Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application

A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account bo...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 11325 - 14
Main Authors Firoozi, A., Amphawan, Angela, Khordad, R., Mohammadi, A., Jalali, T., Edet, C. O., Ali, N.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.07.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.
AbstractList A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.
A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.
Abstract A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton coupling in semi classical approach. We study the interaction of electromagnetic radiation with multilevel atoms in a way that takes into account both the spatial and the temporal dependence of the local fields. Our approach has a wide range of applications, from the description of pulse propagation in two-level media to the elaborate simulation of optoelectronic devices, including sensors. We have numerically solved the corresponding system of coupled Maxwell-Liouville equations using finite difference time domain (FDTD) method for different geometries. Plasmon-exciton hybrid nanoshells with different geometries are designed and simulated, which shows more sensitive to environment refractive index (RI) than nanosensor based on localized surface plasmon. The effects of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of nanosensors to changes in the RI of the environment were investigated. It was found that the cone-like nanoshell with a silver core and quantum emitter shell had the highest sensitivity. The tapered shape of the cone like nanoshell leads to a higher density of plasmonic excitations at the tapered end of the nanoshell. Under specific conditions, two sharp, deep LSPR peaks were evident in the scattering data. These distinguishing features are valuable as signatures in nanosensors requiring fast, noninvasive response.
ArticleNumber 11325
Author Mohammadi, A.
Khordad, R.
Firoozi, A.
Amphawan, Angela
Jalali, T.
Edet, C. O.
Ali, N.
Author_xml – sequence: 1
  givenname: A.
  surname: Firoozi
  fullname: Firoozi, A.
  organization: Department of Physics, College of Sciences, Yasouj University
– sequence: 2
  givenname: Angela
  surname: Amphawan
  fullname: Amphawan, Angela
  email: angelaa@sunway.edu.my
  organization: Smart Photonics Research Laboratory, Sunway University, Future Cities Research Institute, Sunway University
– sequence: 3
  givenname: R.
  surname: Khordad
  fullname: Khordad, R.
  email: rezakh2025@yahoo.com
  organization: Department of Physics, College of Sciences, Yasouj University
– sequence: 4
  givenname: A.
  surname: Mohammadi
  fullname: Mohammadi, A.
  organization: Department of Physics, Persian Gulf University
– sequence: 5
  givenname: T.
  surname: Jalali
  fullname: Jalali, T.
  organization: Department of Physics, Persian Gulf University
– sequence: 6
  givenname: C. O.
  surname: Edet
  fullname: Edet, C. O.
  organization: Institute of Engineering Mathematics, Universiti Malaysia Perlis, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Department of Physics, Cross River University of Technology
– sequence: 7
  givenname: N.
  surname: Ali
  fullname: Ali, N.
  organization: Department of Physics, Cross River University of Technology, Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37443203$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAltiwIODfjLNCqCpQqRIbWFuOfTPjKrFT26k6vAfvi2fS0p9FvbFlf-f46N77ujrwwUNVvSX4E8FMfk6ciFbWmLKaSb4SNXlRHVHMRU0ZpQcPzofVSUqXuCxBW07aV9UhW3HOKGZH1d-zvgeTUeiR1z6kDQwDWkMYIUcH6SNK7s9u096iq1n7PI8IRpczRDTpqAsHMaHgUd4ASuCTy-7a5e3OcRp0GoOv4ca4XJDNtovO3n-UUB_iIvJrpKdpcEZnF_yb6mWvhwQnt_tx9fvb2a_TH_XFz-_np18vaiM4yTVnbW87Qy1ghgVrTWeJYQIk7ozUnHVcr8BIYvTKWM2t0IQyYFpqbUnHGnZcnS--NuhLNUU36rhVQTu1vwhxrXTMzgygpKCNJT0H3GHeA2-xAM6gtR1YbVhbvL4sXtPcjWAN-Bz18Mj08Yt3G7UO16q0k_OW7NJ8uHWI4WqGlNXokil10h7CnBSVTFKBWYML-v4Jehnm6EutdlTTSNJIUah3DyP9z3LX_gLIBTAxpBShV6VR-w6UhG4o0XbppFqGTZVhU_thU6RI6RPpnfuzIraIUoH9GuJ97GdU_wDBoutl
CitedBy_id crossref_primary_10_3367_UFNe_2024_08_039742
crossref_primary_10_3788_COL202422_093602
crossref_primary_10_3367_UFNr_2024_08_039742
crossref_primary_10_1080_15397734_2023_2286484
crossref_primary_10_1007_s11468_023_02136_w
crossref_primary_10_1002_adts_202401170
crossref_primary_10_1039_D4NR04177A
Cites_doi 10.1002/lpor.201800176
10.1063/1.3167407
10.1063/1.4945446
10.1103/PhysRevA.66.063418
10.1016/j.snb.2022.132326
10.1103/PhysRevA.78.013806
10.1103/PhysRevLett.113.163603
10.1021/acs.nanolett.6b02661
10.1007/s00289-022-04521-7
10.1038/s41563-022-01224-2
10.1007/s10103-022-03524-0
10.1088/1402-4896/ac48ac
10.1021/acs.nanolett.6b03702
10.3390/bios12090678
10.1080/09500340.2014.960019
10.1021/acs.nanolett.6b04659
10.1177/0003702817706979
10.1063/1.4767653
10.1007/s13204-020-01622-5
10.1016/B978-0-12-823971-1.00016-7
10.1364/OE.16.019579
10.1021/nl400689q
10.1364/OE.14.011330
10.1007/s11468-021-01539-x
10.1364/OE.18.023633
10.1021/nl4014887
10.1002/advs.202104835
10.1103/PhysRevB.95.115406
10.1103/PhysRevLett.110.153605
10.1103/PhysRevA.91.043835
10.1088/0034-4885/78/1/013901
10.1007/978-981-16-3645-5_9
10.1016/j.snb.2022.132638
10.1166/jctn.2007.029
10.1103/PhysRevB.86.155305
10.1109/JSTQE.2004.836023
10.1038/srep27910
10.1021/ph500032d
10.1063/1.4978767
10.1002/admi.202101133
10.1364/OE.16.007397
10.1038/nmat3950
10.1103/PhysRevA.52.3082
10.1063/5.0130790
10.1103/PhysRevB.83.235406
10.1103/PhysRevLett.97.146804
10.1103/PhysRevA.89.022501
10.1007/s00339-022-06226-0
10.1364/OL.42.000187
10.1140/epjp/s13360-021-02094-4
10.1021/nl8024278
10.1002/adfm.201601779
10.1063/1.4883835
10.1364/JOSAB.31.000120
10.1038/srep03074
10.1103/PhysRevA.84.043802
10.1039/C6CS00494F
10.1063/1.4979838
10.1103/PhysRevB.82.195419
10.1103/PhysRevA.82.043845
10.1021/acs.analchem.2c03471
10.1038/s41598-022-06783-7
10.1021/acsami.8b01550
10.1038/ncomms13328
10.1039/C7NR06367A
10.1021/jp303560s
10.1103/PhysRevLett.112.253601
10.1021/acsphotonics.7b00856
10.1039/D2NR03737H
10.1016/B978-0-323-99596-2.00009-1
10.4103/japtr.japtr_106_22
10.1117/12.2623932
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-38475-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_8526d1f4e0b04fe4905e43e9dbedac39
PMC10344916
37443203
10_1038_s41598_023_38475_1
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-439fdbc2de030539cbd1c35e80bc8a43b4a7ec81ca7cda4d5a123e3a8aad1b363
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 00:54:41 EDT 2025
Thu Aug 21 18:36:52 EDT 2025
Thu Aug 07 14:37:58 EDT 2025
Wed Aug 13 05:11:05 EDT 2025
Wed Feb 19 02:23:58 EST 2025
Thu Apr 24 22:55:34 EDT 2025
Tue Jul 01 04:25:02 EDT 2025
Fri Feb 21 02:37:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-439fdbc2de030539cbd1c35e80bc8a43b4a7ec81ca7cda4d5a123e3a8aad1b363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-38475-1
PMID 37443203
PQID 2836681685
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_8526d1f4e0b04fe4905e43e9dbedac39
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10344916
proquest_miscellaneous_2838250360
proquest_journals_2836681685
pubmed_primary_37443203
crossref_citationtrail_10_1038_s41598_023_38475_1
crossref_primary_10_1038_s41598_023_38475_1
springer_journals_10_1038_s41598_023_38475_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-13
PublicationDateYYYYMMDD 2023-07-13
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Marjanovic, Sharma, Smith, Pinder, Moore, Manning, Dinsdale, Berks, Newton, Wilkinson, Dickinson, Herrick, Watson, Murray (CR14) 2022; 12
Slavcheva, Arnold, Wallace, Ziolkowski (CR62) 2004; 10
Artuso, Bryant, Garcia-Etxarri, Aizpurua (CR45) 2011; 83
Tang, Yu, Pan, Chen, Audit, Argoul, Zhang, Xu (CR69) 2017; 71
Shabani, Mohammadi, Jalali (CR53) 2022; 17
Sukharev, Nitzan (CR42) 2011; 84
Hu, Fleming, Drezek (CR57) 2008; 16
Kwon, Jin, Shin, Kim, Kim, Kang, Choi (CR55) 2018; 10
Schlather, Large, Urban, Nordlander, Halas (CR59) 2013; 13
Puthumpally-Joseph, Atabek, Sukharev, Charron (CR61) 2015; 91
Jalali, Rauscher, Mohammadi, Erni, Hafner, Baechtold, Shoushtari (CR65) 2007; 4
Huh, Lee, Lee (CR8) 2018; 5
Sadeghi, Patty (CR52) 2014; 31
Kim, Devaraj, Yang, Lee, Kim, Oh, Rho (CR74) 2022; 14
Anton, Carreno, Melle, Calderon, Granado (CR29) 2012; 86
Krivenkov, Goncharov, Nabiev, Rakovich (CR68) 2019; 13
Jackman, Ferhan, Cho (CR56) 2017; 46
Firoozi, Mohammadi, Khordad, Jalali (CR73) 2022; 97
Firoozi, Khordad, Mohammadi, Jalali (CR72) 2021; 136
Sala, Pachter, Sukharev (CR58) 2022; 157
Slavcheva, Arnold, Wallace, Ziolkowski (CR21) 2002; 66
Balasubrahmaniyam, Kar, Sen, Bisht, Kasiviswanathan (CR35) 2017; 110
Wu, Gray, Pelton (CR40) 2010; 13
Giannios, Toutouzas, Matiatou, Stasinos, Konstadoulakis, Zografos, Moutzouris (CR17) 2016; 6
Chen, Shao, Woo, Wang, Lin (CR28) 2012; 116
Yu, Ji, Zu, Du, Kang, Li, Zhou, Shi, Fang (CR24) 2016; 26
Zengin, Johansson, Johansson, Antosiewicz, Kall, Shegai (CR34) 2013; 3
Mohammadi, Jalali, Agio (CR66) 2008; 16
Hoque, Somasundaram, Samy, Dawane, Sen (CR15) 2022
Matiatou, Giannios, Koutsoumpos, Michalopoulos, Toutouzas, Zografos, Moutzouris (CR16) 2022; 37
Shabani, Mohammadi, Jalali (CR46) 2022; 2022
Fofang, Park, Neumann, Mirin, Nordlander, Halas (CR41) 2008; 8
Wersall, Cuadra, Antosiewicz, Balci, Shegai (CR33) 2017; 17
Ziolkowski, Arnold, Gogny (CR22) 1995; 52
Sagor, Hassan, Yaseer, Surid, Ahmed (CR26) 2021; 11
Liu, Wang, Chai, Gao, Li (CR49) 2017; 121
Taflove, Hagness (CR71) 2005
Sukharev, Nitzan (CR43) 2016; 144
Deinega, Seideman (CR48) 2014; 140
Antosiewicz, Apell, Shegai (CR36) 2014; 1
CR18
Zhang, Govorov, Bryant (CR30) 2006; 97
Artuso, Bryant (CR51) 2010; 82
Delga, Feist, Bravo-Abad, Garcia-Vidal (CR27) 2014; 112
Adato, Artar, Erramilli, Altug (CR70) 2013; 13
Saylan, Akgönüllü, Denizli, Denizli, Nguyen, Rajan, Alam, Rahman (CR1) 2022
Kumar, Chatterjee, Rai, Yadav (CR10) 2022
Zhao, Jian, Gao, Song (CR11) 2022; 94
Santopolo, Clemente, González-Freire, Russell, Vaquer, Barón, Aranda, Socias, del Castillo, Borges, de la Rica (CR9) 2022; 373
Waks, Sridharan (CR31) 2010; 82
Chaudhry, Akim, Safdar, Yasmin, Begum, Sung, Muhammad (CR12) 2022; 13
Deinega, Seideman (CR47) 2014; 89
Aronson, Ferner (CR2) 2017; 17
Liu, Wachsmann-Hogiu (CR4) 2022; 12
Sen, Dey, Nath, Gangopadhyay (CR20) 2015; 62
Minopoli, Acunzo, Della-Ventura, Velotta (CR5) 2022; 9
Sadeghi (CR54) 2012; 101
Yu, Si, Ning, Sun, Deng (CR19) 2019; 42
Firoozi, Khordad, Rastegar-Sedehi (CR64) 2022; 128
Aldewachi, Chalati, Woodroofe, Bricklebank, Sharrack, Gardiner (CR7) 2017; 10
Fratalocchi, Conti, Ruocco (CR63) 2008; 78
Nguyen, Kim, Devaraj, Song, Lee, Choi, Kim, Jang, Kim, Jeong, Kim, Kim, Oh (CR6) 2022; 369
Puthumpally-Joseph, Sukharev, Atabek, Charron (CR60) 2014; 113
Lopata, Neuhauser (CR50) 2009; 131
Mohammadi, Agio (CR67) 2006; 14
Lundt, Klembt, Cherotchenko, Betzold, Iff, Nalitov, Klaas, Dietrich, Kavokin, Hofling, Schneider (CR23) 2016; 7
Chen, Sandoghdar, Agio (CR32) 2013; 110
Hwang, Seo, Jeong, Ning, Wiraja, Yang, Tan, Lee, Kim, Kim, Kim, Choi, Lim, Pu, Jang, Xu (CR3) 2022; 9
Tsargorodska, Cartron, Vasilev, Kodali, Mass, Baumberg, Dutton, Hunter, Torma, Leggett (CR39) 2016; 16
Sukharev, Charron (CR44) 2017; 95
Lin, Wang, Wei, Peng, Xie, Zheng (CR25) 2016; 16
Coles, Somaschi, Michetti, Clark, Lagoudakis, Savvidis, Lidzey (CR38) 2014; 13
Huang, Chen, Jiang, Zhang, He, Wang, Pu (CR13) 2022; 21
Torma, Barnes (CR37) 2015; 78
RW Ziolkowski (38475_CR22) 1995; 52
N Lundt (38475_CR23) 2016; 7
J Huang (38475_CR13) 2022; 21
AE Schlather (38475_CR59) 2013; 13
T Jalali (38475_CR65) 2007; 4
RD Artuso (38475_CR51) 2010; 82
S Sen (38475_CR20) 2015; 62
M Wersall (38475_CR33) 2017; 17
M Balasubrahmaniyam (38475_CR35) 2017; 110
SZ Hoque (38475_CR15) 2022
Y Yu (38475_CR24) 2016; 26
G Slavcheva (38475_CR21) 2002; 66
A Deinega (38475_CR48) 2014; 140
Y Saylan (38475_CR1) 2022
M Sukharev (38475_CR42) 2011; 84
XW Chen (38475_CR32) 2013; 110
FD Sala (38475_CR58) 2022; 157
R Puthumpally-Joseph (38475_CR61) 2015; 91
G-E-S Chaudhry (38475_CR12) 2022; 13
W Zhang (38475_CR30) 2006; 97
M Sukharev (38475_CR44) 2017; 95
W Liu (38475_CR49) 2017; 121
A Firoozi (38475_CR72) 2021; 136
A Delga (38475_CR27) 2014; 112
V Krivenkov (38475_CR68) 2019; 13
A Deinega (38475_CR47) 2014; 89
WG Kim (38475_CR74) 2022; 14
L Shabani (38475_CR53) 2022; 17
M Matiatou (38475_CR16) 2022; 37
A Tsargorodska (38475_CR39) 2016; 16
A Fratalocchi (38475_CR63) 2008; 78
H Chen (38475_CR28) 2012; 116
R Adato (38475_CR70) 2013; 13
H Aldewachi (38475_CR7) 2017; 10
E Waks (38475_CR31) 2010; 82
G Zengin (38475_CR34) 2013; 3
RD Artuso (38475_CR45) 2011; 83
TM Nguyen (38475_CR6) 2022; 369
JH Huh (38475_CR8) 2018; 5
A Firoozi (38475_CR73) 2022; 97
SM Sadeghi (38475_CR54) 2012; 101
DM Coles (38475_CR38) 2014; 13
A Taflove (38475_CR71) 2005
K Lopata (38475_CR50) 2009; 131
Y Yu (38475_CR19) 2019; 42
M Sukharev (38475_CR43) 2016; 144
L Shabani (38475_CR46) 2022; 2022
NT Fofang (38475_CR41) 2008; 8
P Torma (38475_CR37) 2015; 78
A Firoozi (38475_CR64) 2022; 128
TJ Antosiewicz (38475_CR36) 2014; 1
38475_CR18
N Kumar (38475_CR10) 2022
J Hwang (38475_CR3) 2022; 9
MA Anton (38475_CR29) 2012; 86
A Mohammadi (38475_CR67) 2006; 14
EJ Marjanovic (38475_CR14) 2022; 12
X Wu (38475_CR40) 2010; 13
JA Jackman (38475_CR56) 2017; 46
J Liu (38475_CR4) 2022; 12
A Minopoli (38475_CR5) 2022; 9
P Giannios (38475_CR17) 2016; 6
A Mohammadi (38475_CR66) 2008; 16
JA Kwon (38475_CR55) 2018; 10
C Zhao (38475_CR11) 2022; 94
JK Aronson (38475_CR2) 2017; 17
LH Lin (38475_CR25) 2016; 16
Y Hu (38475_CR57) 2008; 16
SM Sadeghi (38475_CR52) 2014; 31
Y Tang (38475_CR69) 2017; 71
GM Slavcheva (38475_CR62) 2004; 10
R Puthumpally-Joseph (38475_CR60) 2014; 113
G Santopolo (38475_CR9) 2022; 373
RH Sagor (38475_CR26) 2021; 11
References_xml – volume: 13
  start-page: 1800176
  year: 2019
  ident: CR68
  article-title: Induced transparency in plasmon-exciton nanostructures for sensing applications
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201800176
– volume: 131
  start-page: 014701
  year: 2009
  ident: CR50
  article-title: Nonlinear nanopolaritonics: Finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3167407
– volume: 144
  start-page: 144703
  year: 2016
  ident: CR43
  article-title: Plasmon transmission through excitonic subwavelength gaps
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4945446
– volume: 66
  start-page: 063418
  year: 2002
  ident: CR21
  article-title: Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.66.063418
– volume: 369
  start-page: 132326
  year: 2022
  ident: CR6
  article-title: Biomaterial actuator of M13 bacteriophage in dynamically tunable plasmonic coupling structure
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2022.132326
– volume: 78
  start-page: 013806
  year: 2008
  ident: CR63
  article-title: Three-dimensional ab initio investigation of light-matter interaction in Mie lasers
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.013806
– volume: 113
  start-page: 163603
  year: 2014
  ident: CR60
  article-title: Dipole-induced electromagnetic transparency
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.163603
– volume: 16
  start-page: 6850
  year: 2016
  ident: CR39
  article-title: Strong coupling of localized surface plasmons to excitons in light-harvesting complexes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02661
– volume: 2022
  start-page: 17
  year: 2022
  ident: CR46
  article-title: Performance analysis of polymer bulk heterojunction solar cells with plasmonic nanoparticles embedded into the P3HT:PC61BM active layer using the FDTD method
  publication-title: Polymer Bull.
  doi: 10.1007/s00289-022-04521-7
– volume: 21
  start-page: 598
  year: 2022
  end-page: 607
  ident: CR13
  article-title: Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01224-2
– volume: 37
  start-page: 2597
  year: 2022
  end-page: 2604
  ident: CR16
  article-title: Complex refractive index of freshly excised human breast tissue as a marker of disease
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-022-03524-0
– volume: 97
  year: 2022
  ident: CR73
  article-title: Q-BOR–FDTD method for solving Schrödinger equation for rotationally symmetric nanostructures with hydrogenic impurity
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac48ac
– volume: 16
  start-page: 7655
  year: 2016
  ident: CR25
  article-title: Photoswitchable rabi splitting in hybrid plasmon-waveguide modes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03702
– volume: 12
  start-page: 678
  year: 2022
  ident: CR4
  article-title: Progress and challenges of point-of-need photonic biosensors for the diagnosis of COVID-19 infections and immunity
  publication-title: Biosensors
  doi: 10.3390/bios12090678
– volume: 62
  start-page: 166
  year: 2015
  ident: CR20
  article-title: Comparison of electromagnetically induced transparency in lambda, cascade and vee three-level systems
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2014.960019
– volume: 17
  start-page: 551
  year: 2017
  ident: CR33
  article-title: Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04659
– volume: 71
  start-page: 2377
  year: 2017
  ident: CR69
  article-title: Numerical study of novel ratiometric sensors based on plasmon-exciton coupling
  publication-title: Appl. Spect.
  doi: 10.1177/0003702817706979
– volume: 101
  start-page: 213102
  year: 2012
  ident: CR54
  article-title: Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4767653
– volume: 11
  start-page: 521
  year: 2021
  ident: CR26
  article-title: Highly sensitive refractive index sensor optimized for blood group sensing utilizing the Fano resonance
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01622-5
– start-page: 195
  year: 2022
  end-page: 213
  ident: CR1
  article-title: Chapter 9—nanosensors for medical diagnosis
  publication-title: Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood
  doi: 10.1016/B978-0-12-823971-1.00016-7
– volume: 16
  start-page: 19579
  year: 2008
  ident: CR57
  article-title: Optical properties of gold-silica-gold multilayer nanoshells
  publication-title: Opt. Express
  doi: 10.1364/OE.16.019579
– volume: 13
  start-page: 2584
  year: 2013
  ident: CR70
  article-title: Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems
  publication-title: Nano Lett.
  doi: 10.1021/nl400689q
– volume: 14
  start-page: 11330
  year: 2006
  ident: CR67
  article-title: Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces
  publication-title: Opt. Express
  doi: 10.1364/OE.14.011330
– volume: 17
  start-page: 491
  year: 2022
  ident: CR53
  article-title: Numerical study of plasmonic effects of Ag nanoparticles embedded in the active layer on performance polymer organic solar cells
  publication-title: Plasmonics
  doi: 10.1007/s11468-021-01539-x
– volume: 13
  start-page: 23633
  year: 2010
  ident: CR40
  article-title: Quantum-dot-induced transparency in a nanoscale plasmonic resonator
  publication-title: Opt. Express
  doi: 10.1364/OE.18.023633
– volume: 13
  start-page: 3281
  year: 2013
  ident: CR59
  article-title: Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers
  publication-title: Nano Lett.
  doi: 10.1021/nl4014887
– volume: 9
  start-page: 2104835
  year: 2022
  ident: CR3
  article-title: Monitoring wound healing with topically applied optical NanoFlare mRNA nanosensors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104835
– volume: 95
  start-page: 115406
  year: 2017
  ident: CR44
  article-title: Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.115406
– volume: 110
  start-page: 153605
  year: 2013
  ident: CR32
  article-title: Coherent interaction of light with a metallic structure coupled to a single quantum emitter: From superabsorption to cloaking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.153605
– volume: 91
  start-page: 043835
  year: 2015
  ident: CR61
  article-title: Dipole-induced electromagnetic transparency
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.043835
– volume: 78
  start-page: 013901
  year: 2015
  ident: CR37
  article-title: Strong coupling between surface plasmon polaritons and emitters: A review
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/1/013901
– start-page: 199
  year: 2022
  end-page: 223
  ident: CR15
  publication-title: Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering
  doi: 10.1007/978-981-16-3645-5_9
– volume: 373
  start-page: 132638
  year: 2022
  ident: CR9
  article-title: Plasma-induced nanoparticle aggregation for stratifying COVID-19 patients according to disease severity
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2022.132638
– ident: CR18
– volume: 4
  start-page: 644
  year: 2007
  ident: CR65
  article-title: Efficient effective permittivity treatment for the 2D-FDTD simulation of photonic crystals
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2007.029
– volume: 86
  start-page: 155305
  year: 2012
  ident: CR29
  article-title: Plasmonic effects in excitonic population transfer in a driven semiconductor–metal nanoparticle hybrid system
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.86.155305
– volume: 10
  start-page: 1052
  year: 2004
  ident: CR62
  article-title: FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2004.836023
– volume: 6
  start-page: 27910
  year: 2016
  ident: CR17
  article-title: Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies
  publication-title: Sci. Rep.
  doi: 10.1038/srep27910
– volume: 1
  start-page: 454
  year: 2014
  ident: CR36
  article-title: Plasmon-exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling
  publication-title: ACS Photon.
  doi: 10.1021/ph500032d
– volume: 121
  start-page: 123102
  year: 2017
  ident: CR49
  article-title: Multiple plasmon resonance in a concentric silver-atomic medium nanoshell
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4978767
– volume: 9
  start-page: 2101133
  year: 2022
  ident: CR5
  article-title: Nanostructured surfaces as plasmonic biosensors: A review
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202101133
– volume: 16
  start-page: 7397
  year: 2008
  ident: CR66
  article-title: Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method
  publication-title: Opt. Express
  doi: 10.1364/OE.16.007397
– volume: 13
  start-page: 243
  year: 2022
  end-page: 247
  ident: CR12
  article-title: Cancer and disease diagnosis—biosensor as potential diagnostic tool for biomarker detection
  publication-title: J. Adv. Pharm. Technol. Res.
– volume: 13
  start-page: 712
  year: 2014
  ident: CR38
  article-title: Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3950
– volume: 52
  start-page: 3082
  year: 1995
  ident: CR22
  article-title: Ultrafast pulse interactions with two-level atoms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3082
– volume: 157
  start-page: 190401
  year: 2022
  ident: CR58
  article-title: Advances in modeling plasmonic systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0130790
– volume: 17
  start-page: 76
  year: 2017
  ident: CR2
  article-title: Biomarkers—a general review
  publication-title: Curr. Protoc. Pharmacol.
– volume: 83
  start-page: 235406
  year: 2011
  ident: CR45
  article-title: Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235406
– volume: 97
  start-page: 146804
  year: 2006
  ident: CR30
  article-title: Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear fano effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.146804
– volume: 89
  start-page: 022501
  year: 2014
  ident: CR47
  article-title: Self-interaction-free approaches for self-consistent solution of the Maxwell-Liouville equations
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.022501
– volume: 128
  start-page: 1074
  year: 2022
  ident: CR64
  article-title: Effects of geometry and size of noble metal nanoparticles on enhanced refractive index sensitivity
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-022-06226-0
– volume: 42
  start-page: 187
  year: 2019
  ident: CR19
  article-title: Plasmonic wavelength splitter based on a metal-insulator–metal waveguide with a graded grating coupler
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000187
– volume: 136
  start-page: 1073
  year: 2021
  ident: CR72
  article-title: Plasmon-exciton interactions in a spheroidal multilayer nanoshell for refractive index sensor application
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-02094-4
– volume: 8
  start-page: 3481
  year: 2008
  ident: CR41
  article-title: Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-J-aggregate complexes
  publication-title: Nano Lett.
  doi: 10.1021/nl8024278
– volume: 26
  start-page: 6394
  year: 2016
  ident: CR24
  article-title: Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS heterostructures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601779
– volume: 140
  start-page: 234311
  year: 2014
  ident: CR48
  article-title: Interaction of single quantum emitter and dark plasmon supported by a metal nanoring
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4883835
– volume: 31
  start-page: 120
  year: 2014
  ident: CR52
  article-title: Ultrafast dynamics induced by coherent exciton-plasmon coupling in quantum dot-metallic nanoshell systems
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.31.000120
– volume: 3
  start-page: 3074
  year: 2013
  ident: CR34
  article-title: Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates
  publication-title: Sci. Rep.
  doi: 10.1038/srep03074
– volume: 84
  start-page: 043802
  year: 2011
  ident: CR42
  article-title: Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043802
– volume: 46
  start-page: 3615
  year: 2017
  ident: CR56
  article-title: Nanoplasmonic sensors for biointerfacial science
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00494F
– volume: 110
  start-page: 171101
  year: 2017
  ident: CR35
  article-title: Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979838
– volume: 82
  start-page: 195419
  year: 2010
  ident: CR51
  article-title: Strongly coupled quantum dot-metal nanoparticle systems: Exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.195419
– volume: 82
  start-page: 043845
  year: 2010
  ident: CR31
  article-title: Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.043845
– volume: 94
  start-page: 14038
  year: 2022
  end-page: 14046
  ident: CR11
  article-title: Plasmon-mediated peroxidase-like activity on an asymmetric nanotube architecture for rapid visual detection of bacteria
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03471
– year: 2005
  ident: CR71
  publication-title: Computational Electrodynamics: The Finite-Difference Time-Domain Method
– volume: 12
  start-page: 2893
  year: 2022
  ident: CR14
  article-title: Polarisation-sensitive optical coherence tomography measurement of retardance in fibrosis, a non-invasive biomarker in patients with systemic sclerosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06783-7
– volume: 10
  start-page: 13226
  year: 2018
  ident: CR55
  article-title: Tunable plasmonic cavity for label-free detection of small molecules
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01550
– volume: 7
  start-page: 13328
  year: 2016
  ident: CR23
  article-title: Room temperature Tamm-Plasmon exciton-polaritons with a WSe monolayer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13328
– volume: 10
  start-page: 18
  year: 2017
  ident: CR7
  article-title: Gold nanoparticle-based colorimetric biosensors
  publication-title: Nanoscale
  doi: 10.1039/C7NR06367A
– volume: 116
  start-page: 14088
  year: 2012
  ident: CR28
  article-title: Plasmonic-molecular resonance coupling: Plasmonic splitting versus energy transfer
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp303560s
– volume: 112
  start-page: 253601
  year: 2014
  ident: CR27
  article-title: Quantum emitters near a metal nanoparticle: Strong coupling and quenching
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.253601
– volume: 5
  start-page: 413
  year: 2018
  ident: CR8
  article-title: Comparative study of plasmonic resonances between the roundest and randomly faceted Au nanoparticles-on-mirror cavities
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.7b00856
– volume: 14
  start-page: 16450
  year: 2022
  ident: CR74
  article-title: Three-dimensional plasmonic nanoclusters driven by co-assembly of thermo-plasmonic nanoparticles and colloidal quantum dots
  publication-title: Nanoscale
  doi: 10.1039/D2NR03737H
– start-page: 173
  year: 2022
  end-page: 193
  ident: CR10
  article-title: Chapter 8—nanoparticle-based immunoassays for early and rapid detection of HIV and other viral infections
  publication-title: Nanotechnological Applications in Virology
  doi: 10.1016/B978-0-323-99596-2.00009-1
– volume: 7
  start-page: 13328
  year: 2016
  ident: 38475_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13328
– volume: 16
  start-page: 7655
  year: 2016
  ident: 38475_CR25
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03702
– volume: 84
  start-page: 043802
  year: 2011
  ident: 38475_CR42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043802
– volume: 3
  start-page: 3074
  year: 2013
  ident: 38475_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/srep03074
– volume: 373
  start-page: 132638
  year: 2022
  ident: 38475_CR9
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2022.132638
– volume: 37
  start-page: 2597
  year: 2022
  ident: 38475_CR16
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-022-03524-0
– volume: 140
  start-page: 234311
  year: 2014
  ident: 38475_CR48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4883835
– volume: 10
  start-page: 13226
  year: 2018
  ident: 38475_CR55
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01550
– volume: 13
  start-page: 243
  year: 2022
  ident: 38475_CR12
  publication-title: J. Adv. Pharm. Technol. Res.
  doi: 10.4103/japtr.japtr_106_22
– volume: 94
  start-page: 14038
  year: 2022
  ident: 38475_CR11
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03471
– volume: 82
  start-page: 195419
  year: 2010
  ident: 38475_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.195419
– volume: 71
  start-page: 2377
  year: 2017
  ident: 38475_CR69
  publication-title: Appl. Spect.
  doi: 10.1177/0003702817706979
– volume: 6
  start-page: 27910
  year: 2016
  ident: 38475_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/srep27910
– volume: 78
  start-page: 013806
  year: 2008
  ident: 38475_CR63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.013806
– volume: 89
  start-page: 022501
  year: 2014
  ident: 38475_CR47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.022501
– volume: 5
  start-page: 413
  year: 2018
  ident: 38475_CR8
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.7b00856
– volume: 95
  start-page: 115406
  year: 2017
  ident: 38475_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.115406
– volume-title: Computational Electrodynamics: The Finite-Difference Time-Domain Method
  year: 2005
  ident: 38475_CR71
– start-page: 199
  volume-title: Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering
  year: 2022
  ident: 38475_CR15
  doi: 10.1007/978-981-16-3645-5_9
– volume: 110
  start-page: 153605
  year: 2013
  ident: 38475_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.153605
– volume: 16
  start-page: 6850
  year: 2016
  ident: 38475_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02661
– volume: 97
  year: 2022
  ident: 38475_CR73
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac48ac
– volume: 13
  start-page: 712
  year: 2014
  ident: 38475_CR38
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3950
– volume: 12
  start-page: 678
  year: 2022
  ident: 38475_CR4
  publication-title: Biosensors
  doi: 10.3390/bios12090678
– volume: 9
  start-page: 2104835
  year: 2022
  ident: 38475_CR3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104835
– volume: 116
  start-page: 14088
  year: 2012
  ident: 38475_CR28
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp303560s
– volume: 2022
  start-page: 17
  year: 2022
  ident: 38475_CR46
  publication-title: Polymer Bull.
  doi: 10.1007/s00289-022-04521-7
– volume: 144
  start-page: 144703
  year: 2016
  ident: 38475_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4945446
– volume: 21
  start-page: 598
  year: 2022
  ident: 38475_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01224-2
– volume: 97
  start-page: 146804
  year: 2006
  ident: 38475_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.146804
– volume: 83
  start-page: 235406
  year: 2011
  ident: 38475_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235406
– volume: 10
  start-page: 1052
  year: 2004
  ident: 38475_CR62
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2004.836023
– volume: 128
  start-page: 1074
  year: 2022
  ident: 38475_CR64
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-022-06226-0
– volume: 86
  start-page: 155305
  year: 2012
  ident: 38475_CR29
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.86.155305
– volume: 101
  start-page: 213102
  year: 2012
  ident: 38475_CR54
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4767653
– volume: 17
  start-page: 551
  year: 2017
  ident: 38475_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04659
– start-page: 173
  volume-title: Nanotechnological Applications in Virology
  year: 2022
  ident: 38475_CR10
  doi: 10.1016/B978-0-323-99596-2.00009-1
– volume: 31
  start-page: 120
  year: 2014
  ident: 38475_CR52
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.31.000120
– volume: 157
  start-page: 190401
  year: 2022
  ident: 38475_CR58
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0130790
– volume: 16
  start-page: 7397
  year: 2008
  ident: 38475_CR66
  publication-title: Opt. Express
  doi: 10.1364/OE.16.007397
– start-page: 195
  volume-title: Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood
  year: 2022
  ident: 38475_CR1
  doi: 10.1016/B978-0-12-823971-1.00016-7
– volume: 8
  start-page: 3481
  year: 2008
  ident: 38475_CR41
  publication-title: Nano Lett.
  doi: 10.1021/nl8024278
– volume: 78
  start-page: 013901
  year: 2015
  ident: 38475_CR37
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/1/013901
– volume: 112
  start-page: 253601
  year: 2014
  ident: 38475_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.253601
– volume: 13
  start-page: 23633
  year: 2010
  ident: 38475_CR40
  publication-title: Opt. Express
  doi: 10.1364/OE.18.023633
– volume: 10
  start-page: 18
  year: 2017
  ident: 38475_CR7
  publication-title: Nanoscale
  doi: 10.1039/C7NR06367A
– volume: 52
  start-page: 3082
  year: 1995
  ident: 38475_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3082
– volume: 14
  start-page: 16450
  year: 2022
  ident: 38475_CR74
  publication-title: Nanoscale
  doi: 10.1039/D2NR03737H
– volume: 17
  start-page: 491
  year: 2022
  ident: 38475_CR53
  publication-title: Plasmonics
  doi: 10.1007/s11468-021-01539-x
– volume: 14
  start-page: 11330
  year: 2006
  ident: 38475_CR67
  publication-title: Opt. Express
  doi: 10.1364/OE.14.011330
– volume: 16
  start-page: 19579
  year: 2008
  ident: 38475_CR57
  publication-title: Opt. Express
  doi: 10.1364/OE.16.019579
– volume: 26
  start-page: 6394
  year: 2016
  ident: 38475_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601779
– volume: 82
  start-page: 043845
  year: 2010
  ident: 38475_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.043845
– volume: 131
  start-page: 014701
  year: 2009
  ident: 38475_CR50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3167407
– volume: 13
  start-page: 2584
  year: 2013
  ident: 38475_CR70
  publication-title: Nano Lett.
  doi: 10.1021/nl400689q
– volume: 17
  start-page: 76
  year: 2017
  ident: 38475_CR2
  publication-title: Curr. Protoc. Pharmacol.
– volume: 369
  start-page: 132326
  year: 2022
  ident: 38475_CR6
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2022.132326
– volume: 13
  start-page: 1800176
  year: 2019
  ident: 38475_CR68
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201800176
– volume: 42
  start-page: 187
  year: 2019
  ident: 38475_CR19
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000187
– volume: 11
  start-page: 521
  year: 2021
  ident: 38475_CR26
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01622-5
– volume: 110
  start-page: 171101
  year: 2017
  ident: 38475_CR35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979838
– volume: 136
  start-page: 1073
  year: 2021
  ident: 38475_CR72
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-02094-4
– volume: 121
  start-page: 123102
  year: 2017
  ident: 38475_CR49
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4978767
– volume: 9
  start-page: 2101133
  year: 2022
  ident: 38475_CR5
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202101133
– volume: 62
  start-page: 166
  year: 2015
  ident: 38475_CR20
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2014.960019
– volume: 113
  start-page: 163603
  year: 2014
  ident: 38475_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.163603
– volume: 46
  start-page: 3615
  year: 2017
  ident: 38475_CR56
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00494F
– volume: 91
  start-page: 043835
  year: 2015
  ident: 38475_CR61
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.91.043835
– volume: 4
  start-page: 644
  year: 2007
  ident: 38475_CR65
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2007.029
– volume: 66
  start-page: 063418
  year: 2002
  ident: 38475_CR21
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.66.063418
– ident: 38475_CR18
  doi: 10.1117/12.2623932
– volume: 1
  start-page: 454
  year: 2014
  ident: 38475_CR36
  publication-title: ACS Photon.
  doi: 10.1021/ph500032d
– volume: 12
  start-page: 2893
  year: 2022
  ident: 38475_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06783-7
– volume: 13
  start-page: 3281
  year: 2013
  ident: 38475_CR59
  publication-title: Nano Lett.
  doi: 10.1021/nl4014887
SSID ssj0000529419
Score 2.436998
Snippet A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by plasmon-exciton...
Abstract A proposed nanosensor based on hybrid nanoshells consisting of a core of metal nanoparticles and a coating of molecules is simulated by...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11325
SubjectTerms 639/624
639/925
Biomarkers
Biosensors
Electromagnetic radiation
Humanities and Social Sciences
Investigations
multidisciplinary
Nanoparticles
Optical properties
Photovoltaic cells
Physics
Quantum dots
Science
Science (multidisciplinary)
Sensors
Silver
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbjRqHNtZ-wiIquLAiUq9WX6lXYl1CtmVKP-j_5cZO7vd5XnhFClxEscz4_mimfmGkFctRjVBT2rkvqpFr3ytPdij1b1ttNcx9Jnt82N3cio-nMmzrVZfmBNW6IHLwh0p2XaB9SI2rhF9FLqRUfCog4vBep5L98Dnbf1MFVbvVgumpyqZhqujETwVVpO1vOawI8ua7XiiTNj_O5T5a7LkTxHT7IiO75G7E4Kkb8rM98mtmO6T26Wn5NUDcl34iOnQ02TTMGKiJz2PwyK3zhoP6Tj_jgebAv2ygnVdLWhczLGohyIP-ALzY0Y6JArQkI6Y314aTOATLwFrg97W8ZuHnSDRiyss-Lp50UgBA5eb0jndCo4_JKfH7z-9O6mn3gu1l4Ita8ApfXC-DRF3BK69C8xzGVXjvLKCO2Fn0Svm7cwHK4K04AIjt8rawBzv-COyl4YUnxAalGu0baWd9SDGvnXOspn1PnLeWWmbirC1HIyfiMmxP8ZnkwPkXJkiOwOyM1l2hlXk9eaey0LL8dfRb1G8m5FIqZ1PgKKZSdHMvxStIgdr5TCTnY8GwFnXYesSWZGXm8tgoRh2sSkOqzwGfsMBKcCXPi66tJkJnwnB24ZXRO1o2c5Ud6-k-UVmAWdI1gjgviKHa4W8mdef1-Lp_1iLZ-ROi5aEBKP8gOwtv67icwBnS_ci2-EPSS46sA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxHsDCzISN9baOLYT54QAsVpx4MRKvUV-pVuJOt1NK7H8D_4vM06aUh57atU4reN5ffWMvyHkTYFZTdAThtxXTLbasdqBPZq6NXnt6uDbxPb5pTw7l59najZuuPVjWeXWJyZH7TuHe-QnEAbLEptEqHerS4ZdozC7OrbQuE3uIHUZlnRVs2raY8EsluT1eFYmF_qkh3iFZ8oKwQT4ZcX4XjxKtP3_wpp_l0z-kTdN4ej0Abk_4kj6fhD8Q3IrxEfk7tBZ8hrepcpO1z8mPwd-Ytq1NJrY9Vj4SeehW6ZWWv0x7Rc_8MVETy83sM6bJQ3LBR7yocgLvsR6mZ52kQJUpD3Wuw8NJ_AbV4C9YWFY-O7AM0R6cY0HwHY_1FPAxMNNcU5_S5Y_Ieenn75-PGNjLwbmlORrBril9dYVPqCHELWznjuhgs6t00YKK00VnObOVM4b6ZWBkBiE0cZ4bkUpnpKD2MVwSKjXNq9NoUzVtjK0hbWGV8a5IERplMkzwrcSadxIVI79Mr41KWEudDNIsQEpNkmKDc_I2-me1UDTcePoDyjoaSRSbKcPuqt5M1pso1VReg4zzG0u2yDrXAUpQu1t8MaJOiNHWzVpRrvvm52WZuT1dBksFtMwJoZuk8bA33JADvCkzwatmmYiKilFkYuM6D1925vq_pW4uEis4BzJGwHsZ-R4q5q7ef1_LZ7f_BgvyL0CrQWpRMUROVhfbcJLgGFr-yrZ2i9ILjRo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDeBgozEjUbEsZ21j7CiqjhwolJvll_ZrsQ6pdmVaP9H_y8zTrJloSBxipTYyWxmxv6yM_MNIW9rjGqCnZTIfVWKVvlSe_BHq1tbaa9jaDPb55fm-ER8PpWne6SeamFy0n6mtMzL9JQd9r6HjQaLwWpeclhQZQlfPHeQuh2tet7Mt_-rYORKMD3Wx1Rc3TJ1Zw_KVP234cs_0yR_i5XmLejoAbk_Ykf6YZD2IdmL6RG5O3STvHxMrgcmYtq1NNnU9ZjiSRexW-WmWf0h7ZdXeLAp0O8beKObFY2rJZbzUGQAX2FmTE-7RAEU0h4z24fWEnjHc0DZYLFl_OFhDUj07BJLvW4e1FNAv8OktKC_hMWfkJOjT1_nx-XYdaH0UrB1CQilDc7XIeJawLV3gXkuo6qcV1ZwJ-wsesW8nflgRZAWNr_IrbI2MMcb_pTspy7F54QG5Spta2lnbStiWztn2cx6HzlvrLRVQdikB-NHSnLsjPHN5NA4V2bQnQHdmaw7wwrybjvnfCDk-Ofoj6je7Ugk084nuouFGY3LKFk3gYGElatEG4WuZBQ86uBisJ7rghxMxmFGD-8NwLKmwaYlsiBvtpfBNzHgYlPsNnkMfIADRoBf-mywpa0kHGyX1xUviNqxsh1Rd6-k5Vnm_2ZI0wiwviCHk0HeyPX3d_Hi_4a_JPdq9BkkEeUHZH99sYmvAICt3evscT8BR1YvLQ
  priority: 102
  providerName: Springer Nature
Title Effect of nanoshell geometries, sizes, and quantum emitter parameters on the sensitivity of plasmon-exciton hybrid nanoshells for sensing application
URI https://link.springer.com/article/10.1038/s41598-023-38475-1
https://www.ncbi.nlm.nih.gov/pubmed/37443203
https://www.proquest.com/docview/2836681685
https://www.proquest.com/docview/2838250360
https://pubmed.ncbi.nlm.nih.gov/PMC10344916
https://doaj.org/article/8526d1f4e0b04fe4905e43e9dbedac39
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEN8ERmUk3lggiZ0PPyDUVZumSkwIqNS3yF_pKq3O1rTSyv_B_8udk3YUChJPkRIncXx3vp9zvt8R8ibBqCboSYjcVyGvCh0KDfYoRSUjoYU1lWf7PM_ORnw4Tsd7ZF3uqBvAZufSDutJjeaX726uVx_B4D-0KePF-wacECaKJSxkMNmmIayGDsAz5Wionzq433J9J4L7Wh9Iwh4CmEi6PJrdj9nyVZ7SfxcO_XM75W8xVe-qTh-Q-x3GpP1WKR6SPesekbtt1cnVY_KjZSymdUWddHWDW0HpxNYzX1yrOaLN9DsepDP0egkjv5xRO5ti2g9FpvAZ7qBpaO0ogEfa4A74tgQFPvEK0DhodmhvNMwVjl6sMCXs9kUNBZTc3uQm9Jfw-RMyOj35NjgLu-oMoU55vAgByVRG6cRYnDOY0MrEmqW2iJQuJGeKy9zqItYy10Zyk0pwkpbJQkoTK5axp2Tf1c4-J9QUKhIySWVeVdxWiVIyzqXWlrFMpjIKSLyWQ6k76nKsoHFZ-hA6K8pWdiXIrvSyK-OAvN3cc9USd_yz9TGKd9MSSbf9iXo-KTsbLos0yUwMPYxUxCvLRZRazqwwyhqpmQjI4Vo5yrUilwDfsgyLm6QBeb25DDaMgRnpbL30bWChDlgCvvRZq0ubnrCcc5ZELCDFlpZtdXX7ipteeJ7wGOkcAf4H5GitkLf9-vtYvPivkXtJ7iVoMsg1yg7J_mK-tK8Apy1Uj9zJx3mPHPT7w69DOB6fnH_-AmcH2aDn_330vHn-BA6EQAw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEJ2rV9q6d9QEhCq1aWiKEWqm3Zb27TiMRO60TQfgf_A1-IzN-JIRHbz3Zstf22vNcz8w3AM8jimoin_iEfeWLXBo_NSiPOs11kJrU2bxG-xwke8fi_Ul8sgY_u1oYSqvsdGKtqG1p6B_5FprBJKEmEfHryZlPXaMoutq10GjY4sDNv-KSrXq1_w7p-yKKdneO3u75bVcB38QinPpogXObmcg64nWemsyGhsdOBpmRWvBM6L4zMjS6b6wWNtao3B3XUmsbZjzheN8rsC44LmV6sL69M_j4afFXh-JmIkzb6pyAy60KLSRVsUXc52gJYj9csYB1o4B_ebd_J2n-EamtDeDuTbjReq7sTcNqt2DNFbfhatPLco57dS6pqe7AjwYRmZU5K3RRVpRqyoauHNfNu6pNVo2-00YXlp3NkLKzMXPjEZUVMUIiH1OGTsXKgqFzyirKsG9aXNAdJ-jtIyl8982gLirY6ZxKzpYPqhh64c1FxZD9Fp6_C8eXQqd70CvKwj0AZmUWpDqKdT_PhcujLNNhXxvjOE90rAMPwo4iyrTQ6NSh44uqQ_RcqoaKCqmoaiqq0IOXi2smDTDIhaO3idCLkQTqXR8oz4eq1RFKxlFiQ5xhkAUidyINYie4S23mrDY89WCjYxPVappKLeXCg2eL06gjKPCjC1fO6jESXV3kWA_uN1y1mAnvC8GjgHsgV_htZaqrZ4rRaY1DHhJcJC4vPNjsWHM5r_9_i4cXv8ZTuLZ39OFQHe4PDh7B9Ygkh4BM-Qb0pucz9xidwGn2pJU8Bp8vW9h_AcFAdLs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxBtDgUWCE7Xi9a5fB4SAErUUVRyolJvZl9NIZJ3WiSD8D_4Mv46ZtZ0QHr31ZMu7tteepz0z3xDyLMaoJvBJiNhXoahyHRYa5FEWlYwKXVhTebTPo3T_WLwfJaMt8rOvhcG0yl4nekVtao3_yAdgBtMUm0Qkg6pLi_i4N3w1Ow2xgxRGWvt2Gi2LHNrlV_h8a14e7AGtn8fx8N2nt_th12Eg1Ilg8xCscWWUjo1FvueFVoZpntg8UjqXgishM6tzpmWmjRQmkaDoLZe5lIYpnnK47iVyOeMJQxnLRtnq_w5G0AQrujqdiOeDBmwl1rPFPORgE5KQbdhC3zLgX37u3-maf8RsvSkc3iDXOx-Wvm6Z7ibZsu4WudJ2tVzCns8q1c1t8qPFRqZ1RZ10dYNJp3Rs66lv49Xs0mbyHTfSGXq6ABovptROJ1hgRBGTfIq5Og2tHQU3lTaYa982u8ArzsDvB0KE9psGreToyRKLz9Y3aij44-1Jbkx_C9TfIccXQqW7ZNvVzt4n1OQqKmScyKyqhK1ipSTLpNaW81QmMgoI6ylS6g4kHXt1fCl9sJ7nZUvFEqhYeiqWLCAvVufMWoiQc2e_QUKvZiK8tz9Qn43LTluUeRKnhsEKIxWJyooiSqzgtjDKGql5EZCdnk3KTuc05VpCAvJ0NQzaAkNA0tl64efk4PTyFJ70XstVq5XwTAgeRzwg-Qa_bSx1c8RNTjwiOUPgSPjQCMhuz5rrdf3_XTw4_zGekKsg4uWHg6PDh-RajIKDiKZ8h2zPzxb2EXiDc_XYix0lny9azn8Botp3iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+nanoshell+geometries%2C+sizes%2C+and+quantum+emitter+parameters+on+the+sensitivity+of+plasmon-exciton+hybrid+nanoshells+for+sensing+application&rft.jtitle=Scientific+reports&rft.au=Firoozi%2C+A.&rft.au=Amphawan%2C+Angela&rft.au=Khordad%2C+R.&rft.au=Mohammadi%2C+A.&rft.date=2023-07-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-38475-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_38475_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon