A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 8775 - 32 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in
https://uk.mathworks.com/matlabcentral/profile/authors/13903104
. |
---|---|
AbstractList | This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 . This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 . This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 . Abstract This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 . |
ArticleNumber | 8775 |
Author | Trojovský, Pavel Dehghani, Mohammad |
Author_xml | – sequence: 1 givenname: Pavel surname: Trojovský fullname: Trojovský, Pavel email: pavel.trojovsky@uhk.cz organization: Department of Mathematics, Faculty of Science, University of Hradec Králové – sequence: 2 givenname: Mohammad surname: Dehghani fullname: Dehghani, Mohammad organization: Department of Mathematics, Faculty of Science, University of Hradec Králové |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37258630$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN9xTqiqaKlUiUvvluO8ZL1K7GAnW5Vfj3dTSttDfbE1nhnP83vv0ZEPHhD6SPBXgpn6ljgRtSoxZSUTSrJSvEEnFHNRUkbp0ZPzMTpLaYvzErTmpH6HjllF9xp8gvrzwsNd0bhQOp8mF6EtRpjNBpbo0uxsYYY-RDdvxqILsUhh2DnfF2Ga3ej-mNkFX0wxNAOMqWhMyvqM3JkhLgkyAhuzcyF-QG87MyQ4e9hP0e3lj9uLn-XNr6vri_Ob0gpO5pJVsrMKWG0J2EZKrrrWYiGUglpRijEo4FQCM7LBxNKm5pRUljdEcmwZO0XXq20bzFZP0Y0m3utgnD4AIfbaxFzVANqwFkvDG1MRwoFQQ2pQGNtOdcw0pMte31evaWlGaC34OZrhmenzG-82ug87TXJTKJcyO3x5cIjh9wJp1qNLFobBeAhL0lTRfe6K7qmfX1C3YYk-f9WBRYWQuM6sT08jPWb5189MoCvBxpBShO6RQrDez41e50bniPowN1pkkXohsm4-dDaX5YbXpWyVpvyO7yH-j_2K6i-lRdgB |
CitedBy_id | crossref_primary_10_1016_j_energy_2025_135147 crossref_primary_10_1109_ACCESS_2024_3427632 crossref_primary_10_1007_s42235_024_00580_w crossref_primary_10_1109_ACCESS_2024_3504559 crossref_primary_10_1016_j_est_2024_113921 crossref_primary_10_1007_s00202_024_02799_6 crossref_primary_10_1016_j_egyr_2024_10_051 crossref_primary_10_1016_j_heliyon_2025_e41653 crossref_primary_10_3233_THC_240603 crossref_primary_10_1016_j_comnet_2023_110161 crossref_primary_10_1016_j_oceaneng_2024_119550 crossref_primary_10_1109_ACCESS_2024_3506977 crossref_primary_10_61927_igmin172 crossref_primary_10_1007_s11276_024_03867_2 crossref_primary_10_1002_rnc_7883 crossref_primary_10_1016_j_asej_2024_102663 crossref_primary_10_1016_j_inoche_2024_113393 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_1038_s41598_024_77113_2 crossref_primary_10_1038_s41598_024_77115_0 crossref_primary_10_1049_gtd2_13164 crossref_primary_10_1080_13467581_2024_2445595 crossref_primary_10_1007_s41872_024_00263_9 crossref_primary_10_1063_5_0223492 crossref_primary_10_1007_s12083_024_01848_y crossref_primary_10_3390_act12100396 crossref_primary_10_1016_j_knosys_2025_113046 crossref_primary_10_3390_app14146164 crossref_primary_10_54021_seesv5n2_615 crossref_primary_10_3390_su152416707 crossref_primary_10_1016_j_heliyon_2024_e34496 crossref_primary_10_3390_sym15101873 crossref_primary_10_1007_s00521_024_10384_y crossref_primary_10_1016_j_asej_2025_103342 crossref_primary_10_1142_S0218348X24300010 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_1007_s41870_024_01800_6 crossref_primary_10_1016_j_saa_2024_124396 crossref_primary_10_1007_s11831_024_10168_6 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_3103_S875669902470081X crossref_primary_10_1007_s10586_024_04753_4 crossref_primary_10_3390_app14041462 crossref_primary_10_1038_s41598_024_78761_0 crossref_primary_10_1016_j_compeleceng_2024_109733 crossref_primary_10_1002_ese3_1628 crossref_primary_10_1038_s41598_024_67581_x crossref_primary_10_1038_s41598_024_62722_8 crossref_primary_10_1016_j_asej_2024_102883 crossref_primary_10_1109_ACCESS_2024_3436899 crossref_primary_10_1016_j_asej_2024_103144 crossref_primary_10_1016_j_eswa_2025_126633 crossref_primary_10_3390_app15031359 crossref_primary_10_3390_nano14242038 crossref_primary_10_1007_s10010_024_00765_z crossref_primary_10_1016_j_aei_2024_102947 crossref_primary_10_1007_s10723_024_09776_0 crossref_primary_10_1007_s11277_024_11635_w crossref_primary_10_1007_s10115_024_02179_3 crossref_primary_10_1016_j_heliyon_2024_e30677 crossref_primary_10_1002_htj_23216 crossref_primary_10_1038_s41598_023_48462_1 crossref_primary_10_1007_s10462_024_11072_y crossref_primary_10_1007_s12083_024_01753_4 crossref_primary_10_3390_biomimetics8080569 crossref_primary_10_3390_app15042155 crossref_primary_10_1080_19392699_2024_2431286 crossref_primary_10_1007_s10586_024_04606_0 |
Cites_doi | 10.1109/ACCESS.2019.2918406 10.1016/j.engappai.2020.103541 10.1016/j.eswa.2021.116158 10.1109/ACCESS.2022.3153493 10.1016/j.knosys.2018.08.030 10.1016/j.advengsoft.2022.103282 10.1002/dac.4670 10.35378/gujs.484643 10.1111/j.1365-2907.1991.tb00291.x 10.1007/s00521-015-1870-7 10.1016/j.compstruc.2012.07.010 10.1016/j.eswa.2020.113377 10.1016/j.knosys.2022.108457 10.56021/9780801882210 10.1016/j.cad.2010.12.015 10.1016/j.cie.2021.107408 10.1007/s11831-022-09804-w 10.1126/science.220.4598.671 10.1186/1472-6785-3-9 10.1016/j.ins.2021.11.073 10.3390/app10186173 10.1109/3477.484436 10.3390/s21134567 10.3390/app10175791 10.2307/3001968 10.1115/1.2919393 10.1023/A:1008202821328 10.1016/j.eswa.2022.119269 10.1137/1.9781611975604 10.1016/j.asoc.2018.07.033 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2016.01.008 10.1109/4235.585893 10.1111/j.1748-7692.2001.tb01273.x 10.1016/j.advengsoft.2013.12.007 10.1007/s10462-022-10280-8 10.1007/978-3-642-20859-1_12 10.1007/978-3-642-21515-5_36 10.1038/s41598-022-09514-0 10.1109/ACCESS.2018.2882568 10.1016/j.asoc.2017.11.043 10.3996/nafa.74.0001 10.1023/A:1022602019183 10.1007/s42452-020-03511-6 10.1007/s12065-021-00590-1 10.1007/978-3-642-31187-1_4 10.3133/ofr20161108 10.1016/j.engappai.2019.08.025 10.1002/int.22535 10.3390/s22030855 10.1002/wics.78 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-35863-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 32 |
ExternalDocumentID | oai_doaj_org_article_a3d06a4ba7114e12a19e800cf8f3ab1f PMC10232466 37258630 10_1038_s41598_023_35863_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Univerzita Hradec Králové grantid: 2210/2023-2024 funderid: http://dx.doi.org/10.13039/100018512 – fundername: Univerzita Hradec Králové grantid: 2210/2023-2024 – fundername: ; grantid: 2210/2023-2024 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-376fc8e39c1ecb6648fdc05588e982200e8e426e3a6b01c2b94217c4b1640c33 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Thu Aug 21 18:36:59 EDT 2025 Fri Jul 11 09:07:15 EDT 2025 Wed Aug 13 09:30:37 EDT 2025 Thu Apr 03 07:08:35 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 01 04:24:47 EDT 2025 Fri Feb 21 02:39:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-376fc8e39c1ecb6648fdc05588e982200e8e426e3a6b01c2b94217c4b1640c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-35863-5 |
PMID | 37258630 |
PQID | 2821255609 |
PQPubID | 2041939 |
PageCount | 32 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a3d06a4ba7114e12a19e800cf8f3ab1f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10232466 proquest_miscellaneous_2821640726 proquest_journals_2821255609 pubmed_primary_37258630 crossref_primary_10_1038_s41598_023_35863_5 crossref_citationtrail_10_1038_s41598_023_35863_5 springer_journals_10_1038_s41598_023_35863_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-31 |
PublicationDateYYYYMMDD | 2023-05-31 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | AyyaraoTLWar strategy optimization algorithm: A new effective metaheuristic algorithm for global optimizationIEEE Access2022102507310.1109/ACCESS.2022.3153493 ShenYZhangCGharehchopoghFSMirjaliliSAn improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problemsExpert Syst. Appl.202321510.1016/j.eswa.2022.119269 DehghaniMA spring search algorithm applied to engineering optimization problemsAppl. Sci.20201061731:CAS:528:DC%2BB3cXitFars73F10.3390/app10186173 KvasovDEMukhametzhanovMSMetaheuristic vs. deterministic global optimization algorithms: The univariate caseAppl. Math. Comput.201831824525937138591426.90208 CavazzutiMOptimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics2013Springer771021259.90002 ZeidabadiFADehghaniMPOA: Puzzle optimization algorithmInt. J. Intell. Eng. Syst.202215273281 StornRPriceKDifferential evolution: A simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.19971134135914795530888.9013510.1023/A:1008202821328 Kennedy, J. & Eberhart, R. in Proceedings of ICNN'95: International Conference on Neural Networks, vol.1944, 1942–1948 (IEEE, 2023). MoosaviSHSBardsiriVKPoor and rich optimization algorithm: A new human-based and multi populations algorithmEng. Appl. Artif. Intell.20198616518110.1016/j.engappai.2019.08.025 GillPEMurrayWWrightMHPractical Optimization2019SIAM0503.9006210.1137/1.9781611975604 KavehAZolghadrAA novel meta-heuristic algorithm: Tug of war optimizationIran Univ. Sci. Technol.20166469492 MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 DorigoMManiezzoVColorniAAnt system: Optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B19962629411:STN:280:DC%2BD1c7gsV2ntw%3D%3D10.1109/3477.484436 CervoneGFranzesePKeeseeAPAlgorithm quasi-optimal (AQ) learningWiley Interdiscipl. Rev. Comput. Stat.2010221823610.1002/wics.78 GoldbergDEHollandJHGenetic algorithms and machine learningMach. Learn.19883959910.1023/A:1022602019183 MohammadzadehHGharehchopoghFSA multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detectionInt. J. Commun. Syst.20213410.1002/dac.4670 ZamanHRRGharehchopoghFSAn improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problemsEng. Comput.20211135 FayFHEcology and biology of the Pacific walrus, Odobenus rosmarus divergens IlligerN. Am. Fauna198274127910.3996/nafa.74.0001 Osuna-EncisoVCuevasECastañedaBMA diversity metric for population-based metaheuristic algorithmsInf. Sci.202258619220810.1016/j.ins.2021.11.073 AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problemsComput. Ind. Eng.202115810.1016/j.cie.2021.107408 WeiZHuangCWangXHanTLiYNuclear reaction optimization: A novel and powerful physics-based algorithm for global optimizationIEEE Access20197660846610910.1109/ACCESS.2019.2918406 AbdollahzadehBSoleimanian GharehchopoghFMirjaliliSArtificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsInt. J. Intell. Syst.2021365887595810.1002/int.22535 WilcoxonFIndividual comparisons by ranking methodsBiometr. Bull.19451808310.2307/3001968 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893 Fischbach, A. S., Kochnev, A. A., Garlich-Miller, J. L. & Jay, C. V. Pacific Walrus Coastal Haulout Database, 1852–2016—Background Report. Report No. 2331-1258 (US Geological Survey, 2016). GharehchopoghFSUcanAIbrikciTArastehBIsikGSlime mould algorithm: A comprehensive survey of its variants and applicationsArch. Comput. Methods Eng.20231141 MoghdaniRSalimifardKVolleyball premier league algorithmAppl. Soft Comput.20186416118510.1016/j.asoc.2017.11.043 Dehghani, M., Hubálovský, Š. & Trojovský, P. Tasmanian devil optimization: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access (2022). EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm: A novel metaheuristic optimization method for solving constrained engineering optimization problemsComput. Struct.201211015116610.1016/j.compstruc.2012.07.010 DehghaniMTrojovskýPTeamwork optimization algorithm: A new optimization approach for function minimization/maximizationSensors20212145672021Senso..21.4567D34283111827145110.3390/s21134567 GharehchopoghFSQuantum-inspired metaheuristic algorithms: Comprehensive survey and classificationArtif. Intell. Rev.2022565479548310.1007/s10462-022-10280-8 RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput. Aided Des.20114330331510.1016/j.cad.2010.12.015 GandomiAHYangX-SComputational Optimization, Methods and Algorithms2011LondonSpringer2592811218.9000510.1007/978-3-642-20859-1_12 KaurSAwasthiLKSangalALDhimanGTunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimizationEng. Appl. Artif. Intell.20209010354110.1016/j.engappai.2020.103541 Shi, Y. Brain Storm Optimization Algorithm. International conference in swarm intelligence, 303–309 (Springer, 2011). KoohiSZHamidNAWAOthmanMIbragimovGRaccoon optimization algorithmIEEE Access201875383539910.1109/ACCESS.2018.2882568 DasSSuganthanPNProblem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems2010Jadavpur University341359 AbdollahzadehBGharehchopoghFSKhodadadiNMirjaliliSMountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsAdv. Eng. Softw.202217410.1016/j.advengsoft.2022.103282 DehghaniMMontazeriZMalikOPEhsanifarADehghaniAOSA: Orientation search algorithmInt. J. Ind. Electron. Control Optim.2019299112 LevermannNGalatiusAEhlmeGRysgaardSBornEWFeeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper useBMC Ecol.2003311310.1186/1472-6785-3-9 WilsonDEReederDMMammal Species of the World: A Taxonomic and Geographic Reference2005JHU press10.56021/9780801882210 DehghaniMMardanehMGuerreroJMMalikOKumarVFootball game based optimization: An application to solve energy commitment problemInt. J. Intell. Eng. Syst.202013514523 ShayanfarHGharehchopoghFSFarmland fertility: A new metaheuristic algorithm for solving continuous optimization problemsAppl. Soft Comput.20187172874610.1016/j.asoc.2018.07.033 BraikMHammouriAAtwanJAl-BetarMAAwadallahMAWhite shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problemsKnowl. Based Syst.202224310845710.1016/j.knosys.2022.108457 GharehchopoghFSNamaziMEbrahimiLAbdollahzadehBAdvances in sparrow search algorithm: A comprehensive surveyArch. Computat. Methods Eng.20233042745510.1007/s11831-022-09804-w ZeidabadiF-AArchery algorithm: A novel stochastic optimization algorithm for solving optimization problemsComput. Mater. Contin.202272399416 AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): A nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158 ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl. Based Syst.201916328330410.1016/j.knosys.2018.08.030 GharehchopoghFSMalekiIDizajiZAChaotic vortex search algorithm: metaheuristic algorithm for feature selectionEvol. Intel.2022151777180810.1007/s12065-021-00590-1 MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: A nature-inspired algorithm for global optimizationNeural Comput. Appl.20162749551310.1007/s00521-015-1870-7 JeffersonTAStaceyPJBairdRWA review of killer whale interactions with other marine mammals: Predation to co-existenceMamm. Rev.19912115118010.1111/j.1365-2907.1991.tb00291.x DehghaniMA new “doctor and patient” optimization algorithm: An application to energy commitment problemAppl. Sci.20201057911:CAS:528:DC%2BB3cXitFaqsrfO10.3390/app10175791 Christman, B. NOAA Corps. https://www.upload.wikimedia.org/wikipedia/commons/c/ce/Noaa-walrus22.jpg. TrojovskýPDehghaniMPelican optimization algorithm: A novel nature-inspired algorithm for engineering applicationsSensors2022228552022Senso..22..855T35161600883809010.3390/s22030855 MirjaliliSMirjaliliSMLewisAGrey Wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007 SheffieldGFayFHFederHKellyBPLaboratory digestion of prey and interpretation of walrus stomach contentsMar. Mamm. Sci.20011731033010.1111/j.1748-7692.2001.tb01273.x Mezura-Montes, E. & Coello, C. A. C. Mexican International Conference On Artificial Intelligence, 652–662 (Springer, 2023). RashediENezamabadi-PourHSaryazdiSGSA: A gravitational search algorithmInf. Sci.2009179223222481177.9037810.1016/j.ins.2009.03.004 FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine predators algorithm: A nature-inspired metaheuristicExpert Syst. Appl.202015210.1016/j.eswa.2020.113377 DehghaniMSametHMomentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation lawSN Appl. Sci.2020211510.1007/s42452-020-03511-6 DoumariSAGiviHDehghaniMMalikOPRing toss game-based optimization algorithm for solving various optimization problemsInt. J. Intell. Eng. Syst.202114545554 KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience19832206716801983Sci...220..671K7024851:STN:280:DC%2BC3cvktFWjtw%3D%3D178138601225.9016210.1126/science.220.4598.671 DehghaniMMontazeriZMalikOPDGO: Dice game optimizerGazi Univ. J. Sci.20193287188210.35378/gujs.484643 KannanBKramerSNAn augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ. Mech. Des.199411640541110.1115/1.2919393 35863_CR4 A Kaveh (35863_CR45) 2016; 6 M Dehghani (35863_CR51) 2019; 32 V Osuna-Enciso (35863_CR6) 2022; 586 S Mirjalili (35863_CR15) 2014; 69 H Shayanfar (35863_CR22) 2018; 71 FH Fay (35863_CR53) 1982; 74 B Abdollahzadeh (35863_CR24) 2022; 174 AH Gandomi (35863_CR61) 2011 35863_CR41 H Mohammadzadeh (35863_CR8) 2021; 34 P Trojovský (35863_CR28) 2022; 22 R Storn (35863_CR11) 1997; 11 A Faramarzi (35863_CR16) 2020; 152 FS Gharehchopogh (35863_CR35) 2022; 56 PE Gill (35863_CR1) 2019 FS Gharehchopogh (35863_CR7) 2022; 15 DE Goldberg (35863_CR10) 1988; 3 N Levermann (35863_CR58) 2003; 3 H Eskandar (35863_CR32) 2012; 110 G Cervone (35863_CR5) 2010; 2 SZ Koohi (35863_CR20) 2018; 7 S Kirkpatrick (35863_CR29) 1983; 220 35863_CR54 M Cavazzuti (35863_CR3) 2013 35863_CR12 35863_CR56 RV Rao (35863_CR38) 2011; 43 M Braik (35863_CR18) 2022; 243 B Abdollahzadeh (35863_CR27) 2021; 36 TA Jefferson (35863_CR55) 1991; 21 F-A Zeidabadi (35863_CR40) 2022; 72 M Dorigo (35863_CR14) 1996; 26 B Abdollahzadeh (35863_CR21) 2021; 158 B Kannan (35863_CR63) 1994; 116 M Dehghani (35863_CR48) 2019; 2 S Mirjalili (35863_CR31) 2016; 27 Z Wei (35863_CR37) 2019; 7 FS Gharehchopogh (35863_CR23) 2023; 1 M Dehghani (35863_CR50) 2020; 13 DE Wilson (35863_CR52) 2005 S Kaur (35863_CR17) 2020; 90 HRR Zaman (35863_CR13) 2021; 1 S Das (35863_CR64) 2010 SHS Moosavi (35863_CR39) 2019; 86 SA Doumari (35863_CR49) 2021; 14 M Dehghani (35863_CR42) 2020; 10 G Sheffield (35863_CR57) 2001; 17 35863_CR62 E Rashedi (35863_CR30) 2009; 179 R Moghdani (35863_CR46) 2018; 64 S Mirjalili (35863_CR60) 2016; 95 M Dehghani (35863_CR44) 2021; 21 FS Gharehchopogh (35863_CR25) 2023; 30 Y Shen (35863_CR26) 2023; 215 W Zhao (35863_CR34) 2019; 163 F Wilcoxon (35863_CR59) 1945; 1 M Dehghani (35863_CR36) 2020; 2 FA Zeidabadi (35863_CR47) 2022; 15 L Abualigah (35863_CR19) 2022; 191 TL Ayyarao (35863_CR43) 2022; 10 DE Kvasov (35863_CR2) 2018; 318 M Dehghani (35863_CR33) 2020; 10 DH Wolpert (35863_CR9) 1997; 1 |
References_xml | – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893 – reference: DehghaniMMardanehMGuerreroJMMalikOKumarVFootball game based optimization: An application to solve energy commitment problemInt. J. Intell. Eng. Syst.202013514523 – reference: AbdollahzadehBSoleimanian GharehchopoghFMirjaliliSArtificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsInt. J. Intell. Syst.2021365887595810.1002/int.22535 – reference: DoumariSAGiviHDehghaniMMalikOPRing toss game-based optimization algorithm for solving various optimization problemsInt. J. Intell. Eng. Syst.202114545554 – reference: AyyaraoTLWar strategy optimization algorithm: A new effective metaheuristic algorithm for global optimizationIEEE Access2022102507310.1109/ACCESS.2022.3153493 – reference: Fischbach, A. S., Kochnev, A. A., Garlich-Miller, J. L. & Jay, C. V. Pacific Walrus Coastal Haulout Database, 1852–2016—Background Report. Report No. 2331-1258 (US Geological Survey, 2016). – reference: DorigoMManiezzoVColorniAAnt system: Optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B19962629411:STN:280:DC%2BD1c7gsV2ntw%3D%3D10.1109/3477.484436 – reference: Shi, Y. Brain Storm Optimization Algorithm. International conference in swarm intelligence, 303–309 (Springer, 2011). – reference: DehghaniMA new “doctor and patient” optimization algorithm: An application to energy commitment problemAppl. Sci.20201057911:CAS:528:DC%2BB3cXitFaqsrfO10.3390/app10175791 – reference: AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problemsComput. Ind. Eng.202115810.1016/j.cie.2021.107408 – reference: CervoneGFranzesePKeeseeAPAlgorithm quasi-optimal (AQ) learningWiley Interdiscipl. Rev. Comput. Stat.2010221823610.1002/wics.78 – reference: FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine predators algorithm: A nature-inspired metaheuristicExpert Syst. Appl.202015210.1016/j.eswa.2020.113377 – reference: GandomiAHYangX-SComputational Optimization, Methods and Algorithms2011LondonSpringer2592811218.9000510.1007/978-3-642-20859-1_12 – reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience19832206716801983Sci...220..671K7024851:STN:280:DC%2BC3cvktFWjtw%3D%3D178138601225.9016210.1126/science.220.4598.671 – reference: GharehchopoghFSNamaziMEbrahimiLAbdollahzadehBAdvances in sparrow search algorithm: A comprehensive surveyArch. Computat. Methods Eng.20233042745510.1007/s11831-022-09804-w – reference: ShayanfarHGharehchopoghFSFarmland fertility: A new metaheuristic algorithm for solving continuous optimization problemsAppl. Soft Comput.20187172874610.1016/j.asoc.2018.07.033 – reference: KannanBKramerSNAn augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ. Mech. Des.199411640541110.1115/1.2919393 – reference: WeiZHuangCWangXHanTLiYNuclear reaction optimization: A novel and powerful physics-based algorithm for global optimizationIEEE Access20197660846610910.1109/ACCESS.2019.2918406 – reference: Mezura-Montes, E. & Coello, C. A. C. Mexican International Conference On Artificial Intelligence, 652–662 (Springer, 2023). – reference: Kennedy, J. & Eberhart, R. in Proceedings of ICNN'95: International Conference on Neural Networks, vol.1944, 1942–1948 (IEEE, 2023). – reference: ZamanHRRGharehchopoghFSAn improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problemsEng. Comput.20211135 – reference: GharehchopoghFSQuantum-inspired metaheuristic algorithms: Comprehensive survey and classificationArtif. Intell. Rev.2022565479548310.1007/s10462-022-10280-8 – reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl. Based Syst.201916328330410.1016/j.knosys.2018.08.030 – reference: ZeidabadiF-AArchery algorithm: A novel stochastic optimization algorithm for solving optimization problemsComput. Mater. Contin.202272399416 – reference: FayFHEcology and biology of the Pacific walrus, Odobenus rosmarus divergens IlligerN. Am. Fauna198274127910.3996/nafa.74.0001 – reference: GillPEMurrayWWrightMHPractical Optimization2019SIAM0503.9006210.1137/1.9781611975604 – reference: DehghaniMTrojovskýPTeamwork optimization algorithm: A new optimization approach for function minimization/maximizationSensors20212145672021Senso..21.4567D34283111827145110.3390/s21134567 – reference: RashediENezamabadi-PourHSaryazdiSGSA: A gravitational search algorithmInf. Sci.2009179223222481177.9037810.1016/j.ins.2009.03.004 – reference: MirjaliliSMirjaliliSMLewisAGrey Wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007 – reference: KaurSAwasthiLKSangalALDhimanGTunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimizationEng. Appl. Artif. Intell.20209010354110.1016/j.engappai.2020.103541 – reference: ShenYZhangCGharehchopoghFSMirjaliliSAn improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problemsExpert Syst. Appl.202321510.1016/j.eswa.2022.119269 – reference: KavehAZolghadrAA novel meta-heuristic algorithm: Tug of war optimizationIran Univ. Sci. Technol.20166469492 – reference: DehghaniMSametHMomentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation lawSN Appl. Sci.2020211510.1007/s42452-020-03511-6 – reference: WilcoxonFIndividual comparisons by ranking methodsBiometr. Bull.19451808310.2307/3001968 – reference: ZeidabadiFADehghaniMPOA: Puzzle optimization algorithmInt. J. Intell. Eng. Syst.202215273281 – reference: JeffersonTAStaceyPJBairdRWA review of killer whale interactions with other marine mammals: Predation to co-existenceMamm. Rev.19912115118010.1111/j.1365-2907.1991.tb00291.x – reference: Osuna-EncisoVCuevasECastañedaBMA diversity metric for population-based metaheuristic algorithmsInf. Sci.202258619220810.1016/j.ins.2021.11.073 – reference: DehghaniMMontazeriZMalikOPEhsanifarADehghaniAOSA: Orientation search algorithmInt. J. Ind. Electron. Control Optim.2019299112 – reference: BraikMHammouriAAtwanJAl-BetarMAAwadallahMAWhite shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problemsKnowl. Based Syst.202224310845710.1016/j.knosys.2022.108457 – reference: DehghaniMMontazeriZMalikOPDGO: Dice game optimizerGazi Univ. J. Sci.20193287188210.35378/gujs.484643 – reference: KvasovDEMukhametzhanovMSMetaheuristic vs. deterministic global optimization algorithms: The univariate caseAppl. Math. Comput.201831824525937138591426.90208 – reference: Dehghani, M., Hubálovský, Š. & Trojovský, P. Tasmanian devil optimization: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access (2022). – reference: AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): A nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158 – reference: TrojovskýPDehghaniMPelican optimization algorithm: A novel nature-inspired algorithm for engineering applicationsSensors2022228552022Senso..22..855T35161600883809010.3390/s22030855 – reference: MoosaviSHSBardsiriVKPoor and rich optimization algorithm: A new human-based and multi populations algorithmEng. Appl. Artif. Intell.20198616518110.1016/j.engappai.2019.08.025 – reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm: A novel metaheuristic optimization method for solving constrained engineering optimization problemsComput. Struct.201211015116610.1016/j.compstruc.2012.07.010 – reference: DehghaniMA spring search algorithm applied to engineering optimization problemsAppl. Sci.20201061731:CAS:528:DC%2BB3cXitFars73F10.3390/app10186173 – reference: GharehchopoghFSMalekiIDizajiZAChaotic vortex search algorithm: metaheuristic algorithm for feature selectionEvol. Intel.2022151777180810.1007/s12065-021-00590-1 – reference: GharehchopoghFSUcanAIbrikciTArastehBIsikGSlime mould algorithm: A comprehensive survey of its variants and applicationsArch. Comput. Methods Eng.20231141 – reference: MohammadzadehHGharehchopoghFSA multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detectionInt. J. Commun. Syst.20213410.1002/dac.4670 – reference: MoghdaniRSalimifardKVolleyball premier league algorithmAppl. Soft Comput.20186416118510.1016/j.asoc.2017.11.043 – reference: DasSSuganthanPNProblem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems2010Jadavpur University341359 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 – reference: RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput. Aided Des.20114330331510.1016/j.cad.2010.12.015 – reference: SheffieldGFayFHFederHKellyBPLaboratory digestion of prey and interpretation of walrus stomach contentsMar. Mamm. Sci.20011731033010.1111/j.1748-7692.2001.tb01273.x – reference: Christman, B. NOAA Corps. https://www.upload.wikimedia.org/wikipedia/commons/c/ce/Noaa-walrus22.jpg. – reference: KoohiSZHamidNAWAOthmanMIbragimovGRaccoon optimization algorithmIEEE Access201875383539910.1109/ACCESS.2018.2882568 – reference: WilsonDEReederDMMammal Species of the World: A Taxonomic and Geographic Reference2005JHU press10.56021/9780801882210 – reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: A nature-inspired algorithm for global optimizationNeural Comput. Appl.20162749551310.1007/s00521-015-1870-7 – reference: LevermannNGalatiusAEhlmeGRysgaardSBornEWFeeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper useBMC Ecol.2003311310.1186/1472-6785-3-9 – reference: CavazzutiMOptimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics2013Springer771021259.90002 – reference: StornRPriceKDifferential evolution: A simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.19971134135914795530888.9013510.1023/A:1008202821328 – reference: AbdollahzadehBGharehchopoghFSKhodadadiNMirjaliliSMountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsAdv. Eng. Softw.202217410.1016/j.advengsoft.2022.103282 – reference: GoldbergDEHollandJHGenetic algorithms and machine learningMach. Learn.19883959910.1023/A:1022602019183 – volume: 7 start-page: 66084 year: 2019 ident: 35863_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – ident: 35863_CR62 – volume: 90 start-page: 103541 year: 2020 ident: 35863_CR17 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 191 year: 2022 ident: 35863_CR19 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 10 start-page: 25073 year: 2022 ident: 35863_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153493 – volume: 2 start-page: 99 year: 2019 ident: 35863_CR48 publication-title: Int. J. Ind. Electron. Control Optim. – volume: 163 start-page: 283 year: 2019 ident: 35863_CR34 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.08.030 – volume: 174 year: 2022 ident: 35863_CR24 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103282 – volume: 34 year: 2021 ident: 35863_CR8 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4670 – volume: 32 start-page: 871 year: 2019 ident: 35863_CR51 publication-title: Gazi Univ. J. Sci. doi: 10.35378/gujs.484643 – volume: 21 start-page: 151 year: 1991 ident: 35863_CR55 publication-title: Mamm. Rev. doi: 10.1111/j.1365-2907.1991.tb00291.x – volume: 27 start-page: 495 year: 2016 ident: 35863_CR31 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 110 start-page: 151 year: 2012 ident: 35863_CR32 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – ident: 35863_CR56 – volume: 152 year: 2020 ident: 35863_CR16 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 243 start-page: 108457 year: 2022 ident: 35863_CR18 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108457 – volume-title: Mammal Species of the World: A Taxonomic and Geographic Reference year: 2005 ident: 35863_CR52 doi: 10.56021/9780801882210 – volume: 43 start-page: 303 year: 2011 ident: 35863_CR38 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 158 year: 2021 ident: 35863_CR21 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 30 start-page: 427 year: 2023 ident: 35863_CR25 publication-title: Arch. Computat. Methods Eng. doi: 10.1007/s11831-022-09804-w – volume: 220 start-page: 671 year: 1983 ident: 35863_CR29 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 6 start-page: 469 year: 2016 ident: 35863_CR45 publication-title: Iran Univ. Sci. Technol. – volume: 3 start-page: 1 year: 2003 ident: 35863_CR58 publication-title: BMC Ecol. doi: 10.1186/1472-6785-3-9 – volume: 586 start-page: 192 year: 2022 ident: 35863_CR6 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.073 – volume: 10 start-page: 6173 year: 2020 ident: 35863_CR33 publication-title: Appl. Sci. doi: 10.3390/app10186173 – volume: 26 start-page: 29 year: 1996 ident: 35863_CR14 publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/3477.484436 – volume: 21 start-page: 4567 year: 2021 ident: 35863_CR44 publication-title: Sensors doi: 10.3390/s21134567 – volume: 10 start-page: 5791 year: 2020 ident: 35863_CR42 publication-title: Appl. Sci. doi: 10.3390/app10175791 – volume: 14 start-page: 545 year: 2021 ident: 35863_CR49 publication-title: Int. J. Intell. Eng. Syst. – volume: 1 start-page: 80 year: 1945 ident: 35863_CR59 publication-title: Biometr. Bull. doi: 10.2307/3001968 – volume: 116 start-page: 405 year: 1994 ident: 35863_CR63 publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 11 start-page: 341 year: 1997 ident: 35863_CR11 publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 215 year: 2023 ident: 35863_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119269 – volume-title: Practical Optimization year: 2019 ident: 35863_CR1 doi: 10.1137/1.9781611975604 – volume: 71 start-page: 728 year: 2018 ident: 35863_CR22 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.033 – volume: 179 start-page: 2232 year: 2009 ident: 35863_CR30 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 95 start-page: 51 year: 2016 ident: 35863_CR60 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 1 start-page: 67 year: 1997 ident: 35863_CR9 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 17 start-page: 310 year: 2001 ident: 35863_CR57 publication-title: Mar. Mamm. Sci. doi: 10.1111/j.1748-7692.2001.tb01273.x – volume: 69 start-page: 46 year: 2014 ident: 35863_CR15 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 56 start-page: 5479 year: 2022 ident: 35863_CR35 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10280-8 – start-page: 259 volume-title: Computational Optimization, Methods and Algorithms year: 2011 ident: 35863_CR61 doi: 10.1007/978-3-642-20859-1_12 – start-page: 341 volume-title: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems year: 2010 ident: 35863_CR64 – ident: 35863_CR41 doi: 10.1007/978-3-642-21515-5_36 – ident: 35863_CR4 doi: 10.1038/s41598-022-09514-0 – ident: 35863_CR12 – volume: 7 start-page: 5383 year: 2018 ident: 35863_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882568 – volume: 64 start-page: 161 year: 2018 ident: 35863_CR46 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 74 start-page: 1 year: 1982 ident: 35863_CR53 publication-title: N. Am. Fauna doi: 10.3996/nafa.74.0001 – volume: 13 start-page: 514 year: 2020 ident: 35863_CR50 publication-title: Int. J. Intell. Eng. Syst. – volume: 3 start-page: 95 year: 1988 ident: 35863_CR10 publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 2 start-page: 1 year: 2020 ident: 35863_CR36 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03511-6 – volume: 15 start-page: 1777 year: 2022 ident: 35863_CR7 publication-title: Evol. Intel. doi: 10.1007/s12065-021-00590-1 – volume: 1 start-page: 1 year: 2021 ident: 35863_CR13 publication-title: Eng. Comput. – start-page: 77 volume-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics year: 2013 ident: 35863_CR3 doi: 10.1007/978-3-642-31187-1_4 – ident: 35863_CR54 doi: 10.3133/ofr20161108 – volume: 318 start-page: 245 year: 2018 ident: 35863_CR2 publication-title: Appl. Math. Comput. – volume: 1 start-page: 1 year: 2023 ident: 35863_CR23 publication-title: Arch. Comput. Methods Eng. – volume: 86 start-page: 165 year: 2019 ident: 35863_CR39 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: 72 start-page: 399 year: 2022 ident: 35863_CR40 publication-title: Comput. Mater. Contin. – volume: 15 start-page: 273 year: 2022 ident: 35863_CR47 publication-title: Int. J. Intell. Eng. Syst. – volume: 36 start-page: 5887 year: 2021 ident: 35863_CR27 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – volume: 22 start-page: 855 year: 2022 ident: 35863_CR28 publication-title: Sensors doi: 10.3390/s22030855 – volume: 2 start-page: 218 year: 2010 ident: 35863_CR5 publication-title: Wiley Interdiscipl. Rev. Comput. Stat. doi: 10.1002/wics.78 |
SSID | ssj0000529419 |
Score | 2.634559 |
Snippet | This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The... Abstract This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8775 |
SubjectTerms | 639/166 639/705 Algorithms Exploitation Humanities and Social Sciences multidisciplinary Optimization Predators Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYsKvbUmeliyfExDQuihpxRyE5I8zi7s2mXXS8m_z0jybrN9XnqVZDHMQzPjkb4h5D36CIUTslS602WFAXHpXa1K6ergdO2cbNMF2S_68mv1-Vpd32v1Fe-EZXjgzLgTXMy0q3ADjNyBC8cbwCAndKaTzvMunr7o8-4lUxnVWzQVb6ZXMkyakzV6qviaTMhSKqORuD1PlAD7fxdl_npZ8qeKaXJEF0_I4ymCpKeZ8kPyAPqn5GHuKXn7jNycUoyUqZ8P5byPZXRo6RJGN4NNBmWmbnEzrObjbEkxYKWoe_GfAh3w7FhOjzLp1GZmTaOTaymOfHeL1WYNODK9639Ori7Or84uy6mbQhlUxcd4knTBgGwCh-C1rkzXBqaUMRAx_BgDA-iuQTrtGQ_CNxWmK6HymFCxIOULctAPPbwi1HdQt60wrGkdZndguALnRaeCwXxX8oLwLWNtmJDGY8OLhU0Vb2lsFoZFYdgkDKsK8mH3zbeMs_HX1Z-ivHYrI0Z2GkDNsZPm2H9pTkGOt9K2k-GuLWagPKKysaYg73bTaHKxjuJ6GDZ5Tax_Cl2Ql1k5dpTIWkQSWUHMntrskbo_089nCdY7gmiISuOmH7ca9oOuP_Pi9f_gxRF5JKJppGsRx-RgXG3gDUZbo3-bDOsOIX8mrw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlHtOHacEyqIquLAqUh7s2zH2V1pN2k3WSH-fWcc71bLo1fbiSaZz54Zj_0NIR_ARkjoELlUrcpLcIhzZyuZC1t5qyprRRMPyP5QFz_L7zM5SxtuQzpWuVsT40Ld9B73yE8hNOBIl8Xqz1fXOVaNwuxqKqFxnzxA6jJEdTWr9nssmMUqeZ3uyjChTwewV3inrBC5kFqBiAf2KNL2_8vX_PvI5B9502iOzp-Qx8mPpGeT4p-Se6F7Rh5OlSV_PyfzMwr-MnXLPl92mEwPDV2H0S7CdqJmpnY1h88bF2sKbisFBOLOAu1hBVmnq5k0FZsZKJq6hkLLL7vabIcALel2_wtyef7t8utFnmoq5F6WfMT1pPU6iNrz4J1SpW4bz6TUOiCTH2NBBzDaQVjlGPeFq0sIWnzpIKxiXoiX5Kjru_CaUNeGqmkKzerGQowXNJfBuqKVXkPUK3hG-O7HGp_4xrHsxcrEvLfQZlKGAWWYqAwjM_Jx_8zVxLZx5-gvqK_9SGTKjg39Zm7SxDMANqZsCQCEyC_wwvI6gJPsW90K63ibkZOdtk2avoO5BVtG3u-7YeJhNsV2od9OYzALWqiMvJrAsZdEVAWKyDKiD2BzIOphT7dcRHJvpNIoSgUv_bRD2K1c__8Xx3d_xhvyqEDQx2MPJ-Ro3GzDW_CmRvcuTpkbNHMdjQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiPIMtMhI3CDCj9hxjgtqVe2BC0XqzbIdZ3el3aTazQrx7xk7TtBCQerVL408Y8-MZ-YzQu9BRwjo4LmQjcwLMIhza0qRc1M6I0tjeB0TZL_Kq-_F_EbcHCE21sLEpP0IaRmv6TE77NMOFE0oBmM850JJWPsBOglQ7SDbJ7PZ_Nt8elkJsauCVqlChnB1x-QDLRTB-u-yMP9OlPwjWhqV0OUT9DhZj3g20HuKjnz7FD0c_pP8-QwtZhisZGxXXb5qQwjd13jje7P0-wGQGZv1otuu-uUGg7GKQe7CewLu4N7YpIJMnL6Y2eGg4GoMLT_MervfeWhJNf3P0fXlxfWXqzz9pJA7UdA-3CKNU55XjnpnpSxUUzsihFI-4PcR4pUHVe25kZZQx2xVgKviCgvOFHGcv0DHbdf6Vwjbxpd1zRSpagOenVdUeGNZI5wCX5fTDNFxY7VLKOPhs4u1jtFurvTADA3M0JEZWmTowzTndsDY-O_oz4Ff08iAjx0buu1CJ3nRIGJEmgLEDvw9T5mhlQfT2DWq4cbSJkNnI7d1OrQ7Dd4nDYhspMrQu6kbjluIoZjWd_thTIh9Mpmhl4NwTJTwkgUSSYbUgdgckHrY066WEdI7AGiwQsKiH0cJ-03Xv_fi9f2Gv0GPWDgEMfnhDB33270_B5uqt2_TIfoFUhocyA priority: 102 providerName: Springer Nature |
Title | A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior |
URI | https://link.springer.com/article/10.1038/s41598-023-35863-5 https://www.ncbi.nlm.nih.gov/pubmed/37258630 https://www.proquest.com/docview/2821255609 https://www.proquest.com/docview/2821640726 https://pubmed.ncbi.nlm.nih.gov/PMC10232466 https://doaj.org/article/a3d06a4ba7114e12a19e800cf8f3ab1f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9ID5HYFRG4g0CsR07zgNCXbVpqsSEYJP6FjmO01ZqE5amGvvvOeejqFB44CmR7cSW7y53l_P9DuAN6giBHdwXMpd-iAaxn-pI-FxHRstIa541B2Qv5cV1OJ6IyR705Y66DVztdO1cPanravH-x83dJxT4j23KuPqwQiXkEsUY97lQEufdh0PUTJGraPC5M_dbrG8WhzTucmd2P3oE93nE3H2wpaoaRP9dZuifpyl_C6k2mur8ITzoTEwybHniEezZ4jHca4tO3j2B6ZCgKU3SeenPCxdntxlZ2lrP7LpFbSZ6MS2reT1bErRoCTKn--lASvy4LLusTdLVoVkRpwUzgi23elGtVxZbusT_p3B1fnY1uvC7cgu-ESGt3acmN8ry2FBrUilDlWcmEEIp60D-gsAqi_rcci3TgBqWxiH6MyZM0eMKDOfP4KAoC_scSJrbKMuYCuJMo_tnFRVWpywXRqFDzKkHtN_YxHRQ5K4ixiJpQuJcJS1dEqRL0tAlER683TzzvQXi-OfoU0evzUgHot00lNU06WQyQT4MpA6RN9EptJRpGlu0n02ucq5Tmntw0lM76RkzQReVOti2IPbg9aYbZdIFWnRhy3U7xgVImfTguGWOzUp65vJAbbHN1lK3e4r5rMH9digbLJT40nc9h_1a19_34sX_z_QSjpiTjea0xAkc1NXavkIjrE4HsB9NogEcDofjb2O8np5dfvmKrSM5GjQ_NgaN7P0Elfk0IQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLaqIgQXxN6BAkaCE4zqZezxHBAqS5XS0lOQcrM8Hk8SKZkpWVT1R_EfeW-WVGHprVfbEzlvf3729wh5Az5CwYSMlS51nEBAHOcuVbF0qXc6dU4WzQXZMz34kXwbqdEO-dW_hcFrlb1NbAx1UXs8Iz-A1IAjXBbLPp7_jLFrFFZX-xYarVichMsLSNmWH46_AH_fCnH0dfh5EHddBWKvEr5CjSq9CTLzPPhc68SUhWdKGRMQy46xYAK4rSCdzhn3Is8SCNt9kkNiwTyef4LFvwV-l2Gul47SzZEOFs0SnnVPc5g0B0twj_iETchYKqOBIlvur-kS8K_Q9u8bmn-UaRvvd3Sf3OvCVnrYytkDshOqh-R228jy8hEZH1IIz2k-reNphbX7UNB5WLlJWLdI0NTNxkDN1WROIUqmIPB4kEFrMFjz7iUo7XrbLCl61oLCyIWbLdbLACMdmMBjMrwJYj8hu1VdhT1C8zKkRSEMywoHKWUwXAWXi1J5A0m25BHhPWGt7-DNscvGzDZldmlsywwLzLANM6yKyLvNN-ctuMe1qz8hvzYrEZi7GagXY9vpuQXZZtolIO-QaAYuHM8CxOS-NKV0OS8jst9z23bWYmmvZDsirzfToOdYvHFVqNftGiy6Ch2Rp61wbHYiU4FbZBExW2KztdXtmWo6abDEEblDJBp-9H0vYVf7-j8tnl3_N16RO4Ph91N7enx28pzcFagAzY2LfbK7WqzDCwjkVvnLRn0osTesrr8BO5xYng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBe0PgOG2AkeIKocRw7zgNCG1u1MVRNaEh7sxzHaSu1yeiHpv1p_HfcJU6n8rG3vdpO5d79znfnO98R8g50hIAJHgpZyjABgzjMTSpCblJrZGoML5oE2aE8_pF8vRAXW-RX9xYG0yq7M7E5qIva4h15H1wDhuWyoqxf-rSIs8PB58ufIXaQwkhr106jhcipu74C923x6eQQeP0-jgdH51-OQ99hILQiYUuUrtIqxzPLnM2lTFRZ2EgIpRzWtYsipxyoMMeNzCNm4zxLwIS3SQ5ORmTxLhRO_-0UnaIe2T44Gp59X1_wYAgtYZl_qBNx1V-AssQHbTEPuVAS6LOhDJueAf8ydP_O1_wjaNvowsEOeeiNWLrfou4R2XLVY3KvbWt5_YSM9ikY6zSf1OGkwki-K-jMLc3Yrdq60NRMR0DP5XhGwWamAH-81qA1HF8z_y6U-k43C4p6tqAwcmWm89XCwYgvLfCUnN8FuZ-RXlVX7gWheenSoohVlBUGHEynmHAmj0thFbjcnAWEdYTV1hc7x54bU90E3bnSLTM0MEM3zNAiIB_W31y2pT5uXX2A_FqvxDLdzUA9H2kv9RqQHkmTAPrB7XQsNixzYKHbUpXc5KwMyF7Hbe3PjoW-QXpA3q6nQeoxlGMqV6_aNRiCjWVAnrfgWO-EpzFuMQqI2oDNxlY3Z6rJuKksjnU84kTCj37sEHazr__T4uXtf-MNuQ-iqr-dDE93yYMY8d-kX-yR3nK-cq_Aqlvmr738UKLvWGJ_A0lBXjk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+bio-inspired+metaheuristic+algorithm+for+solving+optimization+problems+based+on+walruses+behavior&rft.jtitle=Scientific+reports&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.au=Dehghani%2C+Mohammad&rft.date=2023-05-31&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-35863-5&rft_id=info%3Apmid%2F37258630&rft.externalDocID=PMC10232466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |