Comparative study on landslide susceptibility mapping based on unbalanced sample ratio
The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM f...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 5823 - 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.04.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM. |
---|---|
AbstractList | The Zigui-Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM.The Zigui-Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM. The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM. Abstract The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM. |
ArticleNumber | 5823 |
Author | Yu, Xianyu Jiang, Weiwei Tang, Li Zhou, Jianguo |
Author_xml | – sequence: 1 givenname: Li surname: Tang fullname: Tang, Li organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology – sequence: 2 givenname: Xianyu surname: Yu fullname: Yu, Xianyu email: yuxianyu@hbut.edu.cn organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology – sequence: 3 givenname: Weiwei surname: Jiang fullname: Jiang, Weiwei organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology – sequence: 4 givenname: Jianguo surname: Zhou fullname: Zhou, Jianguo organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37037885$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB_0D7BAkdiwCdi-ceysEBpBqVSJTcXW8iuDR4kd7KTS9NfjdFpou6g3fp3z6fj6nqKjEIND6B3BnwgG8Tk3hHWixhRqACLa-vYVOqG4YTUFSo8erY_Rec47XAajXUO6N-gYOAYuBDtBvzZxnFRSs79xVZ4Xu69iqAYVbB68LUdLNm6avfaDn_fVqKbJh22lVXZ2VS5Bq6I2ZZfVOA2uWlnxLXrdqyG78_v5DF1__3a9-VFf_by43Hy9qg1ryFxTSzHVVmvFKIO2JcS1fceA0J4LrloinNbW9gw4YG4FMKwwNS0GyrhRcIYuD1gb1U5OyY8q7WVUXt4dxLSVKs3eDE5iRaghLROgbAOu0Q6aTnBnMOe0B1tYXw6sadGjs8aFOanhCfTpTfC_5TbeSIKxaDHDhfDxnpDin8XlWY6-VG8o9XFxyZLyrhO0LW8p0g_PpLu4pFBKtaqE4A2BFfj-caR_WR6-rwjEQWBSzDm5Xho_r_VfE_qhRJNrs8hDs8jSLPKuWeRtsdJn1gf6iyY4mHIRh61L_2O_4PoL5ULR9w |
CitedBy_id | crossref_primary_10_3389_fenvs_2024_1424988 crossref_primary_10_3390_rs15235547 crossref_primary_10_1016_j_rineng_2023_101656 crossref_primary_10_1038_s41598_024_52145_w crossref_primary_10_1007_s10064_024_03889_2 crossref_primary_10_1007_s12665_024_12032_z crossref_primary_10_1088_1755_1315_1276_1_012012 crossref_primary_10_3389_feart_2024_1518377 crossref_primary_10_3390_geosciences15030077 crossref_primary_10_1016_j_soildyn_2024_108491 crossref_primary_10_1007_s12303_023_0033_6 crossref_primary_10_1016_j_asr_2024_12_020 crossref_primary_10_1109_JSTARS_2024_3452182 |
Cites_doi | 10.1080/01431160010014260 10.1016/j.geomorph.2018.06.006 10.1016/j.cageo.2020.104470 10.1016/j.geomorph.2009.09.025 10.1016/j.cageo.2021.104966 10.1016/j.geomorph.2013.08.013 10.1109/TIP.2019.2924811 10.1007/s10346-011-0283-7 10.1007/s00704-016-1919-2 10.1007/s12665-018-8003-4 10.1016/j.enggeo.2007.10.009 10.3390/s20061723 10.3390/ijerph16030368 10.1109/TSMCB.2008.2007853 10.1007/s42452-020-03307-8 10.1007/s11442-018-1471-3 10.1007/s10346-014-0518-5 10.1007/s12665-013-2863-4 10.1038/s41598-021-94936-5 10.1007/s11069-012-0217-2 10.1109/5.726791 10.4028/www.scientific.net/AMR.756-759.2547 10.1016/j.ijsrc.2017.09.008 10.1016/j.scitotenv.2020.137231 10.1016/j.catena.2019.104249 10.1016/j.neucom.2013.10.044 10.1109/tkde.2008.239 10.1016/j.cageo.2019.104329 10.1016/j.scitotenv.2018.06.389 10.3390/s18124436 10.1007/s10064-020-01969-7 10.1016/j.rse.2014.05.013 10.3390/rs12030502 10.1007/s11069-012-0418-8 10.1016/j.catena.2017.11.022 10.3390/su13073803 10.1016/j.scitotenv.2019.02.263 10.1371/journal.pone.0177678 10.1111/j.1600-0587.2012.07348.x 10.3390/sci2010014 10.1007/978-1-4757-2440-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-33186-z |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_0a12c16583ad43e4be34987ec0772f3d PMC10086050 37037885 10_1038_s41598_023_33186_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes grantid: 2020EJB004; 2020EJB004; 2020EJB004 – fundername: the National Natural Science Foundation of China grantid: 41807297; 42101375 – fundername: the National Natural Science Foundation of China grantid: 41807297 – fundername: the National Natural Science Foundation of China grantid: 42101375 – fundername: Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes grantid: 2020EJB004 – fundername: ; grantid: 2020EJB004; 2020EJB004; 2020EJB004 – fundername: ; grantid: 41807297; 42101375 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-2d202bdbba52536611e6f95312f787a618ebbddf537307d8350a02c603257ca3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:13 EDT 2025 Thu Aug 21 18:38:32 EDT 2025 Fri Jul 11 09:01:47 EDT 2025 Wed Aug 13 09:29:13 EDT 2025 Thu Jan 02 22:31:17 EST 2025 Thu Apr 24 22:58:57 EDT 2025 Tue Jul 01 04:24:28 EDT 2025 Fri Feb 21 02:40:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-2d202bdbba52536611e6f95312f787a618ebbddf537307d8350a02c603257ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-33186-z |
PMID | 37037885 |
PQID | 2798874130 |
PQPubID | 2041939 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a12c16583ad43e4be34987ec0772f3d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10086050 proquest_miscellaneous_2799826373 proquest_journals_2798874130 pubmed_primary_37037885 crossref_citationtrail_10_1038_s41598_023_33186_z crossref_primary_10_1038_s41598_023_33186_z springer_journals_10_1038_s41598_023_33186_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-10 |
PublicationDateYYYYMMDD | 2023-04-10 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Skilodimou, Bathrellos, Chousianitis, Youssef, Pradhan (CR7) 2019 Saha, Gupta, Arora (CR4) 2010; 23 Aditian, Kubota, Shinohara (CR5) 2018; 318 Guha-Sapir, Below, Hoyois (CR1) 2020; 2 CR39 CR37 Chen, Zeng, Jiang, Tang (CR32) 2015; 149 Zhang (CR25) 2022; 158 CR34 Sadr, Maghsoudi, Saljoughi (CR52) 2014; 02 Fang, Wang, Peng, Hong (CR54) 2020; 139 Wang, Fang, Hong (CR14) 2019; 666 Wang (CR24) 2019; 16 Mehrabi, Pradhan, Moayedi, Alamri (CR9) 2020 Peng (CR8) 2014; 204 Pourghasemi, Rossi (CR58) 2017; 130 Survey (CR28) 1997 Haibo, Garcia (CR44) 2009; 21 Yu, Zhang, Song, Jiang, Zhou (CR36) 2021; 11 Chang (CR27) 2020; 12 Sameen, Pradhan, Lee (CR46) 2020 Yu, Gao (CR30) 2020; 15 CR41 Fang, Wang, Peng, Hong (CR16) 2020; 139 Bai (CR31) 2010; 115 Pham, Shirzadi, Tien, Prakash, Dholakia (CR33) 2018; 33 Wei, Wang, Liu, Shen, Wu (CR61) 2019; 28 Aktaş, San (CR26) 2019; 133 Liu, Wu, Zhou (CR60) 2009; 39 Jebur, Pradhan, Tehrany (CR55) 2014; 152 Zorlu, Gokceoglu, Ocakoglu, Nefeslioglu, Acikalin (CR62) 2008; 96 Zhi, Guo, Fan (CR23) 2013; 756–759 Hong, Liu, Zhu (CR35) 2020; 718 Ciurleo, Cascini, Calvello (CR51) 2017; 49 Song (CR20) 2018; 8 Tang, Yan, Wen, Yin, Tang (CR43) 2021; 13 Nath, Das, Satyam (CR49) 2021; 5 Sabri, Fethi, Mohammed, Quan (CR59) 2017; 12 Lecun, Bottou (CR13) 1998; 86 Yanbin (CR11) 2022; 44 CR12 Gao, Fam, Tay, Low (CR22) 2020; 80 Demir, Aytekin, Akgün, İkizler, Tatar (CR48) 2012; 65 Hong (CR53) 2018; 5 Fang, Wang, Peng, Hong (CR40) 2020; 5 Peng, Xu, Hou, Peng (CR2) 2015; 12 Chong, Dai, Xu, Yuan (CR42) 2012; 145–146 Chen, Song, Julie, Pourghasemi (CR18) 2021; 5 Akgun (CR6) 2012; 9 Li, Fang, Wang (CR15) 2021; 5 CR29 Aas, Js, Fj, Sl (CR56) 2021; 183 Polykretis, Ferentinou, Chalkias (CR50) 2015; 4 Pourghasemi, Rahmati (CR45) 2018; 162 Wu, Ren, Niu (CR3) 2014; 71 Nath, Sharma, Goswami, Sweta, Pareek (CR47) 2021; 5 Ying, Lin, Shi (CR21) 2018; 28 Xiao, Zhang, Peng (CR17) 2018; 18 Gao, Fam, Tay, Low (CR38) 2020; 2 Pourghasemi, Pradhan, Gokceoglu (CR57) 2012; 63 Chen, Zhang, Li, Shahabi (CR10) 2018; 644 Polykretis, Chalkias (CR19) 2018; 93 W Ying (33186_CR21) 2018; 28 Y Wang (33186_CR14) 2019; 666 MN Jebur (33186_CR55) 2014; 152 H Haibo (33186_CR44) 2009; 21 H Zhang (33186_CR25) 2022; 158 Z Chang (33186_CR27) 2020; 12 A Aas (33186_CR56) 2021; 183 W Li (33186_CR15) 2021; 5 H Aktaş (33186_CR26) 2019; 133 X Chong (33186_CR42) 2012; 145–146 Y Lecun (33186_CR13) 1998; 86 S-B Bai (33186_CR31) 2010; 115 RR Nath (33186_CR47) 2021; 5 A Aditian (33186_CR5) 2018; 318 L Peng (33186_CR8) 2014; 204 J Chen (33186_CR32) 2015; 149 MP Sadr (33186_CR52) 2014; 02 33186_CR29 G Demir (33186_CR48) 2012; 65 C Polykretis (33186_CR50) 2015; 4 HR Pourghasemi (33186_CR58) 2017; 130 AK Saha (33186_CR4) 2010; 23 H Hong (33186_CR35) 2020; 718 C Polykretis (33186_CR19) 2018; 93 XY Liu (33186_CR60) 2009; 39 D Guha-Sapir (33186_CR1) 2020; 2 33186_CR12 Y Wang (33186_CR24) 2019; 16 MA Yanbin (33186_CR11) 2022; 44 Z Fang (33186_CR40) 2020; 5 X Wu (33186_CR3) 2014; 71 L Xiao (33186_CR17) 2018; 18 X Yu (33186_CR36) 2021; 11 HR Pourghasemi (33186_CR57) 2012; 63 Hong (33186_CR53) 2018; 5 HD Skilodimou (33186_CR7) 2019 Y Song (33186_CR20) 2018; 8 XS Wei (33186_CR61) 2019; 28 L Peng (33186_CR2) 2015; 12 HR Pourghasemi (33186_CR45) 2018; 162 B Sabri (33186_CR59) 2017; 12 HPG Survey (33186_CR28) 1997 X Yu (33186_CR30) 2020; 15 RX Tang (33186_CR43) 2021; 13 MI Sameen (33186_CR46) 2020 W Chen (33186_CR10) 2018; 644 M Ciurleo (33186_CR51) 2017; 49 H Gao (33186_CR22) 2020; 80 BT Pham (33186_CR33) 2018; 33 Z Fang (33186_CR16) 2020; 139 33186_CR41 A Akgun (33186_CR6) 2012; 9 M Mehrabi (33186_CR9) 2020 WM Zhi (33186_CR23) 2013; 756–759 K Zorlu (33186_CR62) 2008; 96 Z Fang (33186_CR54) 2020; 139 RR Nath (33186_CR49) 2021; 5 33186_CR37 Z Chen (33186_CR18) 2021; 5 33186_CR34 H Gao (33186_CR38) 2020; 2 33186_CR39 |
References_xml | – volume: 23 start-page: 357 year: 2010 end-page: 369 ident: CR4 article-title: GIS-based Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas publication-title: Int. J. Remote Sens. doi: 10.1080/01431160010014260 – volume: 318 start-page: 101 year: 2018 end-page: 111 ident: CR5 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – volume: 139 start-page: 740 year: 2020 ident: CR54 article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104470 – volume: 115 start-page: 23 year: 2010 end-page: 31 ident: CR31 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – volume: 158 start-page: 104966 year: 2022 ident: CR25 article-title: Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104966 – volume: 204 start-page: 287 year: 2014 end-page: 301 ident: CR8 article-title: Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.013 – ident: CR39 – volume: 145–146 start-page: 70 year: 2012 end-page: 80 ident: CR42 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology – ident: CR12 – volume: 5 start-page: 987 year: 2020 ident: CR40 article-title: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping publication-title: Int. J. Geogr. Inform. Sci. – volume: 28 start-page: 6116 year: 2019 end-page: 6125 ident: CR61 article-title: Piecewise classifier mappings: Learning fine-grained learners for novel categories with few examples publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2924811 – volume: 44 start-page: 53 year: 2022 end-page: 67 ident: CR11 article-title: Machine learning algorithms and techniques for landslide susceptibility investigation: A literature review publication-title: J. Civ. Environ. Eng. – ident: CR29 – volume: 9 start-page: 93 year: 2012 end-page: 106 ident: CR6 article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey publication-title: Landslides doi: 10.1007/s10346-011-0283-7 – volume: 130 start-page: 609 year: 2017 end-page: 633 ident: CR58 article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods publication-title: Theoret. Appl. Climatol. doi: 10.1007/s00704-016-1919-2 – year: 2019 ident: CR7 article-title: Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-8003-4 – volume: 96 start-page: 141 year: 2008 end-page: 158 ident: CR62 article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.10.009 – year: 2020 ident: CR9 article-title: Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art Metaheuristic techniques publication-title: Sensors (Basel) doi: 10.3390/s20061723 – volume: 2 start-page: 14 year: 2020 ident: CR1 article-title: EM-DAT: The CRED/OFDA international disaster database publication-title: Science – volume: 16 start-page: 985 year: 2019 ident: CR24 article-title: Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16030368 – volume: 39 start-page: 539 year: 2009 end-page: 550 ident: CR60 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2008.2007853 – volume: 2 start-page: 410 year: 2020 ident: CR38 article-title: Three oversampling methods applied in a comparative landslide spatial research in Penang Island, Malaysia publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03307-8 – volume: 28 start-page: 259 year: 2018 end-page: 274 ident: CR21 article-title: Spatial pattern and influencing factors of landslide casualty events publication-title: J. Geog. Sci. doi: 10.1007/s11442-018-1471-3 – volume: 12 start-page: 943 year: 2015 end-page: 960 ident: CR2 article-title: Quantitative risk analysis for landslides: The case of the Three Gorges area, China publication-title: Landslides doi: 10.1007/s10346-014-0518-5 – volume: 71 start-page: 4725 year: 2014 end-page: 4738 ident: CR3 article-title: Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2863-4 – volume: 11 start-page: 15476 year: 2021 ident: CR36 article-title: Study on landslide susceptibility mapping based on rock-soil characteristic factors publication-title: Sci. Rep. doi: 10.1038/s41598-021-94936-5 – volume: 5 start-page: 78 year: 2021 ident: CR49 article-title: Impact of main boundary thrust (MBT) on landslide susceptibility in Garhwal Himalaya: A case study publication-title: Indian Geotech. J. – volume: 5 start-page: 478 year: 2018 ident: CR53 article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China) publication-title: Catena Interdis. J. Soil Sci. Hydrol. – volume: 63 start-page: 965 year: 2012 end-page: 996 ident: CR57 article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran publication-title: Nat. Hazards doi: 10.1007/s11069-012-0217-2 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR13 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 756–759 start-page: 2547 year: 2013 end-page: 2551 ident: CR23 article-title: Sample size on the impact of imbalance learning publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.756-759.2547 – volume: 5 start-page: 4770 year: 2021 ident: CR47 article-title: Landslide susceptibility zonation with special emphasis on tectonic features for occurrence of landslides in lower Indian Himalaya publication-title: Science – ident: CR37 – volume: 4 start-page: 9 year: 2015 ident: CR50 article-title: A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece) publication-title: Bull. Eng. Geol. Environ. – volume: 33 start-page: 157 year: 2018 end-page: 170 ident: CR33 article-title: A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India publication-title: Int. J. Sedim. Res. doi: 10.1016/j.ijsrc.2017.09.008 – volume: 02 start-page: 41 year: 2014 ident: CR52 article-title: Landslide susceptibility mapping of Komroud Sub-basin using fuzzy logic approach publication-title: Geodynamics – volume: 718 start-page: 137231 year: 2020 ident: CR35 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137231 – year: 2020 ident: CR46 article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment publication-title: Catena doi: 10.1016/j.catena.2019.104249 – volume: 183 start-page: 104225 year: 2021 end-page: 104225 ident: CR56 article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network publication-title: CATENA – volume: 149 start-page: 151 year: 2015 end-page: 157 ident: CR32 article-title: Deformation prediction of landslide based on functional network publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.044 – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: CR44 article-title: Learning from Imbalanced Data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/tkde.2008.239 – volume: 49 start-page: S0013795216308419 year: 2017 ident: CR51 article-title: A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils publication-title: Eng. Geol. – volume: 133 start-page: 104329 year: 2019 ident: CR26 article-title: Landslide susceptibility mapping using an automatic sampling algorithm based on two level random sampling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104329 – volume: 15 start-page: 7118 year: 2020 ident: CR30 article-title: A landslide susceptibility map based on spatial scale segmentation: A case study at Zigui-Badong in the Three Gorges Reservoir Area, China publication-title: PLOS ONE – volume: 644 start-page: 1006 year: 2018 end-page: 1018 ident: CR10 article-title: Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naive Bayes tree for landslide susceptibility modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.389 – volume: 18 start-page: 214 year: 2018 ident: CR17 article-title: Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway publication-title: Sensors doi: 10.3390/s18124436 – volume: 80 start-page: 851 year: 2020 end-page: 872 ident: CR22 article-title: Comparative landslide spatial research based on various sample sizes and ratios in Penang Island, Malaysia publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01969-7 – year: 1997 ident: CR28 publication-title: Cartographer Geological Map of Zigui and Badong COUNTY (1:50,000) – volume: 5 start-page: 1 year: 2021 end-page: 22 ident: CR15 article-title: Stacking ensemble of deep learning methods for landslide susceptibility mapping in the Three Gorges Reservoirarea, China publication-title: Stochastic Environ. Res. Risk Assess. – volume: 152 start-page: 150 year: 2014 end-page: 165 ident: CR55 article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.05.013 – volume: 12 start-page: 985 year: 2020 ident: CR27 article-title: Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models publication-title: Remote Sens. doi: 10.3390/rs12030502 – volume: 139 start-page: 104470 year: 2020 ident: CR16 article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104470 – volume: 93 start-page: 499 year: 2018 ident: CR19 article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models publication-title: Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards – volume: 65 start-page: 1481 year: 2012 end-page: 1506 ident: CR48 article-title: A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods publication-title: Nat. Hazards doi: 10.1007/s11069-012-0418-8 – volume: 5 start-page: 4998 year: 2021 ident: CR18 article-title: Landslide susceptibility mapping using statistical bivariate models and their hybrid with normalized spatial-correlated scale index and weighted calibrated landslide potential model publication-title: Environ. Earth Sci. – ident: CR34 – volume: 162 start-page: 177 year: 2018 end-page: 192 ident: CR45 article-title: Prediction of the landslide susceptibility: Which algorithm, which precision? publication-title: CATENA doi: 10.1016/j.catena.2017.11.022 – volume: 8 start-page: 214 year: 2018 ident: CR20 article-title: Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the three gorges reservoir area (China) publication-title: Int. J. Geo-Inform. – volume: 13 start-page: 78 year: 2021 ident: CR43 article-title: Comparison of logistic regression, information value, and comprehensive evaluating model for landslide susceptibility mapping publication-title: Sustainability doi: 10.3390/su13073803 – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: CR14 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – ident: CR41 – volume: 12 start-page: e0177678 year: 2017 ident: CR59 article-title: Optimal classifier for imbalanced data using Matthews correlation coefficient metric publication-title: Plos One doi: 10.1371/journal.pone.0177678 – volume: 49 start-page: S00137952163084 year: 2017 ident: 33186_CR51 publication-title: Eng. Geol. – volume: 139 start-page: 740 year: 2020 ident: 33186_CR54 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104470 – volume: 2 start-page: 410 year: 2020 ident: 33186_CR38 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03307-8 – volume: 139 start-page: 104470 year: 2020 ident: 33186_CR16 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104470 – volume: 145–146 start-page: 70 year: 2012 ident: 33186_CR42 publication-title: Geomorphology – year: 2019 ident: 33186_CR7 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-8003-4 – volume: 149 start-page: 151 year: 2015 ident: 33186_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.044 – volume: 12 start-page: 985 year: 2020 ident: 33186_CR27 publication-title: Remote Sens. doi: 10.3390/rs12030502 – volume: 718 start-page: 137231 year: 2020 ident: 33186_CR35 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137231 – volume: 644 start-page: 1006 year: 2018 ident: 33186_CR10 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.389 – volume: 44 start-page: 53 year: 2022 ident: 33186_CR11 publication-title: J. Civ. Environ. Eng. – volume: 18 start-page: 214 year: 2018 ident: 33186_CR17 publication-title: Sensors doi: 10.3390/s18124436 – volume: 16 start-page: 985 year: 2019 ident: 33186_CR24 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16030368 – volume: 33 start-page: 157 year: 2018 ident: 33186_CR33 publication-title: Int. J. Sedim. Res. doi: 10.1016/j.ijsrc.2017.09.008 – volume: 5 start-page: 1 year: 2021 ident: 33186_CR15 publication-title: Stochastic Environ. Res. Risk Assess. – volume: 39 start-page: 539 year: 2009 ident: 33186_CR60 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2008.2007853 – volume-title: Cartographer Geological Map of Zigui and Badong COUNTY (1:50,000) year: 1997 ident: 33186_CR28 – volume: 183 start-page: 104225 year: 2021 ident: 33186_CR56 publication-title: CATENA – volume: 5 start-page: 4770 year: 2021 ident: 33186_CR47 publication-title: Science – volume: 23 start-page: 357 year: 2010 ident: 33186_CR4 publication-title: Int. J. Remote Sens. doi: 10.1080/01431160010014260 – volume: 9 start-page: 93 year: 2012 ident: 33186_CR6 publication-title: Landslides doi: 10.1007/s10346-011-0283-7 – volume: 21 start-page: 1263 year: 2009 ident: 33186_CR44 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/tkde.2008.239 – ident: 33186_CR29 – volume: 158 start-page: 104966 year: 2022 ident: 33186_CR25 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104966 – volume: 666 start-page: 975 year: 2019 ident: 33186_CR14 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – ident: 33186_CR39 – volume: 28 start-page: 259 year: 2018 ident: 33186_CR21 publication-title: J. Geog. Sci. doi: 10.1007/s11442-018-1471-3 – ident: 33186_CR37 doi: 10.1111/j.1600-0587.2012.07348.x – volume: 318 start-page: 101 year: 2018 ident: 33186_CR5 publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – ident: 33186_CR12 – volume: 12 start-page: e0177678 year: 2017 ident: 33186_CR59 publication-title: Plos One doi: 10.1371/journal.pone.0177678 – volume: 133 start-page: 104329 year: 2019 ident: 33186_CR26 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104329 – volume: 63 start-page: 965 year: 2012 ident: 33186_CR57 publication-title: Nat. Hazards doi: 10.1007/s11069-012-0217-2 – volume: 756–759 start-page: 2547 year: 2013 ident: 33186_CR23 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.756-759.2547 – volume: 152 start-page: 150 year: 2014 ident: 33186_CR55 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.05.013 – volume: 2 start-page: 14 year: 2020 ident: 33186_CR1 publication-title: Science doi: 10.3390/sci2010014 – volume: 28 start-page: 6116 year: 2019 ident: 33186_CR61 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2924811 – year: 2020 ident: 33186_CR9 publication-title: Sensors (Basel) doi: 10.3390/s20061723 – volume: 15 start-page: 7118 year: 2020 ident: 33186_CR30 publication-title: PLOS ONE – volume: 86 start-page: 2278 year: 1998 ident: 33186_CR13 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 02 start-page: 41 year: 2014 ident: 33186_CR52 publication-title: Geodynamics – volume: 96 start-page: 141 year: 2008 ident: 33186_CR62 publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2007.10.009 – volume: 115 start-page: 23 year: 2010 ident: 33186_CR31 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – ident: 33186_CR41 doi: 10.1007/978-1-4757-2440-0 – volume: 13 start-page: 78 year: 2021 ident: 33186_CR43 publication-title: Sustainability doi: 10.3390/su13073803 – ident: 33186_CR34 – volume: 130 start-page: 609 year: 2017 ident: 33186_CR58 publication-title: Theoret. Appl. Climatol. doi: 10.1007/s00704-016-1919-2 – volume: 204 start-page: 287 year: 2014 ident: 33186_CR8 publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.013 – volume: 5 start-page: 478 year: 2018 ident: 33186_CR53 publication-title: Catena Interdis. J. Soil Sci. Hydrol. – volume: 11 start-page: 15476 year: 2021 ident: 33186_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-021-94936-5 – volume: 8 start-page: 214 year: 2018 ident: 33186_CR20 publication-title: Int. J. Geo-Inform. – volume: 65 start-page: 1481 year: 2012 ident: 33186_CR48 publication-title: Nat. Hazards doi: 10.1007/s11069-012-0418-8 – year: 2020 ident: 33186_CR46 publication-title: Catena doi: 10.1016/j.catena.2019.104249 – volume: 5 start-page: 78 year: 2021 ident: 33186_CR49 publication-title: Indian Geotech. J. – volume: 71 start-page: 4725 year: 2014 ident: 33186_CR3 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2863-4 – volume: 80 start-page: 851 year: 2020 ident: 33186_CR22 publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01969-7 – volume: 5 start-page: 4998 year: 2021 ident: 33186_CR18 publication-title: Environ. Earth Sci. – volume: 93 start-page: 499 year: 2018 ident: 33186_CR19 publication-title: Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards – volume: 5 start-page: 987 year: 2020 ident: 33186_CR40 publication-title: Int. J. Geogr. Inform. Sci. – volume: 4 start-page: 9 year: 2015 ident: 33186_CR50 publication-title: Bull. Eng. Geol. Environ. – volume: 162 start-page: 177 year: 2018 ident: 33186_CR45 publication-title: CATENA doi: 10.1016/j.catena.2017.11.022 – volume: 12 start-page: 943 year: 2015 ident: 33186_CR2 publication-title: Landslides doi: 10.1007/s10346-014-0518-5 |
SSID | ssj0000529419 |
Score | 2.4817617 |
Snippet | The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on... The Zigui-Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on... Abstract The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5823 |
SubjectTerms | 704/172 704/4111 Canyons Comparative studies Humanities and Social Sciences Landslides Mapping multidisciplinary Neural networks Science Science (multidisciplinary) Statistical methods Support vector machines Susceptibility Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QJSQuiDcDBQ0SN4ia9ybHUlFVSHAqqLcoT6hUZit299D--tqZ2W2X54XjZDIay7Hz2Yr9hZDXhicHaVeiymVLFWAmjbALUlulKjU7ZhU2J3_8ZI4-qw8n-uTGVV9YEzbSA4-K22OBi8QBJ2XIShYVi1SQJ5fEIC6sMuPuC5h3I5kaWb2FU9xNXTJM2r0FIBV2kwlJJdixoZdbSNQI-38XZf5aLPnTiWkDosN75O4UQfb7o-T3ya0yPCC3xzslLx6SLwfXfN59I4_t50PfOnrPTjMMrRatkqUVxV703wMSNHztEc0yzlwNEasdEzwtAlIH981GHpHjw_fHB0d0ujyBJq34koosmIg5xqCFloDCvJjqwONEBR8NhtsSY85VS_DxWYZAjAUmkmESnDgF-ZjsDPOhPCV9YDzUyJIxTqvMo3NVB1NzVZHrwllH-FqPPk3E4ni_xZlvB9zS-lH3HnTvm-79ZUfebL45H2k1_jr7HS7PZiZSYrcBMBQ_GYr_l6F0ZHe9uH7y04UXSNc2QyDvyKvNa_AwPDYJQ5mv2hwHSRjoqSNPRlvYSCJhw5xZqztit6xkS9TtN8Ppt8bijaxKkEvCj9-uDeparj_r4tn_0MVzckegJyBnJdslO8sfq_ICgqtlfNn86Ao-3h9N priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUHiBlH9SmKfEFRUFRKcCtqb5Wep1Cal2T20v74zTjar5dFjbEdxxvOyZ_wNIe8a5jVsu3wldVCVBJtZOdCClUpCxhQ0VRIvJ3_73hz9kF8X9WI6cBumtMq1TsyKOvQez8j3OQJrtahyP178rrBqFEZXpxIad8k9hC7DlK520c5nLBjFkkxPd2WoUPsD2Cu8U8ZFJYCbm-p6yx5l2P5_-Zp_p0z-ETfN5ujwEXk4-ZHlp3HhH5M7sXtC7o-VJa-ekp8HG1TvMkPIln1X5nu9Z6cBmlZDzmfJqbFX5blFmIaTEm1awJGrzmHOo4enwSKAcJk55Rk5PvxyfHBUTSUUKl9Ltqx44JS74JyteS3AFrPYJA1yxxNIqm2Yis6FkGoBkt4GcMeopdw3VIAoeyuek52u7-JLUlrKbHLUN42uZWBO61TbJoUkHasjowVhazoaP8GLY5WLM5PD3EKZkfYGaG8y7c11Qd7P71yM4Bq3jv6MyzOPRGDs3NBfnphJzgy1jHsGbpWwQYooXRRSqzZ6CtuIJEJB9taLayZpHcyGtwrydu4GOcPgie1iv8pjNGzFgE4FeTHywjwTAWqzVaouiNrikq2pbvd0p78yljdiK8GOEj78Yc1Qm3n9nxavbv-NXfKAI48jJiXdIzvLy1V8Dc7T0r3JEnIDyDYXLg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDI5KERIX1PKctqBB4gYj8ppsciwrqgoJTgX1FuVZKrWzqLt7aH89duZRLRSkHifjaCLHju2x_YWQd4oFA2FXaKSJupFgMxsPp2Cjs5ApR0O1xObkr9_U8Xf55bQ93SJ87IUpRfsF0rIc02N12MclGBpsBuOiESCGqrl5QB4idDtK9VzNp_8qmLmSzAz9MVToO6Zu2KAC1X-Xf_l3meQfudJigo52yJPBd6wP-9Xukq3UPSWP-tskr5-RH_NbJO-6wMbWi64uvbwX5xGG1stSw1LKYa_rS4fQDGc12rGIlOvOY51jgKelQ9DgukjHc3Jy9PlkftwM1yY0oZVs1fDIKffRe9fyVoD9ZUllA7rGM2inU0wn72PMrQDtnkVwwaijPCgqQH2DEy_Idrfo0itSO8pc9jQoZVoZmTcmt07lmKVnbWK0Imzkow0DpDjebHFhS2pbaNvz3gLvbeG9vanI-2nOrx5Q47_Un3B7JkoEwy4Di6szOwiHpY7xwMCVEi5KkaRPQho9S4FC6JBFrMjBuLl20NCl5QjUNkMTXpG302vQLUyYuC4t1oXGQPgFfKrIy14WppUIOCpnWrcV0RtSsrHUzTfd-c-C3414ShBFwoc_jAJ1u65_82LvfuT75DFHmUdcSnpAtldX6_QaHKiVf1M05jcE7xV- priority: 102 providerName: Springer Nature |
Title | Comparative study on landslide susceptibility mapping based on unbalanced sample ratio |
URI | https://link.springer.com/article/10.1038/s41598-023-33186-z https://www.ncbi.nlm.nih.gov/pubmed/37037885 https://www.proquest.com/docview/2798874130 https://www.proquest.com/docview/2799826373 https://pubmed.ncbi.nlm.nih.gov/PMC10086050 https://doaj.org/article/0a12c16583ad43e4be34987ec0772f3d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviGcbKKsgcYOAX3n4gNB21apaqRWCFu0tsmO7VFqyZR8S21_P2Em2Wlg4cIpiO4rlmS8zE3u-AXid0Upi2FUlQpoiEWgzE41fwaRwXFhnJCmET04-O89OL8VwlI62oCt31C7gbGNo5-tJXU7H737-WH5EwH9oUsaL9zM0Qj5RjPGEo4pmye027KJlyj1Qz1p3v-H6ZlJQ2ebObH50D-5zRAFGhumaqQqM_pvc0D9PU_62pRos1clDeNC6mHG_0YlHsGXrx3CvKTq5fAJfB3eE33Fgl40ndRxSfsfXBpsWs3DUJZyaXcbflWdwuIq9uTN-5KLW_jhkhXcz5bmF46BET-Hi5PhicJq01RWSKhV0njDDCNNGa5WylKOZpjZzEiHJHIJYZbSwWhvjUo4fgdygp0YUYVVGOKK8UvwZ7NST2h5ArAhVTpMqy2QqDNVSulRlzjihaWopiYB261hWLfO4L4AxLsMOOC_KRgwliqEMYihvI3izeuam4d345-gjL57VSM-ZHRom06uyhWBJFGUVRY-LKyO4FdpyIYvcVgQjDMdNBIedcMtOD0vm-dxyb-kjeLXqRgj6fRVV28kijJEYpeE6RbDf6MJqJp0uRVCsacnaVNd76utvgebb0y5hsIkvftsp1N28_r4Wz___TS9gj3koeCpLcgg78-nCvkSfa657sJ2P8h7s9vvDL0O8Hh2ff_qMrYNs0Av_MXoBar8AFAQt9A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAkaCE1jd9a4d-4AQLa1S2kYIBdTbal8ulYpTmkQo_U_8R2bWdqLw6K3H2JtkPfvtPLwz3wC8zLktMeyyiSxdkUi0mYlBLZgUlZC-ciUrJBUnHw7zwRf58Sg7WoNfXS0MpVV2OjEoaje29I58MyVirT6p3HdnPxLqGkWnq10LjQYW-37-E0O2ydu9D7i-r9J0d2e0PUjargKJzSSfJqnDeN84Y3SWZgLNE_d5VSIU0wrBq3NeeGOcqzKB4O879FCYZqnNmUB0Wy3wZ6_BuhQYyfRgfWtn-Onz4qUOHZtJXrbFOUwUmxM0kFTElopE4PbJk4sVAxj6BPzLuf07R_OPg9pg_3Zvw63WcY3fN0i7A2u-vgvXm1aW83vwdXtJIx4Hztp4XMehkPj0xOGl2SQk0IRc3Hn8XRMvxHFMRtTRyFltKMnS4qeJJsbiOEDzPoyuQroPoFePa_8IYs24rgyzeV5m0nFTllWm88pV0vDMcxYB7-SobMtnTm01TlU4VxeFamSvUPYqyF5dRPB68Z2zhs3j0tFbtDyLkcTEHS6Mz49Vu7EV0zy1HP04oZ0UXhovZFn0vWUYt1TCRbDRLa5q1cNELcEcwYvFbdzYdFqjaz-ehTElxn4opwgeNlhYzESgnu4XRRZBsYKSlamu3qlPvgXycCJzwhAW__hNB6jlvP4vi8eXP8ZzuDEYHR6og73h_hO4mRLeiRCTbUBvej7zT9Fzm5pn7X6JQV3xDv0NHKNTcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKEYgLYi1TCgwSnGAUe-zZDghBS9RSqDgUlJvltVQqM22TCKX_jH_He54lCktvPWbGSTzP39vGz98j5EXOTAVpl0lEZctEgM9MNFjBpPRcOG8rWgo8nPz5IN_9Kj5Osska-dWfhcGyyt4mBkNtG4PvyEcpEmsVaHJHviuL-LIzfnt6lmAHKdxp7dtptBDZd4ufkL5N3-ztwFq_TNPxh8Pt3aTrMJCYTLBZklrI_bXVWmVpxsFVMZf7CmCZegCyylnptLbWZxwUobAQrVBFU5NTDkg3isPPXiPXC54xVLFiUgyvd3ADTbCqO6ZDeTmagqvE42wpTzgoUp5crLjC0DHgX2Hu39Waf2zZBk84vkNudyFs_K7F3F2y5up75Ebb1HJxn3zbXhKKx4G9Nm7qOBwpPjm2cGk-DaU0oSp3Ef9QyBBxFKM7tThyXmsstzTwaaqQuzgOIH1ADq9Ctg_Jet3U7hGJFWXKa2ryvMqEZbqqfKZyb73QLHOMRoT1cpSmYzbHBhsnMuyw81K2spcgexlkLy8i8mr4zmnL63Hp6Pe4PMNI5OQOF5rzI9mpuKSKpYZBRMeVFdwJ7bioysIZChmM5zYiW_3iys5QTOUS1hF5PtwGFcd9G1W7Zh7GVJAFgpwistFiYZgJB4tdlGUWkXIFJStTXb1TH38PNOJI6wTJLPzx6x5Qy3n9Xxablz_GM3IT9FJ-2jvYf0xupQh3ZMakW2R9dj53TyCEm-mnQVliIq9YOX8DOERWQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+on+landslide+susceptibility+mapping+based+on+unbalanced+sample+ratio&rft.jtitle=Scientific+reports&rft.au=Tang%2C+Li&rft.au=Yu%2C+Xianyu&rft.au=Jiang%2C+Weiwei&rft.au=Zhou%2C+Jianguo&rft.date=2023-04-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-33186-z&rft_id=info%3Apmid%2F37037885&rft.externalDocID=PMC10086050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |