Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode

The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 4822 - 10
Main Authors Zhang, Sixie, Wang, Yunan, Li, Shuyu, Wang, Zhongfeng, Chen, Haocheng, Yi, Li, Chen, Xu, Yang, Qihao, Xu, Wenwen, Wang, Aiying, Lu, Zhiyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besides Cl − , Br − in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl − corrodes locally to form narrow-deep pits while Br − etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl − and the lower reaction energy of Br − in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br − causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl − corrosion, designing anti-Br − corrosion anodes is even more crucial for future application of seawater electrolysis. It is known that chloride anions cause severe anode corrosion during seawater electrolysis. Here we found that bromide in seawater is even more harmful to Ni-based anodes, causing the spalling of the catalyst layer and the formation of shallow-wide pits on the substrate, leading to performance degradation.
AbstractList The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl-) is usually more corrosive than simulated seawater (~0.5 M Cl-). Here we elucidate that besides Cl-, Br- in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl- corrodes locally to form narrow-deep pits while Br- etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl- and the lower reaction energy of Br- in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br- causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl- corrosion, designing anti-Br- corrosion anodes is even more crucial for future application of seawater electrolysis.The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl-) is usually more corrosive than simulated seawater (~0.5 M Cl-). Here we elucidate that besides Cl-, Br- in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl- corrodes locally to form narrow-deep pits while Br- etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl- and the lower reaction energy of Br- in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br- causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl- corrosion, designing anti-Br- corrosion anodes is even more crucial for future application of seawater electrolysis.
The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl−) is usually more corrosive than simulated seawater (~0.5 M Cl−). Here we elucidate that besides Cl−, Br− in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl− corrodes locally to form narrow-deep pits while Br− etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl− and the lower reaction energy of Br− in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br− causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl− corrosion, designing anti-Br− corrosion anodes is even more crucial for future application of seawater electrolysis.It is known that chloride anions cause severe anode corrosion during seawater electrolysis. Here we found that bromide in seawater is even more harmful to Ni-based anodes, causing the spalling of the catalyst layer and the formation of shallow-wide pits on the substrate, leading to performance degradation.
The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besides Cl − , Br − in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl − corrodes locally to form narrow-deep pits while Br − etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl − and the lower reaction energy of Br − in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br − causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl − corrosion, designing anti-Br − corrosion anodes is even more crucial for future application of seawater electrolysis.
The corrosive anions (e.g., Cl ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl ) is usually more corrosive than simulated seawater (~0.5 M Cl ). Here we elucidate that besides Cl , Br in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl corrodes locally to form narrow-deep pits while Br etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl and the lower reaction energy of Br in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl corrosion, designing anti-Br corrosion anodes is even more crucial for future application of seawater electrolysis.
The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besides Cl − , Br − in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl − corrodes locally to form narrow-deep pits while Br − etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl − and the lower reaction energy of Br − in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br − causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl − corrosion, designing anti-Br − corrosion anodes is even more crucial for future application of seawater electrolysis. It is known that chloride anions cause severe anode corrosion during seawater electrolysis. Here we found that bromide in seawater is even more harmful to Ni-based anodes, causing the spalling of the catalyst layer and the formation of shallow-wide pits on the substrate, leading to performance degradation.
Abstract The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl−) is usually more corrosive than simulated seawater (~0.5 M Cl−). Here we elucidate that besides Cl−, Br− in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl− corrodes locally to form narrow-deep pits while Br− etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl− and the lower reaction energy of Br− in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br− causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl− corrosion, designing anti-Br− corrosion anodes is even more crucial for future application of seawater electrolysis.
ArticleNumber 4822
Author Wang, Zhongfeng
Lu, Zhiyi
Yang, Qihao
Li, Shuyu
Chen, Haocheng
Xu, Wenwen
Yi, Li
Wang, Aiying
Chen, Xu
Zhang, Sixie
Wang, Yunan
Author_xml – sequence: 1
  givenname: Sixie
  orcidid: 0009-0003-4683-7404
  surname: Zhang
  fullname: Zhang, Sixie
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yunan
  surname: Wang
  fullname: Wang, Yunan
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Shuyu
  surname: Li
  fullname: Li, Shuyu
  organization: University of Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhongfeng
  surname: Wang
  fullname: Wang, Zhongfeng
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Haocheng
  surname: Chen
  fullname: Chen, Haocheng
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH
– sequence: 6
  givenname: Li
  surname: Yi
  fullname: Yi, Li
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH
– sequence: 7
  givenname: Xu
  orcidid: 0000-0002-9870-7287
  surname: Chen
  fullname: Chen, Xu
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH
– sequence: 8
  givenname: Qihao
  orcidid: 0000-0002-0933-4483
  surname: Yang
  fullname: Yang, Qihao
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH
– sequence: 9
  givenname: Wenwen
  orcidid: 0000-0001-7588-5016
  surname: Xu
  fullname: Xu, Wenwen
  email: xuwenwen@nimte.ac.cn
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH
– sequence: 10
  givenname: Aiying
  orcidid: 0000-0003-2938-5437
  surname: Wang
  fullname: Wang, Aiying
  organization: University of Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 11
  givenname: Zhiyi
  orcidid: 0000-0002-2117-4101
  surname: Lu
  fullname: Lu, Zhiyi
  email: luzhiyi@nimte.ac.cn
  organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37563114$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_aB_gAOKxIVLwF9xYi4IrShUquACZ2viTHa98trFdkD773E3pbQ91JexPO-9Gc-80-rIB49V9YqSd5Tw_n0SVMiuIYw3grSSN-pZdcKIoA3tGD-6dz-uzlPaknK4or0QL6pj3hUGpeKk2q6CNxi99es6b7BOGQbrbN7XYaoTwh_IGGt0aHIMbp9s-lBDbUKMIdng6x2aDXibdoU5jwfWBpwdsS7Jb7YZIOFYgw8jvqyeT-ASnt_Gs-rnxecfq6_N1fcvl6tPV41pBc0N41M3UYlEtIqVYAZCDDH9xJGMA0glhg4l7xSME1UooR2NlEINRkg2KeRn1eWiOwbY6utodxD3OoDVh4cQ1xpitsahJigFTtIAAxCqyBnOegaCGj52remK1sdF63oedjga9DmCeyD6MOPtRq_Db03L9FvO2qLw9lYhhl8zpqx3Nhl0DjyGOWnWt4QTqagq0DePoNswR19mVVCil7SnnSio1_dbuuvl304LgC0AU3aUIk53EEr0jXf04h1dvKMP3tE3tftHJGMz5LLi8i3rnqbyhZpKHb_G-L_tJ1h_AYt02RE
CitedBy_id crossref_primary_10_1039_D4GC04930F
crossref_primary_10_1002_adma_202411302
crossref_primary_10_1016_j_nanoen_2025_110714
crossref_primary_10_1002_adma_202308647
crossref_primary_10_1039_D3MA00685A
crossref_primary_10_1002_ange_202316522
crossref_primary_10_1016_j_apcatb_2024_123875
crossref_primary_10_1016_j_mtener_2024_101784
crossref_primary_10_1002_adma_202306062
crossref_primary_10_1039_D4NR01178C
crossref_primary_10_1039_D4TA03393K
crossref_primary_10_1016_j_seppur_2024_126641
crossref_primary_10_1016_j_gee_2024_04_003
crossref_primary_10_1016_j_coelec_2024_101560
crossref_primary_10_1016_j_nanoen_2024_109921
crossref_primary_10_1002_ange_202412087
crossref_primary_10_1002_adma_202309211
crossref_primary_10_1016_j_jcis_2025_137354
crossref_primary_10_1039_D4TC05075D
crossref_primary_10_1039_D4EE01693A
crossref_primary_10_1007_s40820_024_01639_3
crossref_primary_10_1016_j_jmst_2024_12_069
crossref_primary_10_1016_j_checat_2024_101169
crossref_primary_10_1021_acs_inorgchem_4c00392
crossref_primary_10_3390_catal14100691
crossref_primary_10_1038_s41467_024_50519_2
crossref_primary_10_1038_s41467_024_47121_x
crossref_primary_10_1002_aenm_202401449
crossref_primary_10_1016_j_ijhydene_2024_09_457
crossref_primary_10_1002_anie_202412087
crossref_primary_10_1002_cctc_202301438
crossref_primary_10_1038_s41467_024_49195_z
crossref_primary_10_1039_D3CS00822C
crossref_primary_10_1038_s41586_025_08610_1
crossref_primary_10_1002_adsu_202400689
crossref_primary_10_1002_adma_202311322
crossref_primary_10_1039_D3CS00717K
crossref_primary_10_1039_D5CC00844A
crossref_primary_10_1002_adfm_202418940
crossref_primary_10_1016_j_jechem_2024_07_006
crossref_primary_10_1002_adfm_202407586
crossref_primary_10_1002_adfm_202407781
crossref_primary_10_1016_j_apcatb_2024_124028
crossref_primary_10_1016_j_cej_2025_160362
crossref_primary_10_1016_j_apcatb_2024_124269
crossref_primary_10_1039_D4CC04333B
crossref_primary_10_1038_s41467_024_54754_5
crossref_primary_10_1016_j_jnoncrysol_2024_123069
crossref_primary_10_1021_acsaem_4c00386
crossref_primary_10_1360_TB_2024_0500
crossref_primary_10_20517_energymater_2024_220
crossref_primary_10_1039_D4CC05143B
crossref_primary_10_1007_s40820_025_01653_z
crossref_primary_10_1016_j_jmst_2024_12_009
crossref_primary_10_1016_j_mtcata_2025_100089
crossref_primary_10_1021_acsenergylett_4c03209
crossref_primary_10_3390_app14167189
crossref_primary_10_1002_aenm_202402883
crossref_primary_10_1002_adfm_202419871
crossref_primary_10_1016_j_jcrysgro_2024_127928
crossref_primary_10_1002_adfm_202417211
crossref_primary_10_1016_j_chempr_2024_05_018
crossref_primary_10_1016_j_nanoen_2025_110662
crossref_primary_10_1002_anie_202316522
crossref_primary_10_1002_smll_202405784
crossref_primary_10_1038_s41467_025_56519_0
crossref_primary_10_1016_j_cej_2024_153187
crossref_primary_10_1016_j_gee_2024_02_001
crossref_primary_10_1039_D4CC06777K
crossref_primary_10_1039_D4TA06515H
crossref_primary_10_1002_aenm_202400975
crossref_primary_10_1016_j_jmst_2024_10_050
crossref_primary_10_1021_acsnano_3c08450
crossref_primary_10_1016_j_apmate_2024_100227
crossref_primary_10_1039_D4TA09017A
crossref_primary_10_3390_nano14030239
Cites_doi 10.1016/0010-938X(77)90002-6
10.1073/pnas.1900556116
10.1038/s41467-022-32443-5
10.1103/PhysRevB.46.6671
10.1038/2161299a0
10.1149/1.2408246
10.1016/j.corsci.2013.05.018
10.1016/j.corsci.2022.110175
10.1016/j.corsci.2014.10.006
10.1002/adma.202210057
10.1016/0010-938X(89)90036-X
10.1179/147842204225016859
10.1021/ac3022955
10.1016/0927-0256(96)00008-0
10.1039/D0EE00921K
10.1016/S0010-938X(99)00056-6
10.1021/acs.chemrev.5b00389
10.1016/0010-938X(88)90009-1
10.34133/2020/2872141
10.1149/2.1151412jes
10.1016/j.apcatb.2021.120862
10.1038/s41467-019-13092-7
10.1002/adma.202204021
10.1016/j.apcatb.2021.120256
10.1016/j.corsci.2010.04.012
10.1002/adfm.202006484
10.1038/s41467-018-04942-x
10.1002/aenm.202102353
10.1021/acsami.7b08325
10.1073/pnas.2202382119
10.1007/s100080100219
10.1016/S0010-938X(67)80023-4
10.1016/j.electacta.2005.02.128
10.1016/j.corsci.2007.03.045
10.1038/s41586-022-05379-5
10.1016/j.corsci.2008.06.047
10.1063/1.1329672
10.1021/jacs.3c00176
10.1038/s41560-020-0550-8
10.1002/anie.202110355
10.1021/acs.chemrev.6b00067
10.1002/adfm.202200951
10.1021/jacs.2c00242
10.1149/1.1838615
10.1149/1.1393364
10.1021/acscatal.9b04231
10.1039/D1EE01395E
10.1021/acs.chemrev.1c00876
10.1002/smll.202203852
10.1002/anie.202210753
10.1515/corrrev-2019-0061
10.1149/1.2428048
10.1149/1.2127401
10.1021/acsenergylett.9b00220
10.1103/PhysRevB.50.17953
10.1002/adfm.202102772
10.1002/9781119363682
10.1002/smll.202207310
10.31399/asm.hb.v13a.9781627081825
ContentType Journal Article
Copyright The Author(s) 2023
2023. Springer Nature Limited.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. Springer Nature Limited.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-40563-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef
PubMed



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_0e64ef6ca2aa49f19c3282a41c3d75c7
PMC10415325
37563114
10_1038_s41467_023_40563_9
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Project (2021YFA1502200) Ningbo Yongjiang Talent Introduction Programme (2021A-036-B) Bellwethers Project of Zhejiang Research and Development Plan (2022C01158)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-23f7f16e045926e0cb00c0c8f3e0dba694b7e6379adf19e6a5dc6649bc462f9e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:37 EDT 2025
Thu Aug 21 18:41:01 EDT 2025
Fri Jul 11 11:02:50 EDT 2025
Wed Aug 13 04:19:11 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Tue Jul 01 02:10:30 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. Springer Nature Limited.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-23f7f16e045926e0cb00c0c8f3e0dba694b7e6379adf19e6a5dc6649bc462f9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0933-4483
0000-0002-9870-7287
0009-0003-4683-7404
0000-0001-7588-5016
0000-0003-2938-5437
0000-0002-2117-4101
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40563-9
PMID 37563114
PQID 2848618174
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_0e64ef6ca2aa49f19c3282a41c3d75c7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10415325
proquest_miscellaneous_2850306919
proquest_journals_2848618174
pubmed_primary_37563114
crossref_primary_10_1038_s41467_023_40563_9
crossref_citationtrail_10_1038_s41467_023_40563_9
springer_journals_10_1038_s41467_023_40563_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-10
PublicationDateYYYYMMDD 2023-08-10
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Liu (CR18) 2022; 302
Yu (CR10) 2020; 13
Bird, Pearson, Brook (CR31) 1988; 28
Yan (CR47) 2010; 52
Pistorius, Burstein (CR29) 1997; 341
Liu (CR32) 2022; 199
Cao (CR36) 2013; 75
Zhang (CR53) 2018; 9
Frankel (CR50) 1998; 145
CR34
Kuang (CR20) 2019; 116
Marcus, Maurice, Strehblow (CR54) 2008; 50
Perdew (CR61) 1992; 46
Trinh, Ducharme, Tefashe, Kish, Mauzeroll (CR58) 2012; 84
Zhang (CR19) 2022; 18
Tong (CR1) 2020; 5
Simões, Battocchi, Tallman, Bierwagen (CR46) 2007; 49
Li (CR22) 2020; 2020
Kaneko, Isaacs (CR27) 2000; 42
Blöchl (CR60) 1994; 50
Liu (CR8) 2022; 61
Basame, White (CR35) 2000; 147
Ma (CR21) 2021; 60
CR49
Soltis (CR51) 2015; 90
Schmuki (CR56) 2014; 6
Yu (CR13) 2019; 10
Keddam, Mottos, Takenouti (CR39) 1981; 128
CR40
Polcari, Dauphin-Ducharme, Mauzeroll (CR45) 2016; 116
You (CR7) 2022; 144
Dresp, Dionigi, Klingenhof, Strasser (CR24) 2019; 4
Jorcin, Orazem, Pébère, Tribollet (CR44) 2006; 51
Strehblow, Titze (CR33) 1977; 17
Wilde, Williams (CR30) 1971; 118
Jüttner, Lorenz, Paatsch (CR41) 1989; 29
Kolotyrkin (CR52) 1961; 108
Kresse, Furthmüller (CR59) 1996; 6
Vivier, Orazem (CR42) 2022; 122
Wang (CR14) 2022; 34
Hoar, Jacob (CR26) 1967; 216
Chen (CR37) 2021; 14
Amor, Sutter, Takenouti, Orazem, Tribollet (CR43) 2014; 161
Wen (CR11) 2021; 11
Wang (CR6) 2023; 35
CR15
Song, Yoon, Ju, Lee, Kim (CR23) 2020; 10
Guo (CR3) 2023; 8
Xie (CR2) 2022; 612
Hoar (CR55) 1967; 7
Tan (CR12) 2022; 32
Qiu, Li, Zheng, Zhao, Wang (CR48) 2017; 9
Wu (CR16) 2021; 294
Karlsson, Cornell (CR5) 2016; 116
Wu (CR17) 2021; 31
CR25
Henkelman, Uberuaga, Jónsson (CR62) 2000; 113
Keane, Veroneau, Hartnett, Nocera (CR4) 2023; 145
Yu (CR9) 2022; 119
Burstein, Liu, Souto, Vines (CR57) 2013; 39
Kappes (CR28) 2020; 38
Qi (CR38) 2022; 13
SB Basame (40563_CR35) 2000; 147
P Li (40563_CR22) 2020; 2020
HEH Bird (40563_CR31) 1988; 28
40563_CR25
B Zhang (40563_CR19) 2022; 18
N Wang (40563_CR6) 2023; 35
PE Blöchl (40563_CR60) 1994; 50
JP Perdew (40563_CR61) 1992; 46
J Liu (40563_CR18) 2022; 302
TP Keane (40563_CR4) 2023; 145
F Cao (40563_CR36) 2013; 75
M Keddam (40563_CR39) 1981; 128
L Tan (40563_CR12) 2022; 32
GT Burstein (40563_CR57) 2013; 39
Y Liu (40563_CR32) 2022; 199
YB Amor (40563_CR43) 2014; 161
H Xie (40563_CR2) 2022; 612
40563_CR34
G Henkelman (40563_CR62) 2000; 113
MA Kappes (40563_CR28) 2020; 38
W Chen (40563_CR37) 2021; 14
V Vivier (40563_CR42) 2022; 122
J Jorcin (40563_CR44) 2006; 51
H You (40563_CR7) 2022; 144
W Tong (40563_CR1) 2020; 5
GS Frankel (40563_CR50) 1998; 145
S Dresp (40563_CR24) 2019; 4
40563_CR40
TP Hoar (40563_CR26) 1967; 216
D Polcari (40563_CR45) 2016; 116
AM Simões (40563_CR46) 2007; 49
RK Karlsson (40563_CR5) 2016; 116
40563_CR49
L Yu (40563_CR9) 2022; 119
T Ma (40563_CR21) 2021; 60
JM Kolotyrkin (40563_CR52) 1961; 108
TP Hoar (40563_CR55) 1967; 7
Y Qi (40563_CR38) 2022; 13
Q Wen (40563_CR11) 2021; 11
PC Pistorius (40563_CR29) 1997; 341
P Schmuki (40563_CR56) 2014; 6
K Jüttner (40563_CR41) 1989; 29
S Qiu (40563_CR48) 2017; 9
B Zhang (40563_CR53) 2018; 9
M Kaneko (40563_CR27) 2000; 42
HH Strehblow (40563_CR33) 1977; 17
JH Guo (40563_CR3) 2023; 8
40563_CR15
BE Wilde (40563_CR30) 1971; 118
L Yu (40563_CR13) 2019; 10
M Yan (40563_CR47) 2010; 52
L Yu (40563_CR10) 2020; 13
P Marcus (40563_CR54) 2008; 50
G Kresse (40563_CR59) 1996; 6
L Wu (40563_CR16) 2021; 294
D Trinh (40563_CR58) 2012; 84
J Liu (40563_CR8) 2022; 61
Y Kuang (40563_CR20) 2019; 116
HJ Song (40563_CR23) 2020; 10
J Soltis (40563_CR51) 2015; 90
L Wu (40563_CR17) 2021; 31
X Wang (40563_CR14) 2022; 34
References_xml – volume: 17
  start-page: 461
  year: 1977
  end-page: 472
  ident: CR33
  article-title: Pitting potentials and inhibition potentials of iron and nickel for different aggressive and inhibiting anions
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(77)90002-6
– volume: 116
  start-page: 6624
  year: 2019
  end-page: 6629
  ident: CR20
  article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900556116
– volume: 13
  year: 2022
  ident: CR38
  article-title: Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32443-5
– ident: CR49
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: CR61
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 216
  start-page: 1299
  year: 1967
  end-page: 1301
  ident: CR26
  article-title: Breakdown of passivity of stainless steel by halide ions
  publication-title: Nature
  doi: 10.1038/2161299a0
– volume: 118
  start-page: 1057
  year: 1971
  ident: CR30
  article-title: The relevance of accelerated electrochemical pitting tests to the long-term pitting and crevice corrosion behavior of stainless steels in marine environments
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2408246
– volume: 75
  start-page: 78
  year: 2013
  end-page: 99
  ident: CR36
  article-title: Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.05.018
– volume: 199
  start-page: 110175
  year: 2022
  ident: CR32
  article-title: Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110175
– volume: 90
  start-page: 5
  year: 2015
  end-page: 22
  ident: CR51
  article-title: Passivity breakdown, pit initiation and propagation of pits in metallic materials - review
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.10.006
– volume: 35
  start-page: 2210057
  year: 2023
  ident: CR6
  article-title: Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210057
– volume: 29
  start-page: 279
  year: 1989
  end-page: 288
  ident: CR41
  article-title: The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(89)90036-X
– volume: 39
  start-page: 25
  year: 2013
  end-page: 30
  ident: CR57
  article-title: Origins of pitting corrosion
  publication-title: Corros. Eng. Sci. Techn.
  doi: 10.1179/147842204225016859
– volume: 84
  start-page: 9899
  year: 2012
  end-page: 9906
  ident: CR58
  article-title: Influence of edge effects on local corrosion rate of magnesium alloy/mild steel galvanic couple
  publication-title: Anal. Chem.
  doi: 10.1021/ac3022955
– ident: CR25
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR59
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 13
  start-page: 3439
  year: 2020
  end-page: 3446
  ident: CR10
  article-title: Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00921K
– volume: 42
  start-page: 67
  year: 2000
  end-page: 78
  ident: CR27
  article-title: Pitting of stainless steel in bromide, chloride and bromide/chloride solutions
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(99)00056-6
– volume: 116
  start-page: 2982
  year: 2016
  end-page: 3028
  ident: CR5
  article-title: Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00389
– volume: 28
  start-page: 81
  year: 1988
  end-page: 86
  ident: CR31
  article-title: The breakdown of passive films on iron
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(88)90009-1
– volume: 2020
  start-page: 2872141
  year: 2020
  ident: CR22
  article-title: Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production
  publication-title: Research
  doi: 10.34133/2020/2872141
– ident: CR15
– volume: 161
  start-page: C573
  year: 2014
  end-page: C579
  ident: CR43
  article-title: Interpretation of electrochemical impedance for corrosion of a coated silver film in terms of a pore-in-pore model
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1151412jes
– volume: 302
  start-page: 120862
  year: 2022
  ident: CR18
  article-title: Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120862
– volume: 10
  year: 2019
  ident: CR13
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 34
  start-page: 2204021
  year: 2022
  ident: CR14
  article-title: Asymmetric Co-N P trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204021
– volume: 294
  start-page: 120256
  year: 2021
  ident: CR16
  article-title: Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120256
– volume: 52
  start-page: 2636
  year: 2010
  end-page: 2642
  ident: CR47
  article-title: SVET method for characterizing anti-corrosion performance of metal-rich coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.04.012
– volume: 31
  start-page: 2006484
  year: 2021
  ident: CR17
  article-title: Heterogeneous bimetallic phosphide Ni P-Fe P as an efficient bifunctional catalyst for water/seawater splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006484
– volume: 9
  year: 2018
  ident: CR53
  article-title: Unmasking chloride attack on the passive film of metals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04942-x
– volume: 11
  start-page: 2102353
  year: 2021
  ident: CR11
  article-title: Schottky heterojunction nanosheet array achieving high‐current‐density oxygen evolution for industrial water splitting electrolyzers
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102353
– volume: 9
  start-page: 34294
  year: 2017
  end-page: 34304
  ident: CR48
  article-title: Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b08325
– volume: 119
  start-page: e2202382119
  year: 2022
  ident: CR9
  article-title: High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2202382119
– volume: 6
  start-page: 145
  year: 2014
  end-page: 164
  ident: CR56
  article-title: From bacon to barriers: a review on the passivity of metals and alloys
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s100080100219
– volume: 7
  start-page: 341
  year: 1967
  end-page: 355
  ident: CR55
  article-title: The production and breakdown of the passivity of metals
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(67)80023-4
– volume: 51
  start-page: 1473
  year: 2006
  end-page: 1479
  ident: CR44
  article-title: CPE analysis by local electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.02.128
– volume: 49
  start-page: 3838
  year: 2007
  end-page: 3849
  ident: CR46
  article-title: SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2007.03.045
– volume: 612
  start-page: 673
  year: 2022
  end-page: 678
  ident: CR2
  article-title: A membrane-based seawater electrolyser for hydrogen generation
  publication-title: Nature
  doi: 10.1038/s41586-022-05379-5
– volume: 50
  start-page: 2698
  year: 2008
  end-page: 2704
  ident: CR54
  article-title: Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.06.047
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR62
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 145
  start-page: 4989
  year: 2023
  end-page: 4993
  ident: CR4
  article-title: Generation of pure oxygen from briny water by binary catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00176
– volume: 5
  start-page: 367
  year: 2020
  end-page: 377
  ident: CR1
  article-title: Electrolysis of low-grade and saline surface water
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0550-8
– volume: 60
  start-page: 22740
  year: 2021
  end-page: 22744
  ident: CR21
  article-title: The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202110355
– volume: 116
  start-page: 13234
  year: 2016
  end-page: 13278
  ident: CR45
  article-title: Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00067
– ident: CR40
– volume: 32
  start-page: 2200951
  year: 2022
  ident: CR12
  article-title: Partial sulfidation strategy to NiFe-LDH@FeNi S heterostructure enable high-performance water/seawater oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200951
– volume: 144
  start-page: 9254
  year: 2022
  end-page: 9263
  ident: CR7
  article-title: Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00242
– volume: 145
  start-page: 2186
  year: 1998
  end-page: 2198
  ident: CR50
  article-title: Pitting corrosion of metals: a review of the critical factors
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838615
– volume: 8
  start-page: 264
  year: 2023
  end-page: 272
  ident: CR3
  article-title: Direct seawater electrolysis by adjusting the local reaction environment of a catalyst
  publication-title: Nat. Energy
– volume: 341
  start-page: 531
  year: 1997
  end-page: 559
  ident: CR29
  article-title: Metastable pitting corrosion of stainless steel and the transition to stability
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 147
  start-page: 1376
  year: 2000
  ident: CR35
  article-title: Pitting corrosion of titanium the relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393364
– volume: 10
  start-page: 702
  year: 2020
  end-page: 709
  ident: CR23
  article-title: Electrocatalytic selective oxygen evolution of carbon-coated Na Co Fe P O nanoparticles for alkaline seawater electrolysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04231
– volume: 14
  start-page: 6428
  year: 2021
  end-page: 6440
  ident: CR37
  article-title: Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01395E
– volume: 122
  start-page: 11131
  year: 2022
  end-page: 11168
  ident: CR42
  article-title: Impedance analysis of electrochemical systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00876
– volume: 18
  start-page: 2203852
  year: 2022
  ident: CR19
  article-title: High corrosion resistance of NiFe-Layered double hydroxide catalyst for stable seawater electrolysis promoted by phosphate intercalation
  publication-title: Small
  doi: 10.1002/smll.202203852
– ident: CR34
– volume: 61
  start-page: e202210753
  year: 2022
  ident: CR8
  article-title: Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202210753
– volume: 38
  start-page: 1
  year: 2020
  end-page: 24
  ident: CR28
  article-title: Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: a review
  publication-title: Corros. Rev.
  doi: 10.1515/corrrev-2019-0061
– volume: 108
  start-page: 209
  year: 1961
  ident: CR52
  article-title: Effects of anions on the dissolution kinetics of metals
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2428048
– volume: 128
  start-page: 257
  year: 1981
  end-page: 266
  ident: CR39
  article-title: Reaction model for iron dissolution studied by electrode impedance: I. Experimental results and reaction model
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127401
– volume: 4
  start-page: 933
  year: 2019
  end-page: 942
  ident: CR24
  article-title: Direct electrolytic splitting of seawater: opportunities and challenges
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00220
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR60
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 5
  start-page: 367
  year: 2020
  ident: 40563_CR1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0550-8
– volume: 13
  start-page: 3439
  year: 2020
  ident: 40563_CR10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00921K
– volume: 145
  start-page: 4989
  year: 2023
  ident: 40563_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00176
– volume: 118
  start-page: 1057
  year: 1971
  ident: 40563_CR30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2408246
– volume: 35
  start-page: 2210057
  year: 2023
  ident: 40563_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210057
– volume: 42
  start-page: 67
  year: 2000
  ident: 40563_CR27
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(99)00056-6
– volume: 9
  start-page: 34294
  year: 2017
  ident: 40563_CR48
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b08325
– volume: 49
  start-page: 3838
  year: 2007
  ident: 40563_CR46
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2007.03.045
– volume: 113
  start-page: 9901
  year: 2000
  ident: 40563_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 119
  start-page: e2202382119
  year: 2022
  ident: 40563_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2202382119
– volume: 6
  start-page: 145
  year: 2014
  ident: 40563_CR56
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s100080100219
– volume: 34
  start-page: 2204021
  year: 2022
  ident: 40563_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204021
– volume: 18
  start-page: 2203852
  year: 2022
  ident: 40563_CR19
  publication-title: Small
  doi: 10.1002/smll.202203852
– volume: 9
  year: 2018
  ident: 40563_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04942-x
– volume: 161
  start-page: C573
  year: 2014
  ident: 40563_CR43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1151412jes
– volume: 612
  start-page: 673
  year: 2022
  ident: 40563_CR2
  publication-title: Nature
  doi: 10.1038/s41586-022-05379-5
– volume: 39
  start-page: 25
  year: 2013
  ident: 40563_CR57
  publication-title: Corros. Eng. Sci. Techn.
  doi: 10.1179/147842204225016859
– volume: 46
  start-page: 6671
  year: 1992
  ident: 40563_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 10
  start-page: 702
  year: 2020
  ident: 40563_CR23
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04231
– volume: 147
  start-page: 1376
  year: 2000
  ident: 40563_CR35
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393364
– volume: 61
  start-page: e202210753
  year: 2022
  ident: 40563_CR8
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202210753
– volume: 51
  start-page: 1473
  year: 2006
  ident: 40563_CR44
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.02.128
– volume: 199
  start-page: 110175
  year: 2022
  ident: 40563_CR32
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110175
– volume: 52
  start-page: 2636
  year: 2010
  ident: 40563_CR47
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.04.012
– volume: 7
  start-page: 341
  year: 1967
  ident: 40563_CR55
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(67)80023-4
– volume: 13
  year: 2022
  ident: 40563_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32443-5
– volume: 116
  start-page: 6624
  year: 2019
  ident: 40563_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900556116
– volume: 14
  start-page: 6428
  year: 2021
  ident: 40563_CR37
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01395E
– volume: 294
  start-page: 120256
  year: 2021
  ident: 40563_CR16
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120256
– volume: 75
  start-page: 78
  year: 2013
  ident: 40563_CR36
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.05.018
– volume: 10
  year: 2019
  ident: 40563_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 128
  start-page: 257
  year: 1981
  ident: 40563_CR39
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127401
– volume: 108
  start-page: 209
  year: 1961
  ident: 40563_CR52
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2428048
– volume: 216
  start-page: 1299
  year: 1967
  ident: 40563_CR26
  publication-title: Nature
  doi: 10.1038/2161299a0
– ident: 40563_CR25
  doi: 10.1002/adfm.202102772
– volume: 145
  start-page: 2186
  year: 1998
  ident: 40563_CR50
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838615
– volume: 84
  start-page: 9899
  year: 2012
  ident: 40563_CR58
  publication-title: Anal. Chem.
  doi: 10.1021/ac3022955
– volume: 2020
  start-page: 2872141
  year: 2020
  ident: 40563_CR22
  publication-title: Research
  doi: 10.34133/2020/2872141
– ident: 40563_CR40
  doi: 10.1002/9781119363682
– volume: 144
  start-page: 9254
  year: 2022
  ident: 40563_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00242
– volume: 31
  start-page: 2006484
  year: 2021
  ident: 40563_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006484
– ident: 40563_CR49
– volume: 32
  start-page: 2200951
  year: 2022
  ident: 40563_CR12
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200951
– volume: 11
  start-page: 2102353
  year: 2021
  ident: 40563_CR11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102353
– volume: 28
  start-page: 81
  year: 1988
  ident: 40563_CR31
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(88)90009-1
– volume: 17
  start-page: 461
  year: 1977
  ident: 40563_CR33
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(77)90002-6
– volume: 341
  start-page: 531
  year: 1997
  ident: 40563_CR29
  publication-title: Philos. Trans. R. Soc. Lond. A
– ident: 40563_CR15
  doi: 10.1002/smll.202207310
– volume: 60
  start-page: 22740
  year: 2021
  ident: 40563_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202110355
– volume: 4
  start-page: 933
  year: 2019
  ident: 40563_CR24
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00220
– volume: 302
  start-page: 120862
  year: 2022
  ident: 40563_CR18
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120862
– volume: 116
  start-page: 2982
  year: 2016
  ident: 40563_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00389
– ident: 40563_CR34
  doi: 10.31399/asm.hb.v13a.9781627081825
– volume: 122
  start-page: 11131
  year: 2022
  ident: 40563_CR42
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00876
– volume: 90
  start-page: 5
  year: 2015
  ident: 40563_CR51
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.10.006
– volume: 50
  start-page: 2698
  year: 2008
  ident: 40563_CR54
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.06.047
– volume: 8
  start-page: 264
  year: 2023
  ident: 40563_CR3
  publication-title: Nat. Energy
– volume: 29
  start-page: 279
  year: 1989
  ident: 40563_CR41
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938X(89)90036-X
– volume: 6
  start-page: 15
  year: 1996
  ident: 40563_CR59
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 116
  start-page: 13234
  year: 2016
  ident: 40563_CR45
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00067
– volume: 50
  start-page: 17953
  year: 1994
  ident: 40563_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 38
  start-page: 1
  year: 2020
  ident: 40563_CR28
  publication-title: Corros. Rev.
  doi: 10.1515/corrrev-2019-0061
SSID ssj0000391844
Score 2.670296
Snippet The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it...
The corrosive anions (e.g., Cl ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it...
The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it...
The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it...
Abstract The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4822
SubjectTerms 119/118
140/133
140/146
147/135
147/143
639/638/161/886
639/638/161/892
Anions
Anodes
Catalysts
Corrosion
Corrosion mechanisms
Corrosion rate
Corrosion resistance
Corrosion tests
Diffusion rate
Electrolysis
Humanities and Social Sciences
Iron compounds
Kinetics
multidisciplinary
Nickel compounds
Performance degradation
Pits
Reaction kinetics
Science
Science (multidisciplinary)
Seawater
Spalling
Substrates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kIHgR345GacGbDpl-TE-3Nw2GIJiTgdyaflSTiJmV7AbJv7e6Z3bN-rx4WpjugaIeU19td30F8DJgL7PN2HZSYEv5NrU-Cd_axKMJiiPy0pz88UgfHqsPJ_3JtVFf5U7YRA88KW6vQ60w6-iF98pmbqOkKsErHmUa-lj7yCnnXSum6jdYWipd1Nwl00mzt1T1m0ApikqmXsvWbmWiStj_O5T562XJn05MayI6uAO3ZwTJ3k6S34UbON6Dm9NMyav78Hm_NCLWvzsYgTtG6K_ef71ii8zIr78RuLxg8_SbykfyhnlGNSgJSTZi51h6gc-W56wyz5a3TgmrJ2S0eESVNKW9xPy4SPgAjg_ef9o_bOeBCm3sFV-1QuYhc40E46ygn0gxF7tossQuBa-tCgNqOVifSNGofZ-i1sqGqLTIFuVD2BkXIz4GNnQZeSXbS4ZsYUOyQZnciRAG7g02wNfKdXFmGy9DL764euotjZsM4sggrhrE2QZebd75OnFt_HX3u2Kzzc7Ck10fkPe42Xvcv7yngd21xd0cvEtHGdtoQj6DauDFZpnCrpyl-BEXl2VPX6oty0mOR5ODbCSRAwlIdWYDZst1tkTdXhnPTiu1Ny-MCVL0Dbxee9kPuf6siyf_QxdP4ZYo4VH5fndhZ3Vxic8Ica3C8xpc3wEx-ygM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRv91aJYJvunSzyWYTX0SLZxHsk4W-hXxMbIvdrXdXSv97J9nclfOjTwubBCaZmcxHkt8Q8sZBx6OOUDe8hRrtbahtaG2tA_PKCQbA0uPkbwdy_1B8PeqOSsJtUa5VrvbEvFGH0acc-S5uo0qiOerFh_NfdaoalU5XSwmN2-QOQ0uTrnSp2Zd1jiWhnyshyluZhqvdhcg7AxoqDJw6yWu9YY8ybP-_fM2_r0z-cW6azdHsAblf_Ej6cWL8Q3ILhkfk7lRZ8uoxOd1LzxFz0oOii0fRB8y3YK_oGClK9yW6mHNaauBkVJL31FKMRJFI5BQ9g_Qi-GRxRjP-bBp1jB57AIqNBxhPo_EL1A5jgCfkcPb5-95-Xcoq1L4TbFm3PPaRSUBnTrf48ah5vvEqcmiCs1IL14PkvbYhMg3SdsFLKbTzQrZRA39KtoZxgOeE9k0EliH3ghLMaxe0Eyo2rXM9swoqwlaLa3zBHE-lL36afPbNlZkYYpAhJjPE6Iq8XY85nxA3buz9KfFs3TOhZecf4_yHKcpnGpACovS2tVZonJTnGGlapJiHvvN9RXZWHDdFhRfmWuAq8nrdjMqXTlTsAONF6tOlmEszpOPZJCBrSniPBGK0WRG1ITobpG62DCfHGeCbJdwE3nYVebeSsmu6_r8W2zdP4wW51ybBz3i-O2RrOb-Al-hRLd2rrDa_AYZoHyw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61RfBFvLtaJYJvuri5bDbx7Vgs5YB90ULfllwmtsXuyjmnSP-9k-xFjlbBp4VNArOZmZ1vkswXQl47qEU0EcpKcCgx3obSBm5LE5jXTjIAloqTPx2roxO5PK1PdwifamHyof1MaZl_09PpsHdrmV0aIwxmPLUSpblF9hJVO9r23mKx_LycV1YS57mWcqyQqYS-YfBWFMpk_TchzD8PSv62W5qD0OE9cndEj3QxyHuf7ED3gNwe7pO8fkguDlIRYl7qoAjsKCK_fPb1mvaRok3_QGC5ouPNN5mL5D21FPNPFBL1Qy8h1QGfry9pZp1No84Qpweg2HiMWTSGvEBt1wd4RE4OP345OCrHyxRKX0u2KbmITWQKEMIZjg-P_uYrr6OAKjirjHQNKNEYGyIzoGwdvFLSOC8VjwbEY7Lb9R08JbSpIrBMtBe0ZN64YJzUseLONcxqKAibJrf1I9N4uvDiW5t3vIVuB4W0qJA2K6Q1BXkzj_k-8Gz8s_eHpLO5Z-LIzi_61dd2tJm2AiUhKm-5tdLgR3mB-aVFiUVoat8UZH_SeDs67rrFaK0Vop5GFuTV3Iwul_ZRbAf9VepTp0zLMJTjyWAgsySiQQExxyyI3jKdLVG3W7rzs0zrzRJbguB1Qd5OVvZLrr_PxbP_6_6c3OHJETKr7z7Z3ayu4AXiqo17OTrST2--Hkk
  priority: 102
  providerName: Springer Nature
Title Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode
URI https://link.springer.com/article/10.1038/s41467-023-40563-9
https://www.ncbi.nlm.nih.gov/pubmed/37563114
https://www.proquest.com/docview/2848618174
https://www.proquest.com/docview/2850306919
https://pubmed.ncbi.nlm.nih.gov/PMC10415325
https://doaj.org/article/0e64ef6ca2aa49f19c3282a41c3d75c7
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9ID5HYFRG4g0CcezYMRJCXbUyVVqFgEp9ixzbYUNbCm0n6H_P2UmKCh0vTRXb0tV31_tdnPsdwIvSZaxSlYsTlroY462NtU11rCw1ecmpc9QXJ5-NxemEj6bZdAe6dkftBi62pna-n9Rkfvn614_Ve3T4d03JeP5mwYO7Y_TBbCgTLFa7sI-RSfqOBmct3A__zExhQsPb2pntSw_gNpP4jVK-EaoCo_82GPrv25R_HamGSDW8C3daiEn6jU3cgx1X34dbTdPJ1QP4NvCViuF5CEH0RxAehhdkV2RWETT8n4g-56RtjxMIS94STTBJRSFRieTK-WLhi8UVCdS0ftU5gnnrCA6OMdXGuGiJrmfWPYTJ8OTL4DRuOy7EJuN0GaeskhUVDnGeSvFi0ClNYvKKucSWWiheSieYVNpWVDmhM2uE4Ko0XKSVcuwR7NWz2j0GIpPK0cDGZ3NOjSqtKnleJWlZSqpzFwHtNrcwLR2574pxWYRjcZYXjW4K1E0RdFOoCF6u13xvyDj-O_vY62w90xNphxuz-dei9csicYK7Shidas0V_ijDMAnVKDGzMjMygqNO40VnnAWG9FwgNJI8gufrYfRLf9iiaze79nMyn44pinIcNgaylqQzsAjyDdPZEHVzpL44D9zf1FMqsDSL4FVnZX_kunkvntwow1M4SL35B5bfI9hbzq_dM8RZy7IHu3Iq8TMffujBfr8_-jzC6_HJ-OMnvDsQg154gtELTvYb2UQo4g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFHjR5wYCSEolC1t99RKvQXHHtMimpTdrar9U_xGxk6y1fLoraeVYmc18bxtzzeEvKghF157SDPBIUV_61LjuEm1Y7asJQNgoTh5d6xG-_LLQX6wQn4NtTDhWuVgE6Ohdq0Ne-TraEZLhe6okO9Ofqaha1Q4XR1aaHRisQ3zM0zZpm-3PiJ_X3K--WlvY5T2XQVSm0s2S7nwhWcKMJbRHH9Ci3qb2dILyFxtlJZ1AUoU2jjPNCiTO6uU1LWVinsNAv_3CrkqBXryUJm--XmxpxPQ1ksp-9qcTJTrUxktETpGTNRyJVK95P9im4B_xbZ_X9H845w2ur_NW-RmH7fS952g3SYr0Nwh17pOlvO75PtGKH-MmywUQ0qKMWe8dTunrae4bGcY0k5o33MnoqC8oYZi5otEomTQYwgVyEfTYxrxbsNbh5ghOKA4OMb8HZ2to6ZpHdwj-5ey4PfJatM28JDQIvPAIsSfKyWzuna6lqXPeF0XzJSQEDYsbmV7jPPQauNHFc_aRVl1DKmQIVVkSKUT8mrxzkmH8HHh7A-BZ4uZAZ07Pmgn36pe2asMlASvrOHGSI0fZQVmtgYpFq7IbZGQtYHjVW8yptW5gCfk-WIYlT2c4JgG2tMwJw85nmZIx4NOQBaUiAIJxOw2IeWS6CyRujzSHB1GQHEWcBoEzxPyepCyc7r-vxaPLv6MZ-T6aG93p9rZGm8_Jjd4UIKIJbxGVmeTU3iC0dysfhpViJKvl62zvwFWF1yq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUaCJ4gaX-LESAixS7UxqCbEpL15ji9siCWj7TT1r_HrOHaSTuWytz1Vip3qxOdu-3wHoZeVy5mX3qUZoy4Ff2tTbalOpSWmrDhxjoTi5M9jsb3PPx7kByvoV18LE65V9jYxGmrbmLBHPgQzWgpwRwUf-u5axN7m6P3pzzR0kAonrX07jVZEdt38HNK36budTeD1K0pHW183ttOuw0Bqck5mKWW-8EQ4iGskhZ_Qrt5kpvTMZbbSQvKqcIIVUltPpBM6t0YILivDBfXSMfjfa2i1CFnRAK2ub433vix2eAL2esl5V6mTsXI45dEugZuEtC0XLJVL3jA2DfhXpPv3hc0_Tm2jMxzdRre6KBZ_aMXuDlpx9V10ve1rOb-Hvm-EYsi45YIhwMQQgcY7uHPceAwLdw4B7gR3HXgiJspbrDHkwUAkyAk-caEe-Xh6giP6bXjrCPIF6zAMjiGbB9drsa4b6-6j_StZ8gdoUDe1e4RwkXlHIuCfLTkxsrKy4qXPaFUVRJcuQaRfXGU6xPPQeOOHiifvrFQtQxQwREWGKJmg14t3Tlu8j0tnrweeLWYGrO74oJl8U53qq8wJ7rwwmmrNJXyUYZDnaqCY2SI3RYLWeo6rzoBM1YW4J-jFYhhUP5zn6No1Z2FOHjI-SYCOh62ALChhBRAIuW6CyiXRWSJ1eaQ-Porw4iSgNjCaJ-hNL2UXdP1_LR5f_hnP0Q3QV_VpZ7z7BN2kQQcisPAaGswmZ-4phHaz6lmnQxgdXrXa_gZuVGI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concerning+the+stability+of+seawater+electrolysis%3A+a+corrosion+mechanism+study+of+halide+on+Ni-based+anode&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Sixie&rft.au=Wang%2C+Yunan&rft.au=Li%2C+Shuyu&rft.au=Wang%2C+Zhongfeng&rft.date=2023-08-10&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4822&rft_id=info:doi/10.1038%2Fs41467-023-40563-9&rft_id=info%3Apmid%2F37563114&rft.externalDocID=37563114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon