A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior

This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 8775 - 32
Main Authors Trojovský, Pavel, Dehghani, Mohammad
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
AbstractList This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
Abstract This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The fundamental inspirations employed in WaOA design are the process of feeding, migrating, escaping, and fighting predators. The WaOA implementation steps are mathematically modeled in three phases exploration, migration, and exploitation. Sixty-eight standard benchmark functions consisting of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, CEC 2015 test suite, and CEC 2017 test suite are employed to evaluate WaOA performance in optimization applications. The optimization results of unimodal functions indicate the exploitation ability of WaOA, the optimization results of multimodal functions indicate the exploration ability of WaOA, and the optimization results of CEC 2015 and CEC 2017 test suites indicate the high ability of WaOA in balancing exploration and exploitation during the search process. The performance of WaOA is compared with the results of ten well-known metaheuristic algorithms. The results of the simulations demonstrate that WaOA, due to its excellent ability to balance exploration and exploitation, and its capacity to deliver superior results for most of the benchmark functions, has exhibited a remarkably competitive and superior performance in contrast to other comparable algorithms. In addition, the use of WaOA in addressing four design engineering issues and twenty-two real-world optimization problems from the CEC 2011 test suite demonstrates the apparent effectiveness of WaOA in real-world applications. The MATLAB codes of WaOA are available in https://uk.mathworks.com/matlabcentral/profile/authors/13903104 .
ArticleNumber 8775
Author Trojovský, Pavel
Dehghani, Mohammad
Author_xml – sequence: 1
  givenname: Pavel
  surname: Trojovský
  fullname: Trojovský, Pavel
  email: pavel.trojovsky@uhk.cz
  organization: Department of Mathematics, Faculty of Science, University of Hradec Králové
– sequence: 2
  givenname: Mohammad
  surname: Dehghani
  fullname: Dehghani, Mohammad
  organization: Department of Mathematics, Faculty of Science, University of Hradec Králové
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37258630$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN9xTqiqaKlUiUvvluO8ZL1K7GAnW5Vfj3dTSttDfbE1nhnP83vv0ZEPHhD6SPBXgpn6ljgRtSoxZSUTSrJSvEEnFHNRUkbp0ZPzMTpLaYvzErTmpH6HjllF9xp8gvrzwsNd0bhQOp8mF6EtRpjNBpbo0uxsYYY-RDdvxqILsUhh2DnfF2Ga3ej-mNkFX0wxNAOMqWhMyvqM3JkhLgkyAhuzcyF-QG87MyQ4e9hP0e3lj9uLn-XNr6vri_Ob0gpO5pJVsrMKWG0J2EZKrrrWYiGUglpRijEo4FQCM7LBxNKm5pRUljdEcmwZO0XXq20bzFZP0Y0m3utgnD4AIfbaxFzVANqwFkvDG1MRwoFQQ2pQGNtOdcw0pMte31evaWlGaC34OZrhmenzG-82ug87TXJTKJcyO3x5cIjh9wJp1qNLFobBeAhL0lTRfe6K7qmfX1C3YYk-f9WBRYWQuM6sT08jPWb5189MoCvBxpBShO6RQrDez41e50bniPowN1pkkXohsm4-dDaX5YbXpWyVpvyO7yH-j_2K6i-lRdgB
CitedBy_id crossref_primary_10_1016_j_energy_2025_135147
crossref_primary_10_1109_ACCESS_2024_3427632
crossref_primary_10_1007_s42235_024_00580_w
crossref_primary_10_1109_ACCESS_2024_3504559
crossref_primary_10_1016_j_est_2024_113921
crossref_primary_10_1007_s00202_024_02799_6
crossref_primary_10_1016_j_egyr_2024_10_051
crossref_primary_10_1016_j_heliyon_2025_e41653
crossref_primary_10_3233_THC_240603
crossref_primary_10_1016_j_comnet_2023_110161
crossref_primary_10_1016_j_oceaneng_2024_119550
crossref_primary_10_1109_ACCESS_2024_3506977
crossref_primary_10_61927_igmin172
crossref_primary_10_1007_s11276_024_03867_2
crossref_primary_10_1002_rnc_7883
crossref_primary_10_1016_j_asej_2024_102663
crossref_primary_10_1016_j_inoche_2024_113393
crossref_primary_10_3390_biomimetics9010008
crossref_primary_10_1038_s41598_024_77113_2
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_1049_gtd2_13164
crossref_primary_10_1080_13467581_2024_2445595
crossref_primary_10_1007_s41872_024_00263_9
crossref_primary_10_1063_5_0223492
crossref_primary_10_1007_s12083_024_01848_y
crossref_primary_10_3390_act12100396
crossref_primary_10_1016_j_knosys_2025_113046
crossref_primary_10_3390_app14146164
crossref_primary_10_54021_seesv5n2_615
crossref_primary_10_3390_su152416707
crossref_primary_10_1016_j_heliyon_2024_e34496
crossref_primary_10_3390_sym15101873
crossref_primary_10_1007_s00521_024_10384_y
crossref_primary_10_1016_j_asej_2025_103342
crossref_primary_10_1142_S0218348X24300010
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_1007_s41870_024_01800_6
crossref_primary_10_1016_j_saa_2024_124396
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_3103_S875669902470081X
crossref_primary_10_1007_s10586_024_04753_4
crossref_primary_10_3390_app14041462
crossref_primary_10_1038_s41598_024_78761_0
crossref_primary_10_1016_j_compeleceng_2024_109733
crossref_primary_10_1002_ese3_1628
crossref_primary_10_1038_s41598_024_67581_x
crossref_primary_10_1038_s41598_024_62722_8
crossref_primary_10_1016_j_asej_2024_102883
crossref_primary_10_1109_ACCESS_2024_3436899
crossref_primary_10_1016_j_asej_2024_103144
crossref_primary_10_1016_j_eswa_2025_126633
crossref_primary_10_3390_app15031359
crossref_primary_10_3390_nano14242038
crossref_primary_10_1007_s10010_024_00765_z
crossref_primary_10_1016_j_aei_2024_102947
crossref_primary_10_1007_s10723_024_09776_0
crossref_primary_10_1007_s11277_024_11635_w
crossref_primary_10_1007_s10115_024_02179_3
crossref_primary_10_1016_j_heliyon_2024_e30677
crossref_primary_10_1002_htj_23216
crossref_primary_10_1038_s41598_023_48462_1
crossref_primary_10_1007_s10462_024_11072_y
crossref_primary_10_1007_s12083_024_01753_4
crossref_primary_10_3390_biomimetics8080569
crossref_primary_10_3390_app15042155
crossref_primary_10_1080_19392699_2024_2431286
crossref_primary_10_1007_s10586_024_04606_0
Cites_doi 10.1109/ACCESS.2019.2918406
10.1016/j.engappai.2020.103541
10.1016/j.eswa.2021.116158
10.1109/ACCESS.2022.3153493
10.1016/j.knosys.2018.08.030
10.1016/j.advengsoft.2022.103282
10.1002/dac.4670
10.35378/gujs.484643
10.1111/j.1365-2907.1991.tb00291.x
10.1007/s00521-015-1870-7
10.1016/j.compstruc.2012.07.010
10.1016/j.eswa.2020.113377
10.1016/j.knosys.2022.108457
10.56021/9780801882210
10.1016/j.cad.2010.12.015
10.1016/j.cie.2021.107408
10.1007/s11831-022-09804-w
10.1126/science.220.4598.671
10.1186/1472-6785-3-9
10.1016/j.ins.2021.11.073
10.3390/app10186173
10.1109/3477.484436
10.3390/s21134567
10.3390/app10175791
10.2307/3001968
10.1115/1.2919393
10.1023/A:1008202821328
10.1016/j.eswa.2022.119269
10.1137/1.9781611975604
10.1016/j.asoc.2018.07.033
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2016.01.008
10.1109/4235.585893
10.1111/j.1748-7692.2001.tb01273.x
10.1016/j.advengsoft.2013.12.007
10.1007/s10462-022-10280-8
10.1007/978-3-642-20859-1_12
10.1007/978-3-642-21515-5_36
10.1038/s41598-022-09514-0
10.1109/ACCESS.2018.2882568
10.1016/j.asoc.2017.11.043
10.3996/nafa.74.0001
10.1023/A:1022602019183
10.1007/s42452-020-03511-6
10.1007/s12065-021-00590-1
10.1007/978-3-642-31187-1_4
10.3133/ofr20161108
10.1016/j.engappai.2019.08.025
10.1002/int.22535
10.3390/s22030855
10.1002/wics.78
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-35863-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 32
ExternalDocumentID oai_doaj_org_article_a3d06a4ba7114e12a19e800cf8f3ab1f
PMC10232466
37258630
10_1038_s41598_023_35863_5
Genre Journal Article
GrantInformation_xml – fundername: Univerzita Hradec Králové
  grantid: 2210/2023-2024
  funderid: http://dx.doi.org/10.13039/100018512
– fundername: Univerzita Hradec Králové
  grantid: 2210/2023-2024
– fundername: ;
  grantid: 2210/2023-2024
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-376fc8e39c1ecb6648fdc05588e982200e8e426e3a6b01c2b94217c4b1640c33
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:53 EDT 2025
Thu Aug 21 18:36:59 EDT 2025
Fri Jul 11 09:07:15 EDT 2025
Wed Aug 13 09:30:37 EDT 2025
Thu Apr 03 07:08:35 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 01 04:24:47 EDT 2025
Fri Feb 21 02:39:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-376fc8e39c1ecb6648fdc05588e982200e8e426e3a6b01c2b94217c4b1640c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-35863-5
PMID 37258630
PQID 2821255609
PQPubID 2041939
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_a3d06a4ba7114e12a19e800cf8f3ab1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10232466
proquest_miscellaneous_2821640726
proquest_journals_2821255609
pubmed_primary_37258630
crossref_primary_10_1038_s41598_023_35863_5
crossref_citationtrail_10_1038_s41598_023_35863_5
springer_journals_10_1038_s41598_023_35863_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AyyaraoTLWar strategy optimization algorithm: A new effective metaheuristic algorithm for global optimizationIEEE Access2022102507310.1109/ACCESS.2022.3153493
ShenYZhangCGharehchopoghFSMirjaliliSAn improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problemsExpert Syst. Appl.202321510.1016/j.eswa.2022.119269
DehghaniMA spring search algorithm applied to engineering optimization problemsAppl. Sci.20201061731:CAS:528:DC%2BB3cXitFars73F10.3390/app10186173
KvasovDEMukhametzhanovMSMetaheuristic vs. deterministic global optimization algorithms: The univariate caseAppl. Math. Comput.201831824525937138591426.90208
CavazzutiMOptimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics2013Springer771021259.90002
ZeidabadiFADehghaniMPOA: Puzzle optimization algorithmInt. J. Intell. Eng. Syst.202215273281
StornRPriceKDifferential evolution: A simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.19971134135914795530888.9013510.1023/A:1008202821328
Kennedy, J. & Eberhart, R. in Proceedings of ICNN'95: International Conference on Neural Networks, vol.1944, 1942–1948 (IEEE, 2023).
MoosaviSHSBardsiriVKPoor and rich optimization algorithm: A new human-based and multi populations algorithmEng. Appl. Artif. Intell.20198616518110.1016/j.engappai.2019.08.025
GillPEMurrayWWrightMHPractical Optimization2019SIAM0503.9006210.1137/1.9781611975604
KavehAZolghadrAA novel meta-heuristic algorithm: Tug of war optimizationIran Univ. Sci. Technol.20166469492
MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
DorigoMManiezzoVColorniAAnt system: Optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B19962629411:STN:280:DC%2BD1c7gsV2ntw%3D%3D10.1109/3477.484436
CervoneGFranzesePKeeseeAPAlgorithm quasi-optimal (AQ) learningWiley Interdiscipl. Rev. Comput. Stat.2010221823610.1002/wics.78
GoldbergDEHollandJHGenetic algorithms and machine learningMach. Learn.19883959910.1023/A:1022602019183
MohammadzadehHGharehchopoghFSA multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detectionInt. J. Commun. Syst.20213410.1002/dac.4670
ZamanHRRGharehchopoghFSAn improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problemsEng. Comput.20211135
FayFHEcology and biology of the Pacific walrus, Odobenus rosmarus divergens IlligerN. Am. Fauna198274127910.3996/nafa.74.0001
Osuna-EncisoVCuevasECastañedaBMA diversity metric for population-based metaheuristic algorithmsInf. Sci.202258619220810.1016/j.ins.2021.11.073
AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problemsComput. Ind. Eng.202115810.1016/j.cie.2021.107408
WeiZHuangCWangXHanTLiYNuclear reaction optimization: A novel and powerful physics-based algorithm for global optimizationIEEE Access20197660846610910.1109/ACCESS.2019.2918406
AbdollahzadehBSoleimanian GharehchopoghFMirjaliliSArtificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsInt. J. Intell. Syst.2021365887595810.1002/int.22535
WilcoxonFIndividual comparisons by ranking methodsBiometr. Bull.19451808310.2307/3001968
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893
Fischbach, A. S., Kochnev, A. A., Garlich-Miller, J. L. & Jay, C. V. Pacific Walrus Coastal Haulout Database, 1852–2016—Background Report. Report No. 2331-1258 (US Geological Survey, 2016).
GharehchopoghFSUcanAIbrikciTArastehBIsikGSlime mould algorithm: A comprehensive survey of its variants and applicationsArch. Comput. Methods Eng.20231141
MoghdaniRSalimifardKVolleyball premier league algorithmAppl. Soft Comput.20186416118510.1016/j.asoc.2017.11.043
Dehghani, M., Hubálovský, Š. & Trojovský, P. Tasmanian devil optimization: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access (2022).
EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm: A novel metaheuristic optimization method for solving constrained engineering optimization problemsComput. Struct.201211015116610.1016/j.compstruc.2012.07.010
DehghaniMTrojovskýPTeamwork optimization algorithm: A new optimization approach for function minimization/maximizationSensors20212145672021Senso..21.4567D34283111827145110.3390/s21134567
GharehchopoghFSQuantum-inspired metaheuristic algorithms: Comprehensive survey and classificationArtif. Intell. Rev.2022565479548310.1007/s10462-022-10280-8
RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput. Aided Des.20114330331510.1016/j.cad.2010.12.015
GandomiAHYangX-SComputational Optimization, Methods and Algorithms2011LondonSpringer2592811218.9000510.1007/978-3-642-20859-1_12
KaurSAwasthiLKSangalALDhimanGTunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimizationEng. Appl. Artif. Intell.20209010354110.1016/j.engappai.2020.103541
Shi, Y. Brain Storm Optimization Algorithm. International conference in swarm intelligence, 303–309 (Springer, 2011).
KoohiSZHamidNAWAOthmanMIbragimovGRaccoon optimization algorithmIEEE Access201875383539910.1109/ACCESS.2018.2882568
DasSSuganthanPNProblem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems2010Jadavpur University341359
AbdollahzadehBGharehchopoghFSKhodadadiNMirjaliliSMountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsAdv. Eng. Softw.202217410.1016/j.advengsoft.2022.103282
DehghaniMMontazeriZMalikOPEhsanifarADehghaniAOSA: Orientation search algorithmInt. J. Ind. Electron. Control Optim.2019299112
LevermannNGalatiusAEhlmeGRysgaardSBornEWFeeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper useBMC Ecol.2003311310.1186/1472-6785-3-9
WilsonDEReederDMMammal Species of the World: A Taxonomic and Geographic Reference2005JHU press10.56021/9780801882210
DehghaniMMardanehMGuerreroJMMalikOKumarVFootball game based optimization: An application to solve energy commitment problemInt. J. Intell. Eng. Syst.202013514523
ShayanfarHGharehchopoghFSFarmland fertility: A new metaheuristic algorithm for solving continuous optimization problemsAppl. Soft Comput.20187172874610.1016/j.asoc.2018.07.033
BraikMHammouriAAtwanJAl-BetarMAAwadallahMAWhite shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problemsKnowl. Based Syst.202224310845710.1016/j.knosys.2022.108457
GharehchopoghFSNamaziMEbrahimiLAbdollahzadehBAdvances in sparrow search algorithm: A comprehensive surveyArch. Computat. Methods Eng.20233042745510.1007/s11831-022-09804-w
ZeidabadiF-AArchery algorithm: A novel stochastic optimization algorithm for solving optimization problemsComput. Mater. Contin.202272399416
AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): A nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158
ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl. Based Syst.201916328330410.1016/j.knosys.2018.08.030
GharehchopoghFSMalekiIDizajiZAChaotic vortex search algorithm: metaheuristic algorithm for feature selectionEvol. Intel.2022151777180810.1007/s12065-021-00590-1
MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: A nature-inspired algorithm for global optimizationNeural Comput. Appl.20162749551310.1007/s00521-015-1870-7
JeffersonTAStaceyPJBairdRWA review of killer whale interactions with other marine mammals: Predation to co-existenceMamm. Rev.19912115118010.1111/j.1365-2907.1991.tb00291.x
DehghaniMA new “doctor and patient” optimization algorithm: An application to energy commitment problemAppl. Sci.20201057911:CAS:528:DC%2BB3cXitFaqsrfO10.3390/app10175791
Christman, B. NOAA Corps. https://www.upload.wikimedia.org/wikipedia/commons/c/ce/Noaa-walrus22.jpg.
TrojovskýPDehghaniMPelican optimization algorithm: A novel nature-inspired algorithm for engineering applicationsSensors2022228552022Senso..22..855T35161600883809010.3390/s22030855
MirjaliliSMirjaliliSMLewisAGrey Wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007
SheffieldGFayFHFederHKellyBPLaboratory digestion of prey and interpretation of walrus stomach contentsMar. Mamm. Sci.20011731033010.1111/j.1748-7692.2001.tb01273.x
Mezura-Montes, E. & Coello, C. A. C. Mexican International Conference On Artificial Intelligence, 652–662 (Springer, 2023).
RashediENezamabadi-PourHSaryazdiSGSA: A gravitational search algorithmInf. Sci.2009179223222481177.9037810.1016/j.ins.2009.03.004
FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine predators algorithm: A nature-inspired metaheuristicExpert Syst. Appl.202015210.1016/j.eswa.2020.113377
DehghaniMSametHMomentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation lawSN Appl. Sci.2020211510.1007/s42452-020-03511-6
DoumariSAGiviHDehghaniMMalikOPRing toss game-based optimization algorithm for solving various optimization problemsInt. J. Intell. Eng. Syst.202114545554
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience19832206716801983Sci...220..671K7024851:STN:280:DC%2BC3cvktFWjtw%3D%3D178138601225.9016210.1126/science.220.4598.671
DehghaniMMontazeriZMalikOPDGO: Dice game optimizerGazi Univ. J. Sci.20193287188210.35378/gujs.484643
KannanBKramerSNAn augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ. Mech. Des.199411640541110.1115/1.2919393
35863_CR4
A Kaveh (35863_CR45) 2016; 6
M Dehghani (35863_CR51) 2019; 32
V Osuna-Enciso (35863_CR6) 2022; 586
S Mirjalili (35863_CR15) 2014; 69
H Shayanfar (35863_CR22) 2018; 71
FH Fay (35863_CR53) 1982; 74
B Abdollahzadeh (35863_CR24) 2022; 174
AH Gandomi (35863_CR61) 2011
35863_CR41
H Mohammadzadeh (35863_CR8) 2021; 34
P Trojovský (35863_CR28) 2022; 22
R Storn (35863_CR11) 1997; 11
A Faramarzi (35863_CR16) 2020; 152
FS Gharehchopogh (35863_CR35) 2022; 56
PE Gill (35863_CR1) 2019
FS Gharehchopogh (35863_CR7) 2022; 15
DE Goldberg (35863_CR10) 1988; 3
N Levermann (35863_CR58) 2003; 3
H Eskandar (35863_CR32) 2012; 110
G Cervone (35863_CR5) 2010; 2
SZ Koohi (35863_CR20) 2018; 7
S Kirkpatrick (35863_CR29) 1983; 220
35863_CR54
M Cavazzuti (35863_CR3) 2013
35863_CR12
35863_CR56
RV Rao (35863_CR38) 2011; 43
M Braik (35863_CR18) 2022; 243
B Abdollahzadeh (35863_CR27) 2021; 36
TA Jefferson (35863_CR55) 1991; 21
F-A Zeidabadi (35863_CR40) 2022; 72
M Dorigo (35863_CR14) 1996; 26
B Abdollahzadeh (35863_CR21) 2021; 158
B Kannan (35863_CR63) 1994; 116
M Dehghani (35863_CR48) 2019; 2
S Mirjalili (35863_CR31) 2016; 27
Z Wei (35863_CR37) 2019; 7
FS Gharehchopogh (35863_CR23) 2023; 1
M Dehghani (35863_CR50) 2020; 13
DE Wilson (35863_CR52) 2005
S Kaur (35863_CR17) 2020; 90
HRR Zaman (35863_CR13) 2021; 1
S Das (35863_CR64) 2010
SHS Moosavi (35863_CR39) 2019; 86
SA Doumari (35863_CR49) 2021; 14
M Dehghani (35863_CR42) 2020; 10
G Sheffield (35863_CR57) 2001; 17
35863_CR62
E Rashedi (35863_CR30) 2009; 179
R Moghdani (35863_CR46) 2018; 64
S Mirjalili (35863_CR60) 2016; 95
M Dehghani (35863_CR44) 2021; 21
FS Gharehchopogh (35863_CR25) 2023; 30
Y Shen (35863_CR26) 2023; 215
W Zhao (35863_CR34) 2019; 163
F Wilcoxon (35863_CR59) 1945; 1
M Dehghani (35863_CR36) 2020; 2
FA Zeidabadi (35863_CR47) 2022; 15
L Abualigah (35863_CR19) 2022; 191
TL Ayyarao (35863_CR43) 2022; 10
DE Kvasov (35863_CR2) 2018; 318
M Dehghani (35863_CR33) 2020; 10
DH Wolpert (35863_CR9) 1997; 1
References_xml – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.19971678210.1109/4235.585893
– reference: DehghaniMMardanehMGuerreroJMMalikOKumarVFootball game based optimization: An application to solve energy commitment problemInt. J. Intell. Eng. Syst.202013514523
– reference: AbdollahzadehBSoleimanian GharehchopoghFMirjaliliSArtificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsInt. J. Intell. Syst.2021365887595810.1002/int.22535
– reference: DoumariSAGiviHDehghaniMMalikOPRing toss game-based optimization algorithm for solving various optimization problemsInt. J. Intell. Eng. Syst.202114545554
– reference: AyyaraoTLWar strategy optimization algorithm: A new effective metaheuristic algorithm for global optimizationIEEE Access2022102507310.1109/ACCESS.2022.3153493
– reference: Fischbach, A. S., Kochnev, A. A., Garlich-Miller, J. L. & Jay, C. V. Pacific Walrus Coastal Haulout Database, 1852–2016—Background Report. Report No. 2331-1258 (US Geological Survey, 2016).
– reference: DorigoMManiezzoVColorniAAnt system: Optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B19962629411:STN:280:DC%2BD1c7gsV2ntw%3D%3D10.1109/3477.484436
– reference: Shi, Y. Brain Storm Optimization Algorithm. International conference in swarm intelligence, 303–309 (Springer, 2011).
– reference: DehghaniMA new “doctor and patient” optimization algorithm: An application to energy commitment problemAppl. Sci.20201057911:CAS:528:DC%2BB3cXitFaqsrfO10.3390/app10175791
– reference: AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problemsComput. Ind. Eng.202115810.1016/j.cie.2021.107408
– reference: CervoneGFranzesePKeeseeAPAlgorithm quasi-optimal (AQ) learningWiley Interdiscipl. Rev. Comput. Stat.2010221823610.1002/wics.78
– reference: FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine predators algorithm: A nature-inspired metaheuristicExpert Syst. Appl.202015210.1016/j.eswa.2020.113377
– reference: GandomiAHYangX-SComputational Optimization, Methods and Algorithms2011LondonSpringer2592811218.9000510.1007/978-3-642-20859-1_12
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience19832206716801983Sci...220..671K7024851:STN:280:DC%2BC3cvktFWjtw%3D%3D178138601225.9016210.1126/science.220.4598.671
– reference: GharehchopoghFSNamaziMEbrahimiLAbdollahzadehBAdvances in sparrow search algorithm: A comprehensive surveyArch. Computat. Methods Eng.20233042745510.1007/s11831-022-09804-w
– reference: ShayanfarHGharehchopoghFSFarmland fertility: A new metaheuristic algorithm for solving continuous optimization problemsAppl. Soft Comput.20187172874610.1016/j.asoc.2018.07.033
– reference: KannanBKramerSNAn augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical designJ. Mech. Des.199411640541110.1115/1.2919393
– reference: WeiZHuangCWangXHanTLiYNuclear reaction optimization: A novel and powerful physics-based algorithm for global optimizationIEEE Access20197660846610910.1109/ACCESS.2019.2918406
– reference: Mezura-Montes, E. & Coello, C. A. C. Mexican International Conference On Artificial Intelligence, 652–662 (Springer, 2023).
– reference: Kennedy, J. & Eberhart, R. in Proceedings of ICNN'95: International Conference on Neural Networks, vol.1944, 1942–1948 (IEEE, 2023).
– reference: ZamanHRRGharehchopoghFSAn improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problemsEng. Comput.20211135
– reference: GharehchopoghFSQuantum-inspired metaheuristic algorithms: Comprehensive survey and classificationArtif. Intell. Rev.2022565479548310.1007/s10462-022-10280-8
– reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl. Based Syst.201916328330410.1016/j.knosys.2018.08.030
– reference: ZeidabadiF-AArchery algorithm: A novel stochastic optimization algorithm for solving optimization problemsComput. Mater. Contin.202272399416
– reference: FayFHEcology and biology of the Pacific walrus, Odobenus rosmarus divergens IlligerN. Am. Fauna198274127910.3996/nafa.74.0001
– reference: GillPEMurrayWWrightMHPractical Optimization2019SIAM0503.9006210.1137/1.9781611975604
– reference: DehghaniMTrojovskýPTeamwork optimization algorithm: A new optimization approach for function minimization/maximizationSensors20212145672021Senso..21.4567D34283111827145110.3390/s21134567
– reference: RashediENezamabadi-PourHSaryazdiSGSA: A gravitational search algorithmInf. Sci.2009179223222481177.9037810.1016/j.ins.2009.03.004
– reference: MirjaliliSMirjaliliSMLewisAGrey Wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007
– reference: KaurSAwasthiLKSangalALDhimanGTunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimizationEng. Appl. Artif. Intell.20209010354110.1016/j.engappai.2020.103541
– reference: ShenYZhangCGharehchopoghFSMirjaliliSAn improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problemsExpert Syst. Appl.202321510.1016/j.eswa.2022.119269
– reference: KavehAZolghadrAA novel meta-heuristic algorithm: Tug of war optimizationIran Univ. Sci. Technol.20166469492
– reference: DehghaniMSametHMomentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation lawSN Appl. Sci.2020211510.1007/s42452-020-03511-6
– reference: WilcoxonFIndividual comparisons by ranking methodsBiometr. Bull.19451808310.2307/3001968
– reference: ZeidabadiFADehghaniMPOA: Puzzle optimization algorithmInt. J. Intell. Eng. Syst.202215273281
– reference: JeffersonTAStaceyPJBairdRWA review of killer whale interactions with other marine mammals: Predation to co-existenceMamm. Rev.19912115118010.1111/j.1365-2907.1991.tb00291.x
– reference: Osuna-EncisoVCuevasECastañedaBMA diversity metric for population-based metaheuristic algorithmsInf. Sci.202258619220810.1016/j.ins.2021.11.073
– reference: DehghaniMMontazeriZMalikOPEhsanifarADehghaniAOSA: Orientation search algorithmInt. J. Ind. Electron. Control Optim.2019299112
– reference: BraikMHammouriAAtwanJAl-BetarMAAwadallahMAWhite shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problemsKnowl. Based Syst.202224310845710.1016/j.knosys.2022.108457
– reference: DehghaniMMontazeriZMalikOPDGO: Dice game optimizerGazi Univ. J. Sci.20193287188210.35378/gujs.484643
– reference: KvasovDEMukhametzhanovMSMetaheuristic vs. deterministic global optimization algorithms: The univariate caseAppl. Math. Comput.201831824525937138591426.90208
– reference: Dehghani, M., Hubálovský, Š. & Trojovský, P. Tasmanian devil optimization: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access (2022).
– reference: AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (RSA): A nature-inspired meta-heuristic optimizerExpert Syst. Appl.202219110.1016/j.eswa.2021.116158
– reference: TrojovskýPDehghaniMPelican optimization algorithm: A novel nature-inspired algorithm for engineering applicationsSensors2022228552022Senso..22..855T35161600883809010.3390/s22030855
– reference: MoosaviSHSBardsiriVKPoor and rich optimization algorithm: A new human-based and multi populations algorithmEng. Appl. Artif. Intell.20198616518110.1016/j.engappai.2019.08.025
– reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm: A novel metaheuristic optimization method for solving constrained engineering optimization problemsComput. Struct.201211015116610.1016/j.compstruc.2012.07.010
– reference: DehghaniMA spring search algorithm applied to engineering optimization problemsAppl. Sci.20201061731:CAS:528:DC%2BB3cXitFars73F10.3390/app10186173
– reference: GharehchopoghFSMalekiIDizajiZAChaotic vortex search algorithm: metaheuristic algorithm for feature selectionEvol. Intel.2022151777180810.1007/s12065-021-00590-1
– reference: GharehchopoghFSUcanAIbrikciTArastehBIsikGSlime mould algorithm: A comprehensive survey of its variants and applicationsArch. Comput. Methods Eng.20231141
– reference: MohammadzadehHGharehchopoghFSA multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detectionInt. J. Commun. Syst.20213410.1002/dac.4670
– reference: MoghdaniRSalimifardKVolleyball premier league algorithmAppl. Soft Comput.20186416118510.1016/j.asoc.2017.11.043
– reference: DasSSuganthanPNProblem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems2010Jadavpur University341359
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
– reference: RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: A novel method for constrained mechanical design optimization problemsComput. Aided Des.20114330331510.1016/j.cad.2010.12.015
– reference: SheffieldGFayFHFederHKellyBPLaboratory digestion of prey and interpretation of walrus stomach contentsMar. Mamm. Sci.20011731033010.1111/j.1748-7692.2001.tb01273.x
– reference: Christman, B. NOAA Corps. https://www.upload.wikimedia.org/wikipedia/commons/c/ce/Noaa-walrus22.jpg.
– reference: KoohiSZHamidNAWAOthmanMIbragimovGRaccoon optimization algorithmIEEE Access201875383539910.1109/ACCESS.2018.2882568
– reference: WilsonDEReederDMMammal Species of the World: A Taxonomic and Geographic Reference2005JHU press10.56021/9780801882210
– reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: A nature-inspired algorithm for global optimizationNeural Comput. Appl.20162749551310.1007/s00521-015-1870-7
– reference: LevermannNGalatiusAEhlmeGRysgaardSBornEWFeeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper useBMC Ecol.2003311310.1186/1472-6785-3-9
– reference: CavazzutiMOptimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics2013Springer771021259.90002
– reference: StornRPriceKDifferential evolution: A simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.19971134135914795530888.9013510.1023/A:1008202821328
– reference: AbdollahzadehBGharehchopoghFSKhodadadiNMirjaliliSMountain gazelle optimizer: A new nature-inspired metaheuristic algorithm for global optimization problemsAdv. Eng. Softw.202217410.1016/j.advengsoft.2022.103282
– reference: GoldbergDEHollandJHGenetic algorithms and machine learningMach. Learn.19883959910.1023/A:1022602019183
– volume: 7
  start-page: 66084
  year: 2019
  ident: 35863_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918406
– ident: 35863_CR62
– volume: 90
  start-page: 103541
  year: 2020
  ident: 35863_CR17
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 191
  year: 2022
  ident: 35863_CR19
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 10
  start-page: 25073
  year: 2022
  ident: 35863_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153493
– volume: 2
  start-page: 99
  year: 2019
  ident: 35863_CR48
  publication-title: Int. J. Ind. Electron. Control Optim.
– volume: 163
  start-page: 283
  year: 2019
  ident: 35863_CR34
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.08.030
– volume: 174
  year: 2022
  ident: 35863_CR24
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103282
– volume: 34
  year: 2021
  ident: 35863_CR8
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4670
– volume: 32
  start-page: 871
  year: 2019
  ident: 35863_CR51
  publication-title: Gazi Univ. J. Sci.
  doi: 10.35378/gujs.484643
– volume: 21
  start-page: 151
  year: 1991
  ident: 35863_CR55
  publication-title: Mamm. Rev.
  doi: 10.1111/j.1365-2907.1991.tb00291.x
– volume: 27
  start-page: 495
  year: 2016
  ident: 35863_CR31
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 110
  start-page: 151
  year: 2012
  ident: 35863_CR32
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– ident: 35863_CR56
– volume: 152
  year: 2020
  ident: 35863_CR16
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 243
  start-page: 108457
  year: 2022
  ident: 35863_CR18
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108457
– volume-title: Mammal Species of the World: A Taxonomic and Geographic Reference
  year: 2005
  ident: 35863_CR52
  doi: 10.56021/9780801882210
– volume: 43
  start-page: 303
  year: 2011
  ident: 35863_CR38
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 158
  year: 2021
  ident: 35863_CR21
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 30
  start-page: 427
  year: 2023
  ident: 35863_CR25
  publication-title: Arch. Computat. Methods Eng.
  doi: 10.1007/s11831-022-09804-w
– volume: 220
  start-page: 671
  year: 1983
  ident: 35863_CR29
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 6
  start-page: 469
  year: 2016
  ident: 35863_CR45
  publication-title: Iran Univ. Sci. Technol.
– volume: 3
  start-page: 1
  year: 2003
  ident: 35863_CR58
  publication-title: BMC Ecol.
  doi: 10.1186/1472-6785-3-9
– volume: 586
  start-page: 192
  year: 2022
  ident: 35863_CR6
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.073
– volume: 10
  start-page: 6173
  year: 2020
  ident: 35863_CR33
  publication-title: Appl. Sci.
  doi: 10.3390/app10186173
– volume: 26
  start-page: 29
  year: 1996
  ident: 35863_CR14
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.484436
– volume: 21
  start-page: 4567
  year: 2021
  ident: 35863_CR44
  publication-title: Sensors
  doi: 10.3390/s21134567
– volume: 10
  start-page: 5791
  year: 2020
  ident: 35863_CR42
  publication-title: Appl. Sci.
  doi: 10.3390/app10175791
– volume: 14
  start-page: 545
  year: 2021
  ident: 35863_CR49
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 1
  start-page: 80
  year: 1945
  ident: 35863_CR59
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– volume: 116
  start-page: 405
  year: 1994
  ident: 35863_CR63
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 11
  start-page: 341
  year: 1997
  ident: 35863_CR11
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 215
  year: 2023
  ident: 35863_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119269
– volume-title: Practical Optimization
  year: 2019
  ident: 35863_CR1
  doi: 10.1137/1.9781611975604
– volume: 71
  start-page: 728
  year: 2018
  ident: 35863_CR22
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.033
– volume: 179
  start-page: 2232
  year: 2009
  ident: 35863_CR30
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 95
  start-page: 51
  year: 2016
  ident: 35863_CR60
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 1
  start-page: 67
  year: 1997
  ident: 35863_CR9
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 17
  start-page: 310
  year: 2001
  ident: 35863_CR57
  publication-title: Mar. Mamm. Sci.
  doi: 10.1111/j.1748-7692.2001.tb01273.x
– volume: 69
  start-page: 46
  year: 2014
  ident: 35863_CR15
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 56
  start-page: 5479
  year: 2022
  ident: 35863_CR35
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10280-8
– start-page: 259
  volume-title: Computational Optimization, Methods and Algorithms
  year: 2011
  ident: 35863_CR61
  doi: 10.1007/978-3-642-20859-1_12
– start-page: 341
  volume-title: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems
  year: 2010
  ident: 35863_CR64
– ident: 35863_CR41
  doi: 10.1007/978-3-642-21515-5_36
– ident: 35863_CR4
  doi: 10.1038/s41598-022-09514-0
– ident: 35863_CR12
– volume: 7
  start-page: 5383
  year: 2018
  ident: 35863_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882568
– volume: 64
  start-page: 161
  year: 2018
  ident: 35863_CR46
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– volume: 74
  start-page: 1
  year: 1982
  ident: 35863_CR53
  publication-title: N. Am. Fauna
  doi: 10.3996/nafa.74.0001
– volume: 13
  start-page: 514
  year: 2020
  ident: 35863_CR50
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 3
  start-page: 95
  year: 1988
  ident: 35863_CR10
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 2
  start-page: 1
  year: 2020
  ident: 35863_CR36
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03511-6
– volume: 15
  start-page: 1777
  year: 2022
  ident: 35863_CR7
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-021-00590-1
– volume: 1
  start-page: 1
  year: 2021
  ident: 35863_CR13
  publication-title: Eng. Comput.
– start-page: 77
  volume-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics
  year: 2013
  ident: 35863_CR3
  doi: 10.1007/978-3-642-31187-1_4
– ident: 35863_CR54
  doi: 10.3133/ofr20161108
– volume: 318
  start-page: 245
  year: 2018
  ident: 35863_CR2
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 1
  year: 2023
  ident: 35863_CR23
  publication-title: Arch. Comput. Methods Eng.
– volume: 86
  start-page: 165
  year: 2019
  ident: 35863_CR39
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.025
– volume: 72
  start-page: 399
  year: 2022
  ident: 35863_CR40
  publication-title: Comput. Mater. Contin.
– volume: 15
  start-page: 273
  year: 2022
  ident: 35863_CR47
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 36
  start-page: 5887
  year: 2021
  ident: 35863_CR27
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22535
– volume: 22
  start-page: 855
  year: 2022
  ident: 35863_CR28
  publication-title: Sensors
  doi: 10.3390/s22030855
– volume: 2
  start-page: 218
  year: 2010
  ident: 35863_CR5
  publication-title: Wiley Interdiscipl. Rev. Comput. Stat.
  doi: 10.1002/wics.78
SSID ssj0000529419
Score 2.634559
Snippet This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature. The...
Abstract This paper introduces a new bio-inspired metaheuristic algorithm called Walrus Optimization Algorithm (WaOA), which mimics walrus behaviors in nature....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8775
SubjectTerms 639/166
639/705
Algorithms
Exploitation
Humanities and Social Sciences
multidisciplinary
Optimization
Predators
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYsKvbUmeliyfExDQuihpxRyE5I8zi7s2mXXS8m_z0jybrN9XnqVZDHMQzPjkb4h5D36CIUTslS602WFAXHpXa1K6ergdO2cbNMF2S_68mv1-Vpd32v1Fe-EZXjgzLgTXMy0q3ADjNyBC8cbwCAndKaTzvMunr7o8-4lUxnVWzQVb6ZXMkyakzV6qviaTMhSKqORuD1PlAD7fxdl_npZ8qeKaXJEF0_I4ymCpKeZ8kPyAPqn5GHuKXn7jNycUoyUqZ8P5byPZXRo6RJGN4NNBmWmbnEzrObjbEkxYKWoe_GfAh3w7FhOjzLp1GZmTaOTaymOfHeL1WYNODK9639Ori7Or84uy6mbQhlUxcd4knTBgGwCh-C1rkzXBqaUMRAx_BgDA-iuQTrtGQ_CNxWmK6HymFCxIOULctAPPbwi1HdQt60wrGkdZndguALnRaeCwXxX8oLwLWNtmJDGY8OLhU0Vb2lsFoZFYdgkDKsK8mH3zbeMs_HX1Z-ivHYrI0Z2GkDNsZPm2H9pTkGOt9K2k-GuLWagPKKysaYg73bTaHKxjuJ6GDZ5Tax_Cl2Ql1k5dpTIWkQSWUHMntrskbo_089nCdY7gmiISuOmH7ca9oOuP_Pi9f_gxRF5JKJppGsRx-RgXG3gDUZbo3-bDOsOIX8mrw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlHtOHacEyqIquLAqUh7s2zH2V1pN2k3WSH-fWcc71bLo1fbiSaZz54Zj_0NIR_ARkjoELlUrcpLcIhzZyuZC1t5qyprRRMPyP5QFz_L7zM5SxtuQzpWuVsT40Ld9B73yE8hNOBIl8Xqz1fXOVaNwuxqKqFxnzxA6jJEdTWr9nssmMUqeZ3uyjChTwewV3inrBC5kFqBiAf2KNL2_8vX_PvI5B9502iOzp-Qx8mPpGeT4p-Se6F7Rh5OlSV_PyfzMwr-MnXLPl92mEwPDV2H0S7CdqJmpnY1h88bF2sKbisFBOLOAu1hBVmnq5k0FZsZKJq6hkLLL7vabIcALel2_wtyef7t8utFnmoq5F6WfMT1pPU6iNrz4J1SpW4bz6TUOiCTH2NBBzDaQVjlGPeFq0sIWnzpIKxiXoiX5Kjru_CaUNeGqmkKzerGQowXNJfBuqKVXkPUK3hG-O7HGp_4xrHsxcrEvLfQZlKGAWWYqAwjM_Jx_8zVxLZx5-gvqK_9SGTKjg39Zm7SxDMANqZsCQCEyC_wwvI6gJPsW90K63ibkZOdtk2avoO5BVtG3u-7YeJhNsV2od9OYzALWqiMvJrAsZdEVAWKyDKiD2BzIOphT7dcRHJvpNIoSgUv_bRD2K1c__8Xx3d_xhvyqEDQx2MPJ-Ro3GzDW_CmRvcuTpkbNHMdjQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiPIMtMhI3CDCj9hxjgtqVe2BC0XqzbIdZ3el3aTazQrx7xk7TtBCQerVL408Y8-MZ-YzQu9BRwjo4LmQjcwLMIhza0qRc1M6I0tjeB0TZL_Kq-_F_EbcHCE21sLEpP0IaRmv6TE77NMOFE0oBmM850JJWPsBOglQ7SDbJ7PZ_Nt8elkJsauCVqlChnB1x-QDLRTB-u-yMP9OlPwjWhqV0OUT9DhZj3g20HuKjnz7FD0c_pP8-QwtZhisZGxXXb5qQwjd13jje7P0-wGQGZv1otuu-uUGg7GKQe7CewLu4N7YpIJMnL6Y2eGg4GoMLT_MervfeWhJNf3P0fXlxfWXqzz9pJA7UdA-3CKNU55XjnpnpSxUUzsihFI-4PcR4pUHVe25kZZQx2xVgKviCgvOFHGcv0DHbdf6Vwjbxpd1zRSpagOenVdUeGNZI5wCX5fTDNFxY7VLKOPhs4u1jtFurvTADA3M0JEZWmTowzTndsDY-O_oz4Ff08iAjx0buu1CJ3nRIGJEmgLEDvw9T5mhlQfT2DWq4cbSJkNnI7d1OrQ7Dd4nDYhspMrQu6kbjluIoZjWd_thTIh9Mpmhl4NwTJTwkgUSSYbUgdgckHrY066WEdI7AGiwQsKiH0cJ-03Xv_fi9f2Gv0GPWDgEMfnhDB33270_B5uqt2_TIfoFUhocyA
  priority: 102
  providerName: Springer Nature
Title A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior
URI https://link.springer.com/article/10.1038/s41598-023-35863-5
https://www.ncbi.nlm.nih.gov/pubmed/37258630
https://www.proquest.com/docview/2821255609
https://www.proquest.com/docview/2821640726
https://pubmed.ncbi.nlm.nih.gov/PMC10232466
https://doaj.org/article/a3d06a4ba7114e12a19e800cf8f3ab1f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9ID5HYFRG4g0CsR07zgNCXbVpqsSEYJP6FjmO01ZqE5amGvvvOeejqFB44CmR7cSW7y53l_P9DuAN6giBHdwXMpd-iAaxn-pI-FxHRstIa541B2Qv5cV1OJ6IyR705Y66DVztdO1cPanravH-x83dJxT4j23KuPqwQiXkEsUY97lQEufdh0PUTJGraPC5M_dbrG8WhzTucmd2P3oE93nE3H2wpaoaRP9dZuifpyl_C6k2mur8ITzoTEwybHniEezZ4jHca4tO3j2B6ZCgKU3SeenPCxdntxlZ2lrP7LpFbSZ6MS2reT1bErRoCTKn--lASvy4LLusTdLVoVkRpwUzgi23elGtVxZbusT_p3B1fnY1uvC7cgu-ESGt3acmN8ry2FBrUilDlWcmEEIp60D-gsAqi_rcci3TgBqWxiH6MyZM0eMKDOfP4KAoC_scSJrbKMuYCuJMo_tnFRVWpywXRqFDzKkHtN_YxHRQ5K4ixiJpQuJcJS1dEqRL0tAlER683TzzvQXi-OfoU0evzUgHot00lNU06WQyQT4MpA6RN9EptJRpGlu0n02ucq5Tmntw0lM76RkzQReVOti2IPbg9aYbZdIFWnRhy3U7xgVImfTguGWOzUp65vJAbbHN1lK3e4r5rMH9digbLJT40nc9h_1a19_34sX_z_QSjpiTjea0xAkc1NXavkIjrE4HsB9NogEcDofjb2O8np5dfvmKrSM5GjQ_NgaN7P0Elfk0IQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLaqIgQXxN6BAkaCE4zqZezxHBAqS5XS0lOQcrM8Hk8SKZkpWVT1R_EfeW-WVGHprVfbEzlvf3729wh5Az5CwYSMlS51nEBAHOcuVbF0qXc6dU4WzQXZMz34kXwbqdEO-dW_hcFrlb1NbAx1UXs8Iz-A1IAjXBbLPp7_jLFrFFZX-xYarVichMsLSNmWH46_AH_fCnH0dfh5EHddBWKvEr5CjSq9CTLzPPhc68SUhWdKGRMQy46xYAK4rSCdzhn3Is8SCNt9kkNiwTyef4LFvwV-l2Gul47SzZEOFs0SnnVPc5g0B0twj_iETchYKqOBIlvur-kS8K_Q9u8bmn-UaRvvd3Sf3OvCVnrYytkDshOqh-R228jy8hEZH1IIz2k-reNphbX7UNB5WLlJWLdI0NTNxkDN1WROIUqmIPB4kEFrMFjz7iUo7XrbLCl61oLCyIWbLdbLACMdmMBjMrwJYj8hu1VdhT1C8zKkRSEMywoHKWUwXAWXi1J5A0m25BHhPWGt7-DNscvGzDZldmlsywwLzLANM6yKyLvNN-ctuMe1qz8hvzYrEZi7GagXY9vpuQXZZtolIO-QaAYuHM8CxOS-NKV0OS8jst9z23bWYmmvZDsirzfToOdYvHFVqNftGiy6Ch2Rp61wbHYiU4FbZBExW2KztdXtmWo6abDEEblDJBp-9H0vYVf7-j8tnl3_N16RO4Ph91N7enx28pzcFagAzY2LfbK7WqzDCwjkVvnLRn0osTesrr8BO5xYng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBe0PgOG2AkeIKocRw7zgNCG1u1MVRNaEh7sxzHaSu1yeiHpv1p_HfcJU6n8rG3vdpO5d79znfnO98R8g50hIAJHgpZyjABgzjMTSpCblJrZGoML5oE2aE8_pF8vRAXW-RX9xYG0yq7M7E5qIva4h15H1wDhuWyoqxf-rSIs8PB58ufIXaQwkhr106jhcipu74C923x6eQQeP0-jgdH51-OQ99hILQiYUuUrtIqxzPLnM2lTFRZ2EgIpRzWtYsipxyoMMeNzCNm4zxLwIS3SQ5ORmTxLhRO_-0UnaIe2T44Gp59X1_wYAgtYZl_qBNx1V-AssQHbTEPuVAS6LOhDJueAf8ydP_O1_wjaNvowsEOeeiNWLrfou4R2XLVY3KvbWt5_YSM9ikY6zSf1OGkwki-K-jMLc3Yrdq60NRMR0DP5XhGwWamAH-81qA1HF8z_y6U-k43C4p6tqAwcmWm89XCwYgvLfCUnN8FuZ-RXlVX7gWheenSoohVlBUGHEynmHAmj0thFbjcnAWEdYTV1hc7x54bU90E3bnSLTM0MEM3zNAiIB_W31y2pT5uXX2A_FqvxDLdzUA9H2kv9RqQHkmTAPrB7XQsNixzYKHbUpXc5KwMyF7Hbe3PjoW-QXpA3q6nQeoxlGMqV6_aNRiCjWVAnrfgWO-EpzFuMQqI2oDNxlY3Z6rJuKksjnU84kTCj37sEHazr__T4uXtf-MNuQ-iqr-dDE93yYMY8d-kX-yR3nK-cq_Aqlvmr738UKLvWGJ_A0lBXjk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+bio-inspired+metaheuristic+algorithm+for+solving+optimization+problems+based+on+walruses+behavior&rft.jtitle=Scientific+reports&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.au=Dehghani%2C+Mohammad&rft.date=2023-05-31&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-35863-5&rft_id=info%3Apmid%2F37258630&rft.externalDocID=PMC10232466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon