Investigation on explainable machine learning models to predict chronic kidney diseases

Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 3687 - 15
Main Authors Ghosh, Samit Kumar, Khandoker, Ahsan H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.02.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-54375-4

Cover

Loading…
Abstract Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model’s visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively.
AbstractList Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model’s visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively.
Abstract Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model’s visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively.
Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world's population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model's visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively.Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world's population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model's visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively.
ArticleNumber 3687
Author Khandoker, Ahsan H.
Ghosh, Samit Kumar
Author_xml – sequence: 1
  givenname: Samit Kumar
  surname: Ghosh
  fullname: Ghosh, Samit Kumar
  email: samitnitrkl@gmail.com
  organization: Department of Biomedical Engineering & Biotechnology, Khalifa University
– sequence: 2
  givenname: Ahsan H.
  surname: Khandoker
  fullname: Khandoker, Ahsan H.
  organization: Department of Biomedical Engineering & Biotechnology, Khalifa University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38355876$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUhVGVqknT_IEuKkvddOOWpw2rqoraZqRI3UTqEmG49jC1YQqeKPn3ZcZJ81gEIYHgnE-Hy32LjkIMgNB7gj8TzOSXzIlQssaU14KzVtT8FTqhmIuaMkqPHu2P0VnOG1yGoIoT9QYdM8mEkG1zgn6vwjXk2Q9m9jFUZcLNdjQ-mG6EajJ27QNUI5gUfBiqKToYczXHapvAeTtXdp1i8Lb6412A28r5DCZDfode92bMcHa3nqKrH9-vzi_qy18_V-ffLmsrOJlr6gTrKSMgsGuhV8Qp3jCnpDCsIwSUc7Rpu9aIVhhoKGAD1LSYdU5a7NgpWi1YF81Gb5OfTLrV0Xh9OIhp0CbN3o6gGe8bJrBUtDe875kkIGnbM96JjgNpC-vrwtruugmchTAnMz6BPr0Jfq2HeK0Jlk2jBCuET3eEFP_uSln15LOFcTQB4i5rqmhLCWV4L_34TLqJuxRKqfaqhpVXN7yoPjyO9D_L_f8VgVwENsWcE_Ta-vnwlSWhH0s0ve8WvXSLLt2iD92i92z6zHpPf9HEFlMu4jBAeoj9gusfBCnR5g
CitedBy_id crossref_primary_10_1371_journal_pone_0306999
crossref_primary_10_1109_ACCESS_2025_3535692
crossref_primary_10_1038_s41598_025_89934_w
crossref_primary_10_3390_biomedicines12122858
crossref_primary_10_48175_IJARSCT_23906
crossref_primary_10_1109_ACCESS_2024_3514197
crossref_primary_10_3390_app14156638
crossref_primary_10_3390_app15062960
crossref_primary_10_1016_j_cmpbup_2024_100173
crossref_primary_10_1016_j_cmpbup_2024_100160
crossref_primary_10_1109_ACCESS_2024_3422319
crossref_primary_10_1080_0886022X_2024_2435483
crossref_primary_10_3390_info16010007
crossref_primary_10_3389_fpubh_2025_1510456
Cites_doi 10.1371/journal.pone.0246306
10.1109/ACCESS.2021.3133700
10.3390/diagnostics11122267
10.1016/j.asoc.2007.01.003
10.1504/IJDATS.2011.041335
10.1007/s00521-020-04708-x
10.1007/978-981-15-2774-6_29
10.1145/234313.234346
10.1038/s41598-023-31542-7
10.1051/shsconf/202110204004
10.2337/db18-539-P
10.1016/S0140-6736(16)31012-1
10.1016/j.ijmedinf.2021.104484
10.32604/cmc.2022.019790
10.1142/S0219649220400158
10.1038/s42256-019-0138-9
10.1016/B978-0-12-809633-8.20473-1
10.1016/j.procs.2020.04.178
10.1613/jair.953
10.1371/journal.pone.0199920
10.7717/peerj-cs.127
10.1111/j.1523-1755.2005.00365.x
10.1016/j.tig.2020.03.005
10.1038/kisup.2012.73
10.1016/S0140-6736(21)00519-5
10.1186/s12967-019-1860-0
10.1186/s12882-020-02093-0
10.1038/s41598-023-35795-0
10.1007/s40121-022-00628-6
10.3389/fnano.2022.972421
10.1007/978-3-030-28553-1_9
10.5120/8762-2680
10.2337/dc23-S011
10.1007/s10916-017-0703-x
10.1155/2021/4931450
10.1016/j.csbj.2022.06.003
10.1053/j.ajkd.2019.02.016
10.1088/1361-6579/abf9f3
10.1136/bmj.l886
10.1016/j.compbiomed.2020.104041
10.3390/buildings12060734
10.1002/ima.22406
10.1109/ICAICT.2018.8747140
10.1145/2939672.2939778
10.1109/MEDITEC.2016.7835365
10.1109/COMPSAC.2017.84
10.1109/ICICT50816.2021.9358491
10.1109/CITSM.2017.8089245
10.1145/3233547.3233667
10.1109/ICHI.2016.36
10.1109/BIBE.2017.00-39
10.1109/INCET49848.2020.9154147
10.1145/3468264.3477217
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-54375-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_34f6350892fa4ff381e827f34b5b4e17
PMC10866953
38355876
10_1038_s41598_024_54375_4
Genre Journal Article
GrantInformation_xml – fundername: Khalifa University, United Arab Emirates
  grantid: Award Number: 8474000408
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-2d53f231e50d7ef91d9463d985a3b11e9dd267b7a575ae62e0ae2a703bd8c0d3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:29 EDT 2025
Thu Aug 21 18:35:10 EDT 2025
Fri Jul 11 15:15:40 EDT 2025
Wed Aug 13 05:16:35 EDT 2025
Mon Jul 21 05:40:24 EDT 2025
Tue Jul 01 00:51:20 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-2d53f231e50d7ef91d9463d985a3b11e9dd267b7a575ae62e0ae2a703bd8c0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2926326764?pq-origsite=%requestingapplication%
PMID 38355876
PQID 2926326764
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_34f6350892fa4ff381e827f34b5b4e17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10866953
proquest_miscellaneous_2927212303
proquest_journals_2926326764
pubmed_primary_38355876
crossref_citationtrail_10_1038_s41598_024_54375_4
crossref_primary_10_1038_s41598_024_54375_4
springer_journals_10_1038_s41598_024_54375_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-14
PublicationDateYYYYMMDD 2024-02-14
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Levin (CR50) 2013; 3
Kalantar-Zadeh, Jafar, Nitsch, Neuen, Perkovic (CR2) 2021; 398
Chawla, Bowyer, Hall, Kegelmeyer (CR51) 2002; 16
Avci (CR23) 2008; 8
Jena, Nayak, Swain (CR9) 2019; 232–239
Prusty, Patnaik, Dash (CR47) 2022; 4
Liu (CR52) 2021; 16
Magesh, Myloth, Tom (CR40) 2020; 126
Segal (CR5) 2020; 21
ElSayed (CR4) 2023; 46
Mitchell, Frank (CR37) 2017; 3
CR45
CR44
CR42
Wang (CR3) 2016; 388
Al-Shamsi, Regmi, Govender (CR26) 2018; 13
Watson (CR29) 2019
Aswathy (CR24) 2022; 70
Meddage (CR39) 2022; 12
Alsuhibany (CR25) 2021
Berrar (CR35) 2018; 403
Levey (CR1) 2005; 67
CR19
Azodi, Tang, Shiu (CR30) 2020; 36
CR17
CR16
CR15
CR14
Devan, Khare (CR38) 2020; 32
CR12
Hu (CR28) 2022; 20
Lundberg, Lee (CR41) 2017; 30
Hu (CR53) 2022; 11
Maalouf (CR32) 2011; 3
Polat, Danaei Mehr, Cetin (CR13) 2017; 41
Makino (CR7) 2018
Chicco, Lovejoy, Oneto (CR27) 2021; 9
Gupta, Malviya, Singh (CR33) 2012
Balakrishnan (CR21) 2020; 171
Song, Liu, Liu, Wang (CR54) 2021; 151
JerlinRubini, Perumal (CR18) 2020; 30
Laatifi (CR43) 2023; 13
Quinlan (CR34) 1996; 28
Allen, Liu, Iqbal, Zheng, Stansby (CR49) 2021; 42
Alaiad, Najadat, Mohsen, Balhaf (CR10) 2020; 19
CR22
Xiao (CR6) 2019; 17
CR20
Lundberg (CR31) 2020; 2
Chowdhury (CR8) 2021; 11
Chen (CR36) 2019; 74
Alabi, Elmusrati, Leivo, Almangush, Mäkitie (CR46) 2023; 13
Tanimu, Hamada, Hassan, Ilu (CR48) 2021; 102
Alloghani, Al-Jumeily, Hussain, Liatsis, Aljaaf (CR11) 2020
54375_CR20
54375_CR22
K Kalantar-Zadeh (54375_CR2) 2021; 398
A Levin (54375_CR50) 2013; 3
SM Lundberg (54375_CR41) 2017; 30
JJ Tanimu (54375_CR48) 2021; 102
M Laatifi (54375_CR43) 2023; 13
54375_CR15
JR Quinlan (54375_CR34) 1996; 28
54375_CR16
54375_CR17
NA ElSayed (54375_CR4) 2023; 46
54375_CR19
C Hu (54375_CR28) 2022; 20
R Aswathy (54375_CR24) 2022; 70
P Meddage (54375_CR39) 2022; 12
J Allen (54375_CR49) 2021; 42
54375_CR12
H Polat (54375_CR13) 2017; 41
D Gupta (54375_CR33) 2012
54375_CR14
SM Lundberg (54375_CR31) 2020; 2
A Alaiad (54375_CR10) 2020; 19
S Balakrishnan (54375_CR21) 2020; 171
NV Chawla (54375_CR51) 2002; 16
L Jena (54375_CR9) 2019; 232–239
AS Levey (54375_CR1) 2005; 67
SA Alsuhibany (54375_CR25) 2021
D Berrar (54375_CR35) 2018; 403
54375_CR42
E Avci (54375_CR23) 2008; 8
DS Watson (54375_CR29) 2019
54375_CR44
54375_CR45
T Chen (54375_CR36) 2019; 74
D Chicco (54375_CR27) 2021; 9
L JerlinRubini (54375_CR18) 2020; 30
RO Alabi (54375_CR46) 2023; 13
S Prusty (54375_CR47) 2022; 4
S Al-Shamsi (54375_CR26) 2018; 13
R Mitchell (54375_CR37) 2017; 3
P Devan (54375_CR38) 2020; 32
X Song (54375_CR54) 2021; 151
NH Chowdhury (54375_CR8) 2021; 11
CB Azodi (54375_CR30) 2020; 36
C Hu (54375_CR53) 2022; 11
Z Segal (54375_CR5) 2020; 21
PR Magesh (54375_CR40) 2020; 126
M Makino (54375_CR7) 2018
H Wang (54375_CR3) 2016; 388
J Liu (54375_CR52) 2021; 16
M Alloghani (54375_CR11) 2020
M Maalouf (54375_CR32) 2011; 3
J Xiao (54375_CR6) 2019; 17
References_xml – ident: CR45
– volume: 16
  year: 2021
  ident: CR52
  article-title: Predicting mortality of patients with acute kidney injury in the icu using xgboost model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0246306
– ident: CR22
– volume: 9
  start-page: 165132
  year: 2021
  end-page: 165144
  ident: CR27
  article-title: A machine learning analysis of health records of patients with chronic kidney disease at risk of cardiovascular disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133700
– ident: CR16
– ident: CR12
– volume: 11
  start-page: 2267
  year: 2021
  ident: CR8
  article-title: Performance analysis of conventional machine learning algorithms for identification of chronic kidney disease in type 1 diabetes mellitus patients
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11122267
– volume: 8
  start-page: 225
  year: 2008
  end-page: 231
  ident: CR23
  article-title: Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.01.003
– volume: 3
  start-page: 281
  year: 2011
  end-page: 299
  ident: CR32
  article-title: Logistic regression in data analysis: An overview
  publication-title: Int. J. Data Anal. Tech. Strat.
  doi: 10.1504/IJDATS.2011.041335
– volume: 32
  start-page: 12499
  year: 2020
  end-page: 12514
  ident: CR38
  article-title: An efficient xgboost-dnn-based classification model for network intrusion detection system
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04708-x
– ident: CR42
– volume: 232–239
  start-page: 2020
  year: 2019
  ident: CR9
  article-title: Chronic disease risk (CDR) prediction in biomedical data using machine learning approach
  publication-title: Adv. Intell. Comput. Commun. Proc. ICAC
  doi: 10.1007/978-981-15-2774-6_29
– volume: 28
  start-page: 71
  year: 1996
  end-page: 72
  ident: CR34
  article-title: Learning decision tree classifiers
  publication-title: ACM Comput. Surv.
  doi: 10.1145/234313.234346
– ident: CR19
– volume: 13
  start-page: 5481
  year: 2023
  ident: CR43
  article-title: Explanatory predictive model for covid-19 severity risk employing machine learning, Shapley addition, and lime
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31542-7
– volume: 102
  start-page: 04004
  year: 2021
  ident: CR48
  article-title: A contemporary machine learning method for accurate prediction of cervical cancer
  publication-title: SHS Web Conf.
  doi: 10.1051/shsconf/202110204004
– ident: CR15
– year: 2018
  ident: CR7
  article-title: Artificial intelligence predicts progress of diabetic kidney disease-novel prediction model construction with big data machine learning
  publication-title: Diabetes
  doi: 10.2337/db18-539-P
– volume: 388
  start-page: 1459
  year: 2016
  end-page: 1544
  ident: CR3
  article-title: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the global burden of disease study 2015
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31012-1
– volume: 151
  year: 2021
  ident: CR54
  article-title: Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2021.104484
– volume: 70
  start-page: 2097
  year: 2022
  end-page: 2111
  ident: CR24
  article-title: Optimized tuned deep learning model for chronic kidney disease classification
  publication-title: Comput. Mater. Contin.
  doi: 10.32604/cmc.2022.019790
– volume: 30
  start-page: 25
  year: 2017
  ident: CR41
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 2040015
  year: 2020
  ident: CR10
  article-title: Classification and association rule mining technique for predicting chronic kidney disease
  publication-title: J. Inf. Knowl. Manage.
  doi: 10.1142/S0219649220400158
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: CR31
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 403
  start-page: 412
  year: 2018
  ident: CR35
  article-title: Bayes’ theorem and Naive Bayes classifier
  publication-title: Encyclop. Bioinform. Comput. Biolo. ABC Bioinform.
  doi: 10.1016/B978-0-12-809633-8.20473-1
– volume: 171
  start-page: 1660
  year: 2020
  end-page: 1669
  ident: CR21
  article-title: Feature selection using improved teaching learning based algorithm on chronic kidney disease dataset
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2020.04.178
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR51
  article-title: Smote: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 13
  year: 2018
  ident: CR26
  article-title: Chronic kidney disease in patients at high risk of cardiovascular disease in the united Arab Emirates: A population-based study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0199920
– volume: 3
  year: 2017
  ident: CR37
  article-title: Accelerating the xgboost algorithm using GPU computing
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.127
– volume: 67
  start-page: 2089
  year: 2005
  end-page: 2100
  ident: CR1
  article-title: Definition and classification of chronic kidney disease: A position statement from kidney disease: Improving global outcomes (KDIGO)
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2005.00365.x
– volume: 36
  start-page: 442
  year: 2020
  end-page: 455
  ident: CR30
  article-title: Opening the black box: Interpretable machine learning for geneticists
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.03.005
– volume: 3
  start-page: 2012
  issue: 1–150
  year: 2013
  ident: CR50
  article-title: Kidney clinical practice guideline for the evaluation and management of chronic kidney disease
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2012.73
– ident: CR14
– volume: 398
  start-page: 786
  year: 2021
  end-page: 802
  ident: CR2
  article-title: Chronic kidney disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00519-5
– volume: 17
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR6
  article-title: Comparison and development of machine learning tools in the prediction of chronic kidney disease progression
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-019-1860-0
– volume: 21
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR5
  article-title: Machine learning algorithm for early detection of end-stage renal disease
  publication-title: BMC Nephrol.
  doi: 10.1186/s12882-020-02093-0
– volume: 13
  start-page: 8984
  year: 2023
  ident: CR46
  article-title: Machine learning explainability in nasopharyngeal cancer survival using lime and shap
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35795-0
– volume: 11
  start-page: 1117
  year: 2022
  end-page: 1132
  ident: CR53
  article-title: Interpretable machine learning for early prediction of prognosis in sepsis: A discovery and validation study
  publication-title: Infect. Dis. Ther.
  doi: 10.1007/s40121-022-00628-6
– volume: 4
  year: 2022
  ident: CR47
  article-title: Skcv: Stratified k-fold cross-validation on ml classifiers for predicting cervical cancer
  publication-title: Front. Nanotechnol.
  doi: 10.3389/fnano.2022.972421
– year: 2020
  ident: CR11
  article-title: Performance-based prediction of chronic kidney disease using machine learning for high-risk cardiovascular disease patients
  publication-title: Nat. Inspired Comput. Data Min. Mach. Learn.
  doi: 10.1007/978-3-030-28553-1_9
– year: 2012
  ident: CR33
  article-title: Performance analysis of classification tree learning algorithms
  publication-title: Int. J. Comput. Appl.
  doi: 10.5120/8762-2680
– ident: CR44
– volume: 46
  start-page: S191
  year: 2023
  end-page: S202
  ident: CR4
  article-title: 11 chronic kidney disease and risk management: Standards of care in diabetes-2023
  publication-title: Diabetes Care
  doi: 10.2337/dc23-S011
– volume: 41
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR13
  article-title: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0703-x
– year: 2021
  ident: CR25
  article-title: Ensemble of deep learning based clinical decision support system for chronic kidney disease diagnosis in medical internet of things environment
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/4931450
– ident: CR17
– volume: 20
  start-page: 2861
  year: 2022
  end-page: 2870
  ident: CR28
  article-title: Application of interpretable machine learning for early prediction of prognosis in acute kidney injury
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.06.003
– volume: 74
  start-page: 300
  year: 2019
  end-page: 309
  ident: CR36
  article-title: Prediction and risk stratification of kidney outcomes in IGA nephropathy
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2019.02.016
– volume: 42
  year: 2021
  ident: CR49
  article-title: Deep learning-based photoplethysmography classification for peripheral arterial disease detection: A proof-of-concept study
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abf9f3
– year: 2019
  ident: CR29
  article-title: Clinical applications of machine learning algorithms: Beyond the black box
  publication-title: BMJ
  doi: 10.1136/bmj.l886
– volume: 126
  year: 2020
  ident: CR40
  article-title: An explainable machine learning model for early detection of Parkinson’s disease using lime on datscan imagery
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104041
– volume: 12
  start-page: 734
  year: 2022
  ident: CR39
  article-title: Interpretation of machine-learning-based (black-box) wind pressure predictions for low-rise gable-roofed buildings using Shapley additive explanations (SHAP)
  publication-title: Buildings
  doi: 10.3390/buildings12060734
– volume: 30
  start-page: 660
  year: 2020
  end-page: 673
  ident: CR18
  article-title: Efficient classification of chronic kidney disease by using multi-kernel support vector machine and fruit fly optimization algorithm
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22406
– ident: CR20
– volume: 388
  start-page: 1459
  year: 2016
  ident: 54375_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31012-1
– volume: 4
  year: 2022
  ident: 54375_CR47
  publication-title: Front. Nanotechnol.
  doi: 10.3389/fnano.2022.972421
– year: 2021
  ident: 54375_CR25
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/4931450
– ident: 54375_CR15
  doi: 10.1109/ICAICT.2018.8747140
– ident: 54375_CR44
  doi: 10.1145/2939672.2939778
– volume: 151
  year: 2021
  ident: 54375_CR54
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2021.104484
– volume: 3
  start-page: 281
  year: 2011
  ident: 54375_CR32
  publication-title: Int. J. Data Anal. Tech. Strat.
  doi: 10.1504/IJDATS.2011.041335
– volume: 30
  start-page: 25
  year: 2017
  ident: 54375_CR41
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 54375_CR14
  doi: 10.1109/MEDITEC.2016.7835365
– year: 2018
  ident: 54375_CR7
  publication-title: Diabetes
  doi: 10.2337/db18-539-P
– ident: 54375_CR16
  doi: 10.1109/COMPSAC.2017.84
– volume: 398
  start-page: 786
  year: 2021
  ident: 54375_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00519-5
– volume: 2
  start-page: 56
  year: 2020
  ident: 54375_CR31
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 16
  start-page: 321
  year: 2002
  ident: 54375_CR51
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 70
  start-page: 2097
  year: 2022
  ident: 54375_CR24
  publication-title: Comput. Mater. Contin.
  doi: 10.32604/cmc.2022.019790
– volume: 16
  year: 2021
  ident: 54375_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0246306
– volume: 12
  start-page: 734
  year: 2022
  ident: 54375_CR39
  publication-title: Buildings
  doi: 10.3390/buildings12060734
– volume: 11
  start-page: 2267
  year: 2021
  ident: 54375_CR8
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11122267
– volume: 126
  year: 2020
  ident: 54375_CR40
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104041
– ident: 54375_CR19
  doi: 10.1109/ICICT50816.2021.9358491
– volume: 403
  start-page: 412
  year: 2018
  ident: 54375_CR35
  publication-title: Encyclop. Bioinform. Comput. Biolo. ABC Bioinform.
  doi: 10.1016/B978-0-12-809633-8.20473-1
– volume: 232–239
  start-page: 2020
  year: 2019
  ident: 54375_CR9
  publication-title: Adv. Intell. Comput. Commun. Proc. ICAC
  doi: 10.1007/978-981-15-2774-6_29
– volume: 8
  start-page: 225
  year: 2008
  ident: 54375_CR23
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.01.003
– volume: 11
  start-page: 1117
  year: 2022
  ident: 54375_CR53
  publication-title: Infect. Dis. Ther.
  doi: 10.1007/s40121-022-00628-6
– year: 2020
  ident: 54375_CR11
  publication-title: Nat. Inspired Comput. Data Min. Mach. Learn.
  doi: 10.1007/978-3-030-28553-1_9
– volume: 171
  start-page: 1660
  year: 2020
  ident: 54375_CR21
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2020.04.178
– ident: 54375_CR12
  doi: 10.1109/CITSM.2017.8089245
– ident: 54375_CR42
  doi: 10.1145/3233547.3233667
– volume: 30
  start-page: 660
  year: 2020
  ident: 54375_CR18
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22406
– volume: 13
  start-page: 8984
  year: 2023
  ident: 54375_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35795-0
– volume: 28
  start-page: 71
  year: 1996
  ident: 54375_CR34
  publication-title: ACM Comput. Surv.
  doi: 10.1145/234313.234346
– volume: 74
  start-page: 300
  year: 2019
  ident: 54375_CR36
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2019.02.016
– volume: 21
  start-page: 1
  year: 2020
  ident: 54375_CR5
  publication-title: BMC Nephrol.
  doi: 10.1186/s12882-020-02093-0
– year: 2019
  ident: 54375_CR29
  publication-title: BMJ
  doi: 10.1136/bmj.l886
– year: 2012
  ident: 54375_CR33
  publication-title: Int. J. Comput. Appl.
  doi: 10.5120/8762-2680
– volume: 32
  start-page: 12499
  year: 2020
  ident: 54375_CR38
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04708-x
– ident: 54375_CR17
  doi: 10.1109/ICHI.2016.36
– ident: 54375_CR22
  doi: 10.1109/BIBE.2017.00-39
– volume: 13
  start-page: 5481
  year: 2023
  ident: 54375_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-31542-7
– volume: 9
  start-page: 165132
  year: 2021
  ident: 54375_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133700
– volume: 3
  year: 2017
  ident: 54375_CR37
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.127
– volume: 17
  start-page: 1
  year: 2019
  ident: 54375_CR6
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-019-1860-0
– volume: 20
  start-page: 2861
  year: 2022
  ident: 54375_CR28
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.06.003
– volume: 46
  start-page: S191
  year: 2023
  ident: 54375_CR4
  publication-title: Diabetes Care
  doi: 10.2337/dc23-S011
– ident: 54375_CR20
  doi: 10.1109/INCET49848.2020.9154147
– ident: 54375_CR45
  doi: 10.1145/3468264.3477217
– volume: 102
  start-page: 04004
  year: 2021
  ident: 54375_CR48
  publication-title: SHS Web Conf.
  doi: 10.1051/shsconf/202110204004
– volume: 36
  start-page: 442
  year: 2020
  ident: 54375_CR30
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.03.005
– volume: 19
  start-page: 2040015
  year: 2020
  ident: 54375_CR10
  publication-title: J. Inf. Knowl. Manage.
  doi: 10.1142/S0219649220400158
– volume: 3
  start-page: 2012
  issue: 1–150
  year: 2013
  ident: 54375_CR50
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2012.73
– volume: 13
  year: 2018
  ident: 54375_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0199920
– volume: 67
  start-page: 2089
  year: 2005
  ident: 54375_CR1
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2005.00365.x
– volume: 41
  start-page: 1
  year: 2017
  ident: 54375_CR13
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0703-x
– volume: 42
  year: 2021
  ident: 54375_CR49
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abf9f3
SSID ssj0000529419
Score 2.5681071
Snippet Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and...
Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world's population and leading to higher morbidity and...
Abstract Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3687
SubjectTerms 692/4022/1585
692/4022/1950
692/4022/272
692/699/1585
Accuracy
Algorithms
Artificial Intelligence
Bayes Theorem
Calcium Compounds
Cardiovascular disease
Creatinine
Datasets
Decision making
Deep learning
Diabetes
Feature selection
Glycated Hemoglobin
Hemoglobin
Humanities and Social Sciences
Humans
Internet of Things
Investigations
Kidney diseases
Kidneys
Learning algorithms
Machine Learning
Methods
Morbidity
multidisciplinary
Neural networks
Optimization algorithms
Oxides
Prediction models
Quality of Life
Regression analysis
Renal Insufficiency, Chronic - diagnosis
Science
Science (multidisciplinary)
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEFAeWwoyEjeImvgV-wgVVYUEpyJ6s-x4DBUlu-qmEv33jB-77AKFC1JOseNMxuN8Y4_9DSEvlNc47wm86WJerVKu0QBD07YRFI-B9T4tDbz_oE4-indn8mwj1VfaE1bogYviDrmIiImtNiw6ESMCDGjWRy689AK6fI4cMW9jMlVYvZkRnamnZFquD5eIVOk0GRONFLyXjdhCokzY_ycv8_fNkr9ETDMQHd8ld6oHSV8Xye-RWzDeJ7slp-T1Hvm0wZwxHyle8H1xUc9I0W957yTQmiziM82ZcJZ0mtPFZYrZTHQodLn063kY4ZrWCM7yATk9fnt6dNLU7AnNIEU3NSxIHtF7A9mGHqLpghGKB6Ol477rwITAVO97hw6bA8WgdcAc_gB80EMb-EOyM85HeEyoMcF13AEivccmBs2dBMN0DCYGVO6MdCtF2qEyi6cEFxc2R7i5tkX5FpVvs_KtmJGX62cWhVfjr7XfpP5Z10yc2PkGWoqtlmL_ZSkzcrDqXVsH6tIykwjrVa_wHc_XxTjEUtzEjTC_ynX6hPDpSx8VY1hLgoYuJSLKjOgtM9kSdbtkPP-SabxTjitlJDb6amVRP-W6WRf7_0MXT8htloZCymwjDsjOdHkFT9G7mvyzPJB-AOeCHy4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s2WgozEDaImfsT2CQGiqpDgVMTeLCcel6olWTap1P57PI43ZXlUyil2LHs89kxm7O8j5FXd6Pjf43lRhRStql2hAdqiLAPUPHimGgwNfP5SH34Vn5ZymQNuQz5WudkT00bt-xZj5PvMILJ4rWrxdvWzQNYozK5mCo2b5BZCl-GRLrVUc4wFs1iiMvmuTMn1_hDtFd4pY6KQgitZiC17lGD7_-Vr_n1k8o-8aTJHB_fI3exH0nfTxN8nN6B7QG5PzJKXD8m33_Az-o7GBy5WZ_mmFP2RTlACzZQRxzTx4Qx07OlqjZmbkbYTaC49PfEdXNKcxxkekaODj0cfDovMoVC0UlRjwbzkIfpwIEuvIJjKG1Fzb7R0vKkqMN5HoTbKRbfNQc2gdMBc3AYar9vS88dkp-s7eEqoMd5V3EG0901sotXcSTBMB2-Cj8JdkGojSNtmfHGkuTizKc_NtZ2Eb6PwbRK-FQvyev5mNaFrXFv7Pc7PXBORsdOLfn1s80KzXIToQ5XasOBECNEhAc1U4KKRjYBKLcjeZnZtXq6DvVKuBXk5F8eFhtkT10F_nuootPM40ieTMsw9ieouZbQrC6K31GSrq9sl3cn3BOaNTFe1kbHRNxuNuurX_2Wxe_0wnpE7DJUcmWvEHtkZ1-fwPHpPY_MiLZFf3_cXSw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXRHkutMhI3CAi8dtHWLWqkOBURG-WHY9LRUlWu6lE_z224wQWWiSknOJHJuOZzMQz_gahV8Kp-N_jadWEvFslbKUA2qquAwgaPJEubQ18_CSOP7MPp_x0B5HpLExO2s-QlvkzPWWHvd1EQ5MOgxFWcUYlr9gtdDtBtyepXorlvK-SIles0eV8TE3VNUO3bFCG6r_Ov_w7TfKPWGk2QUf30b3iO-J3I7V7aAe6B-jOWE3y6iH68htmRt_heMGP1UU5HYW_56xJwKVMxBnONXA2eOjxap2iNQNuR6Bc_O3cd3CFS-xm8widHB2eLI-rUjehajlrhop4TkP024DXXkLQjddMUK8Vt9Q1DWjviZBO2uiqWRAEagvERtV3XrW1p4_Rbtd38BRhrb1tqIVo412colXUctBEBa-Dj8xdoGZipGkLpngqbXFhcmybKjMy30Tmm8x8wxbo9TxmNSJq_LP3-7Q-c8-Ehp1v9OszU6TDUBai31QrTYJlIUQnBBSRgTLHHYNGLtD-tLqmqOjGEJ2g6oUU8Rkv5-aoXCliYjvoL3MfmWx7etMnozDMlEQR5zzakgVSW2KyRep2S3f-NQN4p-pWQvM46ZtJon7RdTMvnv1f9-foLklCn6rXsH20O6wv4SB6UIN7kVXmJzoPFRs
  priority: 102
  providerName: Springer Nature
Title Investigation on explainable machine learning models to predict chronic kidney diseases
URI https://link.springer.com/article/10.1038/s41598-024-54375-4
https://www.ncbi.nlm.nih.gov/pubmed/38355876
https://www.proquest.com/docview/2926326764
https://www.proquest.com/docview/2927212303
https://pubmed.ncbi.nlm.nih.gov/PMC10866953
https://doaj.org/article/34f6350892fa4ff381e827f34b5b4e17
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2EWgviOsojMpIvEEg8d0PCHXVpqnSJgSb6FvkxPaYKElpO2n99xw7SVmhQ4pUKXGSU59z4i8-8fch9EYUCt57LE0yH2erhEmUc2WSpt4J6i2RRZgaOD0TJxdsNObjLdTJHbUdON_4ahf0pC5mk_c3v5afIOE_NkvG1Yc5DEJhoRhhCWdU8oRto10YmWRI1NMW7jdc30SzTLdrZzafuofug_Gcq8BCcmuoioz-m2Dov19T_lVSjSPV8UP0oIWYeNDExCO05arH6F4jOrl8gr7dotaoKwybu5lO2kVU-Gf8uNLhVk3iEkepnDle1Hg6C0WdBS4bPl3848pWbonbEs_8KTo_PjofniStvEJScpYtEmI59QDvHE-tdF5nVjNBrVbc0CLLnLaWCFlIA4jOOEFcahwx8IQorCpTS5-hnaqu3HOEtbYmo8YBFCjgEqWihjtNlLfaW-jnHsq6jszLlno8KGBM8lgCpypv_JCDH_Loh5z10NvVOdOGeOO_rQ-Df1YtA2l23FHPLvM2B3PKPMCrVGniDfMesIpTRHrKCl4wl8keOui8m3eBmBMdGO2FFHCP16vDkIOhsGIqV1_HNjJAgPBP95tgWFnSBVMPqbUwWTN1_Uh19T3yfAcRLKE5XPRdF1F_7Lq7L17cacNLtEdCqAc9G3aAdhaza_cKMNWi6KNtOZZ9tDsYjL6O4Pfw6OzzF9g7FMN-nKfox1T6DTRwIEA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0RN_EjsA0IUWm1pu0JoEb1ZTmyXipIsu6lgfxT_kbHzKMujt0o5xY5jj2fszx57PoSeZoWAdY-hcerCblWmY2FtGSeJsxl1huSF3xo4mGTjj-zdIT9cQz_7uzD-WGU_JoaB2tSl3yPfJNJHFs_yjL2afYs9a5T3rvYUGq1a7Nnld1iyLV7uvoX-fUbIzvb0zTjuWAXikrO0iYnh1AGqsTwxuXUyNZJl1EjBNS3S1Epj4DdFrgHIaJsRm2hLNBhGYUSZGArFXkLrjMJKZoTWt7Yn7z8MmzrebcZS2V3OSajYXMAE6S-xERZzRnMes5UJMPAE_Avc_n1G8w9HbZj_dq6jax1wxa9bTbuB1mx1E11uqSyXt9Cn3wJ21BWGx_6YnXRXs_DXcGTT4o6j4ggHAp4Fbmo8m3tXUYPLNkov_nJsKrvEneNocRtNL0K8d9Coqit7D2EpjU6ptgAwCiiiFFRzK4lwRjoDwo1Q2gtSlV1Ac8-rcaKCY50K1QpfgfBVEL5iEXo-fDNrw3mcm3vL98-Q04fiDi_q-ZHqLFtR5gC0JUISp5lzgICsILmjrOAFs2keoY2-d1U3PizUmTZH6MmQDJbt3TW6svVpyJN7YOFberdVhqEmYF-cw0QWIbGiJitVXU2pjj-H6OGeWiuTHAp90WvUWb3-L4v75zfjMboynh7sq_3dyd4DdJV4hfe0OWwDjZr5qX0I0K0pHnUGg5G6YBP9BbPcVTY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4g28SO2DwgBZdVSqDgUsTfLie1S0Sbb3a1gfxr_jrHzKMujt0o5xY5jj2fszx57PoSeFqWEdY-lae7jblVhUulclWaZdwX1logybA183Cu2P7P3Ez5ZQz_7uzDhWGU_JsaB2jZV2CMfERUiixeiYCPfHYv4tDV-NT1JA4NU8LT2dBqtiuy65XdYvs1f7mxBXz8jZPxu_-122jEMpBVn-SIlllMPCMfxzArnVW4VK6hVkhta5rlT1sIvS2EA1BhXEJcZRwwYSWlllVkKxV5ClwXleTAxMRHD9k5woLFcddd0MipHc5gqw3U2wlLOqOApW5kKI2PAv2Du36c1_3DZxplwfANd7yAsft3q3E205upb6EpLarm8jb78FrqjqTE87sf0qLukhY_j4U2HO7aKAxypeOZ40eDpLDiNFrhq4_Xib4e2dkvcuZDmd9D-RQj3Llqvm9rdQ1gpa3JqHECNEoqoJDXcKSK9Vd6CcBOU94LUVRfaPDBsHOnoYqdSt8LXIHwdha9Zgp4P30zbwB7n5n4T-mfIGYJyxxfN7EB3Nq4p8wDfMqmIN8x7wEJOEuEpK3nJXC4StNn3ru5Girk-0-sEPRmSwcaD48bUrjmNeUSAGKGlG60yDDUBS-McprQEyRU1Wanqakp9-DXGEQ8kW4XiUOiLXqPO6vV_Wdw_vxmP0VUwTP1hZ2_3AbpGgr4H_hy2idYXs1P3EDDconwUrQUjfcHW-QvUG1gG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+explainable+machine+learning+models+to+predict+chronic+kidney+diseases&rft.jtitle=Scientific+reports&rft.au=Ghosh%2C+Samit+Kumar&rft.au=Khandoker%2C+Ahsan+H&rft.date=2024-02-14&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=3687&rft_id=info:doi/10.1038%2Fs41598-024-54375-4&rft_id=info%3Apmid%2F38355876&rft.externalDocID=38355876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon