Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes

All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/elect...

Full description

Saved in:
Bibliographic Details
Published inCommunications chemistry Vol. 6; no. 1; pp. 124 - 8
Main Authors Katzenmeier, Leon, Gößwein, Manuel, Carstensen, Leif, Sterzinger, Johannes, Ederer, Michael, Müller-Buschbaum, Peter, Gagliardi, Alessio, Bandarenka, Aliaksandr S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries. All-solid-state lithium-ion batteries are promising energy storage devices owing to their safe use and high energy density, whereby understanding electrode and solid electrolyte interfaces is key for battery development. Here, the authors use spectroscopic ellipsometry, impedance measurements, as well as Monte Carlo simulations to elucidate the formation of charge depletion layers at the electrode/electrolyte interface.
AbstractList All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.All-solid-state lithium-ion batteries are promising energy storage devices owing to their safe use and high energy density, whereby understanding electrode and solid electrolyte interfaces is key for battery development. Here, the authors use spectroscopic ellipsometry, impedance measurements, as well as Monte Carlo simulations to elucidate the formation of charge depletion layers at the electrode/electrolyte interface.
All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.
All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries. All-solid-state lithium-ion batteries are promising energy storage devices owing to their safe use and high energy density, whereby understanding electrode and solid electrolyte interfaces is key for battery development. Here, the authors use spectroscopic ellipsometry, impedance measurements, as well as Monte Carlo simulations to elucidate the formation of charge depletion layers at the electrode/electrolyte interface.
All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.
Abstract All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.
ArticleNumber 124
Author Ederer, Michael
Müller-Buschbaum, Peter
Gößwein, Manuel
Bandarenka, Aliaksandr S.
Katzenmeier, Leon
Gagliardi, Alessio
Sterzinger, Johannes
Carstensen, Leif
Author_xml – sequence: 1
  givenname: Leon
  surname: Katzenmeier
  fullname: Katzenmeier, Leon
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage, TUMint·Energy Research
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0002-4804-7954
  surname: Gößwein
  fullname: Gößwein, Manuel
  organization: Technical University of Munich, TUM School of Computation, Information and Technology, Department of Electrical and Computer Engineering
– sequence: 3
  givenname: Leif
  surname: Carstensen
  fullname: Carstensen, Leif
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage, TUMint·Energy Research
– sequence: 4
  givenname: Johannes
  orcidid: 0009-0004-2416-2124
  surname: Sterzinger
  fullname: Sterzinger, Johannes
  organization: TUMint·Energy Research
– sequence: 5
  givenname: Michael
  surname: Ederer
  fullname: Ederer, Michael
  organization: TUMint·Energy Research
– sequence: 6
  givenname: Peter
  orcidid: 0000-0002-9566-6088
  surname: Müller-Buschbaum
  fullname: Müller-Buschbaum, Peter
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich
– sequence: 7
  givenname: Alessio
  surname: Gagliardi
  fullname: Gagliardi, Alessio
  email: alessio.gagliardi@tum.de
  organization: Technical University of Munich, TUM School of Computation, Information and Technology, Department of Electrical and Computer Engineering
– sequence: 8
  givenname: Aliaksandr S.
  orcidid: 0000-0002-5970-4315
  surname: Bandarenka
  fullname: Bandarenka, Aliaksandr S.
  email: bandarenka@ph.tum.de
  organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37322266$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLYGwnsXNCqOKjUhEXOFuOPdn1ymsvtlPUf493s5S2h15sa-a9N-OZ97I68cFjVb0m8J4AEx9SSwHaBihrAIZyts-qM8qGoWF9P5zce59WFyltAIACYZyLF9Up44xS2vdn1e13lVKdo_JpF2KulTe1Xqu4wiU4YazzOoZ5tS65Gh3qHO1k0dTWZ4yT0liPmP8g-nqLWTlnde1sXtt5e1BLwVnTpKwyHunB3WZMr6rnk3IJL473efXry-efl9-a6x9fry4_XTe6a0luKDGjGFmnQHBEOmhQgwEkSlHGlBGd0NoYLTQdydgCp7ojvTCD4TBhxxU7r64WXRPURu6i3ap4K4Oy8hAIcSVVzFY7lFNveoaqN4p17diJ0UwdYG8456VqNxStj4vWbh63aDT6MiT3QPRhxtu1XIUbSYBySlooCu-OCjH8njFlubVJo3PKY5iTpKIAO9oyVqBvH0E3YY6-zGqP6odBAOxRb-63dNfLvxUXAF0AOoaUIk53EAJybyW5WEkWK8mDlWRbSOIRSduyQRv237LuaSpbqKnU8SuM_9t-gvUXllzf5g
CitedBy_id crossref_primary_10_1039_D4TA00788C
crossref_primary_10_1002_batt_202400570
Cites_doi 10.1016/j.jelechem.2022.116750
10.1039/C9CS00838A
10.1524/zpch.2009.6085
10.1063/1.3337909
10.1063/1.4812826
10.1002/aenm.202201208
10.1016/j.cossms.2022.100999
10.1021/acsami.0c21304
10.1016/0021-9991(76)90041-3
10.1016/j.nanoen.2020.105507
10.1007/s12209-021-00294-8
10.1016/j.jcp.2015.12.001
10.1016/0167-2738(86)90109-8
10.1103/PhysRev.120.745
10.1016/j.jpowsour.2010.06.060
10.1021/acs.chemmater.7b00659
10.1002/adma.202100585
10.7567/JJAP.53.08NK02
10.1021/acsenergylett.9b02668
10.1021/acsami.2c00650
10.1021/acsami.7b03887
10.1021/acs.jpcc.2c02481
10.1103/RevModPhys.15.1
10.1016/S0040-6090(97)00781-5
10.1021/acs.jpcc.5b02679
10.1002/ente.202000580
10.1021/j100540a008
10.1149/1.2119853
10.1039/D2EE00842D
10.1021/jp4051275
10.3390/a11040037
10.48550/arXiv.2101.10294
10.1002/aenm.202203791
10.1093/oso/9780198803195.001.0001
10.1021/acsaem.8b00457
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.1038/s42004-023-00923-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2399-3669
EndPage 8
ExternalDocumentID oai_doaj_org_article_f6d63ea6da354b58bdf50e6d7770a959
PMC10272140
37322266
10_1038_s42004_023_00923_4
Genre Journal Article
GroupedDBID 0R~
53G
AAFWJ
AAJSJ
ABDBF
ABJCF
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
KB.
M7S
M~E
NAO
O9-
OK1
PDBOC
PGMZT
PIMPY
PTHSS
RNT
RPM
SNYQT
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
8FE
8FG
AARCD
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-21db8b35a087ee29c0a9d0e1aa233ad858ccddc8c2b1b4072c5168d9d70fe57a3
IEDL.DBID AAJSJ
ISSN 2399-3669
IngestDate Wed Aug 27 01:14:04 EDT 2025
Thu Aug 21 18:37:00 EDT 2025
Fri Jul 11 05:23:07 EDT 2025
Wed Aug 13 11:05:38 EDT 2025
Thu Apr 03 07:13:27 EDT 2025
Tue Jul 01 02:10:19 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-21db8b35a087ee29c0a9d0e1aa233ad858ccddc8c2b1b4072c5168d9d70fe57a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5970-4315
0009-0004-2416-2124
0000-0002-4804-7954
0000-0002-9566-6088
OpenAccessLink https://www.nature.com/articles/s42004-023-00923-4
PMID 37322266
PQID 2826998003
PQPubID 4669725
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f6d63ea6da354b58bdf50e6d7770a959
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10272140
proquest_miscellaneous_2827252433
proquest_journals_2826998003
pubmed_primary_37322266
crossref_primary_10_1038_s42004_023_00923_4
crossref_citationtrail_10_1038_s42004_023_00923_4
springer_journals_10_1038_s42004_023_00923_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications chemistry
PublicationTitleAbbrev Commun Chem
PublicationTitleAlternate Commun Chem
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Katzenmeier, Kaye, Bandarenka (CR28) 2022; 922
Järrendahl, Arwin (CR21) 1998; 313
Park, Zhang, Chung, Less, Sastry (CR31) 2010; 195
Braun, Yada, Latz (CR9) 2015; 119
Gillespie (CR17) 1976; 22
CR39
CR38
Bonnick, Muldoon (CR5) 2022; 15
Park, Song, Choi, Jin, Lim (CR24) 2014; 53
Casalegno, Bernardi, Raos (CR34) 2013; 139
CR14
CR35
Raj, Aetukuri, Nanda (CR3) 2022; 26
Zhang, Yang, Zhou (CR4) 2020; 49
Martin, Yao, Berg (CR29) 2009; 223
Chandrasekhar (CR40) 1943; 15
Katzenmeier, Carstensen, Bandarenka (CR12) 2022; 14
Horowitz (CR1) 2020; 8
Gillespie (CR18) 1977; 81
Liu (CR22) 2017; 9
Funke (CR32) 1986; 18
Hatzell (CR7) 2020; 5
Casalegno, Raos, Po (CR33) 2010; 132
CR2
Li (CR8) 2021; 29
Miller, Abrahams (CR37) 1960; 120
de Klerk, Wagemaker (CR10) 2018; 1
CR26
Park (CR25) 2022; 12
Hartmann (CR27) 2013; 117
CR20
Uosaki, Kita (CR23) 1983; 130
Hückel, Debye (CR30) 1923; 24
van der Kaap, Koster (CR36) 2016; 307
CR42
CR41
Katzenmeier, Carstensen, Schaper, Müller‐Buschbaum, Bandarenka (CR11) 2021; 33
Katzenmeier, Helmer, Braxmeier, Knobbe, Bandarenka (CR13) 2021; 13
Stegmaier, Voss, Reuter, Luntz (CR15) 2017; 29
Katzenmeier, Gößwein, Gagliardi, Bandarenka (CR19) 2022; 126
He (CR16) 2021; 27
Luo (CR6) 2021; 79
M Casalegno (923_CR33) 2010; 132
Y Horowitz (923_CR1) 2020; 8
L Katzenmeier (923_CR12) 2022; 14
923_CR38
DT Gillespie (923_CR17) 1976; 22
DT Gillespie (923_CR18) 1977; 81
923_CR39
L Katzenmeier (923_CR19) 2022; 126
BK Park (923_CR25) 2022; 12
923_CR35
P Bonnick (923_CR5) 2022; 15
923_CR14
E Hückel (923_CR30) 1923; 24
KB Hatzell (923_CR7) 2020; 5
Z Luo (923_CR6) 2021; 79
K Funke (923_CR32) 1986; 18
923_CR2
N van der Kaap (923_CR36) 2016; 307
L Katzenmeier (923_CR28) 2022; 922
M Casalegno (923_CR34) 2013; 139
C Li (923_CR8) 2021; 29
M Park (923_CR31) 2010; 195
S Braun (923_CR9) 2015; 119
K Järrendahl (923_CR21) 1998; 313
HW Park (923_CR24) 2014; 53
W He (923_CR16) 2021; 27
923_CR26
SW Martin (923_CR29) 2009; 223
B Liu (923_CR22) 2017; 9
NJ de Klerk (923_CR10) 2018; 1
923_CR41
923_CR20
P Hartmann (923_CR27) 2013; 117
923_CR42
L Katzenmeier (923_CR13) 2021; 13
S Stegmaier (923_CR15) 2017; 29
S Chandrasekhar (923_CR40) 1943; 15
V Raj (923_CR3) 2022; 26
X Zhang (923_CR4) 2020; 49
K Uosaki (923_CR23) 1983; 130
L Katzenmeier (923_CR11) 2021; 33
A Miller (923_CR37) 1960; 120
References_xml – volume: 922
  start-page: 116750
  year: 2022
  ident: CR28
  article-title: Ionic Mott-Schottky formalism allows the assessment of mobile ion concentrations in Li+-conducting solid electrolytes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2022.116750
– volume: 49
  start-page: 3040
  year: 2020
  end-page: 3071
  ident: CR4
  article-title: Towards practical lithium-metal anodes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00838A
– volume: 223
  start-page: 1379
  year: 2009
  end-page: 1393
  ident: CR29
  article-title: Space charge polarization measurements as a method to determine the temperature dependence of the number density of mobile cations in ion conducting glasses
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.2009.6085
– volume: 132
  start-page: 094705
  year: 2010
  ident: CR33
  article-title: Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3337909
– ident: CR14
– ident: CR39
– ident: CR2
– volume: 139
  start-page: 024706
  year: 2013
  ident: CR34
  article-title: Numerical simulation of photocurrent generation in bilayer organic solar cells: comparison of master equation and kinetic Monte Carlo approaches
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812826
– volume: 12
  start-page: 2201208
  year: 2022
  ident: CR25
  article-title: Interface design considering intrinsic properties of dielectric materials to minimize space‐charge layer effect between oxide cathode and sulfide solid electrolyte in all‐solid‐state batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201208
– volume: 26
  start-page: 100999
  year: 2022
  ident: CR3
  article-title: Solid state lithium metal batteries–issues and challenges at the lithium-solid electrolyte interface
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2022.100999
– volume: 13
  start-page: 5853
  year: 2021
  end-page: 5860
  ident: CR13
  article-title: Properties of the space charge layers formed in Li-ion conducting glass ceramics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21304
– volume: 22
  start-page: 403
  year: 1976
  end-page: 434
  ident: CR17
  article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90041-3
– volume: 24
  start-page: 185
  year: 1923
  end-page: 206
  ident: CR30
  article-title: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen
  publication-title: Phys. Z.
– volume: 1
  start-page: 5609
  year: 2018
  end-page: 5618
  ident: CR10
  article-title: Space-charge layers in all-solid-state batteries; important or negligible?
  publication-title: ACS Appl. Energy Mater.
– ident: CR35
– volume: 79
  start-page: 105507
  year: 2021
  ident: CR6
  article-title: Interfacial challenges towards stable Li metal anode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105507
– volume: 27
  start-page: 423
  year: 2021
  end-page: 433
  ident: CR16
  article-title: Space charge layer effect in sulfide solid electrolytes in all-solid-state batteries: in-situ characterization and resolution
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-021-00294-8
– volume: 307
  start-page: 321
  year: 2016
  end-page: 332
  ident: CR36
  article-title: Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.001
– volume: 18
  start-page: 183
  year: 1986
  end-page: 190
  ident: CR32
  article-title: Debye-Hückel-type relaxation processes in solid ionic conductors: the model
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(86)90109-8
– ident: CR42
– volume: 120
  start-page: 745
  year: 1960
  ident: CR37
  article-title: Impurity conduction at low concentrations
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.745
– volume: 195
  start-page: 7904
  year: 2010
  end-page: 7929
  ident: CR31
  article-title: A review of conduction phenomena in Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.060
– volume: 29
  start-page: 4330
  year: 2017
  end-page: 4340
  ident: CR15
  article-title: Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00659
– volume: 33
  start-page: 2100585
  year: 2021
  ident: CR11
  article-title: Characterization and quantification of depletion and accumulation layers in solid‐state Li+‐conducting electrolytes using in situ spectroscopic ellipsometry
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100585
– volume: 53
  start-page: 08NK02
  year: 2014
  ident: CR24
  article-title: Anode performance of lithium–silicon alloy repared by mechanical alloying for use in all-solid-state lithium secondary batteries
  publication-title: Jpn J. Appl. Phys.
  doi: 10.7567/JJAP.53.08NK02
– volume: 29
  start-page: e00297
  year: 2021
  ident: CR8
  article-title: An advance review of solid-state battery: challenges, progress and prospects
  publication-title: Sustain. Mater. Technol.
– volume: 5
  start-page: 922
  year: 2020
  end-page: 934
  ident: CR7
  article-title: Challenges in lithium metal anodes for solid-state batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02668
– volume: 14
  start-page: 15811
  year: 2022
  end-page: 15817
  ident: CR12
  article-title: Li+ conductivity of space charge layers formed at electrified interfaces between a model solid-state electrolyte and blocking Au-electrodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c00650
– ident: CR38
– volume: 9
  start-page: 18809
  year: 2017
  end-page: 18815
  ident: CR22
  article-title: Garnet solid electrolyte protected Li-metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03887
– volume: 126
  start-page: 10900
  year: 2022
  end-page: 10909
  ident: CR19
  article-title: Modeling of space-charge layers in solid-state electrolytes: a kinetic Monte Carlo approach and its validation
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.2c02481
– volume: 15
  start-page: 1
  year: 1943
  ident: CR40
  article-title: Stochastic problems in physics and astronomy
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.15.1
– volume: 313
  start-page: 114
  year: 1998
  end-page: 118
  ident: CR21
  article-title: Multiple sample analysis of spectroscopic ellipsometry data of semi-transparent films
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00781-5
– volume: 119
  start-page: 22281
  year: 2015
  end-page: 22288
  ident: CR9
  article-title: Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b02679
– volume: 8
  start-page: 2000580
  year: 2020
  ident: CR1
  article-title: Between liquid and all solid: a prospect on electrolyte future in lithium-ion batteries for electric vehicles
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000580
– volume: 81
  start-page: 2340
  year: 1977
  end-page: 2361
  ident: CR18
  article-title: Exact stochastic simulation of coupled chemical reactions
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100540a008
– volume: 130
  start-page: 895
  year: 1983
  end-page: 897
  ident: CR23
  article-title: Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott-Schottky plot
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2119853
– ident: CR41
– ident: CR26
– volume: 15
  start-page: 1840
  year: 2022
  end-page: 1860
  ident: CR5
  article-title: The quest for the holy grail of solid-state lithium batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00842D
– ident: CR20
– volume: 117
  start-page: 21064
  year: 2013
  end-page: 21074
  ident: CR27
  article-title: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp4051275
– ident: 923_CR42
  doi: 10.3390/a11040037
– volume: 14
  start-page: 15811
  year: 2022
  ident: 923_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c00650
– ident: 923_CR14
  doi: 10.48550/arXiv.2101.10294
– ident: 923_CR38
– volume: 24
  start-page: 185
  year: 1923
  ident: 923_CR30
  publication-title: Phys. Z.
– volume: 13
  start-page: 5853
  year: 2021
  ident: 923_CR13
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21304
– ident: 923_CR2
  doi: 10.1002/aenm.202203791
– volume: 18
  start-page: 183
  year: 1986
  ident: 923_CR32
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(86)90109-8
– volume: 29
  start-page: e00297
  year: 2021
  ident: 923_CR8
  publication-title: Sustain. Mater. Technol.
– volume: 49
  start-page: 3040
  year: 2020
  ident: 923_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00838A
– volume: 120
  start-page: 745
  year: 1960
  ident: 923_CR37
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.745
– ident: 923_CR26
– ident: 923_CR35
  doi: 10.1093/oso/9780198803195.001.0001
– ident: 923_CR20
– ident: 923_CR41
– volume: 313
  start-page: 114
  year: 1998
  ident: 923_CR21
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00781-5
– volume: 53
  start-page: 08NK02
  year: 2014
  ident: 923_CR24
  publication-title: Jpn J. Appl. Phys.
  doi: 10.7567/JJAP.53.08NK02
– volume: 195
  start-page: 7904
  year: 2010
  ident: 923_CR31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.060
– volume: 81
  start-page: 2340
  year: 1977
  ident: 923_CR18
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100540a008
– volume: 79
  start-page: 105507
  year: 2021
  ident: 923_CR6
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105507
– volume: 9
  start-page: 18809
  year: 2017
  ident: 923_CR22
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03887
– volume: 126
  start-page: 10900
  year: 2022
  ident: 923_CR19
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.2c02481
– volume: 33
  start-page: 2100585
  year: 2021
  ident: 923_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100585
– volume: 139
  start-page: 024706
  year: 2013
  ident: 923_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812826
– volume: 119
  start-page: 22281
  year: 2015
  ident: 923_CR9
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b02679
– volume: 1
  start-page: 5609
  year: 2018
  ident: 923_CR10
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00457
– volume: 29
  start-page: 4330
  year: 2017
  ident: 923_CR15
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00659
– volume: 307
  start-page: 321
  year: 2016
  ident: 923_CR36
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.12.001
– ident: 923_CR39
– volume: 12
  start-page: 2201208
  year: 2022
  ident: 923_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201208
– volume: 15
  start-page: 1840
  year: 2022
  ident: 923_CR5
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00842D
– volume: 117
  start-page: 21064
  year: 2013
  ident: 923_CR27
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp4051275
– volume: 5
  start-page: 922
  year: 2020
  ident: 923_CR7
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02668
– volume: 130
  start-page: 895
  year: 1983
  ident: 923_CR23
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2119853
– volume: 22
  start-page: 403
  year: 1976
  ident: 923_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90041-3
– volume: 132
  start-page: 094705
  year: 2010
  ident: 923_CR33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3337909
– volume: 15
  start-page: 1
  year: 1943
  ident: 923_CR40
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.15.1
– volume: 26
  start-page: 100999
  year: 2022
  ident: 923_CR3
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2022.100999
– volume: 922
  start-page: 116750
  year: 2022
  ident: 923_CR28
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2022.116750
– volume: 223
  start-page: 1379
  year: 2009
  ident: 923_CR29
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.2009.6085
– volume: 27
  start-page: 423
  year: 2021
  ident: 923_CR16
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-021-00294-8
– volume: 8
  start-page: 2000580
  year: 2020
  ident: 923_CR1
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000580
SSID ssj0002013778
Score 2.2638695
Snippet All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li...
Abstract All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124
SubjectTerms 639/301/119/544
639/638/161/891
Charge transfer
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Depletion
Electrodes
Electrolytes
Energy storage
Impedance
Interfaces
Lithium
Lithium-ion batteries
Mass transport
Molten salt electrolytes
Rechargeable batteries
Solid electrolytes
Solid state
Space charge
Spectroellipsometry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmEFmQkbmA1fsY5QkVVVYITlXqz_FSDtlm03T3033fsOEuX54WrPY5GM-P4s2b8DUJvPZMu9ZYSlagkQtieOOsj0VaEpAGB9KlUW3xRp-fi7EJe3Gn1lWvCJnrgyXBHSQXFo1XBcimc1C4k2UYVuq5rbS_L0z048-5cpr6V9Fpm0tP1lUzL9dG1mGouGCeZZ4gTsXMSFcL-36HMX4slf8qYloPo5BF6WBEk_jBp_hjdi-MTdP94bty2j24-AyDG65m1HNsx4EKIFKfBFFe4tueBOTw1whkSYFGcySNWCayIa_0WvoqAzheDxwDXL4fNVfkaxOsQSHmLVJcvFzeAWZ-i85NPX49PSe2wQLwUdE0YDU47Lm2ruxhZ78GkoY3UWsa5DVpq70Pw2jNHXaZS85IqHfrQtSnKzvJnaG9cjvEFwjEmMLvVPQ1B9Ilb2uo-ucxeb5PirkF0trbxlX48d8FYmJIG59pMHjLgIVM8ZESD3m3XfJ_IN_4q_TE7cSuZibPLAISTqeFk_hVODTqcQ8DU3Xxt4Fqq4FoKP8AGvdlOg1dzcsWOcbkpMh2TTHCQeT5FzFYT3uV8llIN0juxtKPq7sw4XBaub8B_cEcXbYPez2H3Q68_2-Ll_7DFAXrAyn5RhMpDtLdebeIrgGBr97rstls0aS-a
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELbg9QAXVNaGFmQkbmA1jpc4J0SrVhUSFUJU6i3ySp_0mpS3HPrvGTtOqsfSq5fImRnbnz3jbxB6bythQqMpkYEKwrluiNHWE6W5CwoQSBNStMW5PLvgXy7FZb5wW-WwynFNTAu16228Iz-Eo4GEowEY4aebXyRmjYre1ZxC4yHagSVYqRnaOTo5__Z9umWpEqOeyq9lSqYOV3yIvagYiXxDjPCtHSkR9_8Lbf4dNPmH5zRtSKe76ElGkvjzoPqn6IHvnqFHx2MCt-fo9isAY7we2cux7hxOxEh-KAx-iXOaHqjDQ0KceQBMiiOJxDKANHGO48LXHlD6Ym4xwPar-eY6fQ3sdu5IepOUu_eLW8CuL9DF6cmP4zOSMy0QKzhdk4o6owwTulS191VjS9240lOtK8a0U0JZ65xVtjLUREo1K6hUrnF1GbyoNXuJZl3f-T2EvQ8gdq0a6hxvAtO0VE0wkcVeB8lMgego7dZmGvKYDWPRJnc4U-2goRY01CYNtbxAH6Y-NwMJx72tj6ISp5aRQDsV9MufbZ6PbZBOMq-l00xwI5RxQZReurqu4d9FU6CD0QTaPKtX7Z0NFujdVA1ajU4W3fl-k9rUlag4gzavBouZRsLq6NeSskBqy5a2hrpd082vEuc34EA4q_OyQB9Hs7sb1_9l8fr-39hHj6s0EySh4gDN1suNfwMga23e5pn0G0HRJ_I
  priority: 102
  providerName: ProQuest
Title Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes
URI https://link.springer.com/article/10.1038/s42004-023-00923-4
https://www.ncbi.nlm.nih.gov/pubmed/37322266
https://www.proquest.com/docview/2826998003
https://www.proquest.com/docview/2827252433
https://pubmed.ncbi.nlm.nih.gov/PMC10272140
https://doaj.org/article/f6d63ea6da354b58bdf50e6d7770a959
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6OMAF8Sa0rIzEDSziZ5zjdtWlWokKAZV6i_ykkbZZtN099N934jzQQkHiFMkeR45n7Hz2jL9B6J1j0sbSUKIilUQIUxJrXCDaCB81IJAypmiLc3V2IRaX8nIPseEuTAraT5SWaZkeosM-3oguZIJx0tIEcSL20WFL1Q62fTidLr4txpMVllj0dH9DJuf6nsY7f6FE1n8fwvwzUPI3b2n6Cc0fo0c9esTTrr9P0F5onqIHsyFp2zN0-xnAMN4MjOXYNB4nMqTQFcawxn1qHqjDXRKcOgIOxS1xxDrCCOI-dgtfB0Dmy9phgOpX9fY6vQ1stfYk3UPqm6-Wt4BXn6OL-en32RnpsysQJwXdEEa91ZZLk-siBFa63JQ-D9QYxrnxWmrnvHfaMUttS6PmJFXal77IY5CF4S_QQbNqwiuEQ4gw7EaX1HtRRm5orstoW-Z6ExW3GaLDaFeupx5vM2Asq-QC57rqNFSBhqqkoUpk6P3Y5mdHvPFP6ZNWiaNkS5qdClbrH1VvRFVUXvFglDdcCiu19VHmQfmiKODbZZmh48EEqn4m31SwJVWwJYXFL0Nvx2rQautYMU1YbZNMwSQTHGRedhYz9oQXrS9LqQzpHVva6epuTVNfJZ5vwH6wPxd5hj4MZverX38fi9f_J36EHrI0MxSh8hgdbNbb8AaA1sZO0L6ef5r08wueJ6fnX75C6UzNJunwYpJOx-4AKsEq5Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k2ggJHgBFZjO3acA0JQWLb0cWql3oKfdKVttuxDaP8Uv5Gxk2y1PHrrNXYix_ONPeMZf4PQK8uECZWmRAYqSFHoihhtPVG6cEGBBVKFlG1xJIcnxddTcbqBfvV3YWJaZb8mpoXaTWw8I98B10CCawAgfH_xg8SqUTG62pfQaGGx75c_wWWbvdv7BPJ9zdjg8_HukHRVBYgVBZ0TRp1Rhgudq9J7VtlcVy73VGvGuXZKKGuds8oyQ02kD7OCSuUqV-bBi1Jz-O4NdLPgsJPHm-mDL6szHZb4-1R3NyfnamdWtJkejJPIbsRJsbb_pTIB_7Jt_07R_CNOm7a_wR10u7Nb8YcWaHfRhm_uoa3dvlzcfbQ8BDMcz3uudKwbhxMNk28fBj_FXVEgaMNt-Z1RAAsYR8qKaQDZ4S5rDJ978AnGI4vBSTgbLc7T10BLRo6kG1Dd65PxEizlB-jkWiTwEG02k8Y_Rtj7ANOuVUWdK6rANc1VFUzkzNdBcpMh2s92bTvS81h7Y1yn4DtXdSuhGiRUJwnVRYberN65aCk_ruz9MQpx1TPSdacHk-n3utP-OkgnudfSaS4KI5RxQeReurIs4d9FlaHtHgJ1t4bM6kvEZ-jlqhmkGkM6uvGTRepTMsEAjBl61CJmNRJexiialBlSa1haG-p6SzM6SwzjYHWWDFzvDL3tYXc5rv_PxZOrf-MF2hoeHx7UB3tH-0_RLZa0QhIqttHmfLrwz8C8m5vnSacw-nbdSvwbgnpkjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVoJeEG9SChiJGxji-BHnuBRWZYEKCSr1ZvlJI22z1Xb30H_PxHmghYLE1R5bzszY_hyPv0HopSuEjZWhREYqCOemIta4QJThPipAIFVM0RbH8uiEz0_F6Q6Sw1uYFLSfKC3TMj1Eh7295F3IRMFISxPECH9z4eMNtAt4m_IJ2p1O59_m49-VIjHpqf6VTM7UNR1s7USJsP86lPlnsORvN6ZpI5rdQbd7BImn3Zjvop3Q3EO3DofEbffR1RcAxHg9sJZj03icCJFCVxjDCvfpeaAOd4lw6ghYFLfkEasIWsR9_BY-D4DOF7XDANfP6s156g38tfYkvUXqmy8XV4BZH6CT2Yfvh0ekz7BAnOB0TQrqrbJMmFyVIRSVy03l80CNKRgzXgnlnPdOucJS21KpOUGl8pUv8xhEadhDNGmWTXiMcAgR1G5URb3nVWSG5qqKtmWvN1EymyE6aFu7nn68zYKx0OkanCndWUiDhXSykOYZejW2uejIN_4p_a414ijZEmenguXqh-4dSUfpJQtGesMEt0JZH0UepC_LEr5dVBk6GFxA97P5UsOxVMKxFBbADL0Yq8Gq7eWKacJyk2TKQhScgcyjzmPGkbCyvc-SMkNqy5e2hrpd09Rniesb8B-c0XmeodeD2_0a1991sf9_4s_Rza_vZ_rzx-NPT9BekSaJJFQcoMl6tQlPAXet7bN-kv0EOEQpew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+transport+and+charge+transfer+through+an+electrified+interface+between+metallic+lithium+and+solid-state+electrolytes&rft.jtitle=Communications+chemistry&rft.au=Katzenmeier%2C+Leon&rft.au=G%C3%B6%C3%9Fwein%2C+Manuel&rft.au=Carstensen%2C+Leif&rft.au=Sterzinger%2C+Johannes&rft.date=2023-06-15&rft.issn=2399-3669&rft.eissn=2399-3669&rft.volume=6&rft.issue=1&rft.spage=124&rft_id=info:doi/10.1038%2Fs42004-023-00923-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3669&client=summon