Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode
The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besi...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 4822 - 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The corrosive anions (e.g., Cl
−
) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl
−
) is usually more corrosive than simulated seawater (~0.5 M Cl
−
). Here we elucidate that besides Cl
−
, Br
−
in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl
−
corrodes locally to form narrow-deep pits while Br
−
etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl
−
and the lower reaction energy of Br
−
in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br
−
causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl
−
corrosion, designing anti-Br
−
corrosion anodes is even more crucial for future application of seawater electrolysis.
It is known that chloride anions cause severe anode corrosion during seawater electrolysis. Here we found that bromide in seawater is even more harmful to Ni-based anodes, causing the spalling of the catalyst layer and the formation of shallow-wide pits on the substrate, leading to performance degradation. |
---|---|
AbstractList | The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl-) is usually more corrosive than simulated seawater (~0.5 M Cl-). Here we elucidate that besides Cl-, Br- in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl- corrodes locally to form narrow-deep pits while Br- etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl- and the lower reaction energy of Br- in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br- causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl- corrosion, designing anti-Br- corrosion anodes is even more crucial for future application of seawater electrolysis.The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl-) is usually more corrosive than simulated seawater (~0.5 M Cl-). Here we elucidate that besides Cl-, Br- in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl- corrodes locally to form narrow-deep pits while Br- etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl- and the lower reaction energy of Br- in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br- causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl- corrosion, designing anti-Br- corrosion anodes is even more crucial for future application of seawater electrolysis. The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl−) is usually more corrosive than simulated seawater (~0.5 M Cl−). Here we elucidate that besides Cl−, Br− in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl− corrodes locally to form narrow-deep pits while Br− etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl− and the lower reaction energy of Br− in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br− causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl− corrosion, designing anti-Br− corrosion anodes is even more crucial for future application of seawater electrolysis.It is known that chloride anions cause severe anode corrosion during seawater electrolysis. Here we found that bromide in seawater is even more harmful to Ni-based anodes, causing the spalling of the catalyst layer and the formation of shallow-wide pits on the substrate, leading to performance degradation. The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besides Cl − , Br − in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl − corrodes locally to form narrow-deep pits while Br − etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl − and the lower reaction energy of Br − in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br − causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl − corrosion, designing anti-Br − corrosion anodes is even more crucial for future application of seawater electrolysis. The corrosive anions (e.g., Cl ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl ) is usually more corrosive than simulated seawater (~0.5 M Cl ). Here we elucidate that besides Cl , Br in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl corrodes locally to form narrow-deep pits while Br etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl and the lower reaction energy of Br in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl corrosion, designing anti-Br corrosion anodes is even more crucial for future application of seawater electrolysis. The corrosive anions (e.g., Cl − ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl − ) is usually more corrosive than simulated seawater (~0.5 M Cl − ). Here we elucidate that besides Cl − , Br − in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl − corrodes locally to form narrow-deep pits while Br − etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl − and the lower reaction energy of Br − in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br − causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl − corrosion, designing anti-Br − corrosion anodes is even more crucial for future application of seawater electrolysis. It is known that chloride anions cause severe anode corrosion during seawater electrolysis. Here we found that bromide in seawater is even more harmful to Ni-based anodes, causing the spalling of the catalyst layer and the formation of shallow-wide pits on the substrate, leading to performance degradation. Abstract The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl−) is usually more corrosive than simulated seawater (~0.5 M Cl−). Here we elucidate that besides Cl−, Br− in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl− corrodes locally to form narrow-deep pits while Br− etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl− and the lower reaction energy of Br− in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br− causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl− corrosion, designing anti-Br− corrosion anodes is even more crucial for future application of seawater electrolysis. |
ArticleNumber | 4822 |
Author | Wang, Zhongfeng Lu, Zhiyi Yang, Qihao Li, Shuyu Chen, Haocheng Xu, Wenwen Yi, Li Wang, Aiying Chen, Xu Zhang, Sixie Wang, Yunan |
Author_xml | – sequence: 1 givenname: Sixie orcidid: 0009-0003-4683-7404 surname: Zhang fullname: Zhang, Sixie organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences – sequence: 2 givenname: Yunan surname: Wang fullname: Wang, Yunan organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences – sequence: 3 givenname: Shuyu surname: Li fullname: Li, Shuyu organization: University of Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 4 givenname: Zhongfeng surname: Wang fullname: Wang, Zhongfeng organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences – sequence: 5 givenname: Haocheng surname: Chen fullname: Chen, Haocheng organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH – sequence: 6 givenname: Li surname: Yi fullname: Yi, Li organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH – sequence: 7 givenname: Xu orcidid: 0000-0002-9870-7287 surname: Chen fullname: Chen, Xu organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH – sequence: 8 givenname: Qihao orcidid: 0000-0002-0933-4483 surname: Yang fullname: Yang, Qihao organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH – sequence: 9 givenname: Wenwen orcidid: 0000-0001-7588-5016 surname: Xu fullname: Xu, Wenwen email: xuwenwen@nimte.ac.cn organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH – sequence: 10 givenname: Aiying orcidid: 0000-0003-2938-5437 surname: Wang fullname: Wang, Aiying organization: University of Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 11 givenname: Zhiyi orcidid: 0000-0002-2117-4101 surname: Lu fullname: Lu, Zhiyi email: luzhiyi@nimte.ac.cn organization: Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Qianwan institute of CNITECH, University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37563114$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVAR_aB_gAOKxIVLwF9xYi4IrShUquACZ2viTHa98trFdkD773E3pbQ91JexPO-9Gc-80-rIB49V9YqSd5Tw_n0SVMiuIYw3grSSN-pZdcKIoA3tGD-6dz-uzlPaknK4or0QL6pj3hUGpeKk2q6CNxi99es6b7BOGQbrbN7XYaoTwh_IGGt0aHIMbp9s-lBDbUKMIdng6x2aDXibdoU5jwfWBpwdsS7Jb7YZIOFYgw8jvqyeT-ASnt_Gs-rnxecfq6_N1fcvl6tPV41pBc0N41M3UYlEtIqVYAZCDDH9xJGMA0glhg4l7xSME1UooR2NlEINRkg2KeRn1eWiOwbY6utodxD3OoDVh4cQ1xpitsahJigFTtIAAxCqyBnOegaCGj52remK1sdF63oedjga9DmCeyD6MOPtRq_Db03L9FvO2qLw9lYhhl8zpqx3Nhl0DjyGOWnWt4QTqagq0DePoNswR19mVVCil7SnnSio1_dbuuvl304LgC0AU3aUIk53EEr0jXf04h1dvKMP3tE3tftHJGMz5LLi8i3rnqbyhZpKHb_G-L_tJ1h_AYt02RE |
CitedBy_id | crossref_primary_10_1039_D4GC04930F crossref_primary_10_1002_adma_202411302 crossref_primary_10_1016_j_nanoen_2025_110714 crossref_primary_10_1002_adma_202308647 crossref_primary_10_1039_D3MA00685A crossref_primary_10_1002_ange_202316522 crossref_primary_10_1016_j_apcatb_2024_123875 crossref_primary_10_1016_j_mtener_2024_101784 crossref_primary_10_1002_adma_202306062 crossref_primary_10_1039_D4NR01178C crossref_primary_10_1039_D4TA03393K crossref_primary_10_1016_j_seppur_2024_126641 crossref_primary_10_1016_j_gee_2024_04_003 crossref_primary_10_1016_j_coelec_2024_101560 crossref_primary_10_1016_j_nanoen_2024_109921 crossref_primary_10_1002_ange_202412087 crossref_primary_10_1002_adma_202309211 crossref_primary_10_1016_j_jcis_2025_137354 crossref_primary_10_1039_D4TC05075D crossref_primary_10_1039_D4EE01693A crossref_primary_10_1007_s40820_024_01639_3 crossref_primary_10_1016_j_jmst_2024_12_069 crossref_primary_10_1016_j_checat_2024_101169 crossref_primary_10_1021_acs_inorgchem_4c00392 crossref_primary_10_3390_catal14100691 crossref_primary_10_1038_s41467_024_50519_2 crossref_primary_10_1038_s41467_024_47121_x crossref_primary_10_1002_aenm_202401449 crossref_primary_10_1016_j_ijhydene_2024_09_457 crossref_primary_10_1002_anie_202412087 crossref_primary_10_1002_cctc_202301438 crossref_primary_10_1038_s41467_024_49195_z crossref_primary_10_1039_D3CS00822C crossref_primary_10_1038_s41586_025_08610_1 crossref_primary_10_1002_adsu_202400689 crossref_primary_10_1002_adma_202311322 crossref_primary_10_1039_D3CS00717K crossref_primary_10_1039_D5CC00844A crossref_primary_10_1002_adfm_202418940 crossref_primary_10_1016_j_jechem_2024_07_006 crossref_primary_10_1002_adfm_202407586 crossref_primary_10_1002_adfm_202407781 crossref_primary_10_1016_j_apcatb_2024_124028 crossref_primary_10_1016_j_cej_2025_160362 crossref_primary_10_1016_j_apcatb_2024_124269 crossref_primary_10_1039_D4CC04333B crossref_primary_10_1038_s41467_024_54754_5 crossref_primary_10_1016_j_jnoncrysol_2024_123069 crossref_primary_10_1021_acsaem_4c00386 crossref_primary_10_1360_TB_2024_0500 crossref_primary_10_20517_energymater_2024_220 crossref_primary_10_1039_D4CC05143B crossref_primary_10_1007_s40820_025_01653_z crossref_primary_10_1016_j_jmst_2024_12_009 crossref_primary_10_1016_j_mtcata_2025_100089 crossref_primary_10_1021_acsenergylett_4c03209 crossref_primary_10_3390_app14167189 crossref_primary_10_1002_aenm_202402883 crossref_primary_10_1002_adfm_202419871 crossref_primary_10_1016_j_jcrysgro_2024_127928 crossref_primary_10_1002_adfm_202417211 crossref_primary_10_1016_j_chempr_2024_05_018 crossref_primary_10_1016_j_nanoen_2025_110662 crossref_primary_10_1002_anie_202316522 crossref_primary_10_1002_smll_202405784 crossref_primary_10_1038_s41467_025_56519_0 crossref_primary_10_1016_j_cej_2024_153187 crossref_primary_10_1016_j_gee_2024_02_001 crossref_primary_10_1039_D4CC06777K crossref_primary_10_1039_D4TA06515H crossref_primary_10_1002_aenm_202400975 crossref_primary_10_1016_j_jmst_2024_10_050 crossref_primary_10_1021_acsnano_3c08450 crossref_primary_10_1016_j_apmate_2024_100227 crossref_primary_10_1039_D4TA09017A crossref_primary_10_3390_nano14030239 |
Cites_doi | 10.1016/0010-938X(77)90002-6 10.1073/pnas.1900556116 10.1038/s41467-022-32443-5 10.1103/PhysRevB.46.6671 10.1038/2161299a0 10.1149/1.2408246 10.1016/j.corsci.2013.05.018 10.1016/j.corsci.2022.110175 10.1016/j.corsci.2014.10.006 10.1002/adma.202210057 10.1016/0010-938X(89)90036-X 10.1179/147842204225016859 10.1021/ac3022955 10.1016/0927-0256(96)00008-0 10.1039/D0EE00921K 10.1016/S0010-938X(99)00056-6 10.1021/acs.chemrev.5b00389 10.1016/0010-938X(88)90009-1 10.34133/2020/2872141 10.1149/2.1151412jes 10.1016/j.apcatb.2021.120862 10.1038/s41467-019-13092-7 10.1002/adma.202204021 10.1016/j.apcatb.2021.120256 10.1016/j.corsci.2010.04.012 10.1002/adfm.202006484 10.1038/s41467-018-04942-x 10.1002/aenm.202102353 10.1021/acsami.7b08325 10.1073/pnas.2202382119 10.1007/s100080100219 10.1016/S0010-938X(67)80023-4 10.1016/j.electacta.2005.02.128 10.1016/j.corsci.2007.03.045 10.1038/s41586-022-05379-5 10.1016/j.corsci.2008.06.047 10.1063/1.1329672 10.1021/jacs.3c00176 10.1038/s41560-020-0550-8 10.1002/anie.202110355 10.1021/acs.chemrev.6b00067 10.1002/adfm.202200951 10.1021/jacs.2c00242 10.1149/1.1838615 10.1149/1.1393364 10.1021/acscatal.9b04231 10.1039/D1EE01395E 10.1021/acs.chemrev.1c00876 10.1002/smll.202203852 10.1002/anie.202210753 10.1515/corrrev-2019-0061 10.1149/1.2428048 10.1149/1.2127401 10.1021/acsenergylett.9b00220 10.1103/PhysRevB.50.17953 10.1002/adfm.202102772 10.1002/9781119363682 10.1002/smll.202207310 10.31399/asm.hb.v13a.9781627081825 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. Springer Nature Limited. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40563-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central - New (Subscription) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_0e64ef6ca2aa49f19c3282a41c3d75c7 PMC10415325 37563114 10_1038_s41467_023_40563_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Project (2021YFA1502200) Ningbo Yongjiang Talent Introduction Programme (2021A-036-B) Bellwethers Project of Zhejiang Research and Development Plan (2022C01158) – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-23f7f16e045926e0cb00c0c8f3e0dba694b7e6379adf19e6a5dc6649bc462f9e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:37 EDT 2025 Thu Aug 21 18:41:01 EDT 2025 Fri Jul 11 11:02:50 EDT 2025 Wed Aug 13 04:19:11 EDT 2025 Mon Jul 21 06:00:41 EDT 2025 Tue Jul 01 02:10:30 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-23f7f16e045926e0cb00c0c8f3e0dba694b7e6379adf19e6a5dc6649bc462f9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0933-4483 0000-0002-9870-7287 0009-0003-4683-7404 0000-0001-7588-5016 0000-0003-2938-5437 0000-0002-2117-4101 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40563-9 |
PMID | 37563114 |
PQID | 2848618174 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0e64ef6ca2aa49f19c3282a41c3d75c7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10415325 proquest_miscellaneous_2850306919 proquest_journals_2848618174 pubmed_primary_37563114 crossref_primary_10_1038_s41467_023_40563_9 crossref_citationtrail_10_1038_s41467_023_40563_9 springer_journals_10_1038_s41467_023_40563_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-10 |
PublicationDateYYYYMMDD | 2023-08-10 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu (CR18) 2022; 302 Yu (CR10) 2020; 13 Bird, Pearson, Brook (CR31) 1988; 28 Yan (CR47) 2010; 52 Pistorius, Burstein (CR29) 1997; 341 Liu (CR32) 2022; 199 Cao (CR36) 2013; 75 Zhang (CR53) 2018; 9 Frankel (CR50) 1998; 145 CR34 Kuang (CR20) 2019; 116 Marcus, Maurice, Strehblow (CR54) 2008; 50 Perdew (CR61) 1992; 46 Trinh, Ducharme, Tefashe, Kish, Mauzeroll (CR58) 2012; 84 Zhang (CR19) 2022; 18 Tong (CR1) 2020; 5 Simões, Battocchi, Tallman, Bierwagen (CR46) 2007; 49 Li (CR22) 2020; 2020 Kaneko, Isaacs (CR27) 2000; 42 Blöchl (CR60) 1994; 50 Liu (CR8) 2022; 61 Basame, White (CR35) 2000; 147 Ma (CR21) 2021; 60 CR49 Soltis (CR51) 2015; 90 Schmuki (CR56) 2014; 6 Yu (CR13) 2019; 10 Keddam, Mottos, Takenouti (CR39) 1981; 128 CR40 Polcari, Dauphin-Ducharme, Mauzeroll (CR45) 2016; 116 You (CR7) 2022; 144 Dresp, Dionigi, Klingenhof, Strasser (CR24) 2019; 4 Jorcin, Orazem, Pébère, Tribollet (CR44) 2006; 51 Strehblow, Titze (CR33) 1977; 17 Wilde, Williams (CR30) 1971; 118 Jüttner, Lorenz, Paatsch (CR41) 1989; 29 Kolotyrkin (CR52) 1961; 108 Kresse, Furthmüller (CR59) 1996; 6 Vivier, Orazem (CR42) 2022; 122 Wang (CR14) 2022; 34 Hoar, Jacob (CR26) 1967; 216 Chen (CR37) 2021; 14 Amor, Sutter, Takenouti, Orazem, Tribollet (CR43) 2014; 161 Wen (CR11) 2021; 11 Wang (CR6) 2023; 35 CR15 Song, Yoon, Ju, Lee, Kim (CR23) 2020; 10 Guo (CR3) 2023; 8 Xie (CR2) 2022; 612 Hoar (CR55) 1967; 7 Tan (CR12) 2022; 32 Qiu, Li, Zheng, Zhao, Wang (CR48) 2017; 9 Wu (CR16) 2021; 294 Karlsson, Cornell (CR5) 2016; 116 Wu (CR17) 2021; 31 CR25 Henkelman, Uberuaga, Jónsson (CR62) 2000; 113 Keane, Veroneau, Hartnett, Nocera (CR4) 2023; 145 Yu (CR9) 2022; 119 Burstein, Liu, Souto, Vines (CR57) 2013; 39 Kappes (CR28) 2020; 38 Qi (CR38) 2022; 13 SB Basame (40563_CR35) 2000; 147 P Li (40563_CR22) 2020; 2020 HEH Bird (40563_CR31) 1988; 28 40563_CR25 B Zhang (40563_CR19) 2022; 18 N Wang (40563_CR6) 2023; 35 PE Blöchl (40563_CR60) 1994; 50 JP Perdew (40563_CR61) 1992; 46 J Liu (40563_CR18) 2022; 302 TP Keane (40563_CR4) 2023; 145 F Cao (40563_CR36) 2013; 75 M Keddam (40563_CR39) 1981; 128 L Tan (40563_CR12) 2022; 32 GT Burstein (40563_CR57) 2013; 39 Y Liu (40563_CR32) 2022; 199 YB Amor (40563_CR43) 2014; 161 H Xie (40563_CR2) 2022; 612 40563_CR34 G Henkelman (40563_CR62) 2000; 113 MA Kappes (40563_CR28) 2020; 38 W Chen (40563_CR37) 2021; 14 V Vivier (40563_CR42) 2022; 122 J Jorcin (40563_CR44) 2006; 51 H You (40563_CR7) 2022; 144 W Tong (40563_CR1) 2020; 5 GS Frankel (40563_CR50) 1998; 145 S Dresp (40563_CR24) 2019; 4 40563_CR40 TP Hoar (40563_CR26) 1967; 216 D Polcari (40563_CR45) 2016; 116 AM Simões (40563_CR46) 2007; 49 RK Karlsson (40563_CR5) 2016; 116 40563_CR49 L Yu (40563_CR9) 2022; 119 T Ma (40563_CR21) 2021; 60 JM Kolotyrkin (40563_CR52) 1961; 108 TP Hoar (40563_CR55) 1967; 7 Y Qi (40563_CR38) 2022; 13 Q Wen (40563_CR11) 2021; 11 PC Pistorius (40563_CR29) 1997; 341 P Schmuki (40563_CR56) 2014; 6 K Jüttner (40563_CR41) 1989; 29 S Qiu (40563_CR48) 2017; 9 B Zhang (40563_CR53) 2018; 9 M Kaneko (40563_CR27) 2000; 42 HH Strehblow (40563_CR33) 1977; 17 JH Guo (40563_CR3) 2023; 8 40563_CR15 BE Wilde (40563_CR30) 1971; 118 L Yu (40563_CR13) 2019; 10 M Yan (40563_CR47) 2010; 52 L Yu (40563_CR10) 2020; 13 P Marcus (40563_CR54) 2008; 50 G Kresse (40563_CR59) 1996; 6 L Wu (40563_CR16) 2021; 294 D Trinh (40563_CR58) 2012; 84 J Liu (40563_CR8) 2022; 61 Y Kuang (40563_CR20) 2019; 116 HJ Song (40563_CR23) 2020; 10 J Soltis (40563_CR51) 2015; 90 L Wu (40563_CR17) 2021; 31 X Wang (40563_CR14) 2022; 34 |
References_xml | – volume: 17 start-page: 461 year: 1977 end-page: 472 ident: CR33 article-title: Pitting potentials and inhibition potentials of iron and nickel for different aggressive and inhibiting anions publication-title: Corros. Sci. doi: 10.1016/0010-938X(77)90002-6 – volume: 116 start-page: 6624 year: 2019 end-page: 6629 ident: CR20 article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1900556116 – volume: 13 year: 2022 ident: CR38 article-title: Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation publication-title: Nat. Commun. doi: 10.1038/s41467-022-32443-5 – ident: CR49 – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: CR61 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 216 start-page: 1299 year: 1967 end-page: 1301 ident: CR26 article-title: Breakdown of passivity of stainless steel by halide ions publication-title: Nature doi: 10.1038/2161299a0 – volume: 118 start-page: 1057 year: 1971 ident: CR30 article-title: The relevance of accelerated electrochemical pitting tests to the long-term pitting and crevice corrosion behavior of stainless steels in marine environments publication-title: J. Electrochem. Soc. doi: 10.1149/1.2408246 – volume: 75 start-page: 78 year: 2013 end-page: 99 ident: CR36 article-title: Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH) publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.05.018 – volume: 199 start-page: 110175 year: 2022 ident: CR32 article-title: Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110175 – volume: 90 start-page: 5 year: 2015 end-page: 22 ident: CR51 article-title: Passivity breakdown, pit initiation and propagation of pits in metallic materials - review publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.10.006 – volume: 35 start-page: 2210057 year: 2023 ident: CR6 article-title: Strong-proton-adsorption Co-based electrocatalysts achieve active and stable neutral seawater splitting publication-title: Adv. Mater. doi: 10.1002/adma.202210057 – volume: 29 start-page: 279 year: 1989 end-page: 288 ident: CR41 article-title: The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films publication-title: Corros. Sci. doi: 10.1016/0010-938X(89)90036-X – volume: 39 start-page: 25 year: 2013 end-page: 30 ident: CR57 article-title: Origins of pitting corrosion publication-title: Corros. Eng. Sci. Techn. doi: 10.1179/147842204225016859 – volume: 84 start-page: 9899 year: 2012 end-page: 9906 ident: CR58 article-title: Influence of edge effects on local corrosion rate of magnesium alloy/mild steel galvanic couple publication-title: Anal. Chem. doi: 10.1021/ac3022955 – ident: CR25 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR59 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 13 start-page: 3439 year: 2020 end-page: 3446 ident: CR10 article-title: Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00921K – volume: 42 start-page: 67 year: 2000 end-page: 78 ident: CR27 article-title: Pitting of stainless steel in bromide, chloride and bromide/chloride solutions publication-title: Corros. Sci. doi: 10.1016/S0010-938X(99)00056-6 – volume: 116 start-page: 2982 year: 2016 end-page: 3028 ident: CR5 article-title: Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00389 – volume: 28 start-page: 81 year: 1988 end-page: 86 ident: CR31 article-title: The breakdown of passive films on iron publication-title: Corros. Sci. doi: 10.1016/0010-938X(88)90009-1 – volume: 2020 start-page: 2872141 year: 2020 ident: CR22 article-title: Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production publication-title: Research doi: 10.34133/2020/2872141 – ident: CR15 – volume: 161 start-page: C573 year: 2014 end-page: C579 ident: CR43 article-title: Interpretation of electrochemical impedance for corrosion of a coated silver film in terms of a pore-in-pore model publication-title: J. Electrochem. Soc. doi: 10.1149/2.1151412jes – volume: 302 start-page: 120862 year: 2022 ident: CR18 article-title: Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120862 – volume: 10 year: 2019 ident: CR13 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 34 start-page: 2204021 year: 2022 ident: CR14 article-title: Asymmetric Co-N P trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system publication-title: Adv. Mater. doi: 10.1002/adma.202204021 – volume: 294 start-page: 120256 year: 2021 ident: CR16 article-title: Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120256 – volume: 52 start-page: 2636 year: 2010 end-page: 2642 ident: CR47 article-title: SVET method for characterizing anti-corrosion performance of metal-rich coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.04.012 – volume: 31 start-page: 2006484 year: 2021 ident: CR17 article-title: Heterogeneous bimetallic phosphide Ni P-Fe P as an efficient bifunctional catalyst for water/seawater splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006484 – volume: 9 year: 2018 ident: CR53 article-title: Unmasking chloride attack on the passive film of metals publication-title: Nat. Commun. doi: 10.1038/s41467-018-04942-x – volume: 11 start-page: 2102353 year: 2021 ident: CR11 article-title: Schottky heterojunction nanosheet array achieving high‐current‐density oxygen evolution for industrial water splitting electrolyzers publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102353 – volume: 9 start-page: 34294 year: 2017 end-page: 34304 ident: CR48 article-title: Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b08325 – volume: 119 start-page: e2202382119 year: 2022 ident: CR9 article-title: High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2202382119 – volume: 6 start-page: 145 year: 2014 end-page: 164 ident: CR56 article-title: From bacon to barriers: a review on the passivity of metals and alloys publication-title: J. Solid State Electrochem. doi: 10.1007/s100080100219 – volume: 7 start-page: 341 year: 1967 end-page: 355 ident: CR55 article-title: The production and breakdown of the passivity of metals publication-title: Corros. Sci. doi: 10.1016/S0010-938X(67)80023-4 – volume: 51 start-page: 1473 year: 2006 end-page: 1479 ident: CR44 article-title: CPE analysis by local electrochemical impedance spectroscopy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.02.128 – volume: 49 start-page: 3838 year: 2007 end-page: 3849 ident: CR46 article-title: SVET and SECM imaging of cathodic protection of aluminium by a Mg-rich coating publication-title: Corros. Sci. doi: 10.1016/j.corsci.2007.03.045 – volume: 612 start-page: 673 year: 2022 end-page: 678 ident: CR2 article-title: A membrane-based seawater electrolyser for hydrogen generation publication-title: Nature doi: 10.1038/s41586-022-05379-5 – volume: 50 start-page: 2698 year: 2008 end-page: 2704 ident: CR54 article-title: Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.06.047 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR62 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 145 start-page: 4989 year: 2023 end-page: 4993 ident: CR4 article-title: Generation of pure oxygen from briny water by binary catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00176 – volume: 5 start-page: 367 year: 2020 end-page: 377 ident: CR1 article-title: Electrolysis of low-grade and saline surface water publication-title: Nat. Energy doi: 10.1038/s41560-020-0550-8 – volume: 60 start-page: 22740 year: 2021 end-page: 22744 ident: CR21 article-title: The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202110355 – volume: 116 start-page: 13234 year: 2016 end-page: 13278 ident: CR45 article-title: Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00067 – ident: CR40 – volume: 32 start-page: 2200951 year: 2022 ident: CR12 article-title: Partial sulfidation strategy to NiFe-LDH@FeNi S heterostructure enable high-performance water/seawater oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200951 – volume: 144 start-page: 9254 year: 2022 end-page: 9263 ident: CR7 article-title: Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00242 – volume: 145 start-page: 2186 year: 1998 end-page: 2198 ident: CR50 article-title: Pitting corrosion of metals: a review of the critical factors publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 8 start-page: 264 year: 2023 end-page: 272 ident: CR3 article-title: Direct seawater electrolysis by adjusting the local reaction environment of a catalyst publication-title: Nat. Energy – volume: 341 start-page: 531 year: 1997 end-page: 559 ident: CR29 article-title: Metastable pitting corrosion of stainless steel and the transition to stability publication-title: Philos. Trans. R. Soc. Lond. A – volume: 147 start-page: 1376 year: 2000 ident: CR35 article-title: Pitting corrosion of titanium the relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393364 – volume: 10 start-page: 702 year: 2020 end-page: 709 ident: CR23 article-title: Electrocatalytic selective oxygen evolution of carbon-coated Na Co Fe P O nanoparticles for alkaline seawater electrolysis publication-title: ACS Catal. doi: 10.1021/acscatal.9b04231 – volume: 14 start-page: 6428 year: 2021 end-page: 6440 ident: CR37 article-title: Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01395E – volume: 122 start-page: 11131 year: 2022 end-page: 11168 ident: CR42 article-title: Impedance analysis of electrochemical systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00876 – volume: 18 start-page: 2203852 year: 2022 ident: CR19 article-title: High corrosion resistance of NiFe-Layered double hydroxide catalyst for stable seawater electrolysis promoted by phosphate intercalation publication-title: Small doi: 10.1002/smll.202203852 – ident: CR34 – volume: 61 start-page: e202210753 year: 2022 ident: CR8 article-title: Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202210753 – volume: 38 start-page: 1 year: 2020 end-page: 24 ident: CR28 article-title: Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: a review publication-title: Corros. Rev. doi: 10.1515/corrrev-2019-0061 – volume: 108 start-page: 209 year: 1961 ident: CR52 article-title: Effects of anions on the dissolution kinetics of metals publication-title: J. Electrochem. Soc. doi: 10.1149/1.2428048 – volume: 128 start-page: 257 year: 1981 end-page: 266 ident: CR39 article-title: Reaction model for iron dissolution studied by electrode impedance: I. Experimental results and reaction model publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127401 – volume: 4 start-page: 933 year: 2019 end-page: 942 ident: CR24 article-title: Direct electrolytic splitting of seawater: opportunities and challenges publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00220 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR60 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 5 start-page: 367 year: 2020 ident: 40563_CR1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0550-8 – volume: 13 start-page: 3439 year: 2020 ident: 40563_CR10 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00921K – volume: 145 start-page: 4989 year: 2023 ident: 40563_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00176 – volume: 118 start-page: 1057 year: 1971 ident: 40563_CR30 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2408246 – volume: 35 start-page: 2210057 year: 2023 ident: 40563_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.202210057 – volume: 42 start-page: 67 year: 2000 ident: 40563_CR27 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(99)00056-6 – volume: 9 start-page: 34294 year: 2017 ident: 40563_CR48 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b08325 – volume: 49 start-page: 3838 year: 2007 ident: 40563_CR46 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2007.03.045 – volume: 113 start-page: 9901 year: 2000 ident: 40563_CR62 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 119 start-page: e2202382119 year: 2022 ident: 40563_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2202382119 – volume: 6 start-page: 145 year: 2014 ident: 40563_CR56 publication-title: J. Solid State Electrochem. doi: 10.1007/s100080100219 – volume: 34 start-page: 2204021 year: 2022 ident: 40563_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.202204021 – volume: 18 start-page: 2203852 year: 2022 ident: 40563_CR19 publication-title: Small doi: 10.1002/smll.202203852 – volume: 9 year: 2018 ident: 40563_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04942-x – volume: 161 start-page: C573 year: 2014 ident: 40563_CR43 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1151412jes – volume: 612 start-page: 673 year: 2022 ident: 40563_CR2 publication-title: Nature doi: 10.1038/s41586-022-05379-5 – volume: 39 start-page: 25 year: 2013 ident: 40563_CR57 publication-title: Corros. Eng. Sci. Techn. doi: 10.1179/147842204225016859 – volume: 46 start-page: 6671 year: 1992 ident: 40563_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 10 start-page: 702 year: 2020 ident: 40563_CR23 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04231 – volume: 147 start-page: 1376 year: 2000 ident: 40563_CR35 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393364 – volume: 61 start-page: e202210753 year: 2022 ident: 40563_CR8 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202210753 – volume: 51 start-page: 1473 year: 2006 ident: 40563_CR44 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.02.128 – volume: 199 start-page: 110175 year: 2022 ident: 40563_CR32 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110175 – volume: 52 start-page: 2636 year: 2010 ident: 40563_CR47 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.04.012 – volume: 7 start-page: 341 year: 1967 ident: 40563_CR55 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(67)80023-4 – volume: 13 year: 2022 ident: 40563_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32443-5 – volume: 116 start-page: 6624 year: 2019 ident: 40563_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1900556116 – volume: 14 start-page: 6428 year: 2021 ident: 40563_CR37 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01395E – volume: 294 start-page: 120256 year: 2021 ident: 40563_CR16 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120256 – volume: 75 start-page: 78 year: 2013 ident: 40563_CR36 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.05.018 – volume: 10 year: 2019 ident: 40563_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 128 start-page: 257 year: 1981 ident: 40563_CR39 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127401 – volume: 108 start-page: 209 year: 1961 ident: 40563_CR52 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2428048 – volume: 216 start-page: 1299 year: 1967 ident: 40563_CR26 publication-title: Nature doi: 10.1038/2161299a0 – ident: 40563_CR25 doi: 10.1002/adfm.202102772 – volume: 145 start-page: 2186 year: 1998 ident: 40563_CR50 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 84 start-page: 9899 year: 2012 ident: 40563_CR58 publication-title: Anal. Chem. doi: 10.1021/ac3022955 – volume: 2020 start-page: 2872141 year: 2020 ident: 40563_CR22 publication-title: Research doi: 10.34133/2020/2872141 – ident: 40563_CR40 doi: 10.1002/9781119363682 – volume: 144 start-page: 9254 year: 2022 ident: 40563_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00242 – volume: 31 start-page: 2006484 year: 2021 ident: 40563_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006484 – ident: 40563_CR49 – volume: 32 start-page: 2200951 year: 2022 ident: 40563_CR12 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200951 – volume: 11 start-page: 2102353 year: 2021 ident: 40563_CR11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102353 – volume: 28 start-page: 81 year: 1988 ident: 40563_CR31 publication-title: Corros. Sci. doi: 10.1016/0010-938X(88)90009-1 – volume: 17 start-page: 461 year: 1977 ident: 40563_CR33 publication-title: Corros. Sci. doi: 10.1016/0010-938X(77)90002-6 – volume: 341 start-page: 531 year: 1997 ident: 40563_CR29 publication-title: Philos. Trans. R. Soc. Lond. A – ident: 40563_CR15 doi: 10.1002/smll.202207310 – volume: 60 start-page: 22740 year: 2021 ident: 40563_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202110355 – volume: 4 start-page: 933 year: 2019 ident: 40563_CR24 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00220 – volume: 302 start-page: 120862 year: 2022 ident: 40563_CR18 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120862 – volume: 116 start-page: 2982 year: 2016 ident: 40563_CR5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00389 – ident: 40563_CR34 doi: 10.31399/asm.hb.v13a.9781627081825 – volume: 122 start-page: 11131 year: 2022 ident: 40563_CR42 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00876 – volume: 90 start-page: 5 year: 2015 ident: 40563_CR51 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.10.006 – volume: 50 start-page: 2698 year: 2008 ident: 40563_CR54 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.06.047 – volume: 8 start-page: 264 year: 2023 ident: 40563_CR3 publication-title: Nat. Energy – volume: 29 start-page: 279 year: 1989 ident: 40563_CR41 publication-title: Corros. Sci. doi: 10.1016/0010-938X(89)90036-X – volume: 6 start-page: 15 year: 1996 ident: 40563_CR59 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 116 start-page: 13234 year: 2016 ident: 40563_CR45 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00067 – volume: 50 start-page: 17953 year: 1994 ident: 40563_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 38 start-page: 1 year: 2020 ident: 40563_CR28 publication-title: Corros. Rev. doi: 10.1515/corrrev-2019-0061 |
SSID | ssj0000391844 |
Score | 2.670296 |
Snippet | The corrosive anions (e.g., Cl
−
) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it... The corrosive anions (e.g., Cl ) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it... The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it... The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it... Abstract The corrosive anions (e.g., Cl−) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4822 |
SubjectTerms | 119/118 140/133 140/146 147/135 147/143 639/638/161/886 639/638/161/892 Anions Anodes Catalysts Corrosion Corrosion mechanisms Corrosion rate Corrosion resistance Corrosion tests Diffusion rate Electrolysis Humanities and Social Sciences Iron compounds Kinetics multidisciplinary Nickel compounds Performance degradation Pits Reaction kinetics Science Science (multidisciplinary) Seawater Spalling Substrates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kIHgR345GacGbDpl-TE-3Nw2GIJiTgdyaflSTiJmV7AbJv7e6Z3bN-rx4WpjugaIeU19td30F8DJgL7PN2HZSYEv5NrU-Cd_axKMJiiPy0pz88UgfHqsPJ_3JtVFf5U7YRA88KW6vQ60w6-iF98pmbqOkKsErHmUa-lj7yCnnXSum6jdYWipd1Nwl00mzt1T1m0ApikqmXsvWbmWiStj_O5T562XJn05MayI6uAO3ZwTJ3k6S34UbON6Dm9NMyav78Hm_NCLWvzsYgTtG6K_ef71ii8zIr78RuLxg8_SbykfyhnlGNSgJSTZi51h6gc-W56wyz5a3TgmrJ2S0eESVNKW9xPy4SPgAjg_ef9o_bOeBCm3sFV-1QuYhc40E46ygn0gxF7tossQuBa-tCgNqOVifSNGofZ-i1sqGqLTIFuVD2BkXIz4GNnQZeSXbS4ZsYUOyQZnciRAG7g02wNfKdXFmGy9DL764euotjZsM4sggrhrE2QZebd75OnFt_HX3u2Kzzc7Ck10fkPe42Xvcv7yngd21xd0cvEtHGdtoQj6DauDFZpnCrpyl-BEXl2VPX6oty0mOR5ODbCSRAwlIdWYDZst1tkTdXhnPTiu1Ny-MCVL0Dbxee9kPuf6siyf_QxdP4ZYo4VH5fndhZ3Vxic8Ica3C8xpc3wEx-ygM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRv91aJYJvunSzyWYTX0SLZxHsk4W-hXxMbIvdrXdXSv97J9nclfOjTwubBCaZmcxHkt8Q8sZBx6OOUDe8hRrtbahtaG2tA_PKCQbA0uPkbwdy_1B8PeqOSsJtUa5VrvbEvFGH0acc-S5uo0qiOerFh_NfdaoalU5XSwmN2-QOQ0uTrnSp2Zd1jiWhnyshyluZhqvdhcg7AxoqDJw6yWu9YY8ybP-_fM2_r0z-cW6azdHsAblf_Ej6cWL8Q3ILhkfk7lRZ8uoxOd1LzxFz0oOii0fRB8y3YK_oGClK9yW6mHNaauBkVJL31FKMRJFI5BQ9g_Qi-GRxRjP-bBp1jB57AIqNBxhPo_EL1A5jgCfkcPb5-95-Xcoq1L4TbFm3PPaRSUBnTrf48ah5vvEqcmiCs1IL14PkvbYhMg3SdsFLKbTzQrZRA39KtoZxgOeE9k0EliH3ghLMaxe0Eyo2rXM9swoqwlaLa3zBHE-lL36afPbNlZkYYpAhJjPE6Iq8XY85nxA3buz9KfFs3TOhZecf4_yHKcpnGpACovS2tVZonJTnGGlapJiHvvN9RXZWHDdFhRfmWuAq8nrdjMqXTlTsAONF6tOlmEszpOPZJCBrSniPBGK0WRG1ITobpG62DCfHGeCbJdwE3nYVebeSsmu6_r8W2zdP4wW51ybBz3i-O2RrOb-Al-hRLd2rrDa_AYZoHyw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61RfBFvLtaJYJvuri5bDbx7Vgs5YB90ULfllwmtsXuyjmnSP-9k-xFjlbBp4VNArOZmZ1vkswXQl47qEU0EcpKcCgx3obSBm5LE5jXTjIAloqTPx2roxO5PK1PdwifamHyof1MaZl_09PpsHdrmV0aIwxmPLUSpblF9hJVO9r23mKx_LycV1YS57mWcqyQqYS-YfBWFMpk_TchzD8PSv62W5qD0OE9cndEj3QxyHuf7ED3gNwe7pO8fkguDlIRYl7qoAjsKCK_fPb1mvaRok3_QGC5ouPNN5mL5D21FPNPFBL1Qy8h1QGfry9pZp1No84Qpweg2HiMWTSGvEBt1wd4RE4OP345OCrHyxRKX0u2KbmITWQKEMIZjg-P_uYrr6OAKjirjHQNKNEYGyIzoGwdvFLSOC8VjwbEY7Lb9R08JbSpIrBMtBe0ZN64YJzUseLONcxqKAibJrf1I9N4uvDiW5t3vIVuB4W0qJA2K6Q1BXkzj_k-8Gz8s_eHpLO5Z-LIzi_61dd2tJm2AiUhKm-5tdLgR3mB-aVFiUVoat8UZH_SeDs67rrFaK0Vop5GFuTV3Iwul_ZRbAf9VepTp0zLMJTjyWAgsySiQQExxyyI3jKdLVG3W7rzs0zrzRJbguB1Qd5OVvZLrr_PxbP_6_6c3OHJETKr7z7Z3ayu4AXiqo17OTrST2--Hkk priority: 102 providerName: Springer Nature |
Title | Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode |
URI | https://link.springer.com/article/10.1038/s41467-023-40563-9 https://www.ncbi.nlm.nih.gov/pubmed/37563114 https://www.proquest.com/docview/2848618174 https://www.proquest.com/docview/2850306919 https://pubmed.ncbi.nlm.nih.gov/PMC10415325 https://doaj.org/article/0e64ef6ca2aa49f19c3282a41c3d75c7 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9ID5HYFRG4g0CcezYMRJCXbUyVVqFgEp9ixzbYUNbCm0n6H_P2UmKCh0vTRXb0tV31_tdnPsdwIvSZaxSlYsTlroY462NtU11rCw1ecmpc9QXJ5-NxemEj6bZdAe6dkftBi62pna-n9Rkfvn614_Ve3T4d03JeP5mwYO7Y_TBbCgTLFa7sI-RSfqOBmct3A__zExhQsPb2pntSw_gNpP4jVK-EaoCo_82GPrv25R_HamGSDW8C3daiEn6jU3cgx1X34dbTdPJ1QP4NvCViuF5CEH0RxAehhdkV2RWETT8n4g-56RtjxMIS94STTBJRSFRieTK-WLhi8UVCdS0ftU5gnnrCA6OMdXGuGiJrmfWPYTJ8OTL4DRuOy7EJuN0GaeskhUVDnGeSvFi0ClNYvKKucSWWiheSieYVNpWVDmhM2uE4Ko0XKSVcuwR7NWz2j0GIpPK0cDGZ3NOjSqtKnleJWlZSqpzFwHtNrcwLR2574pxWYRjcZYXjW4K1E0RdFOoCF6u13xvyDj-O_vY62w90xNphxuz-dei9csicYK7Shidas0V_ijDMAnVKDGzMjMygqNO40VnnAWG9FwgNJI8gufrYfRLf9iiaze79nMyn44pinIcNgaylqQzsAjyDdPZEHVzpL44D9zf1FMqsDSL4FVnZX_kunkvntwow1M4SL35B5bfI9hbzq_dM8RZy7IHu3Iq8TMffujBfr8_-jzC6_HJ-OMnvDsQg154gtELTvYb2UQo4g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFHjR5wYCSEolC1t99RKvQXHHtMimpTdrar9U_xGxk6y1fLoraeVYmc18bxtzzeEvKghF157SDPBIUV_61LjuEm1Y7asJQNgoTh5d6xG-_LLQX6wQn4NtTDhWuVgE6Ohdq0Ne-TraEZLhe6okO9Ofqaha1Q4XR1aaHRisQ3zM0zZpm-3PiJ_X3K--WlvY5T2XQVSm0s2S7nwhWcKMJbRHH9Ci3qb2dILyFxtlJZ1AUoU2jjPNCiTO6uU1LWVinsNAv_3CrkqBXryUJm--XmxpxPQ1ksp-9qcTJTrUxktETpGTNRyJVK95P9im4B_xbZ_X9H845w2ur_NW-RmH7fS952g3SYr0Nwh17pOlvO75PtGKH-MmywUQ0qKMWe8dTunrae4bGcY0k5o33MnoqC8oYZi5otEomTQYwgVyEfTYxrxbsNbh5ghOKA4OMb8HZ2to6ZpHdwj-5ey4PfJatM28JDQIvPAIsSfKyWzuna6lqXPeF0XzJSQEDYsbmV7jPPQauNHFc_aRVl1DKmQIVVkSKUT8mrxzkmH8HHh7A-BZ4uZAZ07Pmgn36pe2asMlASvrOHGSI0fZQVmtgYpFq7IbZGQtYHjVW8yptW5gCfk-WIYlT2c4JgG2tMwJw85nmZIx4NOQBaUiAIJxOw2IeWS6CyRujzSHB1GQHEWcBoEzxPyepCyc7r-vxaPLv6MZ-T6aG93p9rZGm8_Jjd4UIKIJbxGVmeTU3iC0dysfhpViJKvl62zvwFWF1yq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUaCJ4gaX-LESAixS7UxqCbEpL15ji9siCWj7TT1r_HrOHaSTuWytz1Vip3qxOdu-3wHoZeVy5mX3qUZoy4Ff2tTbalOpSWmrDhxjoTi5M9jsb3PPx7kByvoV18LE65V9jYxGmrbmLBHPgQzWgpwRwUf-u5axN7m6P3pzzR0kAonrX07jVZEdt38HNK36budTeD1K0pHW183ttOuw0Bqck5mKWW-8EQ4iGskhZ_Qrt5kpvTMZbbSQvKqcIIVUltPpBM6t0YILivDBfXSMfjfa2i1CFnRAK2ub433vix2eAL2esl5V6mTsXI45dEugZuEtC0XLJVL3jA2DfhXpPv3hc0_Tm2jMxzdRre6KBZ_aMXuDlpx9V10ve1rOb-Hvm-EYsi45YIhwMQQgcY7uHPceAwLdw4B7gR3HXgiJspbrDHkwUAkyAk-caEe-Xh6giP6bXjrCPIF6zAMjiGbB9drsa4b6-6j_StZ8gdoUDe1e4RwkXlHIuCfLTkxsrKy4qXPaFUVRJcuQaRfXGU6xPPQeOOHiifvrFQtQxQwREWGKJmg14t3Tlu8j0tnrweeLWYGrO74oJl8U53qq8wJ7rwwmmrNJXyUYZDnaqCY2SI3RYLWeo6rzoBM1YW4J-jFYhhUP5zn6No1Z2FOHjI-SYCOh62ALChhBRAIuW6CyiXRWSJ1eaQ-Porw4iSgNjCaJ-hNL2UXdP1_LR5f_hnP0Q3QV_VpZ7z7BN2kQQcisPAaGswmZ-4phHaz6lmnQxgdXrXa_gZuVGI8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concerning+the+stability+of+seawater+electrolysis%3A+a+corrosion+mechanism+study+of+halide+on+Ni-based+anode&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Sixie&rft.au=Wang%2C+Yunan&rft.au=Li%2C+Shuyu&rft.au=Wang%2C+Zhongfeng&rft.date=2023-08-10&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4822&rft_id=info:doi/10.1038%2Fs41467-023-40563-9&rft_id=info%3Apmid%2F37563114&rft.externalDocID=37563114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |