Capturing ion trapping and detrapping dynamics in electrochromic thin films

Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreov...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 2294 - 12
Main Authors Zhang, Renfu, Zhou, Qinqi, Huang, Siyuan, Zhang, Yiwen, Wen, Rui-Tao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO 3 . Specifically, formation of orthorhombic Li 2 WO 4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W 4+ -Li 2 WO 4 , amorphous Li 2 WO 4 and W 4+ -Li 2 O. The non-decomposable W 4+ -Li 2 WO 4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W 5+  ↔ W 6+ sites, bipolaron hopping between W 4+  ↔ W 6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO 3 , but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO 3 .
AbstractList Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO . Specifically, formation of orthorhombic Li WO during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W -Li WO , amorphous Li WO and W -Li O. The non-decomposable W -Li WO couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W  ↔ W sites, bipolaron hopping between W  ↔ W sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO , but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO 3 . Specifically, formation of orthorhombic Li 2 WO 4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W 4+ -Li 2 WO 4 , amorphous Li 2 WO 4 and W 4+ -Li 2 O. The non-decomposable W 4+ -Li 2 WO 4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W 5+  ↔ W 6+ sites, bipolaron hopping between W 4+  ↔ W 6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO 3 , but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO 3 .
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.
Abstract Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO 3 . Specifically, formation of orthorhombic Li 2 WO 4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W 4+ -Li 2 WO 4 , amorphous Li 2 WO 4 and W 4+ -Li 2 O. The non-decomposable W 4+ -Li 2 WO 4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W 5+  ↔ W 6+ sites, bipolaron hopping between W 4+  ↔ W 6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO 3 , but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO3.
ArticleNumber 2294
Author Zhou, Qinqi
Wen, Rui-Tao
Zhang, Renfu
Zhang, Yiwen
Huang, Siyuan
Author_xml – sequence: 1
  givenname: Renfu
  orcidid: 0000-0002-8271-6330
  surname: Zhang
  fullname: Zhang, Renfu
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 2
  givenname: Qinqi
  surname: Zhou
  fullname: Zhou, Qinqi
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 3
  givenname: Siyuan
  orcidid: 0000-0002-7050-9457
  surname: Huang
  fullname: Huang, Siyuan
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 4
  givenname: Yiwen
  orcidid: 0000-0002-1181-6908
  surname: Zhang
  fullname: Zhang, Yiwen
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 5
  givenname: Rui-Tao
  orcidid: 0000-0002-3153-1539
  surname: Wen
  fullname: Wen, Rui-Tao
  email: Wenrt@sustech.edu.cn
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38480724$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLaV_gAOKxIVLwB8Txz4htKKlohIXOFuO7ex6ldjBziL13-M0ZWl7qH2wZ_ze04znvUYnIQaH0FuCPxLMxKcMBHhbYwo18AbjWrxAZxQDqUlL2cmD-ym6yHmPy2KSCIBX6JQJELilcIa-b_Q0H5IP28rHUM1JT9MS6GAr646hvQ169CZXPlRucGZO0exSLKlq3pVc74cxv0Evez1kd3F_nqNfl19_br7VNz-urjdfbmrTAJlrSpl1zGKhjbMYaym164kxQnagO9s3YLkxvBySScd6LjCRHbUCuGHLPkfXq66Neq-m5EedblXUXt0lYtoqnWZvBqcwLnqs0Y2VHFppNcdWWgBHO90K0Ratz6vWdOhGZ40Lpefhkejjl-B3ahv_KIIlayWFovDhXiHF3weXZzX6bNww6ODiISsqm5ZwDpwU6Psn0H08pFD-akGVKYJoaEG9e1jSsZZ_QysAugJMijkn1x8hBKvFHGo1hyrmUHfmUKKQxBOS8bOey9BLW354nspWap4Wo7j0v-xnWH8BVEnOSg
CitedBy_id crossref_primary_10_1016_j_jpowsour_2025_236350
crossref_primary_10_1016_j_jechem_2024_06_023
crossref_primary_10_1016_j_electacta_2024_145057
crossref_primary_10_1002_adma_202410355
crossref_primary_10_1039_D4TA08037H
crossref_primary_10_1002_aenm_202403414
crossref_primary_10_1016_j_ceramint_2024_06_179
crossref_primary_10_1007_s40820_024_01604_0
crossref_primary_10_1016_j_cej_2024_159068
crossref_primary_10_1016_j_matt_2024_09_021
crossref_primary_10_1016_j_cej_2024_156109
crossref_primary_10_1002_aenm_202402603
crossref_primary_10_1007_s40820_024_01563_6
crossref_primary_10_1016_j_jpowsour_2025_236435
crossref_primary_10_1002_lpor_202401770
crossref_primary_10_1002_smll_202407708
crossref_primary_10_1016_j_solmat_2024_113021
crossref_primary_10_1063_5_0244549
crossref_primary_10_1088_1402_4896_ad6fde
crossref_primary_10_1002_admt_202401295
Cites_doi 10.1016/S0927-0248(01)00103-9
10.1063/1.1767971
10.1021/acs.chemmater.6b01503
10.1103/PhysRevB.51.16689
10.1016/S0013-4686(02)00372-9
10.1016/j.apsusc.2021.150898
10.1002/aenm.201902066
10.1142/9789811217869_0002
10.1364/JOSAA.35.000817
10.1002/sia.740190187
10.1038/nature12398
10.1038/s41467-018-04762-z
10.1038/s41467-021-22429-0
10.1103/PhysRevLett.91.010602
10.1002/9783527679850
10.1016/B978-044489930-9/50024-6
10.1038/s41598-020-65191-x
10.1038/s41928-021-00697-4
10.1021/ja01348a011
10.1103/PhysRevB.48.13691
10.1016/j.renene.2018.04.038
10.1016/j.electacta.2019.06.129
10.1021/acsami.0c22921
10.1016/j.tsf.2006.11.067
10.1149/1.2085985
10.1016/j.mtphys.2022.100958
10.1038/s41560-021-00835-4
10.1039/B612174H
10.1088/0022-3727/45/22/225303
10.18280/ijht.34S241
10.1063/1.88464
10.1149/1.2086652
10.1002/adma.201601109
10.1016/S0013-4686(02)00102-0
10.1364/AO.8.S1.000192
10.1016/j.tsf.2014.02.002
10.1103/PhysRevB.78.245205
10.1021/acs.nanolett.0c00052
10.1088/1361-6463/aa8e88
10.1038/nmat1577
10.1063/1.4926488
10.1021/acsami.5b09035
10.1149/1.2133399
10.1016/j.mser.2019.100524
10.1021/ja011315x
10.1016/S0013-4686(99)00027-4
10.1002/adom.202200903
10.1038/s41467-019-10803-y
10.1016/j.ijsbe.2012.09.001
10.1007/978-3-642-01896-1
10.1038/s41560-022-01177-5
10.1038/s41563-022-01242-0
10.1007/978-94-009-5107-5_34
10.1038/nmat4368
10.1016/j.scriptamat.2021.114090
10.1038/s41560-021-00816-7
10.1021/acsami.5b09430
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-46500-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_00df535a5d96479da60d9d44e2ba7887
PMC10937924
38480724
10_1038_s41467_024_46500_8
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-223de3d08aced00a99aef1cc89b4abdf54d6cc654d939e3f68019b2d846c3c3c3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:46:03 EDT 2025
Thu Aug 21 18:34:57 EDT 2025
Fri Jul 11 00:13:42 EDT 2025
Wed Aug 13 07:02:07 EDT 2025
Thu Apr 03 07:03:45 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Tue Jul 01 02:11:02 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-223de3d08aced00a99aef1cc89b4abdf54d6cc654d939e3f68019b2d846c3c3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8271-6330
0000-0002-3153-1539
0000-0002-7050-9457
0000-0002-1181-6908
OpenAccessLink https://www.proquest.com/docview/2956504852?pq-origsite=%requestingapplication%
PMID 38480724
PQID 2956504852
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_00df535a5d96479da60d9d44e2ba7887
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10937924
proquest_miscellaneous_2957166461
proquest_journals_2956504852
pubmed_primary_38480724
crossref_primary_10_1038_s41467_024_46500_8
crossref_citationtrail_10_1038_s41467_024_46500_8
springer_journals_10_1038_s41467_024_46500_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-14
PublicationDateYYYYMMDD 2024-03-14
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BisquertJVikhrenkoVSAnalysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processesElectrochim. Acta200247397739881:CAS:528:DC%2BD38Xms1anurw%3D10.1016/S0013-4686(02)00372-9
TantardiniCOganovARThermochemical electronegativities of the elementsNat. Commun.2021121:CAS:528:DC%2BB3MXoslGktrk%3D33828104802701310.1038/s41467-021-22429-02021NatCo..12.2087T
PrimiceriVFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.20201010.1038/s41598-020-65191-x
LeeS-HCheongHMTracyCEMascarenhasABensonDKDebSKRaman spectroscopic studies of electrochromic a-WO3Electrochim. Acta199944311131151:CAS:528:DyaK1MXjvV2iurc%3D10.1016/S0013-4686(99)00027-4
GhoshANortonBAdvances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildingsRenew. Energy.20181261003103110.1016/j.renene.2018.04.038
HeTOptical absorption of free small polarons at high temperaturesPhys. Rev. B19955116689166941:CAS:528:DyaK2MXmsVChsbY%3D10.1103/PhysRevB.51.166891995PhRvB..5116689H
BisquertJFractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walkPhys. Rev. Lett.2003910106021290652810.1103/PhysRevLett.91.0106022003PhRvL..91a0602B
WangCKSahuDRWangSCLinCKHuangJLStructural evolution and chemical bonds in electrochromic WO3 films during electrochemical cyclesJ. Phys. D: Appl. Phys.20124522530310.1088/0022-3727/45/22/2253032012JPhD...45v5303W
BasergaANanostructured tungsten oxide with controlled properties: synthesis and Raman characterizationThin Solid Films2007515646564691:CAS:528:DC%2BD2sXkvFKqu74%3D10.1016/j.tsf.2006.11.0672007TSF...515.6465B
WenRTArvizuMAMorales-LunaMGranqvistCGNiklassonGAIon trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoringChem. Mater.201628467046761:CAS:528:DC%2BC28Xps1Ors7w%3D10.1021/acs.chemmater.6b01503
SelkowitzSReflections on surface morphologyNat. Energy2021645645710.1038/s41560-021-00835-42021NatEn...6..456S
SbarNLPodbelskiLYangHMPeaseBElectrochromic dynamic windows for office buildingsJ. Sustain. Built Environ.2012112513910.1016/j.ijsbe.2012.09.001
HashimotoSMatsuokaHLifetime of electrochromism of amorphous  WO3‐TiO2 thin filmsJ. Electrochem. Soc.1991138240324081:CAS:528:DyaK3MXlsVCrt7k%3D10.1149/1.20859851991JElS..138.2403H
Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, (Elsevier: Amsterdam, 1995).
FaughnanBWCrandallRSLampertMAModel for the bleaching of WO3 electrochromic films by an electric fieldAppl. Phys. Lett.1975272752771:CAS:528:DyaE2MXlsFKksr4%3D10.1063/1.884641975ApPhL..27..275F
WeiYXLiJYLiuWMYanYLong-life inorganic electrochromic device based on WO3 and PB films with fast switching respondJ. Phys.: Conf. Ser.20232639012028
ShaoPHuangSLiBHuangQZhangYWenR-TEradicating β-trap induced bleached-state degradation in amorphous TiO2 electrochromic filmsMater. Today Phys.2023301009581:CAS:528:DC%2BB3sXmslCqsQ%3D%3D10.1016/j.mtphys.2022.100958
Mortimer, R. J., Rosseinsky, D. R., Monk, P. M. S., Electrochromic Materials and Devices, (Wiley‐VCH Verlag GmbH & Co. KGaA, 2013).
HussainZOptical constants and electrochromic characteristics of HxMoO3 and LixMoO3 bronzesJ. Opt. Soc. Am. A2018358178291:CAS:528:DC%2BC1MXlsl2jsbw%3D10.1364/JOSAA.35.0008172018JOSAA..35..817H
SteinbergKImaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopyNat. Energy2022813814810.1038/s41560-022-01177-52023NatEn...8..138S
SchirmerOFWittwerVBaurGBrandtGDependence of  WO3 Electrochromic Absorption on CrystallinityJ. Electrochem. Soc.19771247497531:CAS:528:DyaE2sXks1SksLs%3D10.1149/1.21333991977JElS..124..749S
ChenPWChangCTKoYFHsuSCLiKDWuJYFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.2020101:CAS:528:DC%2BB3cXhtVCmsbvK32439890724246310.1038/s41598-020-65191-x2020NatSR..10.8430C
ArvizuMAGranqvistCGNiklassonGARejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary resultsJ. Phys.: Conf. Ser.2016764012009
HashimotoSMatsuokaHProlonged lifetime of electrochromism of amorphous WO3-TiO2 thin filmsSurf. Interface Anal.1992194644681:CAS:528:DyaK38XkvF2mtLY%3D10.1002/sia.740190187
WenRTNiklassonGAGranqvistCGSustainable rejuvenation of electrochromic WO3 filmsACS Appl. Mater. Interfaces2015728100281041:CAS:528:DC%2BC2MXhvVWqsrrL2656258910.1021/acsami.5b09035
BaeJOptimized low-temperature fabrication of WO3 films for electrochromic devicesJ. Phys. D.20175046510510.1088/1361-6463/aa8e88
NiklassonGAGranqvistCGElectrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on theseJ. Mater. Chem.2007171271561:CAS:528:DC%2BD28XhtlaqsLzI10.1039/B612174H
CongSGengFZhaoZTungsten oxide materials for optoelectronic applicationsAdv. Mater.20162810518105281:CAS:528:DC%2BC28XhtlChtLfL2753028610.1002/adma.201601109
KeYSmart windows: electro‐, thermo‐, mechano‐, photochromics, and beyondAdv. Energ. Mater.2019919020661:CAS:528:DC%2BC1MXhs12qs7rL10.1002/aenm.201902066
LlordesAGarciaGGazquezJMillironDJTunable near-infrared and visible-light transmittance in nanocrystal-in-glass compositesNature20135003233261:CAS:528:DC%2BC3sXht1yjtrzE2395523210.1038/nature123982013Natur.500..323L
GranqvistCGElectrochromic materials: out of a nicheNat. Mater.2006589901:CAS:528:DC%2BD28XptFOgtw%3D%3D1644999110.1038/nmat15772006NatMa...5...89G
HuangSZhangRShaoPZhangYWenRTElectrochromic performance fading and restoration in amorphous TiO2 thin filmsAdv. Opt. Mater.20221022009031:CAS:528:DC%2BB38XhsVCgsbjN10.1002/adom.202200903
WoodKNOperando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytesNat. Commun2018929950672602144210.1038/s41467-018-04762-z2018NatCo...9.2490W
BuenoPRStructural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kineticsJ. Appl. Phys.200496210221091:CAS:528:DC%2BD2cXmsVWgtb4%3D10.1063/1.17679712004JAP....96.2102B
WangZWangXCongSGengFZhaoZFusing electrochromic technology with other advanced technologies: a new roadmap for future developmentMater. Sci. Eng. R. Rep.202014010052410.1016/j.mser.2019.100524
ArvizuMAGalvanostatic ion detrapping rejuvenates oxide thin filmsACS Appl. Mater. Interfaces2015726387263901:CAS:528:DC%2BC2MXhvFSmtbzE2659972910.1021/acsami.5b09430
BisquertJAnalysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processesElectrochim. Acta200247243524491:CAS:528:DC%2BD38XktFaru78%3D10.1016/S0013-4686(02)00102-0
PyperOKaschnerAThomsenbCIn situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytesSol. Energ. Mater. Sol. Cell2002715115221:CAS:528:DC%2BD38XitlSltw%3D%3D10.1016/S0927-0248(01)00103-9
SibilioSReview of electrochromic windows for residential applicationsInt. J. Heat. Technol.201634S481S48810.18280/ijht.34S241
ShaoZAll-solid-state proton-based tandem structures for fast-switching electrochromic devicesNat. Electron.2022545521:CAS:528:DC%2BB38XitV2ns7g%3D10.1038/s41928-021-00697-4
PaulingLThe nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atomsJ. Am. Chem. Soc.193254357035821:CAS:528:DyaA38XltlWrsQ%3D%3D10.1021/ja01348a011
BarnesPElectrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteriesNat. Mater.2022217958031:CAS:528:DC%2BB38Xht1SnsLbJ3550136510.1038/s41563-022-01242-02022NatMa..21..795B
MaibachJProbing a battery electrolyte drop with ambient pressure photoelectron spectroscopyNat. Commun.20191031300638662600610.1038/s41467-019-10803-y2019NatCo..10.3080M
YuHHigh performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalationElectrochim. Acta20193186446501:CAS:528:DC%2BC1MXht1Kku7fK10.1016/j.electacta.2019.06.129
FaughnanBWCrandallRSHeymanPMThe electrochromic properties of tungsten trioxide filmRCA Rev.1975361771:CAS:528:DyaE2MXltVGlsrk%3D
WangZChenGZhangHLiangLGaoJCaoHIn situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4Scr. Mater.20212031140901:CAS:528:DC%2BB3MXhsVSmtLjN10.1016/j.scriptamat.2021.114090
EminDOptical properties of large and small polarons and bipolaronsPhys. Rev. B19934813691137021:CAS:528:DyaK2cXos1Kqtg%3D%3D10.1103/PhysRevB.48.136911993PhRvB..4813691E
SaengerMFPolaron and phonon properties in proton intercalated amorphous tungsten oxide thin filmsPhys. Rev. B20087824520510.1103/PhysRevB.78.2452052008PhRvB..78x5205S
WenRTGranqvistCGNiklassonGAEliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin filmsNat. Mater.20151499610011:CAS:528:DC%2BC2MXhtlSlsLzN26259104458242410.1038/nmat43682015NatMa..14..996W
HeoSEnhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ionsNano Lett.202020207220791:CAS:528:DC%2BB3cXjsFWgs7o%3D3208101310.1021/acs.nanolett.0c000522020NanoL..20.2072H
HashimotoSMatsuokaHKagechikaHSusaMGotoKSDegradation of electrochromic amorphous  WO3 film in lithium‐salt electrolyteJ. Electrochem. Soc.1990137130013041:CAS:528:DyaK3cXitVKmtr8%3D10.1149/1.20866521990JElS..137.1300H
Livage, J. Small polarons in transition metal oxide glasses. Glass … Current Issues, NATO Science Series E:92, 408–418 (1985).
StrandMTPolymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulationNat. Energy202165465541:CAS:528:DC%2BB3MXhvVCrsb%2FM10.1038/s41560-021-00816-72021NatEn...6..546S
GranqvistCGElectrochromics for smart windows: Oxide-based thin films and devicesThin Solid Films20145641381:CAS:528:DC%2BC2cXjt1Sqtb8%3D10.1016/j.tsf.2014.02.0022014TSF...564....1G
GuoJUnprecedented electrochromic stability of a-WO(3-x) thin films achieved by using a hybrid-cationic electrolyteACS Appl. Mater.
CG Granqvist (46500_CR3) 2006; 5
S Heo (46500_CR31) 2020; 20
J Bisquert (46500_CR36) 2002; 47
J Bisquert (46500_CR17) 2002; 47
MT Strand (46500_CR8) 2021; 6
PR Bueno (46500_CR55) 2004; 96
CK Wang (46500_CR61) 2012; 45
MA Arvizu (46500_CR35) 2015; 7
GA Niklasson (46500_CR15) 2007; 17
S Hashimoto (46500_CR29) 1992; 19
SK Deb (46500_CR22) 1969; 8
KN Wood (46500_CR50) 2018; 9
BW Faughnan (46500_CR24) 1975; 27
A Baserga (46500_CR56) 2007; 515
46500_CR20
RT Wen (46500_CR34) 2015; 7
P Shao (46500_CR51) 2023; 30
S-H Lee (46500_CR57) 1999; 44
CA Triana (46500_CR43) 2015; 118
YX Wei (46500_CR27) 2023; 2639
46500_CR10
MF Saenger (46500_CR21) 2008; 78
D Emin (46500_CR18) 1993; 48
A Ghosh (46500_CR14) 2018; 126
S Hashimoto (46500_CR32) 1990; 137
MA Arvizu (46500_CR47) 2016; 764
V Primiceri (46500_CR25) 2020; 10
Z Hussain (46500_CR45) 2018; 35
J Guo (46500_CR40) 2021; 13
S Selkowitz (46500_CR9) 2021; 6
BW Faughnan (46500_CR23) 1975; 36
OF Schirmer (46500_CR42) 1977; 124
T He (46500_CR19) 1995; 51
J Bisquert (46500_CR16) 2003; 91
Y Ke (46500_CR13) 2019; 9
CG Granqvist (46500_CR6) 2014; 564
46500_CR44
46500_CR2
46500_CR1
J Maibach (46500_CR49) 2019; 10
RT Wen (46500_CR28) 2015; 14
Z Wang (46500_CR39) 2021; 203
L Pauling (46500_CR58) 1932; 54
P Barnes (46500_CR53) 2022; 21
Z Wang (46500_CR5) 2020; 140
NL Sbar (46500_CR12) 2012; 1
PW Chen (46500_CR26) 2020; 10
C Tantardini (46500_CR59) 2021; 12
S Huang (46500_CR46) 2022; 10
S Cong (46500_CR38) 2016; 28
S Hashimoto (46500_CR30) 1991; 138
C Santato (46500_CR52) 2001; 123
A Llordes (46500_CR4) 2013; 500
K Steinberg (46500_CR60) 2022; 8
RT Wen (46500_CR33) 2016; 28
H Yu (46500_CR41) 2019; 318
S Sibilio (46500_CR11) 2016; 34
J Bae (46500_CR48) 2017; 50
O Pyper (46500_CR54) 2002; 71
M Takayanagi (46500_CR37) 2021; 568
Z Shao (46500_CR7) 2022; 5
References_xml – reference: GhoshANortonBAdvances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildingsRenew. Energy.20181261003103110.1016/j.renene.2018.04.038
– reference: EminDOptical properties of large and small polarons and bipolaronsPhys. Rev. B19934813691137021:CAS:528:DyaK2cXos1Kqtg%3D%3D10.1103/PhysRevB.48.136911993PhRvB..4813691E
– reference: ChenPWChangCTKoYFHsuSCLiKDWuJYFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.2020101:CAS:528:DC%2BB3cXhtVCmsbvK32439890724246310.1038/s41598-020-65191-x2020NatSR..10.8430C
– reference: ShaoZAll-solid-state proton-based tandem structures for fast-switching electrochromic devicesNat. Electron.2022545521:CAS:528:DC%2BB38XitV2ns7g%3D10.1038/s41928-021-00697-4
– reference: GranqvistCGElectrochromic materials: out of a nicheNat. Mater.2006589901:CAS:528:DC%2BD28XptFOgtw%3D%3D1644999110.1038/nmat15772006NatMa...5...89G
– reference: Piette, M. A. et al. Chapter 2: Global Opportunities and Challenges in Energy and Environmental Issues in the Buildings Sector. World Scientific Series in Current Energy Issues, Energy Efficiency, pp. 31-132 https://buildings.lbl.gov/publications/chapter-2-global-opportunities-and (2022).
– reference: Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, (Elsevier: Amsterdam, 1995).
– reference: WangZChenGZhangHLiangLGaoJCaoHIn situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4Scr. Mater.20212031140901:CAS:528:DC%2BB3MXhsVSmtLjN10.1016/j.scriptamat.2021.114090
– reference: SchirmerOFWittwerVBaurGBrandtGDependence of  WO3 Electrochromic Absorption on CrystallinityJ. Electrochem. Soc.19771247497531:CAS:528:DyaE2sXks1SksLs%3D10.1149/1.21333991977JElS..124..749S
– reference: WeiYXLiJYLiuWMYanYLong-life inorganic electrochromic device based on WO3 and PB films with fast switching respondJ. Phys.: Conf. Ser.20232639012028
– reference: Alexandrov, A. S.; Devreese, J. T. Advances in Polaron Physics, (Springer, Berlin: Germany, 2010).
– reference: HashimotoSMatsuokaHKagechikaHSusaMGotoKSDegradation of electrochromic amorphous  WO3 film in lithium‐salt electrolyteJ. Electrochem. Soc.1990137130013041:CAS:528:DyaK3cXitVKmtr8%3D10.1149/1.20866521990JElS..137.1300H
– reference: PrimiceriVFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.20201010.1038/s41598-020-65191-x
– reference: LeeS-HCheongHMTracyCEMascarenhasABensonDKDebSKRaman spectroscopic studies of electrochromic a-WO3Electrochim. Acta199944311131151:CAS:528:DyaK1MXjvV2iurc%3D10.1016/S0013-4686(99)00027-4
– reference: SteinbergKImaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopyNat. Energy2022813814810.1038/s41560-022-01177-52023NatEn...8..138S
– reference: FaughnanBWCrandallRSLampertMAModel for the bleaching of WO3 electrochromic films by an electric fieldAppl. Phys. Lett.1975272752771:CAS:528:DyaE2MXlsFKksr4%3D10.1063/1.884641975ApPhL..27..275F
– reference: WoodKNOperando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytesNat. Commun2018929950672602144210.1038/s41467-018-04762-z2018NatCo...9.2490W
– reference: ArvizuMAGalvanostatic ion detrapping rejuvenates oxide thin filmsACS Appl. Mater. Interfaces2015726387263901:CAS:528:DC%2BC2MXhvFSmtbzE2659972910.1021/acsami.5b09430
– reference: WenRTGranqvistCGNiklassonGAEliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin filmsNat. Mater.20151499610011:CAS:528:DC%2BC2MXhtlSlsLzN26259104458242410.1038/nmat43682015NatMa..14..996W
– reference: HussainZOptical constants and electrochromic characteristics of HxMoO3 and LixMoO3 bronzesJ. Opt. Soc. Am. A2018358178291:CAS:528:DC%2BC1MXlsl2jsbw%3D10.1364/JOSAA.35.0008172018JOSAA..35..817H
– reference: WangZWangXCongSGengFZhaoZFusing electrochromic technology with other advanced technologies: a new roadmap for future developmentMater. Sci. Eng. R. Rep.202014010052410.1016/j.mser.2019.100524
– reference: Mortimer, R. J., Rosseinsky, D. R., Monk, P. M. S., Electrochromic Materials and Devices, (Wiley‐VCH Verlag GmbH & Co. KGaA, 2013).
– reference: HashimotoSMatsuokaHLifetime of electrochromism of amorphous  WO3‐TiO2 thin filmsJ. Electrochem. Soc.1991138240324081:CAS:528:DyaK3MXlsVCrt7k%3D10.1149/1.20859851991JElS..138.2403H
– reference: NiklassonGAGranqvistCGElectrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on theseJ. Mater. Chem.2007171271561:CAS:528:DC%2BD28XhtlaqsLzI10.1039/B612174H
– reference: SbarNLPodbelskiLYangHMPeaseBElectrochromic dynamic windows for office buildingsJ. Sustain. Built Environ.2012112513910.1016/j.ijsbe.2012.09.001
– reference: GuoJUnprecedented electrochromic stability of a-WO(3-x) thin films achieved by using a hybrid-cationic electrolyteACS Appl. Mater. Interfaces20211311067110771:CAS:528:DC%2BB3MXlt12rsbg%3D3364596610.1021/acsami.0c22921
– reference: SaengerMFPolaron and phonon properties in proton intercalated amorphous tungsten oxide thin filmsPhys. Rev. B20087824520510.1103/PhysRevB.78.2452052008PhRvB..78x5205S
– reference: DebSKNovel Electrophotographic SystemAAppl. Opt.196981921952007612410.1364/AO.8.S1.000192
– reference: BisquertJAnalysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processesElectrochim. Acta200247243524491:CAS:528:DC%2BD38XktFaru78%3D10.1016/S0013-4686(02)00102-0
– reference: BasergaANanostructured tungsten oxide with controlled properties: synthesis and Raman characterizationThin Solid Films2007515646564691:CAS:528:DC%2BD2sXkvFKqu74%3D10.1016/j.tsf.2006.11.0672007TSF...515.6465B
– reference: WangCKSahuDRWangSCLinCKHuangJLStructural evolution and chemical bonds in electrochromic WO3 films during electrochemical cyclesJ. Phys. D: Appl. Phys.20124522530310.1088/0022-3727/45/22/2253032012JPhD...45v5303W
– reference: PaulingLThe nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atomsJ. Am. Chem. Soc.193254357035821:CAS:528:DyaA38XltlWrsQ%3D%3D10.1021/ja01348a011
– reference: BisquertJVikhrenkoVSAnalysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processesElectrochim. Acta200247397739881:CAS:528:DC%2BD38Xms1anurw%3D10.1016/S0013-4686(02)00372-9
– reference: HuangSZhangRShaoPZhangYWenRTElectrochromic performance fading and restoration in amorphous TiO2 thin filmsAdv. Opt. Mater.20221022009031:CAS:528:DC%2BB38XhsVCgsbjN10.1002/adom.202200903
– reference: BaeJOptimized low-temperature fabrication of WO3 films for electrochromic devicesJ. Phys. D.20175046510510.1088/1361-6463/aa8e88
– reference: BuenoPRStructural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kineticsJ. Appl. Phys.200496210221091:CAS:528:DC%2BD2cXmsVWgtb4%3D10.1063/1.17679712004JAP....96.2102B
– reference: BarnesPElectrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteriesNat. Mater.2022217958031:CAS:528:DC%2BB38Xht1SnsLbJ3550136510.1038/s41563-022-01242-02022NatMa..21..795B
– reference: TantardiniCOganovARThermochemical electronegativities of the elementsNat. Commun.2021121:CAS:528:DC%2BB3MXoslGktrk%3D33828104802701310.1038/s41467-021-22429-02021NatCo..12.2087T
– reference: HashimotoSMatsuokaHProlonged lifetime of electrochromism of amorphous WO3-TiO2 thin filmsSurf. Interface Anal.1992194644681:CAS:528:DyaK38XkvF2mtLY%3D10.1002/sia.740190187
– reference: WenRTNiklassonGAGranqvistCGSustainable rejuvenation of electrochromic WO3 filmsACS Appl. Mater. Interfaces2015728100281041:CAS:528:DC%2BC2MXhvVWqsrrL2656258910.1021/acsami.5b09035
– reference: HeTOptical absorption of free small polarons at high temperaturesPhys. Rev. B19955116689166941:CAS:528:DyaK2MXmsVChsbY%3D10.1103/PhysRevB.51.166891995PhRvB..5116689H
– reference: BisquertJFractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walkPhys. Rev. Lett.2003910106021290652810.1103/PhysRevLett.91.0106022003PhRvL..91a0602B
– reference: YuHHigh performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalationElectrochim. Acta20193186446501:CAS:528:DC%2BC1MXht1Kku7fK10.1016/j.electacta.2019.06.129
– reference: MaibachJProbing a battery electrolyte drop with ambient pressure photoelectron spectroscopyNat. Commun.20191031300638662600610.1038/s41467-019-10803-y2019NatCo..10.3080M
– reference: StrandMTPolymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulationNat. Energy202165465541:CAS:528:DC%2BB3MXhvVCrsb%2FM10.1038/s41560-021-00816-72021NatEn...6..546S
– reference: TrianaCAGranqvistCGNiklassonGAElectrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide filmsJ. Appl. Phys.201511802490110.1063/1.49264882015JAP...118b4901T
– reference: PyperOKaschnerAThomsenbCIn situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytesSol. Energ. Mater. Sol. Cell2002715115221:CAS:528:DC%2BD38XitlSltw%3D%3D10.1016/S0927-0248(01)00103-9
– reference: Livage, J. Small polarons in transition metal oxide glasses. Glass … Current Issues, NATO Science Series E:92, 408–418 (1985).
– reference: SelkowitzSReflections on surface morphologyNat. Energy2021645645710.1038/s41560-021-00835-42021NatEn...6..456S
– reference: HeoSEnhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ionsNano Lett.202020207220791:CAS:528:DC%2BB3cXjsFWgs7o%3D3208101310.1021/acs.nanolett.0c000522020NanoL..20.2072H
– reference: FaughnanBWCrandallRSHeymanPMThe electrochromic properties of tungsten trioxide filmRCA Rev.1975361771:CAS:528:DyaE2MXltVGlsrk%3D
– reference: ArvizuMAGranqvistCGNiklassonGARejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary resultsJ. Phys.: Conf. Ser.2016764012009
– reference: GranqvistCGElectrochromics for smart windows: Oxide-based thin films and devicesThin Solid Films20145641381:CAS:528:DC%2BC2cXjt1Sqtb8%3D10.1016/j.tsf.2014.02.0022014TSF...564....1G
– reference: SibilioSReview of electrochromic windows for residential applicationsInt. J. Heat. Technol.201634S481S48810.18280/ijht.34S241
– reference: TakayanagiMTsuchiyaTUedaSHiguchiTTerabeKIn situ hard X-ray photoelectron spectroscopy on the origin of irreversibility in electrochromic LixWO3 thin filmsAppl. Surf. Sci.20215681508981:CAS:528:DC%2BB3MXhvVagsr7F10.1016/j.apsusc.2021.150898
– reference: LlordesAGarciaGGazquezJMillironDJTunable near-infrared and visible-light transmittance in nanocrystal-in-glass compositesNature20135003233261:CAS:528:DC%2BC3sXht1yjtrzE2395523210.1038/nature123982013Natur.500..323L
– reference: KeYSmart windows: electro‐, thermo‐, mechano‐, photochromics, and beyondAdv. Energ. Mater.2019919020661:CAS:528:DC%2BC1MXhs12qs7rL10.1002/aenm.201902066
– reference: ShaoPHuangSLiBHuangQZhangYWenR-TEradicating β-trap induced bleached-state degradation in amorphous TiO2 electrochromic filmsMater. Today Phys.2023301009581:CAS:528:DC%2BB3sXmslCqsQ%3D%3D10.1016/j.mtphys.2022.100958
– reference: WenRTArvizuMAMorales-LunaMGranqvistCGNiklassonGAIon trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoringChem. Mater.201628467046761:CAS:528:DC%2BC28Xps1Ors7w%3D10.1021/acs.chemmater.6b01503
– reference: CongSGengFZhaoZTungsten oxide materials for optoelectronic applicationsAdv. Mater.20162810518105281:CAS:528:DC%2BC28XhtlChtLfL2753028610.1002/adma.201601109
– reference: SantatoCOdziemkowskiMUlmannMAugustynskiJCrystallographically oriented mesoporous WO3 films: synthesis, characterization, and applicationsJ. Am. Chem. Soc.200112310639106491:CAS:528:DC%2BD3MXntlWrtrw%3D1167399510.1021/ja011315x
– volume: 71
  start-page: 511
  year: 2002
  ident: 46500_CR54
  publication-title: Sol. Energ. Mater. Sol. Cell
  doi: 10.1016/S0927-0248(01)00103-9
– volume: 96
  start-page: 2102
  year: 2004
  ident: 46500_CR55
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1767971
– volume: 28
  start-page: 4670
  year: 2016
  ident: 46500_CR33
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01503
– volume: 51
  start-page: 16689
  year: 1995
  ident: 46500_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.16689
– volume: 47
  start-page: 3977
  year: 2002
  ident: 46500_CR36
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00372-9
– volume: 568
  start-page: 150898
  year: 2021
  ident: 46500_CR37
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150898
– volume: 9
  start-page: 1902066
  year: 2019
  ident: 46500_CR13
  publication-title: Adv. Energ. Mater.
  doi: 10.1002/aenm.201902066
– volume: 36
  start-page: 177
  year: 1975
  ident: 46500_CR23
  publication-title: RCA Rev.
– ident: 46500_CR10
  doi: 10.1142/9789811217869_0002
– volume: 35
  start-page: 817
  year: 2018
  ident: 46500_CR45
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.35.000817
– volume: 19
  start-page: 464
  year: 1992
  ident: 46500_CR29
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740190187
– volume: 500
  start-page: 323
  year: 2013
  ident: 46500_CR4
  publication-title: Nature
  doi: 10.1038/nature12398
– volume: 9
  year: 2018
  ident: 46500_CR50
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-04762-z
– volume: 12
  year: 2021
  ident: 46500_CR59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22429-0
– volume: 91
  start-page: 010602
  year: 2003
  ident: 46500_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.010602
– volume: 2639
  start-page: 012028
  year: 2023
  ident: 46500_CR27
  publication-title: J. Phys.: Conf. Ser.
– ident: 46500_CR2
  doi: 10.1002/9783527679850
– ident: 46500_CR1
  doi: 10.1016/B978-044489930-9/50024-6
– volume: 10
  year: 2020
  ident: 46500_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65191-x
– volume: 5
  start-page: 45
  year: 2022
  ident: 46500_CR7
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00697-4
– volume: 54
  start-page: 3570
  year: 1932
  ident: 46500_CR58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01348a011
– volume: 48
  start-page: 13691
  year: 1993
  ident: 46500_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13691
– volume: 126
  start-page: 1003
  year: 2018
  ident: 46500_CR14
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2018.04.038
– volume: 318
  start-page: 644
  year: 2019
  ident: 46500_CR41
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.129
– volume: 13
  start-page: 11067
  year: 2021
  ident: 46500_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c22921
– volume: 515
  start-page: 6465
  year: 2007
  ident: 46500_CR56
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.11.067
– volume: 138
  start-page: 2403
  year: 1991
  ident: 46500_CR30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2085985
– volume: 30
  start-page: 100958
  year: 2023
  ident: 46500_CR51
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100958
– volume: 6
  start-page: 456
  year: 2021
  ident: 46500_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00835-4
– volume: 17
  start-page: 127
  year: 2007
  ident: 46500_CR15
  publication-title: J. Mater. Chem.
  doi: 10.1039/B612174H
– volume: 45
  start-page: 225303
  year: 2012
  ident: 46500_CR61
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/22/225303
– volume: 34
  start-page: S481
  year: 2016
  ident: 46500_CR11
  publication-title: Int. J. Heat. Technol.
  doi: 10.18280/ijht.34S241
– volume: 27
  start-page: 275
  year: 1975
  ident: 46500_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.88464
– volume: 137
  start-page: 1300
  year: 1990
  ident: 46500_CR32
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086652
– volume: 28
  start-page: 10518
  year: 2016
  ident: 46500_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601109
– volume: 47
  start-page: 2435
  year: 2002
  ident: 46500_CR17
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00102-0
– volume: 8
  start-page: 192
  year: 1969
  ident: 46500_CR22
  publication-title: Appl. Opt.
  doi: 10.1364/AO.8.S1.000192
– volume: 564
  start-page: 1
  year: 2014
  ident: 46500_CR6
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.02.002
– volume: 78
  start-page: 245205
  year: 2008
  ident: 46500_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.245205
– volume: 20
  start-page: 2072
  year: 2020
  ident: 46500_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00052
– volume: 50
  start-page: 465105
  year: 2017
  ident: 46500_CR48
  publication-title: J. Phys. D.
  doi: 10.1088/1361-6463/aa8e88
– volume: 5
  start-page: 89
  year: 2006
  ident: 46500_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1577
– volume: 764
  start-page: 012009
  year: 2016
  ident: 46500_CR47
  publication-title: J. Phys.: Conf. Ser.
– volume: 118
  start-page: 024901
  year: 2015
  ident: 46500_CR43
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4926488
– volume: 7
  start-page: 28100
  year: 2015
  ident: 46500_CR34
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09035
– volume: 124
  start-page: 749
  year: 1977
  ident: 46500_CR42
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133399
– volume: 140
  start-page: 100524
  year: 2020
  ident: 46500_CR5
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2019.100524
– volume: 123
  start-page: 10639
  year: 2001
  ident: 46500_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja011315x
– volume: 44
  start-page: 3111
  year: 1999
  ident: 46500_CR57
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00027-4
– volume: 10
  start-page: 2200903
  year: 2022
  ident: 46500_CR46
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202200903
– volume: 10
  year: 2019
  ident: 46500_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10803-y
– volume: 1
  start-page: 125
  year: 2012
  ident: 46500_CR12
  publication-title: J. Sustain. Built Environ.
  doi: 10.1016/j.ijsbe.2012.09.001
– volume: 10
  year: 2020
  ident: 46500_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65191-x
– ident: 46500_CR20
  doi: 10.1007/978-3-642-01896-1
– volume: 8
  start-page: 138
  year: 2022
  ident: 46500_CR60
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01177-5
– volume: 21
  start-page: 795
  year: 2022
  ident: 46500_CR53
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01242-0
– ident: 46500_CR44
  doi: 10.1007/978-94-009-5107-5_34
– volume: 14
  start-page: 996
  year: 2015
  ident: 46500_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4368
– volume: 203
  start-page: 114090
  year: 2021
  ident: 46500_CR39
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114090
– volume: 6
  start-page: 546
  year: 2021
  ident: 46500_CR8
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00816-7
– volume: 7
  start-page: 26387
  year: 2015
  ident: 46500_CR35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09430
SSID ssj0000391844
Score 2.5856318
Snippet Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be...
Abstract Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2294
SubjectTerms 140/146
147/143
639/301/1019
639/301/299
639/4077
Amorphous materials
Dynamics
Electrochromic cells
Electrochromism
Humanities and Social Sciences
Lithium oxides
Mirrors
multidisciplinary
Oxides
Performance degradation
Polarons
Science
Science (multidisciplinary)
Thin films
Trapping
Traps
Tungsten oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEFAeoQW5EjeImsR2Yh-holq1Kicq9WbZHoddqaTVbvbAv--Mkw1dXr2gHKL4ETlfxvOQ58HYu8o5NG-iy1VwMpd0UuiD8nmjW11GE1Cfo3jn8y_1_EKeXqrLO6W-yCdsSA88AHdUFNAqoZwCipk04OoCDEgZK-_IE464L8q8O8ZU4sHCoOkixyiZQuijtUw8AUVSLlErKXK9I4lSwv4_aZm_O0v-cmKaBNHJE_Z41CD5x2HlT9mD2D1jD4eakj_22Nmxu-lT7CFHyDm-jDIwfOOuAw5xeoShEv2aLzs-lsIJixWFKPN-gW3t8ur7-jm7OPn89XiejxUT8qBk2eco6yEKKLQLEYrCGeNiW4agjZfOI5AS6hBqvBlhomhrlE_GV4BKSBB0vWCz7rqLrxhvfQkNVK4JoZUKovO-AV3LWnpvmqAzVm7Rs2FMJ05VLa5sOtYW2g6IW0TcJsQtznk_zbkZkmn8c_Qn-inTSEqEnRqQPOxIHvY-8sjYwfaX2nF3rm2FRqFC1qWqjB1O3biv6LDEdfF6k8agKYnfW2bs5UAB00qEpkD8SmZM79DGzlJ3e7rlIuXupuxdjaGpH7Zk9HNdf8fi9f_AYp89qoj-yRtRHrBZv9rEN6hS9f5t2j23CfEdHA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6h52Il9QlBRVSA4UWlvlu1xuiu12WWTHvj3zDjeVMujyiFKYlv2eOyZeGa-YextZS3-3gSbS29FLshS6Lx0eas6VQbtUZ-jeOdv35vTM_FlIRfpwG1IbpW7PTFu1LD2dEZ-VKEiL5HdZPVh8zOnrFFkXU0pNG6zOwRdRi5d7aKdz1gI_VwJkWJlilodDSLuDCiYcoHNFbnak0cRtv9fuubfLpN_2E2jODp5wO4nPZJ_nCb-IbsV-kfs7pRZ8tdj9vXYbsYYgciR8BwbIxyGc2574BDmR5jy0Q981fOUEMcvtxSozMclvutWF5fDE3Z28vnH8Wme8ibkXopyzFHiQ6ihUNYHKAqrtQ1d6b3STlgHnRTQeN_gTdc61F2DUkq7ClAV8TVdT9lBv-7Dc8Y7V0ILlW2974SEYJ1rQTWiEc7p1quMlTvqGZ9AxSm3xYWJxu1amYniBiluIsUN1nk319lMkBo3lv5EkzKXJDjs-GK9PTdpdZmiwFHV0kqgwFoNtilAgxChcpbcJTN2uJtSk9boYK45KmNv5s-4ushkYvuwvopl8IcSx1tm7NnEAXNPakXh-JXImNrjjb2u7n_pV8uI4E0YXq2mqu93bHTdr__T4sXNw3jJ7lXE2eRtKA7Zwbi9Cq9QZRrd67gufgNyDhTT
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiPIMtMhI3CAicezEPsKKqmoFJyr1ZvmV7kptttpND_x7ZpwHWihIKIcofkTj8Tgzjme-AXjHrcXtTbS59Fbkgk4KnZcub1Sryqg92nMU7_z1W31yLk4v5MUe8CkWJjntJ0jL9JmevMM-bkVa0qhRcoFGRZGre3CfoNtJqhf1Yv6vQojnSogxPqao1B1dd3RQguq_y778003yt7PSpIKOH8Oj0XZknwZqD2Avdk_gwZBN8sdTOFvYmz5FHTJkNsOXEfbCJbNdYCHOj2HIQb9lq46NSXD8ckPByaxfYlm7urrePoPz4y_fFyf5mCsh91KUfY5aPsQqFMr6GIrCam1jW3qvtBPWhVaKUHtf401XOlZtjZpJOx7Q_PAVXc9hv1t38SWw1pWhCdw23rdChmida4KqRS2c041XGZQT94wfgcQpn8WVSQfalTIDxw1y3CSOG-zzfu5zM8Bo_LP1Z5qUuSVBYKeC9ebSjCJhigJHVUkrAwXT6mDrIuggROTOkotkBofTlJpxXW4Nx-2gxI-W5Bm8natxRdExie3i-ja1wU0kjrfM4MUgATMllaIQfC4yUDuysUPqbk23WibUbsLtajR1_TCJ0S-6_s6LV__X_DU85CTp5HEoDmG_39zGIzSbevcmrZOfymASkQ
  priority: 102
  providerName: Springer Nature
Title Capturing ion trapping and detrapping dynamics in electrochromic thin films
URI https://link.springer.com/article/10.1038/s41467-024-46500-8
https://www.ncbi.nlm.nih.gov/pubmed/38480724
https://www.proquest.com/docview/2956504852
https://www.proquest.com/docview/2957166461
https://pubmed.ncbi.nlm.nih.gov/PMC10937924
https://doaj.org/article/00df535a5d96479da60d9d44e2ba7887
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1rb9Mw8LSHQPuCeBMYVZD4BoE87MT-gFBXrUxFmxBQqd8sv7JWKuloM4n9e87OAxU6FClRbF9kn-98d7HvDuB1KiWaN1ZGVEsSEbdTqDRVUcFKlliuUZ9z_s7nF_nZlExmdLYHXbqjFoGbnaadyyc1XS_f_fp58xEZ_kPjMs7eb4hnd5Q2EUGFI47YPhyiZCoco5636r5fmTOOBg1pfWd2gx7B3Yw5P-uUbIkqH9F_lxr672nKv7ZUvaQa34d7rYoZDhuaeAB7tnoId5qkkzeP4PNIXtXeOTHEOQnxYy5Ew2UoKxMa27-aJlX9JlxUYZsrR8_Xzoc5rOdYVi6WPzaPYTo-_T46i9qUCpGmJKkjVAaMzUzMpLYmjiXn0paJ1owrIpUpKTG51jk-eMZtVuYowLhKDWopOnPXEzioVpV9BmGpElOYVBZal4QaK5UqDMtJTpTihWYBJB32hG7jjbu0F0vh970zJhrkC0S-8MgXCPOmh7lqom38t_WJm5S-pYuU7QtW60vRMp6IYxxVRiU1zueWG5nHhhtCbKqkO0kZwHE3paKjPpGi1UhxbaNpAK_6amQ8t5siK7u69m3Q1sTxJgE8bSig70lHQQGwLdrY6up2TbWY--DeLrxXwR3o246M_vTrdlw8v7UPL-AodfTtziCSYzio19f2JSpStRrAfjEr8M7GnwZwOBxOvk3weXJ68eUrlo7y0cD_ohh4LvoNv_AelA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFCC4Vb1IKBAlOEDVxnMQ-IASFasu2PbXS3oxf6a7UZpdNKrQ_xTcy4zyq5dFblUMUx7bs8bzs8cwQ8oYqBdsbp6LMKBYxtBRqk-mo4CVPnDCgz6G_89FxPjpl3ybZZIP86n1h8FplzxM9o7Zzg2fkuxQU-QzQLaMfFz8izBqF1tU-hUaLFmO3-glbtvrDwRdY37eU7n892RtFXVaByGQsaSKQh9alNubKOBvHSgjlysQYLjRT2pYZs7kxObxEKlxa5sDDhaYWBLVJ8YF-b5HbIHhjpKhiUgxnOhhtnTPW-ebEKd-tmedEIAgjBsOPI74m_3yagH_ptn9f0fzDTuvF3_59stXpreGnFtEekA1XPSR32kyWq0dkvKcWjfd4DGGhQ-gM4z6chaqyoXXDp11V6mJm6nBWhV0CHjNdomN02EyhrJydX9SPyemNQPQJ2azmlXtGwlIntrBUFcaULLNOaV1YnrOcaS0KwwOS9NCTpgtijrk0zqU3pqdcthCXAHHpIS6hzbuhzaIN4XFt7c-4KENNDL_tC-bLM9lRs4xjmFWaqcyiI6-wKo-tsIw5qhVezwzITr-ksuMJtbzC4IC8Hn4DNaOJRlVufunrwAYW5psE5GmLAcNIUo7u_5QFhK_hxtpQ1_9Us6mPGI4xwwqBTd_3aHQ1rv_DYvv6abwid0cnR4fy8OB4_Jzco4jleNOR7ZDNZnnpXoC61uiXnkZC8v2mifI3oopTUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFIC6ItQQKBAlOEE0WO7EPCEHLqGWg4kCluRlv6YzUZoZJKjS_xtfxnrNUw9JblUOUxLbs57c5byPkZaoUHG-ciphRNKJoKdSG6ajgJU-cMKDPYbzzl6P84Jh-mrLpFvnVx8KgW2XPEz2jtguD_8hHKSjyDNCNpaOyc4v4uj9-t_wRYQUptLT25TRaFJm49U84vtVvD_dhr1-l6fjjt72DqKswEBlGkyYC2WhdZmOujLNxrIRQrkyM4UJTpW3JqM2NyeEmMuGyMgd-LnRqQWibDC8Y9xq5XmQsQRorpsXwfwczr3NKuzidOOOjmnquBEIxorCUOOIbstCXDPiXnvu3u-YfNlsvCsd3yO1Ohw3ft0h3l2y56h650Va1XN8nkz21bHz0YwibHsJgmAPiJFSVDa0bHu26UmdzU4fzKuyK8ZjZCoOkw2YG78r56Vn9gBxfCUQfku1qUblHJCx1YgubqsKYkjLrlNaF5TnNqdaiMDwgSQ89abqE5lhX41R6w3rGZQtxCRCXHuIS-rwe-izbdB6Xtv6AmzK0xFTc_sVidSI7ypZxDKvKmGIWg3qFVXlshaXUpVqhq2ZAdvstlR1_qOUFNgfkxfAZKBvNNapyi3PfBg6zsN4kIDstBgwzyTimAkhpQPgGbmxMdfNLNZ_57OGYP6wQ2PVNj0YX8_o_LB5fvozn5CaQo_x8eDR5Qm6liOTo9Eh3yXazOndPQXNr9DNPIiH5ftU0-Rtg_FeG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+ion+trapping+and+detrapping+dynamics+in+electrochromic+thin+films&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Renfu&rft.au=Zhou%2C+Qinqi&rft.au=Huang%2C+Siyuan&rft.au=Zhang%2C+Yiwen&rft.date=2024-03-14&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=2294&rft_id=info:doi/10.1038%2Fs41467-024-46500-8&rft_id=info%3Apmid%2F38480724&rft.externalDocID=38480724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon