Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites

GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporati...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5915 - 10
Main Authors Jiang, Yilin, Su, Bin, Yu, Jincheng, Han, Zhanran, Hu, Haihua, Zhuang, Hua-Lu, Li, Hezhang, Dong, Jinfeng, Li, Jing-Wei, Wang, Chao, Ge, Zhen-Hua, Feng, Jing, Sun, Fu-Hua, Li, Jing-Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm −1 K −1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm −1 K −2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10 −3  K −1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics. Doping approach is a conventional method to increase ZT values of thermoelectric materials. Here, authors propose a facile strategy to enhance thermoelectric performance by mixing boron particles into GeTe-based thermoelectric materials, leading to a ZT value of 2.45 at 613 K.
AbstractList GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm −1 K −1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm −1 K −2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10 −3  K −1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics. Doping approach is a conventional method to increase ZT values of thermoelectric materials. Here, authors propose a facile strategy to enhance thermoelectric performance by mixing boron particles into GeTe-based thermoelectric materials, leading to a ZT value of 2.45 at 613 K.
GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm−1K−1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm−1K−2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10−3 K−1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.Doping approach is a conventional method to increase ZT values of thermoelectric materials. Here, authors propose a facile strategy to enhance thermoelectric performance by mixing boron particles into GeTe-based thermoelectric materials, leading to a ZT value of 2.45 at 613 K.
GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm −1 K −1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm −1 K −2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10 −3  K −1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.
Abstract GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm−1K−1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm−1K−2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10−3 K−1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.
GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm K at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm K at 300 K). Consequently, we obtain a maximum figure of merit Z of 4.0 × 10 K at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.
GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm-1K-1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm-1K-2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10-3 K-1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm-1K-1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm-1K-2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10-3 K-1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.
ArticleNumber 5915
Author Li, Jing-Wei
Sun, Fu-Hua
Yu, Jincheng
Dong, Jinfeng
Hu, Haihua
Ge, Zhen-Hua
Zhuang, Hua-Lu
Li, Hezhang
Jiang, Yilin
Han, Zhanran
Li, Jing-Feng
Wang, Chao
Su, Bin
Feng, Jing
Author_xml – sequence: 1
  givenname: Yilin
  orcidid: 0000-0002-8815-4260
  surname: Jiang
  fullname: Jiang, Yilin
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 2
  givenname: Bin
  surname: Su
  fullname: Su, Bin
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 3
  givenname: Jincheng
  orcidid: 0000-0002-3490-6965
  surname: Yu
  fullname: Yu, Jincheng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 4
  givenname: Zhanran
  surname: Han
  fullname: Han, Zhanran
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 5
  givenname: Haihua
  surname: Hu
  fullname: Hu, Haihua
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 6
  givenname: Hua-Lu
  orcidid: 0000-0002-5648-1187
  surname: Zhuang
  fullname: Zhuang, Hua-Lu
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 7
  givenname: Hezhang
  surname: Li
  fullname: Li, Hezhang
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Department of Precision Instrument, Tsinghua University
– sequence: 8
  givenname: Jinfeng
  surname: Dong
  fullname: Dong, Jinfeng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, School of Materials Science and Engineering, Nanyang Technological University
– sequence: 9
  givenname: Jing-Wei
  surname: Li
  fullname: Li, Jing-Wei
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 10
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Department of Precision Instrument, Tsinghua University
– sequence: 11
  givenname: Zhen-Hua
  surname: Ge
  fullname: Ge, Zhen-Hua
  organization: Southwest United Graduate School
– sequence: 12
  givenname: Jing
  surname: Feng
  fullname: Feng, Jing
  organization: Southwest United Graduate School
– sequence: 13
  givenname: Fu-Hua
  surname: Sun
  fullname: Sun, Fu-Hua
  organization: Institute for Advanced Materials, Hubei Normal University
– sequence: 14
  givenname: Jing-Feng
  orcidid: 0000-0002-0185-0512
  surname: Li
  fullname: Li, Jing-Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Southwest United Graduate School, Institute for Advanced Materials, Hubei Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39003277$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN92TghVpVSqxKXckCzbedn1KomDnVTw7_E2S2l7qC9-fp6ZN5bnNToa4wgIvSX4I8FMf8qccKlqTHktMFGili_QCcWc1ERRdvSgPkZnOe9wWawhmvNX6Jg15UCVOkE_L357mOYQR9tXXdgsCarYVQOkMFfWbwPcQluFsXIxxbFuQ54g5dK6hBuond2X8xbSEKEHP6fgKx-HKeYwQ36DXna2z3B22E_Rj68XN-ff6uvvl1fnX65rLziZa2o9sZZxpTusQAtNcdtK3SgJHgOmVksHioHDgkrNrHICdCsbkNRJLhk7RVerbhvtzkwpDDb9MdEGc9eIaWNsmoPvwTiPyyDsSOcd7xy1hDHRNVAMSC01LVqfV61pcQO0HsY52f6R6OObMWzNJt4aQigvbnhR-HBQSPHXAnk2Q8ge-t6OEJdsGFZNI6TkokDfP4Hu4pLKVxxQWDCuC-rdQ0v3Xv79YgHQFeBTzDlBdw8h2OzTYta0mJIWc5cWIwtJPyH5MNt9EsqzQv88la3UXOaMG0j_bT_D-gt4AtOR
CitedBy_id crossref_primary_10_1016_j_jpcs_2024_112381
crossref_primary_10_1016_j_nwnano_2024_100050
crossref_primary_10_1007_s40195_024_01790_1
crossref_primary_10_1039_D4TA08348B
crossref_primary_10_1039_D5TC00078E
crossref_primary_10_1002_adfm_202423909
crossref_primary_10_1016_j_eng_2024_12_011
crossref_primary_10_1021_acsami_4c13775
crossref_primary_10_1039_D4SC06615D
crossref_primary_10_1016_j_jmst_2025_02_003
crossref_primary_10_26599_NR_2025_94907308
crossref_primary_10_1021_acs_chemmater_4c02649
crossref_primary_10_1021_acsnano_4c11732
Cites_doi 10.1021/jacs.8b10448
10.1002/advs.201700341
10.1002/aenm.201801837
10.1002/smll.201906921
10.1038/s41928-022-00776-0
10.1038/ncomms10766
10.1039/C7EE01737E
10.1002/adma.201605884
10.1038/am.2017.8
10.1016/0025-5416(86)90261-2
10.1103/PhysRev.120.1149
10.1002/aenm.202000757
10.1038/s41586-021-03246-3
10.1016/j.joule.2019.02.008
10.1039/D0EE01004A
10.1126/science.abq5815
10.1002/adfm.202101214
10.1039/C1EE02612G
10.1063/1.4768297
10.1021/acs.chemmater.6b04066
10.1002/zaac.19774310134
10.1016/j.mser.2015.08.001
10.1016/j.cej.2022.136131
10.1016/S0925-8388(97)00545-8
10.1021/acsnano.9b03805
10.1016/j.joule.2020.07.021
10.1021/ja504896a
10.1021/jacs.8b12624
10.1016/j.actamat.2023.118926
10.1016/0022-4596(88)90192-2
10.1002/aenm.202203361
10.1002/smll.202100915
10.1039/D2EE00119E
10.1016/j.mattod.2023.04.021
10.1103/PhysRev.133.A1143
10.1016/j.actamat.2013.09.039
10.1063/1.323539
10.1016/j.joule.2018.02.016
10.1126/science.aaa4166
10.1039/C8QI00703A
10.1038/s41467-023-43228-9
10.1002/adma.201705942
10.1016/j.joule.2020.03.004
10.1016/j.mtphys.2019.100096
10.1039/D0TA02758H
10.1002/adfm.201300146
10.1002/adfm.202214771
10.1002/adma.202008773
10.1002/adma.201807071
10.1016/j.mtphys.2022.100820
10.1146/annurev-matsci-062910-100453
10.1016/j.joule.2019.01.001
10.1016/j.nanoen.2019.104347
10.1038/s41535-018-0127-y
10.1039/c3ee41859f
10.1016/S0257-8972(02)00593-5
10.1093/nsr/nwz052
10.1002/aenm.202002588
10.1039/D0TA08700A
10.1038/s41467-023-38054-y
10.1002/aenm.202102012
10.1021/acs.chemmater.5b03434
10.1038/s41563-021-01064-6
10.1126/sciadv.add7690
10.1038/nature09996
10.1038/nature23667
10.1111/j.1151-2916.1988.tb07536.x
10.1038/am.2016.203
10.1073/pnas.1802020115
10.1016/j.joule.2019.08.017
10.1126/science.aak9997
10.1038/s41467-021-25722-0
10.1039/C9TA10436D
10.1002/adfm.202307864
10.1002/aenm.202303942
10.1002/adma.202102575
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50175-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_bc03470b1fcb4fb2a1335f9e1aa68682
PMC11246464
39003277
10_1038_s41467_024_50175_6
Genre Journal Article
GrantInformation_xml – fundername: the National Key R&D Program of China (2023YFB3809400) and the Basic Science Center Project of National Natural Science Foundation of China (grant no. 52388201)
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-2ac1aa3478f07e85820dd68976ec0e02a86be73eb052683a7b5e8d69e62b64633
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:15:36 EDT 2025
Thu Aug 21 18:32:51 EDT 2025
Sun Aug 24 04:01:54 EDT 2025
Wed Aug 13 08:18:44 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Tue Jul 01 02:37:21 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-2ac1aa3478f07e85820dd68976ec0e02a86be73eb052683a7b5e8d69e62b64633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8815-4260
0000-0002-0185-0512
0000-0002-5648-1187
0000-0002-3490-6965
OpenAccessLink https://www.proquest.com/docview/3079905348?pq-origsite=%requestingapplication%
PMID 39003277
PQID 3079905348
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_bc03470b1fcb4fb2a1335f9e1aa68682
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11246464
proquest_miscellaneous_3079956645
proquest_journals_3079905348
pubmed_primary_39003277
crossref_primary_10_1038_s41467_024_50175_6
crossref_citationtrail_10_1038_s41467_024_50175_6
springer_journals_10_1038_s41467_024_50175_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-14
PublicationDateYYYYMMDD 2024-07-14
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xiao, Zhao (CR2) 2018; 3
He, Tritt (CR1) 2017; 357
Jiang (CR52) 2022; 377
Hong (CR54) 2020; 13
Li, Zhang, Lin, Chen, Pei (CR22) 2017; 29
Yu, Xie, Pennycook, Bosman, He (CR41) 2022; 8
Hong (CR15) 2018; 30
CR38
CR32
Mehdizadeh Dehkordi, Zebarjadi, He, Tritt (CR31) 2015; 97
Cheng (CR62) 2022; 27
Wang (CR63) 2022; 441
Wu (CR27) 2017; 9
Ibáñez (CR66) 2016; 7
Liu (CR59) 2020; 10
Sui (CR69) 2013; 6
Hong, Zou, Chen (CR53) 2019; 31
Zhang (CR76) 2023; 13
Li (CR42) 2018; 2
Tritt (CR47) 2011; 41
Xing (CR56) 2019; 6
Perumal (CR74) 2019; 3
Hwang (CR67) 2019; 13
Nshimyimana (CR24) 2020; 8
Callaway, von Baeyer (CR50) 1960; 120
Cutler, Leavy, Fitzpatrick (CR46) 1964; 133
Nunna (CR45) 2017; 10
Majumdar, Kupperman, Sing (CR39) 1988; 71
Wu (CR61) 2014; 136
Zhang (CR18) 2020; 4
Wiedemeier, Siemers (CR37) 1977; 431
Pei (CR8) 2011; 473
Xing (CR48) 2021; 33
Lee, Luo, Cho, Kanatzidis, Chung (CR68) 2019; 3
Arsenault, Shi (CR40) 1986; 81
Bu (CR55) 2019; 9
Wu (CR64) 2019; 3
Xie (CR73) 2021; 17
Zhou (CR11) 2021; 20
Heremans, Wiendlocha, Chamoire (CR30) 2012; 5
Feng (CR25) 2020; 8
Shuai, Sun, Tan, Mori (CR26) 2020; 16
Lundström, Lönnberg, Bauer (CR36) 1998; 267
Liu (CR58) 2018; 115
Srinivasan (CR28) 2019; 6
Gao (CR34) 2021; 590
CR57
Li (CR9) 2013; 23
Abdellaoui (CR13) 2021; 31
Bathula (CR72) 2012; 101
Dong (CR5) 2023; 66
Slack, Hejna, Garbauskas, Kasper (CR35) 1988; 76
Xie (CR14) 2020; 68
Guo (CR23) 2020; 8
Hong (CR75) 2019; 141
Li (CR7) 2021; 12
Yang (CR16) 2020; 10
Hong (CR60) 2020; 4
Bai (CR17) 2021; 11
Zhuang (CR10) 2022; 15
Li (CR20) 2017; 9
CR29
Zhang, Deng, Wilkens, Reith, Nielsch (CR3) 2022; 5
Zhou (CR65) 2018; 140
Perumal, Roychowdhury, Negi, Datta, Biswas (CR21) 2015; 27
Zhu (CR6) 2017; 29
Zhou (CR71) 2023; 14
Li (CR4) 2023; 14
Kim (CR12) 2015; 348
Hong (CR19) 2018; 8
Michaelson (CR44) 1977; 48
Zhao (CR33) 2017; 549
Clarke (CR49) 2003; 163–164
Jin (CR51) 2023; 252
Li (CR77) 2017; 4
Pei (CR43) 2023; 33
Rogl (CR70) 2014; 63
A Mehdizadeh Dehkordi (50175_CR31) 2015; 97
Y Yu (50175_CR41) 2022; 8
HB Michaelson (50175_CR44) 1977; 48
J Pei (50175_CR43) 2023; 33
G Yang (50175_CR16) 2020; 10
B Srinivasan (50175_CR28) 2019; 6
S Perumal (50175_CR21) 2015; 27
L Xie (50175_CR73) 2021; 17
S Majumdar (50175_CR39) 1988; 71
TM Tritt (50175_CR47) 2011; 41
Y Pei (50175_CR8) 2011; 473
L Wu (50175_CR27) 2017; 9
D Wu (50175_CR61) 2014; 136
Y Jin (50175_CR51) 2023; 252
G Bai (50175_CR17) 2021; 11
R Nunna (50175_CR45) 2017; 10
J Li (50175_CR9) 2013; 23
Y Feng (50175_CR25) 2020; 8
J Hwang (50175_CR67) 2019; 13
Y Xiao (50175_CR2) 2018; 3
M Hong (50175_CR19) 2018; 8
H-L Zhuang (50175_CR10) 2022; 15
J Li (50175_CR20) 2017; 9
J Sui (50175_CR69) 2013; 6
T Zhu (50175_CR6) 2017; 29
J-W Li (50175_CR4) 2023; 14
W Zhao (50175_CR33) 2017; 549
L Xie (50175_CR14) 2020; 68
M Hong (50175_CR54) 2020; 13
50175_CR57
T Xing (50175_CR48) 2021; 33
S Perumal (50175_CR74) 2019; 3
E Nshimyimana (50175_CR24) 2020; 8
J Dong (50175_CR5) 2023; 66
GA Slack (50175_CR35) 1988; 76
A Li (50175_CR7) 2021; 12
J Li (50175_CR77) 2017; 4
DR Clarke (50175_CR49) 2003; 163–164
M Hong (50175_CR75) 2019; 141
Z Bu (50175_CR55) 2019; 9
L Abdellaoui (50175_CR13) 2021; 31
J Gao (50175_CR34) 2021; 590
S Bathula (50175_CR72) 2012; 101
RJ Arsenault (50175_CR40) 1986; 81
J Callaway (50175_CR50) 1960; 120
J Shuai (50175_CR26) 2020; 16
T Xing (50175_CR56) 2019; 6
Z Zhou (50175_CR71) 2023; 14
B Jiang (50175_CR52) 2022; 377
C Zhou (50175_CR65) 2018; 140
C Zhou (50175_CR11) 2021; 20
YK Lee (50175_CR68) 2019; 3
Y Wu (50175_CR64) 2019; 3
H Wiedemeier (50175_CR37) 1977; 431
J Li (50175_CR22) 2017; 29
J Li (50175_CR42) 2018; 2
D-Z Wang (50175_CR63) 2022; 441
J He (50175_CR1) 2017; 357
M Cutler (50175_CR46) 1964; 133
Z Liu (50175_CR59) 2020; 10
50175_CR29
M Hong (50175_CR15) 2018; 30
M Ibáñez (50175_CR66) 2016; 7
Q Zhang (50175_CR3) 2022; 5
M Hong (50175_CR53) 2019; 31
SI Kim (50175_CR12) 2015; 348
JH Cheng (50175_CR62) 2022; 27
Z Liu (50175_CR58) 2018; 115
C Zhang (50175_CR76) 2023; 13
Z Guo (50175_CR23) 2020; 8
JP Heremans (50175_CR30) 2012; 5
50175_CR38
50175_CR32
X Zhang (50175_CR18) 2020; 4
T Lundström (50175_CR36) 1998; 267
G Rogl (50175_CR70) 2014; 63
M Hong (50175_CR60) 2020; 4
References_xml – volume: 140
  start-page: 15535
  year: 2018
  end-page: 15545
  ident: CR65
  article-title: High-performance n-Type PbSe–Cu2Se thermoelectrics through conduction band engineering and phonon softening
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10448
– volume: 4
  start-page: 1700341
  year: 2017
  ident: CR77
  article-title: Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700341
– volume: 8
  start-page: 1801837
  year: 2018
  ident: CR19
  article-title: Arrays of planar vacancies in superior thermoelectric Ge Cd Bi Te with band convergence
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801837
– volume: 16
  start-page: 1906921
  year: 2020
  ident: CR26
  article-title: Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high‐performance GeTe thermoelectric material
  publication-title: Small
  doi: 10.1002/smll.201906921
– volume: 5
  start-page: 333
  year: 2022
  end-page: 347
  ident: CR3
  article-title: Micro-thermoelectric devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00776-0
– volume: 7
  year: 2016
  ident: CR66
  article-title: High-performance thermoelectric nanocomposites from nanocrystal building blocks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10766
– volume: 10
  start-page: 1928
  year: 2017
  end-page: 1935
  ident: CR45
  article-title: Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01737E
– volume: 29
  start-page: 1605884
  year: 2017
  ident: CR6
  article-title: Compromise and synergy in high‐efficiency thermoelectric materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605884
– volume: 9
  start-page: e353
  year: 2017
  end-page: e353
  ident: CR20
  article-title: Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.8
– volume: 81
  start-page: 175
  year: 1986
  end-page: 187
  ident: CR40
  article-title: Dislocation generation due to differences between the coefficients of thermal expansion
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(86)90261-2
– volume: 120
  start-page: 1149
  year: 1960
  end-page: 1154
  ident: CR50
  article-title: Effect of point imperfections on lattice thermal conductivity
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.1149
– volume: 10
  start-page: 2000757
  year: 2020
  ident: CR16
  article-title: Ultra‐High thermoelectric performance in bulk BiSbTe/amorphous boron composites with nano‐defect architectures
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000757
– ident: CR29
– volume: 590
  start-page: 262
  year: 2021
  end-page: 267
  ident: CR34
  article-title: Facile route to bulk ultrafine-grain steels for high strength and ductility
  publication-title: Nature
  doi: 10.1038/s41586-021-03246-3
– volume: 3
  start-page: 1276
  year: 2019
  end-page: 1288
  ident: CR64
  article-title: Lattice strain advances thermoelectrics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.008
– volume: 13
  start-page: 1856
  year: 2020
  end-page: 1864
  ident: CR54
  article-title: Computer-aided design of high-efficiency GeTe-based thermoelectric devices
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01004A
– volume: 377
  start-page: 208
  year: 2022
  end-page: 213
  ident: CR52
  article-title: High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics
  publication-title: Science
  doi: 10.1126/science.abq5815
– volume: 31
  start-page: 2101214
  year: 2021
  ident: CR13
  article-title: Parallel dislocation networks and cottrell atmospheres reduce thermal conductivity of PbTe thermoelectrics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101214
– volume: 5
  start-page: 5510
  year: 2012
  end-page: 5530
  ident: CR30
  article-title: Resonant levels in bulk thermoelectric semiconductors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02612G
– volume: 101
  start-page: 213902
  year: 2012
  ident: CR72
  article-title: Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4768297
– volume: 29
  start-page: 605
  year: 2017
  end-page: 611
  ident: CR22
  article-title: Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04066
– volume: 431
  start-page: 299
  year: 1977
  end-page: 304
  ident: CR37
  article-title: The thermal expansion of GeS and GeTe
  publication-title: Z. anorg. allgem. Chem.
  doi: 10.1002/zaac.19774310134
– volume: 97
  start-page: 1
  year: 2015
  end-page: 22
  ident: CR31
  article-title: Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2015.08.001
– volume: 441
  start-page: 136131
  year: 2022
  ident: CR63
  article-title: Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136131
– volume: 267
  start-page: 54
  year: 1998
  end-page: 58
  ident: CR36
  article-title: Thermal expansion of β-rhombohedral boron
  publication-title: J. Alloy. Compd.
  doi: 10.1016/S0925-8388(97)00545-8
– volume: 13
  start-page: 8347
  year: 2019
  end-page: 8355
  ident: CR67
  article-title: Gigantic phonon-scattering cross section to enhance thermoelectric performance in bulk crystals
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03805
– volume: 4
  start-page: 2030
  year: 2020
  end-page: 2043
  ident: CR60
  article-title: Rashba effect maximizes thermoelectric performance of GeTe derivatives
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.021
– volume: 136
  start-page: 11412
  year: 2014
  end-page: 11419
  ident: CR61
  article-title: Origin of the high performance in GeTe-based thermoelectric materials upon Bi Te doping
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504896a
– volume: 141
  start-page: 1742
  year: 2019
  end-page: 1748
  ident: CR75
  article-title: Strong phonon–phonon interactions securing extraordinary thermoelectric Ge Sb Te with Zn-alloying-induced band alignment
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12624
– volume: 252
  start-page: 118926
  year: 2023
  ident: CR51
  article-title: Contrasting roles of trivalent dopants M (M = In, Sb, Bi) in enhancing the thermoelectric performance of Ge0.94M0.06Te
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2023.118926
– volume: 76
  start-page: 52
  year: 1988
  end-page: 63
  ident: CR35
  article-title: The crystal structure and density of β-rhombohedral boron
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(88)90192-2
– volume: 13
  start-page: 2203361
  year: 2023
  ident: CR76
  article-title: Grain boundary complexions enable a simultaneous optimization of electron and phonon transport leading to high-performance GeTe thermoelectric devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203361
– volume: 17
  year: 2021
  ident: CR73
  article-title: Enhanced thermoelectric performance in Ge Sb Te/FeGe composites enabled by hierarchical defects
  publication-title: Small
  doi: 10.1002/smll.202100915
– volume: 15
  start-page: 2039
  year: 2022
  end-page: 2048
  ident: CR10
  article-title: High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00119E
– volume: 66
  start-page: 137
  year: 2023
  end-page: 157
  ident: CR5
  article-title: Challenges and opportunities in low-dimensional thermoelectric nanomaterials
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.04.021
– volume: 133
  start-page: A1143
  year: 1964
  end-page: A1152
  ident: CR46
  article-title: Electronic transport in semimetallic cerium sulfide
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A1143
– volume: 63
  start-page: 30
  year: 2014
  end-page: 43
  ident: CR70
  article-title: n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.039
– ident: CR57
– volume: 48
  start-page: 6
  year: 1977
  ident: CR44
  article-title: The work function of the elements and its periodicity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323539
– ident: CR32
– volume: 2
  start-page: 976
  year: 2018
  end-page: 987
  ident: CR42
  article-title: Low-symmetry rhombohedral GeTe thermoelectrics
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.016
– volume: 348
  start-page: 109
  year: 2015
  end-page: 114
  ident: CR12
  article-title: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
  publication-title: Science
  doi: 10.1126/science.aaa4166
– volume: 6
  start-page: 63
  year: 2019
  end-page: 73
  ident: CR28
  article-title: Realizing a stable high thermoelectric zT ∼ 2 over a broad temperature range in Ge Ga Sb Te via band engineering and hybrid flash-SPS processing
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00703A
– volume: 14
  year: 2023
  ident: CR4
  article-title: Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43228-9
– volume: 30
  start-page: 1705942
  year: 2018
  ident: CR15
  article-title: Realizing of 2.3 in Ge Sb In Te via reducing the phase‐transition temperature and introducing resonant energy doping
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705942
– volume: 4
  start-page: 986
  year: 2020
  end-page: 1003
  ident: CR18
  article-title: GeTe thermoelectrics
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.004
– volume: 9
  start-page: 100096
  year: 2019
  ident: CR55
  article-title: Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100096
– volume: 8
  start-page: 11370
  year: 2020
  end-page: 11380
  ident: CR25
  article-title: Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02758H
– volume: 23
  start-page: 4317
  year: 2013
  end-page: 4323
  ident: CR9
  article-title: BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300146
– volume: 33
  start-page: 2214771
  year: 2023
  ident: CR43
  article-title: Design and fabrication of segmented GeTe/(Bi,Sb)2Te3 thermoelectric module with enhanced conversion efficiency
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214771
– volume: 33
  start-page: 2008773
  year: 2021
  ident: CR48
  article-title: Ultralow lattice thermal conductivity and superhigh thermoelectric figure‐of‐merit in (Mg, Bi) co‐doped GeTe
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008773
– volume: 31
  start-page: 1807071
  year: 2019
  ident: CR53
  article-title: Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807071
– volume: 27
  start-page: 100820
  year: 2022
  ident: CR62
  article-title: Microstructure design via novel thermodynamic route to enhance the thermoelectric performance of GeTe
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100820
– volume: 41
  start-page: 433
  year: 2011
  end-page: 448
  ident: CR47
  article-title: Thermoelectric phenomena, materials, and applications
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-062910-100453
– volume: 3
  start-page: 719
  year: 2019
  end-page: 731
  ident: CR68
  article-title: Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.001
– volume: 68
  year: 2020
  ident: CR14
  article-title: Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104347
– volume: 3
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR2
  article-title: Charge and phonon transport in PbTe-based thermoelectric materials
  publication-title: npj Quant. Mater.
  doi: 10.1038/s41535-018-0127-y
– volume: 6
  start-page: 2916
  year: 2013
  end-page: 2920
  ident: CR69
  article-title: Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41859f
– volume: 163–164
  start-page: 67
  year: 2003
  end-page: 74
  ident: CR49
  article-title: Materials selection guidelines for low thermal conductivity thermal barrier coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00593-5
– volume: 6
  start-page: 944
  year: 2019
  end-page: 954
  ident: CR56
  article-title: Superior performance and high service stability for GeTe-based thermoelectric compounds
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz052
– volume: 10
  start-page: 2002588
  year: 2020
  ident: CR59
  article-title: High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: insights into the hidden role of rhombohedral distortion degree
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002588
– volume: 8
  start-page: 21642
  year: 2020
  end-page: 21648
  ident: CR23
  article-title: Bi–Zn codoping in GeTe synergistically enhances band convergence and phonon scattering for high thermoelectric performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08700A
– volume: 14
  year: 2023
  ident: CR71
  article-title: Compositing effects for high thermoelectric performance of Cu2Se-based materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38054-y
– volume: 11
  start-page: 2102012
  year: 2021
  ident: CR17
  article-title: Boron strengthened GeTe-Based alloys for robust thermoelectric devices with high output power density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102012
– ident: CR38
– volume: 27
  start-page: 7171
  year: 2015
  end-page: 7178
  ident: CR21
  article-title: High thermoelectric performance and enhanced mechanical stability of -type Ge Sb Te
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03434
– volume: 20
  start-page: 1378
  year: 2021
  end-page: 1384
  ident: CR11
  article-title: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 8
  start-page: eadd7690
  year: 2022
  ident: CR41
  article-title: Strain-induced van der Waals gaps in GeTe revealed by in situ nanobeam diffraction
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add7690
– volume: 473
  start-page: 66
  year: 2011
  end-page: 69
  ident: CR8
  article-title: Convergence of electronic bands for high performance bulk thermoelectrics
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 549
  start-page: 247
  year: 2017
  end-page: 251
  ident: CR33
  article-title: Superparamagnetic enhancement of thermoelectric performance
  publication-title: Nature
  doi: 10.1038/nature23667
– volume: 71
  start-page: 858
  year: 1988
  end-page: 863
  ident: CR39
  article-title: Determinations of residual thermal stresses in a SiC-Al2O3 composite using neutron diffraction
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1988.tb07536.x
– volume: 9
  start-page: e343
  year: 2017
  end-page: e343
  ident: CR27
  article-title: Resonant level-induced high thermoelectric response in indium-doped GeTe
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.203
– volume: 115
  start-page: 5332
  year: 2018
  end-page: 5337
  ident: CR58
  article-title: Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802020115
– volume: 3
  start-page: 2565
  year: 2019
  end-page: 2580
  ident: CR74
  article-title: Realization of high thermoelectric figure of merit in GeTe by complementary co-doping of Bi and In
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.017
– volume: 357
  year: 2017
  ident: CR1
  article-title: Advances in thermoelectric materials research: Looking back and moving forward
  publication-title: Science
  doi: 10.1126/science.aak9997
– volume: 12
  year: 2021
  ident: CR7
  article-title: Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25722-0
– volume: 8
  start-page: 1193
  year: 2020
  end-page: 1204
  ident: CR24
  article-title: Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10436D
– volume: 5
  start-page: 333
  year: 2022
  ident: 50175_CR3
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00776-0
– volume: 23
  start-page: 4317
  year: 2013
  ident: 50175_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300146
– volume: 8
  start-page: 1193
  year: 2020
  ident: 50175_CR24
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10436D
– volume: 10
  start-page: 2002588
  year: 2020
  ident: 50175_CR59
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002588
– volume: 101
  start-page: 213902
  year: 2012
  ident: 50175_CR72
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4768297
– volume: 10
  start-page: 2000757
  year: 2020
  ident: 50175_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000757
– volume: 8
  start-page: 1801837
  year: 2018
  ident: 50175_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801837
– volume: 13
  start-page: 1856
  year: 2020
  ident: 50175_CR54
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01004A
– volume: 10
  start-page: 1928
  year: 2017
  ident: 50175_CR45
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01737E
– volume: 2
  start-page: 976
  year: 2018
  ident: 50175_CR42
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.016
– volume: 141
  start-page: 1742
  year: 2019
  ident: 50175_CR75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12624
– volume: 9
  start-page: e343
  year: 2017
  ident: 50175_CR27
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.203
– volume: 4
  start-page: 1700341
  year: 2017
  ident: 50175_CR77
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700341
– volume: 41
  start-page: 433
  year: 2011
  ident: 50175_CR47
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-062910-100453
– volume: 33
  start-page: 2008773
  year: 2021
  ident: 50175_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008773
– volume: 31
  start-page: 1807071
  year: 2019
  ident: 50175_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807071
– volume: 11
  start-page: 2102012
  year: 2021
  ident: 50175_CR17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102012
– volume: 29
  start-page: 1605884
  year: 2017
  ident: 50175_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605884
– volume: 31
  start-page: 2101214
  year: 2021
  ident: 50175_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101214
– volume: 252
  start-page: 118926
  year: 2023
  ident: 50175_CR51
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2023.118926
– volume: 20
  start-page: 1378
  year: 2021
  ident: 50175_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 473
  start-page: 66
  year: 2011
  ident: 50175_CR8
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 5
  start-page: 5510
  year: 2012
  ident: 50175_CR30
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02612G
– volume: 4
  start-page: 2030
  year: 2020
  ident: 50175_CR60
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.021
– volume: 267
  start-page: 54
  year: 1998
  ident: 50175_CR36
  publication-title: J. Alloy. Compd.
  doi: 10.1016/S0925-8388(97)00545-8
– volume: 3
  start-page: 719
  year: 2019
  ident: 50175_CR68
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.001
– volume: 590
  start-page: 262
  year: 2021
  ident: 50175_CR34
  publication-title: Nature
  doi: 10.1038/s41586-021-03246-3
– volume: 27
  start-page: 100820
  year: 2022
  ident: 50175_CR62
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100820
– volume: 13
  start-page: 8347
  year: 2019
  ident: 50175_CR67
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03805
– volume: 15
  start-page: 2039
  year: 2022
  ident: 50175_CR10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00119E
– volume: 549
  start-page: 247
  year: 2017
  ident: 50175_CR33
  publication-title: Nature
  doi: 10.1038/nature23667
– ident: 50175_CR29
  doi: 10.1002/adfm.202307864
– ident: 50175_CR32
  doi: 10.1002/aenm.202303942
– volume: 12
  year: 2021
  ident: 50175_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25722-0
– volume: 27
  start-page: 7171
  year: 2015
  ident: 50175_CR21
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03434
– volume: 6
  start-page: 2916
  year: 2013
  ident: 50175_CR69
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41859f
– volume: 357
  year: 2017
  ident: 50175_CR1
  publication-title: Science
  doi: 10.1126/science.aak9997
– ident: 50175_CR38
– volume: 4
  start-page: 986
  year: 2020
  ident: 50175_CR18
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.004
– volume: 14
  year: 2023
  ident: 50175_CR71
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38054-y
– volume: 13
  start-page: 2203361
  year: 2023
  ident: 50175_CR76
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203361
– volume: 97
  start-page: 1
  year: 2015
  ident: 50175_CR31
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2015.08.001
– volume: 6
  start-page: 63
  year: 2019
  ident: 50175_CR28
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00703A
– volume: 3
  start-page: 1276
  year: 2019
  ident: 50175_CR64
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.008
– ident: 50175_CR57
  doi: 10.1002/adma.202102575
– volume: 136
  start-page: 11412
  year: 2014
  ident: 50175_CR61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504896a
– volume: 8
  start-page: 11370
  year: 2020
  ident: 50175_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02758H
– volume: 68
  year: 2020
  ident: 50175_CR14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104347
– volume: 163–164
  start-page: 67
  year: 2003
  ident: 50175_CR49
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00593-5
– volume: 9
  start-page: 100096
  year: 2019
  ident: 50175_CR55
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100096
– volume: 140
  start-page: 15535
  year: 2018
  ident: 50175_CR65
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10448
– volume: 30
  start-page: 1705942
  year: 2018
  ident: 50175_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705942
– volume: 120
  start-page: 1149
  year: 1960
  ident: 50175_CR50
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.1149
– volume: 14
  year: 2023
  ident: 50175_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43228-9
– volume: 66
  start-page: 137
  year: 2023
  ident: 50175_CR5
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.04.021
– volume: 377
  start-page: 208
  year: 2022
  ident: 50175_CR52
  publication-title: Science
  doi: 10.1126/science.abq5815
– volume: 8
  start-page: 21642
  year: 2020
  ident: 50175_CR23
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08700A
– volume: 6
  start-page: 944
  year: 2019
  ident: 50175_CR56
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz052
– volume: 431
  start-page: 299
  year: 1977
  ident: 50175_CR37
  publication-title: Z. anorg. allgem. Chem.
  doi: 10.1002/zaac.19774310134
– volume: 9
  start-page: e353
  year: 2017
  ident: 50175_CR20
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.8
– volume: 7
  year: 2016
  ident: 50175_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10766
– volume: 48
  start-page: 6
  year: 1977
  ident: 50175_CR44
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323539
– volume: 16
  start-page: 1906921
  year: 2020
  ident: 50175_CR26
  publication-title: Small
  doi: 10.1002/smll.201906921
– volume: 76
  start-page: 52
  year: 1988
  ident: 50175_CR35
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(88)90192-2
– volume: 81
  start-page: 175
  year: 1986
  ident: 50175_CR40
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(86)90261-2
– volume: 3
  start-page: 1
  year: 2018
  ident: 50175_CR2
  publication-title: npj Quant. Mater.
  doi: 10.1038/s41535-018-0127-y
– volume: 71
  start-page: 858
  year: 1988
  ident: 50175_CR39
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1988.tb07536.x
– volume: 33
  start-page: 2214771
  year: 2023
  ident: 50175_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214771
– volume: 8
  start-page: eadd7690
  year: 2022
  ident: 50175_CR41
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add7690
– volume: 3
  start-page: 2565
  year: 2019
  ident: 50175_CR74
  publication-title: Joule
  doi: 10.1016/j.joule.2019.08.017
– volume: 115
  start-page: 5332
  year: 2018
  ident: 50175_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802020115
– volume: 17
  year: 2021
  ident: 50175_CR73
  publication-title: Small
  doi: 10.1002/smll.202100915
– volume: 63
  start-page: 30
  year: 2014
  ident: 50175_CR70
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.039
– volume: 441
  start-page: 136131
  year: 2022
  ident: 50175_CR63
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136131
– volume: 29
  start-page: 605
  year: 2017
  ident: 50175_CR22
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04066
– volume: 348
  start-page: 109
  year: 2015
  ident: 50175_CR12
  publication-title: Science
  doi: 10.1126/science.aaa4166
– volume: 133
  start-page: A1143
  year: 1964
  ident: 50175_CR46
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A1143
SSID ssj0000391844
Score 2.5506117
Snippet GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for...
Abstract GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5915
SubjectTerms 119/118
147/135
147/137
147/143
639/301/119/1000
639/301/299/2736
Bismuth
Boron
Dislocation density
Electrical resistivity
Figure of merit
Heat conductivity
Heat transfer
Humanities and Social Sciences
multidisciplinary
Particulate composites
Power factor
Science
Science (multidisciplinary)
Seebeck effect
Thermal conductivity
Thermal mismatch
Thermoelectric materials
Transport properties
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA9jIOxF_JhanSODvWlY2pyk6aPK5hjo0wZ7EEKSnmpBe8fuvaL_vSdp73V3fr34UmiTwun5TnPyO4wd1howkOcXTbSNAI9eeGMsXVSsDZAWmHQa-d17c3oBZ5f68karr1QTNsIDj4w7ClEqqGUouxigC5WnRZXuGiy9N9bY7H0p5t1YTGUfrBpausB0SkYqezSH7BMoJAlNWqiF2YhEGbD_d1nmr8WSt3ZMcyA6ucfuThkkfzVSfp9t4fCA3Rl7Sn5_yD4cf5sqVWhS139cXiOfdTxtzCx4qpzEr9jyfuAhYReItk9Q4XN69BbPUaSg1vKUFH6ZjR1y-shT2Xmq7cL5Lrs4OT5_cyqmFgoiaigXovKRGEUMtJ2s0WqK921rLOUgGCXKylsTsFYYMuyL8nXQaFvToKmCAaPUI7Y9zAZ8wjgo40sjUdsmggrRSqRUq2lakHTT6YKVK3a6OOGLpzYXn13e51bWjSJwJAKXReBMwV6s37ka0TX-Ovt1ktJ6ZkLGzg9IX9ykL-5f-lKwvZWM3WSuc0eOjqKyVmALdrAeJkNLuyd-wNlymkPJL9CXPh5VYk2JSv-Dq7oumN1Qlg1SN0eG_lMG86Z8F4jTULCXK736SdefefH0f_DiGdupkkEknFDYY9uL6yU-pxxrEfazOf0AvTchFw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_MieDL8NvqlAq-abRtPpo-iKhsDmE-7cIehJCkp7MwW3c_ZPvvPUnbK1eveym0TSE5Hzm_NCe_A_CylAIdzfys8rpiwqJlVilNF-5LJcgKVDiNfPxVHc3El1N5ugNTuaNRgIutS7tQT2o2P39zeXH1nhz-3XBkXL9diOjuFG2YJAOTTN2AmxSZyuCoxyPcjzMzr2hBI8azM9s_3YhPkcZ_G_b8N4Xyr33UGJ4O78DeiCvTD4Mh3IUd7O7BraHS5NV9-HZwOeavUKOmPVvNMe2bNGzXLNOQT4m_sE7bLnWB0YDVbSAQX9Cjz3iCLIS6Og1Q8Uc_1M1pfRqS0UPGFy4ewOzw4OTTERsLKzAvRb5khfW5tVyUuslK1JJQQF0rTcgEfYZZYbVyWHJ0kQyG29JJ1LWqUBVOCcX5Q9jt-g4fQyq4srnKUOrKC-68zpAAWFXVIqObRiaQT-I0fmQdD8Uvzk3c_ebaDCowpAITVWBUAq_W3_wcODeubf0xaGndMvBlxwf9_MyM7mecz2i4mcsb70TjCktLc9lUSGJQWukigf1Jx2ayQUPTH8VqyYVO4MX6Nblf2FOxHfarsQ1BYkEjfTSYxLonPPwlLsoyAb1hLBtd3XzTtd8jxTehYEGSFgm8nuzqT7_-L4sn1w_jKdwugqkHXlCxD7vL-QqfEaZauufRUX4Dud0bdA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwEA9zIvgi_rY6pYJvGkybS5o-6pfNIejTBnsQQpJeZ2G2su93Y_73XtIf8tUp-FJoc4Hk7pK75i6fY-xVpQA97fy8Dqbm4NBxp7WhhwyVBtICHW8jf_qsD4_h44k62WHlfBcmJe0nSMu0Tc_ZYW_XkJY0WRSuSIkU1zfYzQjdHrV6pVfLuUpEPDcA0_0YIc01XbdsUILqv86__DNN8rdYaTJBB3fZncl3zN-No73HdrC_z26N1SR_PGBf9q-mHBUiartTml0-tHkMyWzymDOJl9jkXZ_7iFrAmy6ChK_p0wc8Qh7NWZNHd_DbMNbG6UIeE85jVheuH7Ljg_2j1SGfiifwoKDY8NKFwjkJlWlFhUaRpW8abcj7wCBQlM5oj5VEnwBfpKu8QtPoGnXpNWgpH7HdfujxCctBaldogcrUAaQPRiA5WXXdgKCXVmWsmNlpw4QsHgtcnNkU4ZbGjiKwJAKbRGB1xl4vfb6PuBr_pH4fpbRQRkzs9GE4P7WTjlgfBE1X-KINHlpfOvr9Vm2NxAZttCkztjfL2E4LdW1piyN7rCSYjL1cmmmJxbiJ63G4mGjI7QWa6eNRJZaRyHgSXFZVxsyWsmwNdbul774mGG_ydIE4DRl7M-vVr3H9nRdP_4_8GbtdRtWPWKCwx3Y35xf4nPyojX-RFs5PJrUWDA
  priority: 102
  providerName: Springer Nature
Title Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites
URI https://link.springer.com/article/10.1038/s41467-024-50175-6
https://www.ncbi.nlm.nih.gov/pubmed/39003277
https://www.proquest.com/docview/3079905348
https://www.proquest.com/docview/3079956645
https://pubmed.ncbi.nlm.nih.gov/PMC11246464
https://doaj.org/article/bc03470b1fcb4fb2a1335f9e1aa68682
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUP9raJOtaH5aeRhqQl0DK2FvIwMJZ8bgOb3eVjbP_97mTFJfvoi4xlGSTd6e58d_4dY28zJcGi5Oe5MzmXJZS81NpgI1ymJXKBpr-RT8_0yYWczdU8ONxWIa1yKxO9oK5aRz7yQ-RFFJxKSPPh-junqlEUXQ0lNO6yfYIuo5SubJ71PhZCPzdShn9lEmEOV9JLBlRMXCEvKq539JGH7f-Xrfl3yuQfcVOvjqYP2YNgR8ajjvCP2B1oHrN7XWXJX0_Yl8nPkK-Cg-rF5WYJcVvHFJ5Zx5Q_CT-gihdNbAnBgFcLAgxfYdcxnAMn1VbFZBp-a7s6OQsXU_I5ZXjB6im7mE7Oxyc8FFLgTsnhmqelG5alkJmpkwyMQq1fVdqgJQIugSQtjbaQCbAe_EWUmVVgKp2DTq2WWohnbK9pG3jBYil0OdQJKJM7KawzCaDBleeVTPCmVhEbbrezcAFlnIpdfC18tFuYoiNBgSQoPAkKHbF3_TvXHcbGraOPiEr9SMLH9h3t8rIIx62wLsHlJnZYOytrm5b4Ka7qHHAbtNEmjdjBlsZFOLSr4obFIvamf4zHjWIoZQPtJoxBE1jiSp93LNHPRJBXOM2yiJkdZtmZ6u6TZnHlIb3R6pW40zJi77d8dTOv_-_Fy9uX8YrdT4nVCQdUHrC99XIDr9GGWtuBPyjYmunxgO2PRrPPM7weTc4-fsLesR4PvHcC21NpfgNVhR8I
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJuUAkGCE1jNJrbjHBDi0bKlj9NW2gOSsZ1JWYkmZbML9E_xG5nJq1oevfUSKYkj2TPfPOIZzzD2LJUCHGp-nnmdcWHBcquUxkviUyUQBYpOIx8cqvGR-DiV0zX2qz8LQ2mVvU5sFHVeedoj30IsouKUidCvT79x6hpF0dW-hUYLiz04-4G_bPWr3ffI3-dxvLM9eTfmXVcB7qUYLXhs_cjaRKS6iFLQEk1gniuNZhl8BFFstXKQJuCaSiiJTZ0EnasMVOyUULQBiir_ChreiCQqnabDng5VW9dCdGdzokRv1aLRRGgIuUTsS65W7F_TJuBfvu3fKZp_xGkb87dzk93o_NbwTQu0W2wNytvsatvJ8uwO-7T9s8uPwUHF7Hg5h7AqQgoHLULK14TvkIezMnRUMYHnMypQXuOjDzABTqY0D8kVPanavjwzH1KyO2WUQX2XHV0Kie-x9bIq4QELRaLsSEUgdeZF4ryOAB28LMtFhDeFDNioJ6fxXVVzaq7x1TTR9USblgUGWWAaFhgVsBfDN6dtTY8LR78lLg0jqR5386CaH5tOvI3zES43cqPCO1G42OKvvywyQDIorXQcsM2ex6ZTErU5h3TAng6vUbwpZmNLqJbdGHS5Ba70fguJYSYJ7ULHaRowvQKWlamuvilnX5oS4uhlC6S0CNjLHlfn8_o_LTYuXsYTdm08Odg3-7uHew_Z9ZhgTzVIxSZbX8yX8Aj9t4V73AhNyD5ftpT-BqkDVEc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELaqIhAXxE6gQJDgBFaTeM0BIaB9tBQqDq30DkjBdiblSZCUtwD9a_w6ZrK86rH01kukJI5kz3yzxDOeYeyxURI8an6eB5tz6cBxp7XFiwhGS0SBptPI7_f1zqF8O1bjNfZrOAtDaZWDTmwVddkE2iPfRCyi4lRC2s2qT4v4sDV6cfyNUwcpirQO7TQ6iOzByQ_8fZs9391CXj_JstH2wesd3ncY4EHJdM4zF1LnhDS2SgxYheawLLVFEw0hgSRzVnswAnxbFUU44xXYUuegM6-lps1QVP8XjFApyZgZm-X-DlVet1L253QSYTdnstVKaBS5QjlQXK_YwrZlwL_83L_TNf-I2bamcHSVXel92PhlB7prbA3q6-xi19Xy5Ab7uP2zz5XBQdXkaDGFuKliCg3NY8rdhO9QxpM69lQ9gZcTKlY-w0dv4AA4mdUyJrf0a9P16JmEmBLfKbsMZjfZ4bmQ-BZbr5sa7rBYCu1SnYCyeZDCB5sAOnt5XsoEbyoVsXQgZxH6CufUaONL0UbahS06FhTIgqJlQaEj9nT5zXFX3-PM0a-IS8uRVJu7fdBMj4pe1AsfElxu4tMqeFn5zKVCqCoHJIO22mYR2xh4XPQKY1acwjtij5avUdQpfuNqaBb9GHS_Ja70dgeJ5UwE7UhnxkTMroBlZaqrb-rJ57acOHrcEiktI_ZswNXpvP5Pi7tnL-Mhu4TyWbzb3d-7xy5nhHoqRyo32Pp8uoD76MrN_YNWZmL26byF9DeswVh9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exceptional+figure+of+merit+achieved+in+boron-dispersed+GeTe-based+thermoelectric+composites&rft.jtitle=Nature+communications&rft.au=Jiang%2C+Yilin&rft.au=Su%2C+Bin&rft.au=Yu%2C+Jincheng&rft.au=Han%2C+Zhanran&rft.date=2024-07-14&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5915&rft_id=info:doi/10.1038%2Fs41467-024-50175-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon