Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity
In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, rea...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5705 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O
2
binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.
Single-atom nanozymes are a type of non-protein artificial enzymes and promising for mimicking enzyme active centers, but lack recognition sites to confer substrate specificity. Here, the authors report on a metal-ligand dual-site single-atom nanozyme (Ni-DAB) that mimics the dual-site catalytic mechanism of urate oxidase and has high selectivity in uric acid (UA) oxidation. |
---|---|
AbstractList | In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O 2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. Single-atom nanozymes are a type of non-protein artificial enzymes and promising for mimicking enzyme active centers, but lack recognition sites to confer substrate specificity. Here, the authors report on a metal-ligand dual-site single-atom nanozyme (Ni-DAB) that mimics the dual-site catalytic mechanism of urate oxidase and has high selectivity in uric acid (UA) oxidation. In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.Single-atom nanozymes are a type of non-protein artificial enzymes and promising for mimicking enzyme active centers, but lack recognition sites to confer substrate specificity. Here, the authors report on a metal-ligand dual-site single-atom nanozyme (Ni-DAB) that mimics the dual-site catalytic mechanism of urate oxidase and has high selectivity in uric acid (UA) oxidation. Abstract In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O 2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes. |
ArticleNumber | 5705 |
Author | Chen, Wenhao Liu, Songqin Zhang, Yuanjian Wang, Ying Wang, Kaiyuan Hong, Qing Shen, Yanfei Xu, Yuan Fang, Yanfeng Zhu, Caixia Li, Wang Gu, Xiang Chen, Xinghua |
Author_xml | – sequence: 1 givenname: Kaiyuan surname: Wang fullname: Wang, Kaiyuan organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 2 givenname: Qing surname: Hong fullname: Hong, Qing organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 3 givenname: Caixia surname: Zhu fullname: Zhu, Caixia organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 4 givenname: Yuan surname: Xu fullname: Xu, Yuan organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 5 givenname: Wang surname: Li fullname: Li, Wang organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 6 givenname: Ying surname: Wang fullname: Wang, Ying organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 7 givenname: Wenhao surname: Chen fullname: Chen, Wenhao organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 8 givenname: Xiang surname: Gu fullname: Gu, Xiang organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 9 givenname: Xinghua surname: Chen fullname: Chen, Xinghua organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 10 givenname: Yanfeng surname: Fang fullname: Fang, Yanfeng organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 11 givenname: Yanfei orcidid: 0000-0003-0369-5920 surname: Shen fullname: Shen, Yanfei email: Yanfei.Shen@seu.edu.cn organization: Medical School, Southeast University – sequence: 12 givenname: Songqin surname: Liu fullname: Liu, Songqin organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering – sequence: 13 givenname: Yuanjian orcidid: 0000-0003-2932-4159 surname: Zhang fullname: Zhang, Yuanjian email: Yuanjian.Zhang@seu.edu.cn organization: Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Department of Oncology, Zhongda Hospital, Southeast University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38977710$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MJM4sbNKBcYYFbGNH40qXGja8IAM4_nDDxhRn3-epm-WtsuygbCOfdwLuc-RUchBofQc8CvAVP5JjNgXNSYsLrBQGjNHqETghnUIAg9unU-Rmc5b3FZtAXJ2BN0TGUrhAB8guxnN-uxHv2gg63sUs7Zz67KPgyjq_UcpyroEP_sJ1dNfvLme0GqJelCir-91dlVv_y8qTZ-2FR56fK8YrnKO2d8742f98_Q416P2Z1d76fo24f3X88_1ZdfPl6cv7usTcNgrinljDLZ4VZqhqEXBnBjO9NZA5wDFuCgaVlBe2qYpJJrsBwoaztGOu7oKbo46Nqot2qX_KTTXkXt1dVFTIPSafZmdIozy3THBRFWsw7aluiGcud6ygyAbIvW24PWbukmZ40Lpa_xjuhdJPiNGuJPBSUMIIQVhVfXCin-WFye1eSzceOog4tLVhSXCAQvHRfqy3vUbVxSKH-1srikhLdNYb24benGy780C4EcCCbFnJPrbyiA1To16jA1qkyNupoatdqU94pKZHr2cW3Ljw-X0kNpLu-EwaX_th-o-gtU1tXX |
CitedBy_id | crossref_primary_10_1016_j_saa_2025_125778 crossref_primary_10_1039_D4AN01242A crossref_primary_10_1021_acsnano_4c17148 crossref_primary_10_1016_j_isci_2025_111763 crossref_primary_10_1039_D4SC07775J crossref_primary_10_1002_adfm_202422588 crossref_primary_10_1002_anie_202415755 crossref_primary_10_1002_smll_202407281 crossref_primary_10_1016_j_talanta_2025_127700 crossref_primary_10_1021_acsnano_4c16272 crossref_primary_10_1016_j_saa_2025_125794 crossref_primary_10_1039_D4SC05014B crossref_primary_10_1002_smll_202409212 crossref_primary_10_1021_acsanm_4c07197 crossref_primary_10_1002_adfm_202418360 crossref_primary_10_1021_acsami_4c22270 crossref_primary_10_1016_j_colsurfb_2024_114347 crossref_primary_10_1002_chem_202403568 crossref_primary_10_1016_j_microc_2025_112810 crossref_primary_10_1021_acs_analchem_4c05798 crossref_primary_10_1002_ange_202415755 crossref_primary_10_1002_smll_202408609 crossref_primary_10_26599_NR_2025_94907115 crossref_primary_10_1021_acsanm_4c06508 |
Cites_doi | 10.1021/ja970375t 10.1038/s41929-019-0420-6 10.1038/s44160-023-00384-6 10.1021/jacs.8b06020 10.1038/nnano.2007.260 10.1038/s41467-020-15782-z 10.1002/adma.202205324 10.1021/accountsmr.1c00074 10.1038/s41563-020-00856-6 10.1021/acscatal.7b00901 10.1126/science.aat8474 10.1038/s41929-019-0348-x 10.1002/anie.202003949 10.1021/bi963184w 10.1021/acs.chemrev.7b00014 10.1038/s41467-022-28344-2 10.1021/jacs.3c05162 10.1021/jacs.0c08360 10.1016/j.jcis.2021.05.025 10.1038/s41929-018-0124-3 10.1021/jacs.3c08974 10.1038/s41467-018-03903-8 10.1038/s41929-021-00609-x 10.1038/s41467-020-20275-0 10.1002/ange.201813994 10.1016/j.bioorg.2009.05.004 10.1021/jacs.2c12336 10.1002/anie.202116170 10.1039/C8NJ01902A 10.1126/sciadv.aav5490 10.1021/acs.chemrev.8b00672 10.1021/acscatal.7b02647 10.1002/anie.201811118 10.1002/anie.202013427 10.1002/anie.202017001 10.1038/s41929-021-00649-3 10.1021/jacs.2c06810 10.1038/s41929-018-0044-2 10.1038/s41586-019-1262-8 10.1021/ja002829j 10.1002/anie.201908274 10.1039/C8CS00718G 10.1038/s41929-021-00665-3 10.1073/pnas.2308035120 10.1021/jacs.7b00601 10.1002/anie.202302329 10.1021/jacs.3c03426 10.1021/jacs.1c03135 10.1038/s41467-019-14199-7 10.1021/acs.nanolett.1c04454 10.1002/anie.202104494 10.1007/s12274-022-4467-3 10.1016/j.chempr.2020.10.023 10.1021/jacs.0c07273 10.1038/s41467-022-35721-4 10.1002/anie.202210789 10.1039/D1SC02170B 10.1529/biophysj.107.122184 10.1038/s41467-022-33098-y 10.1038/s41467-021-20965-3 10.1021/jacs.5b10346 10.1002/anie.197806571 10.1126/science.7123255 10.1021/jacs.7b09074 10.1021/bi980446g 10.1002/adfm.201905410 10.1039/D0SC03522J 10.1039/C3CS60037H 10.1002/anie.201910879 10.1038/s41467-023-42889-w 10.1038/s41467-022-30411-7 10.1021/jacs.0c09408 10.1002/anie.202206926 10.1038/s41929-023-01017-z 10.1021/cr9403704 10.1021/jacs.1c12772 10.1126/science.add7417 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50123-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_64d4ab6727da4b1992a536eef34c1189 PMC11231224 38977710 10_1038_s41467_024_50123_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22174014; 22074015 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22174014 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22074015 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-3364348b098a401f7c105dbcbdc1661071e159498af3c48386a1d61349b42b6e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:11:50 EDT 2025 Thu Aug 21 18:32:30 EDT 2025 Fri Jul 11 12:06:25 EDT 2025 Wed Aug 13 04:12:05 EDT 2025 Mon Jul 21 06:00:25 EDT 2025 Tue Jul 01 02:11:16 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Fri Feb 21 02:37:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-3364348b098a401f7c105dbcbdc1661071e159498af3c48386a1d61349b42b6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2932-4159 0000-0003-0369-5920 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-50123-4 |
PMID | 38977710 |
PQID | 3076832695 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64d4ab6727da4b1992a536eef34c1189 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11231224 proquest_miscellaneous_3077176348 proquest_journals_3076832695 pubmed_primary_38977710 crossref_primary_10_1038_s41467_024_50123_4 crossref_citationtrail_10_1038_s41467_024_50123_4 springer_journals_10_1038_s41467_024_50123_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-08 |
PublicationDateYYYYMMDD | 2024-07-08 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu (CR11) 2020; 20 Wei (CR71) 2017; 7 Chen (CR31) 2023; 14 Chen (CR59) 2019; 58 Wang (CR72) 2021; 60 Colloc’h (CR49) 2008; 95 Li (CR77) 2023; 2 Lian (CR60) 2019; 59 Raynal (CR7) 2014; 43 Wu (CR35) 2020; 11 Hou (CR1) 2023; 382 Liu (CR21) 2021; 12 Xu (CR34) 2019; 131 Burke (CR2) 2019; 570 Mirts (CR3) 2018; 361 Wang (CR43) 2021; 7 Dong (CR15) 2022; 13 Peng (CR65) 2022; 15 Chen (CR24) 2022; 13 Schwizer (CR8) 2017; 118 Zhang (CR25) 2022; 34 Sun (CR73) 2023; 120 Kim (CR30) 2019; 30 Wang (CR53) 2022; 61 Zhang, Yan, Fan (CR32) 2021; 2 Shen (CR22) 2015; 137 Zhang (CR38) 2017; 139 Wang (CR40) 2023; 14 Ding (CR51) 2023; 145 Ma (CR26) 2022; 61 Miner (CR63) 2017; 7 Jiang (CR13) 2019; 48 Li (CR66) 2017; 139 Altarsha, Castro, Monard (CR47) 2009; 37 Wang (CR27) 2020; 11 Wang (CR56) 2023; 6 Kahn, Tipton (CR70) 1998; 37 Gao (CR12) 2007; 2 Wu (CR28) 2023; 62 Ji (CR33) 2021; 4 Kim (CR39) 2021; 143 Raines (CR6) 2018; 1 Pan (CR75) 2022; 144 Murakami (CR9) 1996; 96 Zhou (CR42) 2018; 57 Li (CR45) 2020; 142 Li (CR29) 2023; 145 Tang (CR57) 2021; 143 Liu (CR68) 2021; 600 Kim (CR74) 2018; 1 Liu (CR14) 2023; 145 Makam (CR5) 2019; 2 Ross (CR64) 2022; 144 Rodriguez‐Abetxuko (CR16) 2022; 61 Wu (CR37) 2021; 4 Chen (CR44) 2021; 12 Sarma, Tipton (CR48) 2000; 122 Wu (CR54) 2020; 142 Breslow (CR10) 1982; 218 Kahn, Serfozo, Tipton (CR46) 1997; 119 Huang, Ren, Qu (CR36) 2019; 119 Ni (CR61) 2021; 60 Zhou, Roelfes (CR4) 2020; 3 Lin (CR67) 2021; 22 Xu (CR20) 2020; 59 Kahn, Tipton (CR50) 1997; 36 Li (CR52) 2021; 4 Zhao (CR55) 2023; 145 Han (CR76) 2020; 11 Li (CR19) 2022; 13 Chen (CR41) 2021; 60 Park (CR62) 2018; 140 Fan (CR18) 2018; 9 Manecke, Storck (CR58) 1978; 17 Devi, Singh (CR69) 2018; 42 Gao (CR17) 2021; 12 Huang (CR23) 2019; 5 D Wang (50123_CR27) 2020; 11 G Li (50123_CR29) 2023; 145 DJ Raines (50123_CR6) 2018; 1 MS Kim (50123_CR30) 2019; 30 A Lin (50123_CR67) 2021; 22 Y Liu (50123_CR68) 2021; 600 H Liu (50123_CR21) 2021; 12 F Schwizer (50123_CR8) 2017; 118 R Zhang (50123_CR32) 2021; 2 B Xu (50123_CR34) 2019; 131 HW Kim (50123_CR74) 2018; 1 Y Wang (50123_CR43) 2021; 7 X Li (50123_CR66) 2017; 139 Z Wang (50123_CR40) 2023; 14 Z Wu (50123_CR28) 2023; 62 J Li (50123_CR77) 2023; 2 J-X Peng (50123_CR65) 2022; 15 Y Zhou (50123_CR42) 2018; 57 K Kahn (50123_CR50) 1997; 36 A Rodriguez‐Abetxuko (50123_CR16) 2022; 61 CB Ma (50123_CR26) 2022; 61 Y Ni (50123_CR61) 2021; 60 H Sun (50123_CR73) 2023; 120 Q Liu (50123_CR11) 2020; 20 Y Xu (50123_CR20) 2020; 59 AJ Burke (50123_CR2) 2019; 570 R Zhang (50123_CR25) 2022; 34 N Colloc’h (50123_CR49) 2008; 95 J Li (50123_CR52) 2021; 4 P Makam (50123_CR5) 2019; 2 L Huang (50123_CR23) 2019; 5 Y Chen (50123_CR59) 2019; 58 H Dong (50123_CR15) 2022; 13 Z-H Zhao (50123_CR55) 2023; 145 Y Murakami (50123_CR9) 1996; 96 S Ji (50123_CR33) 2021; 4 AD Sarma (50123_CR48) 2000; 122 D Jiang (50123_CR13) 2019; 48 HS Devi (50123_CR69) 2018; 42 G Wang (50123_CR53) 2022; 61 X Wang (50123_CR72) 2021; 60 C Tang (50123_CR57) 2021; 143 W Wu (50123_CR35) 2020; 11 L Gao (50123_CR12) 2007; 2 K Hou (50123_CR1) 2023; 382 F Gao (50123_CR17) 2021; 12 G Manecke (50123_CR58) 1978; 17 M Raynal (50123_CR7) 2014; 43 J Park (50123_CR62) 2018; 140 M Altarsha (50123_CR47) 2009; 37 D Wei (50123_CR71) 2017; 7 Q Wang (50123_CR56) 2023; 6 EM Miner (50123_CR63) 2017; 7 K Fan (50123_CR18) 2018; 9 X Shen (50123_CR22) 2015; 137 X Chen (50123_CR44) 2021; 12 K Kahn (50123_CR46) 1997; 119 D Wu (50123_CR54) 2020; 142 EN Mirts (50123_CR3) 2018; 361 Z Zhou (50123_CR4) 2020; 3 R Breslow (50123_CR10) 1982; 218 M Li (50123_CR45) 2020; 142 S Li (50123_CR19) 2022; 13 M Kim (50123_CR39) 2021; 143 L Chen (50123_CR41) 2021; 60 X Liu (50123_CR14) 2023; 145 J Chen (50123_CR24) 2022; 13 Y Lian (50123_CR60) 2019; 59 C Pan (50123_CR75) 2022; 144 RD Ross (50123_CR64) 2022; 144 K Kahn (50123_CR70) 1998; 37 D Wu (50123_CR37) 2021; 4 J Ding (50123_CR51) 2023; 145 D Chen (50123_CR31) 2023; 14 Y Huang (50123_CR36) 2019; 119 G-F Han (50123_CR76) 2020; 11 Z Zhang (50123_CR38) 2017; 139 |
References_xml | – volume: 119 start-page: 5435 year: 1997 end-page: 5442 ident: CR46 article-title: Identification of the true product of the urate oxidase reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970375t – volume: 3 start-page: 289 year: 2020 end-page: 294 ident: CR4 article-title: Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites publication-title: Nat. Catal. doi: 10.1038/s41929-019-0420-6 – volume: 2 start-page: 1194 year: 2023 end-page: 1201 ident: CR77 article-title: Mechanism-guided realization of selective carbon monoxide electroreduction to methanol publication-title: Nat. Synth. doi: 10.1038/s44160-023-00384-6 – volume: 140 start-page: 10315 year: 2018 end-page: 10323 ident: CR62 article-title: Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06020 – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: CR12 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotech. doi: 10.1038/nnano.2007.260 – volume: 11 year: 2020 ident: CR76 article-title: Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H O publication-title: Nat. Commun. doi: 10.1038/s41467-020-15782-z – volume: 34 start-page: 2205324 year: 2022 ident: CR25 article-title: Edge‐site engineering of defective Fe–N nanozymes with boosted catalase‐like performance for retinal vasculopathies publication-title: Adv. Mater. doi: 10.1002/adma.202205324 – volume: 2 start-page: 534 year: 2021 end-page: 547 ident: CR32 article-title: Nanozymes inspired by natural enzymes publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00074 – volume: 20 start-page: 395 year: 2020 end-page: 402 ident: CR11 article-title: Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides publication-title: Nat. Mater. doi: 10.1038/s41563-020-00856-6 – volume: 7 start-page: 4623 year: 2017 end-page: 4636 ident: CR71 article-title: Catalytic mechanisms for cofactor-free oxidase-catalyzed reactions: reaction pathways of uricase-catalyzed oxidation and hydration of uric acid publication-title: ACS Catal. doi: 10.1021/acscatal.7b00901 – volume: 361 start-page: 1098 year: 2018 end-page: 1101 ident: CR3 article-title: A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. publication-title: Science doi: 10.1126/science.aat8474 – volume: 2 start-page: 977 year: 2019 end-page: 985 ident: CR5 article-title: Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure publication-title: Nat. Catal. doi: 10.1038/s41929-019-0348-x – volume: 59 start-page: 14498 year: 2020 end-page: 14503 ident: CR20 article-title: The Fe‐N‐C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug–drug interactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003949 – volume: 36 start-page: 4731 year: 1997 end-page: 4738 ident: CR50 article-title: Kinetic mechanism and cofactor content of soybean root nodule urate oxidase publication-title: Biochemistry doi: 10.1021/bi963184w – volume: 118 start-page: 142 year: 2017 end-page: 231 ident: CR8 article-title: Artificial metalloenzymes: reaction scope and optimization strategies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00014 – volume: 13 year: 2022 ident: CR19 article-title: Data-informed discovery of hydrolytic nanozymes publication-title: Nat. Commun. doi: 10.1038/s41467-022-28344-2 – volume: 145 start-page: 16835 year: 2023 end-page: 16842 ident: CR29 article-title: Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c05162 – volume: 142 start-page: 19602 year: 2020 end-page: 19610 ident: CR54 article-title: Engineering Fe–N doped graphene to mimic biological functions of NADPH oxidase in cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08360 – volume: 600 start-page: 37 year: 2021 end-page: 48 ident: CR68 article-title: Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: a single nanozyme mimicking multi-enzymatic cascade systems in peroxisome publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.05.025 – volume: 1 start-page: 680 year: 2018 end-page: 688 ident: CR6 article-title: Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly publication-title: Nat. Catal. doi: 10.1038/s41929-018-0124-3 – volume: 145 start-page: 26783 year: 2023 end-page: 26790 ident: CR55 article-title: Highly efficient electroreduction of CO to ethanol via asymmetric C-C coupling by a metal–organic framework with heterodimetal dual sites publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08974 – volume: 9 year: 2018 ident: CR18 article-title: In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-018-03903-8 – volume: 4 start-page: 407 year: 2021 end-page: 417 ident: CR33 article-title: Matching the kinetics of natural enzymes with a single-atom iron nanozyme publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 12 year: 2021 ident: CR21 article-title: Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions publication-title: Nat. Commun. doi: 10.1038/s41467-020-20275-0 – volume: 131 start-page: 4965 year: 2019 end-page: 4970 ident: CR34 article-title: A single‐atom nanozyme for wound disinfection applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201813994 – volume: 37 start-page: 111 year: 2009 end-page: 125 ident: CR47 article-title: Intrinsic reactivity of uric acid with dioxygen: towards the elucidation of the catalytic mechanism of urate oxidase publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2009.05.004 – volume: 145 start-page: 3108 year: 2023 end-page: 3120 ident: CR14 article-title: Doped graphene to mimic the bacterial NADH oxidase for one-step NAD supplementation in mammals publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12336 – volume: 61 start-page: e202116170 year: 2022 ident: CR26 article-title: Guided synthesis of a Mo/Zn dual single‐atom nanozyme with synergistic effect and peroxidase‐like activity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116170 – volume: 42 start-page: 12369 year: 2018 end-page: 12373 ident: CR69 article-title: Unique dual responsive activity of a platinum nanozyme stabilized by a green solvent: deep eutectic solvents publication-title: N. J. Chem. doi: 10.1039/C8NJ01902A – volume: 5 start-page: 9741 year: 2019 end-page: 9756 ident: CR23 article-title: Single-atom nanozymes publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 119 start-page: 4357 year: 2019 end-page: 4412 ident: CR36 article-title: Nanozymes: classification, catalytic mechanisms, activity regulation, and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00672 – volume: 7 start-page: 7726 year: 2017 end-page: 7731 ident: CR63 article-title: Mechanistic evidence for ligand-centered electrocatalytic oxygen reduction with the conductive MOF Ni (hexaiminotriphenylene) publication-title: ACS Catal. doi: 10.1021/acscatal.7b02647 – volume: 57 start-page: 16791 year: 2018 end-page: 16795 ident: CR42 article-title: Mesoporous encapsulated chiral nanogold for use in enantioselective reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811118 – volume: 60 start-page: 4192 year: 2021 end-page: 4198 ident: CR72 article-title: Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013427 – volume: 60 start-page: 7654 year: 2021 end-page: 7658 ident: CR41 article-title: Photo‐controllable catalysis and chiral monosaccharide recognition induced by cyclodextrin derivatives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202017001 – volume: 4 start-page: 595 year: 2021 end-page: 606 ident: CR37 article-title: Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions publication-title: Nat. Catal. doi: 10.1038/s41929-021-00649-3 – volume: 144 start-page: 15845 year: 2022 end-page: 15854 ident: CR64 article-title: Operando elucidation of electrocatalytic and redox mechanisms on a 2D metal organic framework catalyst for efficient electrosynthesis of hydrogen peroxide in neutral media publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06810 – volume: 1 start-page: 282 year: 2018 end-page: 290 ident: CR74 article-title: Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0044-2 – volume: 570 start-page: 219 year: 2019 end-page: 223 ident: CR2 article-title: Design and evolution of an enzyme with a non-canonical organocatalytic mechanism publication-title: Nature doi: 10.1038/s41586-019-1262-8 – volume: 122 start-page: 11252 year: 2000 end-page: 11253 ident: CR48 article-title: Evidence for urate hydroperoxide as an intermediate in the urate oxidase reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002829j – volume: 58 start-page: 14731 year: 2019 end-page: 14739 ident: CR59 article-title: A one‐dimensional π–d conjugated coordination polymer for sodium storage with catalytic activity in negishi coupling publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908274 – volume: 48 start-page: 3683 year: 2019 end-page: 3704 ident: CR13 article-title: Nanozyme: new horizons for responsive biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00718G – volume: 4 start-page: 719 year: 2021 end-page: 729 ident: CR52 article-title: Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO photoreduction to CH publication-title: Nat. Catal. doi: 10.1038/s41929-021-00665-3 – volume: 120 start-page: e2308035120 year: 2023 ident: CR73 article-title: Directional electronic tuning of Ni nanoparticles by interfacial oxygen bridging of support for catalyzing alkaline hydrogen oxidation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2308035120 – volume: 139 start-page: 5412 year: 2017 end-page: 5419 ident: CR38 article-title: Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00601 – volume: 62 start-page: e202302329 year: 2023 ident: CR28 article-title: Manganese‐based antioxidase‐inspired biocatalysts with axial Mn−N sites and 2D d‐π‐conjugated networks for rescuing stem cell fate publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202302329 – volume: 145 start-page: 11829 year: 2023 end-page: 11836 ident: CR51 article-title: Circumventing CO reduction scaling relations over the heteronuclear diatomic catalytic pair publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c03426 – volume: 143 start-page: 7819 year: 2021 end-page: 7827 ident: CR57 article-title: Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03135 – volume: 11 year: 2020 ident: CR27 article-title: Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor publication-title: Nat. Commun. doi: 10.1038/s41467-019-14199-7 – volume: 22 start-page: 508 year: 2021 end-page: 516 ident: CR67 article-title: Self-cascade uricase/catalase mimics alleviate acute gout publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04454 – volume: 60 start-page: 16937 year: 2021 end-page: 16941 ident: CR61 article-title: Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–π Conjugation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104494 – volume: 15 start-page: 10063 year: 2022 end-page: 10069 ident: CR65 article-title: Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO electroreduction publication-title: Nano Res doi: 10.1007/s12274-022-4467-3 – volume: 7 start-page: 436 year: 2021 end-page: 449 ident: CR43 article-title: Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity publication-title: Chem doi: 10.1016/j.chempr.2020.10.023 – volume: 142 start-page: 15569 year: 2020 end-page: 15574 ident: CR45 article-title: Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07273 – volume: 14 year: 2023 ident: CR40 article-title: Natural oxidase-mimicking copper-organic frameworks for targeted identification of ascorbate in sensitive sweat sensing publication-title: Nat. Commun. doi: 10.1038/s41467-022-35721-4 – volume: 61 start-page: e202210789 year: 2022 ident: CR53 article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO reduction to hydrocarbon fuels with high C H publication-title: evolution. Angew. Chem. Int. Ed. doi: 10.1002/anie.202210789 – volume: 12 start-page: 8865 year: 2021 end-page: 8871 ident: CR44 article-title: Bound oxygen-atom transfer endows peroxidase-mimic M–N–C with high substrate selectivity publication-title: Chem. Sci. doi: 10.1039/D1SC02170B – volume: 95 start-page: 2415 year: 2008 end-page: 2422 ident: CR49 article-title: Oxygen pressurized x-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism publication-title: Biophys. J. doi: 10.1529/biophysj.107.122184 – volume: 13 year: 2022 ident: CR15 article-title: Depletable peroxidase-like activity of Fe O nanozymes accompanied with separate migration of electrons and iron ions publication-title: Nat. Commun. doi: 10.1038/s41467-022-33098-y – volume: 12 year: 2021 ident: CR17 article-title: Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action publication-title: Nat. Commun. doi: 10.1038/s41467-021-20965-3 – volume: 137 start-page: 15882 year: 2015 end-page: 15891 ident: CR22 article-title: Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10346 – volume: 17 start-page: 657 year: 1978 end-page: 670 ident: CR58 article-title: Polymeric catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.197806571 – volume: 218 start-page: 532 year: 1982 end-page: 537 ident: CR10 article-title: Artificial enzymes publication-title: Science doi: 10.1126/science.7123255 – volume: 139 start-page: 14889 year: 2017 end-page: 14892 ident: CR66 article-title: Exclusive Ni-N sites realize near-unity CO selectivity for electrochemical CO reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 37 start-page: 11651 year: 1998 end-page: 11659 ident: CR70 article-title: Spectroscopic Characterization of Intermediates in the Urate Oxidase Reaction publication-title: Biochemistry doi: 10.1021/bi980446g – volume: 30 start-page: 1905410 year: 2019 ident: CR30 article-title: Heme cofactor‐resembling Fe–N single site embedded graphene as nanozymes to selectively detect H O with high sensitivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905410 – volume: 11 start-page: 9741 year: 2020 end-page: 9756 ident: CR35 article-title: Atomic engineering of single-atom nanozymes for enzyme-like catalysis publication-title: Chem. Sci. doi: 10.1039/D0SC03522J – volume: 43 start-page: 1734 year: 2014 end-page: 1787 ident: CR7 article-title: Supramolecular catalysis. Part 2: artificial enzyme mimics publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60037H – volume: 59 start-page: 286 year: 2019 end-page: 294 ident: CR60 article-title: Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc–air batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201910879 – volume: 14 year: 2023 ident: CR31 article-title: Bioinspired porous three-coordinated single-atom Fe nanozyme with oxidase-like activity for tumor visual identification via glutathione publication-title: Nat. Commun. doi: 10.1038/s41467-023-42889-w – volume: 13 year: 2022 ident: CR24 article-title: Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity publication-title: Nat. Commun. doi: 10.1038/s41467-022-30411-7 – volume: 143 start-page: 1807 year: 2021 end-page: 1815 ident: CR39 article-title: On-nanoparticle gating units render an ordinary catalyst substrate- and site-selective publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09408 – volume: 61 start-page: e202206926 year: 2022 ident: CR16 article-title: A versatile chemoenzymatic nanoreactor that mimics NAD(P)H oxidase for the in situ regeneration of cofactors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206926 – volume: 6 start-page: 916 year: 2023 end-page: 926 ident: CR56 article-title: Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells publication-title: Nat. Catal. doi: 10.1038/s41929-023-01017-z – volume: 96 start-page: 721 year: 1996 end-page: 758 ident: CR9 article-title: Artificial enzymes publication-title: Chem. Rev. doi: 10.1021/cr9403704 – volume: 144 start-page: 4942 year: 2022 end-page: 4951 ident: CR75 article-title: Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c12772 – volume: 382 start-page: 547 year: 2023 end-page: 553 ident: CR1 article-title: Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal–organic framework publication-title: Science doi: 10.1126/science.add7417 – volume: 14 year: 2023 ident: 50123_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42889-w – volume: 7 start-page: 436 year: 2021 ident: 50123_CR43 publication-title: Chem doi: 10.1016/j.chempr.2020.10.023 – volume: 12 year: 2021 ident: 50123_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20275-0 – volume: 118 start-page: 142 year: 2017 ident: 50123_CR8 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00014 – volume: 11 year: 2020 ident: 50123_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14199-7 – volume: 37 start-page: 111 year: 2009 ident: 50123_CR47 publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2009.05.004 – volume: 7 start-page: 7726 year: 2017 ident: 50123_CR63 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02647 – volume: 13 year: 2022 ident: 50123_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28344-2 – volume: 119 start-page: 5435 year: 1997 ident: 50123_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970375t – volume: 1 start-page: 282 year: 2018 ident: 50123_CR74 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0044-2 – volume: 48 start-page: 3683 year: 2019 ident: 50123_CR13 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00718G – volume: 61 start-page: e202206926 year: 2022 ident: 50123_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206926 – volume: 7 start-page: 4623 year: 2017 ident: 50123_CR71 publication-title: ACS Catal. doi: 10.1021/acscatal.7b00901 – volume: 34 start-page: 2205324 year: 2022 ident: 50123_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.202205324 – volume: 11 year: 2020 ident: 50123_CR76 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15782-z – volume: 145 start-page: 11829 year: 2023 ident: 50123_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c03426 – volume: 3 start-page: 289 year: 2020 ident: 50123_CR4 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0420-6 – volume: 96 start-page: 721 year: 1996 ident: 50123_CR9 publication-title: Chem. Rev. doi: 10.1021/cr9403704 – volume: 13 year: 2022 ident: 50123_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30411-7 – volume: 11 start-page: 9741 year: 2020 ident: 50123_CR35 publication-title: Chem. Sci. doi: 10.1039/D0SC03522J – volume: 4 start-page: 595 year: 2021 ident: 50123_CR37 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00649-3 – volume: 22 start-page: 508 year: 2021 ident: 50123_CR67 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04454 – volume: 144 start-page: 4942 year: 2022 ident: 50123_CR75 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c12772 – volume: 57 start-page: 16791 year: 2018 ident: 50123_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811118 – volume: 42 start-page: 12369 year: 2018 ident: 50123_CR69 publication-title: N. J. Chem. doi: 10.1039/C8NJ01902A – volume: 120 start-page: e2308035120 year: 2023 ident: 50123_CR73 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2308035120 – volume: 144 start-page: 15845 year: 2022 ident: 50123_CR64 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06810 – volume: 6 start-page: 916 year: 2023 ident: 50123_CR56 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01017-z – volume: 5 start-page: 9741 year: 2019 ident: 50123_CR23 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav5490 – volume: 137 start-page: 15882 year: 2015 ident: 50123_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10346 – volume: 139 start-page: 5412 year: 2017 ident: 50123_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00601 – volume: 139 start-page: 14889 year: 2017 ident: 50123_CR66 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 61 start-page: e202116170 year: 2022 ident: 50123_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116170 – volume: 30 start-page: 1905410 year: 2019 ident: 50123_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905410 – volume: 14 year: 2023 ident: 50123_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35721-4 – volume: 119 start-page: 4357 year: 2019 ident: 50123_CR36 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00672 – volume: 570 start-page: 219 year: 2019 ident: 50123_CR2 publication-title: Nature doi: 10.1038/s41586-019-1262-8 – volume: 1 start-page: 680 year: 2018 ident: 50123_CR6 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0124-3 – volume: 122 start-page: 11252 year: 2000 ident: 50123_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002829j – volume: 59 start-page: 286 year: 2019 ident: 50123_CR60 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201910879 – volume: 142 start-page: 15569 year: 2020 ident: 50123_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07273 – volume: 61 start-page: e202210789 year: 2022 ident: 50123_CR53 publication-title: evolution. Angew. Chem. Int. Ed. doi: 10.1002/anie.202210789 – volume: 20 start-page: 395 year: 2020 ident: 50123_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00856-6 – volume: 143 start-page: 7819 year: 2021 ident: 50123_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03135 – volume: 58 start-page: 14731 year: 2019 ident: 50123_CR59 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908274 – volume: 361 start-page: 1098 year: 2018 ident: 50123_CR3 publication-title: Science doi: 10.1126/science.aat8474 – volume: 13 year: 2022 ident: 50123_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33098-y – volume: 145 start-page: 26783 year: 2023 ident: 50123_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08974 – volume: 140 start-page: 10315 year: 2018 ident: 50123_CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06020 – volume: 145 start-page: 3108 year: 2023 ident: 50123_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12336 – volume: 145 start-page: 16835 year: 2023 ident: 50123_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c05162 – volume: 36 start-page: 4731 year: 1997 ident: 50123_CR50 publication-title: Biochemistry doi: 10.1021/bi963184w – volume: 12 start-page: 8865 year: 2021 ident: 50123_CR44 publication-title: Chem. Sci. doi: 10.1039/D1SC02170B – volume: 142 start-page: 19602 year: 2020 ident: 50123_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08360 – volume: 382 start-page: 547 year: 2023 ident: 50123_CR1 publication-title: Science doi: 10.1126/science.add7417 – volume: 143 start-page: 1807 year: 2021 ident: 50123_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09408 – volume: 4 start-page: 407 year: 2021 ident: 50123_CR33 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 17 start-page: 657 year: 1978 ident: 50123_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.197806571 – volume: 60 start-page: 7654 year: 2021 ident: 50123_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202017001 – volume: 62 start-page: e202302329 year: 2023 ident: 50123_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202302329 – volume: 600 start-page: 37 year: 2021 ident: 50123_CR68 publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.05.025 – volume: 43 start-page: 1734 year: 2014 ident: 50123_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60037H – volume: 59 start-page: 14498 year: 2020 ident: 50123_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003949 – volume: 60 start-page: 4192 year: 2021 ident: 50123_CR72 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013427 – volume: 4 start-page: 719 year: 2021 ident: 50123_CR52 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00665-3 – volume: 2 start-page: 577 year: 2007 ident: 50123_CR12 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2007.260 – volume: 131 start-page: 4965 year: 2019 ident: 50123_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201813994 – volume: 60 start-page: 16937 year: 2021 ident: 50123_CR61 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104494 – volume: 95 start-page: 2415 year: 2008 ident: 50123_CR49 publication-title: Biophys. J. doi: 10.1529/biophysj.107.122184 – volume: 2 start-page: 1194 year: 2023 ident: 50123_CR77 publication-title: Nat. Synth. doi: 10.1038/s44160-023-00384-6 – volume: 218 start-page: 532 year: 1982 ident: 50123_CR10 publication-title: Science doi: 10.1126/science.7123255 – volume: 9 year: 2018 ident: 50123_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03903-8 – volume: 37 start-page: 11651 year: 1998 ident: 50123_CR70 publication-title: Biochemistry doi: 10.1021/bi980446g – volume: 12 year: 2021 ident: 50123_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20965-3 – volume: 2 start-page: 977 year: 2019 ident: 50123_CR5 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0348-x – volume: 15 start-page: 10063 year: 2022 ident: 50123_CR65 publication-title: Nano Res doi: 10.1007/s12274-022-4467-3 – volume: 2 start-page: 534 year: 2021 ident: 50123_CR32 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00074 |
SSID | ssj0000391844 |
Score | 2.6035872 |
Snippet | In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an... Abstract In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5705 |
SubjectTerms | 119/118 140/131 140/146 140/58 147/137 639/301/357/537 639/638/45/603 639/638/77/603 Absorption spectroscopy Binding Sites Biochemical fuel cells Biofuels Catalysis Catalytic Domain Enzymes Humanities and Social Sciences Humans Ligands Metals Mimicry Models, Molecular multidisciplinary Nickel - chemistry Nickel - metabolism Oxidase Oxidation Oxidation-Reduction Photoelectron spectroscopy Photoelectrons Pressure Proteins Recognition Science Science (multidisciplinary) Selectivity Soft x rays Spectrum analysis Substrate Specificity Substrates Urate oxidase Urate Oxidase - chemistry Urate Oxidase - metabolism Uric acid Uric Acid - chemistry Uric Acid - metabolism Uric Acid - urine X ray absorption X ray photoelectron spectroscopy X-Ray Absorption Spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KINBLaPpInaZFgd5aEXs1lu1jGxpCID01kJvQaxPDrrd0dyHpr8-M7N1m26S99OqRYRiNNN_MSJ8A3mNQo0Q563NbSgwjLZvGFtLmY6d8Qelb5IL--Vd9eoFnl-Xlvae--ExYTw_cG-5IY0DruF8YLDo-LGlLpWMcK_QEjtPVPYp595KptAerhlIXHG7J5Ko-mmPaEygkyZJxhMSNSJQI-x9CmX8elvytY5oC0ckz2BkQpPjUa74LT2L3HLb7NyVvX0A4j4Sn5aS9sl0QfNNKcoNYcE1gEiXl2FPR2W7283YaxbSdtp6L5WLJlBFidtMGCmuCq7OCmYzFnDaWRGA7F3wpkw8WEW5_CRcnX74dn8rhKQXpSywWUilCHli7vKktZVTjyhOuCs674AuK0IQzIuEaJOlYeaxVrW0RNFMXOhw5HdUr2OpmXXwNwueuqIJHX1FuSfjRFnnAWFaByQetbjIoVmY1fuAZ5-cuJib1u1Vt-qkwNN6kqTCYwYf1P997lo2_jv7Ms7UeyQzZ6QP5jRn8xvzLbzI4WM21GZbt3CjuSxKgbcoMDtdiWnDcRbFdnC3TGEqBNVkzg73eNdaaEPqrSJpnUG84zYaqm5KuvU6k3oR7FXc5M_i48q9fej1ui_3_YYs38HTEC4Or1vUBbC1-LONbwloL9y4tqzu7xyL1 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlbj9SRxTggQS4VUTlTqzfJrS6TdpDS7Eu2vZ8bJploeva69kuMZe755-BvG3kBQs0Q563NbCAizUtS1lcLmC6e8RPctUkD_-Ft5dAJfT4vTMeDWj2WV2zsxXdSh8xQjP1SUMkKsURfvz38K6hpF2dWxhcZtdkeipaGSLj3_MsVYiP1cA4xvZXKlD3tINwMaJlEQmhCwY48Sbf-_sObfJZN_5E2TOZo_YPdHHMk_DIJ_yG7F9hG7O3SWvHzMwnFEVC2WzZltA6f3VoI-hFNkYBkFetor3tq2u7pcRb5qVo2nkDnfEHEE7341AY0bpxgtJz5j3uP1kmhse05PM6m8CNH7E3Yy__z905EYGyoIX4BcC6UQf4B2ea0t-lWLyiO6Cs674CXaaUQbEdEN4OhCedBKl1aGkggMHcxcGdVTttd2bXzOuM-drIIHX6GHiSjSyjxALKpAFIS2rDMmt9tq_Mg2Tk0vliZlvZU2gygMzjdJFAYy9nb6z_nAtXHj7I8krWkm8WSnH7qLMzMeO1NCAOso2xwsOCq1tYUqY1wo8Oha4TIPtrI24-HtzbWqZez1NIzHjnIpto3dJs1BR7jE3czYs0E1ppUgBqxwNM-Y3lGanaXujrTNj0TtjehXUa4zY--2-nW9rv_vxf7Nn_GC3ZuRylNUWh-wvfXFJr5ELLV2r9KB-Q3XEhrB priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WXQQv4tvWVSJ402B3p_p1HMVlGVgvurC3kNesAzPdsjMDrr_eqvRDRlfBayeBIqnq-uqRLwCv0as8Us661BQSfV7KpjGZNOnCKpdR-BY4oX_2qTw9x_lFcXEA-XgXJjbtR0rL-Jseu8PebTCaNHkUWTAMkHgLjpiqnXT7aDabf55PmRXmPK8RhxsyqapvWLznhSJZ_00I889Gyd-qpdEJndyDuwN6FLNe3vtwENoHcLt_T_L6IfizQFharpaXpvWCb1lJLg4LzgesgqT4ei1a03Y_rtdBrJfrpeNEudgxXYTovi89uTTBmVnBLMZiQz-VSF67EXwhk5uKCLM_gvOTj18-nMrhGQXpCsy2UilCHVjbtKkNRVOLyhGm8tZZ7zLyzoQxAmEapNGFclirujSZL5m20GJuy6Aew2HbteEpCJfarPIOXUVxJWFHk6UeQ1F5Jh40ZZNANm6rdgPHOD91sdKx1q1q3R-Fpvk6HoXGBN5Ma771DBv_nP2eT2uayezY8UN3dakHbdElejSWa8zeoOUGW1OoMoSFQkcBFYl5PJ61Hkx2oxXXJAnMNkUCr6ZhMjauoJg2dLs4h8LfknYzgSe9akySEPKraDRNoN5Tmj1R90fa5ddI6E2YV3GFM4G3o379kuvve_Hs_6Y_hzs5mwDnputjONxe7cILQlRb-3IwoZ90pRnI priority: 102 providerName: Springer Nature |
Title | Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity |
URI | https://link.springer.com/article/10.1038/s41467-024-50123-4 https://www.ncbi.nlm.nih.gov/pubmed/38977710 https://www.proquest.com/docview/3076832695 https://www.proquest.com/docview/3077176348 https://pubmed.ncbi.nlm.nih.gov/PMC11231224 https://doaj.org/article/64d4ab6727da4b1992a536eef34c1189 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQ0hcEG8CS2UkbmBIYud1QKhbbVlV6goBlXqLHNtdIrUJ9CFt-fXMOElRoSAujRQ71cQeZ76Zsb8BeCmNCB3lrPZVxKUJY55lKuDKnxVCB-i-WQroj6_iy4kcTaPpEXTljtoBXB107aie1GQ5f3PzffseF_y75sh4-nYl3XJHa8MjgghcHsMpWqaEKhqMW7jvvswiQ4eGEs2hLwOOHUR7jubw3-zZKkfpfwiH_rmd8recqjNVw7twp8WYrN8oxT04stV9uNVUndw-ADO2-LJ8Xl6ryjA6i8UphcwoajC3HL3wBatUVf_YLixblItSUzidbYhUgtU3pUHDxyh-y4jrmK3w0-MobleMjm3S1iNE9g9hMrz4MrjkbbEFriMZrLkQiE1kWvhZqtDnmiUakZcpdGF0gDYckYhF5COxdSa0TEUaq8DERG5YyLCIrXgEJ1Vd2SfAtF8EidFSJ-h9IsJUgW-kjRJD9IQqzjwIumHNdctETgUx5rnLiIs0b6Yix_65m4pcevBq98y3hofjn73PabZ2PYlD292ol9d5uyTzWBqpCspEGyUL2oarIhFbOxNSo9uFYp51c513epkLylwi5M0iD17smnFJUp5FVbbeuD7oJMc4mh48blRjJwniwwRbfQ_SPaXZE3W_pSq_OtpvRMaC8qAevO7065dcfx-Lp_8h5zO4HZLeU9g6PYOT9XJjnyPYWhc9OE6mCf6mww89OO33R59HeD2_uPr4Ce8O4kHPhTF6bqX9BPHuKHw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxLMsFDASnMDq7tq72T0gxCuktOmplXozXtspKyW7pUkE4UfxG5nxPqrw6K3X2ImcmfE8Pd8APJdWxB5y1oQ64dLGKc9zHXEdTgphIgzfHCX0xwfp6Eh-Pk6ON-BX1wtDzyo7negVta0N5ch3BJWM0NfIkzen3zhNjaLqajdCoxGLPbf6jiHb_PXuB-Tvizgefjx8P-LtVAFuEhktuBBohGVWhHmmMbiYDAy6GLYwhTURGis0uQ5NvMTViTAyE1mqI5sSil8h4yJ1An_3ClyVAi05daYPP_U5HUJbz6Rse3NCke3MpddEaAh5Qt4Ll2v2z48J-Jdv-_cTzT_qtN78DW_BzdZvZW8bQbsNG666A9eaSZaru2DHDr14Pi1PdGUZ9XdxIhyjTMTUcYzsZ6zSVf1zNXNsVs5KQyl6tiSgClb_KC0aU0Y5YUb4yWyO6szD5s4ZtYLScyaMFu7B0aWQ-j5sVnXlHgAzYRENrJFmgBEteq06Cq10ycAS5KFO8wCijqzKtOjmNGRjqnyVXWSqYYXC_cqzQskAXvbfOW2wPS7c_Y641e8kXG7_QX12otprrlJppS6oum21LOhpr05E6txESIOhHB5zu-O1apXFXJ2LdgDP-mW85lS70ZWrl34PBt4pUjOArUY0-pOgzznA1TCAbE1o1o66vlKVXz2UOHrbgmqrAbzq5Ov8XP-nxcOL_8ZTuD46HO-r_d2DvUdwIybxp4x4tg2bi7Ole4x-3KJ44i8Pgy-XfVt_AyLmVXU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqUBcEDtTChgJTmBlZuxZckCI0kYtpVGFqNSb67GdEimZaZtEEH4av473PDOpwtJbr7ETOW9f7O8BvJJWxB5y1oQ64dLGKe_1dMR1OCyEiTB9c1TQPxiku0fy03FyvAa_2rcwdK2ytYneUNvKUI28K6hlhLFGL-kOm2sRh9v992fnnCZIUae1HadRi8i-W3zH9G36bm8bef06jvs7Xz_u8mbCADeJjGZcCHTIMi_CXq4x0RhmBsMNW5jCmggdF7pfh-5e4upQGJmLPNWRTQnRr5BxkTqBv3sD1jPKijqwvrUzOPyyrPAQ9nouZfNSJxR5dyq9XUK3yBOKZbhc8YZ-aMC_It2_L2z-0bX1zrB_F-40USz7UIvdPVhz5X24Wc-1XDwAe-Awpufj0akuLaPXXpxIx6guMXYc8_wJK3VZ_VxMHJuMJiNDBXs2J9gKVv0YWXStjCrEjNCU2RSNmwfRnTJ6GEqXmzB3eAhH10LsR9Apq9I9AWbCIsqskSbD_BZjWB2FVrokswSAqNNeAFFLVmUarHMauTFWvucuclWzQuF-5VmhZABvlt85q5E-rty9Rdxa7iSUbv9BdXGqGqVXqbRSF9TrtloWdNFXJyJ1biikwcQOj7nZ8lo1pmOqLgU9gJfLZVR66uTo0lVzvwfT8BSpGcDjWjSWJ8EINMPVMIB8RWhWjrq6Uo6-eWBxjL0FdVoDeNvK1-W5_k-Ljav_xgu4hZqqPu8N9p_C7Zikn8rj-SZ0Zhdz9wyDulnxvNEeBifXrbC_AQh8Wwc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-ligand+dual-site+single-atom+nanozyme+mimicking+urate+oxidase+with+high+substrates+specificity&rft.jtitle=Nature+communications&rft.au=Wang%2C+Kaiyuan&rft.au=Hong%2C+Qing&rft.au=Zhu%2C+Caixia&rft.au=Xu%2C+Yuan&rft.date=2024-07-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5705&rft_id=info:doi/10.1038%2Fs41467-024-50123-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |