Effect of Monomer Sequence along Network Chains on Thermoresponsive Properties of Polymer Gels

The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 4; no. 1; p. 22
Main Authors Ida, Shohei, Kawahara, Toru, Kawabata, Hidekazu, Ishikawa, Tatsuya, Hirokawa, Yoshitsugu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.03.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic N,N-dimethylacrylamide (DMAAm), hydrophobic N-n-butylacrylamide (NBAAm), and thermoresponsive N-isopropylacrylamide (NIPAAm) with various monomer compositions. The swelling measurement of the obtained gels showed totally different behaviors between the copolymerization and the co-crosslinking gels, even with the same monomer composition. The copolymerization gels had the average property from the two monomers, depending on monomer composition, because random monomer distribution changed the affinity of each network chain to water. On the other hand, the co-crosslinking gels behaved as if two components independently contributed to the swelling properties, probably due to the domain structure derived from two kinds of prepolymers.
AbstractList The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic N,N-dimethylacrylamide (DMAAm), hydrophobic N-n-butylacrylamide (NBAAm), and thermoresponsive N-isopropylacrylamide (NIPAAm) with various monomer compositions. The swelling measurement of the obtained gels showed totally different behaviors between the copolymerization and the co-crosslinking gels, even with the same monomer composition. The copolymerization gels had the average property from the two monomers, depending on monomer composition, because random monomer distribution changed the affinity of each network chain to water. On the other hand, the co-crosslinking gels behaved as if two components independently contributed to the swelling properties, probably due to the domain structure derived from two kinds of prepolymers.
The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic , -dimethylacrylamide (DMAAm), hydrophobic - -butylacrylamide (NBAAm), and thermoresponsive -isopropylacrylamide (NIPAAm) with various monomer compositions. The swelling measurement of the obtained gels showed totally different behaviors between the copolymerization and the co-crosslinking gels, even with the same monomer composition. The copolymerization gels had the average property from the two monomers, depending on monomer composition, because random monomer distribution changed the affinity of each network chain to water. On the other hand, the co-crosslinking gels behaved as if two components independently contributed to the swelling properties, probably due to the domain structure derived from two kinds of prepolymers.
The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic N , N -dimethylacrylamide (DMAAm), hydrophobic N - n -butylacrylamide (NBAAm), and thermoresponsive N -isopropylacrylamide (NIPAAm) with various monomer compositions. The swelling measurement of the obtained gels showed totally different behaviors between the copolymerization and the co-crosslinking gels, even with the same monomer composition. The copolymerization gels had the average property from the two monomers, depending on monomer composition, because random monomer distribution changed the affinity of each network chain to water. On the other hand, the co-crosslinking gels behaved as if two components independently contributed to the swelling properties, probably due to the domain structure derived from two kinds of prepolymers.
The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic N,N-dimethylacrylamide (DMAAm), hydrophobic N-n-butylacrylamide (NBAAm), and thermoresponsive N-isopropylacrylamide (NIPAAm) with various monomer compositions. The swelling measurement of the obtained gels showed totally different behaviors between the copolymerization and the co-crosslinking gels, even with the same monomer composition. The copolymerization gels had the average property from the two monomers, depending on monomer composition, because random monomer distribution changed the affinity of each network chain to water. On the other hand, the co-crosslinking gels behaved as if two components independently contributed to the swelling properties, probably due to the domain structure derived from two kinds of prepolymers.The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic N,N-dimethylacrylamide (DMAAm), hydrophobic N-n-butylacrylamide (NBAAm), and thermoresponsive N-isopropylacrylamide (NIPAAm) with various monomer compositions. The swelling measurement of the obtained gels showed totally different behaviors between the copolymerization and the co-crosslinking gels, even with the same monomer composition. The copolymerization gels had the average property from the two monomers, depending on monomer composition, because random monomer distribution changed the affinity of each network chain to water. On the other hand, the co-crosslinking gels behaved as if two components independently contributed to the swelling properties, probably due to the domain structure derived from two kinds of prepolymers.
Author Ishikawa, Tatsuya
Kawahara, Toru
Ida, Shohei
Hirokawa, Yoshitsugu
Kawabata, Hidekazu
AuthorAffiliation Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan; uspmatpolyst1@gmail.com (T.K.); uspmatpolyst2@gmail.com (H.K.); uspmatpolyst3@gmail.com (T.I.)
AuthorAffiliation_xml – name: Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan; uspmatpolyst1@gmail.com (T.K.); uspmatpolyst2@gmail.com (H.K.); uspmatpolyst3@gmail.com (T.I.)
Author_xml – sequence: 1
  givenname: Shohei
  orcidid: 0000-0002-1821-9022
  surname: Ida
  fullname: Ida, Shohei
– sequence: 2
  givenname: Toru
  surname: Kawahara
  fullname: Kawahara, Toru
– sequence: 3
  givenname: Hidekazu
  surname: Kawabata
  fullname: Kawabata, Hidekazu
– sequence: 4
  givenname: Tatsuya
  surname: Ishikawa
  fullname: Ishikawa, Tatsuya
– sequence: 5
  givenname: Yoshitsugu
  surname: Hirokawa
  fullname: Hirokawa, Yoshitsugu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30674798$$D View this record in MEDLINE/PubMed
BookMark eNptks9rFDEUx4NUbK09eZcBL4Ks5ncyF0GWWgtVC9arIZO82c06k2yT2Ur_e7NuLdviKSH55MM3773n6CCmCAi9JPgdYy1-v4ChcEwwpvQJOqKM4BnVkhzs7Q_RSSkrjDFRgglCnqFDhqXiqtVH6Odp34ObmtQ3X1JMI-TmO1xvIDpo7JDiovkK0--UfzXzpQ2xNCk2V0vIY8pQ1imWcAPNZU5ryFOAsvVcpuF26zmr0V6gp70dCpzcrcfox6fTq_nn2cW3s_P5x4uZE5xMM9ZzL7VWHDuhFPai5U5hLTsQnXZeeKq90p5S0ZHeS4eJ1L3GllOrlO84O0bnO69PdmXWOYw235pkg_l7kPLC2BrQDWBYKwTpKdNt13GHRSfBcQbgsOxsS2h1fdi51ptuBO8gTtkOD6QPb2JYmkW6MZIRLYWogjd3gpxqKctkxlAcDIONkDbFUKLa2jMtVUVfP0JXaZNjLVWlKJeV4rhSr_YT3Uf518YKvN0BLqdSMvT3CMFmOydmb04qTR7RLkx2Cmn7nTD8980fyPK_9g
CitedBy_id crossref_primary_10_1007_s11426_021_1010_3
crossref_primary_10_1039_D0RA08619C
crossref_primary_10_1007_s00289_019_03040_2
crossref_primary_10_1002_mats_202200044
crossref_primary_10_1039_D4PY00256C
crossref_primary_10_1038_s41428_019_0204_5
crossref_primary_10_1021_acs_macromol_0c00238
crossref_primary_10_3390_gels6010002
crossref_primary_10_1039_D1SM00596K
crossref_primary_10_3390_gels6010001
crossref_primary_10_1039_C9PY01417A
crossref_primary_10_1039_D2RA06333F
Cites_doi 10.1021/bc00023a006
10.1016/0079-6700(93)90025-8
10.1021/ma00062a016
10.1103/PhysRevLett.45.1636
10.1021/ma0605548
10.1126/science.1247811
10.1016/0079-6700(92)90023-R
10.1016/0032-3861(88)90016-X
10.1016/S1359-0294(03)00005-0
10.1002/1521-3935(20020401)203:5/6<900::AID-MACP900>3.0.CO;2-E
10.1039/C005401C
10.1002/pola.22994
10.1063/1.437602
10.1002/masy.201400020
10.1063/1.458148
10.1002/macp.200700205
10.1021/ma980405s
10.1002/pola.20978
10.1063/1.447548
10.1016/j.progpolymsci.2007.05.018
10.1002/pola.25938
10.1016/j.progpolymsci.2005.11.001
10.1039/c2sm25168j
10.1002/adma.201600514
10.1021/ma971727j
10.1016/0032-3861(88)90017-1
10.1021/ma061799n
10.1021/ma971899g
10.1039/C7PY01793F
10.1103/PhysRevLett.40.820
10.1002/anie.201506663
10.1016/j.reactfunctpolym.2017.03.020
10.1021/ma0517042
10.1021/ma991720x
10.1021/acs.macromol.6b00798
10.1021/ja00540a026
10.1002/anie.200462288
10.1039/b713803m
10.1002/pola.20977
10.1016/j.polymer.2003.12.012
10.1021/ma0114077
10.1143/JJAP.37.L284
10.1016/S0169-409X(01)00243-5
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/gels4010022
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Collection (ProQuest)
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2310-2861
ExternalDocumentID oai_doaj_org_article_39551f2389bb4c05b6ec43eec06ba912
PMC6318655
30674798
10_3390_gels4010022
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of the Science
  grantid: Grant-in-aid for Scientific Research (C) No. 24550259
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
IAO
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-3f4d688740c5770d594c7086be5b8cd5d28d78d225b1fd6c0168f80a42a77db43
IEDL.DBID DOA
ISSN 2310-2861
IngestDate Wed Aug 27 01:31:20 EDT 2025
Thu Aug 21 17:56:05 EDT 2025
Fri Jul 11 02:28:34 EDT 2025
Fri Jul 25 11:52:39 EDT 2025
Thu Jan 02 23:01:21 EST 2025
Tue Jul 01 01:46:55 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords copolymerization
monomer sequence
acrylamide derivative
co-crosslinking
swelling
thermoresponsive property
volume phase transition
gel
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-3f4d688740c5770d594c7086be5b8cd5d28d78d225b1fd6c0168f80a42a77db43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1821-9022
OpenAccessLink https://doaj.org/article/39551f2389bb4c05b6ec43eec06ba912
PMID 30674798
PQID 2124601840
PQPubID 2055409
ParticipantIDs doaj_primary_oai_doaj_org_article_39551f2389bb4c05b6ec43eec06ba912
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6318655
proquest_miscellaneous_2179401867
proquest_journals_2124601840
pubmed_primary_30674798
crossref_primary_10_3390_gels4010022
crossref_citationtrail_10_3390_gels4010022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180310
PublicationDateYYYYMMDD 2018-03-10
PublicationDate_xml – month: 3
  year: 2018
  text: 20180310
  day: 10
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Gels
PublicationTitleAlternate Gels
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Weber (ref_19) 1988; 29
Ida (ref_35) 2017; 115
Feil (ref_10) 1993; 26
Erdodi (ref_18) 2006; 31
Takei (ref_11) 1993; 4
Triftaridou (ref_22) 2002; 35
ref_34
Kamata (ref_30) 2012; 8
Hirokawa (ref_3) 1984; 81
Guo (ref_33) 2016; 49
Guan (ref_25) 2002; 203
Hirotsu (ref_27) 1998; 37
Yan (ref_41) 2005; 44
Chen (ref_42) 2006; 39
Hirose (ref_39) 1998; 31
Park (ref_14) 2006; 39
Tanaka (ref_1) 1978; 40
Pollak (ref_43) 1980; 102
Kamata (ref_31) 2014; 343
Zhang (ref_40) 2008; 4
Tanaka (ref_2) 1980; 45
Halperin (ref_5) 2015; 54
Simmons (ref_21) 2000; 33
Tanaka (ref_37) 1979; 70
Ida (ref_16) 2015; 350
Erdodi (ref_23) 2005; 43
Lequieu (ref_26) 2004; 45
Zheng (ref_29) 2012; 50
Weber (ref_20) 1988; 29
Erdodi (ref_24) 2005; 43
Kuhbeck (ref_9) 2011; 40
Theato (ref_36) 2008; 46
Osada (ref_6) 1993; 18
Confortini (ref_15) 2007; 208
Kaneko (ref_28) 1998; 31
Schild (ref_4) 1992; 17
Katakai (ref_12) 1998; 31
Kikuchi (ref_7) 2002; 54
Lutz (ref_13) 2006; 39
Patrickios (ref_17) 2003; 8
Chaterji (ref_8) 2007; 32
Guo (ref_32) 2016; 28
Li (ref_38) 1990; 92
References_xml – volume: 4
  start-page: 341
  year: 1993
  ident: ref_11
  article-title: Temperature-responsive bioconjugates. 2. Molecular design for temperature-modulated bioseparations
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc00023a006
– volume: 18
  start-page: 187
  year: 1993
  ident: ref_6
  article-title: Stimuli-responsive polymer gels and their application to chemomechanical systems
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(93)90025-8
– volume: 26
  start-page: 2496
  year: 1993
  ident: ref_10
  article-title: Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers
  publication-title: Macromolecules
  doi: 10.1021/ma00062a016
– volume: 45
  start-page: 1636
  year: 1980
  ident: ref_2
  article-title: Phase Transitions in Ionic Gels
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.1636
– volume: 39
  start-page: 6622
  year: 2006
  ident: ref_14
  article-title: Precise Control of Lower Critical Solution Temperature of Thermosensitive Poly(2-isopropyl-2-oxazoline) via Gradient Copolymerization with 2-Ethyl-2-oxazoline as a Hydrophilic Comonomer
  publication-title: Macromolecules
  doi: 10.1021/ma0605548
– volume: 343
  start-page: 873
  year: 2014
  ident: ref_31
  article-title: “Nonswellable” Hydrogel Without Mechanical Hysteresis
  publication-title: Science
  doi: 10.1126/science.1247811
– volume: 17
  start-page: 163
  year: 1992
  ident: ref_4
  article-title: Poly(N-isopropylacrylamide): Experiment, theory and application
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(92)90023-R
– volume: 29
  start-page: 1064
  year: 1988
  ident: ref_19
  article-title: Hydrophilic-hydrophobic two-component polymer networks: 1. Synthesis of reactive poly(ethylene oxide) telechelics
  publication-title: Polymer
  doi: 10.1016/0032-3861(88)90016-X
– volume: 8
  start-page: 76
  year: 2003
  ident: ref_17
  article-title: Covalent amphiphilic polymer networks
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(03)00005-0
– volume: 203
  start-page: 900
  year: 2002
  ident: ref_25
  article-title: Polytetrahydrofuran Amphiphilic Networks, 5. Synthesis and Swelling Behavior of Thermosensitive Poly(N-isopropylacrylamide)-l-polytetrahydrofuran Networks
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/1521-3935(20020401)203:5/6<900::AID-MACP900>3.0.CO;2-E
– volume: 40
  start-page: 427
  year: 2011
  ident: ref_9
  article-title: Stimuli-Responsive Gels as Reaction Vessels and Reusable Catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C005401C
– volume: 46
  start-page: 6677
  year: 2008
  ident: ref_36
  article-title: Synthesis of well-defined polymeric activated esters
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.22994
– volume: 70
  start-page: 1214
  year: 1979
  ident: ref_37
  article-title: Kinetics of swelling of gels
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437602
– volume: 350
  start-page: 14
  year: 2015
  ident: ref_16
  article-title: Thermoresponsive Properties of Copolymer Gels Induced by Appropriate Hydrophilic/Hydrophobic Balance of Monomer Combination
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.201400020
– volume: 92
  start-page: 1365
  year: 1990
  ident: ref_38
  article-title: Kinetics of swelling and shrinking of gels
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458148
– volume: 208
  start-page: 1871
  year: 2007
  ident: ref_15
  article-title: Functionalized Thermo-Responsive Poly(vinyl ether) by Living Cationic Random Copolymerization of Methyl Vinyl Ether and 2-Chloroethyl Vinyl Ether
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200700205
– volume: 31
  start-page: 5336
  year: 1998
  ident: ref_39
  article-title: Kinetics of volume phase transition in poly(N-isopropylacrylamide-co-acrylic acid) gels
  publication-title: Macromolecules
  doi: 10.1021/ma980405s
– volume: 43
  start-page: 4953
  year: 2005
  ident: ref_23
  article-title: Ideal tetrafunctional amphiphilic PEG/PDMS conetworks by a dual-purpose extender/crosslinker. I. Synthesis
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.20978
– volume: 81
  start-page: 6379
  year: 1984
  ident: ref_3
  article-title: Volume phase transition in a nonionic gel
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447548
– volume: 32
  start-page: 1083
  year: 2007
  ident: ref_8
  article-title: Smart polymeric gels: Redefining the limits of biomedical devices
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2007.05.018
– volume: 50
  start-page: 1717
  year: 2012
  ident: ref_29
  article-title: From poly(N-isopropylacrylamide)-block-poly(ethylene oxide)-block-poly(N-isopropylacrylamide) triblock copolymer to poly(N-isopropylacrylamide)-block-poly(ethylene oxide) hydrogels: Synthesis and rapid deswelling and reswelling behavior of hydrogels
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.25938
– volume: 31
  start-page: 1
  year: 2006
  ident: ref_18
  article-title: Amphiphilic conetworks: Definition, synthesis, applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2005.11.001
– volume: 8
  start-page: 6876
  year: 2012
  ident: ref_30
  article-title: Anomalous volume phase transition in a polymer gel with alternative hydrophilic-amphiphilic sequence
  publication-title: Soft Matter
  doi: 10.1039/c2sm25168j
– volume: 28
  start-page: 5857
  year: 2016
  ident: ref_32
  article-title: Thermoresponsive Toughening with Crack Bifurcation in Phase-Separated Hydrogels under Isochoric Conditions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600514
– volume: 31
  start-page: 3383
  year: 1998
  ident: ref_12
  article-title: Hydrophobic Site-Specific Control of the Volume Phase Transition of Hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma971727j
– volume: 29
  start-page: 1071
  year: 1988
  ident: ref_20
  article-title: Hydrophilic-hydrophobic two-component polymer networks: 2. Synthesis and characterization of poly(ethylene oxide)-linked-polybutadiene
  publication-title: Polymer
  doi: 10.1016/0032-3861(88)90017-1
– volume: 39
  start-page: 8550
  year: 2006
  ident: ref_42
  article-title: A Novel Hydrogel Showing Super-Rapid Shrinking but Slow Swelling Behavior
  publication-title: Macromolecules
  doi: 10.1021/ma061799n
– volume: 31
  start-page: 6099
  year: 1998
  ident: ref_28
  article-title: Rapid Deswelling Response of Poly(N-isopropylacrylamide) Hydrogels by the Formation of Water Release Channels Using Poly(ethylene oxide) Graft Chains
  publication-title: Macromolecules
  doi: 10.1021/ma971899g
– ident: ref_34
  doi: 10.1039/C7PY01793F
– volume: 40
  start-page: 820
  year: 1978
  ident: ref_1
  article-title: Collapse of Gels and the Critical Endpoint
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.820
– volume: 54
  start-page: 15342
  year: 2015
  ident: ref_5
  article-title: Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506663
– volume: 115
  start-page: 73
  year: 2017
  ident: ref_35
  article-title: Effect of reaction conditions on poly(N-isopropylacrylamide) gels synthesized by post-polymerization crosslinking system
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2017.03.020
– volume: 39
  start-page: 893
  year: 2006
  ident: ref_13
  article-title: Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate
  publication-title: Macromolecules
  doi: 10.1021/ma0517042
– volume: 33
  start-page: 3176
  year: 2000
  ident: ref_21
  article-title: Cationic Amphiphilic Model Networks:  Synthesis by Group Transfer Polymerization and Characterization of the Degree of Swelling
  publication-title: Macromolecules
  doi: 10.1021/ma991720x
– volume: 49
  start-page: 4295
  year: 2016
  ident: ref_33
  article-title: Thermoresponsive Toughening in LCST-Type Hydrogels with Opposite Topology: From Structure to Fracture Properties
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00798
– volume: 102
  start-page: 6324
  year: 1980
  ident: ref_43
  article-title: Enzyme immobilization by condensation copolymerization into crosslinked polyacrylamide gels
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00540a026
– volume: 44
  start-page: 1951
  year: 2005
  ident: ref_41
  article-title: Rapid Swelling/Collapsing Behavior of Thermoresponsive Poly(N-isopropylacrylamide) Gel Containing Poly(2-(methacryloyloxy)decyl phosphate) Surfactant
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462288
– volume: 4
  start-page: 385
  year: 2008
  ident: ref_40
  article-title: Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels
  publication-title: Soft Matter
  doi: 10.1039/b713803m
– volume: 43
  start-page: 4965
  year: 2005
  ident: ref_24
  article-title: Ideal tetrafunctional amphiphilic PEG/PDMS conetworks by a dual-purpose extender/crosslinker. II. Characterization and properties of water-swollen membranes
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.20977
– volume: 45
  start-page: 749
  year: 2004
  ident: ref_26
  article-title: Segmented polymer networks based on poly(N-isopropyl acrylamide) and poly(tetrahydrofuran) as polymer membranes with thermo-responsive permeability
  publication-title: Polymer
  doi: 10.1016/j.polymer.2003.12.012
– volume: 35
  start-page: 2506
  year: 2002
  ident: ref_22
  article-title: Synthesis, Characterization, and Modeling of Cationic Amphiphilic Model Hydrogels:  Effects of Polymer Composition and Architecture
  publication-title: Macromolecules
  doi: 10.1021/ma0114077
– volume: 37
  start-page: L284
  year: 1998
  ident: ref_27
  article-title: Anomalous Kinetics of the Volume Phase Transition in Poly-N-Isopropylacrylamide Gels
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.37.L284
– volume: 54
  start-page: 53
  year: 2002
  ident: ref_7
  article-title: Pulsatile drug release control using hydrogels
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(01)00243-5
SSID ssj0001753511
Score 2.105447
Snippet The effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 22
SubjectTerms Acrylamide
acrylamide derivative
co-crosslinking
Composition
Copolymerization
Crosslinking
gel
Hydrogels
Isopropylacrylamide
monomer sequence
Monomers
Phase transitions
Polymer gels
Polymerization
Polymers
Prepolymers
Properties (attributes)
Swelling
thermoresponsive property
volume phase transition
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSxwxFA5WX9oHae3FaW2J4JMwOOvk-lSqaKXgslgFnzrkugrLjM6uBf-958xk190ifZ2EkMlJTr4vOfkOIXvWKa9FjLkANJwzFopceaFy-F5KY8Etd7E550NxdsV-XfPrdOA2TWGVc5_YOWrfODwjPwAXy4A8AB_5fnefY9YovF1NKTRekQ0oV0C-No5OhqOL51MWQOMAKfqHeSXw-4MxbDnAKXDvWtmKOsX-l2Dmv9GSS9vP6VuymXAj_dEb-h1ZC_UWebOkJvie_OmViGkT6Tk-VQgt_Z0CpamZNPWYDvuYb3p8Y27rKW1qCrOkxVDbPlD2b6AjPJxvUWUV2xk1k0ds5yf8zgdydXpyeXyWp_QJueNsMMvLyGDUMeWe41IWnmvmJDAYG7hVznN_qLxUHha0HUQvHIA_FVVh2KGR0ltWfiTrdVOHbUKtYdopCVAQ6FMRonZWM8zaE60RSrCM7M9HsnJJWxxTXEwq4Bg47NXSsGdkb1H5rpfUeLnaEZpkUQV1sLsPTTuu0rKqSg2ILwLs0NYyV3ArgmNlCK4Q1ugBNLIzN2iVFue0ep5KGdldFMOywrsSU4fmAeuAoypQ7S8jn3r7L3qCLItJrTIiV2bGSldXS-rbm066W4ALFZx__n-3vpDXgMu6p4-DYoesz9qH8BWwz8x-SxP8CXvpBoo
  priority: 102
  providerName: ProQuest
Title Effect of Monomer Sequence along Network Chains on Thermoresponsive Properties of Polymer Gels
URI https://www.ncbi.nlm.nih.gov/pubmed/30674798
https://www.proquest.com/docview/2124601840
https://www.proquest.com/docview/2179401867
https://pubmed.ncbi.nlm.nih.gov/PMC6318655
https://doaj.org/article/39551f2389bb4c05b6ec43eec06ba912
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeSt91miwq5FQw8a71PCYhm1DIsrQN5FSjl5PAYpfNppB_nxnLWbwh0EuvsjDSaKT5Pnv0DcCe8zoYWde5RDSccx6LXAepc2wvlXV4LHe5OWczeXrOv1-Ii0GpL8oJS_LAyXD7pcGYXmNgMc5xXwgno-dljL6QzpquvvAEY96ATHVfVxCFI5RIF_JK5PX7lxhqkEtQzNoIQZ1S_1Pw8nGW5CDsTN_A6x4vsoM0zrfwLDbv4NVARfA9_E4KxKyt2RldUYhL9rNPkGZ20TaXbJZyvdnRlb1ubljbMPSOJaXYpgTZv5HN6aP8ktRV6T3zdnFH7znB6XyA8-nxr6PTvC-bkHvBx6u8rDlam0rteaFUEYThXiFzcVE47YMIEx2UDriR3bgO0iPo07UuLJ9YpYLj5UfYatomfgbmLDdeK4SASJuKWBvvDKdqPbWzUkuewbcHS1a-1xSn0haLCrkFmb0amD2DvXXnP0lK4-luh7Qk6y6kf901oFdUvVdU__KKDHYeFrTqN-VNhVGaI_9ESpvB1_Vj3E70j8Q2sb2lPnhAFaTyl8GntP7rkRC74sroDNSGZ2wMdfNJc33VSXZLPDqlENv_Y25f4CWitu5i5LjYga3V8jbuIjJauRE819OTEbw4PJ7Nf4y6LXEP3k0QTQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAotULkhWnXi9jwNCUEhT2kSVaKWecL0Pp5UiuzgpqH-K38iMH2mCKm69elej8e7M7De78wDYNFY5LfI8FIiGQ859FConVIjfY5kZNMt1bM5oLIZH_NtxcrwGf7pcGAqr7GxibahdaemOfAtNLEfnAf2Rj-c_Q-oaRa-rXQuNRiz2_OVvdNlmH3a_4P6-6_cHXw-3h2HbVSC0Ce_NwzjnyAx1orOJlJFLNLcSgb3xiVHWJa6vnFQO5dz0cicsYiKVqyjj_UxKZ3iMdG_BbR7HmjRKDXau7nQQ-yOAadIAcTzamuABhx4MnZQrB1_dH-A6UPtvbObSYTd4APdblMo-NWL1ENZ88QjuLdUufAw_mrrHrMzZiBIjfMW-t2HZLJuWxYSNmwhztn2anRUzVhYMZbKiwN4mLPeXZwf0FFBRTVeic1BOL4nODv7OEzi6kWV9CutFWfjnwEzGtVUSgSc6a5HPtTWaU4-g3GRCCR7A-24lU9tWMqeGGtMUPRpa9nRp2QPYXEw-bwp4XD_tM23JYgpV3a4_lNUkbZU4jTXiyxxBjjaG2ygxwlsee28jYTLdQyIb3YamrSmYpVeCG8DbxTAqMb3MZIUvL2gOmsWIagsG8KzZ_wUn5NNxqVUAckUyVlhdHSnOTutC4QINtkiSF_9n6w3cGR6O9tP93fHeS7iLiLBOuuxFG7A-ry78K0Rdc_O6FnUGJzetW38B0mVBNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMBI4wUpato4tvOAEPsoG2NVBUza00L81U2qkpF2oP1r_HXcJWnXoom3vdrOyTnfnX9nn-8ANrVRNhXehwLRcMi5i0JlhQqxPZa5RrNcx-YcDsXeEf98nByvwZ_5WxgKq5zbxNpQ29LQGXkXTSxH5wH9ka5vwyJGO4MP5z9DqiBFN63zchqNiBy4y9_ovk3f7-_gWr_t9we737f3wrbCQGgS3puFsec4MapKZxIpI5uk3EgE-dolWhmb2L6yUlmUed3zVhjER8qrKOf9XEqreYx0b8E6fi-jDqxv7Q5HX69OeNATQDjTPAqM4zTqjnG7Q3-G9s2VbbCuFnAdxP03UnNp6xvch3stZmUfGyF7AGuueAh3lzIZPoKTJgsyKz07pGcSrmLf2iBtlk_KYsyGTbw52z7Nz4opKwuGElpRmG8TpPvLsRFdDFSU4ZXojMrJJdH5hL_zGI5uhLFPoFOUhXsGTOc8NUoiDEXXLXI-NTrlVDHI61wowQN4N-dkZtq85lReY5Khf0Nsz5bYHsDmYvB5k87j-mFbtCSLIZSDu24oq3HWqnQWp4g2PUKeVGtuokQLZ3jsnImEztMeEtmYL2jWGoZpdiXGAbxZdKNK0z1NXrjygsagkYwo02AAT5v1X8yEPDwuUxWAXJGMlamu9hRnp3XacIHmWyTJ8_9P6zXcRr3KvuwPD17AHYSH9QvMXrQBnVl14V4iBJvpV62sM_hx0-r1F_50RsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Monomer+Sequence+along+Network+Chains+on+Thermoresponsive+Properties+of+Polymer+Gels&rft.jtitle=Gels&rft.au=Ida%2C+Shohei&rft.au=Kawahara%2C+Toru&rft.au=Kawabata%2C+Hidekazu&rft.au=Ishikawa%2C+Tatsuya&rft.date=2018-03-10&rft.eissn=2310-2861&rft.volume=4&rft.issue=1&rft_id=info:doi/10.3390%2Fgels4010022&rft_id=info%3Apmid%2F30674798&rft.externalDocID=30674798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2310-2861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2310-2861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2310-2861&client=summon