Comparative study on landslide susceptibility mapping based on unbalanced sample ratio

The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM f...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 5823 - 23
Main Authors Tang, Li, Yu, Xianyu, Jiang, Weiwei, Zhou, Jianguo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM.
AbstractList The Zigui-Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM.The Zigui-Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM.
The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM.
Abstract The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on Landslide Susceptibility Mapping (LSM) and determine the sample ratio interval with the best performance for different models. We employ 12 LSM factors, five training sample sets with different sample ratios (1:1, 1:2, 1:4, 1:8, and 1:16), and C5.0, Support Vector Machine (SVM), Logistic Regression (LR), and one-dimensional Convolution Neural Network (CNN) models are used to obtain landslide susceptibility index and landslide susceptibility zoning in the study area, respectively. The prediction performance of the model is evaluated by the receiver operating characteristic curve area under the curve value, five statistical methods, and specific category precision. The results show that the CNN, SVM, and LR models in the sample ratio of 1:2 achieve better performance than on the balanced sample set, which indicates the importance of the unbalanced sample set in training the LSM modeling. The C5.0 model is always in a state of overfitting in this study and needs to be further studied. The conclusions put forward in this study help improve the scientificity and reliability of LSM.
ArticleNumber 5823
Author Yu, Xianyu
Jiang, Weiwei
Tang, Li
Zhou, Jianguo
Author_xml – sequence: 1
  givenname: Li
  surname: Tang
  fullname: Tang, Li
  organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology
– sequence: 2
  givenname: Xianyu
  surname: Yu
  fullname: Yu, Xianyu
  email: yuxianyu@hbut.edu.cn
  organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology
– sequence: 3
  givenname: Weiwei
  surname: Jiang
  fullname: Jiang, Weiwei
  organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology
– sequence: 4
  givenname: Jianguo
  surname: Zhou
  fullname: Zhou, Jianguo
  organization: School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37037885$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_0D7BAkdiwCdi-ceysEBpBqVSJTcXW8iuDR4kd7KTS9NfjdFpou6g3fp3z6fj6nqKjEIND6B3BnwgG8Tk3hHWixhRqACLa-vYVOqG4YTUFSo8erY_Rec47XAajXUO6N-gYOAYuBDtBvzZxnFRSs79xVZ4Xu69iqAYVbB68LUdLNm6avfaDn_fVqKbJh22lVXZ2VS5Bq6I2ZZfVOA2uWlnxLXrdqyG78_v5DF1__3a9-VFf_by43Hy9qg1ryFxTSzHVVmvFKIO2JcS1fceA0J4LrloinNbW9gw4YG4FMKwwNS0GyrhRcIYuD1gb1U5OyY8q7WVUXt4dxLSVKs3eDE5iRaghLROgbAOu0Q6aTnBnMOe0B1tYXw6sadGjs8aFOanhCfTpTfC_5TbeSIKxaDHDhfDxnpDin8XlWY6-VG8o9XFxyZLyrhO0LW8p0g_PpLu4pFBKtaqE4A2BFfj-caR_WR6-rwjEQWBSzDm5Xho_r_VfE_qhRJNrs8hDs8jSLPKuWeRtsdJn1gf6iyY4mHIRh61L_2O_4PoL5ULR9w
CitedBy_id crossref_primary_10_3389_fenvs_2024_1424988
crossref_primary_10_3390_rs15235547
crossref_primary_10_1016_j_rineng_2023_101656
crossref_primary_10_1038_s41598_024_52145_w
crossref_primary_10_1007_s10064_024_03889_2
crossref_primary_10_1007_s12665_024_12032_z
crossref_primary_10_1088_1755_1315_1276_1_012012
crossref_primary_10_3389_feart_2024_1518377
crossref_primary_10_3390_geosciences15030077
crossref_primary_10_1016_j_soildyn_2024_108491
crossref_primary_10_1007_s12303_023_0033_6
crossref_primary_10_1016_j_asr_2024_12_020
crossref_primary_10_1109_JSTARS_2024_3452182
Cites_doi 10.1080/01431160010014260
10.1016/j.geomorph.2018.06.006
10.1016/j.cageo.2020.104470
10.1016/j.geomorph.2009.09.025
10.1016/j.cageo.2021.104966
10.1016/j.geomorph.2013.08.013
10.1109/TIP.2019.2924811
10.1007/s10346-011-0283-7
10.1007/s00704-016-1919-2
10.1007/s12665-018-8003-4
10.1016/j.enggeo.2007.10.009
10.3390/s20061723
10.3390/ijerph16030368
10.1109/TSMCB.2008.2007853
10.1007/s42452-020-03307-8
10.1007/s11442-018-1471-3
10.1007/s10346-014-0518-5
10.1007/s12665-013-2863-4
10.1038/s41598-021-94936-5
10.1007/s11069-012-0217-2
10.1109/5.726791
10.4028/www.scientific.net/AMR.756-759.2547
10.1016/j.ijsrc.2017.09.008
10.1016/j.scitotenv.2020.137231
10.1016/j.catena.2019.104249
10.1016/j.neucom.2013.10.044
10.1109/tkde.2008.239
10.1016/j.cageo.2019.104329
10.1016/j.scitotenv.2018.06.389
10.3390/s18124436
10.1007/s10064-020-01969-7
10.1016/j.rse.2014.05.013
10.3390/rs12030502
10.1007/s11069-012-0418-8
10.1016/j.catena.2017.11.022
10.3390/su13073803
10.1016/j.scitotenv.2019.02.263
10.1371/journal.pone.0177678
10.1111/j.1600-0587.2012.07348.x
10.3390/sci2010014
10.1007/978-1-4757-2440-0
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-33186-z
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_0a12c16583ad43e4be34987ec0772f3d
PMC10086050
37037885
10_1038_s41598_023_33186_z
Genre Journal Article
GrantInformation_xml – fundername: Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes
  grantid: 2020EJB004; 2020EJB004; 2020EJB004
– fundername: the National Natural Science Foundation of China
  grantid: 41807297; 42101375
– fundername: the National Natural Science Foundation of China
  grantid: 41807297
– fundername: the National Natural Science Foundation of China
  grantid: 42101375
– fundername: Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes
  grantid: 2020EJB004
– fundername: ;
  grantid: 2020EJB004; 2020EJB004; 2020EJB004
– fundername: ;
  grantid: 41807297; 42101375
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-2d202bdbba52536611e6f95312f787a618ebbddf537307d8350a02c603257ca3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:13 EDT 2025
Thu Aug 21 18:38:32 EDT 2025
Fri Jul 11 09:01:47 EDT 2025
Wed Aug 13 09:29:13 EDT 2025
Thu Jan 02 22:31:17 EST 2025
Thu Apr 24 22:58:57 EDT 2025
Tue Jul 01 04:24:28 EDT 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-2d202bdbba52536611e6f95312f787a618ebbddf537307d8350a02c603257ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-33186-z
PMID 37037885
PQID 2798874130
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_0a12c16583ad43e4be34987ec0772f3d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10086050
proquest_miscellaneous_2799826373
proquest_journals_2798874130
pubmed_primary_37037885
crossref_citationtrail_10_1038_s41598_023_33186_z
crossref_primary_10_1038_s41598_023_33186_z
springer_journals_10_1038_s41598_023_33186_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-10
PublicationDateYYYYMMDD 2023-04-10
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Skilodimou, Bathrellos, Chousianitis, Youssef, Pradhan (CR7) 2019
Saha, Gupta, Arora (CR4) 2010; 23
Aditian, Kubota, Shinohara (CR5) 2018; 318
Guha-Sapir, Below, Hoyois (CR1) 2020; 2
CR39
CR37
Chen, Zeng, Jiang, Tang (CR32) 2015; 149
Zhang (CR25) 2022; 158
CR34
Sadr, Maghsoudi, Saljoughi (CR52) 2014; 02
Fang, Wang, Peng, Hong (CR54) 2020; 139
Wang, Fang, Hong (CR14) 2019; 666
Wang (CR24) 2019; 16
Mehrabi, Pradhan, Moayedi, Alamri (CR9) 2020
Peng (CR8) 2014; 204
Pourghasemi, Rossi (CR58) 2017; 130
Survey (CR28) 1997
Haibo, Garcia (CR44) 2009; 21
Yu, Zhang, Song, Jiang, Zhou (CR36) 2021; 11
Chang (CR27) 2020; 12
Sameen, Pradhan, Lee (CR46) 2020
Yu, Gao (CR30) 2020; 15
CR41
Fang, Wang, Peng, Hong (CR16) 2020; 139
Bai (CR31) 2010; 115
Pham, Shirzadi, Tien, Prakash, Dholakia (CR33) 2018; 33
Wei, Wang, Liu, Shen, Wu (CR61) 2019; 28
Aktaş, San (CR26) 2019; 133
Liu, Wu, Zhou (CR60) 2009; 39
Jebur, Pradhan, Tehrany (CR55) 2014; 152
Zorlu, Gokceoglu, Ocakoglu, Nefeslioglu, Acikalin (CR62) 2008; 96
Zhi, Guo, Fan (CR23) 2013; 756–759
Hong, Liu, Zhu (CR35) 2020; 718
Ciurleo, Cascini, Calvello (CR51) 2017; 49
Song (CR20) 2018; 8
Tang, Yan, Wen, Yin, Tang (CR43) 2021; 13
Nath, Das, Satyam (CR49) 2021; 5
Sabri, Fethi, Mohammed, Quan (CR59) 2017; 12
Lecun, Bottou (CR13) 1998; 86
Yanbin (CR11) 2022; 44
CR12
Gao, Fam, Tay, Low (CR22) 2020; 80
Demir, Aytekin, Akgün, İkizler, Tatar (CR48) 2012; 65
Hong (CR53) 2018; 5
Fang, Wang, Peng, Hong (CR40) 2020; 5
Peng, Xu, Hou, Peng (CR2) 2015; 12
Chong, Dai, Xu, Yuan (CR42) 2012; 145–146
Chen, Song, Julie, Pourghasemi (CR18) 2021; 5
Akgun (CR6) 2012; 9
Li, Fang, Wang (CR15) 2021; 5
CR29
Aas, Js, Fj, Sl (CR56) 2021; 183
Polykretis, Ferentinou, Chalkias (CR50) 2015; 4
Pourghasemi, Rahmati (CR45) 2018; 162
Wu, Ren, Niu (CR3) 2014; 71
Nath, Sharma, Goswami, Sweta, Pareek (CR47) 2021; 5
Ying, Lin, Shi (CR21) 2018; 28
Xiao, Zhang, Peng (CR17) 2018; 18
Gao, Fam, Tay, Low (CR38) 2020; 2
Pourghasemi, Pradhan, Gokceoglu (CR57) 2012; 63
Chen, Zhang, Li, Shahabi (CR10) 2018; 644
Polykretis, Chalkias (CR19) 2018; 93
W Ying (33186_CR21) 2018; 28
Y Wang (33186_CR14) 2019; 666
MN Jebur (33186_CR55) 2014; 152
H Haibo (33186_CR44) 2009; 21
H Zhang (33186_CR25) 2022; 158
Z Chang (33186_CR27) 2020; 12
A Aas (33186_CR56) 2021; 183
W Li (33186_CR15) 2021; 5
H Aktaş (33186_CR26) 2019; 133
X Chong (33186_CR42) 2012; 145–146
Y Lecun (33186_CR13) 1998; 86
S-B Bai (33186_CR31) 2010; 115
RR Nath (33186_CR47) 2021; 5
A Aditian (33186_CR5) 2018; 318
L Peng (33186_CR8) 2014; 204
J Chen (33186_CR32) 2015; 149
MP Sadr (33186_CR52) 2014; 02
33186_CR29
G Demir (33186_CR48) 2012; 65
C Polykretis (33186_CR50) 2015; 4
HR Pourghasemi (33186_CR58) 2017; 130
AK Saha (33186_CR4) 2010; 23
H Hong (33186_CR35) 2020; 718
C Polykretis (33186_CR19) 2018; 93
XY Liu (33186_CR60) 2009; 39
D Guha-Sapir (33186_CR1) 2020; 2
33186_CR12
Y Wang (33186_CR24) 2019; 16
MA Yanbin (33186_CR11) 2022; 44
Z Fang (33186_CR40) 2020; 5
X Wu (33186_CR3) 2014; 71
L Xiao (33186_CR17) 2018; 18
X Yu (33186_CR36) 2021; 11
HR Pourghasemi (33186_CR57) 2012; 63
Hong (33186_CR53) 2018; 5
HD Skilodimou (33186_CR7) 2019
Y Song (33186_CR20) 2018; 8
XS Wei (33186_CR61) 2019; 28
L Peng (33186_CR2) 2015; 12
HR Pourghasemi (33186_CR45) 2018; 162
B Sabri (33186_CR59) 2017; 12
HPG Survey (33186_CR28) 1997
X Yu (33186_CR30) 2020; 15
RX Tang (33186_CR43) 2021; 13
MI Sameen (33186_CR46) 2020
W Chen (33186_CR10) 2018; 644
M Ciurleo (33186_CR51) 2017; 49
H Gao (33186_CR22) 2020; 80
BT Pham (33186_CR33) 2018; 33
Z Fang (33186_CR16) 2020; 139
33186_CR41
A Akgun (33186_CR6) 2012; 9
M Mehrabi (33186_CR9) 2020
WM Zhi (33186_CR23) 2013; 756–759
K Zorlu (33186_CR62) 2008; 96
Z Fang (33186_CR54) 2020; 139
RR Nath (33186_CR49) 2021; 5
33186_CR37
Z Chen (33186_CR18) 2021; 5
33186_CR34
H Gao (33186_CR38) 2020; 2
33186_CR39
References_xml – volume: 23
  start-page: 357
  year: 2010
  end-page: 369
  ident: CR4
  article-title: GIS-based Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160010014260
– volume: 318
  start-page: 101
  year: 2018
  end-page: 111
  ident: CR5
  article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.06.006
– volume: 139
  start-page: 740
  year: 2020
  ident: CR54
  article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104470
– volume: 115
  start-page: 23
  year: 2010
  end-page: 31
  ident: CR31
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– volume: 158
  start-page: 104966
  year: 2022
  ident: CR25
  article-title: Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104966
– volume: 204
  start-page: 287
  year: 2014
  end-page: 301
  ident: CR8
  article-title: Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.013
– ident: CR39
– volume: 145–146
  start-page: 70
  year: 2012
  end-page: 80
  ident: CR42
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
– ident: CR12
– volume: 5
  start-page: 987
  year: 2020
  ident: CR40
  article-title: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping
  publication-title: Int. J. Geogr. Inform. Sci.
– volume: 28
  start-page: 6116
  year: 2019
  end-page: 6125
  ident: CR61
  article-title: Piecewise classifier mappings: Learning fine-grained learners for novel categories with few examples
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2924811
– volume: 44
  start-page: 53
  year: 2022
  end-page: 67
  ident: CR11
  article-title: Machine learning algorithms and techniques for landslide susceptibility investigation: A literature review
  publication-title: J. Civ. Environ. Eng.
– ident: CR29
– volume: 9
  start-page: 93
  year: 2012
  end-page: 106
  ident: CR6
  article-title: A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey
  publication-title: Landslides
  doi: 10.1007/s10346-011-0283-7
– volume: 130
  start-page: 609
  year: 2017
  end-page: 633
  ident: CR58
  article-title: Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods
  publication-title: Theoret. Appl. Climatol.
  doi: 10.1007/s00704-016-1919-2
– year: 2019
  ident: CR7
  article-title: Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-8003-4
– volume: 96
  start-page: 141
  year: 2008
  end-page: 158
  ident: CR62
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.10.009
– year: 2020
  ident: CR9
  article-title: Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art Metaheuristic techniques
  publication-title: Sensors (Basel)
  doi: 10.3390/s20061723
– volume: 2
  start-page: 14
  year: 2020
  ident: CR1
  article-title: EM-DAT: The CRED/OFDA international disaster database
  publication-title: Science
– volume: 16
  start-page: 985
  year: 2019
  ident: CR24
  article-title: Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16030368
– volume: 39
  start-page: 539
  year: 2009
  end-page: 550
  ident: CR60
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2008.2007853
– volume: 2
  start-page: 410
  year: 2020
  ident: CR38
  article-title: Three oversampling methods applied in a comparative landslide spatial research in Penang Island, Malaysia
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03307-8
– volume: 28
  start-page: 259
  year: 2018
  end-page: 274
  ident: CR21
  article-title: Spatial pattern and influencing factors of landslide casualty events
  publication-title: J. Geog. Sci.
  doi: 10.1007/s11442-018-1471-3
– volume: 12
  start-page: 943
  year: 2015
  end-page: 960
  ident: CR2
  article-title: Quantitative risk analysis for landslides: The case of the Three Gorges area, China
  publication-title: Landslides
  doi: 10.1007/s10346-014-0518-5
– volume: 71
  start-page: 4725
  year: 2014
  end-page: 4738
  ident: CR3
  article-title: Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2863-4
– volume: 11
  start-page: 15476
  year: 2021
  ident: CR36
  article-title: Study on landslide susceptibility mapping based on rock-soil characteristic factors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94936-5
– volume: 5
  start-page: 78
  year: 2021
  ident: CR49
  article-title: Impact of main boundary thrust (MBT) on landslide susceptibility in Garhwal Himalaya: A case study
  publication-title: Indian Geotech. J.
– volume: 5
  start-page: 478
  year: 2018
  ident: CR53
  article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
  publication-title: Catena Interdis. J. Soil Sci. Hydrol.
– volume: 63
  start-page: 965
  year: 2012
  end-page: 996
  ident: CR57
  article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0217-2
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR13
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 756–759
  start-page: 2547
  year: 2013
  end-page: 2551
  ident: CR23
  article-title: Sample size on the impact of imbalance learning
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.756-759.2547
– volume: 5
  start-page: 4770
  year: 2021
  ident: CR47
  article-title: Landslide susceptibility zonation with special emphasis on tectonic features for occurrence of landslides in lower Indian Himalaya
  publication-title: Science
– ident: CR37
– volume: 4
  start-page: 9
  year: 2015
  ident: CR50
  article-title: A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece)
  publication-title: Bull. Eng. Geol. Environ.
– volume: 33
  start-page: 157
  year: 2018
  end-page: 170
  ident: CR33
  article-title: A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India
  publication-title: Int. J. Sedim. Res.
  doi: 10.1016/j.ijsrc.2017.09.008
– volume: 02
  start-page: 41
  year: 2014
  ident: CR52
  article-title: Landslide susceptibility mapping of Komroud Sub-basin using fuzzy logic approach
  publication-title: Geodynamics
– volume: 718
  start-page: 137231
  year: 2020
  ident: CR35
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– year: 2020
  ident: CR46
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104249
– volume: 183
  start-page: 104225
  year: 2021
  end-page: 104225
  ident: CR56
  article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network
  publication-title: CATENA
– volume: 149
  start-page: 151
  year: 2015
  end-page: 157
  ident: CR32
  article-title: Deformation prediction of landslide based on functional network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.044
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: CR44
  article-title: Learning from Imbalanced Data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2008.239
– volume: 49
  start-page: S0013795216308419
  year: 2017
  ident: CR51
  article-title: A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils
  publication-title: Eng. Geol.
– volume: 133
  start-page: 104329
  year: 2019
  ident: CR26
  article-title: Landslide susceptibility mapping using an automatic sampling algorithm based on two level random sampling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104329
– volume: 15
  start-page: 7118
  year: 2020
  ident: CR30
  article-title: A landslide susceptibility map based on spatial scale segmentation: A case study at Zigui-Badong in the Three Gorges Reservoir Area, China
  publication-title: PLOS ONE
– volume: 644
  start-page: 1006
  year: 2018
  end-page: 1018
  ident: CR10
  article-title: Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naive Bayes tree for landslide susceptibility modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.389
– volume: 18
  start-page: 214
  year: 2018
  ident: CR17
  article-title: Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway
  publication-title: Sensors
  doi: 10.3390/s18124436
– volume: 80
  start-page: 851
  year: 2020
  end-page: 872
  ident: CR22
  article-title: Comparative landslide spatial research based on various sample sizes and ratios in Penang Island, Malaysia
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01969-7
– year: 1997
  ident: CR28
  publication-title: Cartographer Geological Map of Zigui and Badong COUNTY (1:50,000)
– volume: 5
  start-page: 1
  year: 2021
  end-page: 22
  ident: CR15
  article-title: Stacking ensemble of deep learning methods for landslide susceptibility mapping in the Three Gorges Reservoirarea, China
  publication-title: Stochastic Environ. Res. Risk Assess.
– volume: 152
  start-page: 150
  year: 2014
  end-page: 165
  ident: CR55
  article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.05.013
– volume: 12
  start-page: 985
  year: 2020
  ident: CR27
  article-title: Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models
  publication-title: Remote Sens.
  doi: 10.3390/rs12030502
– volume: 139
  start-page: 104470
  year: 2020
  ident: CR16
  article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104470
– volume: 93
  start-page: 499
  year: 2018
  ident: CR19
  article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models
  publication-title: Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards
– volume: 65
  start-page: 1481
  year: 2012
  end-page: 1506
  ident: CR48
  article-title: A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0418-8
– volume: 5
  start-page: 4998
  year: 2021
  ident: CR18
  article-title: Landslide susceptibility mapping using statistical bivariate models and their hybrid with normalized spatial-correlated scale index and weighted calibrated landslide potential model
  publication-title: Environ. Earth Sci.
– ident: CR34
– volume: 162
  start-page: 177
  year: 2018
  end-page: 192
  ident: CR45
  article-title: Prediction of the landslide susceptibility: Which algorithm, which precision?
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.11.022
– volume: 8
  start-page: 214
  year: 2018
  ident: CR20
  article-title: Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the three gorges reservoir area (China)
  publication-title: Int. J. Geo-Inform.
– volume: 13
  start-page: 78
  year: 2021
  ident: CR43
  article-title: Comparison of logistic regression, information value, and comprehensive evaluating model for landslide susceptibility mapping
  publication-title: Sustainability
  doi: 10.3390/su13073803
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: CR14
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– ident: CR41
– volume: 12
  start-page: e0177678
  year: 2017
  ident: CR59
  article-title: Optimal classifier for imbalanced data using Matthews correlation coefficient metric
  publication-title: Plos One
  doi: 10.1371/journal.pone.0177678
– volume: 49
  start-page: S00137952163084
  year: 2017
  ident: 33186_CR51
  publication-title: Eng. Geol.
– volume: 139
  start-page: 740
  year: 2020
  ident: 33186_CR54
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104470
– volume: 2
  start-page: 410
  year: 2020
  ident: 33186_CR38
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03307-8
– volume: 139
  start-page: 104470
  year: 2020
  ident: 33186_CR16
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104470
– volume: 145–146
  start-page: 70
  year: 2012
  ident: 33186_CR42
  publication-title: Geomorphology
– year: 2019
  ident: 33186_CR7
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-8003-4
– volume: 149
  start-page: 151
  year: 2015
  ident: 33186_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.044
– volume: 12
  start-page: 985
  year: 2020
  ident: 33186_CR27
  publication-title: Remote Sens.
  doi: 10.3390/rs12030502
– volume: 718
  start-page: 137231
  year: 2020
  ident: 33186_CR35
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– volume: 644
  start-page: 1006
  year: 2018
  ident: 33186_CR10
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.389
– volume: 44
  start-page: 53
  year: 2022
  ident: 33186_CR11
  publication-title: J. Civ. Environ. Eng.
– volume: 18
  start-page: 214
  year: 2018
  ident: 33186_CR17
  publication-title: Sensors
  doi: 10.3390/s18124436
– volume: 16
  start-page: 985
  year: 2019
  ident: 33186_CR24
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16030368
– volume: 33
  start-page: 157
  year: 2018
  ident: 33186_CR33
  publication-title: Int. J. Sedim. Res.
  doi: 10.1016/j.ijsrc.2017.09.008
– volume: 5
  start-page: 1
  year: 2021
  ident: 33186_CR15
  publication-title: Stochastic Environ. Res. Risk Assess.
– volume: 39
  start-page: 539
  year: 2009
  ident: 33186_CR60
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2008.2007853
– volume-title: Cartographer Geological Map of Zigui and Badong COUNTY (1:50,000)
  year: 1997
  ident: 33186_CR28
– volume: 183
  start-page: 104225
  year: 2021
  ident: 33186_CR56
  publication-title: CATENA
– volume: 5
  start-page: 4770
  year: 2021
  ident: 33186_CR47
  publication-title: Science
– volume: 23
  start-page: 357
  year: 2010
  ident: 33186_CR4
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160010014260
– volume: 9
  start-page: 93
  year: 2012
  ident: 33186_CR6
  publication-title: Landslides
  doi: 10.1007/s10346-011-0283-7
– volume: 21
  start-page: 1263
  year: 2009
  ident: 33186_CR44
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2008.239
– ident: 33186_CR29
– volume: 158
  start-page: 104966
  year: 2022
  ident: 33186_CR25
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104966
– volume: 666
  start-page: 975
  year: 2019
  ident: 33186_CR14
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– ident: 33186_CR39
– volume: 28
  start-page: 259
  year: 2018
  ident: 33186_CR21
  publication-title: J. Geog. Sci.
  doi: 10.1007/s11442-018-1471-3
– ident: 33186_CR37
  doi: 10.1111/j.1600-0587.2012.07348.x
– volume: 318
  start-page: 101
  year: 2018
  ident: 33186_CR5
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.06.006
– ident: 33186_CR12
– volume: 12
  start-page: e0177678
  year: 2017
  ident: 33186_CR59
  publication-title: Plos One
  doi: 10.1371/journal.pone.0177678
– volume: 133
  start-page: 104329
  year: 2019
  ident: 33186_CR26
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104329
– volume: 63
  start-page: 965
  year: 2012
  ident: 33186_CR57
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0217-2
– volume: 756–759
  start-page: 2547
  year: 2013
  ident: 33186_CR23
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.756-759.2547
– volume: 152
  start-page: 150
  year: 2014
  ident: 33186_CR55
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.05.013
– volume: 2
  start-page: 14
  year: 2020
  ident: 33186_CR1
  publication-title: Science
  doi: 10.3390/sci2010014
– volume: 28
  start-page: 6116
  year: 2019
  ident: 33186_CR61
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2924811
– year: 2020
  ident: 33186_CR9
  publication-title: Sensors (Basel)
  doi: 10.3390/s20061723
– volume: 15
  start-page: 7118
  year: 2020
  ident: 33186_CR30
  publication-title: PLOS ONE
– volume: 86
  start-page: 2278
  year: 1998
  ident: 33186_CR13
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 02
  start-page: 41
  year: 2014
  ident: 33186_CR52
  publication-title: Geodynamics
– volume: 96
  start-page: 141
  year: 2008
  ident: 33186_CR62
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 115
  start-page: 23
  year: 2010
  ident: 33186_CR31
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– ident: 33186_CR41
  doi: 10.1007/978-1-4757-2440-0
– volume: 13
  start-page: 78
  year: 2021
  ident: 33186_CR43
  publication-title: Sustainability
  doi: 10.3390/su13073803
– ident: 33186_CR34
– volume: 130
  start-page: 609
  year: 2017
  ident: 33186_CR58
  publication-title: Theoret. Appl. Climatol.
  doi: 10.1007/s00704-016-1919-2
– volume: 204
  start-page: 287
  year: 2014
  ident: 33186_CR8
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.013
– volume: 5
  start-page: 478
  year: 2018
  ident: 33186_CR53
  publication-title: Catena Interdis. J. Soil Sci. Hydrol.
– volume: 11
  start-page: 15476
  year: 2021
  ident: 33186_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94936-5
– volume: 8
  start-page: 214
  year: 2018
  ident: 33186_CR20
  publication-title: Int. J. Geo-Inform.
– volume: 65
  start-page: 1481
  year: 2012
  ident: 33186_CR48
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0418-8
– year: 2020
  ident: 33186_CR46
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104249
– volume: 5
  start-page: 78
  year: 2021
  ident: 33186_CR49
  publication-title: Indian Geotech. J.
– volume: 71
  start-page: 4725
  year: 2014
  ident: 33186_CR3
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-013-2863-4
– volume: 80
  start-page: 851
  year: 2020
  ident: 33186_CR22
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01969-7
– volume: 5
  start-page: 4998
  year: 2021
  ident: 33186_CR18
  publication-title: Environ. Earth Sci.
– volume: 93
  start-page: 499
  year: 2018
  ident: 33186_CR19
  publication-title: Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards
– volume: 5
  start-page: 987
  year: 2020
  ident: 33186_CR40
  publication-title: Int. J. Geogr. Inform. Sci.
– volume: 4
  start-page: 9
  year: 2015
  ident: 33186_CR50
  publication-title: Bull. Eng. Geol. Environ.
– volume: 162
  start-page: 177
  year: 2018
  ident: 33186_CR45
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.11.022
– volume: 12
  start-page: 943
  year: 2015
  ident: 33186_CR2
  publication-title: Landslides
  doi: 10.1007/s10346-014-0518-5
SSID ssj0000529419
Score 2.4817617
Snippet The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on...
The Zigui-Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample sets on...
Abstract The Zigui–Badong section of the Three Gorges Reservoir area is used as the research area in this study to research the impact of unbalanced sample...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5823
SubjectTerms 704/172
704/4111
Canyons
Comparative studies
Humanities and Social Sciences
Landslides
Mapping
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Statistical methods
Support vector machines
Susceptibility
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QJSQuiDcDBQ0SN4ia9ybHUlFVSHAqqLcoT6hUZit299D--tqZ2W2X54XjZDIay7Hz2Yr9hZDXhicHaVeiymVLFWAmjbALUlulKjU7ZhU2J3_8ZI4-qw8n-uTGVV9YEzbSA4-K22OBi8QBJ2XIShYVi1SQJ5fEIC6sMuPuC5h3I5kaWb2FU9xNXTJM2r0FIBV2kwlJJdixoZdbSNQI-38XZf5aLPnTiWkDosN75O4UQfb7o-T3ya0yPCC3xzslLx6SLwfXfN59I4_t50PfOnrPTjMMrRatkqUVxV703wMSNHztEc0yzlwNEasdEzwtAlIH981GHpHjw_fHB0d0ujyBJq34koosmIg5xqCFloDCvJjqwONEBR8NhtsSY85VS_DxWYZAjAUmkmESnDgF-ZjsDPOhPCV9YDzUyJIxTqvMo3NVB1NzVZHrwllH-FqPPk3E4ni_xZlvB9zS-lH3HnTvm-79ZUfebL45H2k1_jr7HS7PZiZSYrcBMBQ_GYr_l6F0ZHe9uH7y04UXSNc2QyDvyKvNa_AwPDYJQ5mv2hwHSRjoqSNPRlvYSCJhw5xZqztit6xkS9TtN8Ppt8bijaxKkEvCj9-uDeparj_r4tn_0MVzckegJyBnJdslO8sfq_ICgqtlfNn86Ao-3h9N
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUHiBlH9SmKfEFRUFRKcCtqb5Wep1Cal2T20v74zTjar5dFjbEdxxvOyZ_wNIe8a5jVsu3wldVCVBJtZOdCClUpCxhQ0VRIvJ3_73hz9kF8X9WI6cBumtMq1TsyKOvQez8j3OQJrtahyP178rrBqFEZXpxIad8k9hC7DlK520c5nLBjFkkxPd2WoUPsD2Cu8U8ZFJYCbm-p6yx5l2P5_-Zp_p0z-ETfN5ujwEXk4-ZHlp3HhH5M7sXtC7o-VJa-ekp8HG1TvMkPIln1X5nu9Z6cBmlZDzmfJqbFX5blFmIaTEm1awJGrzmHOo4enwSKAcJk55Rk5PvxyfHBUTSUUKl9Ltqx44JS74JyteS3AFrPYJA1yxxNIqm2Yis6FkGoBkt4GcMeopdw3VIAoeyuek52u7-JLUlrKbHLUN42uZWBO61TbJoUkHasjowVhazoaP8GLY5WLM5PD3EKZkfYGaG8y7c11Qd7P71yM4Bq3jv6MyzOPRGDs3NBfnphJzgy1jHsGbpWwQYooXRRSqzZ6CtuIJEJB9taLayZpHcyGtwrydu4GOcPgie1iv8pjNGzFgE4FeTHywjwTAWqzVaouiNrikq2pbvd0p78yljdiK8GOEj78Yc1Qm3n9nxavbv-NXfKAI48jJiXdIzvLy1V8Dc7T0r3JEnIDyDYXLg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDI5KERIX1PKctqBB4gYj8ppsciwrqgoJTgX1FuVZKrWzqLt7aH89duZRLRSkHifjaCLHju2x_YWQd4oFA2FXaKSJupFgMxsPp2Cjs5ApR0O1xObkr9_U8Xf55bQ93SJ87IUpRfsF0rIc02N12MclGBpsBuOiESCGqrl5QB4idDtK9VzNp_8qmLmSzAz9MVToO6Zu2KAC1X-Xf_l3meQfudJigo52yJPBd6wP-9Xukq3UPSWP-tskr5-RH_NbJO-6wMbWi64uvbwX5xGG1stSw1LKYa_rS4fQDGc12rGIlOvOY51jgKelQ9DgukjHc3Jy9PlkftwM1yY0oZVs1fDIKffRe9fyVoD9ZUllA7rGM2inU0wn72PMrQDtnkVwwaijPCgqQH2DEy_Idrfo0itSO8pc9jQoZVoZmTcmt07lmKVnbWK0Imzkow0DpDjebHFhS2pbaNvz3gLvbeG9vanI-2nOrx5Q47_Un3B7JkoEwy4Di6szOwiHpY7xwMCVEi5KkaRPQho9S4FC6JBFrMjBuLl20NCl5QjUNkMTXpG302vQLUyYuC4t1oXGQPgFfKrIy14WppUIOCpnWrcV0RtSsrHUzTfd-c-C3414ShBFwoc_jAJ1u65_82LvfuT75DFHmUdcSnpAtldX6_QaHKiVf1M05jcE7xV-
  priority: 102
  providerName: Springer Nature
Title Comparative study on landslide susceptibility mapping based on unbalanced sample ratio
URI https://link.springer.com/article/10.1038/s41598-023-33186-z
https://www.ncbi.nlm.nih.gov/pubmed/37037885
https://www.proquest.com/docview/2798874130
https://www.proquest.com/docview/2799826373
https://pubmed.ncbi.nlm.nih.gov/PMC10086050
https://doaj.org/article/0a12c16583ad43e4be34987ec0772f3d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviGcbKKsgcYOAX3n4gNB21apaqRWCFu0tsmO7VFqyZR8S21_P2Em2Wlg4cIpiO4rlmS8zE3u-AXid0Upi2FUlQpoiEWgzE41fwaRwXFhnJCmET04-O89OL8VwlI62oCt31C7gbGNo5-tJXU7H737-WH5EwH9oUsaL9zM0Qj5RjPGEo4pmye027KJlyj1Qz1p3v-H6ZlJQ2ebObH50D-5zRAFGhumaqQqM_pvc0D9PU_62pRos1clDeNC6mHG_0YlHsGXrx3CvKTq5fAJfB3eE33Fgl40ndRxSfsfXBpsWs3DUJZyaXcbflWdwuIq9uTN-5KLW_jhkhXcz5bmF46BET-Hi5PhicJq01RWSKhV0njDDCNNGa5WylKOZpjZzEiHJHIJYZbSwWhvjUo4fgdygp0YUYVVGOKK8UvwZ7NST2h5ArAhVTpMqy2QqDNVSulRlzjihaWopiYB261hWLfO4L4AxLsMOOC_KRgwliqEMYihvI3izeuam4d345-gjL57VSM-ZHRom06uyhWBJFGUVRY-LKyO4FdpyIYvcVgQjDMdNBIedcMtOD0vm-dxyb-kjeLXqRgj6fRVV28kijJEYpeE6RbDf6MJqJp0uRVCsacnaVNd76utvgebb0y5hsIkvftsp1N28_r4Wz___TS9gj3koeCpLcgg78-nCvkSfa657sJ2P8h7s9vvDL0O8Hh2ff_qMrYNs0Av_MXoBar8AFAQt9A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAkaCE1jd9a4d-4AQLa1S2kYIBdTbal8ulYpTmkQo_U_8R2bWdqLw6K3H2JtkPfvtPLwz3wC8zLktMeyyiSxdkUi0mYlBLZgUlZC-ciUrJBUnHw7zwRf58Sg7WoNfXS0MpVV2OjEoaje29I58MyVirT6p3HdnPxLqGkWnq10LjQYW-37-E0O2ydu9D7i-r9J0d2e0PUjargKJzSSfJqnDeN84Y3SWZgLNE_d5VSIU0wrBq3NeeGOcqzKB4O879FCYZqnNmUB0Wy3wZ6_BuhQYyfRgfWtn-Onz4qUOHZtJXrbFOUwUmxM0kFTElopE4PbJk4sVAxj6BPzLuf07R_OPg9pg_3Zvw63WcY3fN0i7A2u-vgvXm1aW83vwdXtJIx4Hztp4XMehkPj0xOGl2SQk0IRc3Hn8XRMvxHFMRtTRyFltKMnS4qeJJsbiOEDzPoyuQroPoFePa_8IYs24rgyzeV5m0nFTllWm88pV0vDMcxYB7-SobMtnTm01TlU4VxeFamSvUPYqyF5dRPB68Z2zhs3j0tFbtDyLkcTEHS6Mz49Vu7EV0zy1HP04oZ0UXhovZFn0vWUYt1TCRbDRLa5q1cNELcEcwYvFbdzYdFqjaz-ehTElxn4opwgeNlhYzESgnu4XRRZBsYKSlamu3qlPvgXycCJzwhAW__hNB6jlvP4vi8eXP8ZzuDEYHR6og73h_hO4mRLeiRCTbUBvej7zT9Fzm5pn7X6JQV3xDv0NHKNTcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKEYgLYi1TCgwSnGAUe-zZDghBS9RSqDgUlJvltVQqM22TCKX_jH_He54lCktvPWbGSTzP39vGz98j5EXOTAVpl0lEZctEgM9MNFjBpPRcOG8rWgo8nPz5IN_9Kj5Osska-dWfhcGyyt4mBkNtG4PvyEcpEmsVaHJHviuL-LIzfnt6lmAHKdxp7dtptBDZd4ufkL5N3-ztwFq_TNPxh8Pt3aTrMJCYTLBZklrI_bXVWmVpxsFVMZf7CmCZegCyylnptLbWZxwUobAQrVBFU5NTDkg3isPPXiPXC54xVLFiUgyvd3ADTbCqO6ZDeTmagqvE42wpTzgoUp5crLjC0DHgX2Hu39Waf2zZBk84vkNudyFs_K7F3F2y5up75Ebb1HJxn3zbXhKKx4G9Nm7qOBwpPjm2cGk-DaU0oSp3Ef9QyBBxFKM7tThyXmsstzTwaaqQuzgOIH1ADq9Ctg_Jet3U7hGJFWXKa2ryvMqEZbqqfKZyb73QLHOMRoT1cpSmYzbHBhsnMuyw81K2spcgexlkLy8i8mr4zmnL63Hp6Pe4PMNI5OQOF5rzI9mpuKSKpYZBRMeVFdwJ7bioysIZChmM5zYiW_3iys5QTOUS1hF5PtwGFcd9G1W7Zh7GVJAFgpwistFiYZgJB4tdlGUWkXIFJStTXb1TH38PNOJI6wTJLPzx6x5Qy3n9Xxablz_GM3IT9FJ-2jvYf0xupQh3ZMakW2R9dj53TyCEm-mnQVliIq9YOX8DOERWQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+on+landslide+susceptibility+mapping+based+on+unbalanced+sample+ratio&rft.jtitle=Scientific+reports&rft.au=Tang%2C+Li&rft.au=Yu%2C+Xianyu&rft.au=Jiang%2C+Weiwei&rft.au=Zhou%2C+Jianguo&rft.date=2023-04-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-33186-z&rft_id=info%3Apmid%2F37037885&rft.externalDocID=PMC10086050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon