Investigation on explainable machine learning models to predict chronic kidney diseases
Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 3687 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-54375-4 |
Cover
Loading…
Abstract | Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model’s visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively. |
---|---|
AbstractList | Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model’s visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively. Abstract Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model’s visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively. Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world's population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model's visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively.Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world's population and leading to higher morbidity and death rates. The early stages of CKD sometimes present without visible symptoms, causing patients to be unaware. Early detection and treatments are critical in reducing complications and improving the overall quality of life for people afflicted. In this work, we investigate the use of an explainable artificial intelligence (XAI)-based strategy, leveraging clinical characteristics, to predict CKD. This study collected clinical data from 491 patients, comprising 56 with CKD and 435 without CKD, encompassing clinical, laboratory, and demographic variables. To develop the predictive model, five machine learning (ML) methods, namely logistic regression (LR), random forest (RF), decision tree (DT), Naïve Bayes (NB), and extreme gradient boosting (XGBoost), were employed. The optimal model was selected based on accuracy and area under the curve (AUC). Additionally, the SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) algorithms were utilized to demonstrate the influence of the features on the optimal model. Among the five models developed, the XGBoost model achieved the best performance with an AUC of 0.9689 and an accuracy of 93.29%. The analysis of feature importance revealed that creatinine, glycosylated hemoglobin type A1C (HgbA1C), and age were the three most influential features in the XGBoost model. The SHAP force analysis further illustrated the model's visualization of individualized CKD predictions. For further insights into individual predictions, we also utilized the LIME algorithm. This study presents an interpretable ML-based approach for the early prediction of CKD. The SHAP and LIME methods enhance the interpretability of ML models and help clinicians better understand the rationale behind the predicted outcomes more effectively. |
ArticleNumber | 3687 |
Author | Khandoker, Ahsan H. Ghosh, Samit Kumar |
Author_xml | – sequence: 1 givenname: Samit Kumar surname: Ghosh fullname: Ghosh, Samit Kumar email: samitnitrkl@gmail.com organization: Department of Biomedical Engineering & Biotechnology, Khalifa University – sequence: 2 givenname: Ahsan H. surname: Khandoker fullname: Khandoker, Ahsan H. organization: Department of Biomedical Engineering & Biotechnology, Khalifa University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38355876$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv3CAUhVGVqknT_IEuKkvddOOWpw2rqoraZqRI3UTqEmG49jC1YQqeKPn3ZcZJ81gEIYHgnE-Hy32LjkIMgNB7gj8TzOSXzIlQssaU14KzVtT8FTqhmIuaMkqPHu2P0VnOG1yGoIoT9QYdM8mEkG1zgn6vwjXk2Q9m9jFUZcLNdjQ-mG6EajJ27QNUI5gUfBiqKToYczXHapvAeTtXdp1i8Lb6412A28r5DCZDfode92bMcHa3nqKrH9-vzi_qy18_V-ffLmsrOJlr6gTrKSMgsGuhV8Qp3jCnpDCsIwSUc7Rpu9aIVhhoKGAD1LSYdU5a7NgpWi1YF81Gb5OfTLrV0Xh9OIhp0CbN3o6gGe8bJrBUtDe875kkIGnbM96JjgNpC-vrwtruugmchTAnMz6BPr0Jfq2HeK0Jlk2jBCuET3eEFP_uSln15LOFcTQB4i5rqmhLCWV4L_34TLqJuxRKqfaqhpVXN7yoPjyO9D_L_f8VgVwENsWcE_Ta-vnwlSWhH0s0ve8WvXSLLt2iD92i92z6zHpPf9HEFlMu4jBAeoj9gusfBCnR5g |
CitedBy_id | crossref_primary_10_1371_journal_pone_0306999 crossref_primary_10_1109_ACCESS_2025_3535692 crossref_primary_10_1038_s41598_025_89934_w crossref_primary_10_3390_biomedicines12122858 crossref_primary_10_48175_IJARSCT_23906 crossref_primary_10_1109_ACCESS_2024_3514197 crossref_primary_10_3390_app14156638 crossref_primary_10_3390_app15062960 crossref_primary_10_1016_j_cmpbup_2024_100173 crossref_primary_10_1016_j_cmpbup_2024_100160 crossref_primary_10_1109_ACCESS_2024_3422319 crossref_primary_10_1080_0886022X_2024_2435483 crossref_primary_10_3390_info16010007 crossref_primary_10_3389_fpubh_2025_1510456 |
Cites_doi | 10.1371/journal.pone.0246306 10.1109/ACCESS.2021.3133700 10.3390/diagnostics11122267 10.1016/j.asoc.2007.01.003 10.1504/IJDATS.2011.041335 10.1007/s00521-020-04708-x 10.1007/978-981-15-2774-6_29 10.1145/234313.234346 10.1038/s41598-023-31542-7 10.1051/shsconf/202110204004 10.2337/db18-539-P 10.1016/S0140-6736(16)31012-1 10.1016/j.ijmedinf.2021.104484 10.32604/cmc.2022.019790 10.1142/S0219649220400158 10.1038/s42256-019-0138-9 10.1016/B978-0-12-809633-8.20473-1 10.1016/j.procs.2020.04.178 10.1613/jair.953 10.1371/journal.pone.0199920 10.7717/peerj-cs.127 10.1111/j.1523-1755.2005.00365.x 10.1016/j.tig.2020.03.005 10.1038/kisup.2012.73 10.1016/S0140-6736(21)00519-5 10.1186/s12967-019-1860-0 10.1186/s12882-020-02093-0 10.1038/s41598-023-35795-0 10.1007/s40121-022-00628-6 10.3389/fnano.2022.972421 10.1007/978-3-030-28553-1_9 10.5120/8762-2680 10.2337/dc23-S011 10.1007/s10916-017-0703-x 10.1155/2021/4931450 10.1016/j.csbj.2022.06.003 10.1053/j.ajkd.2019.02.016 10.1088/1361-6579/abf9f3 10.1136/bmj.l886 10.1016/j.compbiomed.2020.104041 10.3390/buildings12060734 10.1002/ima.22406 10.1109/ICAICT.2018.8747140 10.1145/2939672.2939778 10.1109/MEDITEC.2016.7835365 10.1109/COMPSAC.2017.84 10.1109/ICICT50816.2021.9358491 10.1109/CITSM.2017.8089245 10.1145/3233547.3233667 10.1109/ICHI.2016.36 10.1109/BIBE.2017.00-39 10.1109/INCET49848.2020.9154147 10.1145/3468264.3477217 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-54375-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_34f6350892fa4ff381e827f34b5b4e17 PMC10866953 38355876 10_1038_s41598_024_54375_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Khalifa University, United Arab Emirates grantid: Award Number: 8474000408 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-2d53f231e50d7ef91d9463d985a3b11e9dd267b7a575ae62e0ae2a703bd8c0d3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Thu Aug 21 18:35:10 EDT 2025 Fri Jul 11 15:15:40 EDT 2025 Wed Aug 13 05:16:35 EDT 2025 Mon Jul 21 05:40:24 EDT 2025 Tue Jul 01 00:51:20 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-2d53f231e50d7ef91d9463d985a3b11e9dd267b7a575ae62e0ae2a703bd8c0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2926326764?pq-origsite=%requestingapplication% |
PMID | 38355876 |
PQID | 2926326764 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34f6350892fa4ff381e827f34b5b4e17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10866953 proquest_miscellaneous_2927212303 proquest_journals_2926326764 pubmed_primary_38355876 crossref_citationtrail_10_1038_s41598_024_54375_4 crossref_primary_10_1038_s41598_024_54375_4 springer_journals_10_1038_s41598_024_54375_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-14 |
PublicationDateYYYYMMDD | 2024-02-14 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Levin (CR50) 2013; 3 Kalantar-Zadeh, Jafar, Nitsch, Neuen, Perkovic (CR2) 2021; 398 Chawla, Bowyer, Hall, Kegelmeyer (CR51) 2002; 16 Avci (CR23) 2008; 8 Jena, Nayak, Swain (CR9) 2019; 232–239 Prusty, Patnaik, Dash (CR47) 2022; 4 Liu (CR52) 2021; 16 Magesh, Myloth, Tom (CR40) 2020; 126 Segal (CR5) 2020; 21 ElSayed (CR4) 2023; 46 Mitchell, Frank (CR37) 2017; 3 CR45 CR44 CR42 Wang (CR3) 2016; 388 Al-Shamsi, Regmi, Govender (CR26) 2018; 13 Watson (CR29) 2019 Aswathy (CR24) 2022; 70 Meddage (CR39) 2022; 12 Alsuhibany (CR25) 2021 Berrar (CR35) 2018; 403 Levey (CR1) 2005; 67 CR19 Azodi, Tang, Shiu (CR30) 2020; 36 CR17 CR16 CR15 CR14 Devan, Khare (CR38) 2020; 32 CR12 Hu (CR28) 2022; 20 Lundberg, Lee (CR41) 2017; 30 Hu (CR53) 2022; 11 Maalouf (CR32) 2011; 3 Polat, Danaei Mehr, Cetin (CR13) 2017; 41 Makino (CR7) 2018 Chicco, Lovejoy, Oneto (CR27) 2021; 9 Gupta, Malviya, Singh (CR33) 2012 Balakrishnan (CR21) 2020; 171 Song, Liu, Liu, Wang (CR54) 2021; 151 JerlinRubini, Perumal (CR18) 2020; 30 Laatifi (CR43) 2023; 13 Quinlan (CR34) 1996; 28 Allen, Liu, Iqbal, Zheng, Stansby (CR49) 2021; 42 Alaiad, Najadat, Mohsen, Balhaf (CR10) 2020; 19 CR22 Xiao (CR6) 2019; 17 CR20 Lundberg (CR31) 2020; 2 Chowdhury (CR8) 2021; 11 Chen (CR36) 2019; 74 Alabi, Elmusrati, Leivo, Almangush, Mäkitie (CR46) 2023; 13 Tanimu, Hamada, Hassan, Ilu (CR48) 2021; 102 Alloghani, Al-Jumeily, Hussain, Liatsis, Aljaaf (CR11) 2020 54375_CR20 54375_CR22 K Kalantar-Zadeh (54375_CR2) 2021; 398 A Levin (54375_CR50) 2013; 3 SM Lundberg (54375_CR41) 2017; 30 JJ Tanimu (54375_CR48) 2021; 102 M Laatifi (54375_CR43) 2023; 13 54375_CR15 JR Quinlan (54375_CR34) 1996; 28 54375_CR16 54375_CR17 NA ElSayed (54375_CR4) 2023; 46 54375_CR19 C Hu (54375_CR28) 2022; 20 R Aswathy (54375_CR24) 2022; 70 P Meddage (54375_CR39) 2022; 12 J Allen (54375_CR49) 2021; 42 54375_CR12 H Polat (54375_CR13) 2017; 41 D Gupta (54375_CR33) 2012 54375_CR14 SM Lundberg (54375_CR31) 2020; 2 A Alaiad (54375_CR10) 2020; 19 S Balakrishnan (54375_CR21) 2020; 171 NV Chawla (54375_CR51) 2002; 16 L Jena (54375_CR9) 2019; 232–239 AS Levey (54375_CR1) 2005; 67 SA Alsuhibany (54375_CR25) 2021 D Berrar (54375_CR35) 2018; 403 54375_CR42 E Avci (54375_CR23) 2008; 8 DS Watson (54375_CR29) 2019 54375_CR44 54375_CR45 T Chen (54375_CR36) 2019; 74 D Chicco (54375_CR27) 2021; 9 L JerlinRubini (54375_CR18) 2020; 30 RO Alabi (54375_CR46) 2023; 13 S Prusty (54375_CR47) 2022; 4 S Al-Shamsi (54375_CR26) 2018; 13 R Mitchell (54375_CR37) 2017; 3 P Devan (54375_CR38) 2020; 32 X Song (54375_CR54) 2021; 151 NH Chowdhury (54375_CR8) 2021; 11 CB Azodi (54375_CR30) 2020; 36 C Hu (54375_CR53) 2022; 11 Z Segal (54375_CR5) 2020; 21 PR Magesh (54375_CR40) 2020; 126 M Makino (54375_CR7) 2018 H Wang (54375_CR3) 2016; 388 J Liu (54375_CR52) 2021; 16 M Alloghani (54375_CR11) 2020 M Maalouf (54375_CR32) 2011; 3 J Xiao (54375_CR6) 2019; 17 |
References_xml | – ident: CR45 – volume: 16 year: 2021 ident: CR52 article-title: Predicting mortality of patients with acute kidney injury in the icu using xgboost model publication-title: PLoS One doi: 10.1371/journal.pone.0246306 – ident: CR22 – volume: 9 start-page: 165132 year: 2021 end-page: 165144 ident: CR27 article-title: A machine learning analysis of health records of patients with chronic kidney disease at risk of cardiovascular disease publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133700 – ident: CR16 – ident: CR12 – volume: 11 start-page: 2267 year: 2021 ident: CR8 article-title: Performance analysis of conventional machine learning algorithms for identification of chronic kidney disease in type 1 diabetes mellitus patients publication-title: Diagnostics doi: 10.3390/diagnostics11122267 – volume: 8 start-page: 225 year: 2008 end-page: 231 ident: CR23 article-title: Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.01.003 – volume: 3 start-page: 281 year: 2011 end-page: 299 ident: CR32 article-title: Logistic regression in data analysis: An overview publication-title: Int. J. Data Anal. Tech. Strat. doi: 10.1504/IJDATS.2011.041335 – volume: 32 start-page: 12499 year: 2020 end-page: 12514 ident: CR38 article-title: An efficient xgboost-dnn-based classification model for network intrusion detection system publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04708-x – ident: CR42 – volume: 232–239 start-page: 2020 year: 2019 ident: CR9 article-title: Chronic disease risk (CDR) prediction in biomedical data using machine learning approach publication-title: Adv. Intell. Comput. Commun. Proc. ICAC doi: 10.1007/978-981-15-2774-6_29 – volume: 28 start-page: 71 year: 1996 end-page: 72 ident: CR34 article-title: Learning decision tree classifiers publication-title: ACM Comput. Surv. doi: 10.1145/234313.234346 – ident: CR19 – volume: 13 start-page: 5481 year: 2023 ident: CR43 article-title: Explanatory predictive model for covid-19 severity risk employing machine learning, Shapley addition, and lime publication-title: Sci. Rep. doi: 10.1038/s41598-023-31542-7 – volume: 102 start-page: 04004 year: 2021 ident: CR48 article-title: A contemporary machine learning method for accurate prediction of cervical cancer publication-title: SHS Web Conf. doi: 10.1051/shsconf/202110204004 – ident: CR15 – year: 2018 ident: CR7 article-title: Artificial intelligence predicts progress of diabetic kidney disease-novel prediction model construction with big data machine learning publication-title: Diabetes doi: 10.2337/db18-539-P – volume: 388 start-page: 1459 year: 2016 end-page: 1544 ident: CR3 article-title: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the global burden of disease study 2015 publication-title: Lancet doi: 10.1016/S0140-6736(16)31012-1 – volume: 151 year: 2021 ident: CR54 article-title: Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2021.104484 – volume: 70 start-page: 2097 year: 2022 end-page: 2111 ident: CR24 article-title: Optimized tuned deep learning model for chronic kidney disease classification publication-title: Comput. Mater. Contin. doi: 10.32604/cmc.2022.019790 – volume: 30 start-page: 25 year: 2017 ident: CR41 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 2040015 year: 2020 ident: CR10 article-title: Classification and association rule mining technique for predicting chronic kidney disease publication-title: J. Inf. Knowl. Manage. doi: 10.1142/S0219649220400158 – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: CR31 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 403 start-page: 412 year: 2018 ident: CR35 article-title: Bayes’ theorem and Naive Bayes classifier publication-title: Encyclop. Bioinform. Comput. Biolo. ABC Bioinform. doi: 10.1016/B978-0-12-809633-8.20473-1 – volume: 171 start-page: 1660 year: 2020 end-page: 1669 ident: CR21 article-title: Feature selection using improved teaching learning based algorithm on chronic kidney disease dataset publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2020.04.178 – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR51 article-title: Smote: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 13 year: 2018 ident: CR26 article-title: Chronic kidney disease in patients at high risk of cardiovascular disease in the united Arab Emirates: A population-based study publication-title: PLoS ONE doi: 10.1371/journal.pone.0199920 – volume: 3 year: 2017 ident: CR37 article-title: Accelerating the xgboost algorithm using GPU computing publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.127 – volume: 67 start-page: 2089 year: 2005 end-page: 2100 ident: CR1 article-title: Definition and classification of chronic kidney disease: A position statement from kidney disease: Improving global outcomes (KDIGO) publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2005.00365.x – volume: 36 start-page: 442 year: 2020 end-page: 455 ident: CR30 article-title: Opening the black box: Interpretable machine learning for geneticists publication-title: Trends Genet. doi: 10.1016/j.tig.2020.03.005 – volume: 3 start-page: 2012 issue: 1–150 year: 2013 ident: CR50 article-title: Kidney clinical practice guideline for the evaluation and management of chronic kidney disease publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2012.73 – ident: CR14 – volume: 398 start-page: 786 year: 2021 end-page: 802 ident: CR2 article-title: Chronic kidney disease publication-title: Lancet doi: 10.1016/S0140-6736(21)00519-5 – volume: 17 start-page: 1 year: 2019 end-page: 13 ident: CR6 article-title: Comparison and development of machine learning tools in the prediction of chronic kidney disease progression publication-title: J. Transl. Med. doi: 10.1186/s12967-019-1860-0 – volume: 21 start-page: 1 year: 2020 end-page: 10 ident: CR5 article-title: Machine learning algorithm for early detection of end-stage renal disease publication-title: BMC Nephrol. doi: 10.1186/s12882-020-02093-0 – volume: 13 start-page: 8984 year: 2023 ident: CR46 article-title: Machine learning explainability in nasopharyngeal cancer survival using lime and shap publication-title: Sci. Rep. doi: 10.1038/s41598-023-35795-0 – volume: 11 start-page: 1117 year: 2022 end-page: 1132 ident: CR53 article-title: Interpretable machine learning for early prediction of prognosis in sepsis: A discovery and validation study publication-title: Infect. Dis. Ther. doi: 10.1007/s40121-022-00628-6 – volume: 4 year: 2022 ident: CR47 article-title: Skcv: Stratified k-fold cross-validation on ml classifiers for predicting cervical cancer publication-title: Front. Nanotechnol. doi: 10.3389/fnano.2022.972421 – year: 2020 ident: CR11 article-title: Performance-based prediction of chronic kidney disease using machine learning for high-risk cardiovascular disease patients publication-title: Nat. Inspired Comput. Data Min. Mach. Learn. doi: 10.1007/978-3-030-28553-1_9 – year: 2012 ident: CR33 article-title: Performance analysis of classification tree learning algorithms publication-title: Int. J. Comput. Appl. doi: 10.5120/8762-2680 – ident: CR44 – volume: 46 start-page: S191 year: 2023 end-page: S202 ident: CR4 article-title: 11 chronic kidney disease and risk management: Standards of care in diabetes-2023 publication-title: Diabetes Care doi: 10.2337/dc23-S011 – volume: 41 start-page: 1 year: 2017 end-page: 11 ident: CR13 article-title: Diagnosis of chronic kidney disease based on support vector machine by feature selection methods publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0703-x – year: 2021 ident: CR25 article-title: Ensemble of deep learning based clinical decision support system for chronic kidney disease diagnosis in medical internet of things environment publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/4931450 – ident: CR17 – volume: 20 start-page: 2861 year: 2022 end-page: 2870 ident: CR28 article-title: Application of interpretable machine learning for early prediction of prognosis in acute kidney injury publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.06.003 – volume: 74 start-page: 300 year: 2019 end-page: 309 ident: CR36 article-title: Prediction and risk stratification of kidney outcomes in IGA nephropathy publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2019.02.016 – volume: 42 year: 2021 ident: CR49 article-title: Deep learning-based photoplethysmography classification for peripheral arterial disease detection: A proof-of-concept study publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abf9f3 – year: 2019 ident: CR29 article-title: Clinical applications of machine learning algorithms: Beyond the black box publication-title: BMJ doi: 10.1136/bmj.l886 – volume: 126 year: 2020 ident: CR40 article-title: An explainable machine learning model for early detection of Parkinson’s disease using lime on datscan imagery publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104041 – volume: 12 start-page: 734 year: 2022 ident: CR39 article-title: Interpretation of machine-learning-based (black-box) wind pressure predictions for low-rise gable-roofed buildings using Shapley additive explanations (SHAP) publication-title: Buildings doi: 10.3390/buildings12060734 – volume: 30 start-page: 660 year: 2020 end-page: 673 ident: CR18 article-title: Efficient classification of chronic kidney disease by using multi-kernel support vector machine and fruit fly optimization algorithm publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22406 – ident: CR20 – volume: 388 start-page: 1459 year: 2016 ident: 54375_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(16)31012-1 – volume: 4 year: 2022 ident: 54375_CR47 publication-title: Front. Nanotechnol. doi: 10.3389/fnano.2022.972421 – year: 2021 ident: 54375_CR25 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/4931450 – ident: 54375_CR15 doi: 10.1109/ICAICT.2018.8747140 – ident: 54375_CR44 doi: 10.1145/2939672.2939778 – volume: 151 year: 2021 ident: 54375_CR54 publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2021.104484 – volume: 3 start-page: 281 year: 2011 ident: 54375_CR32 publication-title: Int. J. Data Anal. Tech. Strat. doi: 10.1504/IJDATS.2011.041335 – volume: 30 start-page: 25 year: 2017 ident: 54375_CR41 publication-title: Adv. Neural Inf. Process. Syst. – ident: 54375_CR14 doi: 10.1109/MEDITEC.2016.7835365 – year: 2018 ident: 54375_CR7 publication-title: Diabetes doi: 10.2337/db18-539-P – ident: 54375_CR16 doi: 10.1109/COMPSAC.2017.84 – volume: 398 start-page: 786 year: 2021 ident: 54375_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(21)00519-5 – volume: 2 start-page: 56 year: 2020 ident: 54375_CR31 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 16 start-page: 321 year: 2002 ident: 54375_CR51 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 70 start-page: 2097 year: 2022 ident: 54375_CR24 publication-title: Comput. Mater. Contin. doi: 10.32604/cmc.2022.019790 – volume: 16 year: 2021 ident: 54375_CR52 publication-title: PLoS One doi: 10.1371/journal.pone.0246306 – volume: 12 start-page: 734 year: 2022 ident: 54375_CR39 publication-title: Buildings doi: 10.3390/buildings12060734 – volume: 11 start-page: 2267 year: 2021 ident: 54375_CR8 publication-title: Diagnostics doi: 10.3390/diagnostics11122267 – volume: 126 year: 2020 ident: 54375_CR40 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104041 – ident: 54375_CR19 doi: 10.1109/ICICT50816.2021.9358491 – volume: 403 start-page: 412 year: 2018 ident: 54375_CR35 publication-title: Encyclop. Bioinform. Comput. Biolo. ABC Bioinform. doi: 10.1016/B978-0-12-809633-8.20473-1 – volume: 232–239 start-page: 2020 year: 2019 ident: 54375_CR9 publication-title: Adv. Intell. Comput. Commun. Proc. ICAC doi: 10.1007/978-981-15-2774-6_29 – volume: 8 start-page: 225 year: 2008 ident: 54375_CR23 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.01.003 – volume: 11 start-page: 1117 year: 2022 ident: 54375_CR53 publication-title: Infect. Dis. Ther. doi: 10.1007/s40121-022-00628-6 – year: 2020 ident: 54375_CR11 publication-title: Nat. Inspired Comput. Data Min. Mach. Learn. doi: 10.1007/978-3-030-28553-1_9 – volume: 171 start-page: 1660 year: 2020 ident: 54375_CR21 publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2020.04.178 – ident: 54375_CR12 doi: 10.1109/CITSM.2017.8089245 – ident: 54375_CR42 doi: 10.1145/3233547.3233667 – volume: 30 start-page: 660 year: 2020 ident: 54375_CR18 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22406 – volume: 13 start-page: 8984 year: 2023 ident: 54375_CR46 publication-title: Sci. Rep. doi: 10.1038/s41598-023-35795-0 – volume: 28 start-page: 71 year: 1996 ident: 54375_CR34 publication-title: ACM Comput. Surv. doi: 10.1145/234313.234346 – volume: 74 start-page: 300 year: 2019 ident: 54375_CR36 publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2019.02.016 – volume: 21 start-page: 1 year: 2020 ident: 54375_CR5 publication-title: BMC Nephrol. doi: 10.1186/s12882-020-02093-0 – year: 2019 ident: 54375_CR29 publication-title: BMJ doi: 10.1136/bmj.l886 – year: 2012 ident: 54375_CR33 publication-title: Int. J. Comput. Appl. doi: 10.5120/8762-2680 – volume: 32 start-page: 12499 year: 2020 ident: 54375_CR38 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04708-x – ident: 54375_CR17 doi: 10.1109/ICHI.2016.36 – ident: 54375_CR22 doi: 10.1109/BIBE.2017.00-39 – volume: 13 start-page: 5481 year: 2023 ident: 54375_CR43 publication-title: Sci. Rep. doi: 10.1038/s41598-023-31542-7 – volume: 9 start-page: 165132 year: 2021 ident: 54375_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133700 – volume: 3 year: 2017 ident: 54375_CR37 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.127 – volume: 17 start-page: 1 year: 2019 ident: 54375_CR6 publication-title: J. Transl. Med. doi: 10.1186/s12967-019-1860-0 – volume: 20 start-page: 2861 year: 2022 ident: 54375_CR28 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.06.003 – volume: 46 start-page: S191 year: 2023 ident: 54375_CR4 publication-title: Diabetes Care doi: 10.2337/dc23-S011 – ident: 54375_CR20 doi: 10.1109/INCET49848.2020.9154147 – ident: 54375_CR45 doi: 10.1145/3468264.3477217 – volume: 102 start-page: 04004 year: 2021 ident: 54375_CR48 publication-title: SHS Web Conf. doi: 10.1051/shsconf/202110204004 – volume: 36 start-page: 442 year: 2020 ident: 54375_CR30 publication-title: Trends Genet. doi: 10.1016/j.tig.2020.03.005 – volume: 19 start-page: 2040015 year: 2020 ident: 54375_CR10 publication-title: J. Inf. Knowl. Manage. doi: 10.1142/S0219649220400158 – volume: 3 start-page: 2012 issue: 1–150 year: 2013 ident: 54375_CR50 publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2012.73 – volume: 13 year: 2018 ident: 54375_CR26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0199920 – volume: 67 start-page: 2089 year: 2005 ident: 54375_CR1 publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2005.00365.x – volume: 41 start-page: 1 year: 2017 ident: 54375_CR13 publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0703-x – volume: 42 year: 2021 ident: 54375_CR49 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abf9f3 |
SSID | ssj0000529419 |
Score | 2.5681071 |
Snippet | Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher morbidity and... Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world's population and leading to higher morbidity and... Abstract Chronic kidney disease (CKD) is a major worldwide health problem, affecting a large proportion of the world’s population and leading to higher... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3687 |
SubjectTerms | 692/4022/1585 692/4022/1950 692/4022/272 692/699/1585 Accuracy Algorithms Artificial Intelligence Bayes Theorem Calcium Compounds Cardiovascular disease Creatinine Datasets Decision making Deep learning Diabetes Feature selection Glycated Hemoglobin Hemoglobin Humanities and Social Sciences Humans Internet of Things Investigations Kidney diseases Kidneys Learning algorithms Machine Learning Methods Morbidity multidisciplinary Neural networks Optimization algorithms Oxides Prediction models Quality of Life Regression analysis Renal Insufficiency, Chronic - diagnosis Science Science (multidisciplinary) Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEFAeWwoyEjeImvgV-wgVVYUEpyJ6s-x4DBUlu-qmEv33jB-77AKFC1JOseNMxuN8Y4_9DSEvlNc47wm86WJerVKu0QBD07YRFI-B9T4tDbz_oE4-indn8mwj1VfaE1bogYviDrmIiImtNiw6ESMCDGjWRy689AK6fI4cMW9jMlVYvZkRnamnZFquD5eIVOk0GRONFLyXjdhCokzY_ycv8_fNkr9ETDMQHd8ld6oHSV8Xye-RWzDeJ7slp-T1Hvm0wZwxHyle8H1xUc9I0W957yTQmiziM82ZcJZ0mtPFZYrZTHQodLn063kY4ZrWCM7yATk9fnt6dNLU7AnNIEU3NSxIHtF7A9mGHqLpghGKB6Ol477rwITAVO97hw6bA8WgdcAc_gB80EMb-EOyM85HeEyoMcF13AEivccmBs2dBMN0DCYGVO6MdCtF2qEyi6cEFxc2R7i5tkX5FpVvs_KtmJGX62cWhVfjr7XfpP5Z10yc2PkGWoqtlmL_ZSkzcrDqXVsH6tIykwjrVa_wHc_XxTjEUtzEjTC_ynX6hPDpSx8VY1hLgoYuJSLKjOgtM9kSdbtkPP-SabxTjitlJDb6amVRP-W6WRf7_0MXT8htloZCymwjDsjOdHkFT9G7mvyzPJB-AOeCHy4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s2WgozEDaImfsT2CQGiqpDgVMTeLCcel6olWTap1P57PI43ZXlUyil2LHs89kxm7O8j5FXd6Pjf43lRhRStql2hAdqiLAPUPHimGgwNfP5SH34Vn5ZymQNuQz5WudkT00bt-xZj5PvMILJ4rWrxdvWzQNYozK5mCo2b5BZCl-GRLrVUc4wFs1iiMvmuTMn1_hDtFd4pY6KQgitZiC17lGD7_-Vr_n1k8o-8aTJHB_fI3exH0nfTxN8nN6B7QG5PzJKXD8m33_Az-o7GBy5WZ_mmFP2RTlACzZQRxzTx4Qx07OlqjZmbkbYTaC49PfEdXNKcxxkekaODj0cfDovMoVC0UlRjwbzkIfpwIEuvIJjKG1Fzb7R0vKkqMN5HoTbKRbfNQc2gdMBc3AYar9vS88dkp-s7eEqoMd5V3EG0901sotXcSTBMB2-Cj8JdkGojSNtmfHGkuTizKc_NtZ2Eb6PwbRK-FQvyev5mNaFrXFv7Pc7PXBORsdOLfn1s80KzXIToQ5XasOBECNEhAc1U4KKRjYBKLcjeZnZtXq6DvVKuBXk5F8eFhtkT10F_nuootPM40ieTMsw9ieouZbQrC6K31GSrq9sl3cn3BOaNTFe1kbHRNxuNuurX_2Wxe_0wnpE7DJUcmWvEHtkZ1-fwPHpPY_MiLZFf3_cXSw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXRHkutMhI3CAi8dtHWLWqkOBURG-WHY9LRUlWu6lE_z224wQWWiSknOJHJuOZzMQz_gahV8Kp-N_jadWEvFslbKUA2qquAwgaPJEubQ18_CSOP7MPp_x0B5HpLExO2s-QlvkzPWWHvd1EQ5MOgxFWcUYlr9gtdDtBtyepXorlvK-SIles0eV8TE3VNUO3bFCG6r_Ov_w7TfKPWGk2QUf30b3iO-J3I7V7aAe6B-jOWE3y6iH68htmRt_heMGP1UU5HYW_56xJwKVMxBnONXA2eOjxap2iNQNuR6Bc_O3cd3CFS-xm8widHB2eLI-rUjehajlrhop4TkP024DXXkLQjddMUK8Vt9Q1DWjviZBO2uiqWRAEagvERtV3XrW1p4_Rbtd38BRhrb1tqIVo412colXUctBEBa-Dj8xdoGZipGkLpngqbXFhcmybKjMy30Tmm8x8wxbo9TxmNSJq_LP3-7Q-c8-Ehp1v9OszU6TDUBai31QrTYJlIUQnBBSRgTLHHYNGLtD-tLqmqOjGEJ2g6oUU8Rkv5-aoXCliYjvoL3MfmWx7etMnozDMlEQR5zzakgVSW2KyRep2S3f-NQN4p-pWQvM46ZtJon7RdTMvnv1f9-foLklCn6rXsH20O6wv4SB6UIN7kVXmJzoPFRs priority: 102 providerName: Springer Nature |
Title | Investigation on explainable machine learning models to predict chronic kidney diseases |
URI | https://link.springer.com/article/10.1038/s41598-024-54375-4 https://www.ncbi.nlm.nih.gov/pubmed/38355876 https://www.proquest.com/docview/2926326764 https://www.proquest.com/docview/2927212303 https://pubmed.ncbi.nlm.nih.gov/PMC10866953 https://doaj.org/article/34f6350892fa4ff381e827f34b5b4e17 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2EWgviOsojMpIvEEg8d0PCHXVpqnSJgSb6FvkxPaYKElpO2n99xw7SVmhQ4pUKXGSU59z4i8-8fch9EYUCt57LE0yH2erhEmUc2WSpt4J6i2RRZgaOD0TJxdsNObjLdTJHbUdON_4ahf0pC5mk_c3v5afIOE_NkvG1Yc5DEJhoRhhCWdU8oRto10YmWRI1NMW7jdc30SzTLdrZzafuofug_Gcq8BCcmuoioz-m2Dov19T_lVSjSPV8UP0oIWYeNDExCO05arH6F4jOrl8gr7dotaoKwybu5lO2kVU-Gf8uNLhVk3iEkepnDle1Hg6C0WdBS4bPl3848pWbonbEs_8KTo_PjofniStvEJScpYtEmI59QDvHE-tdF5nVjNBrVbc0CLLnLaWCFlIA4jOOEFcahwx8IQorCpTS5-hnaqu3HOEtbYmo8YBFCjgEqWihjtNlLfaW-jnHsq6jszLlno8KGBM8lgCpypv_JCDH_Loh5z10NvVOdOGeOO_rQ-Df1YtA2l23FHPLvM2B3PKPMCrVGniDfMesIpTRHrKCl4wl8keOui8m3eBmBMdGO2FFHCP16vDkIOhsGIqV1_HNjJAgPBP95tgWFnSBVMPqbUwWTN1_Uh19T3yfAcRLKE5XPRdF1F_7Lq7L17cacNLtEdCqAc9G3aAdhaza_cKMNWi6KNtOZZ9tDsYjL6O4Pfw6OzzF9g7FMN-nKfox1T6DTRwIEA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0RN_EjsA0IUWm1pu0JoEb1ZTmyXipIsu6lgfxT_kbHzKMujt0o5xY5jj2fszx57PoSeZoWAdY-hcerCblWmY2FtGSeJsxl1huSF3xo4mGTjj-zdIT9cQz_7uzD-WGU_JoaB2tSl3yPfJNJHFs_yjL2afYs9a5T3rvYUGq1a7Nnld1iyLV7uvoX-fUbIzvb0zTjuWAXikrO0iYnh1AGqsTwxuXUyNZJl1EjBNS3S1Epj4DdFrgHIaJsRm2hLNBhGYUSZGArFXkLrjMJKZoTWt7Yn7z8MmzrebcZS2V3OSajYXMAE6S-xERZzRnMes5UJMPAE_Avc_n1G8w9HbZj_dq6jax1wxa9bTbuB1mx1E11uqSyXt9Cn3wJ21BWGx_6YnXRXs_DXcGTT4o6j4ggHAp4Fbmo8m3tXUYPLNkov_nJsKrvEneNocRtNL0K8d9Coqit7D2EpjU6ptgAwCiiiFFRzK4lwRjoDwo1Q2gtSlV1Ac8-rcaKCY50K1QpfgfBVEL5iEXo-fDNrw3mcm3vL98-Q04fiDi_q-ZHqLFtR5gC0JUISp5lzgICsILmjrOAFs2keoY2-d1U3PizUmTZH6MmQDJbt3TW6svVpyJN7YOFberdVhqEmYF-cw0QWIbGiJitVXU2pjj-H6OGeWiuTHAp90WvUWb3-L4v75zfjMboynh7sq_3dyd4DdJV4hfe0OWwDjZr5qX0I0K0pHnUGg5G6YBP9BbPcVTY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4g28SO2DwgBZdVSqDgUsTfLie1S0Sbb3a1gfxr_jrHzKMujt0o5xY5jj2fszx57PoSeFqWEdY-lae7jblVhUulclWaZdwX1logybA183Cu2P7P3Ez5ZQz_7uzDhWGU_JsaB2jZV2CMfERUiixeiYCPfHYv4tDV-NT1JA4NU8LT2dBqtiuy65XdYvs1f7mxBXz8jZPxu_-122jEMpBVn-SIlllMPCMfxzArnVW4VK6hVkhta5rlT1sIvS2EA1BhXEJcZRwwYSWlllVkKxV5ClwXleTAxMRHD9k5woLFcddd0MipHc5gqw3U2wlLOqOApW5kKI2PAv2Du36c1_3DZxplwfANd7yAsft3q3E205upb6EpLarm8jb78FrqjqTE87sf0qLukhY_j4U2HO7aKAxypeOZ40eDpLDiNFrhq4_Xib4e2dkvcuZDmd9D-RQj3Llqvm9rdQ1gpa3JqHECNEoqoJDXcKSK9Vd6CcBOU94LUVRfaPDBsHOnoYqdSt8LXIHwdha9Zgp4P30zbwB7n5n4T-mfIGYJyxxfN7EB3Nq4p8wDfMqmIN8x7wEJOEuEpK3nJXC4StNn3ru5Girk-0-sEPRmSwcaD48bUrjmNeUSAGKGlG60yDDUBS-McprQEyRU1Wanqakp9-DXGEQ8kW4XiUOiLXqPO6vV_Wdw_vxmP0VUwTP1hZ2_3AbpGgr4H_hy2idYXs1P3EDDconwUrQUjfcHW-QvUG1gG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+explainable+machine+learning+models+to+predict+chronic+kidney+diseases&rft.jtitle=Scientific+reports&rft.au=Ghosh%2C+Samit+Kumar&rft.au=Khandoker%2C+Ahsan+H&rft.date=2024-02-14&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=3687&rft_id=info:doi/10.1038%2Fs41598-024-54375-4&rft_id=info%3Apmid%2F38355876&rft.externalDocID=38355876 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |