Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application
A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account bo...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 11325 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.07.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response. |
---|---|
AbstractList | A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response. A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response. Abstract A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response. |
ArticleNumber | 11325 |
Author | Mohammadi, A. Khordad, R. Firoozi, A. Amphawan, Angela Jalali, T. Edet, C. O. Ali, N. |
Author_xml | – sequence: 1 givenname: A. surname: Firoozi fullname: Firoozi, A. organization: Department of Physics, College of Sciences, Yasouj University – sequence: 2 givenname: Angela surname: Amphawan fullname: Amphawan, Angela email: angelaa@sunway.edu.my organization: Smart Photonics Research Laboratory, Sunway University, Future Cities Research Institute, Sunway University – sequence: 3 givenname: R. surname: Khordad fullname: Khordad, R. email: rezakh2025@yahoo.com organization: Department of Physics, College of Sciences, Yasouj University – sequence: 4 givenname: A. surname: Mohammadi fullname: Mohammadi, A. organization: Department of Physics, Persian Gulf University – sequence: 5 givenname: T. surname: Jalali fullname: Jalali, T. organization: Department of Physics, Persian Gulf University – sequence: 6 givenname: C. O. surname: Edet fullname: Edet, C. O. organization: Institute of Engineering Mathematics, Universiti Malaysia Perlis, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Department of Physics, Cross River University of Technology – sequence: 7 givenname: N. surname: Ali fullname: Ali, N. organization: Department of Physics, Cross River University of Technology, Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37443203$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAltiwIODfjLNCqCpQqRIbWFuOfTPjKrFT26k6vAfvi2fS0p9FvbFlf-f46N77ujrwwUNVvSX4E8FMfk6ciFbWmLKaSb4SNXlRHVHMRU0ZpQcPzofVSUqXuCxBW07aV9UhW3HOKGZH1d-zvgeTUeiR1z6kDQwDWkMYIUcH6SNK7s9u096iq1n7PI8IRpczRDTpqAsHMaHgUd4ASuCTy-7a5e3OcRp0GoOv4ca4XJDNtovO3n-UUB_iIvJrpKdpcEZnF_yb6mWvhwQnt_tx9fvb2a_TH_XFz-_np18vaiM4yTVnbW87Qy1ghgVrTWeJYQIk7ozUnHVcr8BIYvTKWM2t0IQyYFpqbUnHGnZcnS--NuhLNUU36rhVQTu1vwhxrXTMzgygpKCNJT0H3GHeA2-xAM6gtR1YbVhbvL4sXtPcjWAN-Bz18Mj08Yt3G7UO16q0k_OW7NJ8uHWI4WqGlNXokil10h7CnBSVTFKBWYML-v4Jehnm6EutdlTTSNJIUah3DyP9z3LX_gLIBTAxpBShV6VR-w6UhG4o0XbppFqGTZVhU_thU6RI6RPpnfuzIraIUoH9GuJ97GdU_wDBoutl |
CitedBy_id | crossref_primary_10_3367_UFNe_2024_08_039742 crossref_primary_10_3788_COL202422_093602 crossref_primary_10_3367_UFNr_2024_08_039742 crossref_primary_10_1080_15397734_2023_2286484 crossref_primary_10_1007_s11468_023_02136_w crossref_primary_10_1002_adts_202401170 crossref_primary_10_1039_D4NR04177A |
Cites_doi | 10.1002/lpor.201800176 10.1063/1.3167407 10.1063/1.4945446 10.1103/PhysRevA.66.063418 10.1016/j.snb.2022.132326 10.1103/PhysRevA.78.013806 10.1103/PhysRevLett.113.163603 10.1021/acs.nanolett.6b02661 10.1007/s00289-022-04521-7 10.1038/s41563-022-01224-2 10.1007/s10103-022-03524-0 10.1088/1402-4896/ac48ac 10.1021/acs.nanolett.6b03702 10.3390/bios12090678 10.1080/09500340.2014.960019 10.1021/acs.nanolett.6b04659 10.1177/0003702817706979 10.1063/1.4767653 10.1007/s13204-020-01622-5 10.1016/B978-0-12-823971-1.00016-7 10.1364/OE.16.019579 10.1021/nl400689q 10.1364/OE.14.011330 10.1007/s11468-021-01539-x 10.1364/OE.18.023633 10.1021/nl4014887 10.1002/advs.202104835 10.1103/PhysRevB.95.115406 10.1103/PhysRevLett.110.153605 10.1103/PhysRevA.91.043835 10.1088/0034-4885/78/1/013901 10.1007/978-981-16-3645-5_9 10.1016/j.snb.2022.132638 10.1166/jctn.2007.029 10.1103/PhysRevB.86.155305 10.1109/JSTQE.2004.836023 10.1038/srep27910 10.1021/ph500032d 10.1063/1.4978767 10.1002/admi.202101133 10.1364/OE.16.007397 10.1038/nmat3950 10.1103/PhysRevA.52.3082 10.1063/5.0130790 10.1103/PhysRevB.83.235406 10.1103/PhysRevLett.97.146804 10.1103/PhysRevA.89.022501 10.1007/s00339-022-06226-0 10.1364/OL.42.000187 10.1140/epjp/s13360-021-02094-4 10.1021/nl8024278 10.1002/adfm.201601779 10.1063/1.4883835 10.1364/JOSAB.31.000120 10.1038/srep03074 10.1103/PhysRevA.84.043802 10.1039/C6CS00494F 10.1063/1.4979838 10.1103/PhysRevB.82.195419 10.1103/PhysRevA.82.043845 10.1021/acs.analchem.2c03471 10.1038/s41598-022-06783-7 10.1021/acsami.8b01550 10.1038/ncomms13328 10.1039/C7NR06367A 10.1021/jp303560s 10.1103/PhysRevLett.112.253601 10.1021/acsphotonics.7b00856 10.1039/D2NR03737H 10.1016/B978-0-323-99596-2.00009-1 10.4103/japtr.japtr_106_22 10.1117/12.2623932 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-38475-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_8526d1f4e0b04fe4905e43e9dbedac39 PMC10344916 37443203 10_1038_s41598_023_38475_1 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-439fdbc2de030539cbd1c35e80bc8a43b4a7ec81ca7cda4d5a123e3a8aad1b363 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 00:54:41 EDT 2025 Thu Aug 21 18:36:52 EDT 2025 Thu Aug 07 14:37:58 EDT 2025 Wed Aug 13 05:11:05 EDT 2025 Wed Feb 19 02:23:58 EST 2025 Thu Apr 24 22:55:34 EDT 2025 Tue Jul 01 04:25:02 EDT 2025 Fri Feb 21 02:37:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-439fdbc2de030539cbd1c35e80bc8a43b4a7ec81ca7cda4d5a123e3a8aad1b363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-38475-1 |
PMID | 37443203 |
PQID | 2836681685 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8526d1f4e0b04fe4905e43e9dbedac39 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10344916 proquest_miscellaneous_2838250360 proquest_journals_2836681685 pubmed_primary_37443203 crossref_citationtrail_10_1038_s41598_023_38475_1 crossref_primary_10_1038_s41598_023_38475_1 springer_journals_10_1038_s41598_023_38475_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-13 |
PublicationDateYYYYMMDD | 2023-07-13 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Marjanovic, Sharma, Smith, Pinder, Moore, Manning, Dinsdale, Berks, Newton, Wilkinson, Dickinson, Herrick, Watson, Murray (CR14) 2022; 12 Slavcheva, Arnold, Wallace, Ziolkowski (CR62) 2004; 10 Artuso, Bryant, Garcia-Etxarri, Aizpurua (CR45) 2011; 83 Tang, Yu, Pan, Chen, Audit, Argoul, Zhang, Xu (CR69) 2017; 71 Shabani, Mohammadi, Jalali (CR53) 2022; 17 Sukharev, Nitzan (CR42) 2011; 84 Hu, Fleming, Drezek (CR57) 2008; 16 Kwon, Jin, Shin, Kim, Kim, Kang, Choi (CR55) 2018; 10 Schlather, Large, Urban, Nordlander, Halas (CR59) 2013; 13 Puthumpally-Joseph, Atabek, Sukharev, Charron (CR61) 2015; 91 Jalali, Rauscher, Mohammadi, Erni, Hafner, Baechtold, Shoushtari (CR65) 2007; 4 Huh, Lee, Lee (CR8) 2018; 5 Sadeghi, Patty (CR52) 2014; 31 Kim, Devaraj, Yang, Lee, Kim, Oh, Rho (CR74) 2022; 14 Anton, Carreno, Melle, Calderon, Granado (CR29) 2012; 86 Krivenkov, Goncharov, Nabiev, Rakovich (CR68) 2019; 13 Jackman, Ferhan, Cho (CR56) 2017; 46 Firoozi, Mohammadi, Khordad, Jalali (CR73) 2022; 97 Firoozi, Khordad, Mohammadi, Jalali (CR72) 2021; 136 Sala, Pachter, Sukharev (CR58) 2022; 157 Slavcheva, Arnold, Wallace, Ziolkowski (CR21) 2002; 66 Balasubrahmaniyam, Kar, Sen, Bisht, Kasiviswanathan (CR35) 2017; 110 Wu, Gray, Pelton (CR40) 2010; 13 Giannios, Toutouzas, Matiatou, Stasinos, Konstadoulakis, Zografos, Moutzouris (CR17) 2016; 6 Chen, Shao, Woo, Wang, Lin (CR28) 2012; 116 Yu, Ji, Zu, Du, Kang, Li, Zhou, Shi, Fang (CR24) 2016; 26 Zengin, Johansson, Johansson, Antosiewicz, Kall, Shegai (CR34) 2013; 3 Mohammadi, Jalali, Agio (CR66) 2008; 16 Hoque, Somasundaram, Samy, Dawane, Sen (CR15) 2022 Matiatou, Giannios, Koutsoumpos, Michalopoulos, Toutouzas, Zografos, Moutzouris (CR16) 2022; 37 Shabani, Mohammadi, Jalali (CR46) 2022; 2022 Fofang, Park, Neumann, Mirin, Nordlander, Halas (CR41) 2008; 8 Wersall, Cuadra, Antosiewicz, Balci, Shegai (CR33) 2017; 17 Ziolkowski, Arnold, Gogny (CR22) 1995; 52 Sagor, Hassan, Yaseer, Surid, Ahmed (CR26) 2021; 11 Liu, Wang, Chai, Gao, Li (CR49) 2017; 121 Taflove, Hagness (CR71) 2005 Sukharev, Nitzan (CR43) 2016; 144 Deinega, Seideman (CR48) 2014; 140 Antosiewicz, Apell, Shegai (CR36) 2014; 1 CR18 Zhang, Govorov, Bryant (CR30) 2006; 97 Artuso, Bryant (CR51) 2010; 82 Delga, Feist, Bravo-Abad, Garcia-Vidal (CR27) 2014; 112 Adato, Artar, Erramilli, Altug (CR70) 2013; 13 Saylan, Akgönüllü, Denizli, Denizli, Nguyen, Rajan, Alam, Rahman (CR1) 2022 Kumar, Chatterjee, Rai, Yadav (CR10) 2022 Zhao, Jian, Gao, Song (CR11) 2022; 94 Santopolo, Clemente, González-Freire, Russell, Vaquer, Barón, Aranda, Socias, del Castillo, Borges, de la Rica (CR9) 2022; 373 Waks, Sridharan (CR31) 2010; 82 Chaudhry, Akim, Safdar, Yasmin, Begum, Sung, Muhammad (CR12) 2022; 13 Deinega, Seideman (CR47) 2014; 89 Aronson, Ferner (CR2) 2017; 17 Liu, Wachsmann-Hogiu (CR4) 2022; 12 Sen, Dey, Nath, Gangopadhyay (CR20) 2015; 62 Minopoli, Acunzo, Della-Ventura, Velotta (CR5) 2022; 9 Sadeghi (CR54) 2012; 101 Yu, Si, Ning, Sun, Deng (CR19) 2019; 42 Firoozi, Khordad, Rastegar-Sedehi (CR64) 2022; 128 Aldewachi, Chalati, Woodroofe, Bricklebank, Sharrack, Gardiner (CR7) 2017; 10 Fratalocchi, Conti, Ruocco (CR63) 2008; 78 Nguyen, Kim, Devaraj, Song, Lee, Choi, Kim, Jang, Kim, Jeong, Kim, Kim, Oh (CR6) 2022; 369 Puthumpally-Joseph, Sukharev, Atabek, Charron (CR60) 2014; 113 Lopata, Neuhauser (CR50) 2009; 131 Mohammadi, Agio (CR67) 2006; 14 Lundt, Klembt, Cherotchenko, Betzold, Iff, Nalitov, Klaas, Dietrich, Kavokin, Hofling, Schneider (CR23) 2016; 7 Chen, Sandoghdar, Agio (CR32) 2013; 110 Hwang, Seo, Jeong, Ning, Wiraja, Yang, Tan, Lee, Kim, Kim, Kim, Choi, Lim, Pu, Jang, Xu (CR3) 2022; 9 Tsargorodska, Cartron, Vasilev, Kodali, Mass, Baumberg, Dutton, Hunter, Torma, Leggett (CR39) 2016; 16 Sukharev, Charron (CR44) 2017; 95 Lin, Wang, Wei, Peng, Xie, Zheng (CR25) 2016; 16 Coles, Somaschi, Michetti, Clark, Lagoudakis, Savvidis, Lidzey (CR38) 2014; 13 Huang, Chen, Jiang, Zhang, He, Wang, Pu (CR13) 2022; 21 Torma, Barnes (CR37) 2015; 78 RW Ziolkowski (38475_CR22) 1995; 52 N Lundt (38475_CR23) 2016; 7 J Huang (38475_CR13) 2022; 21 AE Schlather (38475_CR59) 2013; 13 T Jalali (38475_CR65) 2007; 4 RD Artuso (38475_CR51) 2010; 82 S Sen (38475_CR20) 2015; 62 M Wersall (38475_CR33) 2017; 17 M Balasubrahmaniyam (38475_CR35) 2017; 110 SZ Hoque (38475_CR15) 2022 Y Yu (38475_CR24) 2016; 26 G Slavcheva (38475_CR21) 2002; 66 A Deinega (38475_CR48) 2014; 140 Y Saylan (38475_CR1) 2022 M Sukharev (38475_CR42) 2011; 84 XW Chen (38475_CR32) 2013; 110 FD Sala (38475_CR58) 2022; 157 R Puthumpally-Joseph (38475_CR61) 2015; 91 G-E-S Chaudhry (38475_CR12) 2022; 13 W Zhang (38475_CR30) 2006; 97 M Sukharev (38475_CR44) 2017; 95 W Liu (38475_CR49) 2017; 121 A Firoozi (38475_CR72) 2021; 136 A Delga (38475_CR27) 2014; 112 V Krivenkov (38475_CR68) 2019; 13 A Deinega (38475_CR47) 2014; 89 WG Kim (38475_CR74) 2022; 14 L Shabani (38475_CR53) 2022; 17 M Matiatou (38475_CR16) 2022; 37 A Tsargorodska (38475_CR39) 2016; 16 A Fratalocchi (38475_CR63) 2008; 78 H Chen (38475_CR28) 2012; 116 R Adato (38475_CR70) 2013; 13 H Aldewachi (38475_CR7) 2017; 10 E Waks (38475_CR31) 2010; 82 G Zengin (38475_CR34) 2013; 3 RD Artuso (38475_CR45) 2011; 83 TM Nguyen (38475_CR6) 2022; 369 JH Huh (38475_CR8) 2018; 5 A Firoozi (38475_CR73) 2022; 97 SM Sadeghi (38475_CR54) 2012; 101 DM Coles (38475_CR38) 2014; 13 A Taflove (38475_CR71) 2005 K Lopata (38475_CR50) 2009; 131 Y Yu (38475_CR19) 2019; 42 M Sukharev (38475_CR43) 2016; 144 L Shabani (38475_CR46) 2022; 2022 NT Fofang (38475_CR41) 2008; 8 P Torma (38475_CR37) 2015; 78 A Firoozi (38475_CR64) 2022; 128 TJ Antosiewicz (38475_CR36) 2014; 1 38475_CR18 N Kumar (38475_CR10) 2022 J Hwang (38475_CR3) 2022; 9 MA Anton (38475_CR29) 2012; 86 A Mohammadi (38475_CR67) 2006; 14 EJ Marjanovic (38475_CR14) 2022; 12 X Wu (38475_CR40) 2010; 13 JA Jackman (38475_CR56) 2017; 46 J Liu (38475_CR4) 2022; 12 A Minopoli (38475_CR5) 2022; 9 P Giannios (38475_CR17) 2016; 6 A Mohammadi (38475_CR66) 2008; 16 JA Kwon (38475_CR55) 2018; 10 C Zhao (38475_CR11) 2022; 94 JK Aronson (38475_CR2) 2017; 17 LH Lin (38475_CR25) 2016; 16 Y Hu (38475_CR57) 2008; 16 SM Sadeghi (38475_CR52) 2014; 31 Y Tang (38475_CR69) 2017; 71 GM Slavcheva (38475_CR62) 2004; 10 R Puthumpally-Joseph (38475_CR60) 2014; 113 G Santopolo (38475_CR9) 2022; 373 RH Sagor (38475_CR26) 2021; 11 |
References_xml | – volume: 13 start-page: 1800176 year: 2019 ident: CR68 article-title: Induced transparency in plasmon-exciton nanostructures for sensing applications publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201800176 – volume: 131 start-page: 014701 year: 2009 ident: CR50 article-title: Nonlinear nanopolaritonics: Finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer publication-title: J. Chem. Phys. doi: 10.1063/1.3167407 – volume: 144 start-page: 144703 year: 2016 ident: CR43 article-title: Plasmon transmission through excitonic subwavelength gaps publication-title: J. Chem. Phys. doi: 10.1063/1.4945446 – volume: 66 start-page: 063418 year: 2002 ident: CR21 article-title: Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study publication-title: Phys. Rev. A. doi: 10.1103/PhysRevA.66.063418 – volume: 369 start-page: 132326 year: 2022 ident: CR6 article-title: Biomaterial actuator of M13 bacteriophage in dynamically tunable plasmonic coupling structure publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2022.132326 – volume: 78 start-page: 013806 year: 2008 ident: CR63 article-title: Three-dimensional ab initio investigation of light-matter interaction in Mie lasers publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.013806 – volume: 113 start-page: 163603 year: 2014 ident: CR60 article-title: Dipole-induced electromagnetic transparency publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.163603 – volume: 16 start-page: 6850 year: 2016 ident: CR39 article-title: Strong coupling of localized surface plasmons to excitons in light-harvesting complexes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02661 – volume: 2022 start-page: 17 year: 2022 ident: CR46 article-title: Performance analysis of polymer bulk heterojunction solar cells with plasmonic nanoparticles embedded into the P3HT:PC61BM active layer using the FDTD method publication-title: Polymer Bull. doi: 10.1007/s00289-022-04521-7 – volume: 21 start-page: 598 year: 2022 end-page: 607 ident: CR13 article-title: Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection publication-title: Nat. Mater. doi: 10.1038/s41563-022-01224-2 – volume: 37 start-page: 2597 year: 2022 end-page: 2604 ident: CR16 article-title: Complex refractive index of freshly excised human breast tissue as a marker of disease publication-title: Lasers Med. Sci. doi: 10.1007/s10103-022-03524-0 – volume: 97 year: 2022 ident: CR73 article-title: Q-BOR–FDTD method for solving Schrödinger equation for rotationally symmetric nanostructures with hydrogenic impurity publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac48ac – volume: 16 start-page: 7655 year: 2016 ident: CR25 article-title: Photoswitchable rabi splitting in hybrid plasmon-waveguide modes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03702 – volume: 12 start-page: 678 year: 2022 ident: CR4 article-title: Progress and challenges of point-of-need photonic biosensors for the diagnosis of COVID-19 infections and immunity publication-title: Biosensors doi: 10.3390/bios12090678 – volume: 62 start-page: 166 year: 2015 ident: CR20 article-title: Comparison of electromagnetically induced transparency in lambda, cascade and vee three-level systems publication-title: J. Mod. Opt. doi: 10.1080/09500340.2014.960019 – volume: 17 start-page: 551 year: 2017 ident: CR33 article-title: Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04659 – volume: 71 start-page: 2377 year: 2017 ident: CR69 article-title: Numerical study of novel ratiometric sensors based on plasmon-exciton coupling publication-title: Appl. Spect. doi: 10.1177/0003702817706979 – volume: 101 start-page: 213102 year: 2012 ident: CR54 article-title: Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times publication-title: Appl. Phys. Lett. doi: 10.1063/1.4767653 – volume: 11 start-page: 521 year: 2021 ident: CR26 article-title: Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01622-5 – start-page: 195 year: 2022 end-page: 213 ident: CR1 article-title: Chapter 9—nanosensors for medical diagnosis publication-title: Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood doi: 10.1016/B978-0-12-823971-1.00016-7 – volume: 16 start-page: 19579 year: 2008 ident: CR57 article-title: Optical properties of gold-silica-gold multilayer nanoshells publication-title: Opt. Express doi: 10.1364/OE.16.019579 – volume: 13 start-page: 2584 year: 2013 ident: CR70 article-title: Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems publication-title: Nano Lett. doi: 10.1021/nl400689q – volume: 14 start-page: 11330 year: 2006 ident: CR67 article-title: Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces publication-title: Opt. Express doi: 10.1364/OE.14.011330 – volume: 17 start-page: 491 year: 2022 ident: CR53 article-title: Numerical study of plasmonic effects of Ag nanoparticles embedded in the active layer on performance polymer organic solar cells publication-title: Plasmonics doi: 10.1007/s11468-021-01539-x – volume: 13 start-page: 23633 year: 2010 ident: CR40 article-title: Quantum-dot-induced transparency in a nanoscale plasmonic resonator publication-title: Opt. Express doi: 10.1364/OE.18.023633 – volume: 13 start-page: 3281 year: 2013 ident: CR59 article-title: Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers publication-title: Nano Lett. doi: 10.1021/nl4014887 – volume: 9 start-page: 2104835 year: 2022 ident: CR3 article-title: Monitoring wound healing with topically applied optical NanoFlare mRNA nanosensors publication-title: Adv. Sci. doi: 10.1002/advs.202104835 – volume: 95 start-page: 115406 year: 2017 ident: CR44 article-title: Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.115406 – volume: 110 start-page: 153605 year: 2013 ident: CR32 article-title: Coherent interaction of light with a metallic structure coupled to a single quantum emitter: From superabsorption to cloaking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.153605 – volume: 91 start-page: 043835 year: 2015 ident: CR61 article-title: Dipole-induced electromagnetic transparency publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.043835 – volume: 78 start-page: 013901 year: 2015 ident: CR37 article-title: Strong coupling between surface plasmon polaritons and emitters: A review publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/1/013901 – start-page: 199 year: 2022 end-page: 223 ident: CR15 publication-title: Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering doi: 10.1007/978-981-16-3645-5_9 – volume: 373 start-page: 132638 year: 2022 ident: CR9 article-title: Plasma-induced nanoparticle aggregation for stratifying COVID-19 patients according to disease severity publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2022.132638 – ident: CR18 – volume: 4 start-page: 644 year: 2007 ident: CR65 article-title: Efficient effective permittivity treatment for the 2D-FDTD simulation of photonic crystals publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2007.029 – volume: 86 start-page: 155305 year: 2012 ident: CR29 article-title: Plasmonic effects in excitonic population transfer in a driven semiconductor–metal nanoparticle hybrid system publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.86.155305 – volume: 10 start-page: 1052 year: 2004 ident: CR62 article-title: FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2004.836023 – volume: 6 start-page: 27910 year: 2016 ident: CR17 article-title: Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies publication-title: Sci. Rep. doi: 10.1038/srep27910 – volume: 1 start-page: 454 year: 2014 ident: CR36 article-title: Plasmon-exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling publication-title: ACS Photon. doi: 10.1021/ph500032d – volume: 121 start-page: 123102 year: 2017 ident: CR49 article-title: Multiple plasmon resonance in a concentric silver-atomic medium nanoshell publication-title: J. Appl. Phys. doi: 10.1063/1.4978767 – volume: 9 start-page: 2101133 year: 2022 ident: CR5 article-title: Nanostructured surfaces as plasmonic biosensors: A review publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202101133 – volume: 16 start-page: 7397 year: 2008 ident: CR66 article-title: Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method publication-title: Opt. Express doi: 10.1364/OE.16.007397 – volume: 13 start-page: 243 year: 2022 end-page: 247 ident: CR12 article-title: Cancer and disease diagnosis—biosensor as potential diagnostic tool for biomarker detection publication-title: J. Adv. Pharm. Technol. Res. – volume: 13 start-page: 712 year: 2014 ident: CR38 article-title: Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity publication-title: Nat. Mater. doi: 10.1038/nmat3950 – volume: 52 start-page: 3082 year: 1995 ident: CR22 article-title: Ultrafast pulse interactions with two-level atoms publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.3082 – volume: 157 start-page: 190401 year: 2022 ident: CR58 article-title: Advances in modeling plasmonic systems publication-title: J. Chem. Phys. doi: 10.1063/5.0130790 – volume: 17 start-page: 76 year: 2017 ident: CR2 article-title: Biomarkers—a general review publication-title: Curr. Protoc. Pharmacol. – volume: 83 start-page: 235406 year: 2011 ident: CR45 article-title: Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235406 – volume: 97 start-page: 146804 year: 2006 ident: CR30 article-title: Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear fano effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.146804 – volume: 89 start-page: 022501 year: 2014 ident: CR47 article-title: Self-interaction-free approaches for self-consistent solution of the Maxwell-Liouville equations publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.022501 – volume: 128 start-page: 1074 year: 2022 ident: CR64 article-title: Effects of geometry and size of noble metal nanoparticles on enhanced refractive index sensitivity publication-title: Appl. Phys. A doi: 10.1007/s00339-022-06226-0 – volume: 42 start-page: 187 year: 2019 ident: CR19 article-title: Plasmonic wavelength splitter based on a metal-insulator–metal waveguide with a graded grating coupler publication-title: Opt. Lett. doi: 10.1364/OL.42.000187 – volume: 136 start-page: 1073 year: 2021 ident: CR72 article-title: Plasmon-exciton interactions in a spheroidal multilayer nanoshell for refractive index sensor application publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-02094-4 – volume: 8 start-page: 3481 year: 2008 ident: CR41 article-title: Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-J-aggregate complexes publication-title: Nano Lett. doi: 10.1021/nl8024278 – volume: 26 start-page: 6394 year: 2016 ident: CR24 article-title: Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS heterostructures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601779 – volume: 140 start-page: 234311 year: 2014 ident: CR48 article-title: Interaction of single quantum emitter and dark plasmon supported by a metal nanoring publication-title: J. Chem. Phys. doi: 10.1063/1.4883835 – volume: 31 start-page: 120 year: 2014 ident: CR52 article-title: Ultrafast dynamics induced by coherent exciton-plasmon coupling in quantum dot-metallic nanoshell systems publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.31.000120 – volume: 3 start-page: 3074 year: 2013 ident: CR34 article-title: Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates publication-title: Sci. Rep. doi: 10.1038/srep03074 – volume: 84 start-page: 043802 year: 2011 ident: CR42 article-title: Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043802 – volume: 46 start-page: 3615 year: 2017 ident: CR56 article-title: Nanoplasmonic sensors for biointerfacial science publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00494F – volume: 110 start-page: 171101 year: 2017 ident: CR35 article-title: Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979838 – volume: 82 start-page: 195419 year: 2010 ident: CR51 article-title: Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.195419 – volume: 82 start-page: 043845 year: 2010 ident: CR31 article-title: Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.043845 – volume: 94 start-page: 14038 year: 2022 end-page: 14046 ident: CR11 article-title: Plasmon-mediated peroxidase-like activity on an asymmetric nanotube architecture for rapid visual detection of bacteria publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03471 – year: 2005 ident: CR71 publication-title: Computational Electrodynamics: The Finite-Difference Time-Domain Method – volume: 12 start-page: 2893 year: 2022 ident: CR14 article-title: Polarisation-sensitive optical coherence tomography measurement of retardance in fibrosis, a non-invasive biomarker in patients with systemic sclerosis publication-title: Sci. Rep. doi: 10.1038/s41598-022-06783-7 – volume: 10 start-page: 13226 year: 2018 ident: CR55 article-title: Tunable plasmonic cavity for label-free detection of small molecules publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01550 – volume: 7 start-page: 13328 year: 2016 ident: CR23 article-title: Room temperature Tamm-Plasmon exciton-polaritons with a WSe monolayer publication-title: Nat. Commun. doi: 10.1038/ncomms13328 – volume: 10 start-page: 18 year: 2017 ident: CR7 article-title: Gold nanoparticle-based colorimetric biosensors publication-title: Nanoscale doi: 10.1039/C7NR06367A – volume: 116 start-page: 14088 year: 2012 ident: CR28 article-title: Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer publication-title: J. Phys. Chem. C doi: 10.1021/jp303560s – volume: 112 start-page: 253601 year: 2014 ident: CR27 article-title: Quantum emitters near a metal nanoparticle: Strong coupling and quenching publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.253601 – volume: 5 start-page: 413 year: 2018 ident: CR8 article-title: Comparative study of plasmonic resonances between the roundest and randomly faceted Au nanoparticles-on-mirror cavities publication-title: ACS Photon. doi: 10.1021/acsphotonics.7b00856 – volume: 14 start-page: 16450 year: 2022 ident: CR74 article-title: Three-dimensional plasmonic nanoclusters driven by co-assembly of thermo-plasmonic nanoparticles and colloidal quantum dots publication-title: Nanoscale doi: 10.1039/D2NR03737H – start-page: 173 year: 2022 end-page: 193 ident: CR10 article-title: Chapter 8—nanoparticle-based immunoassays for early and rapid detection of HIV and other viral infections publication-title: Nanotechnological Applications in Virology doi: 10.1016/B978-0-323-99596-2.00009-1 – volume: 7 start-page: 13328 year: 2016 ident: 38475_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms13328 – volume: 16 start-page: 7655 year: 2016 ident: 38475_CR25 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03702 – volume: 84 start-page: 043802 year: 2011 ident: 38475_CR42 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043802 – volume: 3 start-page: 3074 year: 2013 ident: 38475_CR34 publication-title: Sci. Rep. doi: 10.1038/srep03074 – volume: 373 start-page: 132638 year: 2022 ident: 38475_CR9 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2022.132638 – volume: 37 start-page: 2597 year: 2022 ident: 38475_CR16 publication-title: Lasers Med. Sci. doi: 10.1007/s10103-022-03524-0 – volume: 140 start-page: 234311 year: 2014 ident: 38475_CR48 publication-title: J. Chem. Phys. doi: 10.1063/1.4883835 – volume: 10 start-page: 13226 year: 2018 ident: 38475_CR55 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01550 – volume: 13 start-page: 243 year: 2022 ident: 38475_CR12 publication-title: J. Adv. Pharm. Technol. Res. doi: 10.4103/japtr.japtr_106_22 – volume: 94 start-page: 14038 year: 2022 ident: 38475_CR11 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03471 – volume: 82 start-page: 195419 year: 2010 ident: 38475_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.195419 – volume: 71 start-page: 2377 year: 2017 ident: 38475_CR69 publication-title: Appl. Spect. doi: 10.1177/0003702817706979 – volume: 6 start-page: 27910 year: 2016 ident: 38475_CR17 publication-title: Sci. Rep. doi: 10.1038/srep27910 – volume: 78 start-page: 013806 year: 2008 ident: 38475_CR63 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.013806 – volume: 89 start-page: 022501 year: 2014 ident: 38475_CR47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.022501 – volume: 5 start-page: 413 year: 2018 ident: 38475_CR8 publication-title: ACS Photon. doi: 10.1021/acsphotonics.7b00856 – volume: 95 start-page: 115406 year: 2017 ident: 38475_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.115406 – volume-title: Computational Electrodynamics: The Finite-Difference Time-Domain Method year: 2005 ident: 38475_CR71 – start-page: 199 volume-title: Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering year: 2022 ident: 38475_CR15 doi: 10.1007/978-981-16-3645-5_9 – volume: 110 start-page: 153605 year: 2013 ident: 38475_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.153605 – volume: 16 start-page: 6850 year: 2016 ident: 38475_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02661 – volume: 97 year: 2022 ident: 38475_CR73 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac48ac – volume: 13 start-page: 712 year: 2014 ident: 38475_CR38 publication-title: Nat. Mater. doi: 10.1038/nmat3950 – volume: 12 start-page: 678 year: 2022 ident: 38475_CR4 publication-title: Biosensors doi: 10.3390/bios12090678 – volume: 9 start-page: 2104835 year: 2022 ident: 38475_CR3 publication-title: Adv. Sci. doi: 10.1002/advs.202104835 – volume: 116 start-page: 14088 year: 2012 ident: 38475_CR28 publication-title: J. Phys. Chem. C doi: 10.1021/jp303560s – volume: 2022 start-page: 17 year: 2022 ident: 38475_CR46 publication-title: Polymer Bull. doi: 10.1007/s00289-022-04521-7 – volume: 144 start-page: 144703 year: 2016 ident: 38475_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.4945446 – volume: 21 start-page: 598 year: 2022 ident: 38475_CR13 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01224-2 – volume: 97 start-page: 146804 year: 2006 ident: 38475_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.146804 – volume: 83 start-page: 235406 year: 2011 ident: 38475_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235406 – volume: 10 start-page: 1052 year: 2004 ident: 38475_CR62 publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2004.836023 – volume: 128 start-page: 1074 year: 2022 ident: 38475_CR64 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-06226-0 – volume: 86 start-page: 155305 year: 2012 ident: 38475_CR29 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.86.155305 – volume: 101 start-page: 213102 year: 2012 ident: 38475_CR54 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4767653 – volume: 17 start-page: 551 year: 2017 ident: 38475_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04659 – start-page: 173 volume-title: Nanotechnological Applications in Virology year: 2022 ident: 38475_CR10 doi: 10.1016/B978-0-323-99596-2.00009-1 – volume: 31 start-page: 120 year: 2014 ident: 38475_CR52 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.31.000120 – volume: 157 start-page: 190401 year: 2022 ident: 38475_CR58 publication-title: J. Chem. Phys. doi: 10.1063/5.0130790 – volume: 16 start-page: 7397 year: 2008 ident: 38475_CR66 publication-title: Opt. Express doi: 10.1364/OE.16.007397 – start-page: 195 volume-title: Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood year: 2022 ident: 38475_CR1 doi: 10.1016/B978-0-12-823971-1.00016-7 – volume: 8 start-page: 3481 year: 2008 ident: 38475_CR41 publication-title: Nano Lett. doi: 10.1021/nl8024278 – volume: 78 start-page: 013901 year: 2015 ident: 38475_CR37 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/1/013901 – volume: 112 start-page: 253601 year: 2014 ident: 38475_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.253601 – volume: 13 start-page: 23633 year: 2010 ident: 38475_CR40 publication-title: Opt. Express doi: 10.1364/OE.18.023633 – volume: 10 start-page: 18 year: 2017 ident: 38475_CR7 publication-title: Nanoscale doi: 10.1039/C7NR06367A – volume: 52 start-page: 3082 year: 1995 ident: 38475_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.3082 – volume: 14 start-page: 16450 year: 2022 ident: 38475_CR74 publication-title: Nanoscale doi: 10.1039/D2NR03737H – volume: 17 start-page: 491 year: 2022 ident: 38475_CR53 publication-title: Plasmonics doi: 10.1007/s11468-021-01539-x – volume: 14 start-page: 11330 year: 2006 ident: 38475_CR67 publication-title: Opt. Express doi: 10.1364/OE.14.011330 – volume: 16 start-page: 19579 year: 2008 ident: 38475_CR57 publication-title: Opt. Express doi: 10.1364/OE.16.019579 – volume: 26 start-page: 6394 year: 2016 ident: 38475_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601779 – volume: 82 start-page: 043845 year: 2010 ident: 38475_CR31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.043845 – volume: 131 start-page: 014701 year: 2009 ident: 38475_CR50 publication-title: J. Chem. Phys. doi: 10.1063/1.3167407 – volume: 13 start-page: 2584 year: 2013 ident: 38475_CR70 publication-title: Nano Lett. doi: 10.1021/nl400689q – volume: 17 start-page: 76 year: 2017 ident: 38475_CR2 publication-title: Curr. Protoc. Pharmacol. – volume: 369 start-page: 132326 year: 2022 ident: 38475_CR6 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2022.132326 – volume: 13 start-page: 1800176 year: 2019 ident: 38475_CR68 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201800176 – volume: 42 start-page: 187 year: 2019 ident: 38475_CR19 publication-title: Opt. Lett. doi: 10.1364/OL.42.000187 – volume: 11 start-page: 521 year: 2021 ident: 38475_CR26 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01622-5 – volume: 110 start-page: 171101 year: 2017 ident: 38475_CR35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979838 – volume: 136 start-page: 1073 year: 2021 ident: 38475_CR72 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-02094-4 – volume: 121 start-page: 123102 year: 2017 ident: 38475_CR49 publication-title: J. Appl. Phys. doi: 10.1063/1.4978767 – volume: 9 start-page: 2101133 year: 2022 ident: 38475_CR5 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202101133 – volume: 62 start-page: 166 year: 2015 ident: 38475_CR20 publication-title: J. Mod. Opt. doi: 10.1080/09500340.2014.960019 – volume: 113 start-page: 163603 year: 2014 ident: 38475_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.163603 – volume: 46 start-page: 3615 year: 2017 ident: 38475_CR56 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00494F – volume: 91 start-page: 043835 year: 2015 ident: 38475_CR61 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.043835 – volume: 4 start-page: 644 year: 2007 ident: 38475_CR65 publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2007.029 – volume: 66 start-page: 063418 year: 2002 ident: 38475_CR21 publication-title: Phys. Rev. A. doi: 10.1103/PhysRevA.66.063418 – ident: 38475_CR18 doi: 10.1117/12.2623932 – volume: 1 start-page: 454 year: 2014 ident: 38475_CR36 publication-title: ACS Photon. doi: 10.1021/ph500032d – volume: 12 start-page: 2893 year: 2022 ident: 38475_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-022-06783-7 – volume: 13 start-page: 3281 year: 2013 ident: 38475_CR59 publication-title: Nano Lett. doi: 10.1021/nl4014887 |
SSID | ssj0000529419 |
Score | 2.436998 |
Snippet | A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton... Abstract A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11325 |
SubjectTerms | 639/624 639/925 Biomarkers Biosensors Electromagnetic radiation Humanities and Social Sciences Investigations multidisciplinary Nanoparticles Optical properties Photovoltaic cells Physics Quantum dots Science Science (multidisciplinary) Sensors Silver |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbjRqHNtZ-wiIquLAiUq9WX6lXYl1CtmVKP-j_5cZO7vd5XnhFClxEscz4_mimfmGkFctRjVBT2rkvqpFr3ytPdij1b1ttNcx9Jnt82N3cio-nMmzrVZfmBNW6IHLwh0p2XaB9SI2rhF9FLqRUfCog4vBep5L98Dnbf1MFVbvVgumpyqZhqujETwVVpO1vOawI8ua7XiiTNj_O5T5a7LkTxHT7IiO75G7E4Kkb8rM98mtmO6T26Wn5NUDcl34iOnQ02TTMGKiJz2PwyK3zhoP6Tj_jgebAv2ygnVdLWhczLGohyIP-ALzY0Y6JArQkI6Y314aTOATLwFrg97W8ZuHnSDRiyss-Lp50UgBA5eb0jndCo4_JKfH7z-9O6mn3gu1l4Ita8ApfXC-DRF3BK69C8xzGVXjvLKCO2Fn0Svm7cwHK4K04AIjt8rawBzv-COyl4YUnxAalGu0baWd9SDGvnXOspn1PnLeWWmbirC1HIyfiMmxP8ZnkwPkXJkiOwOyM1l2hlXk9eaey0LL8dfRb1G8m5FIqZ1PgKKZSdHMvxStIgdr5TCTnY8GwFnXYesSWZGXm8tgoRh2sSkOqzwGfsMBKcCXPi66tJkJnwnB24ZXRO1o2c5Ud6-k-UVmAWdI1gjgviKHa4W8mdef1-Lp_1iLZ-ROi5aEBKP8gOwtv67icwBnS_ci2-EPSS46sA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxHsDCzISN9baOLYT54QAsVpx4MRKvUV-pVuJOt1NK7H8D_4vM06aUh57atU4reN5ffWMvyHkTYFZTdAThtxXTLbasdqBPZq6NXnt6uDbxPb5pTw7l59najZuuPVjWeXWJyZH7TuHe-QnEAbLEptEqHerS4ZdozC7OrbQuE3uIHUZlnRVs2raY8EsluT1eFYmF_qkh3iFZ8oKwQT4ZcX4XjxKtP3_wpp_l0z-kTdN4ej0Abk_4kj6fhD8Q3IrxEfk7tBZ8hrepcpO1z8mPwd-Ytq1NJrY9Vj4SeehW6ZWWv0x7Rc_8MVETy83sM6bJQ3LBR7yocgLvsR6mZ52kQJUpD3Wuw8NJ_AbV4C9YWFY-O7AM0R6cY0HwHY_1FPAxMNNcU5_S5Y_Ieenn75-PGNjLwbmlORrBril9dYVPqCHELWznjuhgs6t00YKK00VnObOVM4b6ZWBkBiE0cZ4bkUpnpKD2MVwSKjXNq9NoUzVtjK0hbWGV8a5IERplMkzwrcSadxIVI79Mr41KWEudDNIsQEpNkmKDc_I2-me1UDTcePoDyjoaSRSbKcPuqt5M1pso1VReg4zzG0u2yDrXAUpQu1t8MaJOiNHWzVpRrvvm52WZuT1dBksFtMwJoZuk8bA33JADvCkzwatmmYiKilFkYuM6D1925vq_pW4uEis4BzJGwHsZ-R4q5q7ef1_LZ7f_BgvyL0CrQWpRMUROVhfbcJLgGFr-yrZ2i9ILjRo priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDeBgozEjUbEsZ21j7CiqjhwolJvll_ZrsQ6pdmVaP9H_y8zTrJloSBxipTYyWxmxv6yM_MNIW9rjGqCnZTIfVWKVvlSe_BHq1tbaa9jaDPb55fm-ER8PpWne6SeamFy0n6mtMzL9JQd9r6HjQaLwWpeclhQZQlfPHeQuh2tet7Mt_-rYORKMD3Wx1Rc3TJ1Zw_KVP234cs_0yR_i5XmLejoAbk_Ykf6YZD2IdmL6RG5O3STvHxMrgcmYtq1NNnU9ZjiSRexW-WmWf0h7ZdXeLAp0O8beKObFY2rJZbzUGQAX2FmTE-7RAEU0h4z24fWEnjHc0DZYLFl_OFhDUj07BJLvW4e1FNAv8OktKC_hMWfkJOjT1_nx-XYdaH0UrB1CQilDc7XIeJawLV3gXkuo6qcV1ZwJ-wsesW8nflgRZAWNr_IrbI2MMcb_pTspy7F54QG5Spta2lnbStiWztn2cx6HzlvrLRVQdikB-NHSnLsjPHN5NA4V2bQnQHdmaw7wwrybjvnfCDk-Ofoj6je7Ugk084nuouFGY3LKFk3gYGElatEG4WuZBQ86uBisJ7rghxMxmFGD-8NwLKmwaYlsiBvtpfBNzHgYlPsNnkMfIADRoBf-mywpa0kHGyX1xUviNqxsh1Rd6-k5Vnm_2ZI0wiwviCHk0HeyPX3d_Hi_4a_JPdq9BkkEeUHZH99sYmvAICt3evscT8BR1YvLQ priority: 102 providerName: Springer Nature |
Title | Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application |
URI | https://link.springer.com/article/10.1038/s41598-023-38475-1 https://www.ncbi.nlm.nih.gov/pubmed/37443203 https://www.proquest.com/docview/2836681685 https://www.proquest.com/docview/2838250360 https://pubmed.ncbi.nlm.nih.gov/PMC10344916 https://doaj.org/article/8526d1f4e0b04fe4905e43e9dbedac39 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEN8ERmUk3lggiZ0PPyDUVZumSkwIqNS3yF_pKq3O1rTSyv_B_8udk3YUChJPkRIncXx3vp9zvt8R8ibBqCboSYjcVyGvCh0KDfYoRSUjoYU1lWf7PM_ORnw4Tsd7ZF3uqBvAZufSDutJjeaX726uVx_B4D-0KePF-wacECaKJSxkMNmmIayGDsAz5Wionzq433J9J4L7Wh9Iwh4CmEi6PJrdj9nyVZ7SfxcO_XM75W8xVe-qTh-Q-x3GpP1WKR6SPesekbtt1cnVY_KjZSymdUWddHWDW0HpxNYzX1yrOaLN9DsepDP0egkjv5xRO5ti2g9FpvAZ7qBpaO0ogEfa4A74tgQFPvEK0DhodmhvNMwVjl6sMCXs9kUNBZTc3uQm9Jfw-RMyOj35NjgLu-oMoU55vAgByVRG6cRYnDOY0MrEmqW2iJQuJGeKy9zqItYy10Zyk0pwkpbJQkoTK5axp2Tf1c4-J9QUKhIySWVeVdxWiVIyzqXWlrFMpjIKSLyWQ6k76nKsoHFZ-hA6K8pWdiXIrvSyK-OAvN3cc9USd_yz9TGKd9MSSbf9iXo-KTsbLos0yUwMPYxUxCvLRZRazqwwyhqpmQjI4Vo5yrUilwDfsgyLm6QBeb25DDaMgRnpbL30bWChDlgCvvRZq0ubnrCcc5ZELCDFlpZtdXX7ipteeJ7wGOkcAf4H5GitkLf9-vtYvPivkXtJ7iVoMsg1yg7J_mK-tK8Apy1Uj9zJx3mPHPT7w69DOB6fnH_-AmcH2aDn_330vHn-BA6EQAw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEJ2rV9q6d9QEhCq1aWiKEWqm3Zb27TiMRO60TQfgf_A1-IzN-JIRHbz3Zstf22vNcz8w3AM8jimoin_iEfeWLXBo_NSiPOs11kJrU2bxG-xwke8fi_Ul8sgY_u1oYSqvsdGKtqG1p6B_5FprBJKEmEfHryZlPXaMoutq10GjY4sDNv-KSrXq1_w7p-yKKdneO3u75bVcB38QinPpogXObmcg64nWemsyGhsdOBpmRWvBM6L4zMjS6b6wWNtao3B3XUmsbZjzheN8rsC44LmV6sL69M_j4afFXh-JmIkzb6pyAy60KLSRVsUXc52gJYj9csYB1o4B_ebd_J2n-EamtDeDuTbjReq7sTcNqt2DNFbfhatPLco57dS6pqe7AjwYRmZU5K3RRVpRqyoauHNfNu6pNVo2-00YXlp3NkLKzMXPjEZUVMUIiH1OGTsXKgqFzyirKsG9aXNAdJ-jtIyl8982gLirY6ZxKzpYPqhh64c1FxZD9Fp6_C8eXQqd70CvKwj0AZmUWpDqKdT_PhcujLNNhXxvjOE90rAMPwo4iyrTQ6NSh44uqQ_RcqoaKCqmoaiqq0IOXi2smDTDIhaO3idCLkQTqXR8oz4eq1RFKxlFiQ5xhkAUidyINYie4S23mrDY89WCjYxPVappKLeXCg2eL06gjKPCjC1fO6jESXV3kWA_uN1y1mAnvC8GjgHsgV_htZaqrZ4rRaY1DHhJcJC4vPNjsWHM5r_9_i4cXv8ZTuLZ39OFQHe4PDh7B9Ygkh4BM-Qb0pucz9xidwGn2pJU8Bp8vW9h_AcFAdLs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxBtDgUWCE7Xi9a5fB4SAErUUVRyolJvZl9NIZJ3WiSD8D_4Mv46ZtZ0QHr31ZMu7tteepz0z3xDyLMaoJvBJiNhXoahyHRYa5FEWlYwKXVhTebTPo3T_WLwfJaMt8rOvhcG0yl4nekVtao3_yAdgBtMUm0Qkg6pLi_i4N3w1Ow2xgxRGWvt2Gi2LHNrlV_h8a14e7AGtn8fx8N2nt_th12Eg1Ilg8xCscWWUjo1FvueFVoZpntg8UjqXgishM6tzpmWmjRQmkaDoLZe5lIYpnnK47iVyOeMJQxnLRtnq_w5G0AQrujqdiOeDBmwl1rPFPORgE5KQbdhC3zLgX37u3-maf8RsvSkc3iDXOx-Wvm6Z7ibZsu4WudJ2tVzCns8q1c1t8qPFRqZ1RZ10dYNJp3Rs66lv49Xs0mbyHTfSGXq6ABovptROJ1hgRBGTfIq5Og2tHQU3lTaYa982u8ArzsDvB0KE9psGreToyRKLz9Y3aij44-1Jbkx_C9TfIccXQqW7ZNvVzt4n1OQqKmScyKyqhK1ipSTLpNaW81QmMgoI6ylS6g4kHXt1fCl9sJ7nZUvFEqhYeiqWLCAvVufMWoiQc2e_QUKvZiK8tz9Qn43LTluUeRKnhsEKIxWJyooiSqzgtjDKGql5EZCdnk3KTuc05VpCAvJ0NQzaAkNA0tl64efk4PTyFJ70XstVq5XwTAgeRzwg-Qa_bSx1c8RNTjwiOUPgSPjQCMhuz5rrdf3_XTw4_zGekKsg4uWHg6PDh-RajIKDiKZ8h2zPzxb2EXiDc_XYix0lny9azn8Botp3iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+nanoshell+geometries%2C+sizes%2C+and+quantum+emitter+parameters+on+the+sensitivity+of+plasmon-exciton+hybrid+nanoshells+for+sensing+application&rft.jtitle=Scientific+reports&rft.au=Firoozi%2C+A.&rft.au=Amphawan%2C+Angela&rft.au=Khordad%2C+R.&rft.au=Mohammadi%2C+A.&rft.date=2023-07-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-38475-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_38475_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |