Capturing ion trapping and detrapping dynamics in electrochromic thin films
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreov...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 2294 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO
3
. Specifically, formation of orthorhombic Li
2
WO
4
during long-term cycling accounts for the origin of
shallow
traps.
Deep
traps are multiple-step-determined, composed of mixed W
4+
-Li
2
WO
4
, amorphous Li
2
WO
4
and W
4+
-Li
2
O. The non-decomposable W
4+
-Li
2
WO
4
couple is the origin of the
irreversible
traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W
5+
↔ W
6+
sites, bipolaron hopping between W
4+
↔ W
6+
sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO
3
, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.
Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO
3
. |
---|---|
AbstractList | Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO
. Specifically, formation of orthorhombic Li
WO
during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W
-Li
WO
, amorphous Li
WO
and W
-Li
O. The non-decomposable W
-Li
WO
couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W
↔ W
sites, bipolaron hopping between W
↔ W
sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO
, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO 3 . Specifically, formation of orthorhombic Li 2 WO 4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W 4+ -Li 2 WO 4 , amorphous Li 2 WO 4 and W 4+ -Li 2 O. The non-decomposable W 4+ -Li 2 WO 4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W 5+ ↔ W 6+ sites, bipolaron hopping between W 4+ ↔ W 6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO 3 , but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO 3 . Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Abstract Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO 3 . Specifically, formation of orthorhombic Li 2 WO 4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W 4+ -Li 2 WO 4 , amorphous Li 2 WO 4 and W 4+ -Li 2 O. The non-decomposable W 4+ -Li 2 WO 4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W 5+ ↔ W 6+ sites, bipolaron hopping between W 4+ ↔ W 6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO 3 , but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability. Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be effective to rejuvenate the degraded films. Despite of the studies on ion trapping and detrapping, its dynamics remain largely unknown. Moreover, coloration mechanisms of electrochromic oxides are also far from clear, limiting the development of superior devices. Here, we visualize ion trapping and detrapping dynamics in a model electrochromic material, amorphous WO3. Specifically, formation of orthorhombic Li2WO4 during long-term cycling accounts for the origin of shallow traps. Deep traps are multiple-step-determined, composed of mixed W4+-Li2WO4, amorphous Li2WO4 and W4+-Li2O. The non-decomposable W4+-Li2WO4 couple is the origin of the irreversible traps. Furthermore, we demonstrate that, besides the typical small polaron hopping between W5+ ↔ W6+ sites, bipolaron hopping between W4+ ↔ W6+ sites gives rise to optical absorption in the short-wavelength region. Overall, we provide a general picture of electrochromism based on polaron hopping. Ion trapping and detrapping were demonstrated to also prevail in other cathodic electrochromic oxides. This work not only provides the ion trapping and detrapping dynamics of WO3, but also open avenues to study other cathodic electrochromic oxides and develop superior electrochromic devices with great durability.Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films. This paper visualizes ion trapping and detrapping dynamics, and provides a general picture of electrochromism in amorphous WO3. |
ArticleNumber | 2294 |
Author | Zhou, Qinqi Wen, Rui-Tao Zhang, Renfu Zhang, Yiwen Huang, Siyuan |
Author_xml | – sequence: 1 givenname: Renfu orcidid: 0000-0002-8271-6330 surname: Zhang fullname: Zhang, Renfu organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 2 givenname: Qinqi surname: Zhou fullname: Zhou, Qinqi organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 3 givenname: Siyuan orcidid: 0000-0002-7050-9457 surname: Huang fullname: Huang, Siyuan organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 4 givenname: Yiwen orcidid: 0000-0002-1181-6908 surname: Zhang fullname: Zhang, Yiwen organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 5 givenname: Rui-Tao orcidid: 0000-0002-3153-1539 surname: Wen fullname: Wen, Rui-Tao email: Wenrt@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38480724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLaV_gAOKxIVLwB8Txz4htKKlohIXOFuO7ex6ldjBziL13-M0ZWl7qH2wZ_ze04znvUYnIQaH0FuCPxLMxKcMBHhbYwo18AbjWrxAZxQDqUlL2cmD-ym6yHmPy2KSCIBX6JQJELilcIa-b_Q0H5IP28rHUM1JT9MS6GAr646hvQ169CZXPlRucGZO0exSLKlq3pVc74cxv0Evez1kd3F_nqNfl19_br7VNz-urjdfbmrTAJlrSpl1zGKhjbMYaym164kxQnagO9s3YLkxvBySScd6LjCRHbUCuGHLPkfXq66Neq-m5EedblXUXt0lYtoqnWZvBqcwLnqs0Y2VHFppNcdWWgBHO90K0Ratz6vWdOhGZ40Lpefhkejjl-B3ahv_KIIlayWFovDhXiHF3weXZzX6bNww6ODiISsqm5ZwDpwU6Psn0H08pFD-akGVKYJoaEG9e1jSsZZ_QysAugJMijkn1x8hBKvFHGo1hyrmUHfmUKKQxBOS8bOey9BLW354nspWap4Wo7j0v-xnWH8BVEnOSg |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2025_236350 crossref_primary_10_1016_j_jechem_2024_06_023 crossref_primary_10_1016_j_electacta_2024_145057 crossref_primary_10_1002_adma_202410355 crossref_primary_10_1039_D4TA08037H crossref_primary_10_1002_aenm_202403414 crossref_primary_10_1016_j_ceramint_2024_06_179 crossref_primary_10_1007_s40820_024_01604_0 crossref_primary_10_1016_j_cej_2024_159068 crossref_primary_10_1016_j_matt_2024_09_021 crossref_primary_10_1016_j_cej_2024_156109 crossref_primary_10_1002_aenm_202402603 crossref_primary_10_1007_s40820_024_01563_6 crossref_primary_10_1016_j_jpowsour_2025_236435 crossref_primary_10_1002_lpor_202401770 crossref_primary_10_1002_smll_202407708 crossref_primary_10_1016_j_solmat_2024_113021 crossref_primary_10_1063_5_0244549 crossref_primary_10_1088_1402_4896_ad6fde crossref_primary_10_1002_admt_202401295 |
Cites_doi | 10.1016/S0927-0248(01)00103-9 10.1063/1.1767971 10.1021/acs.chemmater.6b01503 10.1103/PhysRevB.51.16689 10.1016/S0013-4686(02)00372-9 10.1016/j.apsusc.2021.150898 10.1002/aenm.201902066 10.1142/9789811217869_0002 10.1364/JOSAA.35.000817 10.1002/sia.740190187 10.1038/nature12398 10.1038/s41467-018-04762-z 10.1038/s41467-021-22429-0 10.1103/PhysRevLett.91.010602 10.1002/9783527679850 10.1016/B978-044489930-9/50024-6 10.1038/s41598-020-65191-x 10.1038/s41928-021-00697-4 10.1021/ja01348a011 10.1103/PhysRevB.48.13691 10.1016/j.renene.2018.04.038 10.1016/j.electacta.2019.06.129 10.1021/acsami.0c22921 10.1016/j.tsf.2006.11.067 10.1149/1.2085985 10.1016/j.mtphys.2022.100958 10.1038/s41560-021-00835-4 10.1039/B612174H 10.1088/0022-3727/45/22/225303 10.18280/ijht.34S241 10.1063/1.88464 10.1149/1.2086652 10.1002/adma.201601109 10.1016/S0013-4686(02)00102-0 10.1364/AO.8.S1.000192 10.1016/j.tsf.2014.02.002 10.1103/PhysRevB.78.245205 10.1021/acs.nanolett.0c00052 10.1088/1361-6463/aa8e88 10.1038/nmat1577 10.1063/1.4926488 10.1021/acsami.5b09035 10.1149/1.2133399 10.1016/j.mser.2019.100524 10.1021/ja011315x 10.1016/S0013-4686(99)00027-4 10.1002/adom.202200903 10.1038/s41467-019-10803-y 10.1016/j.ijsbe.2012.09.001 10.1007/978-3-642-01896-1 10.1038/s41560-022-01177-5 10.1038/s41563-022-01242-0 10.1007/978-94-009-5107-5_34 10.1038/nmat4368 10.1016/j.scriptamat.2021.114090 10.1038/s41560-021-00816-7 10.1021/acsami.5b09430 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-46500-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_00df535a5d96479da60d9d44e2ba7887 PMC10937924 38480724 10_1038_s41467_024_46500_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-223de3d08aced00a99aef1cc89b4abdf54d6cc654d939e3f68019b2d846c3c3c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:46:03 EDT 2025 Thu Aug 21 18:34:57 EDT 2025 Fri Jul 11 00:13:42 EDT 2025 Wed Aug 13 07:02:07 EDT 2025 Thu Apr 03 07:03:45 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Tue Jul 01 02:11:02 EDT 2025 Fri Feb 21 02:40:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-223de3d08aced00a99aef1cc89b4abdf54d6cc654d939e3f68019b2d846c3c3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8271-6330 0000-0002-3153-1539 0000-0002-7050-9457 0000-0002-1181-6908 |
OpenAccessLink | https://www.proquest.com/docview/2956504852?pq-origsite=%requestingapplication% |
PMID | 38480724 |
PQID | 2956504852 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00df535a5d96479da60d9d44e2ba7887 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10937924 proquest_miscellaneous_2957166461 proquest_journals_2956504852 pubmed_primary_38480724 crossref_primary_10_1038_s41467_024_46500_8 crossref_citationtrail_10_1038_s41467_024_46500_8 springer_journals_10_1038_s41467_024_46500_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-14 |
PublicationDateYYYYMMDD | 2024-03-14 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | BisquertJVikhrenkoVSAnalysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processesElectrochim. Acta200247397739881:CAS:528:DC%2BD38Xms1anurw%3D10.1016/S0013-4686(02)00372-9 TantardiniCOganovARThermochemical electronegativities of the elementsNat. Commun.2021121:CAS:528:DC%2BB3MXoslGktrk%3D33828104802701310.1038/s41467-021-22429-02021NatCo..12.2087T PrimiceriVFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.20201010.1038/s41598-020-65191-x LeeS-HCheongHMTracyCEMascarenhasABensonDKDebSKRaman spectroscopic studies of electrochromic a-WO3Electrochim. Acta199944311131151:CAS:528:DyaK1MXjvV2iurc%3D10.1016/S0013-4686(99)00027-4 GhoshANortonBAdvances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildingsRenew. Energy.20181261003103110.1016/j.renene.2018.04.038 HeTOptical absorption of free small polarons at high temperaturesPhys. Rev. B19955116689166941:CAS:528:DyaK2MXmsVChsbY%3D10.1103/PhysRevB.51.166891995PhRvB..5116689H BisquertJFractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walkPhys. Rev. Lett.2003910106021290652810.1103/PhysRevLett.91.0106022003PhRvL..91a0602B WangCKSahuDRWangSCLinCKHuangJLStructural evolution and chemical bonds in electrochromic WO3 films during electrochemical cyclesJ. Phys. D: Appl. Phys.20124522530310.1088/0022-3727/45/22/2253032012JPhD...45v5303W BasergaANanostructured tungsten oxide with controlled properties: synthesis and Raman characterizationThin Solid Films2007515646564691:CAS:528:DC%2BD2sXkvFKqu74%3D10.1016/j.tsf.2006.11.0672007TSF...515.6465B WenRTArvizuMAMorales-LunaMGranqvistCGNiklassonGAIon trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoringChem. Mater.201628467046761:CAS:528:DC%2BC28Xps1Ors7w%3D10.1021/acs.chemmater.6b01503 SelkowitzSReflections on surface morphologyNat. Energy2021645645710.1038/s41560-021-00835-42021NatEn...6..456S SbarNLPodbelskiLYangHMPeaseBElectrochromic dynamic windows for office buildingsJ. Sustain. Built Environ.2012112513910.1016/j.ijsbe.2012.09.001 HashimotoSMatsuokaHLifetime of electrochromism of amorphous WO3‐TiO2 thin filmsJ. Electrochem. Soc.1991138240324081:CAS:528:DyaK3MXlsVCrt7k%3D10.1149/1.20859851991JElS..138.2403H Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, (Elsevier: Amsterdam, 1995). FaughnanBWCrandallRSLampertMAModel for the bleaching of WO3 electrochromic films by an electric fieldAppl. Phys. Lett.1975272752771:CAS:528:DyaE2MXlsFKksr4%3D10.1063/1.884641975ApPhL..27..275F WeiYXLiJYLiuWMYanYLong-life inorganic electrochromic device based on WO3 and PB films with fast switching respondJ. Phys.: Conf. Ser.20232639012028 ShaoPHuangSLiBHuangQZhangYWenR-TEradicating β-trap induced bleached-state degradation in amorphous TiO2 electrochromic filmsMater. Today Phys.2023301009581:CAS:528:DC%2BB3sXmslCqsQ%3D%3D10.1016/j.mtphys.2022.100958 Mortimer, R. J., Rosseinsky, D. R., Monk, P. M. S., Electrochromic Materials and Devices, (Wiley‐VCH Verlag GmbH & Co. KGaA, 2013). HussainZOptical constants and electrochromic characteristics of HxMoO3 and LixMoO3 bronzesJ. Opt. Soc. Am. A2018358178291:CAS:528:DC%2BC1MXlsl2jsbw%3D10.1364/JOSAA.35.0008172018JOSAA..35..817H SteinbergKImaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopyNat. Energy2022813814810.1038/s41560-022-01177-52023NatEn...8..138S SchirmerOFWittwerVBaurGBrandtGDependence of WO3 Electrochromic Absorption on CrystallinityJ. Electrochem. Soc.19771247497531:CAS:528:DyaE2sXks1SksLs%3D10.1149/1.21333991977JElS..124..749S ChenPWChangCTKoYFHsuSCLiKDWuJYFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.2020101:CAS:528:DC%2BB3cXhtVCmsbvK32439890724246310.1038/s41598-020-65191-x2020NatSR..10.8430C ArvizuMAGranqvistCGNiklassonGARejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary resultsJ. Phys.: Conf. Ser.2016764012009 HashimotoSMatsuokaHProlonged lifetime of electrochromism of amorphous WO3-TiO2 thin filmsSurf. Interface Anal.1992194644681:CAS:528:DyaK38XkvF2mtLY%3D10.1002/sia.740190187 WenRTNiklassonGAGranqvistCGSustainable rejuvenation of electrochromic WO3 filmsACS Appl. Mater. Interfaces2015728100281041:CAS:528:DC%2BC2MXhvVWqsrrL2656258910.1021/acsami.5b09035 BaeJOptimized low-temperature fabrication of WO3 films for electrochromic devicesJ. Phys. D.20175046510510.1088/1361-6463/aa8e88 NiklassonGAGranqvistCGElectrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on theseJ. Mater. Chem.2007171271561:CAS:528:DC%2BD28XhtlaqsLzI10.1039/B612174H CongSGengFZhaoZTungsten oxide materials for optoelectronic applicationsAdv. Mater.20162810518105281:CAS:528:DC%2BC28XhtlChtLfL2753028610.1002/adma.201601109 KeYSmart windows: electro‐, thermo‐, mechano‐, photochromics, and beyondAdv. Energ. Mater.2019919020661:CAS:528:DC%2BC1MXhs12qs7rL10.1002/aenm.201902066 LlordesAGarciaGGazquezJMillironDJTunable near-infrared and visible-light transmittance in nanocrystal-in-glass compositesNature20135003233261:CAS:528:DC%2BC3sXht1yjtrzE2395523210.1038/nature123982013Natur.500..323L GranqvistCGElectrochromic materials: out of a nicheNat. Mater.2006589901:CAS:528:DC%2BD28XptFOgtw%3D%3D1644999110.1038/nmat15772006NatMa...5...89G HuangSZhangRShaoPZhangYWenRTElectrochromic performance fading and restoration in amorphous TiO2 thin filmsAdv. Opt. Mater.20221022009031:CAS:528:DC%2BB38XhsVCgsbjN10.1002/adom.202200903 WoodKNOperando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytesNat. Commun2018929950672602144210.1038/s41467-018-04762-z2018NatCo...9.2490W BuenoPRStructural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kineticsJ. Appl. Phys.200496210221091:CAS:528:DC%2BD2cXmsVWgtb4%3D10.1063/1.17679712004JAP....96.2102B WangZWangXCongSGengFZhaoZFusing electrochromic technology with other advanced technologies: a new roadmap for future developmentMater. Sci. Eng. R. Rep.202014010052410.1016/j.mser.2019.100524 ArvizuMAGalvanostatic ion detrapping rejuvenates oxide thin filmsACS Appl. Mater. Interfaces2015726387263901:CAS:528:DC%2BC2MXhvFSmtbzE2659972910.1021/acsami.5b09430 BisquertJAnalysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processesElectrochim. Acta200247243524491:CAS:528:DC%2BD38XktFaru78%3D10.1016/S0013-4686(02)00102-0 PyperOKaschnerAThomsenbCIn situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytesSol. Energ. Mater. Sol. Cell2002715115221:CAS:528:DC%2BD38XitlSltw%3D%3D10.1016/S0927-0248(01)00103-9 SibilioSReview of electrochromic windows for residential applicationsInt. J. Heat. Technol.201634S481S48810.18280/ijht.34S241 ShaoZAll-solid-state proton-based tandem structures for fast-switching electrochromic devicesNat. Electron.2022545521:CAS:528:DC%2BB38XitV2ns7g%3D10.1038/s41928-021-00697-4 PaulingLThe nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atomsJ. Am. Chem. Soc.193254357035821:CAS:528:DyaA38XltlWrsQ%3D%3D10.1021/ja01348a011 BarnesPElectrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteriesNat. Mater.2022217958031:CAS:528:DC%2BB38Xht1SnsLbJ3550136510.1038/s41563-022-01242-02022NatMa..21..795B MaibachJProbing a battery electrolyte drop with ambient pressure photoelectron spectroscopyNat. Commun.20191031300638662600610.1038/s41467-019-10803-y2019NatCo..10.3080M YuHHigh performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalationElectrochim. Acta20193186446501:CAS:528:DC%2BC1MXht1Kku7fK10.1016/j.electacta.2019.06.129 FaughnanBWCrandallRSHeymanPMThe electrochromic properties of tungsten trioxide filmRCA Rev.1975361771:CAS:528:DyaE2MXltVGlsrk%3D WangZChenGZhangHLiangLGaoJCaoHIn situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4Scr. Mater.20212031140901:CAS:528:DC%2BB3MXhsVSmtLjN10.1016/j.scriptamat.2021.114090 EminDOptical properties of large and small polarons and bipolaronsPhys. Rev. B19934813691137021:CAS:528:DyaK2cXos1Kqtg%3D%3D10.1103/PhysRevB.48.136911993PhRvB..4813691E SaengerMFPolaron and phonon properties in proton intercalated amorphous tungsten oxide thin filmsPhys. Rev. B20087824520510.1103/PhysRevB.78.2452052008PhRvB..78x5205S WenRTGranqvistCGNiklassonGAEliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin filmsNat. Mater.20151499610011:CAS:528:DC%2BC2MXhtlSlsLzN26259104458242410.1038/nmat43682015NatMa..14..996W HeoSEnhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ionsNano Lett.202020207220791:CAS:528:DC%2BB3cXjsFWgs7o%3D3208101310.1021/acs.nanolett.0c000522020NanoL..20.2072H HashimotoSMatsuokaHKagechikaHSusaMGotoKSDegradation of electrochromic amorphous WO3 film in lithium‐salt electrolyteJ. Electrochem. Soc.1990137130013041:CAS:528:DyaK3cXitVKmtr8%3D10.1149/1.20866521990JElS..137.1300H Livage, J. Small polarons in transition metal oxide glasses. Glass … Current Issues, NATO Science Series E:92, 408–418 (1985). StrandMTPolymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulationNat. Energy202165465541:CAS:528:DC%2BB3MXhvVCrsb%2FM10.1038/s41560-021-00816-72021NatEn...6..546S GranqvistCGElectrochromics for smart windows: Oxide-based thin films and devicesThin Solid Films20145641381:CAS:528:DC%2BC2cXjt1Sqtb8%3D10.1016/j.tsf.2014.02.0022014TSF...564....1G GuoJUnprecedented electrochromic stability of a-WO(3-x) thin films achieved by using a hybrid-cationic electrolyteACS Appl. Mater. CG Granqvist (46500_CR3) 2006; 5 S Heo (46500_CR31) 2020; 20 J Bisquert (46500_CR36) 2002; 47 J Bisquert (46500_CR17) 2002; 47 MT Strand (46500_CR8) 2021; 6 PR Bueno (46500_CR55) 2004; 96 CK Wang (46500_CR61) 2012; 45 MA Arvizu (46500_CR35) 2015; 7 GA Niklasson (46500_CR15) 2007; 17 S Hashimoto (46500_CR29) 1992; 19 SK Deb (46500_CR22) 1969; 8 KN Wood (46500_CR50) 2018; 9 BW Faughnan (46500_CR24) 1975; 27 A Baserga (46500_CR56) 2007; 515 46500_CR20 RT Wen (46500_CR34) 2015; 7 P Shao (46500_CR51) 2023; 30 S-H Lee (46500_CR57) 1999; 44 CA Triana (46500_CR43) 2015; 118 YX Wei (46500_CR27) 2023; 2639 46500_CR10 MF Saenger (46500_CR21) 2008; 78 D Emin (46500_CR18) 1993; 48 A Ghosh (46500_CR14) 2018; 126 S Hashimoto (46500_CR32) 1990; 137 MA Arvizu (46500_CR47) 2016; 764 V Primiceri (46500_CR25) 2020; 10 Z Hussain (46500_CR45) 2018; 35 J Guo (46500_CR40) 2021; 13 S Selkowitz (46500_CR9) 2021; 6 BW Faughnan (46500_CR23) 1975; 36 OF Schirmer (46500_CR42) 1977; 124 T He (46500_CR19) 1995; 51 J Bisquert (46500_CR16) 2003; 91 Y Ke (46500_CR13) 2019; 9 CG Granqvist (46500_CR6) 2014; 564 46500_CR44 46500_CR2 46500_CR1 J Maibach (46500_CR49) 2019; 10 RT Wen (46500_CR28) 2015; 14 Z Wang (46500_CR39) 2021; 203 L Pauling (46500_CR58) 1932; 54 P Barnes (46500_CR53) 2022; 21 Z Wang (46500_CR5) 2020; 140 NL Sbar (46500_CR12) 2012; 1 PW Chen (46500_CR26) 2020; 10 C Tantardini (46500_CR59) 2021; 12 S Huang (46500_CR46) 2022; 10 S Cong (46500_CR38) 2016; 28 S Hashimoto (46500_CR30) 1991; 138 C Santato (46500_CR52) 2001; 123 A Llordes (46500_CR4) 2013; 500 K Steinberg (46500_CR60) 2022; 8 RT Wen (46500_CR33) 2016; 28 H Yu (46500_CR41) 2019; 318 S Sibilio (46500_CR11) 2016; 34 J Bae (46500_CR48) 2017; 50 O Pyper (46500_CR54) 2002; 71 M Takayanagi (46500_CR37) 2021; 568 Z Shao (46500_CR7) 2022; 5 |
References_xml | – reference: GhoshANortonBAdvances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildingsRenew. Energy.20181261003103110.1016/j.renene.2018.04.038 – reference: EminDOptical properties of large and small polarons and bipolaronsPhys. Rev. B19934813691137021:CAS:528:DyaK2cXos1Kqtg%3D%3D10.1103/PhysRevB.48.136911993PhRvB..4813691E – reference: ChenPWChangCTKoYFHsuSCLiKDWuJYFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.2020101:CAS:528:DC%2BB3cXhtVCmsbvK32439890724246310.1038/s41598-020-65191-x2020NatSR..10.8430C – reference: ShaoZAll-solid-state proton-based tandem structures for fast-switching electrochromic devicesNat. Electron.2022545521:CAS:528:DC%2BB38XitV2ns7g%3D10.1038/s41928-021-00697-4 – reference: GranqvistCGElectrochromic materials: out of a nicheNat. Mater.2006589901:CAS:528:DC%2BD28XptFOgtw%3D%3D1644999110.1038/nmat15772006NatMa...5...89G – reference: Piette, M. A. et al. Chapter 2: Global Opportunities and Challenges in Energy and Environmental Issues in the Buildings Sector. World Scientific Series in Current Energy Issues, Energy Efficiency, pp. 31-132 https://buildings.lbl.gov/publications/chapter-2-global-opportunities-and (2022). – reference: Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, (Elsevier: Amsterdam, 1995). – reference: WangZChenGZhangHLiangLGaoJCaoHIn situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4Scr. Mater.20212031140901:CAS:528:DC%2BB3MXhsVSmtLjN10.1016/j.scriptamat.2021.114090 – reference: SchirmerOFWittwerVBaurGBrandtGDependence of WO3 Electrochromic Absorption on CrystallinityJ. Electrochem. Soc.19771247497531:CAS:528:DyaE2sXks1SksLs%3D10.1149/1.21333991977JElS..124..749S – reference: WeiYXLiJYLiuWMYanYLong-life inorganic electrochromic device based on WO3 and PB films with fast switching respondJ. Phys.: Conf. Ser.20232639012028 – reference: Alexandrov, A. S.; Devreese, J. T. Advances in Polaron Physics, (Springer, Berlin: Germany, 2010). – reference: HashimotoSMatsuokaHKagechikaHSusaMGotoKSDegradation of electrochromic amorphous WO3 film in lithium‐salt electrolyteJ. Electrochem. Soc.1990137130013041:CAS:528:DyaK3cXitVKmtr8%3D10.1149/1.20866521990JElS..137.1300H – reference: PrimiceriVFast response of complementary electrochromic device based on WO3/NiO electrodesSci. Rep.20201010.1038/s41598-020-65191-x – reference: LeeS-HCheongHMTracyCEMascarenhasABensonDKDebSKRaman spectroscopic studies of electrochromic a-WO3Electrochim. Acta199944311131151:CAS:528:DyaK1MXjvV2iurc%3D10.1016/S0013-4686(99)00027-4 – reference: SteinbergKImaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopyNat. Energy2022813814810.1038/s41560-022-01177-52023NatEn...8..138S – reference: FaughnanBWCrandallRSLampertMAModel for the bleaching of WO3 electrochromic films by an electric fieldAppl. Phys. Lett.1975272752771:CAS:528:DyaE2MXlsFKksr4%3D10.1063/1.884641975ApPhL..27..275F – reference: WoodKNOperando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytesNat. Commun2018929950672602144210.1038/s41467-018-04762-z2018NatCo...9.2490W – reference: ArvizuMAGalvanostatic ion detrapping rejuvenates oxide thin filmsACS Appl. Mater. Interfaces2015726387263901:CAS:528:DC%2BC2MXhvFSmtbzE2659972910.1021/acsami.5b09430 – reference: WenRTGranqvistCGNiklassonGAEliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin filmsNat. Mater.20151499610011:CAS:528:DC%2BC2MXhtlSlsLzN26259104458242410.1038/nmat43682015NatMa..14..996W – reference: HussainZOptical constants and electrochromic characteristics of HxMoO3 and LixMoO3 bronzesJ. Opt. Soc. Am. A2018358178291:CAS:528:DC%2BC1MXlsl2jsbw%3D10.1364/JOSAA.35.0008172018JOSAA..35..817H – reference: WangZWangXCongSGengFZhaoZFusing electrochromic technology with other advanced technologies: a new roadmap for future developmentMater. Sci. Eng. R. Rep.202014010052410.1016/j.mser.2019.100524 – reference: Mortimer, R. J., Rosseinsky, D. R., Monk, P. M. S., Electrochromic Materials and Devices, (Wiley‐VCH Verlag GmbH & Co. KGaA, 2013). – reference: HashimotoSMatsuokaHLifetime of electrochromism of amorphous WO3‐TiO2 thin filmsJ. Electrochem. Soc.1991138240324081:CAS:528:DyaK3MXlsVCrt7k%3D10.1149/1.20859851991JElS..138.2403H – reference: NiklassonGAGranqvistCGElectrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on theseJ. Mater. Chem.2007171271561:CAS:528:DC%2BD28XhtlaqsLzI10.1039/B612174H – reference: SbarNLPodbelskiLYangHMPeaseBElectrochromic dynamic windows for office buildingsJ. Sustain. Built Environ.2012112513910.1016/j.ijsbe.2012.09.001 – reference: GuoJUnprecedented electrochromic stability of a-WO(3-x) thin films achieved by using a hybrid-cationic electrolyteACS Appl. Mater. Interfaces20211311067110771:CAS:528:DC%2BB3MXlt12rsbg%3D3364596610.1021/acsami.0c22921 – reference: SaengerMFPolaron and phonon properties in proton intercalated amorphous tungsten oxide thin filmsPhys. Rev. B20087824520510.1103/PhysRevB.78.2452052008PhRvB..78x5205S – reference: DebSKNovel Electrophotographic SystemAAppl. Opt.196981921952007612410.1364/AO.8.S1.000192 – reference: BisquertJAnalysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processesElectrochim. Acta200247243524491:CAS:528:DC%2BD38XktFaru78%3D10.1016/S0013-4686(02)00102-0 – reference: BasergaANanostructured tungsten oxide with controlled properties: synthesis and Raman characterizationThin Solid Films2007515646564691:CAS:528:DC%2BD2sXkvFKqu74%3D10.1016/j.tsf.2006.11.0672007TSF...515.6465B – reference: WangCKSahuDRWangSCLinCKHuangJLStructural evolution and chemical bonds in electrochromic WO3 films during electrochemical cyclesJ. Phys. D: Appl. Phys.20124522530310.1088/0022-3727/45/22/2253032012JPhD...45v5303W – reference: PaulingLThe nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atomsJ. Am. Chem. Soc.193254357035821:CAS:528:DyaA38XltlWrsQ%3D%3D10.1021/ja01348a011 – reference: BisquertJVikhrenkoVSAnalysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processesElectrochim. Acta200247397739881:CAS:528:DC%2BD38Xms1anurw%3D10.1016/S0013-4686(02)00372-9 – reference: HuangSZhangRShaoPZhangYWenRTElectrochromic performance fading and restoration in amorphous TiO2 thin filmsAdv. Opt. Mater.20221022009031:CAS:528:DC%2BB38XhsVCgsbjN10.1002/adom.202200903 – reference: BaeJOptimized low-temperature fabrication of WO3 films for electrochromic devicesJ. Phys. D.20175046510510.1088/1361-6463/aa8e88 – reference: BuenoPRStructural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kineticsJ. Appl. Phys.200496210221091:CAS:528:DC%2BD2cXmsVWgtb4%3D10.1063/1.17679712004JAP....96.2102B – reference: BarnesPElectrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteriesNat. Mater.2022217958031:CAS:528:DC%2BB38Xht1SnsLbJ3550136510.1038/s41563-022-01242-02022NatMa..21..795B – reference: TantardiniCOganovARThermochemical electronegativities of the elementsNat. Commun.2021121:CAS:528:DC%2BB3MXoslGktrk%3D33828104802701310.1038/s41467-021-22429-02021NatCo..12.2087T – reference: HashimotoSMatsuokaHProlonged lifetime of electrochromism of amorphous WO3-TiO2 thin filmsSurf. Interface Anal.1992194644681:CAS:528:DyaK38XkvF2mtLY%3D10.1002/sia.740190187 – reference: WenRTNiklassonGAGranqvistCGSustainable rejuvenation of electrochromic WO3 filmsACS Appl. Mater. Interfaces2015728100281041:CAS:528:DC%2BC2MXhvVWqsrrL2656258910.1021/acsami.5b09035 – reference: HeTOptical absorption of free small polarons at high temperaturesPhys. Rev. B19955116689166941:CAS:528:DyaK2MXmsVChsbY%3D10.1103/PhysRevB.51.166891995PhRvB..5116689H – reference: BisquertJFractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walkPhys. Rev. Lett.2003910106021290652810.1103/PhysRevLett.91.0106022003PhRvL..91a0602B – reference: YuHHigh performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalationElectrochim. Acta20193186446501:CAS:528:DC%2BC1MXht1Kku7fK10.1016/j.electacta.2019.06.129 – reference: MaibachJProbing a battery electrolyte drop with ambient pressure photoelectron spectroscopyNat. Commun.20191031300638662600610.1038/s41467-019-10803-y2019NatCo..10.3080M – reference: StrandMTPolymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulationNat. Energy202165465541:CAS:528:DC%2BB3MXhvVCrsb%2FM10.1038/s41560-021-00816-72021NatEn...6..546S – reference: TrianaCAGranqvistCGNiklassonGAElectrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide filmsJ. Appl. Phys.201511802490110.1063/1.49264882015JAP...118b4901T – reference: PyperOKaschnerAThomsenbCIn situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytesSol. Energ. Mater. Sol. Cell2002715115221:CAS:528:DC%2BD38XitlSltw%3D%3D10.1016/S0927-0248(01)00103-9 – reference: Livage, J. Small polarons in transition metal oxide glasses. Glass … Current Issues, NATO Science Series E:92, 408–418 (1985). – reference: SelkowitzSReflections on surface morphologyNat. Energy2021645645710.1038/s41560-021-00835-42021NatEn...6..456S – reference: HeoSEnhanced coloration efficiency of electrochromic tungsten oxide nanorods by site selective occupation of sodium ionsNano Lett.202020207220791:CAS:528:DC%2BB3cXjsFWgs7o%3D3208101310.1021/acs.nanolett.0c000522020NanoL..20.2072H – reference: FaughnanBWCrandallRSHeymanPMThe electrochromic properties of tungsten trioxide filmRCA Rev.1975361771:CAS:528:DyaE2MXltVGlsrk%3D – reference: ArvizuMAGranqvistCGNiklassonGARejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary resultsJ. Phys.: Conf. Ser.2016764012009 – reference: GranqvistCGElectrochromics for smart windows: Oxide-based thin films and devicesThin Solid Films20145641381:CAS:528:DC%2BC2cXjt1Sqtb8%3D10.1016/j.tsf.2014.02.0022014TSF...564....1G – reference: SibilioSReview of electrochromic windows for residential applicationsInt. J. Heat. Technol.201634S481S48810.18280/ijht.34S241 – reference: TakayanagiMTsuchiyaTUedaSHiguchiTTerabeKIn situ hard X-ray photoelectron spectroscopy on the origin of irreversibility in electrochromic LixWO3 thin filmsAppl. Surf. Sci.20215681508981:CAS:528:DC%2BB3MXhvVagsr7F10.1016/j.apsusc.2021.150898 – reference: LlordesAGarciaGGazquezJMillironDJTunable near-infrared and visible-light transmittance in nanocrystal-in-glass compositesNature20135003233261:CAS:528:DC%2BC3sXht1yjtrzE2395523210.1038/nature123982013Natur.500..323L – reference: KeYSmart windows: electro‐, thermo‐, mechano‐, photochromics, and beyondAdv. Energ. Mater.2019919020661:CAS:528:DC%2BC1MXhs12qs7rL10.1002/aenm.201902066 – reference: ShaoPHuangSLiBHuangQZhangYWenR-TEradicating β-trap induced bleached-state degradation in amorphous TiO2 electrochromic filmsMater. Today Phys.2023301009581:CAS:528:DC%2BB3sXmslCqsQ%3D%3D10.1016/j.mtphys.2022.100958 – reference: WenRTArvizuMAMorales-LunaMGranqvistCGNiklassonGAIon trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoringChem. Mater.201628467046761:CAS:528:DC%2BC28Xps1Ors7w%3D10.1021/acs.chemmater.6b01503 – reference: CongSGengFZhaoZTungsten oxide materials for optoelectronic applicationsAdv. Mater.20162810518105281:CAS:528:DC%2BC28XhtlChtLfL2753028610.1002/adma.201601109 – reference: SantatoCOdziemkowskiMUlmannMAugustynskiJCrystallographically oriented mesoporous WO3 films: synthesis, characterization, and applicationsJ. Am. Chem. Soc.200112310639106491:CAS:528:DC%2BD3MXntlWrtrw%3D1167399510.1021/ja011315x – volume: 71 start-page: 511 year: 2002 ident: 46500_CR54 publication-title: Sol. Energ. Mater. Sol. Cell doi: 10.1016/S0927-0248(01)00103-9 – volume: 96 start-page: 2102 year: 2004 ident: 46500_CR55 publication-title: J. Appl. Phys. doi: 10.1063/1.1767971 – volume: 28 start-page: 4670 year: 2016 ident: 46500_CR33 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01503 – volume: 51 start-page: 16689 year: 1995 ident: 46500_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.16689 – volume: 47 start-page: 3977 year: 2002 ident: 46500_CR36 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00372-9 – volume: 568 start-page: 150898 year: 2021 ident: 46500_CR37 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150898 – volume: 9 start-page: 1902066 year: 2019 ident: 46500_CR13 publication-title: Adv. Energ. Mater. doi: 10.1002/aenm.201902066 – volume: 36 start-page: 177 year: 1975 ident: 46500_CR23 publication-title: RCA Rev. – ident: 46500_CR10 doi: 10.1142/9789811217869_0002 – volume: 35 start-page: 817 year: 2018 ident: 46500_CR45 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.35.000817 – volume: 19 start-page: 464 year: 1992 ident: 46500_CR29 publication-title: Surf. Interface Anal. doi: 10.1002/sia.740190187 – volume: 500 start-page: 323 year: 2013 ident: 46500_CR4 publication-title: Nature doi: 10.1038/nature12398 – volume: 9 year: 2018 ident: 46500_CR50 publication-title: Nat. Commun doi: 10.1038/s41467-018-04762-z – volume: 12 year: 2021 ident: 46500_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22429-0 – volume: 91 start-page: 010602 year: 2003 ident: 46500_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.010602 – volume: 2639 start-page: 012028 year: 2023 ident: 46500_CR27 publication-title: J. Phys.: Conf. Ser. – ident: 46500_CR2 doi: 10.1002/9783527679850 – ident: 46500_CR1 doi: 10.1016/B978-044489930-9/50024-6 – volume: 10 year: 2020 ident: 46500_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-020-65191-x – volume: 5 start-page: 45 year: 2022 ident: 46500_CR7 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00697-4 – volume: 54 start-page: 3570 year: 1932 ident: 46500_CR58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01348a011 – volume: 48 start-page: 13691 year: 1993 ident: 46500_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13691 – volume: 126 start-page: 1003 year: 2018 ident: 46500_CR14 publication-title: Renew. Energy. doi: 10.1016/j.renene.2018.04.038 – volume: 318 start-page: 644 year: 2019 ident: 46500_CR41 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.129 – volume: 13 start-page: 11067 year: 2021 ident: 46500_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c22921 – volume: 515 start-page: 6465 year: 2007 ident: 46500_CR56 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.11.067 – volume: 138 start-page: 2403 year: 1991 ident: 46500_CR30 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2085985 – volume: 30 start-page: 100958 year: 2023 ident: 46500_CR51 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100958 – volume: 6 start-page: 456 year: 2021 ident: 46500_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-021-00835-4 – volume: 17 start-page: 127 year: 2007 ident: 46500_CR15 publication-title: J. Mater. Chem. doi: 10.1039/B612174H – volume: 45 start-page: 225303 year: 2012 ident: 46500_CR61 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/22/225303 – volume: 34 start-page: S481 year: 2016 ident: 46500_CR11 publication-title: Int. J. Heat. Technol. doi: 10.18280/ijht.34S241 – volume: 27 start-page: 275 year: 1975 ident: 46500_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.88464 – volume: 137 start-page: 1300 year: 1990 ident: 46500_CR32 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086652 – volume: 28 start-page: 10518 year: 2016 ident: 46500_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201601109 – volume: 47 start-page: 2435 year: 2002 ident: 46500_CR17 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00102-0 – volume: 8 start-page: 192 year: 1969 ident: 46500_CR22 publication-title: Appl. Opt. doi: 10.1364/AO.8.S1.000192 – volume: 564 start-page: 1 year: 2014 ident: 46500_CR6 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.02.002 – volume: 78 start-page: 245205 year: 2008 ident: 46500_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.245205 – volume: 20 start-page: 2072 year: 2020 ident: 46500_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00052 – volume: 50 start-page: 465105 year: 2017 ident: 46500_CR48 publication-title: J. Phys. D. doi: 10.1088/1361-6463/aa8e88 – volume: 5 start-page: 89 year: 2006 ident: 46500_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat1577 – volume: 764 start-page: 012009 year: 2016 ident: 46500_CR47 publication-title: J. Phys.: Conf. Ser. – volume: 118 start-page: 024901 year: 2015 ident: 46500_CR43 publication-title: J. Appl. Phys. doi: 10.1063/1.4926488 – volume: 7 start-page: 28100 year: 2015 ident: 46500_CR34 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09035 – volume: 124 start-page: 749 year: 1977 ident: 46500_CR42 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2133399 – volume: 140 start-page: 100524 year: 2020 ident: 46500_CR5 publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2019.100524 – volume: 123 start-page: 10639 year: 2001 ident: 46500_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja011315x – volume: 44 start-page: 3111 year: 1999 ident: 46500_CR57 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00027-4 – volume: 10 start-page: 2200903 year: 2022 ident: 46500_CR46 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200903 – volume: 10 year: 2019 ident: 46500_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10803-y – volume: 1 start-page: 125 year: 2012 ident: 46500_CR12 publication-title: J. Sustain. Built Environ. doi: 10.1016/j.ijsbe.2012.09.001 – volume: 10 year: 2020 ident: 46500_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-020-65191-x – ident: 46500_CR20 doi: 10.1007/978-3-642-01896-1 – volume: 8 start-page: 138 year: 2022 ident: 46500_CR60 publication-title: Nat. Energy doi: 10.1038/s41560-022-01177-5 – volume: 21 start-page: 795 year: 2022 ident: 46500_CR53 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01242-0 – ident: 46500_CR44 doi: 10.1007/978-94-009-5107-5_34 – volume: 14 start-page: 996 year: 2015 ident: 46500_CR28 publication-title: Nat. Mater. doi: 10.1038/nmat4368 – volume: 203 start-page: 114090 year: 2021 ident: 46500_CR39 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114090 – volume: 6 start-page: 546 year: 2021 ident: 46500_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-021-00816-7 – volume: 7 start-page: 26387 year: 2015 ident: 46500_CR35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09430 |
SSID | ssj0000391844 |
Score | 2.5856318 |
Snippet | Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was proved to be... Abstract Ion trapping has been found to be responsible for the performance degradation in electrochromic oxide thin films, and a detrapping procedure was... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2294 |
SubjectTerms | 140/146 147/143 639/301/1019 639/301/299 639/4077 Amorphous materials Dynamics Electrochromic cells Electrochromism Humanities and Social Sciences Lithium oxides Mirrors multidisciplinary Oxides Performance degradation Polarons Science Science (multidisciplinary) Thin films Trapping Traps Tungsten oxides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEFAeoQW5EjeImsR2Yh-holq1Kicq9WbZHoddqaTVbvbAv--Mkw1dXr2gHKL4ETlfxvOQ58HYu8o5NG-iy1VwMpd0UuiD8nmjW11GE1Cfo3jn8y_1_EKeXqrLO6W-yCdsSA88AHdUFNAqoZwCipk04OoCDEgZK-_IE464L8q8O8ZU4sHCoOkixyiZQuijtUw8AUVSLlErKXK9I4lSwv4_aZm_O0v-cmKaBNHJE_Z41CD5x2HlT9mD2D1jD4eakj_22Nmxu-lT7CFHyDm-jDIwfOOuAw5xeoShEv2aLzs-lsIJixWFKPN-gW3t8ur7-jm7OPn89XiejxUT8qBk2eco6yEKKLQLEYrCGeNiW4agjZfOI5AS6hBqvBlhomhrlE_GV4BKSBB0vWCz7rqLrxhvfQkNVK4JoZUKovO-AV3LWnpvmqAzVm7Rs2FMJ05VLa5sOtYW2g6IW0TcJsQtznk_zbkZkmn8c_Qn-inTSEqEnRqQPOxIHvY-8sjYwfaX2nF3rm2FRqFC1qWqjB1O3biv6LDEdfF6k8agKYnfW2bs5UAB00qEpkD8SmZM79DGzlJ3e7rlIuXupuxdjaGpH7Zk9HNdf8fi9f_AYp89qoj-yRtRHrBZv9rEN6hS9f5t2j23CfEdHA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6h52Il9QlBRVSA4UWlvlu1xuiu12WWTHvj3zDjeVMujyiFKYlv2eOyZeGa-YextZS3-3gSbS29FLshS6Lx0eas6VQbtUZ-jeOdv35vTM_FlIRfpwG1IbpW7PTFu1LD2dEZ-VKEiL5HdZPVh8zOnrFFkXU0pNG6zOwRdRi5d7aKdz1gI_VwJkWJlilodDSLuDCiYcoHNFbnak0cRtv9fuubfLpN_2E2jODp5wO4nPZJ_nCb-IbsV-kfs7pRZ8tdj9vXYbsYYgciR8BwbIxyGc2574BDmR5jy0Q981fOUEMcvtxSozMclvutWF5fDE3Z28vnH8Wme8ibkXopyzFHiQ6ihUNYHKAqrtQ1d6b3STlgHnRTQeN_gTdc61F2DUkq7ClAV8TVdT9lBv-7Dc8Y7V0ILlW2974SEYJ1rQTWiEc7p1quMlTvqGZ9AxSm3xYWJxu1amYniBiluIsUN1nk319lMkBo3lv5EkzKXJDjs-GK9PTdpdZmiwFHV0kqgwFoNtilAgxChcpbcJTN2uJtSk9boYK45KmNv5s-4ushkYvuwvopl8IcSx1tm7NnEAXNPakXh-JXImNrjjb2u7n_pV8uI4E0YXq2mqu93bHTdr__T4sXNw3jJ7lXE2eRtKA7Zwbi9Cq9QZRrd67gufgNyDhTT priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiPIMtMhI3CAicezEPsKKqmoFJyr1ZvmV7kptttpND_x7ZpwHWihIKIcofkTj8Tgzjme-AXjHrcXtTbS59Fbkgk4KnZcub1Sryqg92nMU7_z1W31yLk4v5MUe8CkWJjntJ0jL9JmevMM-bkVa0qhRcoFGRZGre3CfoNtJqhf1Yv6vQojnSogxPqao1B1dd3RQguq_y778003yt7PSpIKOH8Oj0XZknwZqD2Avdk_gwZBN8sdTOFvYmz5FHTJkNsOXEfbCJbNdYCHOj2HIQb9lq46NSXD8ckPByaxfYlm7urrePoPz4y_fFyf5mCsh91KUfY5aPsQqFMr6GIrCam1jW3qvtBPWhVaKUHtf401XOlZtjZpJOx7Q_PAVXc9hv1t38SWw1pWhCdw23rdChmida4KqRS2c041XGZQT94wfgcQpn8WVSQfalTIDxw1y3CSOG-zzfu5zM8Bo_LP1Z5qUuSVBYKeC9ebSjCJhigJHVUkrAwXT6mDrIuggROTOkotkBofTlJpxXW4Nx-2gxI-W5Bm8natxRdExie3i-ja1wU0kjrfM4MUgATMllaIQfC4yUDuysUPqbk23WibUbsLtajR1_TCJ0S-6_s6LV__X_DU85CTp5HEoDmG_39zGIzSbevcmrZOfymASkQ priority: 102 providerName: Springer Nature |
Title | Capturing ion trapping and detrapping dynamics in electrochromic thin films |
URI | https://link.springer.com/article/10.1038/s41467-024-46500-8 https://www.ncbi.nlm.nih.gov/pubmed/38480724 https://www.proquest.com/docview/2956504852 https://www.proquest.com/docview/2957166461 https://pubmed.ncbi.nlm.nih.gov/PMC10937924 https://doaj.org/article/00df535a5d96479da60d9d44e2ba7887 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1rb9Mw8LSHQPuCeBMYVZD4BoE87MT-gFBXrUxFmxBQqd8sv7JWKuloM4n9e87OAxU6FClRbF9kn-98d7HvDuB1KiWaN1ZGVEsSEbdTqDRVUcFKlliuUZ9z_s7nF_nZlExmdLYHXbqjFoGbnaadyyc1XS_f_fp58xEZ_kPjMs7eb4hnd5Q2EUGFI47YPhyiZCoco5636r5fmTOOBg1pfWd2gx7B3Yw5P-uUbIkqH9F_lxr672nKv7ZUvaQa34d7rYoZDhuaeAB7tnoId5qkkzeP4PNIXtXeOTHEOQnxYy5Ew2UoKxMa27-aJlX9JlxUYZsrR8_Xzoc5rOdYVi6WPzaPYTo-_T46i9qUCpGmJKkjVAaMzUzMpLYmjiXn0paJ1owrIpUpKTG51jk-eMZtVuYowLhKDWopOnPXEzioVpV9BmGpElOYVBZal4QaK5UqDMtJTpTihWYBJB32hG7jjbu0F0vh970zJhrkC0S-8MgXCPOmh7lqom38t_WJm5S-pYuU7QtW60vRMp6IYxxVRiU1zueWG5nHhhtCbKqkO0kZwHE3paKjPpGi1UhxbaNpAK_6amQ8t5siK7u69m3Q1sTxJgE8bSig70lHQQGwLdrY6up2TbWY--DeLrxXwR3o246M_vTrdlw8v7UPL-AodfTtziCSYzio19f2JSpStRrAfjEr8M7GnwZwOBxOvk3weXJ68eUrlo7y0cD_ohh4LvoNv_AelA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFCC4Vb1IKBAlOEDVxnMQ-IASFasu2PbXS3oxf6a7UZpdNKrQ_xTcy4zyq5dFblUMUx7bs8bzs8cwQ8oYqBdsbp6LMKBYxtBRqk-mo4CVPnDCgz6G_89FxPjpl3ybZZIP86n1h8FplzxM9o7Zzg2fkuxQU-QzQLaMfFz8izBqF1tU-hUaLFmO3-glbtvrDwRdY37eU7n892RtFXVaByGQsaSKQh9alNubKOBvHSgjlysQYLjRT2pYZs7kxObxEKlxa5sDDhaYWBLVJ8YF-b5HbIHhjpKhiUgxnOhhtnTPW-ebEKd-tmedEIAgjBsOPI74m_3yagH_ptn9f0fzDTuvF3_59stXpreGnFtEekA1XPSR32kyWq0dkvKcWjfd4DGGhQ-gM4z6chaqyoXXDp11V6mJm6nBWhV0CHjNdomN02EyhrJydX9SPyemNQPQJ2azmlXtGwlIntrBUFcaULLNOaV1YnrOcaS0KwwOS9NCTpgtijrk0zqU3pqdcthCXAHHpIS6hzbuhzaIN4XFt7c-4KENNDL_tC-bLM9lRs4xjmFWaqcyiI6-wKo-tsIw5qhVezwzITr-ksuMJtbzC4IC8Hn4DNaOJRlVufunrwAYW5psE5GmLAcNIUo7u_5QFhK_hxtpQ1_9Us6mPGI4xwwqBTd_3aHQ1rv_DYvv6abwid0cnR4fy8OB4_Jzco4jleNOR7ZDNZnnpXoC61uiXnkZC8v2mifI3oopTUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFIC6ItQQKBAlOEE0WO7EPCEHLqGWg4kCluRlv6YzUZoZJKjS_xtfxnrNUw9JblUOUxLbs57c5byPkZaoUHG-ciphRNKJoKdSG6ajgJU-cMKDPYbzzl6P84Jh-mrLpFvnVx8KgW2XPEz2jtguD_8hHKSjyDNCNpaOyc4v4uj9-t_wRYQUptLT25TRaFJm49U84vtVvD_dhr1-l6fjjt72DqKswEBlGkyYC2WhdZmOujLNxrIRQrkyM4UJTpW3JqM2NyeEmMuGyMgd-LnRqQWibDC8Y9xq5XmQsQRorpsXwfwczr3NKuzidOOOjmnquBEIxorCUOOIbstCXDPiXnvu3u-YfNlsvCsd3yO1Ohw3ft0h3l2y56h650Va1XN8nkz21bHz0YwibHsJgmAPiJFSVDa0bHu26UmdzU4fzKuyK8ZjZCoOkw2YG78r56Vn9gBxfCUQfku1qUblHJCx1YgubqsKYkjLrlNaF5TnNqdaiMDwgSQ89abqE5lhX41R6w3rGZQtxCRCXHuIS-rwe-izbdB6Xtv6AmzK0xFTc_sVidSI7ypZxDKvKmGIWg3qFVXlshaXUpVqhq2ZAdvstlR1_qOUFNgfkxfAZKBvNNapyi3PfBg6zsN4kIDstBgwzyTimAkhpQPgGbmxMdfNLNZ_57OGYP6wQ2PVNj0YX8_o_LB5fvozn5CaQo_x8eDR5Qm6liOTo9Eh3yXazOndPQXNr9DNPIiH5ftU0-Rtg_FeG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+ion+trapping+and+detrapping+dynamics+in+electrochromic+thin+films&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Renfu&rft.au=Zhou%2C+Qinqi&rft.au=Huang%2C+Siyuan&rft.au=Zhang%2C+Yiwen&rft.date=2024-03-14&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=2294&rft_id=info:doi/10.1038%2Fs41467-024-46500-8&rft_id=info%3Apmid%2F38480724&rft.externalDocID=38480724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |