Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes
All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/elect...
Saved in:
Published in | Communications chemistry Vol. 6; no. 1; pp. 124 - 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.06.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.
All-solid-state lithium-ion batteries are promising energy storage devices owing to their safe use and high energy density, whereby understanding electrode and solid electrolyte interfaces is key for battery development. Here, the authors use spectroscopic ellipsometry, impedance measurements, as well as Monte Carlo simulations to elucidate the formation of charge depletion layers at the electrode/electrolyte interface. |
---|---|
AbstractList | All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.All-solid-state lithium-ion batteries are promising energy storage devices owing to their safe use and high energy density, whereby understanding electrode and solid electrolyte interfaces is key for battery development. Here, the authors use spectroscopic ellipsometry, impedance measurements, as well as Monte Carlo simulations to elucidate the formation of charge depletion layers at the electrode/electrolyte interface. All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries. All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries. All-solid-state lithium-ion batteries are promising energy storage devices owing to their safe use and high energy density, whereby understanding electrode and solid electrolyte interfaces is key for battery development. Here, the authors use spectroscopic ellipsometry, impedance measurements, as well as Monte Carlo simulations to elucidate the formation of charge depletion layers at the electrode/electrolyte interface. All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries.All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries. Abstract All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li anodes can be safely used. However, introducing solid-state electrolytes needs a better understanding of the forming electrified electrode/electrolyte interface to facilitate the charge and mass transport through it and design ever-high-performance batteries. This study investigates the interface between metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected the formation of the space charge depletion layers even in the presence of metallic Li. That is counterintuitive and has been a subject of intense debate in recent years. Using impedance measurements, we obtain key parameters characterizing these layers and, with the help of kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain insights into the mass transport and the underlying mechanisms of charge accumulation, which is crucial for developing high-performance solid-state batteries. |
ArticleNumber | 124 |
Author | Ederer, Michael Müller-Buschbaum, Peter Gößwein, Manuel Bandarenka, Aliaksandr S. Katzenmeier, Leon Gagliardi, Alessio Sterzinger, Johannes Carstensen, Leif |
Author_xml | – sequence: 1 givenname: Leon surname: Katzenmeier fullname: Katzenmeier, Leon organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage, TUMint·Energy Research – sequence: 2 givenname: Manuel orcidid: 0000-0002-4804-7954 surname: Gößwein fullname: Gößwein, Manuel organization: Technical University of Munich, TUM School of Computation, Information and Technology, Department of Electrical and Computer Engineering – sequence: 3 givenname: Leif surname: Carstensen fullname: Carstensen, Leif organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage, TUMint·Energy Research – sequence: 4 givenname: Johannes orcidid: 0009-0004-2416-2124 surname: Sterzinger fullname: Sterzinger, Johannes organization: TUMint·Energy Research – sequence: 5 givenname: Michael surname: Ederer fullname: Ederer, Michael organization: TUMint·Energy Research – sequence: 6 givenname: Peter orcidid: 0000-0002-9566-6088 surname: Müller-Buschbaum fullname: Müller-Buschbaum, Peter organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich – sequence: 7 givenname: Alessio surname: Gagliardi fullname: Gagliardi, Alessio email: alessio.gagliardi@tum.de organization: Technical University of Munich, TUM School of Computation, Information and Technology, Department of Electrical and Computer Engineering – sequence: 8 givenname: Aliaksandr S. orcidid: 0000-0002-5970-4315 surname: Bandarenka fullname: Bandarenka, Aliaksandr S. email: bandarenka@ph.tum.de organization: Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37322266$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxIVLYGwnsXNCqOKjUhEXOFuOPdn1ymsvtlPUf493s5S2h15sa-a9N-OZ97I68cFjVb0m8J4AEx9SSwHaBihrAIZyts-qM8qGoWF9P5zce59WFyltAIACYZyLF9Up44xS2vdn1e13lVKdo_JpF2KulTe1Xqu4wiU4YazzOoZ5tS65Gh3qHO1k0dTWZ4yT0liPmP8g-nqLWTlnde1sXtt5e1BLwVnTpKwyHunB3WZMr6rnk3IJL473efXry-efl9-a6x9fry4_XTe6a0luKDGjGFmnQHBEOmhQgwEkSlHGlBGd0NoYLTQdydgCp7ojvTCD4TBhxxU7r64WXRPURu6i3ap4K4Oy8hAIcSVVzFY7lFNveoaqN4p17diJ0UwdYG8456VqNxStj4vWbh63aDT6MiT3QPRhxtu1XIUbSYBySlooCu-OCjH8njFlubVJo3PKY5iTpKIAO9oyVqBvH0E3YY6-zGqP6odBAOxRb-63dNfLvxUXAF0AOoaUIk53EAJybyW5WEkWK8mDlWRbSOIRSduyQRv237LuaSpbqKnU8SuM_9t-gvUXllzf5g |
CitedBy_id | crossref_primary_10_1039_D4TA00788C crossref_primary_10_1002_batt_202400570 |
Cites_doi | 10.1016/j.jelechem.2022.116750 10.1039/C9CS00838A 10.1524/zpch.2009.6085 10.1063/1.3337909 10.1063/1.4812826 10.1002/aenm.202201208 10.1016/j.cossms.2022.100999 10.1021/acsami.0c21304 10.1016/0021-9991(76)90041-3 10.1016/j.nanoen.2020.105507 10.1007/s12209-021-00294-8 10.1016/j.jcp.2015.12.001 10.1016/0167-2738(86)90109-8 10.1103/PhysRev.120.745 10.1016/j.jpowsour.2010.06.060 10.1021/acs.chemmater.7b00659 10.1002/adma.202100585 10.7567/JJAP.53.08NK02 10.1021/acsenergylett.9b02668 10.1021/acsami.2c00650 10.1021/acsami.7b03887 10.1021/acs.jpcc.2c02481 10.1103/RevModPhys.15.1 10.1016/S0040-6090(97)00781-5 10.1021/acs.jpcc.5b02679 10.1002/ente.202000580 10.1021/j100540a008 10.1149/1.2119853 10.1039/D2EE00842D 10.1021/jp4051275 10.3390/a11040037 10.48550/arXiv.2101.10294 10.1002/aenm.202203791 10.1093/oso/9780198803195.001.0001 10.1021/acsaem.8b00457 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.1038/s42004-023-00923-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2399-3669 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_f6d63ea6da354b58bdf50e6d7770a959 PMC10272140 37322266 10_1038_s42004_023_00923_4 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAFWJ AAJSJ ABDBF ABJCF ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. M7S M~E NAO O9- OK1 PDBOC PGMZT PIMPY PTHSS RNT RPM SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-21db8b35a087ee29c0a9d0e1aa233ad858ccddc8c2b1b4072c5168d9d70fe57a3 |
IEDL.DBID | AAJSJ |
ISSN | 2399-3669 |
IngestDate | Wed Aug 27 01:14:04 EDT 2025 Thu Aug 21 18:37:00 EDT 2025 Fri Jul 11 05:23:07 EDT 2025 Wed Aug 13 11:05:38 EDT 2025 Thu Apr 03 07:13:27 EDT 2025 Tue Jul 01 02:10:19 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-21db8b35a087ee29c0a9d0e1aa233ad858ccddc8c2b1b4072c5168d9d70fe57a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5970-4315 0009-0004-2416-2124 0000-0002-4804-7954 0000-0002-9566-6088 |
OpenAccessLink | https://www.nature.com/articles/s42004-023-00923-4 |
PMID | 37322266 |
PQID | 2826998003 |
PQPubID | 4669725 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6d63ea6da354b58bdf50e6d7770a959 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10272140 proquest_miscellaneous_2827252433 proquest_journals_2826998003 pubmed_primary_37322266 crossref_primary_10_1038_s42004_023_00923_4 crossref_citationtrail_10_1038_s42004_023_00923_4 springer_journals_10_1038_s42004_023_00923_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications chemistry |
PublicationTitleAbbrev | Commun Chem |
PublicationTitleAlternate | Commun Chem |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Katzenmeier, Kaye, Bandarenka (CR28) 2022; 922 Järrendahl, Arwin (CR21) 1998; 313 Park, Zhang, Chung, Less, Sastry (CR31) 2010; 195 Braun, Yada, Latz (CR9) 2015; 119 Gillespie (CR17) 1976; 22 CR39 CR38 Bonnick, Muldoon (CR5) 2022; 15 Park, Song, Choi, Jin, Lim (CR24) 2014; 53 Casalegno, Bernardi, Raos (CR34) 2013; 139 CR14 CR35 Raj, Aetukuri, Nanda (CR3) 2022; 26 Zhang, Yang, Zhou (CR4) 2020; 49 Martin, Yao, Berg (CR29) 2009; 223 Chandrasekhar (CR40) 1943; 15 Katzenmeier, Carstensen, Bandarenka (CR12) 2022; 14 Horowitz (CR1) 2020; 8 Gillespie (CR18) 1977; 81 Liu (CR22) 2017; 9 Funke (CR32) 1986; 18 Hatzell (CR7) 2020; 5 Casalegno, Raos, Po (CR33) 2010; 132 CR2 Li (CR8) 2021; 29 Miller, Abrahams (CR37) 1960; 120 de Klerk, Wagemaker (CR10) 2018; 1 CR26 Park (CR25) 2022; 12 Hartmann (CR27) 2013; 117 CR20 Uosaki, Kita (CR23) 1983; 130 Hückel, Debye (CR30) 1923; 24 van der Kaap, Koster (CR36) 2016; 307 CR42 CR41 Katzenmeier, Carstensen, Schaper, Müller‐Buschbaum, Bandarenka (CR11) 2021; 33 Katzenmeier, Helmer, Braxmeier, Knobbe, Bandarenka (CR13) 2021; 13 Stegmaier, Voss, Reuter, Luntz (CR15) 2017; 29 Katzenmeier, Gößwein, Gagliardi, Bandarenka (CR19) 2022; 126 He (CR16) 2021; 27 Luo (CR6) 2021; 79 M Casalegno (923_CR33) 2010; 132 Y Horowitz (923_CR1) 2020; 8 L Katzenmeier (923_CR12) 2022; 14 923_CR38 DT Gillespie (923_CR17) 1976; 22 DT Gillespie (923_CR18) 1977; 81 923_CR39 L Katzenmeier (923_CR19) 2022; 126 BK Park (923_CR25) 2022; 12 923_CR35 P Bonnick (923_CR5) 2022; 15 923_CR14 E Hückel (923_CR30) 1923; 24 KB Hatzell (923_CR7) 2020; 5 Z Luo (923_CR6) 2021; 79 K Funke (923_CR32) 1986; 18 923_CR2 N van der Kaap (923_CR36) 2016; 307 L Katzenmeier (923_CR28) 2022; 922 M Casalegno (923_CR34) 2013; 139 C Li (923_CR8) 2021; 29 M Park (923_CR31) 2010; 195 S Braun (923_CR9) 2015; 119 K Järrendahl (923_CR21) 1998; 313 HW Park (923_CR24) 2014; 53 W He (923_CR16) 2021; 27 923_CR26 SW Martin (923_CR29) 2009; 223 B Liu (923_CR22) 2017; 9 NJ de Klerk (923_CR10) 2018; 1 923_CR41 923_CR20 P Hartmann (923_CR27) 2013; 117 923_CR42 L Katzenmeier (923_CR13) 2021; 13 S Stegmaier (923_CR15) 2017; 29 S Chandrasekhar (923_CR40) 1943; 15 V Raj (923_CR3) 2022; 26 X Zhang (923_CR4) 2020; 49 K Uosaki (923_CR23) 1983; 130 L Katzenmeier (923_CR11) 2021; 33 A Miller (923_CR37) 1960; 120 |
References_xml | – volume: 922 start-page: 116750 year: 2022 ident: CR28 article-title: Ionic Mott-Schottky formalism allows the assessment of mobile ion concentrations in Li+-conducting solid electrolytes publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2022.116750 – volume: 49 start-page: 3040 year: 2020 end-page: 3071 ident: CR4 article-title: Towards practical lithium-metal anodes publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00838A – volume: 223 start-page: 1379 year: 2009 end-page: 1393 ident: CR29 article-title: Space charge polarization measurements as a method to determine the temperature dependence of the number density of mobile cations in ion conducting glasses publication-title: Z. Phys. Chem. doi: 10.1524/zpch.2009.6085 – volume: 132 start-page: 094705 year: 2010 ident: CR33 article-title: Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions publication-title: J. Chem. Phys. doi: 10.1063/1.3337909 – ident: CR14 – ident: CR39 – ident: CR2 – volume: 139 start-page: 024706 year: 2013 ident: CR34 article-title: Numerical simulation of photocurrent generation in bilayer organic solar cells: comparison of master equation and kinetic Monte Carlo approaches publication-title: J. Chem. Phys. doi: 10.1063/1.4812826 – volume: 12 start-page: 2201208 year: 2022 ident: CR25 article-title: Interface design considering intrinsic properties of dielectric materials to minimize space‐charge layer effect between oxide cathode and sulfide solid electrolyte in all‐solid‐state batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201208 – volume: 26 start-page: 100999 year: 2022 ident: CR3 article-title: Solid state lithium metal batteries–issues and challenges at the lithium-solid electrolyte interface publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2022.100999 – volume: 13 start-page: 5853 year: 2021 end-page: 5860 ident: CR13 article-title: Properties of the space charge layers formed in Li-ion conducting glass ceramics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21304 – volume: 22 start-page: 403 year: 1976 end-page: 434 ident: CR17 article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90041-3 – volume: 24 start-page: 185 year: 1923 end-page: 206 ident: CR30 article-title: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen publication-title: Phys. Z. – volume: 1 start-page: 5609 year: 2018 end-page: 5618 ident: CR10 article-title: Space-charge layers in all-solid-state batteries; important or negligible? publication-title: ACS Appl. Energy Mater. – ident: CR35 – volume: 79 start-page: 105507 year: 2021 ident: CR6 article-title: Interfacial challenges towards stable Li metal anode publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105507 – volume: 27 start-page: 423 year: 2021 end-page: 433 ident: CR16 article-title: Space charge layer effect in sulfide solid electrolytes in all-solid-state batteries: in-situ characterization and resolution publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-021-00294-8 – volume: 307 start-page: 321 year: 2016 end-page: 332 ident: CR36 article-title: Massively parallel kinetic Monte Carlo simulations of charge carrier transport in organic semiconductors publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.001 – volume: 18 start-page: 183 year: 1986 end-page: 190 ident: CR32 article-title: Debye-Hückel-type relaxation processes in solid ionic conductors: the model publication-title: Solid State Ion. doi: 10.1016/0167-2738(86)90109-8 – ident: CR42 – volume: 120 start-page: 745 year: 1960 ident: CR37 article-title: Impurity conduction at low concentrations publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.745 – volume: 195 start-page: 7904 year: 2010 end-page: 7929 ident: CR31 article-title: A review of conduction phenomena in Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.060 – volume: 29 start-page: 4330 year: 2017 end-page: 4340 ident: CR15 article-title: Li+ defects in a solid-state Li ion battery: theoretical insights with a Li3OCl electrolyte publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00659 – volume: 33 start-page: 2100585 year: 2021 ident: CR11 article-title: Characterization and quantification of depletion and accumulation layers in solid‐state Li+‐conducting electrolytes using in situ spectroscopic ellipsometry publication-title: Adv. Mater. doi: 10.1002/adma.202100585 – volume: 53 start-page: 08NK02 year: 2014 ident: CR24 article-title: Anode performance of lithium–silicon alloy repared by mechanical alloying for use in all-solid-state lithium secondary batteries publication-title: Jpn J. Appl. Phys. doi: 10.7567/JJAP.53.08NK02 – volume: 29 start-page: e00297 year: 2021 ident: CR8 article-title: An advance review of solid-state battery: challenges, progress and prospects publication-title: Sustain. Mater. Technol. – volume: 5 start-page: 922 year: 2020 end-page: 934 ident: CR7 article-title: Challenges in lithium metal anodes for solid-state batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02668 – volume: 14 start-page: 15811 year: 2022 end-page: 15817 ident: CR12 article-title: Li+ conductivity of space charge layers formed at electrified interfaces between a model solid-state electrolyte and blocking Au-electrodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c00650 – ident: CR38 – volume: 9 start-page: 18809 year: 2017 end-page: 18815 ident: CR22 article-title: Garnet solid electrolyte protected Li-metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03887 – volume: 126 start-page: 10900 year: 2022 end-page: 10909 ident: CR19 article-title: Modeling of space-charge layers in solid-state electrolytes: a kinetic Monte Carlo approach and its validation publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.2c02481 – volume: 15 start-page: 1 year: 1943 ident: CR40 article-title: Stochastic problems in physics and astronomy publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.15.1 – volume: 313 start-page: 114 year: 1998 end-page: 118 ident: CR21 article-title: Multiple sample analysis of spectroscopic ellipsometry data of semi-transparent films publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00781-5 – volume: 119 start-page: 22281 year: 2015 end-page: 22288 ident: CR9 article-title: Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b02679 – volume: 8 start-page: 2000580 year: 2020 ident: CR1 article-title: Between liquid and all solid: a prospect on electrolyte future in lithium-ion batteries for electric vehicles publication-title: Energy Technol. doi: 10.1002/ente.202000580 – volume: 81 start-page: 2340 year: 1977 end-page: 2361 ident: CR18 article-title: Exact stochastic simulation of coupled chemical reactions publication-title: J. Phys. Chem. doi: 10.1021/j100540a008 – volume: 130 start-page: 895 year: 1983 end-page: 897 ident: CR23 article-title: Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott-Schottky plot publication-title: J. Electrochem. Soc. doi: 10.1149/1.2119853 – ident: CR41 – ident: CR26 – volume: 15 start-page: 1840 year: 2022 end-page: 1860 ident: CR5 article-title: The quest for the holy grail of solid-state lithium batteries publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00842D – ident: CR20 – volume: 117 start-page: 21064 year: 2013 end-page: 21074 ident: CR27 article-title: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes publication-title: J. Phys. Chem. C. doi: 10.1021/jp4051275 – ident: 923_CR42 doi: 10.3390/a11040037 – volume: 14 start-page: 15811 year: 2022 ident: 923_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c00650 – ident: 923_CR14 doi: 10.48550/arXiv.2101.10294 – ident: 923_CR38 – volume: 24 start-page: 185 year: 1923 ident: 923_CR30 publication-title: Phys. Z. – volume: 13 start-page: 5853 year: 2021 ident: 923_CR13 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21304 – ident: 923_CR2 doi: 10.1002/aenm.202203791 – volume: 18 start-page: 183 year: 1986 ident: 923_CR32 publication-title: Solid State Ion. doi: 10.1016/0167-2738(86)90109-8 – volume: 29 start-page: e00297 year: 2021 ident: 923_CR8 publication-title: Sustain. Mater. Technol. – volume: 49 start-page: 3040 year: 2020 ident: 923_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00838A – volume: 120 start-page: 745 year: 1960 ident: 923_CR37 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.745 – ident: 923_CR26 – ident: 923_CR35 doi: 10.1093/oso/9780198803195.001.0001 – ident: 923_CR20 – ident: 923_CR41 – volume: 313 start-page: 114 year: 1998 ident: 923_CR21 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00781-5 – volume: 53 start-page: 08NK02 year: 2014 ident: 923_CR24 publication-title: Jpn J. Appl. Phys. doi: 10.7567/JJAP.53.08NK02 – volume: 195 start-page: 7904 year: 2010 ident: 923_CR31 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.060 – volume: 81 start-page: 2340 year: 1977 ident: 923_CR18 publication-title: J. Phys. Chem. doi: 10.1021/j100540a008 – volume: 79 start-page: 105507 year: 2021 ident: 923_CR6 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105507 – volume: 9 start-page: 18809 year: 2017 ident: 923_CR22 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03887 – volume: 126 start-page: 10900 year: 2022 ident: 923_CR19 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.2c02481 – volume: 33 start-page: 2100585 year: 2021 ident: 923_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202100585 – volume: 139 start-page: 024706 year: 2013 ident: 923_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.4812826 – volume: 119 start-page: 22281 year: 2015 ident: 923_CR9 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b02679 – volume: 1 start-page: 5609 year: 2018 ident: 923_CR10 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00457 – volume: 29 start-page: 4330 year: 2017 ident: 923_CR15 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00659 – volume: 307 start-page: 321 year: 2016 ident: 923_CR36 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.12.001 – ident: 923_CR39 – volume: 12 start-page: 2201208 year: 2022 ident: 923_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201208 – volume: 15 start-page: 1840 year: 2022 ident: 923_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00842D – volume: 117 start-page: 21064 year: 2013 ident: 923_CR27 publication-title: J. Phys. Chem. C. doi: 10.1021/jp4051275 – volume: 5 start-page: 922 year: 2020 ident: 923_CR7 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02668 – volume: 130 start-page: 895 year: 1983 ident: 923_CR23 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2119853 – volume: 22 start-page: 403 year: 1976 ident: 923_CR17 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(76)90041-3 – volume: 132 start-page: 094705 year: 2010 ident: 923_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.3337909 – volume: 15 start-page: 1 year: 1943 ident: 923_CR40 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.15.1 – volume: 26 start-page: 100999 year: 2022 ident: 923_CR3 publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2022.100999 – volume: 922 start-page: 116750 year: 2022 ident: 923_CR28 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2022.116750 – volume: 223 start-page: 1379 year: 2009 ident: 923_CR29 publication-title: Z. Phys. Chem. doi: 10.1524/zpch.2009.6085 – volume: 27 start-page: 423 year: 2021 ident: 923_CR16 publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-021-00294-8 – volume: 8 start-page: 2000580 year: 2020 ident: 923_CR1 publication-title: Energy Technol. doi: 10.1002/ente.202000580 |
SSID | ssj0002013778 |
Score | 2.2638695 |
Snippet | All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density metallic Li... Abstract All-solid-state Li-ion batteries are one of the most promising energy storage devices for future automotive applications as high energy density... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 124 |
SubjectTerms | 639/301/119/544 639/638/161/891 Charge transfer Chemistry Chemistry and Materials Science Chemistry/Food Science Depletion Electrodes Electrolytes Energy storage Impedance Interfaces Lithium Lithium-ion batteries Mass transport Molten salt electrolytes Rechargeable batteries Solid electrolytes Solid state Space charge Spectroellipsometry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmEFmQkbmA1fsY5QkVVVYITlXqz_FSDtlm03T3033fsOEuX54WrPY5GM-P4s2b8DUJvPZMu9ZYSlagkQtieOOsj0VaEpAGB9KlUW3xRp-fi7EJe3Gn1lWvCJnrgyXBHSQXFo1XBcimc1C4k2UYVuq5rbS_L0z048-5cpr6V9Fpm0tP1lUzL9dG1mGouGCeZZ4gTsXMSFcL-36HMX4slf8qYloPo5BF6WBEk_jBp_hjdi-MTdP94bty2j24-AyDG65m1HNsx4EKIFKfBFFe4tueBOTw1whkSYFGcySNWCayIa_0WvoqAzheDxwDXL4fNVfkaxOsQSHmLVJcvFzeAWZ-i85NPX49PSe2wQLwUdE0YDU47Lm2ruxhZ78GkoY3UWsa5DVpq70Pw2jNHXaZS85IqHfrQtSnKzvJnaG9cjvEFwjEmMLvVPQ1B9Ilb2uo-ucxeb5PirkF0trbxlX48d8FYmJIG59pMHjLgIVM8ZESD3m3XfJ_IN_4q_TE7cSuZibPLAISTqeFk_hVODTqcQ8DU3Xxt4Fqq4FoKP8AGvdlOg1dzcsWOcbkpMh2TTHCQeT5FzFYT3uV8llIN0juxtKPq7sw4XBaub8B_cEcXbYPez2H3Q68_2-Ll_7DFAXrAyn5RhMpDtLdebeIrgGBr97rstls0aS-a priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELbg9QAXVNaGFmQkbmA1jpc4J0SrVhUSFUJU6i3ySp_0mpS3HPrvGTtOqsfSq5fImRnbnz3jbxB6bythQqMpkYEKwrluiNHWE6W5CwoQSBNStMW5PLvgXy7FZb5wW-WwynFNTAu16228Iz-Eo4GEowEY4aebXyRmjYre1ZxC4yHagSVYqRnaOTo5__Z9umWpEqOeyq9lSqYOV3yIvagYiXxDjPCtHSkR9_8Lbf4dNPmH5zRtSKe76ElGkvjzoPqn6IHvnqFHx2MCt-fo9isAY7we2cux7hxOxEh-KAx-iXOaHqjDQ0KceQBMiiOJxDKANHGO48LXHlD6Ym4xwPar-eY6fQ3sdu5IepOUu_eLW8CuL9DF6cmP4zOSMy0QKzhdk4o6owwTulS191VjS9240lOtK8a0U0JZ65xVtjLUREo1K6hUrnF1GbyoNXuJZl3f-T2EvQ8gdq0a6hxvAtO0VE0wkcVeB8lMgego7dZmGvKYDWPRJnc4U-2goRY01CYNtbxAH6Y-NwMJx72tj6ISp5aRQDsV9MufbZ6PbZBOMq-l00xwI5RxQZReurqu4d9FU6CD0QTaPKtX7Z0NFujdVA1ajU4W3fl-k9rUlag4gzavBouZRsLq6NeSskBqy5a2hrpd082vEuc34EA4q_OyQB9Hs7sb1_9l8fr-39hHj6s0EySh4gDN1suNfwMga23e5pn0G0HRJ_I priority: 102 providerName: ProQuest |
Title | Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes |
URI | https://link.springer.com/article/10.1038/s42004-023-00923-4 https://www.ncbi.nlm.nih.gov/pubmed/37322266 https://www.proquest.com/docview/2826998003 https://www.proquest.com/docview/2827252433 https://pubmed.ncbi.nlm.nih.gov/PMC10272140 https://doaj.org/article/f6d63ea6da354b58bdf50e6d7770a959 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6OMAF8Sa0rIzEDSziZ5zjdtWlWokKAZV6i_ykkbZZtN099N934jzQQkHiFMkeR45n7Hz2jL9B6J1j0sbSUKIilUQIUxJrXCDaCB81IJAypmiLc3V2IRaX8nIPseEuTAraT5SWaZkeosM-3oguZIJx0tIEcSL20WFL1Q62fTidLr4txpMVllj0dH9DJuf6nsY7f6FE1n8fwvwzUPI3b2n6Cc0fo0c9esTTrr9P0F5onqIHsyFp2zN0-xnAMN4MjOXYNB4nMqTQFcawxn1qHqjDXRKcOgIOxS1xxDrCCOI-dgtfB0Dmy9phgOpX9fY6vQ1stfYk3UPqm6-Wt4BXn6OL-en32RnpsysQJwXdEEa91ZZLk-siBFa63JQ-D9QYxrnxWmrnvHfaMUttS6PmJFXal77IY5CF4S_QQbNqwiuEQ4gw7EaX1HtRRm5orstoW-Z6ExW3GaLDaFeupx5vM2Asq-QC57rqNFSBhqqkoUpk6P3Y5mdHvPFP6ZNWiaNkS5qdClbrH1VvRFVUXvFglDdcCiu19VHmQfmiKODbZZmh48EEqn4m31SwJVWwJYXFL0Nvx2rQautYMU1YbZNMwSQTHGRedhYz9oQXrS9LqQzpHVva6epuTVNfJZ5vwH6wPxd5hj4MZverX38fi9f_J36EHrI0MxSh8hgdbNbb8AaA1sZO0L6ef5r08wueJ6fnX75C6UzNJunwYpJOx-4AKsEq5Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k2ggJHgBFZjO3acA0JQWLb0cWql3oKfdKVttuxDaP8Uv5Gxk2y1PHrrNXYix_ONPeMZf4PQK8uECZWmRAYqSFHoihhtPVG6cEGBBVKFlG1xJIcnxddTcbqBfvV3YWJaZb8mpoXaTWw8I98B10CCawAgfH_xg8SqUTG62pfQaGGx75c_wWWbvdv7BPJ9zdjg8_HukHRVBYgVBZ0TRp1Rhgudq9J7VtlcVy73VGvGuXZKKGuds8oyQ02kD7OCSuUqV-bBi1Jz-O4NdLPgsJPHm-mDL6szHZb4-1R3NyfnamdWtJkejJPIbsRJsbb_pTIB_7Jt_07R_CNOm7a_wR10u7Nb8YcWaHfRhm_uoa3dvlzcfbQ8BDMcz3uudKwbhxMNk28fBj_FXVEgaMNt-Z1RAAsYR8qKaQDZ4S5rDJ978AnGI4vBSTgbLc7T10BLRo6kG1Dd65PxEizlB-jkWiTwEG02k8Y_Rtj7ANOuVUWdK6rANc1VFUzkzNdBcpMh2s92bTvS81h7Y1yn4DtXdSuhGiRUJwnVRYberN65aCk_ruz9MQpx1TPSdacHk-n3utP-OkgnudfSaS4KI5RxQeReurIs4d9FlaHtHgJ1t4bM6kvEZ-jlqhmkGkM6uvGTRepTMsEAjBl61CJmNRJexiialBlSa1haG-p6SzM6SwzjYHWWDFzvDL3tYXc5rv_PxZOrf-MF2hoeHx7UB3tH-0_RLZa0QhIqttHmfLrwz8C8m5vnSacw-nbdSvwbgnpkjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVoJeEG9SChiJGxji-BHnuBRWZYEKCSr1ZvlJI22z1Xb30H_PxHmghYLE1R5bzszY_hyPv0HopSuEjZWhREYqCOemIta4QJThPipAIFVM0RbH8uiEz0_F6Q6Sw1uYFLSfKC3TMj1Eh7295F3IRMFISxPECH9z4eMNtAt4m_IJ2p1O59_m49-VIjHpqf6VTM7UNR1s7USJsP86lPlnsORvN6ZpI5rdQbd7BImn3Zjvop3Q3EO3DofEbffR1RcAxHg9sJZj03icCJFCVxjDCvfpeaAOd4lw6ghYFLfkEasIWsR9_BY-D4DOF7XDANfP6s156g38tfYkvUXqmy8XV4BZH6CT2Yfvh0ekz7BAnOB0TQrqrbJMmFyVIRSVy03l80CNKRgzXgnlnPdOucJS21KpOUGl8pUv8xhEadhDNGmWTXiMcAgR1G5URb3nVWSG5qqKtmWvN1EymyE6aFu7nn68zYKx0OkanCndWUiDhXSykOYZejW2uejIN_4p_a414ijZEmenguXqh-4dSUfpJQtGesMEt0JZH0UepC_LEr5dVBk6GFxA97P5UsOxVMKxFBbADL0Yq8Gq7eWKacJyk2TKQhScgcyjzmPGkbCyvc-SMkNqy5e2hrpd09Rniesb8B-c0XmeodeD2_0a1991sf9_4s_Rza_vZ_rzx-NPT9BekSaJJFQcoMl6tQlPAXet7bN-kv0EOEQpew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+transport+and+charge+transfer+through+an+electrified+interface+between+metallic+lithium+and+solid-state+electrolytes&rft.jtitle=Communications+chemistry&rft.au=Katzenmeier%2C+Leon&rft.au=G%C3%B6%C3%9Fwein%2C+Manuel&rft.au=Carstensen%2C+Leif&rft.au=Sterzinger%2C+Johannes&rft.date=2023-06-15&rft.issn=2399-3669&rft.eissn=2399-3669&rft.volume=6&rft.issue=1&rft.spage=124&rft_id=info:doi/10.1038%2Fs42004-023-00923-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3669&client=summon |