Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions

Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of delet...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 3594 - 13
Main Authors Alfieri, Fabio, Caravagna, Giulio, Schaefer, Martin H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-39313-8

Cover

Loading…
Abstract Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations. Most of the mutations accumulated in cancer cells are deleterious, and it is unclear how such alterations are tolerated. Here, the authors propose that copy number amplifications could increase the tolerance to deleterious mutations, and analyse the features that could determine the underlying selection process.
AbstractList Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.
Abstract Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.
Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations. Most of the mutations accumulated in cancer cells are deleterious, and it is unclear how such alterations are tolerated. Here, the authors propose that copy number amplifications could increase the tolerance to deleterious mutations, and analyse the features that could determine the underlying selection process.
Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.
Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.Most of the mutations accumulated in cancer cells are deleterious, and it is unclear how such alterations are tolerated. Here, the authors propose that copy number amplifications could increase the tolerance to deleterious mutations, and analyse the features that could determine the underlying selection process.
ArticleNumber 3594
Author Alfieri, Fabio
Schaefer, Martin H.
Caravagna, Giulio
Author_xml – sequence: 1
  givenname: Fabio
  orcidid: 0000-0001-7173-0105
  surname: Alfieri
  fullname: Alfieri, Fabio
  organization: Department of Experimental Oncology, IEO European Institute of Oncology IRCCS
– sequence: 2
  givenname: Giulio
  surname: Caravagna
  fullname: Caravagna, Giulio
  organization: Department of Mathematics and Geosciences, University of Trieste
– sequence: 3
  givenname: Martin H.
  orcidid: 0000-0001-7503-6364
  surname: Schaefer
  fullname: Schaefer, Martin H.
  email: martin.schaefer@ieo.it
  organization: Department of Experimental Oncology, IEO European Institute of Oncology IRCCS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37328455$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_oH-CAInHhEvBn7JwQWgGtVIkLnC0nGWe9SuxgO6D993g3S2l7qC-2xs-883o8l8WZ8w6K4g1GHzCi8mNkmNWiQoRWtKGYVvJFcUEQwxUWhJ49OJ8X1zHuUF60wZKxV8U5FZRIxvlFkTbadRDKAZyfIJbJjxB0grKHERIE65dYdr63biinJelkvcvUNvhl2JbRTznSZWDel26Z2qykp3m0xnYn1Jvyjx37Ku1nKAMMh-Dr4qXRY4Tr035V_Pz65cfmprr7_u128_mu6jjDqWKsrhmqqSA9Ji0XEgwxIA2hBEiD61YSCggJ0xNMe0nausGYceAMkYY2gl4Vt6tu7_VOzcFOOuyV11YdAz4MSofsfwSFBeOYM93rVrDWMM2AUiDGICkpb3jW-rRqzUs7Qd-BS0GPj0Qf3zi7VYP_rTAiokZIZoX3J4Xgfy0Qk5ps7GActYPcZUUkESSX4gfj756gO78El3t1pBDimczU24eW7r38-90MkBXogo8xgLlHMFKHKVLrFKk8Reo4RepgUz5J6uz67_lZdnw-la6pMddxA4T_tp_J-gtxMNvN
CitedBy_id crossref_primary_10_3389_fimmu_2024_1385762
crossref_primary_10_1038_s41467_025_56301_2
crossref_primary_10_1038_s41467_023_39313_8
crossref_primary_10_3390_biomedicines12081759
crossref_primary_10_1186_s13059_024_03225_7
Cites_doi 10.6084/m9.figshare.19700056.v2
10.1038/nature09529
10.1038/ng.3984
10.1016/j.cell.2018.02.037
10.1016/j.bbrc.2016.11.047
10.1016/j.xinn.2021.100141
10.1016/j.ccell.2018.03.007
10.1038/nmeth0410-248
10.1016/j.cell.2013.10.011
10.1093/molbev/msu111
10.1038/s41586-020-1969-6
10.1016/j.cancergencyto.2007.07.015
10.1093/nar/gkaa1100
10.1038/nature08822
10.1093/genetics/139.3.1441
10.1093/nar/gkaa1033
10.1073/pnas.1213968110
10.1016/j.cell.2017.10.039
10.18129/B9.bioc.DNAcopy
10.1038/nmeth.2642
10.1016/j.cels.2018.03.002
10.1534/g3.113.009845
10.1038/s41467-019-10489-2
10.1038/s41598-019-56847-4
10.1371/journal.pgen.1004239
10.1016/j.cell.2010.08.038
10.1093/nar/gky1015
10.1371/journal.pgen.1000083
10.1016/j.trecan.2016.03.003
10.1016/j.cell.2017.09.042
10.1101/2021.02.13.429885
10.1016/j.cell.2017.01.018
10.1038/nbt1012
10.1016/j.pt.2016.08.006
10.1038/s41576-019-0171-x
10.1038/s41588-018-0217-6
10.1016/j.tig.2011.07.003
10.1038/s41467-023-39313-8
10.1038/nrg3123
10.1038/nrc1299
10.1038/s41588-019-0532-6
10.1126/science.1142210
10.1038/ng.3987
10.1093/molbev/msl123
10.1038/nature19057
10.1371/journal.pone.0021800
10.1093/oxfordjournals.jhered.a111354
10.1186/gb-2002-3-2-research0008
10.1093/nar/gkv474
10.1016/j.ceb.2006.10.002
10.1016/0027-5107(64)90047-8
10.7554/eLife.03023
10.1016/j.cell.2012.11.043
10.2307/2410218
10.1371/journal.pgen.1007615
10.1146/annurev-cellbio-092910-154234
10.1186/s13059-018-1434-0
10.1038/s41588-018-0258-x
10.1038/s41588-020-0584-7
10.1093/oxfordjournals.molbev.a004039
10.1093/nar/gky1016
10.1038/ng.3489
10.1534/genetics.106.057570
10.7554/eLife.75526
10.1038/s41586-019-1186-3
10.1038/nature07943
10.1158/0008-5472.CAN-15-3283-T
10.1126/science.1160058
10.1038/s41586-022-04823-w
10.1093/oxfordjournals.molbev.a026239
10.1016/j.cell.2015.10.069
10.1017/S0016672306008123
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-39313-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_1745154adab74bf4a4e33e2ff0883595
PMC10276008
37328455
10_1038_s41467_023_39313_8
Genre Journal Article
GrantInformation_xml – fundername: Fondazione AIRC MFAG21791
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-4466406372d12b578ef2fe8f232e2916b823e007fd213d82b691145e540293973
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:08:10 EDT 2025
Thu Aug 21 18:37:00 EDT 2025
Tue Aug 05 09:49:19 EDT 2025
Wed Aug 13 05:11:38 EDT 2025
Thu Apr 03 06:56:55 EDT 2025
Tue Jul 01 00:58:55 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-4466406372d12b578ef2fe8f232e2916b823e007fd213d82b691145e540293973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7503-6364
0000-0001-7173-0105
OpenAccessLink https://doaj.org/article/1745154adab74bf4a4e33e2ff0883595
PMID 37328455
PQID 2827005725
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_1745154adab74bf4a4e33e2ff0883595
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10276008
proquest_miscellaneous_2827259557
proquest_journals_2827005725
pubmed_primary_37328455
crossref_primary_10_1038_s41467_023_39313_8
crossref_citationtrail_10_1038_s41467_023_39313_8
springer_journals_10_1038_s41467_023_39313_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-16
PublicationDateYYYYMMDD 2023-06-16
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References SupekFBošnjakMŠkuncaNŠmucTREVIGO summarizes and visualizes long lists of gene ontology termsPLoS ONE20116e218002011PLoSO...621800S1:CAS:528:DC%2BC3MXhtVeht7zI21789182313875210.1371/journal.pone.0021800
Antonello Alice & Caravagna Giulio. Integrated quality control of allele-specific copy numbers, mutations and tumour purity from cancer whole genome sequencing assays. Zenodo.https://zenodo.org/record/6410935#.ZGTAHOxBx_l (2022).
SheltzerJMAneuploidy drives genomic instability in yeastScience (1979)2011333102610301:CAS:528:DC%2BC3MXhtVWrtr7F
MeyersRMComputational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cellsNat. Genet.201749177917841:CAS:528:DC%2BC2sXhslehtrjI29083409570919310.1038/ng.3984
OstrowSLBarshirRDeGregoriJYeger-LotemEHershbergRCancer evolution is associated with pervasive positive selection on globally expressed genesPLoS Genet.201410e100423924603726394529710.1371/journal.pgen.1004239
BeroukhimRThe landscape of somatic copy-number alteration across human cancersNature20104638999052010Natur.463..899B1:CAS:528:DC%2BC3cXitFemsr0%3D20164920282670910.1038/nature08822
Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 606, 725–731 (2022).
Davoli, T. & De Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).
AdlerMAnjumMBergOGAnderssonDISandegrenLHigh fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanismsMol. Biol. Evol.201431152615351:CAS:528:DC%2BC2cXosFSmtL8%3D2465981510.1093/molbev/msu111
Alfieri F. mutation_compensation_NCOMM-230517. Zenodo. https://github.com/fabio-alfieri/mutation_compensation/releases/tag/vNCOMM (2023).
KristofichJCSynonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzymePLoS Genet.201814e100761530148850612864910.1371/journal.pgen.1007615
Van den EyndenJJiménez-SánchezAMillerMLLarssonELack of detectable neoantigen depletion signals in the untreated cancer genomeNat. Genet.2019511741174831768072688755710.1038/s41588-019-0532-6
BakhoumSFLandauDACancer evolution: no room for negative selectionCell20171719879891:CAS:528:DC%2BC2sXhvFOhs7jM2914961210.1016/j.cell.2017.10.039
SteinbergJHontiFMeaderSWebberCHaploinsufficiency predictions without study biasNucleic Acids Res.201543e10126001969455190910.1093/nar/gkv474
McConkeyDJThe integrated stress response and proteotoxicity in cancer therapyBiochem. Biophys. Res. Commun.20174824504531:CAS:528:DC%2BC2sXislOls7c%3D28212730531973210.1016/j.bbrc.2016.11.047
LynchMButcherDBürgerRGabrielWThe mutational meltdown in asexual populationsJ. Hered.1993843393441:STN:280:DyaK2c%2FhsVartA%3D%3D840935510.1093/oxfordjournals.jhered.a111354
EllrottKScalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic PipelinesCell Syst.20186271281.e71:CAS:528:DC%2BC1cXpslOktr0%3D29596782607571710.1016/j.cels.2018.03.002
WangTOncoVar: an integrated database and analysis platform for oncogenic driver variants in cancersNucleic Acids Res.202149D1289D13011:CAS:528:DC%2BB3MXisFOnsLnE3317973810.1093/nar/gkaa1033
DepMap, Broad. DepMap 22Q2 Public. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19700056.v2 (2022).
PCAWG | ICGC Data Portal. International Cancer Genome Consortium. https://dcc.icgc.org/pcawg/ (2021).
LoeweLQuantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNAGenet. Res.2006871331592006JMagR.182..133L1:CAS:528:DC%2BD28Xksleltbc%3D1670927510.1017/S0016672306008123
WeaverBAClevelandDWDoes aneuploidy cause cancer?Curr. Opin. Cell Biol.2006186586671:CAS:528:DC%2BD28XhtF2qtbnN1704623210.1016/j.ceb.2006.10.002
DephoureNQuantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeastElife2014312710.7554/eLife.03023
BoykoARAssessing the evolutionary impact of amino acid mutations in the human genomePLoS Genet.20084e100008318516229237733910.1371/journal.pgen.1000083
Seshan, V. E. & Olshen, A. Bioconductor. DNAcopy: DNA copy Number Data Analysis. R package version 1.74.1. https://doi.org/10.18129/B9.bioc.DNAcopy (2023).
FutrealPAA census of human cancer genesNat. Rev. Cancer200441771831:CAS:528:DC%2BD2cXhs1Ggsrg%3D14993899266528510.1038/nrc1299
Gonzalez-PerezAIntOGen-mutations identifies cancer drivers across tumor typesNat. Methods201310108110841:CAS:528:DC%2BC3sXhsVeqs7%2FP24037244575804210.1038/nmeth.2642
McFarlandCDThe damaging effect of passenger mutations on cancer progressionCancer Res.201777476347721:CAS:528:DC%2BC2sXhsV2lsrfP28536279563969110.1158/0008-5472.CAN-15-3283-T
MartincorenaIUniversal patterns of selection in cancer and somatic tissuesCell201717110291041.e211:CAS:528:DC%2BC2sXhs12lsLzO29056346572039510.1016/j.cell.2017.09.042
McGranahanNSwantonCClonal heterogeneity and tumor evolution: past, present, and the futureCell20171686136281:CAS:528:DC%2BC2sXis1ygtLg%3D2818728410.1016/j.cell.2017.01.018
KondrashovFARogozinIBWolfYIKooninEVSelection in the evolution of gene duplicationsGenome Biol.200231910.1186/gb-2002-3-2-research0008
LekMAnalysis of protein-coding genetic variation in 60,706 humansNature20165362852911:CAS:528:DC%2BC28XhtlOnsbbP27535533501820710.1038/nature19057
Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 67 (2018).
MaciverSKAsexual amoebae escape muller’s ratchet through polyploidyTrends Parasitol.2016328558622759963210.1016/j.pt.2016.08.006
Eyre-WalkerAKeightleyPDSmithNGCGaffneyDQuantifying the slightly deleterious mutation model of molecular evolutionMol. Biol. Evol.200219214221491:CAS:528:DC%2BD38Xps12hs7o%3D1244680610.1093/oxfordjournals.molbev.a004039
MullerHJThe relation of recombination to mutational advanceMutat. Res.196412910.1016/0027-5107(64)90047-8
WilliamsBRAneuploidy affects proliferation and spontaneous immortalization in mammalian cellsScience20083227037092008Sci...322..703W1:CAS:528:DC%2BD1cXht12ltb7O18974345270151110.1126/science.1160058
WilliamsMJWernerBBarnesCPGrahamTASottorivaAIdentification of neutral tumor evolution across cancer typesNat. Genet.2016482382441:CAS:528:DC%2BC28Xps1Cqtg%3D%3D26780609493460310.1038/ng.3489
StrattonMRCampbellPJFutrealPAThe cancer genomeNature20094587197242009Natur.458..719S1:CAS:528:DC%2BD1MXksVehtb8%3D19360079282168910.1038/nature07943
DavoliTCumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genomeCell20131559481:CAS:528:DC%2BC3sXhslWmur3K24183448389105210.1016/j.cell.2013.10.011
FireBrowse. Broad Institute of MIT & Harvard. http://firebrowse.org/ (2019).
GhandiMNext-generation characterization of the Cancer Cell Line EncyclopediaNature20195695035082019Natur.569..503G1:CAS:528:DC%2BC1MXptlOhtLc%3D31068700669710310.1038/s41586-019-1186-3
BignoldLPAneuploidy as a counter to ‘Muller’s ratchet’ in cancer cellsCancer Genet. Cytogenet.20071781731741:CAS:528:DC%2BD2sXhtF2lsr3E1795427810.1016/j.cancergencyto.2007.07.015
WeghornDSunyaevSBayesian inference of negative and positive selection in human cancersNat. Genet.201749178517881:CAS:528:DC%2BC2sXhslKmur3P2910641610.1038/ng.3987
YCTAAGene copy-number alterations: a cost-benefit analysisCell201315239440510.1016/j.cell.2012.11.043
Fernandez-EscamillaAMRousseauFSchymkowitzJSerranoLPrediction of sequence-dependent and mutational effects on the aggregation of peptides and proteinsNat. Biotechnol.200422130213061:CAS:528:DC%2BD2cXotFGqtb8%3D1536188210.1038/nbt1012
Bioinformatics Pipeline: Copy Number Variation Analysis - GDC Docs. v37.0. Copy Number Variation Analysis Pipeline. https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/ (2023).
McDonaldTOChakrabartiSMichorFCurrently available bulk sequencing data do not necessarily support a model of neutral tumor evolutionNat. Genet.201850162016231:CAS:528:DC%2BC1cXitVCitL%2FI30374067646705510.1038/s41588-018-0217-6
DuretLMouchiroudDDeterminants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rateMol. Biol. Evol.20001768741:CAS:528:DC%2BD3cXotF2quw%3D%3D1066670710.1093/oxfordjournals.molbev.a026239
Eyre-WalkerAWoolfitMPhelpsTThe distribution of fitness effects of new deleterious amino acid mutations in humansGenetics20061738911:CAS:528:DC%2BD28Xns12qs7Y%3D16547091152649510.1534/genetics.106.057570
GabrielWLynchMBurgerRMuller’s ratchet and mutational meltdownsEvolution199347174417571:STN:280:DC%2BC1cnjs1alsw%3D%3D2856799410.2307/2410218
TaylorAMGenomic and functional approaches to understanding cancer aneuploidyCancer Cell201833676689.e31:CAS:528:DC%2BC1cXmvVGrur0%3D29622463602819010.1016/j.ccell.2018.03.007
TorresEMIdentification of aneuploidy-tolerating mutationsCell201014371831:CAS:528:DC%2BC3cXht1Cmu73E20850176299324410.1016/j.cell.2010.08.038
TateJGCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res.201947D941D9471:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015
OrrHASomatic mutation favors the evolution of diploidyGenetics1995139144114471:STN:280:DyaK2M3os1Sluw%3D%3D7768451120646910.1093/genetics/139.3.1441
Ben-DavidUAmonAContext is everything: aneuploidy in cancerNat. Rev. Genet.20192144623154865910.1038/s41576-019-0171-x
CeredaMMourikisTPCiccarelliFDGenetic redundancy, functional compensation, and cancer vulnerabilityTrends Cancer201621601622874156810.1016/j.trecan.2016.03.003
SharmaYA pan-cancer analysis of synonymous mutationsNat. Commun.2019101142019SSCom.296....1S406389810.1038/s41467-019-10489-2
TorresEMEffects of aneuploidy on cellular physiology and cell division in haploid yeastScience20073179169242007Sci...317..916T1:CAS:528:DC%2BD2sXptVaisro%3D1770293710.1126/science.1142210
PavelkaNAneuploidy confers quantitative proteome changes and phenotypic variation in budding yeastNature20104683213252010Natur.468..321P1:CAS:528:DC%2BC3cXhtlWmu7vM20962780297875610.1038/nature09529
SubramanianSKum
CD McFarland (39313_CR7) 2013; 110
DJ McConkey (39313_CR44) 2017; 482
RM Meyers (39313_CR11) 2017; 49
M Ghandi (39313_CR50) 2019; 569
R Beroukhim (39313_CR60) 2010; 463
LM Sack (39313_CR47) 2018; 173
FA Kondrashov (39313_CR33) 2002; 3
U Ben-David (39313_CR36) 2019; 21
T Wang (39313_CR75) 2021; 49
IA Adzhubei (39313_CR42) 2010; 7
JG Tate (39313_CR71) 2019; 47
TO McDonald (39313_CR19) 2018; 50
39313_CR66
W Gabriel (39313_CR25) 1993; 47
39313_CR62
M Cereda (39313_CR65) 2016; 2
BA Weaver (39313_CR63) 2006; 18
N Takeuchi (39313_CR32) 2014; 4
J Steinberg (39313_CR41) 2015; 43
N Dephoure (39313_CR57) 2014; 3
AM Fernandez-Escamilla (39313_CR45) 2004; 22
S Subramanian (39313_CR22) 2006; 23
D Weghorn (39313_CR16) 2017; 49
A Eyre-Walker (39313_CR21) 2002; 19
39313_CR49
CD McFarland (39313_CR9) 2017; 77
SL Ostrow (39313_CR20) 2014; 10
EM Torres (39313_CR58) 2010; 143
M Lek (39313_CR40) 2016; 536
39313_CR48
G Wang (39313_CR64) 2020; 10
39313_CR53
T YC (39313_CR38) 2013; 152
M Adler (39313_CR52) 2014; 31
G Liu (39313_CR31) 2015; 163
39313_CR10
I Martincorena (39313_CR5) 2017; 171
BR Williams (39313_CR55) 2008; 322
N Pavelka (39313_CR59) 2010; 468
39313_CR51
HA Orr (39313_CR28) 1995; 139
L Loewe (39313_CR26) 2006; 87
P Rentzsch (39313_CR43) 2019; 47
A Bateman (39313_CR70) 2021; 49
F Supek (39313_CR74) 2011; 6
M Tarabichi (39313_CR18) 2018; 50
L Duret (39313_CR23) 2000; 17
LP Bignold (39313_CR29) 2007; 178
39313_CR78
Y Sharma (39313_CR12) 2019; 10
SF Bakhoum (39313_CR17) 2017; 171
J Van den Eynden (39313_CR15) 2019; 51
HJ Muller (39313_CR24) 1964; 1
MR Stratton (39313_CR3) 2009; 458
JC Kristofich (39313_CR8) 2018; 14
AM Taylor (39313_CR37) 2018; 33
M Lynch (39313_CR27) 1993; 84
PA Futreal (39313_CR2) 2004; 4
EM Torres (39313_CR56) 2007; 317
JM Sheltzer (39313_CR35) 2011; 333
AR Boyko (39313_CR14) 2008; 4
N McGranahan (39313_CR61) 2017; 168
A Eyre-Walker (39313_CR13) 2006; 173
T Davoli (39313_CR46) 2013; 155
K Ellrott (39313_CR67) 2018; 6
39313_CR1
S López (39313_CR34) 2020; 52
SK Maciver (39313_CR30) 2016; 32
39313_CR68
MJ Williams (39313_CR6) 2016; 48
39313_CR4
JM Sheltzer (39313_CR39) 2011; 27
39313_CR69
DJ Gordon (39313_CR54) 2012; 13
39313_CR77
39313_CR76
A Gonzalez-Perez (39313_CR72) 2013; 10
39313_CR73
37479721 - Nat Commun. 2023 Jul 21;14(1):4423
References_xml – reference: LiuGGene essentiality is a quantitative property linked to cellular evolvabilityCell2015163138813991:CAS:528:DC%2BC2MXhvFagur3L2662773610.1016/j.cell.2015.10.069
– reference: PCAWG | ICGC Data Portal. International Cancer Genome Consortium. https://dcc.icgc.org/pcawg/ (2021).
– reference: KondrashovFARogozinIBWolfYIKooninEVSelection in the evolution of gene duplicationsGenome Biol.200231910.1186/gb-2002-3-2-research0008
– reference: StrattonMRCampbellPJFutrealPAThe cancer genomeNature20094587197242009Natur.458..719S1:CAS:528:DC%2BD1MXksVehtb8%3D19360079282168910.1038/nature07943
– reference: TaylorAMGenomic and functional approaches to understanding cancer aneuploidyCancer Cell201833676689.e31:CAS:528:DC%2BC1cXmvVGrur0%3D29622463602819010.1016/j.ccell.2018.03.007
– reference: MeyersRMComputational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cellsNat. Genet.201749177917841:CAS:528:DC%2BC2sXhslehtrjI29083409570919310.1038/ng.3984
– reference: BatemanAUniProt: the universal protein knowledgebase in 2021Nucleic Acids Res.202149D480D4892021mwna.book.....B10.1093/nar/gkaa1100
– reference: TateJGCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res.201947D941D9471:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015
– reference: MartincorenaIUniversal patterns of selection in cancer and somatic tissuesCell201717110291041.e211:CAS:528:DC%2BC2sXhs12lsLzO29056346572039510.1016/j.cell.2017.09.042
– reference: Eyre-WalkerAWoolfitMPhelpsTThe distribution of fitness effects of new deleterious amino acid mutations in humansGenetics20061738911:CAS:528:DC%2BD28Xns12qs7Y%3D16547091152649510.1534/genetics.106.057570
– reference: KristofichJCSynonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzymePLoS Genet.201814e100761530148850612864910.1371/journal.pgen.1007615
– reference: LoeweLQuantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNAGenet. Res.2006871331592006JMagR.182..133L1:CAS:528:DC%2BD28Xksleltbc%3D1670927510.1017/S0016672306008123
– reference: PavelkaNAneuploidy confers quantitative proteome changes and phenotypic variation in budding yeastNature20104683213252010Natur.468..321P1:CAS:528:DC%2BC3cXhtlWmu7vM20962780297875610.1038/nature09529
– reference: SheltzerJMAmonAThe aneuploidy paradox: costs and benefits of an incorrect karyotypeTrends Genet.2011274464531:CAS:528:DC%2BC3MXhtlakur7L21872963319782210.1016/j.tig.2011.07.003
– reference: GordonDJResioBPellmanDCauses and consequences of aneuploidy in cancerNat. Rev. Genet.2012131892031:CAS:528:DC%2BC38XhtFSnu7k%3D2226990710.1038/nrg3123
– reference: SackLMProfound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patternsCell2018173499514.e231:CAS:528:DC%2BC1cXlvVOhtb0%3D29576454664328310.1016/j.cell.2018.02.037
– reference: Househam, J. et al. Integrated quality control of allele-specific copy numbers, mutations and tumour purity from cancer whole genome sequencing assays. bioRxiv. https://doi.org/10.1101/2021.02.13.429885 (2023).
– reference: BeroukhimRThe landscape of somatic copy-number alteration across human cancersNature20104638999052010Natur.463..899B1:CAS:528:DC%2BC3cXitFemsr0%3D20164920282670910.1038/nature08822
– reference: Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 67 (2018).
– reference: CeredaMMourikisTPCiccarelliFDGenetic redundancy, functional compensation, and cancer vulnerabilityTrends Cancer201621601622874156810.1016/j.trecan.2016.03.003
– reference: GabrielWLynchMBurgerRMuller’s ratchet and mutational meltdownsEvolution199347174417571:STN:280:DC%2BC1cnjs1alsw%3D%3D2856799410.2307/2410218
– reference: DepMap, Broad. DepMap 22Q2 Public. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19700056.v2 (2022).
– reference: BakhoumSFLandauDACancer evolution: no room for negative selectionCell20171719879891:CAS:528:DC%2BC2sXhvFOhs7jM2914961210.1016/j.cell.2017.10.039
– reference: LynchMButcherDBürgerRGabrielWThe mutational meltdown in asexual populationsJ. Hered.1993843393441:STN:280:DyaK2c%2FhsVartA%3D%3D840935510.1093/oxfordjournals.jhered.a111354
– reference: SteinbergJHontiFMeaderSWebberCHaploinsufficiency predictions without study biasNucleic Acids Res.201543e10126001969455190910.1093/nar/gkv474
– reference: EllrottKScalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic PipelinesCell Syst.20186271281.e71:CAS:528:DC%2BC1cXpslOktr0%3D29596782607571710.1016/j.cels.2018.03.002
– reference: WeghornDSunyaevSBayesian inference of negative and positive selection in human cancersNat. Genet.201749178517881:CAS:528:DC%2BC2sXhslKmur3P2910641610.1038/ng.3987
– reference: WangTOncoVar: an integrated database and analysis platform for oncogenic driver variants in cancersNucleic Acids Res.202149D1289D13011:CAS:528:DC%2BB3MXisFOnsLnE3317973810.1093/nar/gkaa1033
– reference: Antonello Alice & Caravagna Giulio. Integrated quality control of allele-specific copy numbers, mutations and tumour purity from cancer whole genome sequencing assays. Zenodo.https://zenodo.org/record/6410935#.ZGTAHOxBx_l (2022).
– reference: Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature578, 82–93 (2020).
– reference: LópezSInterplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolutionNat. Genet.20205228329332139907711678410.1038/s41588-020-0584-7
– reference: WilliamsBRAneuploidy affects proliferation and spontaneous immortalization in mammalian cellsScience20083227037092008Sci...322..703W1:CAS:528:DC%2BD1cXht12ltb7O18974345270151110.1126/science.1160058
– reference: TorresEMIdentification of aneuploidy-tolerating mutationsCell201014371831:CAS:528:DC%2BC3cXht1Cmu73E20850176299324410.1016/j.cell.2010.08.038
– reference: Senger, G., Santaguida, S. & Schaefer, M. H. Regulation of protein complex partners as a compensatory mechanism in aneuploid tumors. Elife11, e75526 (2022).
– reference: SubramanianSKumarSHigher intensity of purifying selection on >90% of the human genes revealed by the intrinsic replacement mutation ratesMol. Biol. Evol.200623228322871:CAS:528:DC%2BD28Xht1ejtbzF1698281910.1093/molbev/msl123
– reference: Gonzalez-PerezAIntOGen-mutations identifies cancer drivers across tumor typesNat. Methods201310108110841:CAS:528:DC%2BC3sXhsVeqs7%2FP24037244575804210.1038/nmeth.2642
– reference: FutrealPAA census of human cancer genesNat. Rev. Cancer200441771831:CAS:528:DC%2BD2cXhs1Ggsrg%3D14993899266528510.1038/nrc1299
– reference: McDonaldTOChakrabartiSMichorFCurrently available bulk sequencing data do not necessarily support a model of neutral tumor evolutionNat. Genet.201850162016231:CAS:528:DC%2BC1cXitVCitL%2FI30374067646705510.1038/s41588-018-0217-6
– reference: OstrowSLBarshirRDeGregoriJYeger-LotemEHershbergRCancer evolution is associated with pervasive positive selection on globally expressed genesPLoS Genet.201410e100423924603726394529710.1371/journal.pgen.1004239
– reference: YCTAAGene copy-number alterations: a cost-benefit analysisCell201315239440510.1016/j.cell.2012.11.043
– reference: BignoldLPAneuploidy as a counter to ‘Muller’s ratchet’ in cancer cellsCancer Genet. Cytogenet.20071781731741:CAS:528:DC%2BD2sXhtF2lsr3E1795427810.1016/j.cancergencyto.2007.07.015
– reference: TakeuchiNKanekoKKooninEVHorizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivisionG3: Genes Genomes Genet.201443253391:CAS:528:DC%2BC2cXhs1SitrfP10.1534/g3.113.009845
– reference: LekMAnalysis of protein-coding genetic variation in 60,706 humansNature20165362852911:CAS:528:DC%2BC28XhtlOnsbbP27535533501820710.1038/nature19057
– reference: AdzhubeiIAA method and server for predicting damaging missense mutationsNat. Methods201072482491:CAS:528:DC%2BC3cXjvFKqu78%3D20354512285588910.1038/nmeth0410-248
– reference: FireBrowse. Broad Institute of MIT & Harvard. http://firebrowse.org/ (2019).
– reference: McGranahanNSwantonCClonal heterogeneity and tumor evolution: past, present, and the futureCell20171686136281:CAS:528:DC%2BC2sXis1ygtLg%3D2818728410.1016/j.cell.2017.01.018
– reference: RentzschPWittenDCooperGMShendureJKircherMCADD: predicting the deleteriousness of variants throughout the human genomeNucleic Acids Res.201947D886D8941:CAS:528:DC%2BC1MXhs1CgtL%2FI3037182710.1093/nar/gky1016
– reference: OrrHASomatic mutation favors the evolution of diploidyGenetics1995139144114471:STN:280:DyaK2M3os1Sluw%3D%3D7768451120646910.1093/genetics/139.3.1441
– reference: SupekFBošnjakMŠkuncaNŠmucTREVIGO summarizes and visualizes long lists of gene ontology termsPLoS ONE20116e218002011PLoSO...621800S1:CAS:528:DC%2BC3MXhtVeht7zI21789182313875210.1371/journal.pone.0021800
– reference: Seshan, V. E. & Olshen, A. Bioconductor. DNAcopy: DNA copy Number Data Analysis. R package version 1.74.1. https://doi.org/10.18129/B9.bioc.DNAcopy (2023).
– reference: Davoli, T. & De Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).
– reference: WeaverBAClevelandDWDoes aneuploidy cause cancer?Curr. Opin. Cell Biol.2006186586671:CAS:528:DC%2BD28XhtF2qtbnN1704623210.1016/j.ceb.2006.10.002
– reference: McFarlandCDKorolevKSKryukovGVSunyaevSRMirnyLAImpact of deleterious passenger mutations on cancer progressionProc. Natl. Acad. Sci. USA2013110291029152013PNAS..110.2910M1:CAS:528:DC%2BC3sXjvFelt74%3D23388632358188310.1073/pnas.1213968110
– reference: DephoureNQuantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeastElife2014312710.7554/eLife.03023
– reference: MaciverSKAsexual amoebae escape muller’s ratchet through polyploidyTrends Parasitol.2016328558622759963210.1016/j.pt.2016.08.006
– reference: Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 606, 725–731 (2022).
– reference: Ben-DavidUAmonAContext is everything: aneuploidy in cancerNat. Rev. Genet.20192144623154865910.1038/s41576-019-0171-x
– reference: Alfieri F. & Schaefer M. Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions. Zenodo. https://zenodo.org/record/7079420#.ZGTAZuxBx_k (2023).
– reference: AdlerMAnjumMBergOGAnderssonDISandegrenLHigh fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanismsMol. Biol. Evol.201431152615351:CAS:528:DC%2BC2cXosFSmtL8%3D2465981510.1093/molbev/msu111
– reference: Bioinformatics Pipeline: Copy Number Variation Analysis - GDC Docs. v37.0. Copy Number Variation Analysis Pipeline. https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/CNV_Pipeline/ (2023).
– reference: Alfieri F. mutation_compensation_NCOMM-230517. Zenodo. https://github.com/fabio-alfieri/mutation_compensation/releases/tag/vNCOMM (2023).
– reference: Eyre-WalkerAKeightleyPDSmithNGCGaffneyDQuantifying the slightly deleterious mutation model of molecular evolutionMol. Biol. Evol.200219214221491:CAS:528:DC%2BD38Xps12hs7o%3D1244680610.1093/oxfordjournals.molbev.a004039
– reference: TorresEMEffects of aneuploidy on cellular physiology and cell division in haploid yeastScience20073179169242007Sci...317..916T1:CAS:528:DC%2BD2sXptVaisro%3D1770293710.1126/science.1142210
– reference: Fernandez-EscamillaAMRousseauFSchymkowitzJSerranoLPrediction of sequence-dependent and mutational effects on the aggregation of peptides and proteinsNat. Biotechnol.200422130213061:CAS:528:DC%2BD2cXotFGqtb8%3D1536188210.1038/nbt1012
– reference: GhandiMNext-generation characterization of the Cancer Cell Line EncyclopediaNature20195695035082019Natur.569..503G1:CAS:528:DC%2BC1MXptlOhtLc%3D31068700669710310.1038/s41586-019-1186-3
– reference: WangGAnastassiouDPan-cancer driver copy number alterations identified by joint expression/CNA data analysisSci. Rep.2020101101:CAS:528:DC%2BB38XhtVOgsLrJ
– reference: DuretLMouchiroudDDeterminants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rateMol. Biol. Evol.20001768741:CAS:528:DC%2BD3cXotF2quw%3D%3D1066670710.1093/oxfordjournals.molbev.a026239
– reference: MullerHJThe relation of recombination to mutational advanceMutat. Res.196412910.1016/0027-5107(64)90047-8
– reference: TarabichiMNeutral tumor evolution?Nat. Genet.201850163016331:CAS:528:DC%2BC1cXitVCitLzM30374075654855810.1038/s41588-018-0258-x
– reference: McConkeyDJThe integrated stress response and proteotoxicity in cancer therapyBiochem. Biophys. Res. Commun.20174824504531:CAS:528:DC%2BC2sXislOls7c%3D28212730531973210.1016/j.bbrc.2016.11.047
– reference: Van den EyndenJJiménez-SánchezAMillerMLLarssonELack of detectable neoantigen depletion signals in the untreated cancer genomeNat. Genet.2019511741174831768072688755710.1038/s41588-019-0532-6
– reference: DavoliTCumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genomeCell20131559481:CAS:528:DC%2BC3sXhslWmur3K24183448389105210.1016/j.cell.2013.10.011
– reference: Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation2, 100141 (2021).
– reference: McFarlandCDThe damaging effect of passenger mutations on cancer progressionCancer Res.201777476347721:CAS:528:DC%2BC2sXhsV2lsrfP28536279563969110.1158/0008-5472.CAN-15-3283-T
– reference: BoykoARAssessing the evolutionary impact of amino acid mutations in the human genomePLoS Genet.20084e100008318516229237733910.1371/journal.pgen.1000083
– reference: SharmaYA pan-cancer analysis of synonymous mutationsNat. Commun.2019101142019SSCom.296....1S406389810.1038/s41467-019-10489-2
– reference: SheltzerJMAneuploidy drives genomic instability in yeastScience (1979)2011333102610301:CAS:528:DC%2BC3MXhtVWrtr7F
– reference: WilliamsMJWernerBBarnesCPGrahamTASottorivaAIdentification of neutral tumor evolution across cancer typesNat. Genet.2016482382441:CAS:528:DC%2BC28Xps1Cqtg%3D%3D26780609493460310.1038/ng.3489
– ident: 39313_CR51
  doi: 10.6084/m9.figshare.19700056.v2
– volume: 468
  start-page: 321
  year: 2010
  ident: 39313_CR59
  publication-title: Nature
  doi: 10.1038/nature09529
– volume: 49
  start-page: 1779
  year: 2017
  ident: 39313_CR11
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3984
– volume: 173
  start-page: 499
  year: 2018
  ident: 39313_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.037
– volume: 482
  start-page: 450
  year: 2017
  ident: 39313_CR44
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.11.047
– ident: 39313_CR73
  doi: 10.1016/j.xinn.2021.100141
– volume: 33
  start-page: 676
  year: 2018
  ident: 39313_CR37
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.007
– volume: 7
  start-page: 248
  year: 2010
  ident: 39313_CR42
  publication-title: Nat. Methods
  doi: 10.1038/nmeth0410-248
– volume: 155
  start-page: 948
  year: 2013
  ident: 39313_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.011
– volume: 31
  start-page: 1526
  year: 2014
  ident: 39313_CR52
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu111
– ident: 39313_CR1
  doi: 10.1038/s41586-020-1969-6
– volume: 178
  start-page: 173
  year: 2007
  ident: 39313_CR29
  publication-title: Cancer Genet. Cytogenet.
  doi: 10.1016/j.cancergencyto.2007.07.015
– volume: 49
  start-page: D480
  year: 2021
  ident: 39313_CR70
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 463
  start-page: 899
  year: 2010
  ident: 39313_CR60
  publication-title: Nature
  doi: 10.1038/nature08822
– volume: 139
  start-page: 1441
  year: 1995
  ident: 39313_CR28
  publication-title: Genetics
  doi: 10.1093/genetics/139.3.1441
– volume: 49
  start-page: D1289
  year: 2021
  ident: 39313_CR75
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1033
– volume: 110
  start-page: 2910
  year: 2013
  ident: 39313_CR7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1213968110
– volume: 171
  start-page: 987
  year: 2017
  ident: 39313_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.039
– ident: 39313_CR68
  doi: 10.18129/B9.bioc.DNAcopy
– ident: 39313_CR78
– volume: 10
  start-page: 1081
  year: 2013
  ident: 39313_CR72
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2642
– volume: 6
  start-page: 271
  year: 2018
  ident: 39313_CR67
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.03.002
– volume: 4
  start-page: 325
  year: 2014
  ident: 39313_CR32
  publication-title: G3: Genes Genomes Genet.
  doi: 10.1534/g3.113.009845
– volume: 10
  start-page: 1
  year: 2019
  ident: 39313_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10489-2
– volume: 10
  start-page: 1
  year: 2020
  ident: 39313_CR64
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 10
  start-page: e1004239
  year: 2014
  ident: 39313_CR20
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004239
– volume: 143
  start-page: 71
  year: 2010
  ident: 39313_CR58
  publication-title: Cell
  doi: 10.1016/j.cell.2010.08.038
– volume: 47
  start-page: D941
  year: 2019
  ident: 39313_CR71
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1015
– volume: 4
  start-page: e1000083
  year: 2008
  ident: 39313_CR14
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000083
– volume: 2
  start-page: 160
  year: 2016
  ident: 39313_CR65
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2016.03.003
– volume: 171
  start-page: 1029
  year: 2017
  ident: 39313_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.042
– ident: 39313_CR49
  doi: 10.1101/2021.02.13.429885
– volume: 168
  start-page: 613
  year: 2017
  ident: 39313_CR61
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.018
– volume: 22
  start-page: 1302
  year: 2004
  ident: 39313_CR45
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1012
– volume: 32
  start-page: 855
  year: 2016
  ident: 39313_CR30
  publication-title: Trends Parasitol.
  doi: 10.1016/j.pt.2016.08.006
– volume: 21
  start-page: 44
  year: 2019
  ident: 39313_CR36
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0171-x
– volume: 50
  start-page: 1620
  year: 2018
  ident: 39313_CR19
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0217-6
– volume: 27
  start-page: 446
  year: 2011
  ident: 39313_CR39
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2011.07.003
– ident: 39313_CR77
  doi: 10.1038/s41467-023-39313-8
– volume: 13
  start-page: 189
  year: 2012
  ident: 39313_CR54
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3123
– volume: 4
  start-page: 177
  year: 2004
  ident: 39313_CR2
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1299
– volume: 51
  start-page: 1741
  year: 2019
  ident: 39313_CR15
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0532-6
– volume: 333
  start-page: 1026
  year: 2011
  ident: 39313_CR35
  publication-title: Science (1979)
– volume: 317
  start-page: 916
  year: 2007
  ident: 39313_CR56
  publication-title: Science
  doi: 10.1126/science.1142210
– volume: 49
  start-page: 1785
  year: 2017
  ident: 39313_CR16
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3987
– volume: 23
  start-page: 2283
  year: 2006
  ident: 39313_CR22
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msl123
– volume: 536
  start-page: 285
  year: 2016
  ident: 39313_CR40
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 6
  start-page: e21800
  year: 2011
  ident: 39313_CR74
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021800
– volume: 84
  start-page: 339
  year: 1993
  ident: 39313_CR27
  publication-title: J. Hered.
  doi: 10.1093/oxfordjournals.jhered.a111354
– volume: 3
  start-page: 1
  year: 2002
  ident: 39313_CR33
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-2-research0008
– volume: 43
  start-page: e101
  year: 2015
  ident: 39313_CR41
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv474
– volume: 18
  start-page: 658
  year: 2006
  ident: 39313_CR63
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2006.10.002
– volume: 1
  start-page: 2
  year: 1964
  ident: 39313_CR24
  publication-title: Mutat. Res.
  doi: 10.1016/0027-5107(64)90047-8
– volume: 3
  start-page: 1
  year: 2014
  ident: 39313_CR57
  publication-title: Elife
  doi: 10.7554/eLife.03023
– volume: 152
  start-page: 394
  year: 2013
  ident: 39313_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.043
– ident: 39313_CR66
– volume: 47
  start-page: 1744
  year: 1993
  ident: 39313_CR25
  publication-title: Evolution
  doi: 10.2307/2410218
– volume: 14
  start-page: e1007615
  year: 2018
  ident: 39313_CR8
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007615
– ident: 39313_CR62
  doi: 10.1146/annurev-cellbio-092910-154234
– ident: 39313_CR4
  doi: 10.1186/s13059-018-1434-0
– volume: 50
  start-page: 1630
  year: 2018
  ident: 39313_CR18
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0258-x
– volume: 52
  start-page: 283
  year: 2020
  ident: 39313_CR34
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0584-7
– volume: 19
  start-page: 2142
  year: 2002
  ident: 39313_CR21
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a004039
– ident: 39313_CR76
– volume: 47
  start-page: D886
  year: 2019
  ident: 39313_CR43
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1016
– volume: 48
  start-page: 238
  year: 2016
  ident: 39313_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3489
– volume: 173
  start-page: 891
  year: 2006
  ident: 39313_CR13
  publication-title: Genetics
  doi: 10.1534/genetics.106.057570
– ident: 39313_CR53
  doi: 10.7554/eLife.75526
– ident: 39313_CR48
– volume: 569
  start-page: 503
  year: 2019
  ident: 39313_CR50
  publication-title: Nature
  doi: 10.1038/s41586-019-1186-3
– volume: 458
  start-page: 719
  year: 2009
  ident: 39313_CR3
  publication-title: Nature
  doi: 10.1038/nature07943
– ident: 39313_CR69
– volume: 77
  start-page: 4763
  year: 2017
  ident: 39313_CR9
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-3283-T
– volume: 322
  start-page: 703
  year: 2008
  ident: 39313_CR55
  publication-title: Science
  doi: 10.1126/science.1160058
– ident: 39313_CR10
  doi: 10.1038/s41586-022-04823-w
– volume: 17
  start-page: 68
  year: 2000
  ident: 39313_CR23
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026239
– volume: 163
  start-page: 1388
  year: 2015
  ident: 39313_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.069
– volume: 87
  start-page: 133
  year: 2006
  ident: 39313_CR26
  publication-title: Genet. Res.
  doi: 10.1017/S0016672306008123
– reference: 37479721 - Nat Commun. 2023 Jul 21;14(1):4423
SSID ssj0000391844
Score 2.4535837
Snippet Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all...
Abstract Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3594
SubjectTerms 45
631/114
631/181/2468
631/208/737/1505
631/67/2329
631/67/69
Cancer
Chromosome aberrations
Copy number
DNA Copy Number Variations
Evolution
Evolutionary genetics
Genes
Genome
Genomes
Humanities and Social Sciences
Humans
multidisciplinary
Mutation
Neoplasms - genetics
Science
Science (multidisciplinary)
Tumors
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIX1PJMW5CRuEHUjT1OvKcKqi4VEpyo1JuVhw1IbbJs0kP_PTOOk2p59Jo4kZPxeD7P2N8H8NZRUC-ZT1s2OabotUqN80tapWQ1ZsXCuyD39uVrfnaOny_0RUy49XFb5TQnhom66WrOkR_R0qDgk5NSH69_pawaxdXVKKFxHx5kFGl4hJvVpznHwuznBjGelVkoc9RjmBkoUKVqqTLq2FY8CrT9_8Kaf2-Z_KNuGsLRahceRxwpPoyG34N7rn0CD0dlyZunMJywNTeCKVivXC-G7pLZk51g3RumZ6YFv6g7Dlzi6nosx1OrUbRH9F0gcqUG6xsxaoaIkree-ynDJzovCGU3KadwBas70MVncL46_XZylkaBhbTWmA0p13IpoKtCNpmsyHedl94ZTyjLScKNlZHKEYjwjcxUY2SV09SI2hHKI5SwLNRz2Gm71r0EUThdk3NjTm9GWWNpGGjqvNF57Yt8kUA2_WZbR_ZxFsG4tKEKrowdTWPJNDaYxpoE3s3PrEfujTtbf2TrzS2ZNztc6DbfbXRDSz0kAIdlU1YFVh5LdEo56T1NtnxEOYHDyfY2OnNvb4deAm_m2-SGXFspW0cWC21oJal1kcCLcajMPVFMiISanjZbg2irq9t32p8_AtU3wT-unNLHvZ_G222__v8v9u_-jAN4JNkFWIIpP4SdYXPtXhG2GqrXwYF-Awg8H88
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VVkhcELQ8FgoyUm8QaPxIvAeEoGpVVaKnrtSblccYkLZJ2WQl9t8zYyeLFhZOXGN74_V4PJ8z9vcBHCEF9YL5tGWd6UR7oxKLfkq7lLTSaX7sMci9fb7Mzmf64tpc78AodzQMYLd1a8d6UrPF_O2P76sP5PDv45Vx-67Twd0p-iRqqlJ62x3Yk_wmPso3wP2wMqspbWj0cHdme9ON-BRo_Ldhzz-PUP6WRw3h6ewB3B9wpfgYJ8JD2MFmH-5GpcnVAfQnbN2FYErWG-xE386ZTRkF6-AwXXO77ETVciATN8uYnqdaUcRHdG0gdqUKtysRNUREwUfR_fjFT7ReEOquE_6kK1jtgR4-gtnZ6dXJeTIILiSV0WmfcG6XArzKZZ3KknwZvfRoPaEulIQjSysVEqjwtUxVbWWZ0VKpDRLqI9QwzdVj2G3aBp-CyNFU5Ow6o1_WstKFZeBpstpklc-z4wmk4zC7amAjZ1GMuQtZcWVdNI0j07hgGmcn8Hrd5jZycfyz9ie23rom82iHB-3iixvc0lEPCdDpoi7KXJdeFxqVQuk9Lb58ZXkCh6Pt3Tg3He1Sc77EK6n41bqY3JJzLUWDZLFQh3aWxuQTeBKnyronigmStKHWdmMSbXR1s6T59jVQfxMc5Ewq_bk343z71a-_j8Wz_zEWz-GeZEdh4absEHb7xRJfECLry5fBzX4CU-0v5g
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiHe3LchI3CBiY48d7xFWVBUSnKjUm5XHGJDapNpND_33zDgPtFCQuMbjyMl4PJ89428AXhM79VL4tHXjMMNoTeYprniXkteYF8tIqdzb5y_u9Aw_ndvzPdDTXZiUtJ8oLdMyPWWHvdtiMmn2MJlZmZzfeAfuCnW7pPGt3Xo-VxHGc4843o9ZGn9L1x0flKj6b8OXf6ZJ_hYrTS7o5CE8GLGjej-M9hHsUfsY7g3VJG-eQL8WDW6U0K5e0lb13YUwJpOSWjdCycybfFV34qzU5fUQgmepoVCP2naJvJUFrm7UUCdElZJuHqdTPdVFxci6yeTYVklFB374FM5OPn5dn2ZjUYWstpj3mcRv2YmbQje5rtheKepIPjKyIs1YsfLaEAOH2OjcNF5XjpdDtMTIjpHBqjDPYL_tWjoAVZCt2aDR8ZtR11h6AZfWNdbVsXDLBeTTbw71yDguhS8uQop8Gx8G1QRWTUiqCX4Bb-Y-VwPfxj-lP4j2Zknhyk4Pus23MM6dwCNk0IZlU1YFVhFLJGNIx8gLrFxLXsDxpPswGvA28E60kIu6mptfzc1sehJPKVtijSUZ3j1aWyzg-TBV5pEYIUFCy739ziTaGepuS_vje6L3Zsgn0VL-uLfTfPs1rr__i8P_Ez-C-1pMQsowuWPY7zfX9ILxVV-9TAb1E0N7Hac
  priority: 102
  providerName: Springer Nature
Title Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions
URI https://link.springer.com/article/10.1038/s41467-023-39313-8
https://www.ncbi.nlm.nih.gov/pubmed/37328455
https://www.proquest.com/docview/2827005725
https://www.proquest.com/docview/2827259557
https://pubmed.ncbi.nlm.nih.gov/PMC10276008
https://doaj.org/article/1745154adab74bf4a4e33e2ff0883595
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtSqGXkr7dpEaF3tolXj1W8tExcYMhobQN-Cb2IdFAshti55B_32-ktRv3eellDSut0WpmNN_sSN8w9s7DqZfEpy2aQmUqaJlZH8aIUvJa5WYUfCz3dnJaHJ-p-UIv7pT6oj1hiR44TdwBEDNcriqbsjKqCqpUXkovQoB50KFSWn3h8-4EU3ENlmOELqo_JTOS9mCp4poAF5XJscwxpC1PFAn7f4cyf90s-VPGNDqi2S573CNIPkkjf8Lu-fYpe5hqSt4-Y6spyfGaE_nqpV_yVXdBvMmeU8UbImZGqM_rjlwWv7xJiXj0SuV6-LKLFK7ocHXLU7UQXtKm87D-tse7wIGvm4w-3nKq64Cbz9nZ7Ojr9DjrSytktVb5KqMsLly5NKLJRQWr9UEEbwPwlRdAjJUV0gM-hEbksrGiKrAoKu2B74APxka-YDtt1_pXjBuva5i1KvDPStSqtAQxddHoog6mGA1Yvp5mV_e841T-4sLF_Le0LonGQTQuisbZAXu_eeYqsW78tfchSW_Tkxiz4w3okev1yP1LjwZsfy1715vx0iEeNXRcV6D57aYZBkhZlbL1kFjsgxhSazNgL5OqbEYiiQpJaTxtt5Roa6jbLe35t0jyDeBHOVO83Ie1vv0Y15_n4vX_mIs99kiQoVCJpmKf7ayub_wbYK9VNWT3zcLgamcfh-zBZDL_Msfv4dHpp8-4Oy2mw2iIuJ4o-x1Mzy69
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiLUEChgJThB14iX2HBCCQjWly6mV5may2IDUJsMkIzR_it_Ie04y1bD01mtiR47faj_7-wBeOgzqGeFp8zKVsfRKxMb5Ma5SkkImeuRdoHs7Ok4np_LzVE034NdwF4aOVQ4-MTjqsi5oj3wHlwaabk5y9W72IybWKKquDhQanVocuOVPXLI1b_c_onxfcb736WR3EvesAnGhZNLGVMDEKCY0LxOeo8I6z70zHlMLxzFZyg0XDiOnL3kiSsPzFP2BVA5TGwyNYy3wu9fgOgbeER0h1FO92tMhtHUjZX83ZyTMTiODJ8LAGIuxSHAi1uJfoAn4V2779xHNP-q0Ifzt3YHbfd7K3neKdhc2XHUPbnRMlsv70O6S9swZQb6eu4a19RmhNTtGPDsEB10vGlbUFCjZ-aIr_2OrjiSINXUAjsUGsyXrOEpYRkfd_bCjyGrPMKsvY9oyZsQmgQ8fwOmVTP1D2Kzqyj0Cpp0q0JnIFL8seSEzQ4mtSkuVFl6nowiSYZpt0aOdE-nGmQ1Vd2FsJxqLorFBNNZE8HrVZ9ZhfVza-gNJb9WScLrDg3r-1fZmb3GEmDDKrMxyLXMvM-mEcNx7dO50JTqC7UH2tncejb1Q9QherF6j2VMtJ6scSiy0wZWrUjqCrU5VViMRBMAkFfY2a0q0NtT1N9X3bwFaHNNNqtTiz70Z9O1iXP-fi8eX_8ZzuDk5OTq0h_vHB0_gFidzIPqndBs22_nCPcW8rs2fBWNi8OWqrfc3bBtZHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaLd-BF7DwhBy6qlUHGg0t5MHjYgtcmyyQrtX-PXMeMkWy2P3npN7MjxjGfGnvH3ATxz6NQzwtPmZSpj6ZWIjfMT3KUkhUz02LtA9_bxKN0_lu9narYFv4a7MFRWOdjEYKjLuqAz8hFuDTTdnORq5PuyiE9709fzHzExSFGmdaDT6FTk0K1-4vateXWwh7J-zvn03efd_bhnGIgLJZM2pmQmejSheZnwHJXXee6d8RhmOI6BU264cOhFfckTURqep2gbpHIY5qCbnGiB370El7VAt4lrSc_0-nyHkNeNlP09nbEwo0YGq4ROMhYTkeCkbPjCQBnwrzj373LNP3K2wRVOb8D1PoZlbzqluwlbrroFVzpWy9VtaHdJkxaM4F9PXcPa-oSQmx0jzh2Chq6XDStqcprsdNmVAmCrjjCINXUAkcUG8xXr-EpYRmXvfjhdZLVnGOGXMR0fM2KWwId34PhCpv4ubFd15e4D004VaFhkil-WvJCZoSBXpaVKC6_TcQTJMM226JHPiYDjxIYMvDC2E41F0dggGmsieLHuM-9wP85t_Zakt25JmN3hQb34ansTYHGEGDzKrMxyLXMvM-mEcNx7NPR0PTqCnUH2tjckjT1T-wierl-jCaC8TlY5lFhog7tYpXQE9zpVWY9EEBiTVNjbbCjRxlA331TfvwWYcQw9KWuLP_dy0Lezcf1_Lh6c_xtP4CquW_vh4OjwIVzjtBqICSrdge12sXSPMMRr88dhLTH4ctGL9zfUOV1S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+genomes+tolerate+deleterious+coding+mutations+through+somatic+copy+number+amplifications+of+wild-type+regions&rft.jtitle=Nature+communications&rft.au=Fabio+Alfieri&rft.au=Giulio+Caravagna&rft.au=Martin+H.+Schaefer&rft.date=2023-06-16&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-023-39313-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1745154adab74bf4a4e33e2ff0883595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon