Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb
Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this stu...
Saved in:
Published in | Applied microbiology and biotechnology Vol. 106; no. 4; pp. 1615 - 1631 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as
Ligilactobacillus
,
Limosilalactobacillus
, and
Prevotellaceae UCG-001
were remarkably increased, and pathogens such as
Escherichia-Shigella
were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.
Key points
•
Rhubarb could significantly improve gut microbiota disorder in constipation rats.
•
Rhubarb could markedly modulate the fecal metabolite profile of constipated rats. |
---|---|
AbstractList | Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.Key points• Rhubarb could significantly improve gut microbiota disorder in constipation rats.• Rhubarb could markedly modulate the fecal metabolite profile of constipated rats.Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.Key points• Rhubarb could significantly improve gut microbiota disorder in constipation rats.• Rhubarb could markedly modulate the fecal metabolite profile of constipated rats. Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus , Limosilalactobacillus , and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines. Key points • Rhubarb could significantly improve gut microbiota disorder in constipation rats. • Rhubarb could markedly modulate the fecal metabolite profile of constipated rats. Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.Key points• Rhubarb could significantly improve gut microbiota disorder in constipation rats.• Rhubarb could markedly modulate the fecal metabolite profile of constipated rats. Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2[alpha], and [alpha]-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines. Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2[alpha], and [alpha]-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines. Key points * Rhubarb could significantly improve gut microbiota disorder in constipation rats. * Rhubarb could markedly modulate the fecal metabolite profile of constipated rats. |
Audience | Academic |
Author | Qian, Dawei Wan, Yue Shang, Erxin Yang, Lei Li, Wenwen Liu, Chen Dong, Zhiling Li, Hui-fang Zhu, Ke Jiang, Shu Duan, Jinao |
Author_xml | – sequence: 1 givenname: Lei surname: Yang fullname: Yang, Lei organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 2 givenname: Yue surname: Wan fullname: Wan, Yue organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 3 givenname: Wenwen surname: Li fullname: Li, Wenwen organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 4 givenname: Chen surname: Liu fullname: Liu, Chen organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 5 givenname: Hui-fang surname: Li fullname: Li, Hui-fang organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 6 givenname: Zhiling surname: Dong fullname: Dong, Zhiling organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 7 givenname: Ke surname: Zhu fullname: Zhu, Ke organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 8 givenname: Shu orcidid: 0000-0003-0562-3787 surname: Jiang fullname: Jiang, Shu email: jiangshu2020@126.com organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 9 givenname: Erxin surname: Shang fullname: Shang, Erxin organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 10 givenname: Dawei surname: Qian fullname: Qian, Dawei organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine – sequence: 11 givenname: Jinao surname: Duan fullname: Duan, Jinao email: dja@njutcm.edu.cn organization: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35129656$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1r3DAQhkVJaTZp_0APRdBLL05HliXZxxD6BYFeUuhNyPZoo2BbW0ku6b_vbDchNJRQzUFCet5X0sycsKMlLsjYawFnAsC8zwC1khXUdSVEK2SlnrGNaGRdgRbNEduAMKoyqmuP2UnONwCibrV-wY6lEnWnld6w71cubbGEZcvDUjDTyk3cTzE57paRh5L5jMX1cQp55iVyvN3RKfJyjXxyt66En8jRexwIjZ6n67V3qX_Jnns3ZXx1N5-ybx8_XF18ri6_fvpycX5ZDaoRpaplB6r10ECroOulNkYqaJ3qB9d7IX03mg58jyBRNAbEaPxo0Gg5-EZ5lKfs3cF3l-KPlT5g55AHnCa3YFyzrbVRSkujm_9AKSRQbgl9-wi9iWui1OwpSaMFoR6orZvQhsXHktywN7XnuqMci060RJ39g6IYcQ4DldQH2v9L8Obu8rWfcbS7FGaXftn7qhHQHoAhxZwTejuEQoWICzmHyQqw-waxhwax1CD2T4PY_ZPrR9J79ydF8iDKBC9bTA_ZeEL1G_zwyY0 |
CitedBy_id | crossref_primary_10_1016_j_jep_2023_117378 crossref_primary_10_3389_fphar_2022_910493 crossref_primary_10_1016_j_prmcm_2024_100528 crossref_primary_10_1166_jbt_2023_3249 crossref_primary_10_3390_antiox12071400 crossref_primary_10_1177_09731296241245179 crossref_primary_10_1039_D4FO00695J crossref_primary_10_1097_MD_0000000000037744 crossref_primary_10_3389_fphar_2023_1189971 crossref_primary_10_1016_j_tox_2022_153278 crossref_primary_10_3390_ijms232314685 crossref_primary_10_1016_j_arabjc_2024_105920 crossref_primary_10_3390_foods13142220 crossref_primary_10_4239_wjd_v15_i3_530 crossref_primary_10_3390_molecules29102198 crossref_primary_10_1007_s00210_023_02786_x crossref_primary_10_1016_j_jchromb_2024_124331 crossref_primary_10_1016_j_bioorg_2023_107090 crossref_primary_10_3390_metabo15020139 crossref_primary_10_1039_D3FO03259K crossref_primary_10_1016_j_cbi_2022_110193 crossref_primary_10_1016_j_ultsonch_2024_106986 crossref_primary_10_3389_fcimb_2024_1362773 crossref_primary_10_5582_bst_2024_01036 crossref_primary_10_1007_s00253_022_12044_4 crossref_primary_10_3389_fphar_2024_1442297 crossref_primary_10_1186_s40168_023_01690_z crossref_primary_10_3389_fphar_2023_1107494 crossref_primary_10_1016_j_foodchem_2022_133840 crossref_primary_10_1016_j_biopha_2023_114769 crossref_primary_10_1016_j_fitote_2024_105969 crossref_primary_10_1186_s12951_024_02506_4 crossref_primary_10_3390_metabo14040216 crossref_primary_10_1007_s00253_022_12197_2 crossref_primary_10_1016_j_prmcm_2022_100200 crossref_primary_10_3920_BM2022_0009 crossref_primary_10_1007_s00253_023_12763_2 |
Cites_doi | 10.1016/j.cgh.2013.04.020 10.1039/np9840100409 10.1038/s41575-019-0222-y 10.1016/j.cmet.2016.05.005 10.1053/j.gastro.2012.10.029 10.1194/jlr.RA119000200 10.3390/nu13030788 10.1186/1741-7007-11-61 10.1111/j.1440-1746.2006.04333.x 10.3389/fphar.2020.606227 10.1093/nar/gkab382 10.1538/expanim.63.415 10.1021/ac300698c 10.1093/nar/gkx1089 10.1124/jpet.115.225763 10.3390/foods10010199 10.1126/science.284.5423.2184 10.1111/nmo.13077 10.1177/0148607109336599 10.3389/fcimb.2015.00084 10.1248/bpb.b12-00632 10.3945/an.116.014407 10.5056/jnm.2014.20.1.31 10.1016/j.mayocp.2019.01.031 10.1053/j.gastro.2015.10.005 10.1007/s00431-020-03809-y 10.1016/j.crohns.2013.03.013 10.1016/j.jep.2020.113096 10.1093/carcin/21.5.999 10.3920/BM2018.0050 10.1590/fst.71921 10.3390/ijms18122645 10.1002/jms.1777 10.1053/j.gastro.2019.12.034 10.1053/j.gastro.2016.02.031 10.1016/j.ejphar.2009.04.045 10.1186/1752-153X-7-170 10.1038/nature11552 10.1053/j.gastro.2020.09.038 10.1053/j.gastro.2019.03.045 10.1080/19490976.2015.1134082 10.1053/j.gastro.2010.07.052 10.1016/j.cgh.2017.06.039 10.1111/j.1574-6968.2010.01911.x 10.1002/ptr.5410 10.1053/j.gastro.2016.07.044 10.18632/aging.203095 10.1016/j.bpg.2009.05.001 10.1007/s10620-012-2197-1 10.1186/s13020-020-00370-6 10.3390/app8030363 10.1111/jcmm.15586 10.1039/d0fo00865f 10.1152/ajpgi.00574.2004 10.1016/j.clnu.2012.08.010 10.1016/j.jphs.2019.06.012 10.1155/2011/152137 10.1042/0264-6021:3490189 10.1016/j.jep.2013.12.055 10.14309/ctg.0000000000000229 10.1016/j.bpg.2010.12.010 10.4049/immunohorizons.1900086 10.1111/j.1476-5381.2009.00464.x 10.3389/fmed.2019.00019 10.1111/apt.15106 10.2169/internalmedicine.8878-17 10.7150/thno.43528 10.1016/j.chom.2018.05.004 10.1038/s41598-017-10663-w 10.1002/mnfr.201500899 10.1186/s13020-020-00352-8 10.1053/j.gastro.2013.01.047 10.1186/s13104-020-05307-8 10.3390/ijms151221875 10.1016/j.cell.2016.01.013 10.1177/1756284820968423 10.1080/19490976.2015.1127483 10.1016/j.clnu.2013.03.004 10.1172/JCI106644 10.1021/acs.analchem.7b04424 10.1038/s41579-020-0433-9 10.12688/f1000research.18039.1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. COPYRIGHT 2022 Springer Copyright Springer Nature B.V. Feb 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: COPYRIGHT 2022 Springer – notice: Copyright Springer Nature B.V. Feb 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T7 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- LK8 M0C M0S M1P M2P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s00253-022-11813-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Biological Science Collection ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1432-0614 |
EndPage | 1631 |
ExternalDocumentID | A695121918 35129656 10_1007_s00253_022_11813_5 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization grantid: ZDXM-1-10 – fundername: National Natural Science Foundation of China grantid: No.82074126 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: No.82074126 |
GroupedDBID | --- -4W -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6J9 6NX 78A 7WY 7X7 88A 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AAHBH AAHNG AAIAL AAJKR AAJSJ AAKKN AANXM AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACUHS ACULB ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI C24 C6C CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBO EBS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IHR IJ- IKXTQ INH INR ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW KPH LAS LK8 LLZTM M0C M0L M1P M2P M4Y M7P MA- ML0 MM. N2Q NB0 NDZJH NHB NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBY SCLPG SCM SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z82 Z83 Z84 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8V Z8W Z8Y Z8Z Z91 Z92 ZMTXR ZOVNA ZXP ZY4 ~02 ~8M ~EX ~KM AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QL 7T7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c541t-239058f0408509b36773508a5bcabf13f9d790fbe03e14701d7fd7e763cf45fe3 |
IEDL.DBID | U2A |
ISSN | 0175-7598 1432-0614 |
IngestDate | Thu Jul 10 22:09:38 EDT 2025 Tue Aug 05 10:29:00 EDT 2025 Sat Aug 23 05:11:29 EDT 2025 Tue Jun 17 21:28:40 EDT 2025 Tue Jun 10 20:21:29 EDT 2025 Thu Apr 24 04:15:08 EDT 2025 Tue Jul 01 00:41:37 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Fri Feb 21 02:47:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Gut microbiota Rhubarb Metabolites Constipation |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-239058f0408509b36773508a5bcabf13f9d790fbe03e14701d7fd7e763cf45fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0562-3787 |
PMID | 35129656 |
PQID | 2633338015 |
PQPubID | 54065 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2675563764 proquest_miscellaneous_2626230100 proquest_journals_2633338015 gale_infotracmisc_A695121918 gale_infotracacademiconefile_A695121918 pubmed_primary_35129656 crossref_citationtrail_10_1007_s00253_022_11813_5 crossref_primary_10_1007_s00253_022_11813_5 springer_journals_10_1007_s00253_022_11813_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 2022-Feb 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Applied microbiology and biotechnology |
PublicationTitleAbbrev | Appl Microbiol Biotechnol |
PublicationTitleAlternate | Appl Microbiol Biotechnol |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Kaakoush (CR23) 2015; 5 Guijas, Montenegro-Burke, Domingo-Almenara, Palermo, Warth, Hermann, Koellensperger, Huan, Uritboonthai, Aisporna, Wolan, Spilker, Benton, Siuzdak (CR16) 2018; 90 Horai, Arita, Kanaya, Nihei, Ikeda, Suwa, Ojima, Tanaka, Tanaka, Aoshima, Oda, Kakazu, Kusano, Tohge, Matsuda, Sawada, Hirai, Nakanishi, Ikeda, Akimoto, Maoka, Takahashi, Ara, Sakurai, Suzuki, Shibata, Neumann, Iida, Tanaka, Funatsu, Matsuura, Soga, Taguchi, Saito, Nishioka (CR19) 2010; 45 Lu, Ji, Luo, Lan, Han, Chen, Liu, Lin, Lu, Wu, Guo, Zou (CR32) 2020; 11 Shimizu, Kageyama, Ogura, Yamada, Shimazu (CR55) 2018; 57 Costantini, Molinari, Farinon, Merendino (CR11) 2017; 18 Kelly, Yen, Grinspan, Kahn, Atreja, Lewis, Moore, Rubin, Kim, Serra, Nersesova, Fredell, Hunsicker, McDonald, Knight, Allegretti, Pekow, Absah, Hsu, Vincent, Khanna, Tangen, Crawford, Mattar, Chen, Fischer, Arsenescu, Feuerstadt, Goldstein, Kerman, Ehrlich, Wu, Laine (CR25) 2021; 160 Lan, Wang, Chen, Cao, Yang (CR30) 2020; 11 Mearin, Lacy, Chang, Chey, Lembo, Simren, Spiller (CR35) 2016; 150 Warner, Warner, Hardesty, Song, King, Kang, Chen, Xie, Yuan, Prodhan, Ma, Zhang, Rouchka, Maddipati, Whitlock, Li, Wang, McClain, Kirpich (CR73) 2019; 60 Bekele, Koike, Kobayashi (CR2) 2010; 305 Shin, Camilleri, Vijayvargiya, Busciglio, Burton, Ryks, Rhoten, Lueke, Saenger, Girtman, Zinsmeister (CR56) 2013; 11 Vriesman, Koppen, Camilleri, Di Lorenzo, Benninga (CR69) 2020; 17 Tautenhahn, Patti, Rinehart, Siuzdak (CR62) 2012; 84 Wang, Ma, Xu, He, Peng, Xiao (CR72) 2013; 7 Peng, Wu, Yang, Li (CR47) 2014; 63 Morrison, Preston (CR37) 2016; 7 Obata, Pachnis (CR40) 2016; 151 Yamada, Kanda (CR80) 2019; 140 Riezzo, Chimienti, Orlando, D'Attoma, Clemente, Russo (CR53) 2019; 10 Vijayvargiya, Camilleri, Burton, Busciglio, Lueke, Donato (CR68) 2019; 49 Plissonneau, Capel, Chassaing, Dupuit, Maillard, Wawrzyniak, Combaret, Dutheil, Etienne, Mairesse, Chesneau, Barnich, Boisseau (CR49) 2021; 13 Ohkusa, Koido, Nishikawa, Sato (CR41) 2019; 6 Bhattarai, Williams, Battaglioli, Whitaker, Till, Grover, Linden, Akiba, Kandimalla, Zachos, Kaunitz, Sonnenburg, Fischbach, Farrugia, Kashyap (CR6) 2018; 23 Cirillo, Capasso (CR9) 2015; 29 Steiger, Phan, Sun, Huang, Hess, Lopes, Korzenik, Langer, Traverso (CR57) 2020; 11 Bharucha, Dorn, Lembo, Pressman (CR5) 2013; 144 Kozoni, Tsioulias, Shiff, Rigas (CR28) 2000; 21 He, Han, Huang, Yang, Hu, Chen, Dou, Ren, Lin (CR18) 2020; 24 Kon, Ikarashi, Nagoya, Takayama, Kusunoki, Ishii, Ueda, Ochiai, Machida, Sugita, Sugiyama (CR27) 2014; 152 Feighner, Tan, McKee, Palyha, Hreniuk, Pong, Austin, Figueroa, MacNeil, Cascieri, Nargund, Bakshi, Abramovitz, Stocco, Kargman, O'Neill, Van Der Ploeg, Evans, Patchett, Smith, Howard (CR15) 1999; 284 Rao, Wong, Camilleri, Odunsi-Shiyanbade, McKinzie, Ryks, Burton, Carlson, Lamsam, Singh, Zinsmeister (CR51) 2010; 139 Liu, Liu, Liu, Xue, Jiang, Lei (CR31) 2021 Wahlström, Sayin, Marschall, Bäckhed (CR70) 2016; 24 Pattanakitsakul, Chongviriyaphan, Pakakasama, Apiwattanakul (CR44) 2020; 13 Xu, Ting-Lou, Zhu, Chen, Yang (CR79) 2009; 615 Vijayvargiya, Busciglio, Burton, Donato, Lueke, Camilleri (CR67) 2018; 16 Wu, Wei, Cheng, Qian, Xu, Yang, Wang, Chen, Sun, Lu (CR77) 2020; 10 Kashyap, Marcobal, Ursell, Larauche, Duboc, Earle, Sonnenburg, Ferreyra, Higginbottom, Million, Tache, Pasricha, Knight, Farrugia, Sonnenburg (CR24) 2013; 144 Trivić, Niseteo, Jadrešin, Hojsak (CR66) 2021; 180 Hou, Lin, Lin, Tsai (CR20) 2015; 355 Triantafyllou, Chang, Pimentel (CR65) 2014; 20 Bharucha, Wald (CR3) 2019; 94 Pang, Chong, Zhou, de Lima Morais, Chang, Barrette, Gauthier, Jacques, Li, Xia (CR45) 2021; 49 Pearl, Masoodi, Eiden, Brümmer, Gullick, McKeever, Whittaker, Nitch-Smith, Brown, Shute, Mills, Calder, Trebble (CR46) 2014; 8 Tremaroli, Bäckhed (CR64) 2012; 489 Wrzosek, Miquel, Noordine, Bouet, Joncquel Chevalier-Curt, Robert, Philippe, Bridonneau, Cherbuy, Robbe-Masselot, Langella, Thomas (CR76) 2013; 11 Mangian, Tappenden (CR34) 2009; 33 Mekjian, Phillips, Hofmann (CR36) 1971; 50 Parthasarathy, Chen, Chen, Chia, O'Connor, Wolf, Gaskins, Bharucha (CR43) 2016; 150 Wishart, Feunang, Marcu, Guo, Liang, Vázquez-Fresno, Sajed, Johnson, Li, Karu, Sayeeda, Lo, Assempour, Berjanskii, Singhal, Arndt, Liang, Badran, Grant, Serra-Cayuela, Liu, Mandal, Neveu, Pon, Knox, Wilson, Manach, Scalbert (CR75) 2018; 46 Lai, Manley (CR29) 1984; 1 Mancabelli, Milani, Lugli, Turroni, Mangifesta, Viappiani, Ticinesi, Nouvenne, Meschi, van Sinderen, Ventura (CR33) 2017; 7 Neyrinck, Etxeberria, Taminiau, Daube, Van Hul, Everard, Cani, Bindels, Delzenne (CR39) 2017; 61 Ridlon, Harris, Bhowmik, Kang, Hylemon (CR52) 2016; 7 Sender, Fuchs, Milo (CR54) 2016; 164 Takahashi, Sugi, Nakano, Kobayakawa, Nakanishi, Tsuda, Hosono, Kaminogawa (CR60) 2020; 4 Bharucha, Lacy (CR4) 2020; 158 Andromanakos, Skandalakis, Troupis, Filippou (CR1) 2006; 21 Takayama, Tsutsumi, Ishizu, Okamura (CR61) 2012; 35 Yang, Liu, Li, Bai, Shan, Gao, Dong (CR81) 2021; 13 Suo, Zhao, Qian, Li, Liu, Xie, Li (CR59) 2014; 15 Collins, Hogan, Skelly, Baird, Winter (CR10) 2009; 158 Chandrasekharan, Saeedi, Alam, Houser, Srinivasan, Tansey, Jones, Nusrat, Neish (CR7) 2019; 157 Jayasimhan, Yap, Roest, Rajandram, Chin (CR22) 2013; 32 Waitzberg, Logullo, Bittencourt, Torrinhas, Shiroma, Paulino, Teixeira-da-Silva (CR71) 2013; 32 Fan, Pedersen (CR14) 2021; 19 Dimidi, Christodoulides, Scott, Whelan (CR12) 2017; 8 Xiang, Zuo, Guo, Dong (CR78) 2020; 15 Wei, Luo, Zhang, Liu, Gasser, Tang, Ouyang, Wei, Lu, Yang, Waaga-Gasser, Deng, Lin (CR74) 2021; 264 Mugie, Benninga, Di Lorenzo (CR38) 2011; 25 Tian, Zuo, Guo, Li, Hu, Zhao, Li, Li, Zhou, Zhou, Li (CR63) 2020; 13 Durkin, Childs, Calder (CR13) 2021; 10 Qian, Song, Yi, Li, Sun, Zhao, Huo (CR50) 2018; 8 CR21 Sun, Wu, He, Jia, Wang, Liu, Hui, Li, Wei, Van Wijk, Van Wijk, Tsim, Li, Wang (CR58) 2020; 15 Park, Lee, Hussain, Lee, Park (CR42) 2017; 29 Kim, Deepinder, Morales, Hwang, Weitsman, Chang, Gunsalus, Pimentel (CR26) 2012; 57 Pimentel, Lin, Enayati, van den Burg, Lee, Chen, Park, Kong, Conklin (CR48) 2006; 290 Zhang, Yu, Kang, Zhu (CR82) 2011; 2011 Halvorsen, Staff, Ligaarden, Prydz, Kolset (CR17) 2000; 349 Chatoor, Emmnauel (CR8) 2009; 23 C Yang (11813_CR81) 2021; 13 Q Zhang (11813_CR82) 2011; 2011 P Pattanakitsakul (11813_CR44) 2020; 13 Y Peng (11813_CR47) 2014; 63 C Cirillo (11813_CR9) 2015; 29 R Kon (11813_CR27) 2014; 152 V Tremaroli (11813_CR64) 2012; 489 D Collins (11813_CR10) 2009; 158 11813_CR21 HS Mekjian (11813_CR36) 1971; 50 Y Obata (11813_CR40) 2016; 151 J Lan (11813_CR30) 2020; 11 B Halvorsen (11813_CR17) 2000; 349 D Chatoor (11813_CR8) 2009; 23 Z Pang (11813_CR45) 2021; 49 DL Waitzberg (11813_CR71) 2013; 32 SM Mugie (11813_CR38) 2011; 25 T Ohkusa (11813_CR41) 2019; 6 C Steiger (11813_CR57) 2020; 11 DJ Morrison (11813_CR37) 2016; 7 AE Bharucha (11813_CR5) 2013; 144 S Jayasimhan (11813_CR22) 2013; 32 AE Bharucha (11813_CR4) 2020; 158 AM Neyrinck (11813_CR39) 2017; 61 AE Bharucha (11813_CR3) 2019; 94 Z Lu (11813_CR32) 2020; 11 Q He (11813_CR18) 2020; 24 SM Lai (11813_CR29) 1984; 1 L Wei (11813_CR74) 2021; 264 R Sender (11813_CR54) 2016; 164 L Costantini (11813_CR11) 2017; 18 DS Pearl (11813_CR46) 2014; 8 M Pimentel (11813_CR48) 2006; 290 L Mancabelli (11813_CR33) 2017; 7 G Riezzo (11813_CR53) 2019; 10 PC Kashyap (11813_CR24) 2013; 144 JM Ridlon (11813_CR52) 2016; 7 K Takahashi (11813_CR60) 2020; 4 CR Kelly (11813_CR25) 2021; 160 F Mearin (11813_CR35) 2016; 150 C Plissonneau (11813_CR49) 2021; 13 DS Wishart (11813_CR75) 2018; 46 B Chandrasekharan (11813_CR7) 2019; 157 MH Vriesman (11813_CR69) 2020; 17 J Wu (11813_CR77) 2020; 10 SD Feighner (11813_CR15) 1999; 284 A Wahlström (11813_CR70) 2016; 24 H Horai (11813_CR19) 2010; 45 Y Bhattarai (11813_CR6) 2018; 23 Y Fan (11813_CR14) 2021; 19 H Suo (11813_CR59) 2014; 15 AZ Bekele (11813_CR2) 2010; 305 DR Warner (11813_CR73) 2019; 60 Y Qian (11813_CR50) 2018; 8 A Shin (11813_CR56) 2013; 11 K Shimizu (11813_CR55) 2018; 57 G Parthasarathy (11813_CR43) 2016; 150 L Xu (11813_CR79) 2009; 615 V Kozoni (11813_CR28) 2000; 21 E Dimidi (11813_CR12) 2017; 8 G Kim (11813_CR26) 2012; 57 Z Wang (11813_CR72) 2013; 7 P Vijayvargiya (11813_CR68) 2019; 49 K Takayama (11813_CR61) 2012; 35 P Vijayvargiya (11813_CR67) 2018; 16 LA Durkin (11813_CR13) 2021; 10 AS Rao (11813_CR51) 2010; 139 R Tautenhahn (11813_CR62) 2012; 84 M Sun (11813_CR58) 2020; 15 S Yamada (11813_CR80) 2019; 140 H Xiang (11813_CR78) 2020; 15 I Trivić (11813_CR66) 2021; 180 C Guijas (11813_CR16) 2018; 90 L Wrzosek (11813_CR76) 2013; 11 YM Park (11813_CR42) 2017; 29 ML Hou (11813_CR20) 2015; 355 P Liu (11813_CR31) 2021 NO Kaakoush (11813_CR23) 2015; 5 Y Tian (11813_CR63) 2020; 13 HF Mangian (11813_CR34) 2009; 33 K Triantafyllou (11813_CR65) 2014; 20 N Andromanakos (11813_CR1) 2006; 21 |
References_xml | – volume: 11 start-page: 1270 year: 2013 end-page: 1275 ident: CR56 article-title: Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2013.04.020 – volume: 1 start-page: 409 year: 1984 end-page: 441 ident: CR29 article-title: Prostaglandins, thromboxanes, leukotrienes, and related arachidonic acid metabolites publication-title: Nat Prod Rep doi: 10.1039/np9840100409 – volume: 17 start-page: 21 year: 2020 end-page: 39 ident: CR69 article-title: Management of functional constipation in children and adults publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-019-0222-y – volume: 24 start-page: 41 year: 2016 end-page: 50 ident: CR70 article-title: Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2016.05.005 – volume: 144 start-page: 211 year: 2013 end-page: 217 ident: CR5 article-title: American gastroenterological association medical position statement on constipation publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.10.029 – volume: 60 start-page: 2034 year: 2019 end-page: 2049 ident: CR73 article-title: Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury publication-title: J Lipid Res doi: 10.1194/jlr.RA119000200 – volume: 13 start-page: 788 year: 2021 ident: CR49 article-title: High-intensity interval training and α-linolenic acid supplementation improve DHA conversion and increase the abundance of gut mucosa-associated bacteria publication-title: Nutrients doi: 10.3390/nu13030788 – volume: 11 start-page: 61 year: 2013 ident: CR76 article-title: and influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent publication-title: Bmc Biol doi: 10.1186/1741-7007-11-61 – volume: 21 start-page: 638 year: 2006 end-page: 646 ident: CR1 article-title: Constipation of anorectal outlet obstruction: pathophysiology, evaluation and management publication-title: J Gastroenterol Hepatol doi: 10.1111/j.1440-1746.2006.04333.x – volume: 11 year: 2020 ident: CR32 article-title: Nanoparticle-mediated delivery of emodin via colonic irrigation attenuates renal injury in 5/6 nephrectomized rats publication-title: Front Pharmacol doi: 10.3389/fphar.2020.606227 – volume: 49 start-page: W388 year: 2021 end-page: W396 ident: CR45 article-title: MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab382 – volume: 63 start-page: 415 year: 2014 end-page: 422 ident: CR47 article-title: Gut microbial diversity in rat model induced by rhubarb publication-title: Exp Anim doi: 10.1538/expanim.63.415 – volume: 84 start-page: 5035 year: 2012 end-page: 5039 ident: CR62 article-title: XCMS Online: a web-based platform to process untargeted metabolomic data publication-title: Anal Chem doi: 10.1021/ac300698c – volume: 46 start-page: D608 year: 2018 end-page: D617 ident: CR75 article-title: HMDB 4.0: the human metabolome database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1089 – volume: 355 start-page: 125 year: 2015 end-page: 134 ident: CR20 article-title: The drug-drug effects of rhein on the pharmacokinetics and pharmacodynamics of clozapine in rat brain extracellular fluid by in vivo microdialysis publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.115.225763 – volume: 10 start-page: 199 year: 2021 ident: CR13 article-title: Omega-3 polyunsaturated fatty acids and the intestinal epithelium-a review publication-title: Foods doi: 10.3390/foods10010199 – volume: 284 start-page: 2184 year: 1999 end-page: 2188 ident: CR15 article-title: Receptor for motilin identified in the human gastrointestinal system publication-title: Science doi: 10.1126/science.284.5423.2184 – volume: 29 year: 2017 ident: CR42 article-title: The effects and mechanism of action of methane on ileal motor function publication-title: Neurogastroenterol Motil doi: 10.1111/nmo.13077 – volume: 33 start-page: 607 year: 2009 end-page: 617 ident: CR34 article-title: Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells publication-title: JPEN J Parenter Enteral Nutr doi: 10.1177/0148607109336599 – volume: 5 start-page: 84 year: 2015 ident: CR23 article-title: Insights into the role of in the human host publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2015.00084 – volume: 35 start-page: 2204 year: 2012 end-page: 2208 ident: CR61 article-title: The influence of rhein 8-O-β-D-glucopyranoside on the purgative action of sennoside A from rhubarb in mice publication-title: Biol Pharm Bull doi: 10.1248/bpb.b12-00632 – volume: 8 start-page: 484 year: 2017 end-page: 494 ident: CR12 article-title: Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation publication-title: Adv Nutr doi: 10.3945/an.116.014407 – ident: CR21 – volume: 20 start-page: 31 year: 2014 end-page: 40 ident: CR65 article-title: Methanogens, methane and gastrointestinal motility publication-title: J Neurogastroenterol doi: 10.5056/jnm.2014.20.1.31 – volume: 94 start-page: 2340 year: 2019 end-page: 2357 ident: CR3 article-title: Chronic constipation publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2019.01.031 – volume: 150 start-page: 367 year: 2016 end-page: 379 ident: CR43 article-title: Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.10.005 – volume: 180 start-page: 339 year: 2021 end-page: 351 ident: CR66 article-title: Use of probiotics in the treatment of functional abdominal pain in children-systematic review and meta-analysis publication-title: Eur J Pediatr doi: 10.1007/s00431-020-03809-y – volume: 8 start-page: 70 year: 2014 end-page: 79 ident: CR46 article-title: Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity publication-title: J Crohns Colitis doi: 10.1016/j.crohns.2013.03.013 – volume: 264 year: 2021 ident: CR74 article-title: Topical therapy with rhubarb navel plasters in patients with chronic constipation: results from a prospective randomized multicenter study publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2020.113096 – volume: 21 start-page: 999 year: 2000 end-page: 1005 ident: CR28 article-title: The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: differential effect on apoptosis in the presence of a colon carcinogen publication-title: Carcinogenesis doi: 10.1093/carcin/21.5.999 – volume: 10 start-page: 137 year: 2019 end-page: 147 ident: CR53 article-title: Effects of long-term administration of DSM-17938 on circulating levels of 5-HT and BDNF in adults with functional constipation publication-title: Benef Microbes doi: 10.3920/BM2018.0050 – year: 2021 ident: CR31 article-title: Effect of α-linolenic acid (ALA) on proliferation of probiotics and its adhesion to colonic epithelial cells publication-title: Food Sci Tech doi: 10.1590/fst.71921 – volume: 18 start-page: 2645 year: 2017 ident: CR11 article-title: Impact of omega-3 fatty acids on the gut microbiota publication-title: Int J Mol Sci doi: 10.3390/ijms18122645 – volume: 45 start-page: 703 year: 2010 end-page: 714 ident: CR19 article-title: MassBank: a public repository for sharing mass spectral data for life sciences publication-title: J Mass Spectrom doi: 10.1002/jms.1777 – volume: 158 start-page: 1232 year: 2020 end-page: 1249 ident: CR4 article-title: Mechanisms, evaluation, and management of chronic constipation publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.12.034 – volume: 150 start-page: 1393 year: 2016 end-page: 1407 ident: CR35 article-title: Bowel disorders publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.02.031 – volume: 615 start-page: 171 year: 2009 end-page: 176 ident: CR79 article-title: Emodin augments calcium activated chloride channel in colonic smooth muscle cells by Gi/Go protein publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2009.04.045 – volume: 7 start-page: 170 year: 2013 ident: CR72 article-title: Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA publication-title: Chem Cent J doi: 10.1186/1752-153X-7-170 – volume: 489 start-page: 242 year: 2012 end-page: 249 ident: CR64 article-title: Functional interactions between the gut microbiota and host metabolism publication-title: Nature doi: 10.1038/nature11552 – volume: 160 start-page: 183 year: 2021 end-page: 192 ident: CR25 article-title: Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT national registry publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.09.038 – volume: 157 start-page: 179 year: 2019 end-page: 192 ident: CR7 article-title: Interactions between commensal bacteria and enteric neurons, via FPR1 induction of ROS, increase gastrointestinal motility in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.03.045 – volume: 7 start-page: 189 year: 2016 end-page: 200 ident: CR37 article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism publication-title: Gut Microbes doi: 10.1080/19490976.2015.1134082 – volume: 139 start-page: 1549 year: 2010 end-page: 1558 ident: CR51 article-title: Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.07.052 – volume: 16 start-page: 522 year: 2018 end-page: 527 ident: CR67 article-title: Bile acid deficiency in a subgroup of patients with irritable bowel syndrome with constipation based on biomarkers in serum and fecal samples publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2017.06.039 – volume: 305 start-page: 49 year: 2010 end-page: 57 ident: CR2 article-title: Genetic diversity and diet specificity of ruminal revealed by 16S rRNA gene-based analysis publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2010.01911.x – volume: 29 start-page: 1488 year: 2015 end-page: 1493 ident: CR9 article-title: Constipation and botanical medicines: an overview publication-title: Phytother Res doi: 10.1002/ptr.5410 – volume: 151 start-page: 836 year: 2016 end-page: 844 ident: CR40 article-title: The effect of microbiota and the immune system on the development and organization of the enteric nervous system publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.07.044 – volume: 13 start-page: 15366 year: 2021 end-page: 15383 ident: CR81 article-title: The effects of psyllium husk on gut microbiota composition and function in chronically constipated women of reproductive age using 16S rRNA gene sequencing analysis publication-title: Aging doi: 10.18632/aging.203095 – volume: 23 start-page: 517 year: 2009 end-page: 530 ident: CR8 article-title: Constipation and evacuation disorders publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2009.05.001 – volume: 57 start-page: 3213 year: 2012 end-page: 3218 ident: CR26 article-title: is the predominant methanogen in patients with constipation-predominant IBS and methane on breath publication-title: Digest Dis Sci doi: 10.1007/s10620-012-2197-1 – volume: 15 start-page: 88 year: 2020 ident: CR78 article-title: What we already know about rhubarb: a comprehensive review publication-title: Chin Med doi: 10.1186/s13020-020-00370-6 – volume: 8 start-page: 363 year: 2018 ident: CR50 article-title: Preventive effects of YS4 on constipation induced by activated carbon in mice publication-title: Appl Sci doi: 10.3390/app8030363 – volume: 24 start-page: 9349 year: 2020 end-page: 9361 ident: CR18 article-title: Astragaloside IV alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation publication-title: J Cell Mol Med doi: 10.1111/jcmm.15586 – volume: 11 start-page: 9216 year: 2020 end-page: 9225 ident: CR30 article-title: Effects of inulin and isomalto-oligosaccharide on diphenoxylate-induced constipation, gastrointestinal motility-related hormones, short-chain fatty acids, and the intestinal flora in rats publication-title: Food Funct doi: 10.1039/d0fo00865f – volume: 290 start-page: G1089 year: 2006 end-page: G1095 ident: CR48 article-title: Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00574.2004 – volume: 32 start-page: 27 year: 2013 end-page: 33 ident: CR71 article-title: Effect of synbiotic in constipated adult women - a randomized, double-blind, placebo-controlled study of clinical response publication-title: Clin Nutr doi: 10.1016/j.clnu.2012.08.010 – volume: 140 start-page: 337 year: 2019 end-page: 344 ident: CR80 article-title: Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers publication-title: J Pharmacol Sci doi: 10.1016/j.jphs.2019.06.012 – volume: 2011 year: 2011 ident: CR82 article-title: Effect of ω-3 fatty acid on gastrointestinal motility after abdominal operation in rats publication-title: Mediat Inflamm doi: 10.1155/2011/152137 – volume: 349 start-page: 189 year: 2000 end-page: 193 ident: CR17 article-title: Lithocholic acid and sulphated lithocholic acid differ in the ability to promote matrix metalloproteinase secretion in the human colon cancer cell line CaCo-2 publication-title: Biochem J doi: 10.1042/0264-6021:3490189 – volume: 152 start-page: 190 year: 2014 end-page: 200 ident: CR27 article-title: Rheinanthrone, a metabolite of sennoside A, triggers macrophage activation to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2013.12.055 – volume: 11 start-page: e229 year: 2020 ident: CR57 article-title: Controlled delivery of bile acids to the colon publication-title: Clin Transl Gastroenterol doi: 10.14309/ctg.0000000000000229 – volume: 25 start-page: 3 year: 2011 end-page: 18 ident: CR38 article-title: Epidemiology of constipation in children and adults: a systematic review publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2010.12.010 – volume: 4 start-page: 178 year: 2020 end-page: 190 ident: CR60 article-title: Regulation of gene expression through gut microbiota-dependent DNA methylation in colonic epithelial cells publication-title: Immunohorizons doi: 10.4049/immunohorizons.1900086 – volume: 158 start-page: 1771 year: 2009 end-page: 1776 ident: CR10 article-title: Cyclic AMP-mediated chloride secretion is induced by prostaglandin F2alpha in human isolated colon publication-title: Brit J Pharmacol doi: 10.1111/j.1476-5381.2009.00464.x – volume: 6 start-page: 19 year: 2019 ident: CR41 article-title: Gut microbiota and chronic constipation: a review and update publication-title: Front Med doi: 10.3389/fmed.2019.00019 – volume: 49 start-page: 744 year: 2019 end-page: 758 ident: CR68 article-title: Bile and fat excretion are biomarkers of clinically significant diarrhoea and constipation in irritable bowel syndrome publication-title: Aliment Pharm Ther doi: 10.1111/apt.15106 – volume: 57 start-page: 507 year: 2018 end-page: 510 ident: CR55 article-title: Effects of rhubarb on intestinal dysmotility in critically ill patients publication-title: Intern Med doi: 10.2169/internalmedicine.8878-17 – volume: 10 start-page: 10665 year: 2020 end-page: 10679 ident: CR77 article-title: Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis publication-title: Theranostics doi: 10.7150/thno.43528 – volume: 23 start-page: 775 year: 2018 end-page: 785 ident: CR6 article-title: Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.004 – volume: 7 start-page: 9879 year: 2017 ident: CR33 article-title: Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses publication-title: Sci Rep doi: 10.1038/s41598-017-10663-w – volume: 61 start-page: 1500899 year: 2017 ident: CR39 article-title: Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201500899 – volume: 15 start-page: 72 year: 2020 ident: CR58 article-title: Integrated assessment of medicinal rhubarb by combination of delayed luminescence and HPLC fingerprint with emphasized on bioactivities based quality control publication-title: Chin Med doi: 10.1186/s13020-020-00352-8 – volume: 144 start-page: 967 year: 2013 end-page: 977 ident: CR24 article-title: Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.01.047 – volume: 13 start-page: 464 year: 2020 ident: CR44 article-title: Effect of vitamin A on intestinal mucosal injury in pediatric patients receiving hematopoietic stem cell transplantation and chemotherapy: a quasai-randomized trial publication-title: BMC Res Notes doi: 10.1186/s13104-020-05307-8 – volume: 15 start-page: 21875 year: 2014 end-page: 21895 ident: CR59 article-title: Therapeutic effect of activated carbon-induced constipation mice with Suo on treatment publication-title: Int J Mol Sci doi: 10.3390/ijms151221875 – volume: 164 start-page: 337 year: 2016 end-page: 340 ident: CR54 article-title: Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans publication-title: Cell doi: 10.1016/j.cell.2016.01.013 – volume: 13 start-page: 320810009 year: 2020 ident: CR63 article-title: Potential role of fecal microbiota in patients with constipation publication-title: Therap Adv Gastroenterol doi: 10.1177/1756284820968423 – volume: 7 start-page: 22 year: 2016 end-page: 39 ident: CR52 article-title: Consequences of bile salt biotransformations by intestinal bacteria publication-title: Gut Microbes doi: 10.1080/19490976.2015.1127483 – volume: 32 start-page: 928 year: 2013 end-page: 934 ident: CR22 article-title: Efficacy of microbial cell preparation in improving chronic constipation: a randomized, double-blind, placebo-controlled trial publication-title: Clin Nutr doi: 10.1016/j.clnu.2013.03.004 – volume: 50 start-page: 1569 year: 1971 end-page: 1577 ident: CR36 article-title: Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man publication-title: J Clin Invest doi: 10.1172/JCI106644 – volume: 90 start-page: 3156 year: 2018 end-page: 3164 ident: CR16 article-title: METLIN: a technology platform for identifying knowns and unknowns publication-title: Anal Chem doi: 10.1021/acs.analchem.7b04424 – volume: 19 start-page: 55 year: 2021 end-page: 71 ident: CR14 article-title: Gut microbiota in human metabolic health and disease publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-0433-9 – volume: 15 start-page: 72 year: 2020 ident: 11813_CR58 publication-title: Chin Med doi: 10.1186/s13020-020-00352-8 – volume: 152 start-page: 190 year: 2014 ident: 11813_CR27 publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2013.12.055 – volume: 25 start-page: 3 year: 2011 ident: 11813_CR38 publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2010.12.010 – volume: 2011 year: 2011 ident: 11813_CR82 publication-title: Mediat Inflamm doi: 10.1155/2011/152137 – volume: 140 start-page: 337 year: 2019 ident: 11813_CR80 publication-title: J Pharmacol Sci doi: 10.1016/j.jphs.2019.06.012 – volume: 60 start-page: 2034 year: 2019 ident: 11813_CR73 publication-title: J Lipid Res doi: 10.1194/jlr.RA119000200 – volume: 57 start-page: 507 year: 2018 ident: 11813_CR55 publication-title: Intern Med doi: 10.2169/internalmedicine.8878-17 – volume: 24 start-page: 41 year: 2016 ident: 11813_CR70 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.05.005 – volume: 10 start-page: 137 year: 2019 ident: 11813_CR53 publication-title: Benef Microbes doi: 10.3920/BM2018.0050 – volume: 4 start-page: 178 year: 2020 ident: 11813_CR60 publication-title: Immunohorizons doi: 10.4049/immunohorizons.1900086 – volume: 50 start-page: 1569 year: 1971 ident: 11813_CR36 publication-title: J Clin Invest doi: 10.1172/JCI106644 – volume: 290 start-page: G1089 year: 2006 ident: 11813_CR48 publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00574.2004 – volume: 1 start-page: 409 year: 1984 ident: 11813_CR29 publication-title: Nat Prod Rep doi: 10.1039/np9840100409 – volume: 7 start-page: 189 year: 2016 ident: 11813_CR37 publication-title: Gut Microbes doi: 10.1080/19490976.2015.1134082 – volume: 13 start-page: 464 year: 2020 ident: 11813_CR44 publication-title: BMC Res Notes doi: 10.1186/s13104-020-05307-8 – volume: 158 start-page: 1771 year: 2009 ident: 11813_CR10 publication-title: Brit J Pharmacol doi: 10.1111/j.1476-5381.2009.00464.x – volume: 284 start-page: 2184 year: 1999 ident: 11813_CR15 publication-title: Science doi: 10.1126/science.284.5423.2184 – volume: 49 start-page: 744 year: 2019 ident: 11813_CR68 publication-title: Aliment Pharm Ther doi: 10.1111/apt.15106 – volume: 305 start-page: 49 year: 2010 ident: 11813_CR2 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2010.01911.x – volume: 49 start-page: W388 year: 2021 ident: 11813_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab382 – volume: 158 start-page: 1232 year: 2020 ident: 11813_CR4 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.12.034 – volume: 21 start-page: 999 year: 2000 ident: 11813_CR28 publication-title: Carcinogenesis doi: 10.1093/carcin/21.5.999 – volume: 46 start-page: D608 year: 2018 ident: 11813_CR75 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1089 – volume: 7 start-page: 170 year: 2013 ident: 11813_CR72 publication-title: Chem Cent J doi: 10.1186/1752-153X-7-170 – volume: 13 start-page: 788 year: 2021 ident: 11813_CR49 publication-title: Nutrients doi: 10.3390/nu13030788 – volume: 10 start-page: 199 year: 2021 ident: 11813_CR13 publication-title: Foods doi: 10.3390/foods10010199 – volume: 84 start-page: 5035 year: 2012 ident: 11813_CR62 publication-title: Anal Chem doi: 10.1021/ac300698c – volume: 20 start-page: 31 year: 2014 ident: 11813_CR65 publication-title: J Neurogastroenterol doi: 10.5056/jnm.2014.20.1.31 – volume: 180 start-page: 339 year: 2021 ident: 11813_CR66 publication-title: Eur J Pediatr doi: 10.1007/s00431-020-03809-y – volume: 90 start-page: 3156 year: 2018 ident: 11813_CR16 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b04424 – volume: 489 start-page: 242 year: 2012 ident: 11813_CR64 publication-title: Nature doi: 10.1038/nature11552 – volume: 151 start-page: 836 year: 2016 ident: 11813_CR40 publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.07.044 – volume: 355 start-page: 125 year: 2015 ident: 11813_CR20 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.115.225763 – volume: 33 start-page: 607 year: 2009 ident: 11813_CR34 publication-title: JPEN J Parenter Enteral Nutr doi: 10.1177/0148607109336599 – volume: 63 start-page: 415 year: 2014 ident: 11813_CR47 publication-title: Exp Anim doi: 10.1538/expanim.63.415 – volume: 615 start-page: 171 year: 2009 ident: 11813_CR79 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2009.04.045 – volume: 15 start-page: 88 year: 2020 ident: 11813_CR78 publication-title: Chin Med doi: 10.1186/s13020-020-00370-6 – volume: 13 start-page: 320810009 year: 2020 ident: 11813_CR63 publication-title: Therap Adv Gastroenterol doi: 10.1177/1756284820968423 – volume: 18 start-page: 2645 year: 2017 ident: 11813_CR11 publication-title: Int J Mol Sci doi: 10.3390/ijms18122645 – volume: 16 start-page: 522 year: 2018 ident: 11813_CR67 publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2017.06.039 – volume: 32 start-page: 27 year: 2013 ident: 11813_CR71 publication-title: Clin Nutr doi: 10.1016/j.clnu.2012.08.010 – volume: 11 start-page: 1270 year: 2013 ident: 11813_CR56 publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2013.04.020 – volume: 35 start-page: 2204 year: 2012 ident: 11813_CR61 publication-title: Biol Pharm Bull doi: 10.1248/bpb.b12-00632 – volume: 45 start-page: 703 year: 2010 ident: 11813_CR19 publication-title: J Mass Spectrom doi: 10.1002/jms.1777 – volume: 61 start-page: 1500899 year: 2017 ident: 11813_CR39 publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201500899 – volume: 32 start-page: 928 year: 2013 ident: 11813_CR22 publication-title: Clin Nutr doi: 10.1016/j.clnu.2013.03.004 – volume: 150 start-page: 367 year: 2016 ident: 11813_CR43 publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.10.005 – volume: 7 start-page: 22 year: 2016 ident: 11813_CR52 publication-title: Gut Microbes doi: 10.1080/19490976.2015.1127483 – volume: 15 start-page: 21875 year: 2014 ident: 11813_CR59 publication-title: Int J Mol Sci doi: 10.3390/ijms151221875 – volume: 94 start-page: 2340 year: 2019 ident: 11813_CR3 publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2019.01.031 – volume: 264 year: 2021 ident: 11813_CR74 publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2020.113096 – volume: 23 start-page: 775 year: 2018 ident: 11813_CR6 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.004 – volume: 11 year: 2020 ident: 11813_CR32 publication-title: Front Pharmacol doi: 10.3389/fphar.2020.606227 – volume: 144 start-page: 967 year: 2013 ident: 11813_CR24 publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.01.047 – ident: 11813_CR21 doi: 10.12688/f1000research.18039.1 – volume: 164 start-page: 337 year: 2016 ident: 11813_CR54 publication-title: Cell doi: 10.1016/j.cell.2016.01.013 – volume: 19 start-page: 55 year: 2021 ident: 11813_CR14 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-0433-9 – volume: 24 start-page: 9349 year: 2020 ident: 11813_CR18 publication-title: J Cell Mol Med doi: 10.1111/jcmm.15586 – volume: 157 start-page: 179 year: 2019 ident: 11813_CR7 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.03.045 – volume: 11 start-page: e229 year: 2020 ident: 11813_CR57 publication-title: Clin Transl Gastroenterol doi: 10.14309/ctg.0000000000000229 – volume: 21 start-page: 638 year: 2006 ident: 11813_CR1 publication-title: J Gastroenterol Hepatol doi: 10.1111/j.1440-1746.2006.04333.x – volume: 5 start-page: 84 year: 2015 ident: 11813_CR23 publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2015.00084 – year: 2021 ident: 11813_CR31 publication-title: Food Sci Tech doi: 10.1590/fst.71921 – volume: 7 start-page: 9879 year: 2017 ident: 11813_CR33 publication-title: Sci Rep doi: 10.1038/s41598-017-10663-w – volume: 139 start-page: 1549 year: 2010 ident: 11813_CR51 publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.07.052 – volume: 10 start-page: 10665 year: 2020 ident: 11813_CR77 publication-title: Theranostics doi: 10.7150/thno.43528 – volume: 150 start-page: 1393 year: 2016 ident: 11813_CR35 publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.02.031 – volume: 11 start-page: 61 year: 2013 ident: 11813_CR76 publication-title: Bmc Biol doi: 10.1186/1741-7007-11-61 – volume: 13 start-page: 15366 year: 2021 ident: 11813_CR81 publication-title: Aging doi: 10.18632/aging.203095 – volume: 349 start-page: 189 year: 2000 ident: 11813_CR17 publication-title: Biochem J doi: 10.1042/0264-6021:3490189 – volume: 17 start-page: 21 year: 2020 ident: 11813_CR69 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-019-0222-y – volume: 8 start-page: 484 year: 2017 ident: 11813_CR12 publication-title: Adv Nutr doi: 10.3945/an.116.014407 – volume: 29 start-page: 1488 year: 2015 ident: 11813_CR9 publication-title: Phytother Res doi: 10.1002/ptr.5410 – volume: 144 start-page: 211 year: 2013 ident: 11813_CR5 publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.10.029 – volume: 8 start-page: 70 year: 2014 ident: 11813_CR46 publication-title: J Crohns Colitis doi: 10.1016/j.crohns.2013.03.013 – volume: 160 start-page: 183 year: 2021 ident: 11813_CR25 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.09.038 – volume: 23 start-page: 517 year: 2009 ident: 11813_CR8 publication-title: Best Pract Res Clin Gastroenterol doi: 10.1016/j.bpg.2009.05.001 – volume: 57 start-page: 3213 year: 2012 ident: 11813_CR26 publication-title: Digest Dis Sci doi: 10.1007/s10620-012-2197-1 – volume: 6 start-page: 19 year: 2019 ident: 11813_CR41 publication-title: Front Med doi: 10.3389/fmed.2019.00019 – volume: 8 start-page: 363 year: 2018 ident: 11813_CR50 publication-title: Appl Sci doi: 10.3390/app8030363 – volume: 29 year: 2017 ident: 11813_CR42 publication-title: Neurogastroenterol Motil doi: 10.1111/nmo.13077 – volume: 11 start-page: 9216 year: 2020 ident: 11813_CR30 publication-title: Food Funct doi: 10.1039/d0fo00865f |
SSID | ssj0012866 |
Score | 2.5420518 |
Snippet | Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough.... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1615 |
SubjectTerms | 25-hydroxycholecalciferol Acids Animals Applied Microbial and Cell Physiology Biomedical and Life Sciences Biotechnology Chenodeoxycholic acid Cholic acid Colon Constipation Correlation analysis Defecation Digestive system Drugs, Chinese Herbal - pharmacology Drugs, Chinese Herbal - therapeutic use Feces Feces - microbiology Gastrointestinal Microbiome Gastrointestinal tract gastrointestinal transit Gene sequencing genes Health aspects Herbal medicine High performance liquid chromatography Intestinal microflora intestinal microorganisms Intestine Laxatives Laxatives - analysis Laxatives - pharmacology Laxatives - therapeutic use Life Sciences Linolenic acid Liquid chromatography lithocholic acid Mass spectrometry Mass spectroscopy Metabolism Metabolites metabolome Metabolomics metagenomics Microbial Genetics and Genomics Microbiology Microbiota Microbiota (Symbiotic organisms) Moisture content mucus Next-generation sequencing Physiological aspects Probiotics prostaglandins Quadrupoles Rats Rheum - chemistry Rhubarb RNA, Ribosomal, 16S - genetics rRNA 16S Testing Transit time Water content |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9QwFA-6IuhBdP2qrhJB8KDBpPlqT7KIyyLoaRfmVpo0wYXZdp3pgP73vpdmujsLTnspJCkvyftK8vJ7hLzXQQpvVQ2CVBumqmhYFVXJjOkqby13IeF0__hpTs_V94Ve5A23dQ6r3OrEpKi7weMe-efSSHhAn-ovV78ZZo3C09WcQuMuuYfQZRjSZRfzggtU73RWCSaSWV1X-dJMujqHxh5PMEuGVy8l0zuG6bZ6vmGfbh2YJjt08pg8yg4kPZ5m_Am5E_pDcn9KKfn3kDy8ATD4lCzOUqA3fFPEhQBxxrYR1ugtbfuOXoxrehlGYITlxfqSjgMNKSYvUPAL6bL9k2DBaQ76oEOkq18b167cM3J-8u3s6ynLuRSY10qMrJQ111XkCGjGayeNtRJ8s1Y737ooZKw7W_PoApdBKMtFZ2NnA2gfH5WOQT4nB_3Qh5eEcu0q7gUPwlmluqptS1hzhLIWTpYyVgUR24FsfAYax3wXy2aGSE6D38DgN2nwG12Qj3ObqwlmY2_tDzg_Dcog_Nm3-SoB0IdoVs2xAb8RVLEAWo52aoLs-N3i7Qw3WXbXzTWnFeTdXIwtMR6tD8MG68ALupHzfXUsoq9ZowryYuKeuW8S_SxwpQvyactO1wT8v-Ov9tP7mjwokaNTUPkRORhXm_AGfKbRvU2C8Q_eCQzT priority: 102 providerName: ProQuest |
Title | Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb |
URI | https://link.springer.com/article/10.1007/s00253-022-11813-5 https://www.ncbi.nlm.nih.gov/pubmed/35129656 https://www.proquest.com/docview/2633338015 https://www.proquest.com/docview/2626230100 https://www.proquest.com/docview/2675563764 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8OwR9ED2_Vs8lguCDFvLZtI-7uuuheIjcwvpUmjTBg72u7HZB_3sn6Ye3hx7YPqSQSZsmmY8wM78AvFJOMKtljoyUp4nMfJpkXvIkTavMak2Nizjdn8_S04X8uFTLLils20e79y7JKKmHZLegnoPPkSchWVIk6gCOVNi74ype8MngO-BZ66FExZholWddqszf37Gnjq4L5Sta6ZqbNGqf-X2415mNZNLO8wO45epjuN0eJPnrGO5egRV8CMvzGN6NzySgQSATh7Yed-YlKeuKXDRbcukanP7VxfaSNGviYiSeI2gNklX5M4KBky7Ug6w92XzfmXJjHsFiPjt_d5p0JygkVknWJFzkVGWeBhgzmhuRai3QIiuVsaXxTPi80jn1xlHhmNSUVdpX2qHMsV4q78RjOKzXtXsKhCqTUcuoY0ZLWWVlyXGn4XjOjODCZyNg_UAWtoMXD6dcrIoBGDkOfoGDX8TBL9QI3gxtfrTgGjdSvw7zUwTOwzfbsksgwP4FDKtikqK1iAKYYV9O9iiRY-x-dT_DRcex24KnAi_U1_idl0N1aBmi0Gq33gUavFEiUnoTjQ6YazqVI3jSrp7h30SwrtCAHsHbfjn96cC_f_zZ_5E_hzs8rPAYWn4Ch81m516g5dSYMRzopR7D0WT6fjoP5Ydvn2ZYTmdnX76OIxv9BnMtDzk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRDlgKC8AgWMBOJAIxw_4uSAUIFWW9quENpKewtxYquVtknZzQr6p_iNjPNqtxJ7a_YSKXbkjOflnZlvAN5Iw4NMiRgFKQ59EdnQj6xgfhjmUaYU1abG6T4ahcNj8W0iJ2vwt6uFcWmVnU6sFXVeZu4_8g8s5HihPpWfzn_5rmuUi652LTQatjgwF7_xyDb_uP8V9_ctY3u74y9Dv-0q4GdSBJXP8JQvI0sdtBeNNQ-V4uilpFJnqbYBt3GuYmq1odwEQtEgVzZXBuUws0Jaw_G9t2BdcDzKDGD98-7o-48-bsGiJjqKRtlXMo7aMp26WM-5Fy5mynxX7Ml9uWQKrxuEKxbxWoi2tnx79-Fe67KSnYbHHsCaKTbhdtPE8mIT7l6BNHwIk3GdWo73xCFRoAJxc-0UOY2kRU5Oqzk5MxWy3vR0fkaqkpg6C9AQ9ETJNP1TA5GTNs2ElJbMThY6nelHcHwjdH4Mg6IszFMgVOqIZgE1gVZC5FGaMjzlGBYHmjNuIw-CjpBJ1kKbuw4b06QHZa6JnyDxk5r4ifTgfT_nvAH2WDn6ndufxEk9vjlL2-IFXJ_Dz0p2QvRUUfkHuJatpZEordny426Hk1ZbzJNL3vbgdf_YzXQZcIUpF24M_lAbU7pqjHJ4byoUHjxpuKf_Nu48O3TePdju2OlyAf__8Ger1_sK7gzHR4fJ4f7o4DlsMMfddUr7Fgyq2cK8QI-t0i9bMSHw86Yl8x-5nkoo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEJTXQgEjgThAVDuO4-SAUEVZtRQqDq20tzRObFFpm5TdrKB_jV_HjPNotxJ7a3KJFDuyx_NyPPMNwBtlpSh0lKIgpXEQJS4OEheFQRyXSaE1N9bjdH8_iHePoq8TNVmDv30uDIVV9jrRK-qyLugf-VYYS7xQn6ot14VF_NgZfzr7FVAFKTpp7ctptCyyb89_4_Zt_nFvB9f6bRiOvxx-3g26CgNBoSLRBCHu-FXiOMF88dTIWGuJHkuuTJEbJ6RLS51yZyyXVkSai1K7UluUycJFylmJ370BN7GTIBnTk2Gzh2q_PSdF8xxolSZdwo5P2yNHg05Pw4DSPmWgloziVdNwyTZeOaz1NnB8H-51zivbbrntAazZagNuteUszzfg7iVww4cwOfRB5vjMCJMCVQn1dVPkOZZXJTtp5uzUNsiE05P5KWtqZn08oGXok7Jp_sdDkrMu4ITVjs1-Lkw-M4_g6Fqo_BjWq7qyT4FxZRJeCG6F0VFUJnke4n7HhqkwMpQuGYHoCZkVHcg51dqYZgM8syd-hsTPPPEzNYL3Q5-zFuJjZet3tD4ZyT9-uci7NAYcHyFpZdsx-qxoBgSOZXOpJcptsfy6X-Gs0xvz7ILLR_B6eE09KRausvWC2uCNepnzVW00Ib_pOBrBk5Z7hrlJ8vHQjR_Bh56dLgbw_4k_Wz3eV3Ab5TH7tnew_xzuhMTcPrZ9E9ab2cK-QNetMS-9jDA4vm6h_AfUTUz4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+intestinal+flora+and+its+metabolism+to+explore+the+laxative+effects+of+rhubarb&rft.jtitle=Applied+microbiology+and+biotechnology&rft.au=Yang%2C+Lei&rft.au=Wan%2C+Yue&rft.au=Li%2C+Wenwen&rft.au=Liu%2C+Chen&rft.date=2022-02-01&rft.pub=Springer&rft.issn=0175-7598&rft.volume=106&rft.issue=4&rft.spage=1615&rft_id=info:doi/10.1007%2Fs00253-022-11813-5&rft.externalDocID=A695121918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0175-7598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0175-7598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0175-7598&client=summon |