Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites
GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporati...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5915 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm
−1
K
−1
at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm
−1
K
−2
at 300 K). Consequently, we obtain a maximum figure of merit
Z
max
of 4.0 × 10
−3
K
−1
at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.
Doping approach is a conventional method to increase ZT values of thermoelectric materials. Here, authors propose a facile strategy to enhance thermoelectric performance by mixing boron particles into GeTe-based thermoelectric materials, leading to a ZT value of 2.45 at 613 K. |
---|---|
AbstractList | GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm
−1
K
−1
at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm
−1
K
−2
at 300 K). Consequently, we obtain a maximum figure of merit
Z
max
of 4.0 × 10
−3
K
−1
at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.
Doping approach is a conventional method to increase ZT values of thermoelectric materials. Here, authors propose a facile strategy to enhance thermoelectric performance by mixing boron particles into GeTe-based thermoelectric materials, leading to a ZT value of 2.45 at 613 K. GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm−1K−1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm−1K−2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10−3 K−1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.Doping approach is a conventional method to increase ZT values of thermoelectric materials. Here, authors propose a facile strategy to enhance thermoelectric performance by mixing boron particles into GeTe-based thermoelectric materials, leading to a ZT value of 2.45 at 613 K. GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm −1 K −1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm −1 K −2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10 −3 K −1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics. Abstract GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm−1K−1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm−1K−2 at 300 K). Consequently, we obtain a maximum figure of merit Z max of 4.0 × 10−3 K−1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics. GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm K at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm K at 300 K). Consequently, we obtain a maximum figure of merit Z of 4.0 × 10 K at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics. GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm-1K-1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm-1K-2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10-3 K-1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics.GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for mid-temperature applications. In this work, the thermoelectric performance of GeTe is improved by a facile composite approach. We find that incorporating a small amount of boron particles into the Bi-doped GeTe leads to significant enhancement in power factor and simultaneous reduction in thermal conductivity, through which the synergistic modulation of electrical and thermal transport properties is realized. The thermal mismatch between the boron particles and the matrix induces high-density dislocations that effectively scatter the mid-frequency phonons, accounting for a minimum lattice thermal conductivity of 0.43 Wm-1K-1 at 613 K. Furthermore, the presence of boron/GeTe interfaces modifies the interfacial potential barriers, resulting in increased Seebeck coefficient and hence enhanced power factor (25.4 μWcm-1K-2 at 300 K). Consequently, we obtain a maximum figure of merit Zmax of 4.0 × 10-3 K-1 at 613 K in the GeTe-based composites, which is the record-high value in GeTe-based thermoelectric materials and also superior to most of thermoelectric systems for mid-temperature applications. This work provides an effective way to further enhance the performance of GeTe-based thermoelectrics. |
ArticleNumber | 5915 |
Author | Li, Jing-Wei Sun, Fu-Hua Yu, Jincheng Dong, Jinfeng Hu, Haihua Ge, Zhen-Hua Zhuang, Hua-Lu Li, Hezhang Jiang, Yilin Han, Zhanran Li, Jing-Feng Wang, Chao Su, Bin Feng, Jing |
Author_xml | – sequence: 1 givenname: Yilin orcidid: 0000-0002-8815-4260 surname: Jiang fullname: Jiang, Yilin organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 2 givenname: Bin surname: Su fullname: Su, Bin organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 3 givenname: Jincheng orcidid: 0000-0002-3490-6965 surname: Yu fullname: Yu, Jincheng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 4 givenname: Zhanran surname: Han fullname: Han, Zhanran organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 5 givenname: Haihua surname: Hu fullname: Hu, Haihua organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 6 givenname: Hua-Lu orcidid: 0000-0002-5648-1187 surname: Zhuang fullname: Zhuang, Hua-Lu organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 7 givenname: Hezhang surname: Li fullname: Li, Hezhang organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Department of Precision Instrument, Tsinghua University – sequence: 8 givenname: Jinfeng surname: Dong fullname: Dong, Jinfeng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, School of Materials Science and Engineering, Nanyang Technological University – sequence: 9 givenname: Jing-Wei surname: Li fullname: Li, Jing-Wei organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 10 givenname: Chao surname: Wang fullname: Wang, Chao organization: Department of Precision Instrument, Tsinghua University – sequence: 11 givenname: Zhen-Hua surname: Ge fullname: Ge, Zhen-Hua organization: Southwest United Graduate School – sequence: 12 givenname: Jing surname: Feng fullname: Feng, Jing organization: Southwest United Graduate School – sequence: 13 givenname: Fu-Hua surname: Sun fullname: Sun, Fu-Hua organization: Institute for Advanced Materials, Hubei Normal University – sequence: 14 givenname: Jing-Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing-Feng email: jingfeng@mail.tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Southwest United Graduate School, Institute for Advanced Materials, Hubei Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39003277$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN92TghVpVSqxKXckCzbedn1KomDnVTw7_E2S2l7qC9-fp6ZN5bnNToa4wgIvSX4I8FMf8qccKlqTHktMFGili_QCcWc1ERRdvSgPkZnOe9wWawhmvNX6Jg15UCVOkE_L357mOYQR9tXXdgsCarYVQOkMFfWbwPcQluFsXIxxbFuQ54g5dK6hBuond2X8xbSEKEHP6fgKx-HKeYwQ36DXna2z3B22E_Rj68XN-ff6uvvl1fnX65rLziZa2o9sZZxpTusQAtNcdtK3SgJHgOmVksHioHDgkrNrHICdCsbkNRJLhk7RVerbhvtzkwpDDb9MdEGc9eIaWNsmoPvwTiPyyDsSOcd7xy1hDHRNVAMSC01LVqfV61pcQO0HsY52f6R6OObMWzNJt4aQigvbnhR-HBQSPHXAnk2Q8ge-t6OEJdsGFZNI6TkokDfP4Hu4pLKVxxQWDCuC-rdQ0v3Xv79YgHQFeBTzDlBdw8h2OzTYta0mJIWc5cWIwtJPyH5MNt9EsqzQv88la3UXOaMG0j_bT_D-gt4AtOR |
CitedBy_id | crossref_primary_10_1016_j_jpcs_2024_112381 crossref_primary_10_1016_j_nwnano_2024_100050 crossref_primary_10_1007_s40195_024_01790_1 crossref_primary_10_1039_D4TA08348B crossref_primary_10_1039_D5TC00078E crossref_primary_10_1002_adfm_202423909 crossref_primary_10_1016_j_eng_2024_12_011 crossref_primary_10_1021_acsami_4c13775 crossref_primary_10_1039_D4SC06615D crossref_primary_10_1016_j_jmst_2025_02_003 crossref_primary_10_26599_NR_2025_94907308 crossref_primary_10_1021_acs_chemmater_4c02649 crossref_primary_10_1021_acsnano_4c11732 |
Cites_doi | 10.1021/jacs.8b10448 10.1002/advs.201700341 10.1002/aenm.201801837 10.1002/smll.201906921 10.1038/s41928-022-00776-0 10.1038/ncomms10766 10.1039/C7EE01737E 10.1002/adma.201605884 10.1038/am.2017.8 10.1016/0025-5416(86)90261-2 10.1103/PhysRev.120.1149 10.1002/aenm.202000757 10.1038/s41586-021-03246-3 10.1016/j.joule.2019.02.008 10.1039/D0EE01004A 10.1126/science.abq5815 10.1002/adfm.202101214 10.1039/C1EE02612G 10.1063/1.4768297 10.1021/acs.chemmater.6b04066 10.1002/zaac.19774310134 10.1016/j.mser.2015.08.001 10.1016/j.cej.2022.136131 10.1016/S0925-8388(97)00545-8 10.1021/acsnano.9b03805 10.1016/j.joule.2020.07.021 10.1021/ja504896a 10.1021/jacs.8b12624 10.1016/j.actamat.2023.118926 10.1016/0022-4596(88)90192-2 10.1002/aenm.202203361 10.1002/smll.202100915 10.1039/D2EE00119E 10.1016/j.mattod.2023.04.021 10.1103/PhysRev.133.A1143 10.1016/j.actamat.2013.09.039 10.1063/1.323539 10.1016/j.joule.2018.02.016 10.1126/science.aaa4166 10.1039/C8QI00703A 10.1038/s41467-023-43228-9 10.1002/adma.201705942 10.1016/j.joule.2020.03.004 10.1016/j.mtphys.2019.100096 10.1039/D0TA02758H 10.1002/adfm.201300146 10.1002/adfm.202214771 10.1002/adma.202008773 10.1002/adma.201807071 10.1016/j.mtphys.2022.100820 10.1146/annurev-matsci-062910-100453 10.1016/j.joule.2019.01.001 10.1016/j.nanoen.2019.104347 10.1038/s41535-018-0127-y 10.1039/c3ee41859f 10.1016/S0257-8972(02)00593-5 10.1093/nsr/nwz052 10.1002/aenm.202002588 10.1039/D0TA08700A 10.1038/s41467-023-38054-y 10.1002/aenm.202102012 10.1021/acs.chemmater.5b03434 10.1038/s41563-021-01064-6 10.1126/sciadv.add7690 10.1038/nature09996 10.1038/nature23667 10.1111/j.1151-2916.1988.tb07536.x 10.1038/am.2016.203 10.1073/pnas.1802020115 10.1016/j.joule.2019.08.017 10.1126/science.aak9997 10.1038/s41467-021-25722-0 10.1039/C9TA10436D 10.1002/adfm.202307864 10.1002/aenm.202303942 10.1002/adma.202102575 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50175-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_bc03470b1fcb4fb2a1335f9e1aa68682 PMC11246464 39003277 10_1038_s41467_024_50175_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the National Key R&D Program of China (2023YFB3809400) and the Basic Science Center Project of National Natural Science Foundation of China (grant no. 52388201) |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-2ac1aa3478f07e85820dd68976ec0e02a86be73eb052683a7b5e8d69e62b64633 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:15:36 EDT 2025 Thu Aug 21 18:32:51 EDT 2025 Sun Aug 24 04:01:54 EDT 2025 Wed Aug 13 08:18:44 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Tue Jul 01 02:37:21 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 21 02:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-2ac1aa3478f07e85820dd68976ec0e02a86be73eb052683a7b5e8d69e62b64633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8815-4260 0000-0002-0185-0512 0000-0002-5648-1187 0000-0002-3490-6965 |
OpenAccessLink | https://www.proquest.com/docview/3079905348?pq-origsite=%requestingapplication% |
PMID | 39003277 |
PQID | 3079905348 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bc03470b1fcb4fb2a1335f9e1aa68682 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11246464 proquest_miscellaneous_3079956645 proquest_journals_3079905348 pubmed_primary_39003277 crossref_primary_10_1038_s41467_024_50175_6 crossref_citationtrail_10_1038_s41467_024_50175_6 springer_journals_10_1038_s41467_024_50175_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-14 |
PublicationDateYYYYMMDD | 2024-07-14 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Xiao, Zhao (CR2) 2018; 3 He, Tritt (CR1) 2017; 357 Jiang (CR52) 2022; 377 Hong (CR54) 2020; 13 Li, Zhang, Lin, Chen, Pei (CR22) 2017; 29 Yu, Xie, Pennycook, Bosman, He (CR41) 2022; 8 Hong (CR15) 2018; 30 CR38 CR32 Mehdizadeh Dehkordi, Zebarjadi, He, Tritt (CR31) 2015; 97 Cheng (CR62) 2022; 27 Wang (CR63) 2022; 441 Wu (CR27) 2017; 9 Ibáñez (CR66) 2016; 7 Liu (CR59) 2020; 10 Sui (CR69) 2013; 6 Hong, Zou, Chen (CR53) 2019; 31 Zhang (CR76) 2023; 13 Li (CR42) 2018; 2 Tritt (CR47) 2011; 41 Xing (CR56) 2019; 6 Perumal (CR74) 2019; 3 Hwang (CR67) 2019; 13 Nshimyimana (CR24) 2020; 8 Callaway, von Baeyer (CR50) 1960; 120 Cutler, Leavy, Fitzpatrick (CR46) 1964; 133 Nunna (CR45) 2017; 10 Majumdar, Kupperman, Sing (CR39) 1988; 71 Wu (CR61) 2014; 136 Zhang (CR18) 2020; 4 Wiedemeier, Siemers (CR37) 1977; 431 Pei (CR8) 2011; 473 Xing (CR48) 2021; 33 Lee, Luo, Cho, Kanatzidis, Chung (CR68) 2019; 3 Arsenault, Shi (CR40) 1986; 81 Bu (CR55) 2019; 9 Wu (CR64) 2019; 3 Xie (CR73) 2021; 17 Zhou (CR11) 2021; 20 Heremans, Wiendlocha, Chamoire (CR30) 2012; 5 Feng (CR25) 2020; 8 Shuai, Sun, Tan, Mori (CR26) 2020; 16 Lundström, Lönnberg, Bauer (CR36) 1998; 267 Liu (CR58) 2018; 115 Srinivasan (CR28) 2019; 6 Gao (CR34) 2021; 590 CR57 Li (CR9) 2013; 23 Abdellaoui (CR13) 2021; 31 Bathula (CR72) 2012; 101 Dong (CR5) 2023; 66 Slack, Hejna, Garbauskas, Kasper (CR35) 1988; 76 Xie (CR14) 2020; 68 Guo (CR23) 2020; 8 Hong (CR75) 2019; 141 Li (CR7) 2021; 12 Yang (CR16) 2020; 10 Hong (CR60) 2020; 4 Bai (CR17) 2021; 11 Zhuang (CR10) 2022; 15 Li (CR20) 2017; 9 CR29 Zhang, Deng, Wilkens, Reith, Nielsch (CR3) 2022; 5 Zhou (CR65) 2018; 140 Perumal, Roychowdhury, Negi, Datta, Biswas (CR21) 2015; 27 Zhu (CR6) 2017; 29 Zhou (CR71) 2023; 14 Li (CR4) 2023; 14 Kim (CR12) 2015; 348 Hong (CR19) 2018; 8 Michaelson (CR44) 1977; 48 Zhao (CR33) 2017; 549 Clarke (CR49) 2003; 163–164 Jin (CR51) 2023; 252 Li (CR77) 2017; 4 Pei (CR43) 2023; 33 Rogl (CR70) 2014; 63 A Mehdizadeh Dehkordi (50175_CR31) 2015; 97 Y Yu (50175_CR41) 2022; 8 HB Michaelson (50175_CR44) 1977; 48 J Pei (50175_CR43) 2023; 33 G Yang (50175_CR16) 2020; 10 B Srinivasan (50175_CR28) 2019; 6 S Perumal (50175_CR21) 2015; 27 L Xie (50175_CR73) 2021; 17 S Majumdar (50175_CR39) 1988; 71 TM Tritt (50175_CR47) 2011; 41 Y Pei (50175_CR8) 2011; 473 L Wu (50175_CR27) 2017; 9 D Wu (50175_CR61) 2014; 136 Y Jin (50175_CR51) 2023; 252 G Bai (50175_CR17) 2021; 11 R Nunna (50175_CR45) 2017; 10 J Li (50175_CR9) 2013; 23 Y Feng (50175_CR25) 2020; 8 J Hwang (50175_CR67) 2019; 13 Y Xiao (50175_CR2) 2018; 3 M Hong (50175_CR19) 2018; 8 H-L Zhuang (50175_CR10) 2022; 15 J Li (50175_CR20) 2017; 9 J Sui (50175_CR69) 2013; 6 T Zhu (50175_CR6) 2017; 29 J-W Li (50175_CR4) 2023; 14 W Zhao (50175_CR33) 2017; 549 L Xie (50175_CR14) 2020; 68 M Hong (50175_CR54) 2020; 13 50175_CR57 T Xing (50175_CR48) 2021; 33 S Perumal (50175_CR74) 2019; 3 E Nshimyimana (50175_CR24) 2020; 8 J Dong (50175_CR5) 2023; 66 GA Slack (50175_CR35) 1988; 76 A Li (50175_CR7) 2021; 12 J Li (50175_CR77) 2017; 4 DR Clarke (50175_CR49) 2003; 163–164 M Hong (50175_CR75) 2019; 141 Z Bu (50175_CR55) 2019; 9 L Abdellaoui (50175_CR13) 2021; 31 J Gao (50175_CR34) 2021; 590 S Bathula (50175_CR72) 2012; 101 RJ Arsenault (50175_CR40) 1986; 81 J Callaway (50175_CR50) 1960; 120 J Shuai (50175_CR26) 2020; 16 T Xing (50175_CR56) 2019; 6 Z Zhou (50175_CR71) 2023; 14 B Jiang (50175_CR52) 2022; 377 C Zhou (50175_CR65) 2018; 140 C Zhou (50175_CR11) 2021; 20 YK Lee (50175_CR68) 2019; 3 Y Wu (50175_CR64) 2019; 3 H Wiedemeier (50175_CR37) 1977; 431 J Li (50175_CR22) 2017; 29 J Li (50175_CR42) 2018; 2 D-Z Wang (50175_CR63) 2022; 441 J He (50175_CR1) 2017; 357 M Cutler (50175_CR46) 1964; 133 Z Liu (50175_CR59) 2020; 10 50175_CR29 M Hong (50175_CR15) 2018; 30 M Ibáñez (50175_CR66) 2016; 7 Q Zhang (50175_CR3) 2022; 5 M Hong (50175_CR53) 2019; 31 SI Kim (50175_CR12) 2015; 348 JH Cheng (50175_CR62) 2022; 27 Z Liu (50175_CR58) 2018; 115 C Zhang (50175_CR76) 2023; 13 Z Guo (50175_CR23) 2020; 8 JP Heremans (50175_CR30) 2012; 5 50175_CR38 50175_CR32 X Zhang (50175_CR18) 2020; 4 T Lundström (50175_CR36) 1998; 267 G Rogl (50175_CR70) 2014; 63 M Hong (50175_CR60) 2020; 4 |
References_xml | – volume: 140 start-page: 15535 year: 2018 end-page: 15545 ident: CR65 article-title: High-performance n-Type PbSe–Cu2Se thermoelectrics through conduction band engineering and phonon softening publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10448 – volume: 4 start-page: 1700341 year: 2017 ident: CR77 article-title: Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics publication-title: Adv. Sci. doi: 10.1002/advs.201700341 – volume: 8 start-page: 1801837 year: 2018 ident: CR19 article-title: Arrays of planar vacancies in superior thermoelectric Ge Cd Bi Te with band convergence publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801837 – volume: 16 start-page: 1906921 year: 2020 ident: CR26 article-title: Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high‐performance GeTe thermoelectric material publication-title: Small doi: 10.1002/smll.201906921 – volume: 5 start-page: 333 year: 2022 end-page: 347 ident: CR3 article-title: Micro-thermoelectric devices publication-title: Nat. Electron. doi: 10.1038/s41928-022-00776-0 – volume: 7 year: 2016 ident: CR66 article-title: High-performance thermoelectric nanocomposites from nanocrystal building blocks publication-title: Nat. Commun. doi: 10.1038/ncomms10766 – volume: 10 start-page: 1928 year: 2017 end-page: 1935 ident: CR45 article-title: Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01737E – volume: 29 start-page: 1605884 year: 2017 ident: CR6 article-title: Compromise and synergy in high‐efficiency thermoelectric materials publication-title: Adv. Mater. doi: 10.1002/adma.201605884 – volume: 9 start-page: e353 year: 2017 end-page: e353 ident: CR20 article-title: Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides publication-title: NPG Asia Mater. doi: 10.1038/am.2017.8 – volume: 81 start-page: 175 year: 1986 end-page: 187 ident: CR40 article-title: Dislocation generation due to differences between the coefficients of thermal expansion publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(86)90261-2 – volume: 120 start-page: 1149 year: 1960 end-page: 1154 ident: CR50 article-title: Effect of point imperfections on lattice thermal conductivity publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.1149 – volume: 10 start-page: 2000757 year: 2020 ident: CR16 article-title: Ultra‐High thermoelectric performance in bulk BiSbTe/amorphous boron composites with nano‐defect architectures publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000757 – ident: CR29 – volume: 590 start-page: 262 year: 2021 end-page: 267 ident: CR34 article-title: Facile route to bulk ultrafine-grain steels for high strength and ductility publication-title: Nature doi: 10.1038/s41586-021-03246-3 – volume: 3 start-page: 1276 year: 2019 end-page: 1288 ident: CR64 article-title: Lattice strain advances thermoelectrics publication-title: Joule doi: 10.1016/j.joule.2019.02.008 – volume: 13 start-page: 1856 year: 2020 end-page: 1864 ident: CR54 article-title: Computer-aided design of high-efficiency GeTe-based thermoelectric devices publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01004A – volume: 377 start-page: 208 year: 2022 end-page: 213 ident: CR52 article-title: High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics publication-title: Science doi: 10.1126/science.abq5815 – volume: 31 start-page: 2101214 year: 2021 ident: CR13 article-title: Parallel dislocation networks and cottrell atmospheres reduce thermal conductivity of PbTe thermoelectrics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101214 – volume: 5 start-page: 5510 year: 2012 end-page: 5530 ident: CR30 article-title: Resonant levels in bulk thermoelectric semiconductors publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02612G – volume: 101 start-page: 213902 year: 2012 ident: CR72 article-title: Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys publication-title: Appl. Phys. Lett. doi: 10.1063/1.4768297 – volume: 29 start-page: 605 year: 2017 end-page: 611 ident: CR22 article-title: Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04066 – volume: 431 start-page: 299 year: 1977 end-page: 304 ident: CR37 article-title: The thermal expansion of GeS and GeTe publication-title: Z. anorg. allgem. Chem. doi: 10.1002/zaac.19774310134 – volume: 97 start-page: 1 year: 2015 end-page: 22 ident: CR31 article-title: Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2015.08.001 – volume: 441 start-page: 136131 year: 2022 ident: CR63 article-title: Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136131 – volume: 267 start-page: 54 year: 1998 end-page: 58 ident: CR36 article-title: Thermal expansion of β-rhombohedral boron publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(97)00545-8 – volume: 13 start-page: 8347 year: 2019 end-page: 8355 ident: CR67 article-title: Gigantic phonon-scattering cross section to enhance thermoelectric performance in bulk crystals publication-title: ACS Nano doi: 10.1021/acsnano.9b03805 – volume: 4 start-page: 2030 year: 2020 end-page: 2043 ident: CR60 article-title: Rashba effect maximizes thermoelectric performance of GeTe derivatives publication-title: Joule doi: 10.1016/j.joule.2020.07.021 – volume: 136 start-page: 11412 year: 2014 end-page: 11419 ident: CR61 article-title: Origin of the high performance in GeTe-based thermoelectric materials upon Bi Te doping publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504896a – volume: 141 start-page: 1742 year: 2019 end-page: 1748 ident: CR75 article-title: Strong phonon–phonon interactions securing extraordinary thermoelectric Ge Sb Te with Zn-alloying-induced band alignment publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12624 – volume: 252 start-page: 118926 year: 2023 ident: CR51 article-title: Contrasting roles of trivalent dopants M (M = In, Sb, Bi) in enhancing the thermoelectric performance of Ge0.94M0.06Te publication-title: Acta Mater. doi: 10.1016/j.actamat.2023.118926 – volume: 76 start-page: 52 year: 1988 end-page: 63 ident: CR35 article-title: The crystal structure and density of β-rhombohedral boron publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(88)90192-2 – volume: 13 start-page: 2203361 year: 2023 ident: CR76 article-title: Grain boundary complexions enable a simultaneous optimization of electron and phonon transport leading to high-performance GeTe thermoelectric devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203361 – volume: 17 year: 2021 ident: CR73 article-title: Enhanced thermoelectric performance in Ge Sb Te/FeGe composites enabled by hierarchical defects publication-title: Small doi: 10.1002/smll.202100915 – volume: 15 start-page: 2039 year: 2022 end-page: 2048 ident: CR10 article-title: High ZT in p-type thermoelectric (Bi,Sb)2Te3 with built-in nanopores publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00119E – volume: 66 start-page: 137 year: 2023 end-page: 157 ident: CR5 article-title: Challenges and opportunities in low-dimensional thermoelectric nanomaterials publication-title: Mater. Today doi: 10.1016/j.mattod.2023.04.021 – volume: 133 start-page: A1143 year: 1964 end-page: A1152 ident: CR46 article-title: Electronic transport in semimetallic cerium sulfide publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A1143 – volume: 63 start-page: 30 year: 2014 end-page: 43 ident: CR70 article-title: n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.039 – ident: CR57 – volume: 48 start-page: 6 year: 1977 ident: CR44 article-title: The work function of the elements and its periodicity publication-title: J. Appl. Phys. doi: 10.1063/1.323539 – ident: CR32 – volume: 2 start-page: 976 year: 2018 end-page: 987 ident: CR42 article-title: Low-symmetry rhombohedral GeTe thermoelectrics publication-title: Joule doi: 10.1016/j.joule.2018.02.016 – volume: 348 start-page: 109 year: 2015 end-page: 114 ident: CR12 article-title: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics publication-title: Science doi: 10.1126/science.aaa4166 – volume: 6 start-page: 63 year: 2019 end-page: 73 ident: CR28 article-title: Realizing a stable high thermoelectric zT ∼ 2 over a broad temperature range in Ge Ga Sb Te via band engineering and hybrid flash-SPS processing publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00703A – volume: 14 year: 2023 ident: CR4 article-title: Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values publication-title: Nat. Commun. doi: 10.1038/s41467-023-43228-9 – volume: 30 start-page: 1705942 year: 2018 ident: CR15 article-title: Realizing of 2.3 in Ge Sb In Te via reducing the phase‐transition temperature and introducing resonant energy doping publication-title: Adv. Mater. doi: 10.1002/adma.201705942 – volume: 4 start-page: 986 year: 2020 end-page: 1003 ident: CR18 article-title: GeTe thermoelectrics publication-title: Joule doi: 10.1016/j.joule.2020.03.004 – volume: 9 start-page: 100096 year: 2019 ident: CR55 article-title: Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100096 – volume: 8 start-page: 11370 year: 2020 end-page: 11380 ident: CR25 article-title: Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02758H – volume: 23 start-page: 4317 year: 2013 end-page: 4323 ident: CR9 article-title: BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300146 – volume: 33 start-page: 2214771 year: 2023 ident: CR43 article-title: Design and fabrication of segmented GeTe/(Bi,Sb)2Te3 thermoelectric module with enhanced conversion efficiency publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214771 – volume: 33 start-page: 2008773 year: 2021 ident: CR48 article-title: Ultralow lattice thermal conductivity and superhigh thermoelectric figure‐of‐merit in (Mg, Bi) co‐doped GeTe publication-title: Adv. Mater. doi: 10.1002/adma.202008773 – volume: 31 start-page: 1807071 year: 2019 ident: CR53 article-title: Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance publication-title: Adv. Mater. doi: 10.1002/adma.201807071 – volume: 27 start-page: 100820 year: 2022 ident: CR62 article-title: Microstructure design via novel thermodynamic route to enhance the thermoelectric performance of GeTe publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100820 – volume: 41 start-page: 433 year: 2011 end-page: 448 ident: CR47 article-title: Thermoelectric phenomena, materials, and applications publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-062910-100453 – volume: 3 start-page: 719 year: 2019 end-page: 731 ident: CR68 article-title: Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance publication-title: Joule doi: 10.1016/j.joule.2019.01.001 – volume: 68 year: 2020 ident: CR14 article-title: Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104347 – volume: 3 start-page: 1 year: 2018 end-page: 12 ident: CR2 article-title: Charge and phonon transport in PbTe-based thermoelectric materials publication-title: npj Quant. Mater. doi: 10.1038/s41535-018-0127-y – volume: 6 start-page: 2916 year: 2013 end-page: 2920 ident: CR69 article-title: Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41859f – volume: 163–164 start-page: 67 year: 2003 end-page: 74 ident: CR49 article-title: Materials selection guidelines for low thermal conductivity thermal barrier coatings publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00593-5 – volume: 6 start-page: 944 year: 2019 end-page: 954 ident: CR56 article-title: Superior performance and high service stability for GeTe-based thermoelectric compounds publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz052 – volume: 10 start-page: 2002588 year: 2020 ident: CR59 article-title: High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: insights into the hidden role of rhombohedral distortion degree publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002588 – volume: 8 start-page: 21642 year: 2020 end-page: 21648 ident: CR23 article-title: Bi–Zn codoping in GeTe synergistically enhances band convergence and phonon scattering for high thermoelectric performance publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08700A – volume: 14 year: 2023 ident: CR71 article-title: Compositing effects for high thermoelectric performance of Cu2Se-based materials publication-title: Nat. Commun. doi: 10.1038/s41467-023-38054-y – volume: 11 start-page: 2102012 year: 2021 ident: CR17 article-title: Boron strengthened GeTe-Based alloys for robust thermoelectric devices with high output power density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102012 – ident: CR38 – volume: 27 start-page: 7171 year: 2015 end-page: 7178 ident: CR21 article-title: High thermoelectric performance and enhanced mechanical stability of -type Ge Sb Te publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03434 – volume: 20 start-page: 1378 year: 2021 end-page: 1384 ident: CR11 article-title: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 8 start-page: eadd7690 year: 2022 ident: CR41 article-title: Strain-induced van der Waals gaps in GeTe revealed by in situ nanobeam diffraction publication-title: Sci. Adv. doi: 10.1126/sciadv.add7690 – volume: 473 start-page: 66 year: 2011 end-page: 69 ident: CR8 article-title: Convergence of electronic bands for high performance bulk thermoelectrics publication-title: Nature doi: 10.1038/nature09996 – volume: 549 start-page: 247 year: 2017 end-page: 251 ident: CR33 article-title: Superparamagnetic enhancement of thermoelectric performance publication-title: Nature doi: 10.1038/nature23667 – volume: 71 start-page: 858 year: 1988 end-page: 863 ident: CR39 article-title: Determinations of residual thermal stresses in a SiC-Al2O3 composite using neutron diffraction publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1988.tb07536.x – volume: 9 start-page: e343 year: 2017 end-page: e343 ident: CR27 article-title: Resonant level-induced high thermoelectric response in indium-doped GeTe publication-title: NPG Asia Mater. doi: 10.1038/am.2016.203 – volume: 115 start-page: 5332 year: 2018 end-page: 5337 ident: CR58 article-title: Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802020115 – volume: 3 start-page: 2565 year: 2019 end-page: 2580 ident: CR74 article-title: Realization of high thermoelectric figure of merit in GeTe by complementary co-doping of Bi and In publication-title: Joule doi: 10.1016/j.joule.2019.08.017 – volume: 357 year: 2017 ident: CR1 article-title: Advances in thermoelectric materials research: Looking back and moving forward publication-title: Science doi: 10.1126/science.aak9997 – volume: 12 year: 2021 ident: CR7 article-title: Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor publication-title: Nat. Commun. doi: 10.1038/s41467-021-25722-0 – volume: 8 start-page: 1193 year: 2020 end-page: 1204 ident: CR24 article-title: Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10436D – volume: 5 start-page: 333 year: 2022 ident: 50175_CR3 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00776-0 – volume: 23 start-page: 4317 year: 2013 ident: 50175_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300146 – volume: 8 start-page: 1193 year: 2020 ident: 50175_CR24 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10436D – volume: 10 start-page: 2002588 year: 2020 ident: 50175_CR59 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002588 – volume: 101 start-page: 213902 year: 2012 ident: 50175_CR72 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4768297 – volume: 10 start-page: 2000757 year: 2020 ident: 50175_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000757 – volume: 8 start-page: 1801837 year: 2018 ident: 50175_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801837 – volume: 13 start-page: 1856 year: 2020 ident: 50175_CR54 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01004A – volume: 10 start-page: 1928 year: 2017 ident: 50175_CR45 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01737E – volume: 2 start-page: 976 year: 2018 ident: 50175_CR42 publication-title: Joule doi: 10.1016/j.joule.2018.02.016 – volume: 141 start-page: 1742 year: 2019 ident: 50175_CR75 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12624 – volume: 9 start-page: e343 year: 2017 ident: 50175_CR27 publication-title: NPG Asia Mater. doi: 10.1038/am.2016.203 – volume: 4 start-page: 1700341 year: 2017 ident: 50175_CR77 publication-title: Adv. Sci. doi: 10.1002/advs.201700341 – volume: 41 start-page: 433 year: 2011 ident: 50175_CR47 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-062910-100453 – volume: 33 start-page: 2008773 year: 2021 ident: 50175_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.202008773 – volume: 31 start-page: 1807071 year: 2019 ident: 50175_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201807071 – volume: 11 start-page: 2102012 year: 2021 ident: 50175_CR17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102012 – volume: 29 start-page: 1605884 year: 2017 ident: 50175_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201605884 – volume: 31 start-page: 2101214 year: 2021 ident: 50175_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101214 – volume: 252 start-page: 118926 year: 2023 ident: 50175_CR51 publication-title: Acta Mater. doi: 10.1016/j.actamat.2023.118926 – volume: 20 start-page: 1378 year: 2021 ident: 50175_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 473 start-page: 66 year: 2011 ident: 50175_CR8 publication-title: Nature doi: 10.1038/nature09996 – volume: 5 start-page: 5510 year: 2012 ident: 50175_CR30 publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02612G – volume: 4 start-page: 2030 year: 2020 ident: 50175_CR60 publication-title: Joule doi: 10.1016/j.joule.2020.07.021 – volume: 267 start-page: 54 year: 1998 ident: 50175_CR36 publication-title: J. Alloy. Compd. doi: 10.1016/S0925-8388(97)00545-8 – volume: 3 start-page: 719 year: 2019 ident: 50175_CR68 publication-title: Joule doi: 10.1016/j.joule.2019.01.001 – volume: 590 start-page: 262 year: 2021 ident: 50175_CR34 publication-title: Nature doi: 10.1038/s41586-021-03246-3 – volume: 27 start-page: 100820 year: 2022 ident: 50175_CR62 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100820 – volume: 13 start-page: 8347 year: 2019 ident: 50175_CR67 publication-title: ACS Nano doi: 10.1021/acsnano.9b03805 – volume: 15 start-page: 2039 year: 2022 ident: 50175_CR10 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00119E – volume: 549 start-page: 247 year: 2017 ident: 50175_CR33 publication-title: Nature doi: 10.1038/nature23667 – ident: 50175_CR29 doi: 10.1002/adfm.202307864 – ident: 50175_CR32 doi: 10.1002/aenm.202303942 – volume: 12 year: 2021 ident: 50175_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25722-0 – volume: 27 start-page: 7171 year: 2015 ident: 50175_CR21 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03434 – volume: 6 start-page: 2916 year: 2013 ident: 50175_CR69 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41859f – volume: 357 year: 2017 ident: 50175_CR1 publication-title: Science doi: 10.1126/science.aak9997 – ident: 50175_CR38 – volume: 4 start-page: 986 year: 2020 ident: 50175_CR18 publication-title: Joule doi: 10.1016/j.joule.2020.03.004 – volume: 14 year: 2023 ident: 50175_CR71 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38054-y – volume: 13 start-page: 2203361 year: 2023 ident: 50175_CR76 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203361 – volume: 97 start-page: 1 year: 2015 ident: 50175_CR31 publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2015.08.001 – volume: 6 start-page: 63 year: 2019 ident: 50175_CR28 publication-title: Inorg. Chem. Front. doi: 10.1039/C8QI00703A – volume: 3 start-page: 1276 year: 2019 ident: 50175_CR64 publication-title: Joule doi: 10.1016/j.joule.2019.02.008 – ident: 50175_CR57 doi: 10.1002/adma.202102575 – volume: 136 start-page: 11412 year: 2014 ident: 50175_CR61 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504896a – volume: 8 start-page: 11370 year: 2020 ident: 50175_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02758H – volume: 68 year: 2020 ident: 50175_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104347 – volume: 163–164 start-page: 67 year: 2003 ident: 50175_CR49 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00593-5 – volume: 9 start-page: 100096 year: 2019 ident: 50175_CR55 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100096 – volume: 140 start-page: 15535 year: 2018 ident: 50175_CR65 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10448 – volume: 30 start-page: 1705942 year: 2018 ident: 50175_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201705942 – volume: 120 start-page: 1149 year: 1960 ident: 50175_CR50 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.1149 – volume: 14 year: 2023 ident: 50175_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43228-9 – volume: 66 start-page: 137 year: 2023 ident: 50175_CR5 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.04.021 – volume: 377 start-page: 208 year: 2022 ident: 50175_CR52 publication-title: Science doi: 10.1126/science.abq5815 – volume: 8 start-page: 21642 year: 2020 ident: 50175_CR23 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08700A – volume: 6 start-page: 944 year: 2019 ident: 50175_CR56 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz052 – volume: 431 start-page: 299 year: 1977 ident: 50175_CR37 publication-title: Z. anorg. allgem. Chem. doi: 10.1002/zaac.19774310134 – volume: 9 start-page: e353 year: 2017 ident: 50175_CR20 publication-title: NPG Asia Mater. doi: 10.1038/am.2017.8 – volume: 7 year: 2016 ident: 50175_CR66 publication-title: Nat. Commun. doi: 10.1038/ncomms10766 – volume: 48 start-page: 6 year: 1977 ident: 50175_CR44 publication-title: J. Appl. Phys. doi: 10.1063/1.323539 – volume: 16 start-page: 1906921 year: 2020 ident: 50175_CR26 publication-title: Small doi: 10.1002/smll.201906921 – volume: 76 start-page: 52 year: 1988 ident: 50175_CR35 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(88)90192-2 – volume: 81 start-page: 175 year: 1986 ident: 50175_CR40 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(86)90261-2 – volume: 3 start-page: 1 year: 2018 ident: 50175_CR2 publication-title: npj Quant. Mater. doi: 10.1038/s41535-018-0127-y – volume: 71 start-page: 858 year: 1988 ident: 50175_CR39 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1988.tb07536.x – volume: 33 start-page: 2214771 year: 2023 ident: 50175_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214771 – volume: 8 start-page: eadd7690 year: 2022 ident: 50175_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.add7690 – volume: 3 start-page: 2565 year: 2019 ident: 50175_CR74 publication-title: Joule doi: 10.1016/j.joule.2019.08.017 – volume: 115 start-page: 5332 year: 2018 ident: 50175_CR58 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802020115 – volume: 17 year: 2021 ident: 50175_CR73 publication-title: Small doi: 10.1002/smll.202100915 – volume: 63 start-page: 30 year: 2014 ident: 50175_CR70 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.09.039 – volume: 441 start-page: 136131 year: 2022 ident: 50175_CR63 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136131 – volume: 29 start-page: 605 year: 2017 ident: 50175_CR22 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04066 – volume: 348 start-page: 109 year: 2015 ident: 50175_CR12 publication-title: Science doi: 10.1126/science.aaa4166 – volume: 133 start-page: A1143 year: 1964 ident: 50175_CR46 publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A1143 |
SSID | ssj0000391844 |
Score | 2.5506117 |
Snippet | GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for... Abstract GeTe is a promising p-type material with increasingly enhanced thermoelectric properties reported in recent years, demonstrating its superiority for... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5915 |
SubjectTerms | 119/118 147/135 147/137 147/143 639/301/119/1000 639/301/299/2736 Bismuth Boron Dislocation density Electrical resistivity Figure of merit Heat conductivity Heat transfer Humanities and Social Sciences multidisciplinary Particulate composites Power factor Science Science (multidisciplinary) Seebeck effect Thermal conductivity Thermal mismatch Thermoelectric materials Transport properties |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA9jIOxF_JhanSODvWlY2pyk6aPK5hjo0wZ7EEKSnmpBe8fuvaL_vSdp73V3fr34UmiTwun5TnPyO4wd1howkOcXTbSNAI9eeGMsXVSsDZAWmHQa-d17c3oBZ5f68karr1QTNsIDj4w7ClEqqGUouxigC5WnRZXuGiy9N9bY7H0p5t1YTGUfrBpausB0SkYqezSH7BMoJAlNWqiF2YhEGbD_d1nmr8WSt3ZMcyA6ucfuThkkfzVSfp9t4fCA3Rl7Sn5_yD4cf5sqVWhS139cXiOfdTxtzCx4qpzEr9jyfuAhYReItk9Q4XN69BbPUaSg1vKUFH6ZjR1y-shT2Xmq7cL5Lrs4OT5_cyqmFgoiaigXovKRGEUMtJ2s0WqK921rLOUgGCXKylsTsFYYMuyL8nXQaFvToKmCAaPUI7Y9zAZ8wjgo40sjUdsmggrRSqRUq2lakHTT6YKVK3a6OOGLpzYXn13e51bWjSJwJAKXReBMwV6s37ka0TX-Ovt1ktJ6ZkLGzg9IX9ykL-5f-lKwvZWM3WSuc0eOjqKyVmALdrAeJkNLuyd-wNlymkPJL9CXPh5VYk2JSv-Dq7oumN1Qlg1SN0eG_lMG86Z8F4jTULCXK736SdefefH0f_DiGdupkkEknFDYY9uL6yU-pxxrEfazOf0AvTchFw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_MieDL8NvqlAq-abRtPpo-iKhsDmE-7cIehJCkp7MwW3c_ZPvvPUnbK1eveym0TSE5Hzm_NCe_A_CylAIdzfys8rpiwqJlVilNF-5LJcgKVDiNfPxVHc3El1N5ugNTuaNRgIutS7tQT2o2P39zeXH1nhz-3XBkXL9diOjuFG2YJAOTTN2AmxSZyuCoxyPcjzMzr2hBI8azM9s_3YhPkcZ_G_b8N4Xyr33UGJ4O78DeiCvTD4Mh3IUd7O7BraHS5NV9-HZwOeavUKOmPVvNMe2bNGzXLNOQT4m_sE7bLnWB0YDVbSAQX9Cjz3iCLIS6Og1Q8Uc_1M1pfRqS0UPGFy4ewOzw4OTTERsLKzAvRb5khfW5tVyUuslK1JJQQF0rTcgEfYZZYbVyWHJ0kQyG29JJ1LWqUBVOCcX5Q9jt-g4fQyq4srnKUOrKC-68zpAAWFXVIqObRiaQT-I0fmQdD8Uvzk3c_ebaDCowpAITVWBUAq_W3_wcODeubf0xaGndMvBlxwf9_MyM7mecz2i4mcsb70TjCktLc9lUSGJQWukigf1Jx2ayQUPTH8VqyYVO4MX6Nblf2FOxHfarsQ1BYkEjfTSYxLonPPwlLsoyAb1hLBtd3XzTtd8jxTehYEGSFgm8nuzqT7_-L4sn1w_jKdwugqkHXlCxD7vL-QqfEaZauufRUX4Dud0bdA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwEA9zIvgi_rY6pYJvGkybS5o-6pfNIejTBnsQQpJeZ2G2su93Y_73XtIf8tUp-FJoc4Hk7pK75i6fY-xVpQA97fy8Dqbm4NBxp7WhhwyVBtICHW8jf_qsD4_h44k62WHlfBcmJe0nSMu0Tc_ZYW_XkJY0WRSuSIkU1zfYzQjdHrV6pVfLuUpEPDcA0_0YIc01XbdsUILqv86__DNN8rdYaTJBB3fZncl3zN-No73HdrC_z26N1SR_PGBf9q-mHBUiartTml0-tHkMyWzymDOJl9jkXZ_7iFrAmy6ChK_p0wc8Qh7NWZNHd_DbMNbG6UIeE85jVheuH7Ljg_2j1SGfiifwoKDY8NKFwjkJlWlFhUaRpW8abcj7wCBQlM5oj5VEnwBfpKu8QtPoGnXpNWgpH7HdfujxCctBaldogcrUAaQPRiA5WXXdgKCXVmWsmNlpw4QsHgtcnNkU4ZbGjiKwJAKbRGB1xl4vfb6PuBr_pH4fpbRQRkzs9GE4P7WTjlgfBE1X-KINHlpfOvr9Vm2NxAZttCkztjfL2E4LdW1piyN7rCSYjL1cmmmJxbiJ63G4mGjI7QWa6eNRJZaRyHgSXFZVxsyWsmwNdbul774mGG_ydIE4DRl7M-vVr3H9nRdP_4_8GbtdRtWPWKCwx3Y35xf4nPyojX-RFs5PJrUWDA priority: 102 providerName: Springer Nature |
Title | Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites |
URI | https://link.springer.com/article/10.1038/s41467-024-50175-6 https://www.ncbi.nlm.nih.gov/pubmed/39003277 https://www.proquest.com/docview/3079905348 https://www.proquest.com/docview/3079956645 https://pubmed.ncbi.nlm.nih.gov/PMC11246464 https://doaj.org/article/bc03470b1fcb4fb2a1335f9e1aa68682 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUP9raJOtaH5aeRhqQl0DK2FvIwMJZ8bgOb3eVjbP_97mTFJfvoi4xlGSTd6e58d_4dY28zJcGi5Oe5MzmXJZS81NpgI1ymJXKBpr-RT8_0yYWczdU8ONxWIa1yKxO9oK5aRz7yQ-RFFJxKSPPh-junqlEUXQ0lNO6yfYIuo5SubJ71PhZCPzdShn9lEmEOV9JLBlRMXCEvKq539JGH7f-Xrfl3yuQfcVOvjqYP2YNgR8ajjvCP2B1oHrN7XWXJX0_Yl8nPkK-Cg-rF5WYJcVvHFJ5Zx5Q_CT-gihdNbAnBgFcLAgxfYdcxnAMn1VbFZBp-a7s6OQsXU_I5ZXjB6im7mE7Oxyc8FFLgTsnhmqelG5alkJmpkwyMQq1fVdqgJQIugSQtjbaQCbAe_EWUmVVgKp2DTq2WWohnbK9pG3jBYil0OdQJKJM7KawzCaDBleeVTPCmVhEbbrezcAFlnIpdfC18tFuYoiNBgSQoPAkKHbF3_TvXHcbGraOPiEr9SMLH9h3t8rIIx62wLsHlJnZYOytrm5b4Ka7qHHAbtNEmjdjBlsZFOLSr4obFIvamf4zHjWIoZQPtJoxBE1jiSp93LNHPRJBXOM2yiJkdZtmZ6u6TZnHlIb3R6pW40zJi77d8dTOv_-_Fy9uX8YrdT4nVCQdUHrC99XIDr9GGWtuBPyjYmunxgO2PRrPPM7weTc4-fsLesR4PvHcC21NpfgNVhR8I |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJuUAkGCE1jNJrbjHBDi0bKlj9NW2gOSsZ1JWYkmZbML9E_xG5nJq1oevfUSKYkj2TPfPOIZzzD2LJUCHGp-nnmdcWHBcquUxkviUyUQBYpOIx8cqvGR-DiV0zX2qz8LQ2mVvU5sFHVeedoj30IsouKUidCvT79x6hpF0dW-hUYLiz04-4G_bPWr3ffI3-dxvLM9eTfmXVcB7qUYLXhs_cjaRKS6iFLQEk1gniuNZhl8BFFstXKQJuCaSiiJTZ0EnasMVOyUULQBiir_ChreiCQqnabDng5VW9dCdGdzokRv1aLRRGgIuUTsS65W7F_TJuBfvu3fKZp_xGkb87dzk93o_NbwTQu0W2wNytvsatvJ8uwO-7T9s8uPwUHF7Hg5h7AqQgoHLULK14TvkIezMnRUMYHnMypQXuOjDzABTqY0D8kVPanavjwzH1KyO2WUQX2XHV0Kie-x9bIq4QELRaLsSEUgdeZF4ryOAB28LMtFhDeFDNioJ6fxXVVzaq7x1TTR9USblgUGWWAaFhgVsBfDN6dtTY8LR78lLg0jqR5386CaH5tOvI3zES43cqPCO1G42OKvvywyQDIorXQcsM2ex6ZTErU5h3TAng6vUbwpZmNLqJbdGHS5Ba70fguJYSYJ7ULHaRowvQKWlamuvilnX5oS4uhlC6S0CNjLHlfn8_o_LTYuXsYTdm08Odg3-7uHew_Z9ZhgTzVIxSZbX8yX8Aj9t4V73AhNyD5ftpT-BqkDVEc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELaqIhAXxE6gQJDgBFaTeM0BIaB9tBQqDq30DkjBdiblSZCUtwD9a_w6ZrK86rH01kukJI5kz3yzxDOeYeyxURI8an6eB5tz6cBxp7XFiwhGS0SBptPI7_f1zqF8O1bjNfZrOAtDaZWDTmwVddkE2iPfRCyi4lRC2s2qT4v4sDV6cfyNUwcpirQO7TQ6iOzByQ_8fZs9391CXj_JstH2wesd3ncY4EHJdM4zF1LnhDS2SgxYheawLLVFEw0hgSRzVnswAnxbFUU44xXYUuegM6-lps1QVP8XjFApyZgZm-X-DlVet1L253QSYTdnstVKaBS5QjlQXK_YwrZlwL_83L_TNf-I2bamcHSVXel92PhlB7prbA3q6-xi19Xy5Ab7uP2zz5XBQdXkaDGFuKliCg3NY8rdhO9QxpM69lQ9gZcTKlY-w0dv4AA4mdUyJrf0a9P16JmEmBLfKbsMZjfZ4bmQ-BZbr5sa7rBYCu1SnYCyeZDCB5sAOnt5XsoEbyoVsXQgZxH6CufUaONL0UbahS06FhTIgqJlQaEj9nT5zXFX3-PM0a-IS8uRVJu7fdBMj4pe1AsfElxu4tMqeFn5zKVCqCoHJIO22mYR2xh4XPQKY1acwjtij5avUdQpfuNqaBb9GHS_Ja70dgeJ5UwE7UhnxkTMroBlZaqrb-rJ57acOHrcEiktI_ZswNXpvP5Pi7tnL-Mhu4TyWbzb3d-7xy5nhHoqRyo32Pp8uoD76MrN_YNWZmL26byF9DeswVh9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exceptional+figure+of+merit+achieved+in+boron-dispersed+GeTe-based+thermoelectric+composites&rft.jtitle=Nature+communications&rft.au=Jiang%2C+Yilin&rft.au=Su%2C+Bin&rft.au=Yu%2C+Jincheng&rft.au=Han%2C+Zhanran&rft.date=2024-07-14&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5915&rft_id=info:doi/10.1038%2Fs41467-024-50175-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |