi: 10.1038/s41586-019-1186-3 – volume: 458 start-page: 719 year: 2009 ident: 39313_CR3 publication-title: Nature doi: 10.1038/nature07943 – ident: 39313_CR69 – volume: 77 start-page: 4763 year: 2017 ident: 39313_CR9 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3283-T – volume: 322 start-page: 703 year: 2008 ident: 39313_CR55 publication-title: Science doi: 10.1126/science.1160058 – ident: 39313_CR10 doi: 10.1038/s41586-022-04823-w – volume: 17 start-page: 68 year: 2000 ident: 39313_CR23 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026239 – volume: 163 start-page: 1388 year: 2015 ident: 39313_CR31 publication-title: Cell doi: 10.1016/j.cell.2015.10.069 – volume: 87 start-page: 133 year: 2006 ident: 39313_CR26 publication-title: Genet. Res. doi: 10.1017/S0016672306008123 – reference: 37479721 - Nat Commun. 2023 Jul 21;14(1):4423 |
SSID | ssj0000391844 |
Score | 2.4535837 |
Snippet | Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all... Abstract Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3594 |
SubjectTerms | 45 631/114 631/181/2468 631/208/737/1505 631/67/2329 631/67/69 Cancer Chromosome aberrations Copy number DNA Copy Number Variations Evolution Evolutionary genetics Genes Genome Genomes Humanities and Social Sciences Humans multidisciplinary Mutation Neoplasms - genetics Science Science (multidisciplinary) Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIX1PJMW5CRuEHUjT1OvKcKqi4VEpyo1JuVhw1IbbJs0kP_PTOOk2p59Jo4kZPxeD7P2N8H8NZRUC-ZT1s2OabotUqN80tapWQ1ZsXCuyD39uVrfnaOny_0RUy49XFb5TQnhom66WrOkR_R0qDgk5NSH69_pawaxdXVKKFxHx5kFGl4hJvVpznHwuznBjGelVkoc9RjmBkoUKVqqTLq2FY8CrT9_8Kaf2-Z_KNuGsLRahceRxwpPoyG34N7rn0CD0dlyZunMJywNTeCKVivXC-G7pLZk51g3RumZ6YFv6g7Dlzi6nosx1OrUbRH9F0gcqUG6xsxaoaIkree-ynDJzovCGU3KadwBas70MVncL46_XZylkaBhbTWmA0p13IpoKtCNpmsyHedl94ZTyjLScKNlZHKEYjwjcxUY2SV09SI2hHKI5SwLNRz2Gm71r0EUThdk3NjTm9GWWNpGGjqvNF57Yt8kUA2_WZbR_ZxFsG4tKEKrowdTWPJNDaYxpoE3s3PrEfujTtbf2TrzS2ZNztc6DbfbXRDSz0kAIdlU1YFVh5LdEo56T1NtnxEOYHDyfY2OnNvb4deAm_m2-SGXFspW0cWC21oJal1kcCLcajMPVFMiISanjZbg2irq9t32p8_AtU3wT-unNLHvZ_G222__v8v9u_-jAN4JNkFWIIpP4SdYXPtXhG2GqrXwYF-Awg8H88 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VVkhcELQ8FgoyUm8QaPxIvAeEoGpVVaKnrtSblccYkLZJ2WQl9t8zYyeLFhZOXGN74_V4PJ8z9vcBHCEF9YL5tGWd6UR7oxKLfkq7lLTSaX7sMci9fb7Mzmf64tpc78AodzQMYLd1a8d6UrPF_O2P76sP5PDv45Vx-67Twd0p-iRqqlJ62x3Yk_wmPso3wP2wMqspbWj0cHdme9ON-BRo_Ldhzz-PUP6WRw3h6ewB3B9wpfgYJ8JD2MFmH-5GpcnVAfQnbN2FYErWG-xE386ZTRkF6-AwXXO77ETVciATN8uYnqdaUcRHdG0gdqUKtysRNUREwUfR_fjFT7ReEOquE_6kK1jtgR4-gtnZ6dXJeTIILiSV0WmfcG6XArzKZZ3KknwZvfRoPaEulIQjSysVEqjwtUxVbWWZ0VKpDRLqI9QwzdVj2G3aBp-CyNFU5Ow6o1_WstKFZeBpstpklc-z4wmk4zC7amAjZ1GMuQtZcWVdNI0j07hgGmcn8Hrd5jZycfyz9ie23rom82iHB-3iixvc0lEPCdDpoi7KXJdeFxqVQuk9Lb58ZXkCh6Pt3Tg3He1Sc77EK6n41bqY3JJzLUWDZLFQh3aWxuQTeBKnyronigmStKHWdmMSbXR1s6T59jVQfxMc5Ewq_bk343z71a-_j8Wz_zEWz-GeZEdh4absEHb7xRJfECLry5fBzX4CU-0v5g priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiHe3LchI3CBiY48d7xFWVBUSnKjUm5XHGJDapNpND_33zDgPtFCQuMbjyMl4PJ89428AXhM79VL4tHXjMMNoTeYprniXkteYF8tIqdzb5y_u9Aw_ndvzPdDTXZiUtJ8oLdMyPWWHvdtiMmn2MJlZmZzfeAfuCnW7pPGt3Xo-VxHGc4843o9ZGn9L1x0flKj6b8OXf6ZJ_hYrTS7o5CE8GLGjej-M9hHsUfsY7g3VJG-eQL8WDW6U0K5e0lb13YUwJpOSWjdCycybfFV34qzU5fUQgmepoVCP2naJvJUFrm7UUCdElZJuHqdTPdVFxci6yeTYVklFB374FM5OPn5dn2ZjUYWstpj3mcRv2YmbQje5rtheKepIPjKyIs1YsfLaEAOH2OjcNF5XjpdDtMTIjpHBqjDPYL_tWjoAVZCt2aDR8ZtR11h6AZfWNdbVsXDLBeTTbw71yDguhS8uQop8Gx8G1QRWTUiqCX4Bb-Y-VwPfxj-lP4j2Zknhyk4Pus23MM6dwCNk0IZlU1YFVhFLJGNIx8gLrFxLXsDxpPswGvA28E60kIu6mptfzc1sehJPKVtijSUZ3j1aWyzg-TBV5pEYIUFCy739ziTaGepuS_vje6L3Zsgn0VL-uLfTfPs1rr__i8P_Ez-C-1pMQsowuWPY7zfX9ILxVV-9TAb1E0N7Hac priority: 102 providerName: Springer Nature |
Title | Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions |
URI | https://link.springer.com/article/10.1038/s41467-023-39313-8 https://www.ncbi.nlm.nih.gov/pubmed/37328455 https://www.proquest.com/docview/2827005725 https://www.proquest.com/docview/2827259557 https://pubmed.ncbi.nlm.nih.gov/PMC10276008 https://doaj.org/article/1745154adab74bf4a4e33e2ff0883595 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtSqGXkr7dpEaF3tolXj1W8tExcYMhobQN-Cb2IdFAshti55B_32-ktRv3eellDSut0WpmNN_sSN8w9s7DqZfEpy2aQmUqaJlZH8aIUvJa5WYUfCz3dnJaHJ-p-UIv7pT6oj1hiR44TdwBEDNcriqbsjKqCqpUXkovQoB50KFSWn3h8-4EU3ENlmOELqo_JTOS9mCp4poAF5XJscwxpC1PFAn7f4cyf90s-VPGNDqi2S573CNIPkkjf8Lu-fYpe5hqSt4-Y6spyfGaE_nqpV_yVXdBvMmeU8UbImZGqM_rjlwWv7xJiXj0SuV6-LKLFK7ocHXLU7UQXtKm87D-tse7wIGvm4w-3nKq64Cbz9nZ7Ojr9DjrSytktVb5KqMsLly5NKLJRQWr9UEEbwPwlRdAjJUV0gM-hEbksrGiKrAoKu2B74APxka-YDtt1_pXjBuva5i1KvDPStSqtAQxddHoog6mGA1Yvp5mV_e841T-4sLF_Le0LonGQTQuisbZAXu_eeYqsW78tfchSW_Tkxiz4w3okev1yP1LjwZsfy1715vx0iEeNXRcV6D57aYZBkhZlbL1kFjsgxhSazNgL5OqbEYiiQpJaTxtt5Roa6jbLe35t0jyDeBHOVO83Ie1vv0Y15_n4vX_mIs99kiQoVCJpmKf7ayub_wbYK9VNWT3zcLgamcfh-zBZDL_Msfv4dHpp8-4Oy2mw2iIuJ4o-x1Mzy69 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiLUEChgJThB14iX2HBCCQjWly6mV5may2IDUJsMkIzR_it_Ie04y1bD01mtiR47faj_7-wBeOgzqGeFp8zKVsfRKxMb5Ma5SkkImeuRdoHs7Ok4np_LzVE034NdwF4aOVQ4-MTjqsi5oj3wHlwaabk5y9W72IybWKKquDhQanVocuOVPXLI1b_c_onxfcb736WR3EvesAnGhZNLGVMDEKCY0LxOeo8I6z70zHlMLxzFZyg0XDiOnL3kiSsPzFP2BVA5TGwyNYy3wu9fgOgbeER0h1FO92tMhtHUjZX83ZyTMTiODJ8LAGIuxSHAi1uJfoAn4V2779xHNP-q0Ifzt3YHbfd7K3neKdhc2XHUPbnRMlsv70O6S9swZQb6eu4a19RmhNTtGPDsEB10vGlbUFCjZ-aIr_2OrjiSINXUAjsUGsyXrOEpYRkfd_bCjyGrPMKsvY9oyZsQmgQ8fwOmVTP1D2Kzqyj0Cpp0q0JnIFL8seSEzQ4mtSkuVFl6nowiSYZpt0aOdE-nGmQ1Vd2FsJxqLorFBNNZE8HrVZ9ZhfVza-gNJb9WScLrDg3r-1fZmb3GEmDDKrMxyLXMvM-mEcNx7dO50JTqC7UH2tncejb1Q9QherF6j2VMtJ6scSiy0wZWrUjqCrU5VViMRBMAkFfY2a0q0NtT1N9X3bwFaHNNNqtTiz70Z9O1iXP-fi8eX_8ZzuDk5OTq0h_vHB0_gFidzIPqndBs22_nCPcW8rs2fBWNi8OWqrfc3bBtZHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaLd-BF7DwhBy6qlUHGg0t5MHjYgtcmyyQrtX-PXMeMkWy2P3npN7MjxjGfGnvH3ATxz6NQzwtPmZSpj6ZWIjfMT3KUkhUz02LtA9_bxKN0_lu9narYFv4a7MFRWOdjEYKjLuqAz8hFuDTTdnORq5PuyiE9709fzHzExSFGmdaDT6FTk0K1-4vateXWwh7J-zvn03efd_bhnGIgLJZM2pmQmejSheZnwHJXXee6d8RhmOI6BU264cOhFfckTURqep2gbpHIY5qCbnGiB370El7VAt4lrSc_0-nyHkNeNlP09nbEwo0YGq4ROMhYTkeCkbPjCQBnwrzj373LNP3K2wRVOb8D1PoZlbzqluwlbrroFVzpWy9VtaHdJkxaM4F9PXcPa-oSQmx0jzh2Chq6XDStqcprsdNmVAmCrjjCINXUAkcUG8xXr-EpYRmXvfjhdZLVnGOGXMR0fM2KWwId34PhCpv4ubFd15e4D004VaFhkil-WvJCZoSBXpaVKC6_TcQTJMM226JHPiYDjxIYMvDC2E41F0dggGmsieLHuM-9wP85t_Zakt25JmN3hQb34ansTYHGEGDzKrMxyLXMvM-mEcNx7NPR0PTqCnUH2tjckjT1T-wierl-jCaC8TlY5lFhog7tYpXQE9zpVWY9EEBiTVNjbbCjRxlA331TfvwWYcQw9KWuLP_dy0Lezcf1_Lh6c_xtP4CquW_vh4OjwIVzjtBqICSrdge12sXSPMMRr88dhLTH4ctGL9zfUOV1S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+genomes+tolerate+deleterious+coding+mutations+through+somatic+copy+number+amplifications+of+wild-type+regions&rft.jtitle=Nature+communications&rft.au=Fabio+Alfieri&rft.au=Giulio+Caravagna&rft.au=Martin+H.+Schaefer&rft.date=2023-06-16&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-023-39313-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1745154adab74bf4a4e33e2ff0883595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |