Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity

In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, rea...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5705 - 12
Main Authors Wang, Kaiyuan, Hong, Qing, Zhu, Caixia, Xu, Yuan, Li, Wang, Wang, Ying, Chen, Wenhao, Gu, Xiang, Chen, Xinghua, Fang, Yanfeng, Shen, Yanfei, Liu, Songqin, Zhang, Yuanjian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O 2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. Single-atom nanozymes are a type of non-protein artificial enzymes and promising for mimicking enzyme active centers, but lack recognition sites to confer substrate specificity. Here, the authors report on a metal-ligand dual-site single-atom nanozyme (Ni-DAB) that mimics the dual-site catalytic mechanism of urate oxidase and has high selectivity in uric acid (UA) oxidation.
AbstractList In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O 2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. Single-atom nanozymes are a type of non-protein artificial enzymes and promising for mimicking enzyme active centers, but lack recognition sites to confer substrate specificity. Here, the authors report on a metal-ligand dual-site single-atom nanozyme (Ni-DAB) that mimics the dual-site catalytic mechanism of urate oxidase and has high selectivity in uric acid (UA) oxidation.
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.Single-atom nanozymes are a type of non-protein artificial enzymes and promising for mimicking enzyme active centers, but lack recognition sites to confer substrate specificity. Here, the authors report on a metal-ligand dual-site single-atom nanozyme (Ni-DAB) that mimics the dual-site catalytic mechanism of urate oxidase and has high selectivity in uric acid (UA) oxidation.
Abstract In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O 2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
ArticleNumber 5705
Author Chen, Wenhao
Liu, Songqin
Zhang, Yuanjian
Wang, Ying
Wang, Kaiyuan
Hong, Qing
Shen, Yanfei
Xu, Yuan
Fang, Yanfeng
Zhu, Caixia
Li, Wang
Gu, Xiang
Chen, Xinghua
Author_xml – sequence: 1
  givenname: Kaiyuan
  surname: Wang
  fullname: Wang, Kaiyuan
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Qing
  surname: Hong
  fullname: Hong, Qing
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Caixia
  surname: Zhu
  fullname: Zhu, Caixia
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 5
  givenname: Wang
  surname: Li
  fullname: Li, Wang
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 6
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 7
  givenname: Wenhao
  surname: Chen
  fullname: Chen, Wenhao
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 8
  givenname: Xiang
  surname: Gu
  fullname: Gu, Xiang
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 9
  givenname: Xinghua
  surname: Chen
  fullname: Chen, Xinghua
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 10
  givenname: Yanfeng
  surname: Fang
  fullname: Fang, Yanfeng
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 11
  givenname: Yanfei
  orcidid: 0000-0003-0369-5920
  surname: Shen
  fullname: Shen, Yanfei
  email: Yanfei.Shen@seu.edu.cn
  organization: Medical School, Southeast University
– sequence: 12
  givenname: Songqin
  surname: Liu
  fullname: Liu, Songqin
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering
– sequence: 13
  givenname: Yuanjian
  orcidid: 0000-0003-2932-4159
  surname: Zhang
  fullname: Zhang, Yuanjian
  email: Yuanjian.Zhang@seu.edu.cn
  organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Department of Oncology, Zhongda Hospital, Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38977710$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4sbNKBcYYFbGNH40qXGja8IAM4_nDDxhRn3-epm-WtsuygbCOfdwLuc-RUchBofQc8CvAVP5JjNgXNSYsLrBQGjNHqETghnUIAg9unU-Rmc5b3FZtAXJ2BN0TGUrhAB8guxnN-uxHv2gg63sUs7Zz67KPgyjq_UcpyroEP_sJ1dNfvLme0GqJelCir-91dlVv_y8qTZ-2FR56fK8YrnKO2d8742f98_Q416P2Z1d76fo24f3X88_1ZdfPl6cv7usTcNgrinljDLZ4VZqhqEXBnBjO9NZA5wDFuCgaVlBe2qYpJJrsBwoaztGOu7oKbo46Nqot2qX_KTTXkXt1dVFTIPSafZmdIozy3THBRFWsw7aluiGcud6ygyAbIvW24PWbukmZ40Lpa_xjuhdJPiNGuJPBSUMIIQVhVfXCin-WFye1eSzceOog4tLVhSXCAQvHRfqy3vUbVxSKH-1srikhLdNYb24benGy780C4EcCCbFnJPrbyiA1To16jA1qkyNupoatdqU94pKZHr2cW3Ljw-X0kNpLu-EwaX_th-o-gtU1tXX
CitedBy_id crossref_primary_10_1016_j_saa_2025_125778
crossref_primary_10_1039_D4AN01242A
crossref_primary_10_1021_acsnano_4c17148
crossref_primary_10_1016_j_isci_2025_111763
crossref_primary_10_1039_D4SC07775J
crossref_primary_10_1002_adfm_202422588
crossref_primary_10_1002_anie_202415755
crossref_primary_10_1002_smll_202407281
crossref_primary_10_1016_j_talanta_2025_127700
crossref_primary_10_1021_acsnano_4c16272
crossref_primary_10_1016_j_saa_2025_125794
crossref_primary_10_1039_D4SC05014B
crossref_primary_10_1002_smll_202409212
crossref_primary_10_1021_acsanm_4c07197
crossref_primary_10_1002_adfm_202418360
crossref_primary_10_1021_acsami_4c22270
crossref_primary_10_1016_j_colsurfb_2024_114347
crossref_primary_10_1002_chem_202403568
crossref_primary_10_1016_j_microc_2025_112810
crossref_primary_10_1021_acs_analchem_4c05798
crossref_primary_10_1002_ange_202415755
crossref_primary_10_1002_smll_202408609
crossref_primary_10_26599_NR_2025_94907115
crossref_primary_10_1021_acsanm_4c06508
Cites_doi 10.1021/ja970375t
10.1038/s41929-019-0420-6
10.1038/s44160-023-00384-6
10.1021/jacs.8b06020
10.1038/nnano.2007.260
10.1038/s41467-020-15782-z
10.1002/adma.202205324
10.1021/accountsmr.1c00074
10.1038/s41563-020-00856-6
10.1021/acscatal.7b00901
10.1126/science.aat8474
10.1038/s41929-019-0348-x
10.1002/anie.202003949
10.1021/bi963184w
10.1021/acs.chemrev.7b00014
10.1038/s41467-022-28344-2
10.1021/jacs.3c05162
10.1021/jacs.0c08360
10.1016/j.jcis.2021.05.025
10.1038/s41929-018-0124-3
10.1021/jacs.3c08974
10.1038/s41467-018-03903-8
10.1038/s41929-021-00609-x
10.1038/s41467-020-20275-0
10.1002/ange.201813994
10.1016/j.bioorg.2009.05.004
10.1021/jacs.2c12336
10.1002/anie.202116170
10.1039/C8NJ01902A
10.1126/sciadv.aav5490
10.1021/acs.chemrev.8b00672
10.1021/acscatal.7b02647
10.1002/anie.201811118
10.1002/anie.202013427
10.1002/anie.202017001
10.1038/s41929-021-00649-3
10.1021/jacs.2c06810
10.1038/s41929-018-0044-2
10.1038/s41586-019-1262-8
10.1021/ja002829j
10.1002/anie.201908274
10.1039/C8CS00718G
10.1038/s41929-021-00665-3
10.1073/pnas.2308035120
10.1021/jacs.7b00601
10.1002/anie.202302329
10.1021/jacs.3c03426
10.1021/jacs.1c03135
10.1038/s41467-019-14199-7
10.1021/acs.nanolett.1c04454
10.1002/anie.202104494
10.1007/s12274-022-4467-3
10.1016/j.chempr.2020.10.023
10.1021/jacs.0c07273
10.1038/s41467-022-35721-4
10.1002/anie.202210789
10.1039/D1SC02170B
10.1529/biophysj.107.122184
10.1038/s41467-022-33098-y
10.1038/s41467-021-20965-3
10.1021/jacs.5b10346
10.1002/anie.197806571
10.1126/science.7123255
10.1021/jacs.7b09074
10.1021/bi980446g
10.1002/adfm.201905410
10.1039/D0SC03522J
10.1039/C3CS60037H
10.1002/anie.201910879
10.1038/s41467-023-42889-w
10.1038/s41467-022-30411-7
10.1021/jacs.0c09408
10.1002/anie.202206926
10.1038/s41929-023-01017-z
10.1021/cr9403704
10.1021/jacs.1c12772
10.1126/science.add7417
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50123-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_64d4ab6727da4b1992a536eef34c1189
PMC11231224
38977710
10_1038_s41467_024_50123_4
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22174014; 22074015
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22174014
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22074015
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-3364348b098a401f7c105dbcbdc1661071e159498af3c48386a1d61349b42b6e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:11:50 EDT 2025
Thu Aug 21 18:32:30 EDT 2025
Fri Jul 11 12:06:25 EDT 2025
Wed Aug 13 04:12:05 EDT 2025
Mon Jul 21 06:00:25 EDT 2025
Tue Jul 01 02:11:16 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Fri Feb 21 02:37:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-3364348b098a401f7c105dbcbdc1661071e159498af3c48386a1d61349b42b6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2932-4159
0000-0003-0369-5920
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-50123-4
PMID 38977710
PQID 3076832695
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_64d4ab6727da4b1992a536eef34c1189
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11231224
proquest_miscellaneous_3077176348
proquest_journals_3076832695
pubmed_primary_38977710
crossref_primary_10_1038_s41467_024_50123_4
crossref_citationtrail_10_1038_s41467_024_50123_4
springer_journals_10_1038_s41467_024_50123_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-08
PublicationDateYYYYMMDD 2024-07-08
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Liu (CR11) 2020; 20
Wei (CR71) 2017; 7
Chen (CR31) 2023; 14
Chen (CR59) 2019; 58
Wang (CR72) 2021; 60
Colloc’h (CR49) 2008; 95
Li (CR77) 2023; 2
Lian (CR60) 2019; 59
Raynal (CR7) 2014; 43
Wu (CR35) 2020; 11
Hou (CR1) 2023; 382
Liu (CR21) 2021; 12
Xu (CR34) 2019; 131
Burke (CR2) 2019; 570
Mirts (CR3) 2018; 361
Wang (CR43) 2021; 7
Dong (CR15) 2022; 13
Peng (CR65) 2022; 15
Chen (CR24) 2022; 13
Schwizer (CR8) 2017; 118
Zhang (CR25) 2022; 34
Sun (CR73) 2023; 120
Kim (CR30) 2019; 30
Wang (CR53) 2022; 61
Zhang, Yan, Fan (CR32) 2021; 2
Shen (CR22) 2015; 137
Zhang (CR38) 2017; 139
Wang (CR40) 2023; 14
Ding (CR51) 2023; 145
Ma (CR26) 2022; 61
Miner (CR63) 2017; 7
Jiang (CR13) 2019; 48
Li (CR66) 2017; 139
Altarsha, Castro, Monard (CR47) 2009; 37
Wang (CR27) 2020; 11
Wang (CR56) 2023; 6
Kahn, Tipton (CR70) 1998; 37
Gao (CR12) 2007; 2
Wu (CR28) 2023; 62
Ji (CR33) 2021; 4
Kim (CR39) 2021; 143
Raines (CR6) 2018; 1
Pan (CR75) 2022; 144
Murakami (CR9) 1996; 96
Zhou (CR42) 2018; 57
Li (CR45) 2020; 142
Li (CR29) 2023; 145
Tang (CR57) 2021; 143
Liu (CR68) 2021; 600
Kim (CR74) 2018; 1
Liu (CR14) 2023; 145
Makam (CR5) 2019; 2
Ross (CR64) 2022; 144
Rodriguez‐Abetxuko (CR16) 2022; 61
Wu (CR37) 2021; 4
Chen (CR44) 2021; 12
Sarma, Tipton (CR48) 2000; 122
Wu (CR54) 2020; 142
Breslow (CR10) 1982; 218
Kahn, Serfozo, Tipton (CR46) 1997; 119
Huang, Ren, Qu (CR36) 2019; 119
Ni (CR61) 2021; 60
Zhou, Roelfes (CR4) 2020; 3
Lin (CR67) 2021; 22
Xu (CR20) 2020; 59
Kahn, Tipton (CR50) 1997; 36
Li (CR52) 2021; 4
Zhao (CR55) 2023; 145
Han (CR76) 2020; 11
Li (CR19) 2022; 13
Chen (CR41) 2021; 60
Park (CR62) 2018; 140
Fan (CR18) 2018; 9
Manecke, Storck (CR58) 1978; 17
Devi, Singh (CR69) 2018; 42
Gao (CR17) 2021; 12
Huang (CR23) 2019; 5
D Wang (50123_CR27) 2020; 11
G Li (50123_CR29) 2023; 145
DJ Raines (50123_CR6) 2018; 1
MS Kim (50123_CR30) 2019; 30
A Lin (50123_CR67) 2021; 22
Y Liu (50123_CR68) 2021; 600
H Liu (50123_CR21) 2021; 12
F Schwizer (50123_CR8) 2017; 118
R Zhang (50123_CR32) 2021; 2
B Xu (50123_CR34) 2019; 131
HW Kim (50123_CR74) 2018; 1
Y Wang (50123_CR43) 2021; 7
X Li (50123_CR66) 2017; 139
Z Wang (50123_CR40) 2023; 14
Z Wu (50123_CR28) 2023; 62
J Li (50123_CR77) 2023; 2
J-X Peng (50123_CR65) 2022; 15
Y Zhou (50123_CR42) 2018; 57
K Kahn (50123_CR50) 1997; 36
A Rodriguez‐Abetxuko (50123_CR16) 2022; 61
CB Ma (50123_CR26) 2022; 61
Y Ni (50123_CR61) 2021; 60
H Sun (50123_CR73) 2023; 120
Q Liu (50123_CR11) 2020; 20
Y Xu (50123_CR20) 2020; 59
AJ Burke (50123_CR2) 2019; 570
R Zhang (50123_CR25) 2022; 34
N Colloc’h (50123_CR49) 2008; 95
J Li (50123_CR52) 2021; 4
P Makam (50123_CR5) 2019; 2
L Huang (50123_CR23) 2019; 5
Y Chen (50123_CR59) 2019; 58
H Dong (50123_CR15) 2022; 13
Z-H Zhao (50123_CR55) 2023; 145
Y Murakami (50123_CR9) 1996; 96
S Ji (50123_CR33) 2021; 4
AD Sarma (50123_CR48) 2000; 122
D Jiang (50123_CR13) 2019; 48
HS Devi (50123_CR69) 2018; 42
G Wang (50123_CR53) 2022; 61
X Wang (50123_CR72) 2021; 60
C Tang (50123_CR57) 2021; 143
W Wu (50123_CR35) 2020; 11
L Gao (50123_CR12) 2007; 2
K Hou (50123_CR1) 2023; 382
F Gao (50123_CR17) 2021; 12
G Manecke (50123_CR58) 1978; 17
M Raynal (50123_CR7) 2014; 43
J Park (50123_CR62) 2018; 140
M Altarsha (50123_CR47) 2009; 37
D Wei (50123_CR71) 2017; 7
Q Wang (50123_CR56) 2023; 6
EM Miner (50123_CR63) 2017; 7
K Fan (50123_CR18) 2018; 9
X Shen (50123_CR22) 2015; 137
X Chen (50123_CR44) 2021; 12
K Kahn (50123_CR46) 1997; 119
D Wu (50123_CR54) 2020; 142
EN Mirts (50123_CR3) 2018; 361
Z Zhou (50123_CR4) 2020; 3
R Breslow (50123_CR10) 1982; 218
M Li (50123_CR45) 2020; 142
S Li (50123_CR19) 2022; 13
M Kim (50123_CR39) 2021; 143
L Chen (50123_CR41) 2021; 60
X Liu (50123_CR14) 2023; 145
J Chen (50123_CR24) 2022; 13
Y Lian (50123_CR60) 2019; 59
C Pan (50123_CR75) 2022; 144
RD Ross (50123_CR64) 2022; 144
K Kahn (50123_CR70) 1998; 37
D Wu (50123_CR37) 2021; 4
J Ding (50123_CR51) 2023; 145
D Chen (50123_CR31) 2023; 14
Y Huang (50123_CR36) 2019; 119
G-F Han (50123_CR76) 2020; 11
Z Zhang (50123_CR38) 2017; 139
References_xml – volume: 119
  start-page: 5435
  year: 1997
  end-page: 5442
  ident: CR46
  article-title: Identification of the true product of the urate oxidase reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970375t
– volume: 3
  start-page: 289
  year: 2020
  end-page: 294
  ident: CR4
  article-title: Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0420-6
– volume: 2
  start-page: 1194
  year: 2023
  end-page: 1201
  ident: CR77
  article-title: Mechanism-guided realization of selective carbon monoxide electroreduction to methanol
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-023-00384-6
– volume: 140
  start-page: 10315
  year: 2018
  end-page: 10323
  ident: CR62
  article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06020
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: CR12
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2007.260
– volume: 11
  year: 2020
  ident: CR76
  article-title: Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H O
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15782-z
– volume: 34
  start-page: 2205324
  year: 2022
  ident: CR25
  article-title: Edge‐site engineering of defective Fe–N nanozymes with boosted catalase‐like performance for retinal vasculopathies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205324
– volume: 2
  start-page: 534
  year: 2021
  end-page: 547
  ident: CR32
  article-title: Nanozymes inspired by natural enzymes
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00074
– volume: 20
  start-page: 395
  year: 2020
  end-page: 402
  ident: CR11
  article-title: Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00856-6
– volume: 7
  start-page: 4623
  year: 2017
  end-page: 4636
  ident: CR71
  article-title: Catalytic mechanisms for cofactor-free oxidase-catalyzed reactions: reaction pathways of uricase-catalyzed oxidation and hydration of uric acid
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00901
– volume: 361
  start-page: 1098
  year: 2018
  end-page: 1101
  ident: CR3
  article-title: A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme.
  publication-title: Science
  doi: 10.1126/science.aat8474
– volume: 2
  start-page: 977
  year: 2019
  end-page: 985
  ident: CR5
  article-title: Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0348-x
– volume: 59
  start-page: 14498
  year: 2020
  end-page: 14503
  ident: CR20
  article-title: The Fe‐N‐C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug–drug interactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003949
– volume: 36
  start-page: 4731
  year: 1997
  end-page: 4738
  ident: CR50
  article-title: Kinetic mechanism and cofactor content of soybean root nodule urate oxidase
  publication-title: Biochemistry
  doi: 10.1021/bi963184w
– volume: 118
  start-page: 142
  year: 2017
  end-page: 231
  ident: CR8
  article-title: Artificial metalloenzymes: reaction scope and optimization strategies
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00014
– volume: 13
  year: 2022
  ident: CR19
  article-title: Data-informed discovery of hydrolytic nanozymes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28344-2
– volume: 145
  start-page: 16835
  year: 2023
  end-page: 16842
  ident: CR29
  article-title: Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c05162
– volume: 142
  start-page: 19602
  year: 2020
  end-page: 19610
  ident: CR54
  article-title: Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08360
– volume: 600
  start-page: 37
  year: 2021
  end-page: 48
  ident: CR68
  article-title: Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: a single nanozyme mimicking multi-enzymatic cascade systems in peroxisome
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.05.025
– volume: 1
  start-page: 680
  year: 2018
  end-page: 688
  ident: CR6
  article-title: Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0124-3
– volume: 145
  start-page: 26783
  year: 2023
  end-page: 26790
  ident: CR55
  article-title: Highly efficient electroreduction of CO to ethanol via asymmetric C-C coupling by a metal–organic framework with heterodimetal dual sites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08974
– volume: 9
  year: 2018
  ident: CR18
  article-title: In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03903-8
– volume: 4
  start-page: 407
  year: 2021
  end-page: 417
  ident: CR33
  article-title: Matching the kinetics of natural enzymes with a single-atom iron nanozyme
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00609-x
– volume: 12
  year: 2021
  ident: CR21
  article-title: Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20275-0
– volume: 131
  start-page: 4965
  year: 2019
  end-page: 4970
  ident: CR34
  article-title: A single‐atom nanozyme for wound disinfection applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201813994
– volume: 37
  start-page: 111
  year: 2009
  end-page: 125
  ident: CR47
  article-title: Intrinsic reactivity of uric acid with dioxygen: towards the elucidation of the catalytic mechanism of urate oxidase
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2009.05.004
– volume: 145
  start-page: 3108
  year: 2023
  end-page: 3120
  ident: CR14
  article-title: Doped graphene to mimic the bacterial NADH oxidase for one-step NAD supplementation in mammals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12336
– volume: 61
  start-page: e202116170
  year: 2022
  ident: CR26
  article-title: Guided synthesis of a Mo/Zn dual single‐atom nanozyme with synergistic effect and peroxidase‐like activity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202116170
– volume: 42
  start-page: 12369
  year: 2018
  end-page: 12373
  ident: CR69
  article-title: Unique dual responsive activity of a platinum nanozyme stabilized by a green solvent: deep eutectic solvents
  publication-title: N. J. Chem.
  doi: 10.1039/C8NJ01902A
– volume: 5
  start-page: 9741
  year: 2019
  end-page: 9756
  ident: CR23
  article-title: Single-atom nanozymes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 119
  start-page: 4357
  year: 2019
  end-page: 4412
  ident: CR36
  article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
– volume: 7
  start-page: 7726
  year: 2017
  end-page: 7731
  ident: CR63
  article-title: Mechanistic evidence for ligand-centered electrocatalytic oxygen reduction with the conductive MOF Ni (hexaiminotriphenylene)
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02647
– volume: 57
  start-page: 16791
  year: 2018
  end-page: 16795
  ident: CR42
  article-title: Mesoporous encapsulated chiral nanogold for use in enantioselective reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811118
– volume: 60
  start-page: 4192
  year: 2021
  end-page: 4198
  ident: CR72
  article-title: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013427
– volume: 60
  start-page: 7654
  year: 2021
  end-page: 7658
  ident: CR41
  article-title: Photo‐controllable catalysis and chiral monosaccharide recognition induced by cyclodextrin derivatives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202017001
– volume: 4
  start-page: 595
  year: 2021
  end-page: 606
  ident: CR37
  article-title: Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00649-3
– volume: 144
  start-page: 15845
  year: 2022
  end-page: 15854
  ident: CR64
  article-title: Operando elucidation of electrocatalytic and redox mechanisms on a 2D metal organic framework catalyst for efficient electrosynthesis of hydrogen peroxide in neutral media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06810
– volume: 1
  start-page: 282
  year: 2018
  end-page: 290
  ident: CR74
  article-title: Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0044-2
– volume: 570
  start-page: 219
  year: 2019
  end-page: 223
  ident: CR2
  article-title: Design and evolution of an enzyme with a non-canonical organocatalytic mechanism
  publication-title: Nature
  doi: 10.1038/s41586-019-1262-8
– volume: 122
  start-page: 11252
  year: 2000
  end-page: 11253
  ident: CR48
  article-title: Evidence for urate hydroperoxide as an intermediate in the urate oxidase reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002829j
– volume: 58
  start-page: 14731
  year: 2019
  end-page: 14739
  ident: CR59
  article-title: A one‐dimensional π–d conjugated coordination polymer for sodium storage with catalytic activity in negishi coupling
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908274
– volume: 48
  start-page: 3683
  year: 2019
  end-page: 3704
  ident: CR13
  article-title: Nanozyme: new horizons for responsive biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00718G
– volume: 4
  start-page: 719
  year: 2021
  end-page: 729
  ident: CR52
  article-title: Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO photoreduction to CH
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00665-3
– volume: 120
  start-page: e2308035120
  year: 2023
  ident: CR73
  article-title: Directional electronic tuning of Ni nanoparticles by interfacial oxygen bridging of support for catalyzing alkaline hydrogen oxidation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2308035120
– volume: 139
  start-page: 5412
  year: 2017
  end-page: 5419
  ident: CR38
  article-title: Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
– volume: 62
  start-page: e202302329
  year: 2023
  ident: CR28
  article-title: Manganese‐based antioxidase‐inspired biocatalysts with axial Mn−N sites and 2D d‐π‐conjugated networks for rescuing stem cell fate
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202302329
– volume: 145
  start-page: 11829
  year: 2023
  end-page: 11836
  ident: CR51
  article-title: Circumventing CO reduction scaling relations over the heteronuclear diatomic catalytic pair
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c03426
– volume: 143
  start-page: 7819
  year: 2021
  end-page: 7827
  ident: CR57
  article-title: Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03135
– volume: 11
  year: 2020
  ident: CR27
  article-title: Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14199-7
– volume: 22
  start-page: 508
  year: 2021
  end-page: 516
  ident: CR67
  article-title: Self-cascade uricase/catalase mimics alleviate acute gout
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04454
– volume: 60
  start-page: 16937
  year: 2021
  end-page: 16941
  ident: CR61
  article-title: Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–π Conjugation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104494
– volume: 15
  start-page: 10063
  year: 2022
  end-page: 10069
  ident: CR65
  article-title: Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO electroreduction
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4467-3
– volume: 7
  start-page: 436
  year: 2021
  end-page: 449
  ident: CR43
  article-title: Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.023
– volume: 142
  start-page: 15569
  year: 2020
  end-page: 15574
  ident: CR45
  article-title: Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07273
– volume: 14
  year: 2023
  ident: CR40
  article-title: Natural oxidase-mimicking copper-organic frameworks for targeted identification of ascorbate in sensitive sweat sensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35721-4
– volume: 61
  start-page: e202210789
  year: 2022
  ident: CR53
  article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO reduction to hydrocarbon fuels with high C H
  publication-title: evolution. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210789
– volume: 12
  start-page: 8865
  year: 2021
  end-page: 8871
  ident: CR44
  article-title: Bound oxygen-atom transfer endows peroxidase-mimic M–N–C with high substrate selectivity
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC02170B
– volume: 95
  start-page: 2415
  year: 2008
  end-page: 2422
  ident: CR49
  article-title: Oxygen pressurized x-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.122184
– volume: 13
  year: 2022
  ident: CR15
  article-title: Depletable peroxidase-like activity of Fe O nanozymes accompanied with separate migration of electrons and iron ions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33098-y
– volume: 12
  year: 2021
  ident: CR17
  article-title: Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20965-3
– volume: 137
  start-page: 15882
  year: 2015
  end-page: 15891
  ident: CR22
  article-title: Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10346
– volume: 17
  start-page: 657
  year: 1978
  end-page: 670
  ident: CR58
  article-title: Polymeric catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.197806571
– volume: 218
  start-page: 532
  year: 1982
  end-page: 537
  ident: CR10
  article-title: Artificial enzymes
  publication-title: Science
  doi: 10.1126/science.7123255
– volume: 139
  start-page: 14889
  year: 2017
  end-page: 14892
  ident: CR66
  article-title: Exclusive Ni-N sites realize near-unity CO selectivity for electrochemical CO reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 37
  start-page: 11651
  year: 1998
  end-page: 11659
  ident: CR70
  article-title: Spectroscopic Characterization of Intermediates in the Urate Oxidase Reaction
  publication-title: Biochemistry
  doi: 10.1021/bi980446g
– volume: 30
  start-page: 1905410
  year: 2019
  ident: CR30
  article-title: Heme cofactor‐resembling Fe–N single site embedded graphene as nanozymes to selectively detect H O with high sensitivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905410
– volume: 11
  start-page: 9741
  year: 2020
  end-page: 9756
  ident: CR35
  article-title: Atomic engineering of single-atom nanozymes for enzyme-like catalysis
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03522J
– volume: 43
  start-page: 1734
  year: 2014
  end-page: 1787
  ident: CR7
  article-title: Supramolecular catalysis. Part 2: artificial enzyme mimics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60037H
– volume: 59
  start-page: 286
  year: 2019
  end-page: 294
  ident: CR60
  article-title: Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc–air batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201910879
– volume: 14
  year: 2023
  ident: CR31
  article-title: Bioinspired porous three-coordinated single-atom Fe nanozyme with oxidase-like activity for tumor visual identification via glutathione
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42889-w
– volume: 13
  year: 2022
  ident: CR24
  article-title: Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30411-7
– volume: 143
  start-page: 1807
  year: 2021
  end-page: 1815
  ident: CR39
  article-title: On-nanoparticle gating units render an ordinary catalyst substrate- and site-selective
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09408
– volume: 61
  start-page: e202206926
  year: 2022
  ident: CR16
  article-title: A versatile chemoenzymatic nanoreactor that mimics NAD(P)H oxidase for the in situ regeneration of cofactors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206926
– volume: 6
  start-page: 916
  year: 2023
  end-page: 926
  ident: CR56
  article-title: Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01017-z
– volume: 96
  start-page: 721
  year: 1996
  end-page: 758
  ident: CR9
  article-title: Artificial enzymes
  publication-title: Chem. Rev.
  doi: 10.1021/cr9403704
– volume: 144
  start-page: 4942
  year: 2022
  end-page: 4951
  ident: CR75
  article-title: Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c12772
– volume: 382
  start-page: 547
  year: 2023
  end-page: 553
  ident: CR1
  article-title: Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal–organic framework
  publication-title: Science
  doi: 10.1126/science.add7417
– volume: 14
  year: 2023
  ident: 50123_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42889-w
– volume: 7
  start-page: 436
  year: 2021
  ident: 50123_CR43
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.023
– volume: 12
  year: 2021
  ident: 50123_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20275-0
– volume: 118
  start-page: 142
  year: 2017
  ident: 50123_CR8
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00014
– volume: 11
  year: 2020
  ident: 50123_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14199-7
– volume: 37
  start-page: 111
  year: 2009
  ident: 50123_CR47
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2009.05.004
– volume: 7
  start-page: 7726
  year: 2017
  ident: 50123_CR63
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02647
– volume: 13
  year: 2022
  ident: 50123_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28344-2
– volume: 119
  start-page: 5435
  year: 1997
  ident: 50123_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970375t
– volume: 1
  start-page: 282
  year: 2018
  ident: 50123_CR74
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0044-2
– volume: 48
  start-page: 3683
  year: 2019
  ident: 50123_CR13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00718G
– volume: 61
  start-page: e202206926
  year: 2022
  ident: 50123_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206926
– volume: 7
  start-page: 4623
  year: 2017
  ident: 50123_CR71
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00901
– volume: 34
  start-page: 2205324
  year: 2022
  ident: 50123_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205324
– volume: 11
  year: 2020
  ident: 50123_CR76
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15782-z
– volume: 145
  start-page: 11829
  year: 2023
  ident: 50123_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c03426
– volume: 3
  start-page: 289
  year: 2020
  ident: 50123_CR4
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0420-6
– volume: 96
  start-page: 721
  year: 1996
  ident: 50123_CR9
  publication-title: Chem. Rev.
  doi: 10.1021/cr9403704
– volume: 13
  year: 2022
  ident: 50123_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30411-7
– volume: 11
  start-page: 9741
  year: 2020
  ident: 50123_CR35
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03522J
– volume: 4
  start-page: 595
  year: 2021
  ident: 50123_CR37
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00649-3
– volume: 22
  start-page: 508
  year: 2021
  ident: 50123_CR67
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04454
– volume: 144
  start-page: 4942
  year: 2022
  ident: 50123_CR75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c12772
– volume: 57
  start-page: 16791
  year: 2018
  ident: 50123_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811118
– volume: 42
  start-page: 12369
  year: 2018
  ident: 50123_CR69
  publication-title: N. J. Chem.
  doi: 10.1039/C8NJ01902A
– volume: 120
  start-page: e2308035120
  year: 2023
  ident: 50123_CR73
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2308035120
– volume: 144
  start-page: 15845
  year: 2022
  ident: 50123_CR64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06810
– volume: 6
  start-page: 916
  year: 2023
  ident: 50123_CR56
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01017-z
– volume: 5
  start-page: 9741
  year: 2019
  ident: 50123_CR23
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav5490
– volume: 137
  start-page: 15882
  year: 2015
  ident: 50123_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10346
– volume: 139
  start-page: 5412
  year: 2017
  ident: 50123_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
– volume: 139
  start-page: 14889
  year: 2017
  ident: 50123_CR66
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 61
  start-page: e202116170
  year: 2022
  ident: 50123_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202116170
– volume: 30
  start-page: 1905410
  year: 2019
  ident: 50123_CR30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905410
– volume: 14
  year: 2023
  ident: 50123_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35721-4
– volume: 119
  start-page: 4357
  year: 2019
  ident: 50123_CR36
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
– volume: 570
  start-page: 219
  year: 2019
  ident: 50123_CR2
  publication-title: Nature
  doi: 10.1038/s41586-019-1262-8
– volume: 1
  start-page: 680
  year: 2018
  ident: 50123_CR6
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0124-3
– volume: 122
  start-page: 11252
  year: 2000
  ident: 50123_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002829j
– volume: 59
  start-page: 286
  year: 2019
  ident: 50123_CR60
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201910879
– volume: 142
  start-page: 15569
  year: 2020
  ident: 50123_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07273
– volume: 61
  start-page: e202210789
  year: 2022
  ident: 50123_CR53
  publication-title: evolution. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210789
– volume: 20
  start-page: 395
  year: 2020
  ident: 50123_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00856-6
– volume: 143
  start-page: 7819
  year: 2021
  ident: 50123_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03135
– volume: 58
  start-page: 14731
  year: 2019
  ident: 50123_CR59
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908274
– volume: 361
  start-page: 1098
  year: 2018
  ident: 50123_CR3
  publication-title: Science
  doi: 10.1126/science.aat8474
– volume: 13
  year: 2022
  ident: 50123_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33098-y
– volume: 145
  start-page: 26783
  year: 2023
  ident: 50123_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08974
– volume: 140
  start-page: 10315
  year: 2018
  ident: 50123_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06020
– volume: 145
  start-page: 3108
  year: 2023
  ident: 50123_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12336
– volume: 145
  start-page: 16835
  year: 2023
  ident: 50123_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c05162
– volume: 36
  start-page: 4731
  year: 1997
  ident: 50123_CR50
  publication-title: Biochemistry
  doi: 10.1021/bi963184w
– volume: 12
  start-page: 8865
  year: 2021
  ident: 50123_CR44
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC02170B
– volume: 142
  start-page: 19602
  year: 2020
  ident: 50123_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08360
– volume: 382
  start-page: 547
  year: 2023
  ident: 50123_CR1
  publication-title: Science
  doi: 10.1126/science.add7417
– volume: 143
  start-page: 1807
  year: 2021
  ident: 50123_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09408
– volume: 4
  start-page: 407
  year: 2021
  ident: 50123_CR33
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00609-x
– volume: 17
  start-page: 657
  year: 1978
  ident: 50123_CR58
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.197806571
– volume: 60
  start-page: 7654
  year: 2021
  ident: 50123_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202017001
– volume: 62
  start-page: e202302329
  year: 2023
  ident: 50123_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202302329
– volume: 600
  start-page: 37
  year: 2021
  ident: 50123_CR68
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.05.025
– volume: 43
  start-page: 1734
  year: 2014
  ident: 50123_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60037H
– volume: 59
  start-page: 14498
  year: 2020
  ident: 50123_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003949
– volume: 60
  start-page: 4192
  year: 2021
  ident: 50123_CR72
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013427
– volume: 4
  start-page: 719
  year: 2021
  ident: 50123_CR52
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00665-3
– volume: 2
  start-page: 577
  year: 2007
  ident: 50123_CR12
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2007.260
– volume: 131
  start-page: 4965
  year: 2019
  ident: 50123_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201813994
– volume: 60
  start-page: 16937
  year: 2021
  ident: 50123_CR61
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104494
– volume: 95
  start-page: 2415
  year: 2008
  ident: 50123_CR49
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.122184
– volume: 2
  start-page: 1194
  year: 2023
  ident: 50123_CR77
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-023-00384-6
– volume: 218
  start-page: 532
  year: 1982
  ident: 50123_CR10
  publication-title: Science
  doi: 10.1126/science.7123255
– volume: 9
  year: 2018
  ident: 50123_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03903-8
– volume: 37
  start-page: 11651
  year: 1998
  ident: 50123_CR70
  publication-title: Biochemistry
  doi: 10.1021/bi980446g
– volume: 12
  year: 2021
  ident: 50123_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20965-3
– volume: 2
  start-page: 977
  year: 2019
  ident: 50123_CR5
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0348-x
– volume: 15
  start-page: 10063
  year: 2022
  ident: 50123_CR65
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4467-3
– volume: 2
  start-page: 534
  year: 2021
  ident: 50123_CR32
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00074
SSID ssj0000391844
Score 2.6035872
Snippet In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an...
Abstract In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5705
SubjectTerms 119/118
140/131
140/146
140/58
147/137
639/301/357/537
639/638/45/603
639/638/77/603
Absorption spectroscopy
Binding Sites
Biochemical fuel cells
Biofuels
Catalysis
Catalytic Domain
Enzymes
Humanities and Social Sciences
Humans
Ligands
Metals
Mimicry
Models, Molecular
multidisciplinary
Nickel - chemistry
Nickel - metabolism
Oxidase
Oxidation
Oxidation-Reduction
Photoelectron spectroscopy
Photoelectrons
Pressure
Proteins
Recognition
Science
Science (multidisciplinary)
Selectivity
Soft x rays
Spectrum analysis
Substrate Specificity
Substrates
Urate oxidase
Urate Oxidase - chemistry
Urate Oxidase - metabolism
Uric acid
Uric Acid - chemistry
Uric Acid - metabolism
Uric Acid - urine
X ray absorption
X ray photoelectron spectroscopy
X-Ray Absorption Spectroscopy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KINBLaPpInaZFgd5aEXs1lu1jGxpCID01kJvQaxPDrrd0dyHpr8-M7N1m26S99OqRYRiNNN_MSJ8A3mNQo0Q563NbSgwjLZvGFtLmY6d8Qelb5IL--Vd9eoFnl-Xlvae--ExYTw_cG-5IY0DruF8YLDo-LGlLpWMcK_QEjtPVPYp595KptAerhlIXHG7J5Ko-mmPaEygkyZJxhMSNSJQI-x9CmX8elvytY5oC0ckz2BkQpPjUa74LT2L3HLb7NyVvX0A4j4Sn5aS9sl0QfNNKcoNYcE1gEiXl2FPR2W7283YaxbSdtp6L5WLJlBFidtMGCmuCq7OCmYzFnDaWRGA7F3wpkw8WEW5_CRcnX74dn8rhKQXpSywWUilCHli7vKktZVTjyhOuCs674AuK0IQzIuEaJOlYeaxVrW0RNFMXOhw5HdUr2OpmXXwNwueuqIJHX1FuSfjRFnnAWFaByQetbjIoVmY1fuAZ5-cuJib1u1Vt-qkwNN6kqTCYwYf1P997lo2_jv7Ms7UeyQzZ6QP5jRn8xvzLbzI4WM21GZbt3CjuSxKgbcoMDtdiWnDcRbFdnC3TGEqBNVkzg73eNdaaEPqrSJpnUG84zYaqm5KuvU6k3oR7FXc5M_i48q9fej1ui_3_YYs38HTEC4Or1vUBbC1-LONbwloL9y4tqzu7xyL1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbj9SRxTggQS4VUTlTqzfJrS6TdpDS7Eu2vZ8bJploeva69kuMZe755-BvG3kBQs0Q563NbCAizUtS1lcLmC6e8RPctUkD_-Ft5dAJfT4vTMeDWj2WV2zsxXdSh8xQjP1SUMkKsURfvz38K6hpF2dWxhcZtdkeipaGSLj3_MsVYiP1cA4xvZXKlD3tINwMaJlEQmhCwY48Sbf-_sObfJZN_5E2TOZo_YPdHHMk_DIJ_yG7F9hG7O3SWvHzMwnFEVC2WzZltA6f3VoI-hFNkYBkFetor3tq2u7pcRb5qVo2nkDnfEHEE7341AY0bpxgtJz5j3uP1kmhse05PM6m8CNH7E3Yy__z905EYGyoIX4BcC6UQf4B2ea0t-lWLyiO6Cs674CXaaUQbEdEN4OhCedBKl1aGkggMHcxcGdVTttd2bXzOuM-drIIHX6GHiSjSyjxALKpAFIS2rDMmt9tq_Mg2Tk0vliZlvZU2gygMzjdJFAYy9nb6z_nAtXHj7I8krWkm8WSnH7qLMzMeO1NCAOso2xwsOCq1tYUqY1wo8Oha4TIPtrI24-HtzbWqZez1NIzHjnIpto3dJs1BR7jE3czYs0E1ppUgBqxwNM-Y3lGanaXujrTNj0TtjehXUa4zY--2-nW9rv_vxf7Nn_GC3ZuRylNUWh-wvfXFJr5ELLV2r9KB-Q3XEhrB
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WXQQv4tvWVSJ402B3p_p1HMVlGVgvurC3kNesAzPdsjMDrr_eqvRDRlfBayeBIqnq-uqRLwCv0as8Us661BQSfV7KpjGZNOnCKpdR-BY4oX_2qTw9x_lFcXEA-XgXJjbtR0rL-Jseu8PebTCaNHkUWTAMkHgLjpiqnXT7aDabf55PmRXmPK8RhxsyqapvWLznhSJZ_00I889Gyd-qpdEJndyDuwN6FLNe3vtwENoHcLt_T_L6IfizQFharpaXpvWCb1lJLg4LzgesgqT4ei1a03Y_rtdBrJfrpeNEudgxXYTovi89uTTBmVnBLMZiQz-VSF67EXwhk5uKCLM_gvOTj18-nMrhGQXpCsy2UilCHVjbtKkNRVOLyhGm8tZZ7zLyzoQxAmEapNGFclirujSZL5m20GJuy6Aew2HbteEpCJfarPIOXUVxJWFHk6UeQ1F5Jh40ZZNANm6rdgPHOD91sdKx1q1q3R-Fpvk6HoXGBN5Ma771DBv_nP2eT2uayezY8UN3dakHbdElejSWa8zeoOUGW1OoMoSFQkcBFYl5PJ61Hkx2oxXXJAnMNkUCr6ZhMjauoJg2dLs4h8LfknYzgSe9akySEPKraDRNoN5Tmj1R90fa5ddI6E2YV3GFM4G3o379kuvve_Hs_6Y_hzs5mwDnputjONxe7cILQlRb-3IwoZ90pRnI
  priority: 102
  providerName: Springer Nature
Title Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity
URI https://link.springer.com/article/10.1038/s41467-024-50123-4
https://www.ncbi.nlm.nih.gov/pubmed/38977710
https://www.proquest.com/docview/3076832695
https://www.proquest.com/docview/3077176348
https://pubmed.ncbi.nlm.nih.gov/PMC11231224
https://doaj.org/article/64d4ab6727da4b1992a536eef34c1189
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQ0hcEG8CS2UkbmBIYud1QKhbbVlV6goBlXqLHNtdIrUJ9CFt-fXMOElRoSAujRQ71cQeZ76Zsb8BeCmNCB3lrPZVxKUJY55lKuDKnxVCB-i-WQroj6_iy4kcTaPpEXTljtoBXB107aie1GQ5f3PzffseF_y75sh4-nYl3XJHa8MjgghcHsMpWqaEKhqMW7jvvswiQ4eGEs2hLwOOHUR7jubw3-zZKkfpfwiH_rmd8recqjNVw7twp8WYrN8oxT04stV9uNVUndw-ADO2-LJ8Xl6ryjA6i8UphcwoajC3HL3wBatUVf_YLixblItSUzidbYhUgtU3pUHDxyh-y4jrmK3w0-MobleMjm3S1iNE9g9hMrz4MrjkbbEFriMZrLkQiE1kWvhZqtDnmiUakZcpdGF0gDYckYhF5COxdSa0TEUaq8DERG5YyLCIrXgEJ1Vd2SfAtF8EidFSJ-h9IsJUgW-kjRJD9IQqzjwIumHNdctETgUx5rnLiIs0b6Yix_65m4pcevBq98y3hofjn73PabZ2PYlD292ol9d5uyTzWBqpCspEGyUL2oarIhFbOxNSo9uFYp51c513epkLylwi5M0iD17smnFJUp5FVbbeuD7oJMc4mh48blRjJwniwwRbfQ_SPaXZE3W_pSq_OtpvRMaC8qAevO7065dcfx-Lp_8h5zO4HZLeU9g6PYOT9XJjnyPYWhc9OE6mCf6mww89OO33R59HeD2_uPr4Ce8O4kHPhTF6bqX9BPHuKHw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxLMsFDASnMDq7tq72T0gxCuktOmplXozXtspKyW7pUkE4UfxG5nxPqrw6K3X2ImcmfE8Pd8APJdWxB5y1oQ64dLGKc9zHXEdTgphIgzfHCX0xwfp6Eh-Pk6ON-BX1wtDzyo7negVta0N5ch3BJWM0NfIkzen3zhNjaLqajdCoxGLPbf6jiHb_PXuB-Tvizgefjx8P-LtVAFuEhktuBBohGVWhHmmMbiYDAy6GLYwhTURGis0uQ5NvMTViTAyE1mqI5sSil8h4yJ1An_3ClyVAi05daYPP_U5HUJbz6Rse3NCke3MpddEaAh5Qt4Ll2v2z48J-Jdv-_cTzT_qtN78DW_BzdZvZW8bQbsNG666A9eaSZaru2DHDr14Pi1PdGUZ9XdxIhyjTMTUcYzsZ6zSVf1zNXNsVs5KQyl6tiSgClb_KC0aU0Y5YUb4yWyO6szD5s4ZtYLScyaMFu7B0aWQ-j5sVnXlHgAzYRENrJFmgBEteq06Cq10ycAS5KFO8wCijqzKtOjmNGRjqnyVXWSqYYXC_cqzQskAXvbfOW2wPS7c_Y641e8kXG7_QX12otprrlJppS6oum21LOhpr05E6txESIOhHB5zu-O1apXFXJ2LdgDP-mW85lS70ZWrl34PBt4pUjOArUY0-pOgzznA1TCAbE1o1o66vlKVXz2UOHrbgmqrAbzq5Ov8XP-nxcOL_8ZTuD46HO-r_d2DvUdwIybxp4x4tg2bi7Ole4x-3KJ44i8Pgy-XfVt_AyLmVXU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqUBcEDtTChgJTmBlZuxZckCI0kYtpVGFqNSb67GdEimZaZtEEH4av473PDOpwtJbr7ETOW9f7O8BvJJWxB5y1oQ64dLGKe_1dMR1OCyEiTB9c1TQPxiku0fy03FyvAa_2rcwdK2ytYneUNvKUI28K6hlhLFGL-kOm2sRh9v992fnnCZIUae1HadRi8i-W3zH9G36bm8bef06jvs7Xz_u8mbCADeJjGZcCHTIMi_CXq4x0RhmBsMNW5jCmggdF7pfh-5e4upQGJmLPNWRTQnRr5BxkTqBv3sD1jPKijqwvrUzOPyyrPAQ9nouZfNSJxR5dyq9XUK3yBOKZbhc8YZ-aMC_It2_L2z-0bX1zrB_F-40USz7UIvdPVhz5X24Wc-1XDwAe-Awpufj0akuLaPXXpxIx6guMXYc8_wJK3VZ_VxMHJuMJiNDBXs2J9gKVv0YWXStjCrEjNCU2RSNmwfRnTJ6GEqXmzB3eAhH10LsR9Apq9I9AWbCIsqskSbD_BZjWB2FVrokswSAqNNeAFFLVmUarHMauTFWvucuclWzQuF-5VmhZABvlt85q5E-rty9Rdxa7iSUbv9BdXGqGqVXqbRSF9TrtloWdNFXJyJ1biikwcQOj7nZ8lo1pmOqLgU9gJfLZVR66uTo0lVzvwfT8BSpGcDjWjSWJ8EINMPVMIB8RWhWjrq6Uo6-eWBxjL0FdVoDeNvK1-W5_k-Ljav_xgu4hZqqPu8N9p_C7Zikn8rj-SZ0Zhdz9wyDulnxvNEeBifXrbC_AQh8Wwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-ligand+dual-site+single-atom+nanozyme+mimicking+urate+oxidase+with+high+substrates+specificity&rft.jtitle=Nature+communications&rft.au=Wang%2C+Kaiyuan&rft.au=Hong%2C+Qing&rft.au=Zhu%2C+Caixia&rft.au=Xu%2C+Yuan&rft.date=2024-07-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5705&rft_id=info:doi/10.1038%2Fs41467-024-50123-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon