Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review
There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topi...
Saved in:
Published in | Agronomy for sustainable development Vol. 43; no. 1; p. 21 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Paris
Springer Paris
01.02.2023
Springer Nature B.V Springer Verlag/EDP Sciences/INRA |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage. |
---|---|
AbstractList | There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage. There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage. |
ArticleNumber | 21 |
Author | Chabbi, Abad Basile-Doelsch, Isabelle Crème, Alexandra Cécillon, Lauric Fontaine, Sébastien Rees, Frédéric Lashermes, Gwenaëlle Dignac, Marie-France Quénéa, Katell Derrien, Delphine Henneron, Ludovic Barré, Pierre Janot, Noémie |
Author_xml | – sequence: 1 givenname: Delphine orcidid: 0000-0002-6482-2316 surname: Derrien fullname: Derrien, Delphine email: delphine.derrien@inrae.fr organization: INRAE, BEF – sequence: 2 givenname: Pierre orcidid: 0000-0002-0822-0556 surname: Barré fullname: Barré, Pierre organization: Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL – sequence: 3 givenname: Isabelle orcidid: 0000-0002-0587-8141 surname: Basile-Doelsch fullname: Basile-Doelsch, Isabelle organization: Aix Marseille University – sequence: 4 givenname: Lauric surname: Cécillon fullname: Cécillon, Lauric organization: Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL – sequence: 5 givenname: Abad surname: Chabbi fullname: Chabbi, Abad organization: UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay – sequence: 6 givenname: Alexandra surname: Crème fullname: Crème, Alexandra organization: UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay – sequence: 7 givenname: Sébastien orcidid: 0000-0003-1404-0700 surname: Fontaine fullname: Fontaine, Sébastien organization: Université Clermont Auvergne, INRAE, VetAgro Sup – sequence: 8 givenname: Ludovic surname: Henneron fullname: Henneron, Ludovic organization: USC ECODIV-Rouen 7603, Normandie Université, UNIROUEN, INRAE – sequence: 9 givenname: Noémie orcidid: 0000-0001-9287-2532 surname: Janot fullname: Janot, Noémie organization: ISPA, Bordeaux Sciences Agro, INRAE – sequence: 10 givenname: Gwenaëlle surname: Lashermes fullname: Lashermes, Gwenaëlle organization: Université de Reims Champagne Ardenne, INRAE, FARE – sequence: 11 givenname: Katell surname: Quénéa fullname: Quénéa, Katell organization: Sorbonne Université, CNRS, EPHE, PSL, UMR METIS – sequence: 12 givenname: Frédéric orcidid: 0000-0002-4827-4452 surname: Rees fullname: Rees, Frédéric organization: UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay – sequence: 13 givenname: Marie-France orcidid: 0000-0002-0231-5597 surname: Dignac fullname: Dignac, Marie-France organization: INRAE, CNRS, Sorbonne Université |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36777236$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-04032123$$DView record in HAL |
BookMark | eNqFkk1v1DAQhiNURD_gD3BAlrjAIcWfccKh0moFFGklLnC2vM5k1yWxg51s25_BP8bZLAX2UA5WPOPnnZmM3vPsxHkHWfaS4EuCsXwXCRMVyzFNB5eyyO-eZGdEyhQSIU72d55jyYvT7DzGG4z5lHmWnbJCSklZcZb9XI4hgBuQ8W4IfgchWojIO9SB2WpnYxcPb21r3QZFb1tkdFgnJA4-6A28R7brW2v0YL2LqPEBWTdA0GZO3Nphi_p9OCVSC6RdjXqfNPd5p7-nzCVaoAA7C7fPs6eNbiO8OHwvsm8fP3xdXuerL58-Lxer3AhOhpw0poIGSlMxQUiDca2pkEIQLGqquayISQiWpCnJGlJYGY5rzkFTWRvB2EV2Ndftx3UHtUlLCLpVfbCdDvfKa6v-fXF2qzZ-p6oKE05xKvB2LrA9kl0vVmrKYY4ZJZTtSGLfHJoF_2OEOKjORgNtqx34MSpGBJOcl6z8L0qlFJXgRUET-voIvfFjcGlrE8VKQSSf5nz1948-jPrbBAmgM2CCjzFA84AQrCanqdlpKjlN7Z2m7pKoPBIZO-wdkJZl28elbJbG1MdtIPwZ-xHVL-gX618 |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_117101 crossref_primary_10_3390_plants13091231 crossref_primary_10_1016_j_envdev_2023_100941 crossref_primary_10_1016_j_scitotenv_2024_176732 crossref_primary_10_5194_soil_11_149_2025 crossref_primary_10_1016_j_jenvman_2024_122367 crossref_primary_10_1016_j_plaphy_2024_109230 crossref_primary_10_1016_j_orggeochem_2024_104848 crossref_primary_10_1016_j_agee_2024_109167 crossref_primary_10_19047_0136_1694_2024_118_79_127 crossref_primary_10_3390_agronomy14092068 crossref_primary_10_1038_s41467_023_38700_5 crossref_primary_10_1093_nsr_nwae059 crossref_primary_10_47115_bsagriculture_1565025 crossref_primary_10_3389_fsufs_2023_1188133 crossref_primary_10_1016_j_scitotenv_2025_178763 crossref_primary_10_5194_bg_21_1037_2024 crossref_primary_10_1016_j_geoderma_2024_116846 crossref_primary_10_1016_j_geoderma_2024_116944 crossref_primary_10_1371_journal_pbio_3002190 crossref_primary_10_1016_j_geoderma_2023_116717 crossref_primary_10_1111_ejss_13536 |
Cites_doi | 10.1007/s11104-020-04651-9 10.1016/j.scitotenv.2018.02.209 10.3389/fmicb.2018.02986 10.2134/jeq2019.01.0036 10.1126/science.1221748 10.1007/s10311-013-0433-3 10.1071/EN10006 10.1038/s42003-019-0684-z 10.1016/S0146-6380(01)00166-8 10.3389/fmicb.2016.01315 10.1038/s41467-017-00407-9 10.2136/sssaj1999.6351350x 10.1038/s41586-018-0328-3 10.1111/gcb.15342 10.1007/s11104-004-0907-y 10.1016/j.soilbio.2018.04.026 10.1038/s41467-018-03406-6 10.1038/ngeo2520 10.1080/17583004.2014.923226 10.1007/s11104-010-0391-5 10.3389/fenvs.2017.00041 10.1007/s10533-022-00942-8 10.1186/s13021-018-0113-5 10.1038/s41467-021-24192-8 10.1016/j.geoderma.2020.114785 10.1038/nature06275 10.1111/ejss.13141 10.1146/annurev.mi.03.100149.002103 10.1046/j.1461-0248.2001.00210.x 10.1007/s10533-017-0373-2 10.1016/j.geoderma2017.01.002 10.1016/j.gca.2011.01.020 10.1016/j.soilbio.2013.06.016 10.1111/j.1365-2389.1997.tb00549.x 10.1111/1365-2745.12200 10.13140/RG.2.2.35757.82405 10.1016/j.soilbio.2019.03.027 10.1038/s41561-020-0634-x 10.2134/jeq2019.02.0002c 10.1016/j.envsoft.2019.04.004 10.1016/j.tim.2015.10.004 10.1016/j.orggeochem.2011.05.002 10.1016/j.soilbio.2018.02.016 10.2136/sssaj2011.0328 10.1038/ncomms13630 10.3334/ORNLDAAC/1827 10.1111/1365-2435.14038 10.1016/j.ecolmodel.2005.08.045 10.1111/gcb.14069 10.3389/feart.2018.00143 10.1016/j.soilbio.2014.08.005 10.1016/S0038-0717(01)00158-4 10.1002/eap.2290 10.1007/s10533-016-0246-0 10.1038/nature10386 10.1016/S0038-0717(00)00179-6 10.1111/j.1365-2389.2006.00811.x 10.1016/j.soilbio.2015.09.005 10.1111/gcb.15550 10.1016/j.soilbio.2015.06.014 10.1016/j.scitotenv.2021.148569 10.5194/bg-2017-395 10.1038/s41561-019-0484-6 10.1016/j.soilbio.2013.01.011 10.3390/e22030277 10.1038/s41467-020-18887-7 10.1007/s10533-018-0475-5 10.1111/j.1365-2389.2000.00348.x 10.1186/s13068-017-0865-2 10.5194/bg-18-1241-2021 10.1016/j.eja.2021.126248 10.1890/14-0777.1 10.1016/j.geoderma.2012.08.003 10.1038/s41467-018-04526-9 10.1126/science.1231923 10.1016/j.agee.2014.02.014 10.1126/science.aax4737 10.1111/1462-2920.15159 10.1017/S0033822200058215 10.1016/j.soilbio.2021.108189 10.1007/s10533-011-9658-z 10.1111/ele.12802 10.3389/fenvs.2020.579904 10.1007/s10533-016-0291-8 10.21203/rs.3.rs-388050/v1 10.2134/jeq2019.02.0041 10.2136/sssaj2004.0347 10.1016/J.EJSOBI.2003.08.002 10.1016/j.scitotenv.2021.146732 10.1007/978-3-642-61094-3_17 10.1071/SR20257 10.1111/gcb.12493 10.1038/s41467-017-01123-0 10.4141/S04-003 10.1038/s41586-019-1280-6 10.1098/rstb.2013.0164 10.1016/S0146-6380(00)00049-8 10.1038/nclimate3286 10.1016/j.geoderma.2018.10.018 10.1038/srep15991 10.1007/s11191-019-00048-y 10.1016/j.still.2018.04.011 10.1093/femsre/fux049 10.5194/bg-18-1703-2021 10.1016/j.orggeochem.2020.104016 10.1016/j.soilbio.2016.11.008 10.1146/annurev.earth.36.031207.124300 10.1038/nature16069 10.1016/j.soilbio.2012.05.011 10.1016/j.soilbio.2016.05.019 10.1016/j.soilbio.2018.06.025 10.1016/j.geoderma.2016.06.027 10.1016/j.soilbio.2005.10.008 10.1007/s13593-015-0284-3 10.1016/j.scitotenv.2016.10.073 10.1016/j.orggeochem.2013.04.011 10.1007/s13593-017-0421-2 10.1007/s10533-018-0509-z 10.1016/j.soilbio.2019.107689 10.1016/j.soilbio.2011.01.024 10.1016/j.tim.2009.05.004 10.1016/j.geoderma.2019.02.008 10.1038/ismej.2012.11 10.1038/s41561-019-0373-z 10.1126/sciadv.aay6792 10.1038/ngeo2940 10.1007/s00374-013-0822-6 10.1111/gcb.15365 10.1016/j.earscirev.2021.103525 10.1016/j.agsy.2012.07.001 10.3390/su12114351 10.1002/jpln.200700048 10.1007/s13593-019-0599-6 10.1016/j.soilbio.2020.108068 10.1023/A:1004213929699 10.1111/1462-2920.13990 10.1016/s0038-0717(99)00105-4 10.3389/fenvs.2020.514701 10.1038/s41467-020-18795-w 10.1016/j.orggeochem.2017.06.012 10.1038/s41561-021-00744-x 10.1016/j.soilbio.2007.07.021 10.1021/acs.est.7b01427 10.1111/gcb.15441 10.1016/j.micres.2021.126832 10.3389/fmicb.2012.00348 10.1016/j.still.2017.12.002 10.1007/s11284-012-1022-9 10.1016/j.geoderma.2004.12.022 10.1890/10-1307.1 10.1371/journal.pone.0108769 10.1016/j.ecolmodel.2004.01.011 10.1038/s41467-022-34951-w 10.1016/S0065-2113(10)06003-7 10.1111/j.1365-2389.1996.tb01848.x 10.5194/bg-17-5223-2020 10.1890/06-1847.1 10.3390/soilsystems3010011 10.1016/j.scitotenv.2018.10.236 10.1111/gcb.14009 10.1016/S0065-2113(04)92003-2 10.5194/gmd-14-3879-2021 10.1038/s41467-017-01116-z 10.1080/10934529.2018.1459076 10.1016/S0065-2113(08)00606-8 10.1073/pnas.1706103114 10.1038/ngeo155 10.3389/fsoil.2022.831775 10.1111/j.1469-8137.2012.04225.x 10.5194/bg-8-1911-2011 10.1016/j.soilbio.2015.11.007 10.1016/S0016-7061(96)00036-5 10.1016/S0165-2370(96)00954-0 10.1016/j.soilbio.2006.09.030 10.1016/j.foreco.2019.117844 10.1111/gcb.14859 10.1146/annurev-earth-060614-105038 10.1038/NCLIMATE1692 10.1002/ecy.3328 10.1016/j.still.2015.04.007 10.1111/ejss.12909 10.1016/j.ecolind.2019.05.035 10.1016/j.geoderma.2018.10.009 10.1016/j.geoderma.2004.12.024 10.1016/j.soilbio.2016.04.001 10.1111/j.1365-2486.2010.02278.x 10.1007/s10533-015-0180-6 10.1016/j.indcrop.2020.112122 10.4141/S04-081 10.1038/nmicrobiol.2017.105 10.1007/978-94-017-5279-4 10.5194/essd-12-61-2020 10.1111/j.1365-2389.2008.01110.x 10.1038/nature13855 10.1038/ngeo844 10.1029/2011JG001790 10.1111/j.1365-2389.2008.01111.x 10.1007/s10533-017-0410-1 10.1016/j.soilbio.2014.09.023 10.1016/B978-0-12-811050-8.00003-0/B978-0-12-811050-8.00003-0 10.1111/j.1365-2486.2012.02665.x 10.1038/s41561-020-0612-3 10.4324/9780203762264-17 10.1016/j.scitotenv.2021.150883 10.1111/gcb.14781 10.1038/nclimate3071 10.1038/s43017-021-00162-y 10.1007/s10533-016-0217-5 10.1016/j.geoderma.2004.04.009 10.1016/j.agee.2016.12.011 10.1038/nclimate2580 10.1029/2019GB006387 10.1016/j.gloenvcha.2010.11.007 10.1016/j.soilbio.2007.03.007 10.1007/s11104-005-4628-7 10.1038/s41467-021-21079-6 10.1111/gcb.13979 10.1007/s10533-018-0478-2 10.1038/s41467-022-31540-9 10.1016/j.scitotenv.2021.151051 10.1080/10643389.2020.1838214 10.1641/B580807 10.1007/978-90-481-9479-7_3 10.1111/gcb.13887 10.1016/bs.agron.2014.10.005 10.1007/s10705-020-10065-x 10.1007/s10021-004-0259-8 10.3389/fenvs.2019.00055 10.1111/j.1461-0248.2012.01807.x 10.1038/ncomms7707 10.1007/s00374-017-1191-3 10.1007/s10533-013-9856-y 10.1002/jpln.200700049 10.1021/es050778q 10.1080/10643380802000974 10.1016/j.soilbio.2007.09.008 10.5194/bg-17-4961-2020 10.1111/j.1365-2389.2010.01333.x 10.1016/j.geoderma.2021.115262 10.1016/j.apsoil.2020.103655 10.1016/j.soilbio.2010.09.017 10.1073/pnas.1608454113 10.3389/fmicb.2019.01146 10.1016/j.envsci.2009.12.005 10.1002/9781119438274.ch5 10.1016/j.scitotenv.2018.06.322 10.1016/j.geoderma.2009.12.028 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C AAYXX CITATION NPM 7X8 7S9 L.6 1XC VOOES 5PM |
DOI | 10.1007/s13593-023-00876-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Forestry Environmental Sciences |
EISSN | 1773-0155 |
EndPage | 21 |
ExternalDocumentID | PMC9901420 oai_HAL_hal_04032123v1 36777236 10_1007_s13593_023_00876_x |
Genre | Journal Article Review |
GroupedDBID | -EM 06D 0R~ 0VY 203 23M 29~ 2KG 2KM 2LR 2VQ 30V 4.4 406 408 4P2 5GY 67N 6J9 8UJ 96X AAAVM AABCJ AACDK AAFNC AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAOTM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AZFZN BGNMA BSONS C6C CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y ML. NPVJJ NQJWS NU0 O9- O93 O9I O9J PT4 R9I RED ROL RSV S1Z S27 S3A S3B SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG TUS U2A U9L UG4 UOJIU UTJUX UZXMN VFIZW Z7U Z7V Z7W Z81 Z83 ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ABRTQ 7X8 7S9 L.6 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c541t-1fc9efe8c93511f00da25755105d2a4791c1fc071f81be7919c40d44ea27dc533 |
IEDL.DBID | U2A |
ISSN | 1774-0746 |
IngestDate | Thu Aug 21 18:38:42 EDT 2025 Wed Aug 13 07:42:03 EDT 2025 Mon Jul 21 10:38:16 EDT 2025 Fri Jul 11 03:56:48 EDT 2025 Wed Aug 13 05:00:18 EDT 2025 Wed Feb 19 02:25:10 EST 2025 Thu Apr 24 23:13:14 EDT 2025 Tue Jul 01 02:36:39 EDT 2025 Fri Feb 21 02:44:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Inaccessibility Biomass use Carbon storage Chemical recalcitrance Models Big data Management practices POM InaccessibilityModels |
Language | English |
License | The Author(s) 2023. Attribution: http://creativecommons.org/licenses/by Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-1fc9efe8c93511f00da25755105d2a4791c1fc071f81be7919c40d44ea27dc533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0822-0556 0000-0002-0231-5597 0000-0003-1404-0700 0000-0002-4827-4452 0000-0002-6482-2316 0000-0001-9287-2532 0000-0002-0587-8141 0000-0002-1416-7712 0000-0002-8269-3562 |
OpenAccessLink | https://link.springer.com/10.1007/s13593-023-00876-x |
PMID | 36777236 |
PQID | 2773851740 |
PQPubID | 2044462 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9901420 hal_primary_oai_HAL_hal_04032123v1 proquest_miscellaneous_3153744838 proquest_miscellaneous_2775954662 proquest_journals_2773851740 pubmed_primary_36777236 crossref_primary_10_1007_s13593_023_00876_x crossref_citationtrail_10_1007_s13593_023_00876_x springer_journals_10_1007_s13593_023_00876_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris – name: France – name: Heidelberg |
PublicationSubtitle | A journal of the French National Institute for Agriculture, Food and Environment (INRAE) |
PublicationTitle | Agronomy for sustainable development |
PublicationTitleAbbrev | Agron. Sustain. Dev |
PublicationTitleAlternate | Agron Sustain Dev |
PublicationYear | 2023 |
Publisher | Springer Paris Springer Nature B.V Springer Verlag/EDP Sciences/INRA |
Publisher_xml | – name: Springer Paris – name: Springer Nature B.V – name: Springer Verlag/EDP Sciences/INRA |
References | UrozSKellyLCTurpaulMPLepleuxCFrey-KlettPThe mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communitiesTrends Microbiol2015237517621:CAS:528:DC%2BC2MXhslWrs7fI10.1016/j.tim.2015.10.00426549581 LeifeldJFuhrerJLong-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon datingEur J Soil Sci2009602302391:CAS:528:DC%2BD1MXkvVWntbk%3D10.1111/j.1365-2389.2008.01111.x KleberMJohnsonMGAdvances in understanding the molecular structure of soil organic matter: implications for interactions in the environmentAdv Agron2010106771421:CAS:528:DC%2BC3cXovV2nsLo%3D10.1016/S0065-2113(10)06003-7 HopkinsDWDungaitJAJTilstonELSoil microbiology and nutrient cyclingDixon, G. R.2010DordrechtSoil microbiology and sustainable crop production Springer598010.1007/978-90-481-9479-7_3 AngersDARecousSAitaCFate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situEur J Soil Sci19974829530010.1111/j.1365-2389.1997.tb00549.x FrancavigliaRColemanKWhitmoreAPDoroLUrracciGRubinoMLeddaLChanges in soil organic carbon and climate change–Application of the RothC model in agro-silvo-pastoral Mediterranean systemsAgric Syst2012112485410.1016/j.agsy.2012.07.001 AminBAZChabbertBMoorheadDBertrandIImpact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soilBiogeochemistry20141171691831:CAS:528:DC%2BC2cXotlagsw%3D%3D10.1007/s10533-013-9856-y HagemannNJosephSSchmidtHPKammannCIHarterJBorchTYoungRBVargaKTaherymoosaviSElliottKWMcKennaAOrganic coating on biochar explains its nutrient retention and stimulation of soil fertilityNat Commun2017810891:CAS:528:DC%2BC1cXovFynsrY%3D10.1038/s41467-017-01123-0290578755715018 LehmannJKleberMThe contentious nature of soil organic matterNature201552860681:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature1606926595271 DerrienDAmelungWComputing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model frameworkEur J Soil Sci20116223725210.1111/j.1365-2389.2010.01333.x Sainte-MarieJBarrandonMSaint-AndréLGelhayeEMartinFDerrienDC-STABILITY an innovative modeling framework to leverage the continuous representation of organic matterNat Commun2021121131:CAS:528:DC%2BB3MXjvFGqs7w%3D10.1038/s41467-021-21079-6 ZhangJPresleyGNHammelKERyuJSMenkeJRFigueroaMHuDOrrGSchillingJSLocalizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placentaP Natl Acad Sci USA201611310968109731:CAS:528:DC%2BC28XhsV2kurrJ10.1073/pnas.1608454113 BousquetFLe PageCMulti-agent simulations and ecosystem management: a reviewEcol Model20041763-431333210.1016/j.ecolmodel.2004.01.011 BudgeKLeifeldJHiltbrunnerEFuhrerJAlpine grassland soils contain large proportion of labile carbon but indicate long turnover timesBiogeosciences20118191119231:CAS:528:DC%2BC3MXhtlansLzM10.5194/bg-8-1911-2011 GoodellBZhuYKimSKafleKEastwoodDDanielGJellisonJYoshidaMGroomLPingaliSVO’NeillHModification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungiBiotechnol Biofuels2017101791:CAS:528:DC%2BC1cXitVOrs7bO10.1186/s13068-017-0865-2287020845504834 Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Interactions Between Soil Particles and Microorganisms—Impact on the Terrestrial Ecosystems. John Wiley and Sons, Chichester, pp 3–40 Basile-DoelschIBalesdentJPellerinSReviews and syntheses: The mechanisms underlying carbon storage in soilBiogeosciences202017522352421:CAS:528:DC%2BB3MXisVegu74%3D10.5194/bg-17-5223-2020 VestergaardGSchulzSSchölerASchloterMMaking big data smart—how to use metagenomics to understand soil qualityBiol Fertil Soils20175347948410.1007/s00374-017-1191-3 BertrandIChabbertBKurekBRecousSCan the biochemical features and histology of wheat residues explain their decomposition in soil?Plant Soil20062812913071:CAS:528:DC%2BD28Xktlyhtrg%3D10.1007/s11104-005-4628-7 PlanteAFernándezJMHaddixMLSteinwegJMConantRTBiological, chemical and thermal indices of soil organic matter stability in four grassland soilsSoil Biol Biochem2011435105110581:CAS:528:DC%2BC3MXjsFCmtLc%3D10.1016/j.soilbio.2011.01.024 Panettieri M, Rumpel C, Dignac MF, Chabbi A (2017) Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions? Sci Total Environ 576:251–263. https://doi.org/10.1016/j.scitotenv.2016.10.073 WanderMMSoil organic matter fractions and their relevance to soil functionSoil organic matter in sustainable agriculture2004Boca Raton, FLCRC Press67102 Chassé M, Luftalla S, Cécillon L, Baudin F, Abiven S, Chenu C, Barré P (2021) Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics. Biogeosciences 18:1703–1718. https://doi.org/10.5194/bg-18-1703-2021 BalesdentJThe significance of organic separates to carbon dynamics and its modelling in some cultivated soilsEur J Soil Sci1996474854931:CAS:528:DyaK2sXhtFGjsbs%3D10.1111/j.1365-2389.1996.tb01848.x GeorgiouKAbramoffRZHarteJRileyWJTornMSMicrobial community-level regulation explains soil carbon responses to long-term litter manipulationsNat Commun2017811101:CAS:528:DC%2BC1cXptV2qs74%3D10.1038/s41467-017-01116-z HenneronLBalesdentJAlvarezGBarréPBaudinFBasile-DoelschICécillonLFernandez-MartinezAHattéCFontaineSBioenergetic control of soil carbon dynamics across depthNat Commun20221311141:CAS:528:DC%2BB38XjtFarsLjN10.1038/s41467-022-34951-w PuissantJMillsRTERobroekBJMGavazovKPerretteYDe DanieliSSpiegelbergerTButtlerABrunJJCécillonLClimate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grasslandBiogeochemistry2017131231391:CAS:528:DC%2BC2sXhtVKkt74%3D10.1007/s10533-016-0291-8 BillingsSALajthaKMalhotraABerheAAde GraaffMAEarlSFraterrigoJGeorgiouKGrandySHobbieSEMooreJAMNadelhofferKPiersonDRasmussenCSilverWLSulmanBNWeintraubSWiederWSoil organic carbon is not just for soil scientists: measurement recommendations for diverse practitionersEcol Appl202131e022901:STN:280:DC%2BB3svotlertQ%3D%3D10.1002/eap.229033426701 SixJElliottEPaustianKAggregate and soil organic matter dynamics under conventional and no-tillage systemsSoil Sci Soc Am J199963135013581:CAS:528:DyaK1MXns12lsb0%3D10.2136/sssaj1999.6351350x SchrumpfMKaiserKMayerAHempelGTrumboreSAge distribution, extractability, and stability of mineral-bound organic carbon in central European soilsBiogeosciences202118124112571:CAS:528:DC%2BB3MXhvFCisr%2FL10.5194/bg-18-1241-2021 VidalAWatteauFRemusatLMuellerCWNguyen TuTTBueggerFDerenneSQueneaKEarthworm cast formation and development: a shift from plant litter to mineral associated organic matterFront Environ Sci201975510.3389/fenvs.2019.00055 NaisseCAlexisMPlanteAWiednerKGlaserBPozziACarcailletCCriscuoliIRumpelCCan biochar and hydrochar stability be assessed with chemical methods?Org Geochem20136040441:CAS:528:DC%2BC3sXpvFCisL0%3D10.1016/j.orggeochem.2013.04.011 SchneiderTKeiblingerKSchmidESterflinger-GleixnerKEllersdorferGRoschitzkiBRichterAEberlLZechmeister-BoltensternSRiedelKWho is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functionsISME J20126174917621:CAS:528:DC%2BC38Xht1Gjtb%2FJ10.1038/ismej.2012.11224024003498922 BernardLBasile-DoelschIDerrienDFaninNFontaineSGuenetBKarimiBMarsdenCMaronP-AAdvancing the mechanistic understanding of the priming effect on soil organic matter mineralisationFunct Ecol202236135513771:CAS:528:DC%2BB38XhvV2ltb%2FO10.1111/1365-2435.14038 SixJElliottETPaustianKSoil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agricultureSoil Biol Biochem200032209921031:CAS:528:DC%2BD3MXpvFWg10.1016/S0038-0717(00)00179-6 Zechmeister-BoltensternSKeiblingerKMMooshammerMPenuelasJRichterASardansJWanekWThe application of ecological stoichiometry to plant-microbial-soil organic matter transformationsEcol Monogr20158513315510.1890/14-0777.1 Kögel-KnabnerIGuggenbergerGKleberMKandelerEKalbitzKScheuSEusterhuesKLeinweberPOrgano-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistryJ Plant Nutr Soil Sci2008171161821:CAS:528:DC%2BD1cXisFyhur4%3D10.1002/jpln.200700048 PengerudADignacMFCertiniGStrandLTForteCRasseDPSoil organic matter molecular composition and state of decomposition in three locations of the European ArcticBiogeochemistry20171352772921:CAS:528:DC%2BC2sXhsVyitrjK10.1007/s10533-017-0373-2 Pellerin S, Bamiere L, Dimassi B, Launay C, Martin R, Schiavo M, Angers D, Augusto L, Balesdent J, Basile-Doelsch I, Bellassen V (2019) Storing carbon in French soils. Which potential regarding the 4 per 1000 objective, and to which cost? Synthesis of the study report, July 2019. https://www.inrae.fr/sites/default/files/pdf/etude-4-pour-1000-resume-en-francais-pdf-1_0.pdf CraineJMMorrowCFiererNMicrobial nitrogen limitation increases decompositionEcology2007882105211310.1890/06-1847.117824441 SchmidtMWITornMSAbivenSDittmarTGuggenbergerGJanssensIAKleberMKögel-KnabnerILehmannJManningDACNannipieriPRasseDPWeinerSTrumboreSEPersistence of soil organic matter as an ecosystem propertyNature201147849561:CAS:528:DC%2BC3MXht1yltrnF10.1038/nature1038621979045 Sposito G (2008) The chemistry of soils. Oxford University Press, New York DangalSRSandermanJWillsSRamirez-LopezLAccurate and precise prediction of soil properties from a large mid-infrared spectral librarySoil Syst201931111:CAS:528:DC%2BC1MXhs1OntrvE10.3390/soilsystems3010011 DaufresneTLoreauMPlant–herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation?Ecol Lett2001419620610.1046/j.1461-0248.2001.00210.x LubbersIMPullemanMMVan GroenigenJWCan earthworms simultaneously enhance decomposition and stabilization of plant residue carbon P Barré (876_CR20) 2018; 140 J Monod (876_CR174) 1949; 3 MM Wander (876_CR248) 2004 J Puissant (876_CR195) 2017; 13 JF Soussana (876_CR225) 2019; 188 JM Craine (876_CR53) 2007; 88 MF Cotrufo (876_CR51) 2019; 12 M Keiluweit (876_CR117) 2015; 5 HH Janzen (876_CR110) 2005; 85 V Paolini (876_CR183) 2018; 53 L Bleuze (876_CR32) 2020; 145 K Budge (876_CR38) 2011; 8 WR Wieder (876_CR252) 2018; 24 M Kleber (876_CR122) 2021; 2 PW Hill (876_CR102) 2008; 40 RA Viscarra Rossel (876_CR245) 2019; 12 F Hagedorn (876_CR92) 2019; 365 P Sollins (876_CR223) 1996; 74 B Goodell (876_CR88) 2017; 10 DL Moorhead (876_CR176) 2013; 66 M Keiluweit (876_CR118) 2016; 127 JAJ Dungait (876_CR66) 2012; 18 I Bertrand (876_CR26) 2006; 281 D Derrien (876_CR58) 2011; 62 C Naisse (876_CR178) 2013; 60 KS Rocci (876_CR202) 2021; 793 S Trumbore (876_CR236) 2009; 37 I Kögel-Knabner (876_CR131) 2008; 171 T Wang (876_CR250) 2017; 19 876_CR185 NP Saadat (876_CR206) 2020; 22 MF Dignac (876_CR60) 2005; 128 876_CR182 I Kögel-Knabner (876_CR130) 2021; 384 RD Bardgett (876_CR16) 2014; 515 S Zechmeister-Boltenstern (876_CR256) 2015; 85 R Alvarez (876_CR4) 2021; 59 G Gleixner (876_CR86) 2013; 28 J Six (876_CR221) 2000; 32 O Traore (876_CR235) 2000; 51 A Miltner (876_CR170) 2012; 111 HR Schulten (876_CR216) 1996; 38 D Derrien (876_CR59) 2006; 57 LC Hicks (876_CR101) 2021; 102 J Balesdent (876_CR14) 1996; 47 C Liang (876_CR159) 2017; 2 N Hagemann (876_CR93) 2017; 8 F Levavasseur (876_CR157) 2020; 117 J Six (876_CR220) 1999; 63 BN Sulman (876_CR229) 2018; 141 N Fanin (876_CR73) 2016; 129 H Clivot (876_CR49) 2019; 118 SA Billings (876_CR28) 2021; 31 MA Bradford (876_CR37) 2016; 6 I Basile-Doelsch (876_CR21) 2020; 17 F Bousquet (876_CR35) 2004; 176 G Vestergaard (876_CR242) 2017; 53 K Möller (876_CR173) 2015; 35 MWI Schmidt (876_CR213) 2011; 478 PC Baveye (876_CR22) 2020; 8 876_CR164 SJ Hall (876_CR94) 2020; 13 DA Angers (876_CR8) 1997; 48 876_CR169 M Kleber (876_CR123) 2015; 130 B Guenet (876_CR89) 2018; 201824 L Dunlop (876_CR67) 2019; 28 876_CR161 S Manzoni (876_CR166) 2012; 196 L Paetsch (876_CR181) 2017; 112 876_CR160 EAG Schuur (876_CR217) 2008; 58 AN Kravchenko (876_CR134) 2017; 287 CR Lawrence (876_CR144) 2020; 12 S Uroz (876_CR237) 2009; 17 DC Olk (876_CR180) 2019; 48 M von Lützow (876_CR246) 2007; 39 N Perveen (876_CR188) 2019; 134 S Chen (876_CR45) 2018; 630 VL Bailey (876_CR12) 2020; 14 876_CR138 876_CR137 C Poeplau (876_CR192) 2013; 192 L Soucémarianadin (876_CR224) 2019; 342 Z Shi (876_CR219) 2018; 9 B Berg (876_CR23) 2014; 78 M Hemkemeyer (876_CR98) 2021; 252 I Bertrand (876_CR27) 2019; 39 S Uroz (876_CR238) 2015; 23 I Virto (876_CR244) 2010; 156 876_CR142 JC Blankinship (876_CR31) 2018; 140 876_CR147 F Rees (876_CR199) 2019; 337 876_CR141 M Sauvadet (876_CR210) 2018; 123 M Pinheiro (876_CR189) 2015; 88 W Amelung (876_CR6) 2008 DL Moorhead (876_CR175) 2012; 53 D Floudas (876_CR77) 2012; 336 T Shahzad (876_CR218) 2015; 80 S Fontaine (876_CR78) 2007; 450 876_CR139 AA Malik (876_CR165) 2016; 100 J Jian (876_CR112) 2021 M Kleber (876_CR125) 2019; 48 SCB Myneni (876_CR177) 2019; 48 876_CR232 FJ Stevenson (876_CR227) 1994 L Drinkwater (876_CR64) 2007; 92 876_CR18 R Cardinael (876_CR40) 2017; 236 876_CR11 J Jouan (876_CR113) 2020; 12 HH Janzen (876_CR111) 2006; 38 A Plante (876_CR190) 2011; 43 J Lehmann (876_CR149) 2015; 528 KA Dynarski (876_CR69) 2020; 8 K Witzgall (876_CR254) 2021; 12 876_CR109 AE Richardson (876_CR200) 2014; 5 A Erktan (876_CR71) 2020; 17 N Fanin (876_CR72) 2016; 94 M Lange (876_CR135) 2015; 6 R Farina (876_CR74) 2021; 27 J Leifeld (876_CR152) 2005; 124 876_CR241 EK Williams (876_CR253) 2018; 6 B Minasny (876_CR171) 2017; 292 D Fowler (876_CR80) 2013; 368 876_CR240 J Balesdent (876_CR15) 2018; 559 F Tivet (876_CR233) 2012; 76 J Leifeld (876_CR151) 2009; 60 M de Nobili (876_CR57) 2020; 154 EA Paul (876_CR184) 2016; 98 S Barot (876_CR17) 2014; 102 876_CR34 A Chabbi (876_CR43) 2017; 7 876_CR211 JD Hemingway (876_CR97) 2019; 570 876_CR36 L Kohl (876_CR132) 2018; 24 K Georgiou (876_CR85) 2022; 13 J Leifeld (876_CR153) 2018; 98 A Favero (876_CR75) 2020; 6 876_CR212 CJ Newcomb (876_CR179) 2017; 8 K Georgiou (876_CR84) 2017; 8 C Poeplau (876_CR193) 2018; 125 J Lejoly (876_CR155) 2021; 404 C Liang (876_CR158) 2019; 25 DP Rasse (876_CR197) 2005; 269 J Lehmann (876_CR150) 2008; 1 DW Hopkins (876_CR105) 2010 C Wang (876_CR249) 2021; 27 MC Rillig (876_CR201) 2004; 84 BAZ Amin (876_CR7) 2014; 117 PM Kopittke (876_CR133) 2018; 24 MI Bird (876_CR29) 2015; 43 876_CR3 876_CR24 N Perveen (876_CR187) 2014; 20 S Keyvanshokouhi (876_CR119) 2019; 652 876_CR226 AC Wadoux (876_CR247) 2020; 71 876_CR104 876_CR1 T Klotzbücher (876_CR128) 2011; 92 P Barré (876_CR19) 2016; 130 G Le Mer (876_CR145) 2020; 144 MF Cotrufo (876_CR52) 2015; 8 A Bispo (876_CR30) 2017; 5 I Kögel-Knabner (876_CR129) 2002; 34 W Amelung (876_CR5) 2020; 11 J Lehmann (876_CR148) 2020; 13 E Hoffland (876_CR103) 2020; 455 MC Rowley (876_CR204) 2018; 137 DE LaRowe (876_CR136) 2011; 75 G Lemaire (876_CR156) 2021; 125 J Hassink (876_CR95) 1997; 191 SR Dangal (876_CR54) 2019; 3 MG Margida (876_CR167) 2020; 141 T Davies-Barnard (876_CR56) 2020; 34 P Rovira (876_CR203) 2008; 40 CM Kallenbach (876_CR116) 2019; 10 M Kleber (876_CR124) 2010; 106 J Sainte-Marie (876_CR207) 2021; 12 IM Lubbers (876_CR163) 2013; 3 CM Kallenbach (876_CR115) 2015; 9 R Sathre (876_CR209) 2010; 13 T Daufresne (876_CR55) 2001; 4 876_CR47 G Lashermes (876_CR140) 2009; 60 R Francaviglia (876_CR81) 2012; 112 876_CR41 I Janssens (876_CR107) 2010; 3 E Boddy (876_CR33) 2007; 39 876_CR42 876_CR44 F Hagedorn (876_CR91) 2015; 88 S Uroz (876_CR239) 2020; 22 A Legout (876_CR146) 2020; 461 B Marschner (876_CR168) 2008; 171 JP Garcet (876_CR83) 2006; 193 B Dimassi (876_CR62) 2014; 188 KE Clemmensen (876_CR48) 2013; 339 C Rumpel (876_CR205) 2011; 338 M Schrumpf (876_CR215) 2021; 18 G Angst (876_CR9) 2019; 2 J Sanderman (876_CR208) 2017; 114 A Pengerud (876_CR186) 2017; 135 P Lavelle (876_CR143) 2001 J Leifeld (876_CR154) 2014; 50 BG Waring (876_CR251) 2020; 26 CM Kallenbach (876_CR114) 2016; 7 T Schneider (876_CR214) 2012; 6 A Don (876_CR63) 2013; 11 876_CR61 876_CR65 J Zhang (876_CR257) 2016; 113 SD Allison (876_CR2) 2012; 15 G Angst (876_CR10) 2021; 156 C Chenu (876_CR46) 2019; 188 L Bernard (876_CR25) 2022; 36 K Ekschmitt (876_CR70) 2005; 128 M Kleber (876_CR121) 2010; 7 Y Sun (876_CR230) 2015; 153 J Six (876_CR222) 2006; 70 MS Torn (876_CR234) 2005; 8 S Hénin (876_CR99) 1949; 35 S Durante (876_CR68) 2019; 104 S Hufnagl-Eichiner (876_CR106) 2011; 21 876_CR198 B Guenet (876_CR90) 2021; 27 IM Lubbers (876_CR162) 2017; 105 A Cambou (876_CR39) 2018; 644 S Miyauchi (876_CR172) 2020; 11 876_CR196 S Fontaine (876_CR79) 2011; 43 R Kleerebezem (876_CR127) 2010; 40 PJ Hatton (876_CR96) 2012; 42 G Janusz (876_CR108) 2017; 41 CA Kirkby (876_CR120) 2013; 60 876_CR82 G Gleixner (876_CR87) 2002; 33 JA Baldock (876_CR13) 2000; 31 M Kleber (876_CR126) 2011; 17 BN Sulman (876_CR228) 2017; 20 A Plante (876_CR191) 2013; 55 K Coleman (876_CR50) 1996 P Finke (876_CR76) 2019; 338 A Vidal (876_CR243) 2019; 7 R Sutton (876_CR231) 2005; 39 GH Yu (876_CR255) 2021; 214 L Henneron (876_CR100) 2022; 13 V Poirier (876_CR194) 2018; 120 |
References_xml | – reference: GeorgiouKJacksonRBVinduškováOAbramoffRZAhlströmAFengWHardenJWPellegriniAAWayne PolleyHSoongJLRileyWJTornMSGlobal stocks and capacity of mineral-associated soil organic carbonNat Commun20221311121:CAS:528:DC%2BB38Xhslegur7F10.1038/s41467-022-31540-9 – reference: Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891. https://doi.org/10.1016/s0038-0717(99)00105-4 – reference: HemingwayJDRothmanDHGrantKERosengardSZEglintonTIDerryLAGalyVVMineral protection regulates long-term global preservation of natural organic carbonNature20195702282311:CAS:528:DC%2BC1MXhtFKgs7bF10.1038/s41586-019-1280-631190013 – reference: NaisseCAlexisMPlanteAWiednerKGlaserBPozziACarcailletCCriscuoliIRumpelCCan biochar and hydrochar stability be assessed with chemical methods?Org Geochem20136040441:CAS:528:DC%2BC3sXpvFCisL0%3D10.1016/j.orggeochem.2013.04.011 – reference: KlotzbücherTKaiserKGuggenbergerGGatzekCKalbitzKA new conceptual model for the fate of lignin in decomposing plant litterEcology2011921052e106210.1890/10-1307.1 – reference: LawrenceCRBeem-MillerJHoytAMMonroeGSierraCAStonerSHeckmanKBlankinshipJCCrowSEMcNicolGTrumboreSLevinePAVinduOTodd-BrownKRasmussenCHicks PriesCESchädelCMcFarlaneKDoetterlSHattéCHeYTreatCHardenJWTornMSEstop-AragonésCAsefaw BerheAKeiluweitMDella Rosa KuhnenAMarin-SpiottaEPlanteAFThompsonAShiZSchimelJPVaughnLJSvon FrommSFWagaiRAn open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0Earth Syst Sci Data202012617610.5194/essd-12-61-2020 – reference: Lehmann J, Abiven S, Kleber M, Pan G, Singh BP, Sohi SP, Zimmerman AR (2015) Persistence of biochar in soil. In: Biochar for environmental management. Routledge, London, pp. 267–314 – reference: FontaineSBarotSBarréPBdiouiNMaryBRumpelCStability of organic carbon in deep soil layers controlled by fresh carbon supplyNature Lett20074502772801:CAS:528:DC%2BD2sXht1yntrjJ10.1038/nature06275 – reference: ErktanARilligMCCarminatiAJoussetAScheuSProtists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer--prey systemsBiogeosciences202017496149801:CAS:528:DC%2BB3MXhsFWmurk%3D10.5194/bg-17-4961-2020 – reference: Sposito G (2008) The chemistry of soils. Oxford University Press, New York – reference: SaadatNPNiesTRoussetYEbenhöhOThermodynamic Limits and Optimality of Microbial GrowthEntropy2020222771:CAS:528:DC%2BB3cXhsl2qtrnM10.3390/e22030277332860547516730 – reference: HattonPJKleberMZellerBMoniCPlanteAFTownsendKGelhayeLLajthaKDerrienDTransfer of litter-derived N to soil mineral–organic associations: evidence from decadal 15N tracer experimentsOrg Geochem201242148915011:CAS:528:DC%2BC3MXhs1eisrbK10.1016/j.orggeochem.2011.05.002 – reference: Le MerGBarthodJDignacMFBarréPBaudinFRumpelCInferring the impact of earthworms on the stability of organo-mineral associations, by Rock-Eval thermal analysis and 13C NMR spectroscopyOrg Geochem20201441040161:CAS:528:DC%2BB3cXosFWhsb4%3D10.1016/j.orggeochem.2020.104016 – reference: ZhangJPresleyGNHammelKERyuJSMenkeJRFigueroaMHuDOrrGSchillingJSLocalizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placentaP Natl Acad Sci USA201611310968109731:CAS:528:DC%2BC28XhsV2kurrJ10.1073/pnas.1608454113 – reference: MinasnyBMaloneBPMcBratneyABAngersDAArrouaysDChambersAChaplotVChenZSChengKDasBSFieldDJGimonaAHedleyCBHongSYMandalBMarchantBPMartinMMcConkeyBGMulderVLO'RourkeSRicher-de-ForgesACOdehIPadarianJPaustianKPanGXPoggioLSavinIStolbovoyVStockmannUSulaemanYTsuiCCVagenTGvan WesemaelBWinowieckiLSoil carbon 4 per milleGeoderma2017292598610.1016/j.geoderma2017.01.002 – reference: RocciKSLavalleeJMStewartCECotrufoMFSoil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysisSci Total Environ20217931485691:CAS:528:DC%2BB3MXhsVentLnL10.1016/j.scitotenv.2021.14856934328984 – reference: AngstGMuellerCWPraterIAngstŠFrouzJJíkováVPeterseFNieropKGJEarthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromassCommun Biol201924411:CAS:528:DC%2BC1MXitl2lsbzF10.1038/s42003-019-0684-z318151966883063 – reference: LehmannJHanselCMKaiserCKleberMMaherKManzoniSNunanNReichsteinMSchimelJPTornMSWiederWRKögel-KnabnerIPersistence of soil organic carbon caused by functional complexityNat Geosci2020135295341:CAS:528:DC%2BB3cXhsVyltL3L10.1038/s41561-020-0612-3 – reference: CotrufoMFRanalliMGHaddixMLSixJLugatoESoil carbon storage informed by particulate and mineral-associated organic matterNat Geosci2019129899941:CAS:528:DC%2BC1MXitFOlt7nE10.1038/s41561-019-0484-6 – reference: ShahzadTChenuCGenetPBarotSPerveenNMouginCFontaineSContribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland speciesSoil Biol Biochem2015801461551:CAS:528:DC%2BC2cXhslyrt7nO10.1016/j.soilbio.2014.09.023 – reference: PuissantJMillsRTERobroekBJMGavazovKPerretteYDe DanieliSSpiegelbergerTButtlerABrunJJCécillonLClimate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grasslandBiogeochemistry2017131231391:CAS:528:DC%2BC2sXhtVKkt74%3D10.1007/s10533-016-0291-8 – reference: RilligMCArbuscular mycorrhizae, glomalin, and soil aggregationCan J Soil Sci20048435536310.4141/S04-003 – reference: WanderMMSoil organic matter fractions and their relevance to soil functionSoil organic matter in sustainable agriculture2004Boca Raton, FLCRC Press67102 – reference: GarcetJPOrdonezARoosenJVancloosterMMetamodelling: Theory, concepts and application to nitrate leaching modellingEcol Model20061936296441:CAS:528:DC%2BD28Xhs12htLg%3D10.1016/j.ecolmodel.2005.08.045 – reference: KallenbachCMFreySDGrandyASDirect evidence for microbial-derived soil organic matter formation and its ecophysiological controlsNat Commun20167136301:CAS:528:DC%2BC28XitFSns7vO10.1038/ncomms13630278924665133697 – reference: LaRoweDEVan CappellenPDegradation of natural organic matter: a thermodynamic analysisGeochim Cosmochim Acta201175203020421:CAS:528:DC%2BC3MXjsVGhu78%3D10.1016/j.gca.2011.01.020 – reference: PaoliniVPetracchiniFSegretoMTomassettiLNajaNCecinatoAEnvironmental impact of biogas: A short review of current knowledgeJ Environ Sci Health Part A2018538999061:CAS:528:DC%2BC1cXns1Oms7o%3D10.1080/10934529.2018.1459076 – reference: CotrufoMFSoongJLHortonAJCampbellEEHaddixMLWallDHPartonWJFormation of soil organic matter via biochemical and physical pathways of litter mass lossNat Geosci201587767791:CAS:528:DC%2BC2MXhsFaqtb%2FN10.1038/ngeo2520 – reference: ShiZCrowellSLuoYMooreBModel structures amplify uncertainty in predicted soil carbon responses to climate changeNat Commun201891111:CAS:528:DC%2BC1cXhtFenu7fO10.1038/s41467-018-04526-9 – reference: MalikAARothVNHébertMTremblayLDittmarTGleixnerGLinking molecular size, composition and carbon turnover of extractable soil microbial compoundsSoil Biol Biochem201610066731:CAS:528:DC%2BC28Xps1Wkt7w%3D10.1016/j.soilbio.2016.05.019 – reference: BirdMIWynnJGSaizGWursterCMMcBeathAThe pyrogenic carbon cycleAnnu Rev Earth Pl Sc2015432732981:CAS:528:DC%2BC2MXhsVGns7nP10.1146/annurev-earth-060614-105038 – reference: OlkDCBloomPRPerdueEMMcKnightDMChenYFarenhorstASenesiNChinYPSchmitt-KopplinPHertkornNHarirMEnvironmental and agricultural relevance of humic fractions extracted by alkali from soils and natural watersJ Environ Qual2019482172321:CAS:528:DC%2BC1MXps1OjtrY%3D10.2134/jeq2019.02.004130951132 – reference: BispoAAndersenLAngersDABernouxMBrossardMCécillonLComansRNJHarmsenJJonassenKLaméFLhuilleryCMalySMartinEMcelneaAESakaiHWatabeYEglinTKAccounting for carbon stocks in soils and measuring ghgs emission fluxes from soils: do we have the necessary standards?Front Environ Sci201754110.3389/fenvs.2017.00041 – reference: FaninNBertrandIAboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradientSoil Biol Biochem20169448601:CAS:528:DC%2BC2MXhvFWlt7%2FO10.1016/j.soilbio.2015.11.007 – reference: Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I (2016) Enzymatic strategies and carbon use efficiency of a litter decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol https://doi.org/10.3389/fmicb.2016.01315 – reference: ClivotHMounyJ-CDuparqueADinhJ-LDenoroyPHouotSVertèsFTrochardRBouthierASagotSMaryBModeling soil organic carbon evolution in long-term arable experiments with AMG modelEnviron Model Softw20191189911310.1016/j.envsoft.2019.04.004 – reference: RichardsonAEKirkbyCABanerjeeSKirkegaardJAThe inorganic nutrient cost of building soil carbonCarbon Manag201452652681:CAS:528:DC%2BC2cXitFKmu7fE10.1080/17583004.2014.923226 – reference: JanzenHHThe soil carbon dilemma: Shall we hoard it or use it?Soil Biol Biochem2006384194241:CAS:528:DC%2BD28XhsF2jsro%3D10.1016/j.soilbio.2005.10.008 – reference: Antón SR, Derrien D, Urmeneta H, Van der Heijden G, Enrique A, Virto I (2022) Organic carbon storage and dynamics as affected by the adoption of irrigation in a cultivated calcareous mediterranean soil. Front Soil Sci 2(831775):1–18. https://doi.org/10.3389/fsoil.2022.831775 – reference: GleixnerGPoirierNBolRBalesdentJMolecular dynamics of organic matter in a cultivated soilOrg Geochem2002333573661:CAS:528:DC%2BD38XhtlCqu7Y%3D10.1016/S0146-6380(01)00166-8 – reference: Basile-DoelschIBalesdentJPellerinSReviews and syntheses: The mechanisms underlying carbon storage in soilBiogeosciences202017522352421:CAS:528:DC%2BB3MXisVegu74%3D10.5194/bg-17-5223-2020 – reference: LiangCSchimelJPJastrowJDThe importance of anabolism in microbial control over soil carbon storageNat Microbiol20172171051:CAS:528:DC%2BC2sXht1ensbvP10.1038/nmicrobiol.2017.10528741607 – reference: AmelungWBrodowskiSSandhage-HofmannABolRCombining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matterAdvances in Agronomy2008BurlingtonAcademic Press15525010.1016/S0065-2113(08)00606-8 – reference: MargidaMGLashermesGMoorheadDLEstimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litterSoil Biol Biochem20201411076891:CAS:528:DC%2BC1MXisVSkt7vP10.1016/j.soilbio.2019.107689 – reference: BudgeKLeifeldJHiltbrunnerEFuhrerJAlpine grassland soils contain large proportion of labile carbon but indicate long turnover timesBiogeosciences20118191119231:CAS:528:DC%2BC3MXhtlansLzM10.5194/bg-8-1911-2011 – reference: GleixnerGSoil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studiesEcol Res2013286836951:CAS:528:DC%2BC3sXhsVCgu7zE10.1007/s11284-012-1022-9 – reference: PerveenNBarotSAlvarezGKlumppKMartinRRapaportAHerfurthDLouaultFFontaineSPriming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY modelGlob Chang Biol2014201174119010.1111/gcb.1249324339186 – reference: ManzoniSTaylorPRichterAPorporatoAÅgrenGIEnvironmental and stoichiometric controls on microbial carbon-use efficiency in soilsNew Phytol201219679911:CAS:528:DC%2BC38Xht1Cis7fL10.1111/j.1469-8137.2012.04225.x22924405 – reference: VidalAWatteauFRemusatLMuellerCWNguyen TuTTBueggerFDerenneSQueneaKEarthworm cast formation and development: a shift from plant litter to mineral associated organic matterFront Environ Sci201975510.3389/fenvs.2019.00055 – reference: KirkbyCARichardsonAEWadeLJBattenGDBlanchardCKirkegaardJACarbon-nutrient stoichiometry to increase soil carbon sequestrationSoil Biol Biochem20136077861:CAS:528:DC%2BC3sXktlKrt7k%3D10.1016/j.soilbio.2013.01.011 – reference: HemkemeyerMSchwalbSAHeinzeSJoergensenRGWichernFFunctions of elements in soil microorganismsMicrobiol Res20212521268321:CAS:528:DC%2BB3MXitl2jtr%2FM10.1016/j.micres.2021.12683234508963 – reference: WitzgallKVidalASchubertDIHöschenCSchweizerSABueggerFPouteauVChenuCMuellerCWParticulate organic matter as a functional soil component for persistent soil organic carbonNat Commun2021121101:CAS:528:DC%2BB3MXhsFOgu7jO10.1038/s41467-021-24192-8 – reference: UrozSPicardLTurpaultMPAuerLArmengaudJOgerPDual transcriptomics and proteomics analyses of the early stage of interaction between Caballeronia mineralivorans PML1(12) and mineralEnviron Microbiol202022383838621:CAS:528:DC%2BB3cXhvFyju77L10.1111/1462-2920.1515932656915 – reference: DungaitJAJHopkinsDWGregoryASWhitmoreAPSoil organic matter turnover is governed by accessibility not recalcitranceGlob Chang Biol2012181781179610.1111/j.1365-2486.2012.02665.x – reference: LashermesGNicolardotBParnaudeauVThuriesLChaussodRGuillotinMLLineresMMaryBMetzgerLMorvanTTricaudAVilletteCHouotSIndicator of potential residual carbon in soils after exogenous organic matter applicationEur J Soil Sci2009602973101:CAS:528:DC%2BD1MXkvVWnurc%3D10.1111/j.1365-2389.2008.01110.x – reference: LangeMEisenhauerNSierraCABesslerHEngelsCGriffithsRIMellado-VázquezPGMalikAARoyJScheuSSteinbeissSThomsonBCTrumboreSEGleixnerGPlant diversity increases soil microbial activity and soil carbon storageNat Commun2015667071:CAS:528:DC%2BC2MXhtF2itrfJ10.1038/ncomms770725848862 – reference: LeifeldJKögel-KnabnerISoil organic matter fractions as early indicators for carbon stock changes under different land-use?Geoderma20051241431551:CAS:528:DC%2BD2cXhtVOru7nN10.1016/j.geoderma.2004.04.009 – reference: FarinaRSándorRAbdallaMEnsemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soilsGlob Chang Biol2021279049281:CAS:528:DC%2BB38XhvFartrjO10.1111/gcb.1544133159712 – reference: UrozSKellyLCTurpaulMPLepleuxCFrey-KlettPThe mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communitiesTrends Microbiol2015237517621:CAS:528:DC%2BC2MXhslWrs7fI10.1016/j.tim.2015.10.00426549581 – reference: Berhe AA, Harden JW, Torn MS, Kleber M, Burton SD, Harte J (2012) Persistence of soil organic matter in eroding versus depositional landform positions. J Geophys Res: Biogeosci 117(G2) https://doi.org/10.1029/2011JG001790 – reference: Allory V, Séré G, Ouvrard S (2022) A meta-analysis of carbon content and stocks in Technosols and identification of the main governing factors. Eur J Soil Sci 73(1). https://doi.org/10.1111/ejss.13141 – reference: Freschet GT, Violle C, Roumet C, Garnier E (2018) Interactions between soil and vegetation: structure of plant communities and soil functioning. In: Lemanceau P, Blouin M (ed) Component of the Critical Zone (Vol. 6: Ecology), ISTE Ltd and John Wiley & Sons, Inc, pp 83-104. https://doi.org/10.1002/9781119438274.ch5 – reference: Lugato E, Lavallee J, Haddix M, Panagos P, Cotrufo F (2021) Different climate sensitivity of particulate and mineral-associated organic matter. Nat Geosci 14. https://doi.org/10.1038/s41561-021-00744-x – reference: RowleyMCGrandSVerrecchiaEPCalcium-mediated stabilization of soil organic carbonBiogeochemistry201813727491:CAS:528:DC%2BC1cXhs1Wntg%3D%3D10.1007/s10533-017-0410-1 – reference: SandermanJHenglTFiskeGJSoil carbon debt of 12,000 years of human land useP Natl Acad Sci USA2017114957595801:CAS:528:DC%2BC2sXhtlOhtbbE10.1073/pnas.1706103114 – reference: AlvarezRBerhongarayGSoil organic carbon sequestration potential of Pampean soils: comparing methods and estimation for surface and deep layersSoil Res2021593463581:CAS:528:DC%2BB3MXhtV2isLvN10.1071/SR20257 – reference: KleberMWhat is recalcitrant soil organic matter?Environ Chem201073203321:CAS:528:DC%2BC3cXht12jsb%2FE10.1071/EN10006 – reference: WangCQuLYangLLiuDMorrisseyEMiaoRLiuZWangQFangYBaiELarge-scale importance of microbial carbon use efficiency and necromass to soil organic carbonGlob Chang Biol202127203920481:CAS:528:DC%2BB38XhvFeht7nO10.1111/gcb.1555033559308 – reference: Cécillon L, Baudin F, Chenu C, Christensen BT, Franko U, Houot S, Kanari E, Katterer T, Merbach I, van Oort F, Poeplau C (2021) Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval (R) thermal analysis (PARTY (SOC) v2. 0 and PARTY (SOC) v2. 0 (EU)). Geosci Model Dev 14:3879–3898. https://doi.org/10.5194/gmd-14-3879-2021 – reference: ColemanKJenkinsonDSRothC-26.3-A Model for the turnover of carbon in soilEvaluation of soil organic matter models1996Berlin, HeidelbergSpringer23724610.1007/978-3-642-61094-3_17 – reference: BalesdentJBasile-DoelschIChadoeufJCornuSDerrienDFekiacovaZHattéCAtmosphere–soil carbon transfer as a function of soil depthNature201855977155996021:CAS:528:DC%2BC1cXhtlWjsbfE10.1038/s41586-018-0328-329995858 – reference: Cécillon L, Barré P, Coissac E, Plante A, Rasse D (2015) Soil biogeochemistry in the age of big data. In: EGU general assembly conference abstracts, p 6964. https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.6964C/abstract – reference: WilliamsEKPlanteAFA bioenergetic framework for assessing soil organic matter persistenceFront Earth Sci2018614310.3389/feart.2018.00143 – reference: BalesdentJThe significance of organic separates to carbon dynamics and its modelling in some cultivated soilsEur J Soil Sci1996474854931:CAS:528:DyaK2sXhtFGjsbs%3D10.1111/j.1365-2389.1996.tb01848.x – reference: WiederWRHartmanMDSulmanBNWangYPKovenCDBonanGBCarbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical modelsGlob Chang Biol2018241563157910.1111/gcb.1397929120516 – reference: AllisonSDA trait-based approach for modelling microbial litter decompositionEcol Lett201215105810701:STN:280:DC%2BC38nntVCnsQ%3D%3D10.1111/j.1461-0248.2012.01807.x22642621 – reference: SunYZengYShiQPanXHuangSNo-tillage controls on runoff: A meta-analysisSoil Tillage Res20151531610.1016/j.still.2015.04.007 – reference: HicksLCLajthaKRouskJNutrient limitation may induce microbial mining for resources from persistent soil organic matterEcology2021102e0332810.1002/ecy.332833705567 – reference: JouanJDe GraeuweMCarofMBaccarRBareilleNBastianSBrognaDBurgioGCouvreurSCupiałMDumontBJacquotA-LMagagnoliSMakulskaJMaréchalKPérèsGRidierASalouTTombarkiewiczBSgolastraFGodinotOLearning Interdisciplinarity and Systems Approaches in Agroecology: Experience with the Serious Game SEGAESustainability202012435110.3390/su12114351 – reference: Kögel-KnabnerIAmelungWSoil organic matter in major pedogenetic soil groupsGeoderma20213841147851:CAS:528:DC%2BB3MXhtVeisLjP10.1016/j.geoderma.2020.114785 – reference: RumpelCKögel-KnabnerIDeep soil organic matter—a key but poorly understood component of terrestrial C cyclePlant Soil20113381431581:CAS:528:DC%2BC3cXhsFKmtLrE10.1007/s11104-010-0391-5 – reference: BaileyVLPriesCHLajthaKWhat do we know about soil carbon destabilization?Environ Res Lett2020140830041:CAS:528:DC%2BB3cXhvFyju77L10.1111/1462-2920.15159 – reference: KleberMJohnsonMGAdvances in understanding the molecular structure of soil organic matter: implications for interactions in the environmentAdv Agron2010106771421:CAS:528:DC%2BC3cXovV2nsLo%3D10.1016/S0065-2113(10)06003-7 – reference: KleberMLehmannJHumic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystemsJ Environ Qual20194822072161:CAS:528:DC%2BC1MXps1Ojtbs%3D10.2134/jeq2019.01.003630951127 – reference: KeyvanshokouhiSCornuSLafolieFBalesdentJGuenetBMoitrierNMoitrierNNougierCFinkePEffects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soilsSci Total Environ20196525235371:CAS:528:DC%2BC1cXitVWjt73I10.1016/j.scitotenv.2018.10.23630368182 – reference: SulmanBNBrzostekERMediciCShevliakovaEMengeDNLPhillipsRPFeedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal associationEcol Lett2017201043105310.1111/ele.1280228669138 – reference: HillPWFarrarJFJonesDLDecoupling of microbial glucose uptake and mineralization in soilSoil Biol Biochem2008406166241:CAS:528:DC%2BD1cXisFKltQ%3D%3D10.1016/j.soilbio.2007.09.008 – reference: BergBDecomposition patterns for foliar litter—a theory for influencing factorsSoil Biol Biochem2014782222321:CAS:528:DC%2BC2cXhsVSqtrvF10.1016/j.soilbio.2014.08.005 – reference: FaveroADaigneaultASohngenBForests: Carbon sequestration, biomass energy, or both?Sci Adv2020613eaay679210.1126/sciadv.aay6792330528757096156 – reference: Janz B, Havermann F, Lashermes G, Zuazo P, Engelsberger F, Torabi SM, Butterbach-Bahl K (2021) Effects of crop residue incorporation and properties on combined soil gaseous N2O, NO, and NH3 emissions—A laboratory-based measurement approach. Sci Total Environ 151051. https://doi.org/10.1016/j.scitotenv.2021.151051 – reference: ReesFDagoisRDerrienDFiorelliJLWatteauFMorelJLSchwartzCSimonnotMOSéréGStorage of carbon in constructed technosols: in situ monitoring over a decadeGeoderma20193376416481:CAS:528:DC%2BC1cXhvFCrsrzL10.1016/j.geoderma.2018.10.009 – reference: PoeplauCDonASixJKaiserMBenbiDChenuCCotrufoMFDerrienDGioacchiniPGrandSGregorichEGriepentrogMGuninaAHaddixMKuzyakovYKühnelAMacdonaldLMSoongJTrigaletSVermeireMLRoviraPvan WesemaelBWiesmeierMYeasminSYevdokimovINiederRIsolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparisonSoil Biol Biochem201812510261:CAS:528:DC%2BC1cXht1yitbjE10.1016/j.soilbio.2018.06.025 – reference: SchmidtMWITornMSAbivenSDittmarTGuggenbergerGJanssensIAKleberMKögel-KnabnerILehmannJManningDACNannipieriPRasseDPWeinerSTrumboreSEPersistence of soil organic matter as an ecosystem propertyNature201147849561:CAS:528:DC%2BC3MXht1yltrnF10.1038/nature1038621979045 – reference: ChenuCAngersDABarréPDerrienDArrouaysDBalesdentJIncreasing organic stocks in agricultural soils: Knowledge gaps and potential innovationsSoil Tillage Res2019188415210.1016/j.still.2018.04.011 – reference: LegoutAHanssonKvan der HeijdenGLaclauJPMareschalLNysCNicolasMSaint-AndréLRangerJChemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cyclingFor Ecol Managt202046111784410.1016/j.foreco.2019.117844 – reference: PlanteABeaupréSRobertsMBaisdenTDistribution of radiocarbon ages in soil organic matter by thermal fractionationRadiocarbon2013552107710831:CAS:528:DC%2BC3sXhslKgu7vK10.1017/S0033822200058215 – reference: MyneniSCBChemistry of natural organic matter—The next step: commentary on a humic substances debateJ Environ Qual2019482332351:CAS:528:DC%2BC1MXps1Ojurk%3D10.2134/jeq2019.02.0002c30951138 – reference: SixJFreySDThietRKBattenKMBacterial and fungal contributions to carbon sequestration in agroecosystemsSoil Sci Soc Am J2006705555691:CAS:528:DC%2BD28Xis1Cru70%3D10.2136/sssaj2004.0347 – reference: BarréPPlanteAFCécillonLLutfallaSBaudinFBernardSChristensenBTEglinTFernandezJMHouotSKättererTLe GuillouCMacdonaldAvan OortFChenuCThe energetic and chemical signatures of persistent soil organic matterBiogeochemistry20161301121:CAS:528:DC%2BC28Xhs1Sktb3M10.1007/s10533-016-0246-0 – reference: PaulEAThe nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilizationSoil Biol Biochem2016981091261:CAS:528:DC%2BC28XmsVejurg%3D10.1016/j.soilbio.2016.04.001 – reference: Hufnagl-EichinerSWolfSDrinkwaterLAssessing social–ecological coupling: Agriculture and hypoxia in the Gulf of MexicoGlob Environ Chang20112153053910.1016/j.gloenvcha.2010.11.007 – reference: Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Interactions Between Soil Particles and Microorganisms—Impact on the Terrestrial Ecosystems. John Wiley and Sons, Chichester, pp 3–40 – reference: HassinkJThe capacity of soils to preserve organic C and N by their association with clay and silt particlesPlant Soil199719177871:CAS:528:DyaK2sXltVKju7g%3D10.1023/A:1004213929699 – reference: KleberMNicoPSPlanteAFilleyTKramerMSwanstonCSollinsPOld and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivityGlob Chang Biol2011171097110710.1111/j.1365-2486.2010.02278.x – reference: The Future of Food and Agriculture—Trends and Challenges (2017) FAO, Rome, Italie. http://www.fao.org/3/a-i6583e.pdf – reference: KeiluweitMBougoureJNicoPPett-RidgeJWeberPKKleberMMineral protection of soil carbon counteracted by root exudatesNat Clim Chang201555885951:CAS:528:DC%2BC2MXlvVent7c%3D10.1038/nclimate2580 – reference: SathreRO’ConnorJMeta-analysis of greenhouse gas displacement factors of wood product substitutionEnviron Sci Pol2010131041141:CAS:528:DC%2BC3cXjtVCns78%3D10.1016/j.envsci.2009.12.005 – reference: Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L (2015) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep-UK 5. https://doi.org/10.1038/srep15991. – reference: LehmannJSolomonDKinyangiJDatheLWirickSJacobsenCSpatial complexity of soil organic matter forms at nanometre scalesNat Geosci200812382421:CAS:528:DC%2BD1cXktVCisb0%3D10.1038/ngeo155 – reference: MiltnerABombachPSchmidt-BrückenBKästnerMSOM genesis: microbial biomass as a significant sourceBiogeochemistry201211141551:CAS:528:DC%2BC3sXhslaqsbg%3D10.1007/s10533-011-9658-z – reference: MöllerKEffects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activityA review. Agron Sustain Dev201535102110411:CAS:528:DC%2BC2MXjvFektr0%3D10.1007/s13593-015-0284-3 – reference: BarotSBornhofenSLoeuilleNPerveenNShahzadTFontaineSNutrient enrichment and local competition influence the evolution of plant mineralization strategy, a modelling approachJ Ecol201410235736610.1111/1365-2745.12200 – reference: DimassiBMaryBWyllemanRLabreucheJCoutureDPirauxFCohanJPLong-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 yearsAgric Ecosyst Environ201418813414610.1016/j.agee.2014.02.014 – reference: HagedornFBruderhoferNFerrariANiklausPATracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow?Soil Biol Biochem2015883333431:CAS:528:DC%2BC2MXhtVyiu73P10.1016/j.soilbio.2015.06.014 – reference: Viscarra RosselRALeeJBehrensTLuoZBaldockJRichardsAContinental-scale soil carbon composition and vulnerability modulated by regional environmental controlsNat Geosci2019125475521:CAS:528:DC%2BC1MXhtVyqtL7J10.1038/s41561-019-0373-z – reference: JanzenHHSoil carbon: A measure of ecosystem response in a changing world?Can J Soil Sci2005854674801:CAS:528:DC%2BD28Xjs1GgsA%3D%3D10.4141/S04-081 – reference: SixJElliottEPaustianKAggregate and soil organic matter dynamics under conventional and no-tillage systemsSoil Sci Soc Am J199963135013581:CAS:528:DyaK1MXns12lsb0%3D10.2136/sssaj1999.6351350x – reference: HenneronLBalesdentJAlvarezGBarréPBaudinFBasile-DoelschICécillonLFernandez-MartinezAHattéCFontaineSBioenergetic control of soil carbon dynamics across depthNat Commun20221311141:CAS:528:DC%2BB38XjtFarsLjN10.1038/s41467-022-34951-w – reference: Panettieri M, Rumpel C, Dignac MF, Chabbi A (2017) Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions? Sci Total Environ 576:251–263. https://doi.org/10.1016/j.scitotenv.2016.10.073 – reference: PengerudADignacMFCertiniGStrandLTForteCRasseDPSoil organic matter molecular composition and state of decomposition in three locations of the European ArcticBiogeochemistry20171352772921:CAS:528:DC%2BC2sXhsVyitrjK10.1007/s10533-017-0373-2 – reference: TraoreOGroleau-RenaudVPlantureuxSTubeilehABoeuf-TremblayVEffect of root mucilage and modelled root exudates on soil structureEur J Soil Sci20005157558110.1111/j.1365-2389.2000.00348.x – reference: AmelungWBossioDde VriesWKögel-KnabnerILehmannJAmundsonRBolRCollinsCLalRLeifeldJMinasnyBPanGPaustianKRumpelCSandermanJvan GroenigenJWMooneySvan WesemaelBWanderMChabbiATowards a global-scale soil climate mitigation strategyNat Commun20201111101:CAS:528:DC%2BB3cXit1OjtLfK10.1038/s41467-020-18887-7 – reference: Barré P, Angers DA, Basile-Doelsch I, Bispo A, Cécillon L, Chenu C, Chevallier T, Derrien D, Eglin T, Pellerin S (2017) Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies? Biogeosci Discuss 1-12. https://doi.org/10.5194/bg-2017-395 – reference: KeiluweitMNicoPSKleberMFendorfSAre oxygen limitations under recognized regulators of organic carbon turnover in upland soils?Biogeochemistry20161271571711:CAS:528:DC%2BC28Xhs1Kgtbg%3D10.1007/s10533-015-0180-6 – reference: AngstGMuellerKENieropKSimpsonMJPlant- or microbial-derived? A review on the molecular composition of stabilized soil organic matterSoil Biol Biochem2021156131:CAS:528:DC%2BB3MXmt1akt7Y%3D10.1016/j.soilbio.2021.108189 – reference: PerveenNBarotSMaireVCotrufoMFShahzadTBlagodatskayaEStewartCEDingWSiddiqMRDimassiBMaryBFontaineSUniversality of priming effect: An analysis using thirty five soils with contrasted properties sampled from five continentsSoil Biol Biochem20191341621711:CAS:528:DC%2BC1MXmvFSks7w%3D10.1016/j.soilbio.2019.03.027 – reference: LavellePSpainAVSoil Ecology2001DordrechtKluwer Academic Publishers10.1007/978-94-017-5279-4 – reference: Raous S, King C, Alletto L, Bougon N, Chenu C, Cortet J, Derrien D, Dictor MC, François Y, Keller C, Perrin AS, Pousse N, Rémy E, Rennes S, Servain F, Tournebize J (2020) Recommandations méthodologiques pour le montage de projets collaboratifs entre acteurs de la Recherche et des Territoires. Rapport du Comité Scientifique Technique et d'Innovation (CSTI) du Réseau National d'Expertise Scientifique et Technique sur les sols (RNEST). https://doi.org/10.13140/RG.2.2.35757.82405 – reference: SuttonRSpositoGMolecular structure in soil humic substances: the new viewEnviron Sci Technol200539900990151:CAS:528:DC%2BD2MXhtFGmtb7L10.1021/es050778q16382919 – reference: BaveyePCSchneeLSBoivinPLabaMRadulovichRSoil organic matter research and climate change: merely re-storing carbon versus restoring soil functionsFront Environ Sci2020816110.3389/fenvs.2020.579904 – reference: DaufresneTLoreauMPlant–herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation?Ecol Lett2001419620610.1046/j.1461-0248.2001.00210.x – reference: Recous S, Lashermes G, Bertrand I, Duru M, Pellerin S (2019) C–N–P decoupling processes linked to arable cropping management systems in relation with intensification of production. In: Agroecosystem Diversity: Reconciling contemporary agriculture and environmental quality. Academic Press. Elsevier, London, pp 35–53. https://doi.org/10.1016/B978-0-12-811050-8.00003-0/B978-0-12-811050-8.00003-0 – reference: BardgettRDVan Der PuttenWHBelowground biodiversity and ecosystem functioningNature201451575285055111:CAS:528:DC%2BC2cXitFamsrnM10.1038/nature1385525428498 – reference: GuenetBCamino-SerranoMCiaisPTifafiMMaignanFSoongJLJanssensIAImpact of priming on global soil carbon stocksGlob Chang Biol20182018241873188310.1111/gcb.14069 – reference: KohlLPhilbenMEdwardsKAPodrebaracFAWarrenJZieglerSEThe origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradientGlob Chang Biol201824e458e47310.1111/gcb.1388728871609 – reference: ChenSMartinMPSabyNPWalterCAngersDAArrouaysDFine resolution map of top-and subsoil carbon sequestration potential in FranceSci Total Environ20186303894001:CAS:528:DC%2BC1cXjtlymur0%3D10.1016/j.scitotenv.2018.02.20929482147 – reference: SixJElliottETPaustianKSoil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agricultureSoil Biol Biochem200032209921031:CAS:528:DC%2BD3MXpvFWg10.1016/S0038-0717(00)00179-6 – reference: GuenetBGabrielleBChenuCArrouaysDBalesdentJBernouxMBruniECalimanJPCardinaelRChenSCiaisPCan N2O emissions offset the benefits from soil organic carbon storage?Glob Chang Biol2021272372561:CAS:528:DC%2BB38XhvFehsbfN10.1111/gcb.1534232894815 – reference: Martin TMP, Esculier F, Levavasseur F, Houot S (2020) Human urine-based fertilizers: A review. Crit Rev Environ Sci Technol https://doi.org/10.1080/10643389.2020.1838214 – reference: PaetschLMuellerCWRumpelCAngstŠWiesheuACGirardinCIvlevaNPNiessnerRKögel-KnabnerIA multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter compositionOrg Geochem20171121771861:CAS:528:DC%2BC2sXhtFGhs7%2FK10.1016/j.orggeochem.2017.06.012 – reference: HopkinsDWDungaitJAJTilstonELSoil microbiology and nutrient cyclingDixon, G. R.2010DordrechtSoil microbiology and sustainable crop production Springer598010.1007/978-90-481-9479-7_3 – reference: StevensonFJHumus chemistry: genesis, composition, reactions19942New YorkJohn Wiley & Sons496 – reference: LeifeldJvon LützowMChemical and microbial activation energies of soil organic matter decompositionBiol Fertil Soils2014501471531:CAS:528:DC%2BC2cXjt1Gjsg%3D%3D10.1007/s00374-013-0822-6 – reference: Lorenz M, Hofmann D, Steffen B, Fischer K, Thiele-Bruhn S (2021) The molecular composition of extractable soil microbial compounds and their contribution to soil organic matter vary with soil depth and tree species. Sci Total Environ 146732. https://doi.org/10.1016/j.scitotenv.2021.146732 – reference: HagedornFGavazovKAlexanderJMAbove and belowground linkages shape responses of mountain vegetation to climate changeScience20193656458111911231:CAS:528:DC%2BC1MXhslGktr7E10.1126/science.aax473731515385 – reference: TivetFde MoraesCSáBPRLetourmyPBriedisCFerreiraAOdos SantosBThiago Massao InagakiJSoil carbon inventory by wet oxidation and dry combustion methods: Effects of land use, soil texture gradients, and sampling septh on the linear model of C-equivalent correction factorSoil Sci Soc Am J2012763104810591:CAS:528:DC%2BC38XosFeju7k%3D10.2136/sssaj2011.0328 – reference: PoeplauCDonASensitivity of soil organic carbon stocks and fractions to different land-use changes across EuropeGeoderma20131921892011:CAS:528:DC%2BC38XhvVajtLfK10.1016/j.geoderma.2012.08.003 – reference: DonARödenbeckCGleixnerGUnexpected control of soil carbon turnover by soil carbon concentrationEnviron Chem Lett2013114074131:CAS:528:DC%2BC3sXhtlCqsrrL10.1007/s10311-013-0433-3 – reference: YuGHKuzyakovYFenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cyclingEarth Sci Rev20212141035251:CAS:528:DC%2BB3MXjvFKkt74%3D10.1016/j.earscirev.2021.103525 – reference: Kögel-KnabnerIThe macromolecular organic composition of plant and microbial residues as inputs to soil organic matterSoil Biol Biochem20023413916210.1016/S0038-0717(01)00158-4 – reference: MonodJThe growth of bacterial culturesAnnu Rev Microbiol194933713941:CAS:528:DyaG3cXlt1GitQ%3D%3D10.1146/annurev.mi.03.100149.002103 – reference: Hofman J, Dušek L (2003) Biochemical analysis of soil organic matter and microbial biomass composition—a pilot study. Eur J Soil Biol 39:217–224. https://doi.org/10.1016/J.EJSOBI.2003.08.002 – reference: Larrère R (2018) Considérations sur les controverses. https://4p1000sete2018.sciencesconf.org/data/pages/Controverses_version_longue_RLarrere.pdf – reference: CardinaelRChevallierTCambouABéralCBarthèsGCDuprazCDurandCKouakouaEChenuCIncreased soil organic carbon stocks under agroforestry: A survey of six different sites in FranceAgr Ecosyst Environt201723624325510.1016/j.agee.2016.12.011 – reference: MarschnerBBrodowskiSDrevesAGleixnerGGudeAGrootesPMHamerUHeimAJandlGJiRKaiserKKalbitzKKramerCLeinweberPRethemeyerJSchäfferASchmidtMWISchwarkLWiesenbergGLBHow relevant is recalcitrance for the stabilization of organic matter in soils?J Plant Nutr Soil Sci2008171911101:CAS:528:DC%2BD1cXisFyhurw%3D10.1002/jpln.200700049 – reference: Pellerin S, Bamiere L, Dimassi B, Launay C, Martin R, Schiavo M, Angers D, Augusto L, Balesdent J, Basile-Doelsch I, Bellassen V (2019) Storing carbon in French soils. Which potential regarding the 4 per 1000 objective, and to which cost? Synthesis of the study report, July 2019. https://www.inrae.fr/sites/default/files/pdf/etude-4-pour-1000-resume-en-francais-pdf-1_0.pdf – reference: LubbersIMvan GroenigenKJFonteSJSixJBrussaardLvan GroenigenJWGreenhouse-gas emissions from soils increased by earthwormsNat Clim Chang201331810.1038/NCLIMATE1692 – reference: BousquetFLe PageCMulti-agent simulations and ecosystem management: a reviewEcol Model20041763-431333210.1016/j.ecolmodel.2004.01.011 – reference: de NobiliMBravoCChenYThe spontaneous secondary synthesis of soil organic matter components: A critical examination of the soil continuum model theoryAppl Soil Ecol202015410365510.1016/j.apsoil.2020.103655 – reference: EkschmittKLiuMVetterSFoxOWoltersVStrategies used by soil biota to overcome soil organic matter stability–why is dead organic matter left over in soil?Geoderma200512816717610.1016/j.geoderma.2004.12.024 – reference: KallenbachCMGrandyASFreySDDiefendorfAFMicrobial physiology and necromass regulate agricultural soil carbon accumulationSoil Biol Biochem201592792901:CAS:528:DC%2BC2MXhsFKnsb7I10.1016/j.soilbio.2015.09.005 – reference: Schlesinger WH (2022) Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry, 1-9. https://doi.org/10.1007/s10533-022-00942-8 – reference: VestergaardGSchulzSSchölerASchloterMMaking big data smart—how to use metagenomics to understand soil qualityBiol Fertil Soils20175347948410.1007/s00374-017-1191-3 – reference: von LützowMKögel-KnabnerIEkschmittKFlessaHGuggenbergerGMatznerEMarschnerBSOM fractionation methods: relevance to functional pools and to stabilization mechanismsSoil Biol Biochem200739218322071:CAS:528:DC%2BD2sXmsFKrsr4%3D10.1016/j.soilbio.2007.03.007 – reference: Lu X, Lu X, Liao Y (2018) Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Front Microbiol 9.https://doi.org/10.3389/fmicb.2018.02986 – reference: WangTTianZBengtsonPTunlidAPerssonPMineral surface-reactive metabolites secreted during fungal decomposition contribute to the formation of soil organic matterEnviron Microbiol201719511751291:CAS:528:DC%2BC2sXitVCrsL3E10.1111/1462-2920.1399029124857 – reference: BleuzeLChabbertBLashermesGRecousSHemp harvest time impacts on the dynamics of microbial colonization and hemp stems degradation during dew rettingInd Crop Prod20201451121201:CAS:528:DC%2BB3cXhs1SgsLk%3D10.1016/j.indcrop.2020.112122 – reference: FowlerDCoyleMSkibaUSuttonMACapeJNReisSSheppardLJJenkinsAGrizzettiBGallowayJNVitousekPLeachABouwmanAFButterbach-BahlKDentenerFStevensonDAmannMVossMThe global nitrogen cycle in the twenty-first centuryPhilos Trans Royal Soc B: Biol Sci20133681621201301641:CAS:528:DC%2BC3sXht1Wkt77O10.1098/rstb.2013.0164 – reference: GoodellBZhuYKimSKafleKEastwoodDDanielGJellisonJYoshidaMGroomLPingaliSVO’NeillHModification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungiBiotechnol Biofuels2017101791:CAS:528:DC%2BC1cXitVOrs7bO10.1186/s13068-017-0865-2287020845504834 – reference: VirtoIMoniCSwanstonCChenuCTurnover of intra- and extra-aggregate organic matter at the silt-size scaleGeoderma20101561101:CAS:528:DC%2BC3cXjt1Kgsb0%3D10.1016/j.geoderma.2009.12.028 – reference: PinheiroMGarnierPBeguetJMartin LaurentFVieuble GonodLThe millimetre-scale distribution of 2,4-D and its degraders drives the fate of 2,4-D at the soil core scaleSoil Biol Biochem201588901001:CAS:528:DC%2BB3cXisVClsrfF10.1016/j.soilbio.2020.108068 – reference: PoirierVRoumetCMunsonADThe root of the matter: linking root traits and soil organic matter stabilization processesSoil Biol Biochem20181202462591:CAS:528:DC%2BC1cXjsl2rt74%3D10.1016/j.soilbio.2018.02.016 – reference: Dignac MF, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet G, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron PA, Nunan N, Roumet C, Basile-Doelsch I (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:14. https://doi.org/10.1007/s13593-017-0421-2 – reference: SulmanBNMooreJAAbramoffRAverillCKivlinSGeorgiouKSridharBHartmanMDWangGWiederWRBradfordMALuoYMayesMAMorrisonERileyWESalazarASchimelJPTangJClassenATMultiple models and experiments underscore large uncertainty in soil carbon dynamicsBiogeochemistry20181411091231:CAS:528:DC%2BC1cXhvV2qsb%2FM10.1007/s10533-018-0509-z – reference: HallSJYeCWeintraubSRHockadayWCMolecular trade-offs in soil organic carbon composition at continental scaleNat Geosci2020136876921:CAS:528:DC%2BB3cXhvVCktL%2FM10.1038/s41561-020-0634-x – reference: CraineJMMorrowCFiererNMicrobial nitrogen limitation increases decompositionEcology2007882105211310.1890/06-1847.117824441 – reference: SchuurEAGBockheimJCanadellJGEuskirchenEFieldCBGoryachkinSVHagemannSKuhryPLafleurPMLeeHMazhitovaGNelsonFERinkeARomanovskyVEShiklomanovNTarnocaiCVenevskySVogelJGZimovSAVulnerability of permafrost carbon to climate change: implications for the globalBio Sci20085870171410.1641/B580807 – reference: BillingsSALajthaKMalhotraABerheAAde GraaffMAEarlSFraterrigoJGeorgiouKGrandySHobbieSEMooreJAMNadelhofferKPiersonDRasmussenCSilverWLSulmanBNWeintraubSWiederWSoil organic carbon is not just for soil scientists: measurement recommendations for diverse practitionersEcol Appl202131e022901:STN:280:DC%2BB3svotlertQ%3D%3D10.1002/eap.229033426701 – reference: KleberMEusterhuesKKeiluweitMMikuttaCMikuttaRNicoPSMineral–organic associations: formation, properties, and relevance in soil environmentsAdvAgron2015130114010.1016/bs.agron.2014.10.005 – reference: Lashermes G, Recous S, Alavoine G, Janz B, Butterbach-Bahl K, Ernfors M, Laville P (2021) N2O emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Sci Total Environ 150883. https://doi.org/10.1016/j.scitotenv.2021.150883 – reference: JanssensIDielemanWLuyssaertSSubkeJ-AReichsteinMCeulemansRCiaisPDolmanAJGraceJMatteucciGPapaleDPiaoSLSchulzeEDTangJLawBEReduction of forest soil respiration in response to nitrogen depositionNat Geosci201033153221:CAS:528:DC%2BC3cXlsFSksLg%3D10.1038/ngeo844 – reference: DignacMFBahriHRumpelCRasseDPBardouxGBalesdentJGirardinCChenuCMariottiACarbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France)Geoderma20051283171:CAS:528:DC%2BD2MXlvV2ks7g%3D10.1016/j.geoderma.2004.12.022 – reference: HofflandEKuyperTWComansRNJCreamerREEco-functionality of organic matter in soilsPlant Soil20204551221:CAS:528:DC%2BB3cXhs1aiur%2FN10.1007/s11104-020-04651-9 – reference: BertrandIViaudVDaufresneTPellerinSRecousSStoichiometry constraints challenge the potential of agroecological practices for the soil C storage. A reviewAgron Sustain Dev2019395410.1007/s13593-019-0599-6 – reference: MiyauchiSKissEKuoADrulaEKohlerASánchez-GarcíaMMorinEAndreopoulosBBarryKWBonitoGBuéMLarge-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traitsNat Commun20201151251:CAS:528:DC%2BB3cXitVOrtLnP10.1038/s41467-020-18795-w330466987550596 – reference: Lavallée JM, Soong JL, Cotrufo MF (2020) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob Chang Biol 26(1):261–273. https://doi.org/10.1111/gcb.14859 – reference: ChabbiALehmannJCiaisPLoescherHWCotrufoMFDonASan ClementsMSchipperLSixJSmithPRumpelCAligning agriculture and climate policyNat Clim Chang2017730730910.1038/nclimate3286 – reference: GeorgiouKAbramoffRZHarteJRileyWJTornMSMicrobial community-level regulation explains soil carbon responses to long-term litter manipulationsNat Commun2017811101:CAS:528:DC%2BC1cXptV2qs74%3D10.1038/s41467-017-01116-z – reference: TornMSVitousekPMTrumboreSEThe influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modelingEcosystems200583523721:CAS:528:DC%2BD2MXpt1Whu7Y%3D10.1007/s10021-004-0259-8 – reference: WaringBGSulmanBNReedSSmithAPAverillCCreamerCACusackDFHallSJJastrowJDJillingAKemner KMKMKleberMXiaoLXJAPett-RidgeJSchulzMFrom pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing worldGlob Chang Biol2020266631664310.1111/gcb.1536533064359 – reference: Zechmeister-BoltensternSKeiblingerKMMooshammerMPenuelasJRichterASardansJWanekWThe application of ecological stoichiometry to plant-microbial-soil organic matter transformationsEcol Monogr20158513315510.1890/14-0777.1 – reference: BarréPQuénéaKVidalACécillonLChristensenBTKättererTMacdonaldAPetitLPlanteAFvan OortFChenuCMicrobial and plant-derived compounds both contribute to persistent soil organic carbon in temperate soilsBiogeochemistry201814081921:CAS:528:DC%2BC1cXhtl2ltr7N10.1007/s10533-018-0475-5 – reference: KopittkePMHernandez-SorianoMCDalalRCFinnDMenziesNWHoeschenCMuellerCWNitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matterGlob Chang Biol20182441762177010.1111/gcb.1400929211318 – reference: Boye K, Noël V, Tfaily MM, Bone SE, Williams KH, Bargar JR, Fendorf S (2017) Thermodynamically controlled preservation of organic carbon in floodplains. Nat Geosci 10(6):415–419. https://doi.org/10.1038/ngeo2940 – reference: KleberMBourgICCowardEKHanselCMMyneniSCNunanNDynamic interactions at the mineral–organic matter interfaceNature Rev Earth Environ20212640242110.1038/s43017-021-00162-y – reference: HagemannNJosephSSchmidtHPKammannCIHarterJBorchTYoungRBVargaKTaherymoosaviSElliottKWMcKennaAOrganic coating on biochar explains its nutrient retention and stimulation of soil fertilityNat Commun2017810891:CAS:528:DC%2BC1cXovFynsrY%3D10.1038/s41467-017-01123-0290578755715018 – reference: ClemmensenKEBahrAOvaskainenODahlbergAEkbladAWallanderHStenlidJFinlayRDWardleDALindahlBDRoots and associated fungi drive long-term carbon sequestration in boreal forestScience2013339161516181:CAS:528:DC%2BC3sXksFOhsLk%3D10.1126/science.123192323539604 – reference: AngersDARecousSAitaCFate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situEur J Soil Sci19974829530010.1111/j.1365-2389.1997.tb00549.x – reference: JianJVargasRAnderson-TeixeiraKJStellEHerrmannVHornMKholodNManzonJMarchesiRParedesDBond-LambertyBPA Global Database of Soil Respiration Data, Version 5.02021Oak Ridge, Tennessee, USAORNL DAAC10.3334/ORNLDAAC/1827 – reference: BaldockJASkjemstadJORole of the soil matrix and minerals in protecting natural organic materials against biological attackOrg Geochem2000316977101:CAS:528:DC%2BD3cXmsFSqu70%3D10.1016/S0146-6380(00)00049-8 – reference: BernardLBasile-DoelschIDerrienDFaninNFontaineSGuenetBKarimiBMarsdenCMaronP-AAdvancing the mechanistic understanding of the priming effect on soil organic matter mineralisationFunct Ecol202236135513771:CAS:528:DC%2BB38XhvV2ltb%2FO10.1111/1365-2435.14038 – reference: KleerebezemRVan LoosdrechtMCA generalized method for thermodynamic state analysis of environmental systemsCrit Rev Environ Sci Technol20104015410.1080/10643380802000974 – reference: Davies-BarnardTFriedlingsteinPThe global distribution of biological nitrogen fixation in terrestrial natural ecosystemsGlob Biogeochem Cycles202034e2019GB0063871:CAS:528:DC%2BB3cXlslGksL0%3D10.1029/2019GB006387 – reference: UrozSCalvarusoCTurpaultMPFrey-KlettPMineral weathering by bacteria: ecology, actors and mechanismsTrends Microbiol2009173783871:CAS:528:DC%2BD1MXhtVehtbbM10.1016/j.tim.2009.05.00419660952 – reference: SauvadetMLashermesGAlavoineGRecousSChauvatMMaronPABertrandIHigh carbon use efficiency and low priming effect promote soil C stabilization under reduced tillageSoil Biol Biochem201812364731:CAS:528:DC%2BC1cXpsV2is70%3D10.1016/j.soilbio.2018.04.026 – reference: DunlopLVeneuFControversies in science. To teach or not to teachSci Educ20192868971010.1007/s11191-019-00048-y – reference: SchrumpfMKaiserKMayerAHempelGTrumboreSAge distribution, extractability, and stability of mineral-bound organic carbon in central European soilsBiogeosciences202118124112571:CAS:528:DC%2BB3MXhvFCisr%2FL10.5194/bg-18-1241-2021 – reference: LeifeldJFuhrerJLong-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon datingEur J Soil Sci2009602302391:CAS:528:DC%2BD1MXkvVWntbk%3D10.1111/j.1365-2389.2008.01111.x – reference: CambouAShawRKHuotHVidal BeaudetLHunaultGCannavoPNoldFSchwartzCEstimation of soil organic carbon stocks of two cities, New York City and ParisSci Total Environ20186444524641:CAS:528:DC%2BC1cXht12ju7zF10.1016/j.scitotenv.2018.06.32229981995 – reference: BradfordMAWiederWRBonanGBFiererNRaymondPACrowtherTWManaging uncertainty in soil carbon feedbacks to climate changeNat Clim Chang201667511:CAS:528:DC%2BC28XhtlShtLnO10.1038/nclimate3071 – reference: BlankinshipJCBerheAACrowSEDruhanJLHeckmanKAKeiluweitMLawrenceCRMarín-SpiottaEPlanteAFRasmussenCSchädelCImproving understanding of soil organic matter dynamics by triangulating theories, measurements, and modelsBiogeochemistry20181401131:CAS:528:DC%2BC1cXhsVWhtrvO10.1007/s10533-018-0478-2 – reference: HéninSTurcLEssai de fractionnement des matières organiques du solC Acad Agric Fr1949354143 – reference: DuranteSAugustoLAchatDLLegoutABrédoireFRangerJSeynaveIJabiolBPousseNDiagnosis of forest soil sensitivity to harvesting residues removal–A transfer study of soil science knowledge to forestry practitionersEcol Indic20191045125231:CAS:528:DC%2BC1MXhtVGhsrvP10.1016/j.ecolind.2019.05.035 – reference: KallenbachCMWallensteinMDSchipanksiMEGrandyASManaging agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forwardFront Microbiol201910114610.3389/fmicb.2019.01146311788466543778 – reference: KravchenkoANGuberAKSoil pores and their contributions to soil carbon processesGeoderma201728731391:CAS:528:DC%2BC28XhtFOjurrL10.1016/j.geoderma.2016.06.027 – reference: DangalSRSandermanJWillsSRamirez-LopezLAccurate and precise prediction of soil properties from a large mid-infrared spectral librarySoil Syst201931111:CAS:528:DC%2BC1MXhs1OntrvE10.3390/soilsystems3010011 – reference: LiangCAmelungWLehmannJKästnerMQuantitative assessment of microbial necromass contribution to soil organic matterGlob Chang Biol2019253578359010.1111/gcb.1478131365780 – reference: BoddyEHillPWFarrahJJonesDLFast turnover of low molecular weight compounds of the dissolved organic carbon pool of temperate grassland field soilsSoil Biol Biochem2007398278351:CAS:528:DC%2BD2sXhtlSrtbk%3D10.1016/j.soilbio.2006.09.030 – reference: FontaineSHenaultCAamorABdiouiNBloorJMGMaireVMaryBRevaillotSMaronPAFungi mediate long term sequestration of carbon and nitrogen in soil through their priming effectSoil Biol Biochem20114386961:CAS:528:DC%2BC3cXhsVGrs7rO10.1016/j.soilbio.2010.09.017 – reference: LevavasseurFMaryBChristensenBTDuparqueAFerchaudFKättererTLagrangeHMontenachDResseguierCHouotSThe simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matterNutr Cycl Agroecosyst202011721522910.1007/s10705-020-10065-x – reference: SchneiderTKeiblingerKSchmidESterflinger-GleixnerKEllersdorferGRoschitzkiBRichterAEberlLZechmeister-BoltensternSRiedelKWho is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functionsISME J20126174917621:CAS:528:DC%2BC38Xht1Gjtb%2FJ10.1038/ismej.2012.11224024003498922 – reference: Dufour L, Herrmann A, Leloup J, Przybylski C, Foti L, Abbadie L, Nunan N (2021) Energetic return on investment determines overall soil microbial activity. Preprint https://doi.org/10.21203/rs.3.rs-388050/v1 – reference: van Groenigen JW, van Kessel C, Hungate BA, Oenema O, Powlson DS, van Groenigen KJ (2017) Sequestering Soil Organic Carbon: A Nitrogen Dilemma Environ. Sci Technol 51:4738–4739. https://doi.org/10.1021/acs.est.7b01427 – reference: LeifeldJMenichettiLThe underappreciated potential of peatlands in global climate change mitigation strategiesSoil Biol Biochem2018981091261:CAS:528:DC%2BC1cXhtFaru73J10.1038/s41467-018-03406-6 – reference: FaninNMoorheadDBertrandIEco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradientBiogeochemistry201612921361:CAS:528:DC%2BC28XosVars7c%3D10.1007/s10533-016-0217-5 – reference: DerrienDMarolCBalabaneMBalesdentJThe turnover of carbohydrate carbon in a cultivated soil estimated by 13C natural abundancesEur J Soil Sci2006575475571:CAS:528:DC%2BD28XptVKjt70%3D10.1111/j.1365-2389.2006.00811.x – reference: LemaireGTangLBéllangerGZhuYJeuffroyMGForward new paradigms for crop mineral nutrition and fertilization towards sustainable agricultureEur J Agron20211251262481:CAS:528:DC%2BB3MXhtVOmsbbI10.1016/j.eja.2021.126248 – reference: Kögel-KnabnerIGuggenbergerGKleberMKandelerEKalbitzKScheuSEusterhuesKLeinweberPOrgano-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistryJ Plant Nutr Soil Sci2008171161821:CAS:528:DC%2BD1cXisFyhur4%3D10.1002/jpln.200700048 – reference: Chassé M, Luftalla S, Cécillon L, Baudin F, Abiven S, Chenu C, Barré P (2021) Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics. Biogeosciences 18:1703–1718. https://doi.org/10.5194/bg-18-1703-2021 – reference: DynarskiKABossioDAScowKMDynamic stability of soil C: Reassessing the "permanence" of soil carbon sequestrationFront Environ Sci2020821810.3389/fenvs.2020.514701 – reference: MoorheadDLLashermesGSinsabaughRLA theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decompositionSoil Biol Biochem2012531331411:CAS:528:DC%2BC38XhtVels7vP10.1016/j.soilbio.2012.05.011 – reference: LejolyJQuideauSLaganièreJInvasive earthworms affect soil morphological features and carbon stocks in boreal forestsGeoderma20214041152621:CAS:528:DC%2BB3MXisV2msbjP10.1016/j.geoderma.2021.115262 – reference: SchultenHRLeinweberPCharacterization of humic and soil particles by analytical pyrolysis and computer modelingJ Anal Appl Pyrolysis1996381531:CAS:528:DyaK2sXptlSqsA%3D%3D10.1016/S0165-2370(96)00954-0 – reference: RasseDPRumpelCDignacMFIs soil carbon mostly root carbon? Mechanisms for a specific stabilisationPlant Soil20052693413561:CAS:528:DC%2BD2MXks1Oju7c%3D10.1007/s11104-004-0907-y – reference: TrumboreSRadiocarbon and soil carbon dynamicsAnnu Rev Earth Planet Sci20093747661:CAS:528:DC%2BD1MXmvVCktrk%3D10.1146/annurev.earth.36.031207.124300 – reference: SoussanaJFLutfallaSEhrhardtFRosenstockTLamannaCHavlíkPRichardsMWollenbergELChotteJLTorquebiauECiaisPSmithPLalRMatching policy and science: Rationale for the 4 per 1000-soils for food security and climate initiativeSoil Tillage Res201918831510.1016/j.still.2017.12.002 – reference: LehmannJKleberMThe contentious nature of soil organic matterNature201552860681:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature1606926595271 – reference: Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol https://doi.org/10.3389/fmicb.2012.00348 – reference: DerrienDAmelungWComputing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model frameworkEur J Soil Sci20116223725210.1111/j.1365-2389.2010.01333.x – reference: LubbersIMPullemanMMVan GroenigenJWCan earthworms simultaneously enhance decomposition and stabilization of plant residue carbon?Soil Biol Biochem201710512241:CAS:528:DC%2BC28XhvVeqsLjO10.1016/j.soilbio.2016.11.008 – reference: FloudasDBinderMRileyRBarryKBlanchetteRAHenrissatBMartínezATOtillarRSpataforaJWYadavJSAertsAThe Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomesScience2012336171517191:CAS:528:DC%2BC38XptFWntb0%3D10.1126/science.122174822745431 – reference: JanuszGPawlikASulejJŚwiderska-BurekUJarosz-WilkołazkaAPaszczyńskiALignin degradation: microorganisms, enzymes involved, genomes analysis and evolutionFEMS Microbiol Rev2017419419621:CAS:528:DC%2BC1cXhvFWmtL7M10.1093/femsre/fux049290883555812493 – reference: DrinkwaterLSnappSNutrients in agroecosystems: rethinking the management paradigmAdv Agron2007921631861:CAS:528:DC%2BD1cXktlyjsbY%3D10.1016/S0065-2113(04)92003-2 – reference: FinkePOpolotEBalesdentJBerheAABoeckxPCornuSHardenJHattéCWilliamsEDoetterlSCan SOC modelling be improved by accounting for pedogenesis?Geoderma20193385135241:CAS:528:DC%2BC1cXitVOitL%2FO10.1016/j.geoderma.2018.10.018 – reference: BertrandIChabbertBKurekBRecousSCan the biochemical features and histology of wheat residues explain their decomposition in soil?Plant Soil20062812913071:CAS:528:DC%2BD28Xktlyhtrg%3D10.1007/s11104-005-4628-7 – reference: NewcombCJQafokuNPGrateJWBaileyVLDe YoreoJJDeveloping a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral bindingNat Commun201783961:CAS:528:DC%2BC1cXos1Sksbw%3D10.1038/s41467-017-00407-9288555065577185 – reference: MoorheadDLLashermesGSinsabaughRLWeintraubMNCalculating co-metabolic costs of lignin decay and their impacts on carbon use efficiencySoil Biol Biochem20136617191:CAS:528:DC%2BC3sXhsVahs7jI10.1016/j.soilbio.2013.06.016 – reference: SoucémarianadinLCécillonLChenuCBaudinFNicolasMGirardinCDelahaieABarréPHeterogeneity of the chemical composition and thermal stability of particulate organic matter in French forest soilsGeoderma201934265741:CAS:528:DC%2BC1MXjt1Sktbw%3D10.1016/j.geoderma.2019.02.008 – reference: FrancavigliaRColemanKWhitmoreAPDoroLUrracciGRubinoMLeddaLChanges in soil organic carbon and climate change–Application of the RothC model in agro-silvo-pastoral Mediterranean systemsAgric Syst2012112485410.1016/j.agsy.2012.07.001 – reference: PlanteAFernándezJMHaddixMLSteinwegJMConantRTBiological, chemical and thermal indices of soil organic matter stability in four grassland soilsSoil Biol Biochem2011435105110581:CAS:528:DC%2BC3MXjsFCmtLc%3D10.1016/j.soilbio.2011.01.024 – reference: Sainte-MarieJBarrandonMSaint-AndréLGelhayeEMartinFDerrienDC-STABILITY an innovative modeling framework to leverage the continuous representation of organic matterNat Commun2021121131:CAS:528:DC%2BB3MXjvFGqs7w%3D10.1038/s41467-021-21079-6 – reference: AminBAZChabbertBMoorheadDBertrandIImpact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soilBiogeochemistry20141171691831:CAS:528:DC%2BC2cXotlagsw%3D%3D10.1007/s10533-013-9856-y – reference: SollinsPHomannPCaldwellBAStabilization and destabilization of soil organic matter: mechanisms and controlsGeoderma1996746510510.1016/S0016-7061(96)00036-5 – reference: WadouxACSamuel-RosaAPoggioLMulderVLA note on knowledge discovery and machine learning in digital soil mappingEur J Soil Sci20207113313610.1111/ejss.12909 – reference: Lashermes G, Moorhead D, Recous S, Bertrand I (2014) Interacting microbe and litter quality controls on litter decomposition: a modeling analysis. PLoS One 9.https://doi.org/10.1371/journal.pone.0108769 – reference: RoviraPKurz-BessonCCoûteauxMMVallejoVRChanges in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetrySoil Biol Biochem2008401721851:CAS:528:DC%2BD2sXhtF2iu7nN10.1016/j.soilbio.2007.07.021 – reference: Valade A, Luyssaert S, Vallet P, Djomo SN, Van Der Kellen IJ, Bellassen V (2018) Carbon costs and benefits of France's biomass energy production target. CBM https://doi.org/10.1186/s13021-018-0113-5 – volume: 455 start-page: 1 year: 2020 ident: 876_CR103 publication-title: Plant Soil doi: 10.1007/s11104-020-04651-9 – volume: 630 start-page: 389 year: 2018 ident: 876_CR45 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.02.209 – ident: 876_CR161 doi: 10.3389/fmicb.2018.02986 – volume: 48 start-page: 207 issue: 2 year: 2019 ident: 876_CR125 publication-title: J Environ Qual doi: 10.2134/jeq2019.01.0036 – volume: 336 start-page: 1715 year: 2012 ident: 876_CR77 publication-title: Science doi: 10.1126/science.1221748 – volume: 11 start-page: 407 year: 2013 ident: 876_CR63 publication-title: Environ Chem Lett doi: 10.1007/s10311-013-0433-3 – volume: 7 start-page: 320 year: 2010 ident: 876_CR121 publication-title: Environ Chem doi: 10.1071/EN10006 – volume: 2 start-page: 441 year: 2019 ident: 876_CR9 publication-title: Commun Biol doi: 10.1038/s42003-019-0684-z – volume: 33 start-page: 357 year: 2002 ident: 876_CR87 publication-title: Org Geochem doi: 10.1016/S0146-6380(01)00166-8 – ident: 876_CR138 doi: 10.3389/fmicb.2016.01315 – volume: 8 start-page: 396 year: 2017 ident: 876_CR179 publication-title: Nat Commun doi: 10.1038/s41467-017-00407-9 – volume: 63 start-page: 1350 year: 1999 ident: 876_CR220 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1999.6351350x – volume: 559 start-page: 599 issue: 7715 year: 2018 ident: 876_CR15 publication-title: Nature doi: 10.1038/s41586-018-0328-3 – volume: 27 start-page: 237 year: 2021 ident: 876_CR90 publication-title: Glob Chang Biol doi: 10.1111/gcb.15342 – volume: 269 start-page: 341 year: 2005 ident: 876_CR197 publication-title: Plant Soil doi: 10.1007/s11104-004-0907-y – volume: 123 start-page: 64 year: 2018 ident: 876_CR210 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.04.026 – volume: 98 start-page: 109 year: 2018 ident: 876_CR153 publication-title: Soil Biol Biochem doi: 10.1038/s41467-018-03406-6 – volume: 8 start-page: 776 year: 2015 ident: 876_CR52 publication-title: Nat Geosci doi: 10.1038/ngeo2520 – volume: 5 start-page: 265 year: 2014 ident: 876_CR200 publication-title: Carbon Manag doi: 10.1080/17583004.2014.923226 – volume: 338 start-page: 143 year: 2011 ident: 876_CR205 publication-title: Plant Soil doi: 10.1007/s11104-010-0391-5 – volume: 5 start-page: 41 year: 2017 ident: 876_CR30 publication-title: Front Environ Sci doi: 10.3389/fenvs.2017.00041 – ident: 876_CR212 doi: 10.1007/s10533-022-00942-8 – ident: 876_CR240 doi: 10.1186/s13021-018-0113-5 – volume: 12 start-page: 1 year: 2021 ident: 876_CR254 publication-title: Nat Commun doi: 10.1038/s41467-021-24192-8 – volume: 384 start-page: 114785 year: 2021 ident: 876_CR130 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114785 – volume: 450 start-page: 277 year: 2007 ident: 876_CR78 publication-title: Nature Lett doi: 10.1038/nature06275 – ident: 876_CR3 doi: 10.1111/ejss.13141 – volume: 3 start-page: 371 year: 1949 ident: 876_CR174 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.mi.03.100149.002103 – volume: 4 start-page: 196 year: 2001 ident: 876_CR55 publication-title: Ecol Lett doi: 10.1046/j.1461-0248.2001.00210.x – volume: 135 start-page: 277 year: 2017 ident: 876_CR186 publication-title: Biogeochemistry doi: 10.1007/s10533-017-0373-2 – volume: 292 start-page: 59 year: 2017 ident: 876_CR171 publication-title: Geoderma doi: 10.1016/j.geoderma2017.01.002 – volume: 75 start-page: 2030 year: 2011 ident: 876_CR136 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2011.01.020 – volume: 66 start-page: 17 year: 2013 ident: 876_CR176 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.06.016 – volume: 48 start-page: 295 year: 1997 ident: 876_CR8 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.1997.tb00549.x – volume: 102 start-page: 357 year: 2014 ident: 876_CR17 publication-title: J Ecol doi: 10.1111/1365-2745.12200 – ident: 876_CR196 doi: 10.13140/RG.2.2.35757.82405 – volume: 134 start-page: 162 year: 2019 ident: 876_CR188 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.03.027 – ident: 876_CR226 – ident: 876_CR232 – volume: 13 start-page: 687 year: 2020 ident: 876_CR94 publication-title: Nat Geosci doi: 10.1038/s41561-020-0634-x – volume: 48 start-page: 233 year: 2019 ident: 876_CR177 publication-title: J Environ Qual doi: 10.2134/jeq2019.02.0002c – volume: 118 start-page: 99 year: 2019 ident: 876_CR49 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2019.04.004 – volume: 23 start-page: 751 year: 2015 ident: 876_CR238 publication-title: Trends Microbiol doi: 10.1016/j.tim.2015.10.004 – volume: 42 start-page: 1489 year: 2012 ident: 876_CR96 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2011.05.002 – volume: 120 start-page: 246 year: 2018 ident: 876_CR194 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.02.016 – volume: 76 start-page: 1048 issue: 3 year: 2012 ident: 876_CR233 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2011.0328 – volume: 7 start-page: 13630 year: 2016 ident: 876_CR114 publication-title: Nat Commun doi: 10.1038/ncomms13630 – volume-title: A Global Database of Soil Respiration Data, Version 5.0 year: 2021 ident: 876_CR112 doi: 10.3334/ORNLDAAC/1827 – volume: 36 start-page: 1355 year: 2022 ident: 876_CR25 publication-title: Funct Ecol doi: 10.1111/1365-2435.14038 – volume: 193 start-page: 629 year: 2006 ident: 876_CR83 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2005.08.045 – volume: 201824 start-page: 1873 year: 2018 ident: 876_CR89 publication-title: Glob Chang Biol doi: 10.1111/gcb.14069 – volume: 6 start-page: 143 year: 2018 ident: 876_CR253 publication-title: Front Earth Sci doi: 10.3389/feart.2018.00143 – volume: 78 start-page: 222 year: 2014 ident: 876_CR23 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.08.005 – volume: 34 start-page: 139 year: 2002 ident: 876_CR129 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(01)00158-4 – volume: 31 start-page: e02290 year: 2021 ident: 876_CR28 publication-title: Ecol Appl doi: 10.1002/eap.2290 – volume: 130 start-page: 1 year: 2016 ident: 876_CR19 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0246-0 – volume: 478 start-page: 49 year: 2011 ident: 876_CR213 publication-title: Nature doi: 10.1038/nature10386 – volume: 32 start-page: 2099 year: 2000 ident: 876_CR221 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(00)00179-6 – volume: 57 start-page: 547 year: 2006 ident: 876_CR59 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2006.00811.x – volume: 9 start-page: 279 year: 2015 ident: 876_CR115 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.09.005 – volume: 27 start-page: 2039 year: 2021 ident: 876_CR249 publication-title: Glob Chang Biol doi: 10.1111/gcb.15550 – volume: 88 start-page: 333 year: 2015 ident: 876_CR91 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.06.014 – volume: 793 start-page: 148569 year: 2021 ident: 876_CR202 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148569 – ident: 876_CR18 doi: 10.5194/bg-2017-395 – volume: 12 start-page: 989 year: 2019 ident: 876_CR51 publication-title: Nat Geosci doi: 10.1038/s41561-019-0484-6 – volume: 60 start-page: 77 year: 2013 ident: 876_CR120 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2013.01.011 – volume: 22 start-page: 277 year: 2020 ident: 876_CR206 publication-title: Entropy doi: 10.3390/e22030277 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 876_CR5 publication-title: Nat Commun doi: 10.1038/s41467-020-18887-7 – volume: 140 start-page: 81 year: 2018 ident: 876_CR20 publication-title: Biogeochemistry doi: 10.1007/s10533-018-0475-5 – volume: 51 start-page: 575 year: 2000 ident: 876_CR235 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2000.00348.x – volume: 10 start-page: 179 year: 2017 ident: 876_CR88 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-017-0865-2 – volume: 18 start-page: 1241 year: 2021 ident: 876_CR215 publication-title: Biogeosciences doi: 10.5194/bg-18-1241-2021 – volume: 125 start-page: 126248 year: 2021 ident: 876_CR156 publication-title: Eur J Agron doi: 10.1016/j.eja.2021.126248 – volume: 85 start-page: 133 year: 2015 ident: 876_CR256 publication-title: Ecol Monogr doi: 10.1890/14-0777.1 – volume: 192 start-page: 189 year: 2013 ident: 876_CR192 publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.003 – volume: 9 start-page: 1 year: 2018 ident: 876_CR219 publication-title: Nat Commun doi: 10.1038/s41467-018-04526-9 – volume: 339 start-page: 1615 year: 2013 ident: 876_CR48 publication-title: Science doi: 10.1126/science.1231923 – volume: 188 start-page: 134 year: 2014 ident: 876_CR62 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.02.014 – volume: 365 start-page: 1119 issue: 6458 year: 2019 ident: 876_CR92 publication-title: Science doi: 10.1126/science.aax4737 – volume: 14 start-page: 083004 year: 2020 ident: 876_CR12 publication-title: Environ Res Lett doi: 10.1111/1462-2920.15159 – volume: 55 start-page: 1077 issue: 2 year: 2013 ident: 876_CR191 publication-title: Radiocarbon doi: 10.1017/S0033822200058215 – volume: 156 start-page: 1 year: 2021 ident: 876_CR10 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108189 – volume: 111 start-page: 41 year: 2012 ident: 876_CR170 publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 20 start-page: 1043 year: 2017 ident: 876_CR228 publication-title: Ecol Lett doi: 10.1111/ele.12802 – volume: 8 start-page: 161 year: 2020 ident: 876_CR22 publication-title: Front Environ Sci doi: 10.3389/fenvs.2020.579904 – volume: 13 start-page: 123 year: 2017 ident: 876_CR195 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0291-8 – ident: 876_CR65 doi: 10.21203/rs.3.rs-388050/v1 – volume: 48 start-page: 217 year: 2019 ident: 876_CR180 publication-title: J Environ Qual doi: 10.2134/jeq2019.02.0041 – volume: 70 start-page: 555 year: 2006 ident: 876_CR222 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2004.0347 – ident: 876_CR104 doi: 10.1016/J.EJSOBI.2003.08.002 – ident: 876_CR160 doi: 10.1016/j.scitotenv.2021.146732 – start-page: 237 volume-title: Evaluation of soil organic matter models year: 1996 ident: 876_CR50 doi: 10.1007/978-3-642-61094-3_17 – volume: 59 start-page: 346 year: 2021 ident: 876_CR4 publication-title: Soil Res doi: 10.1071/SR20257 – volume: 20 start-page: 1174 year: 2014 ident: 876_CR187 publication-title: Glob Chang Biol doi: 10.1111/gcb.12493 – volume: 8 start-page: 1089 year: 2017 ident: 876_CR93 publication-title: Nat Commun doi: 10.1038/s41467-017-01123-0 – volume: 84 start-page: 355 year: 2004 ident: 876_CR201 publication-title: Can J Soil Sci doi: 10.4141/S04-003 – volume: 570 start-page: 228 year: 2019 ident: 876_CR97 publication-title: Nature doi: 10.1038/s41586-019-1280-6 – volume: 368 start-page: 20130164 issue: 1621 year: 2013 ident: 876_CR80 publication-title: Philos Trans Royal Soc B: Biol Sci doi: 10.1098/rstb.2013.0164 – volume: 31 start-page: 697 year: 2000 ident: 876_CR13 publication-title: Org Geochem doi: 10.1016/S0146-6380(00)00049-8 – ident: 876_CR185 – volume: 7 start-page: 307 year: 2017 ident: 876_CR43 publication-title: Nat Clim Chang doi: 10.1038/nclimate3286 – volume: 338 start-page: 513 year: 2019 ident: 876_CR76 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.018 – ident: 876_CR1 doi: 10.1038/srep15991 – volume: 28 start-page: 689 year: 2019 ident: 876_CR67 publication-title: Sci Educ doi: 10.1007/s11191-019-00048-y – volume: 188 start-page: 41 year: 2019 ident: 876_CR46 publication-title: Soil Tillage Res doi: 10.1016/j.still.2018.04.011 – volume: 41 start-page: 941 year: 2017 ident: 876_CR108 publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fux049 – ident: 876_CR44 doi: 10.5194/bg-18-1703-2021 – volume: 144 start-page: 104016 year: 2020 ident: 876_CR145 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2020.104016 – volume: 105 start-page: 12 year: 2017 ident: 876_CR162 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.11.008 – volume: 37 start-page: 47 year: 2009 ident: 876_CR236 publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev.earth.36.031207.124300 – volume: 528 start-page: 60 year: 2015 ident: 876_CR149 publication-title: Nature doi: 10.1038/nature16069 – volume: 53 start-page: 133 year: 2012 ident: 876_CR175 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.05.011 – volume: 100 start-page: 66 year: 2016 ident: 876_CR165 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.05.019 – volume: 125 start-page: 10 year: 2018 ident: 876_CR193 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.06.025 – volume: 287 start-page: 31 year: 2017 ident: 876_CR134 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.027 – volume: 38 start-page: 419 year: 2006 ident: 876_CR111 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.10.008 – volume: 35 start-page: 1021 year: 2015 ident: 876_CR173 publication-title: A review. Agron Sustain Dev doi: 10.1007/s13593-015-0284-3 – ident: 876_CR182 doi: 10.1016/j.scitotenv.2016.10.073 – volume: 60 start-page: 40 year: 2013 ident: 876_CR178 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2013.04.011 – ident: 876_CR61 doi: 10.1007/s13593-017-0421-2 – volume: 141 start-page: 109 year: 2018 ident: 876_CR229 publication-title: Biogeochemistry doi: 10.1007/s10533-018-0509-z – volume: 141 start-page: 107689 year: 2020 ident: 876_CR167 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107689 – volume: 43 start-page: 1051 issue: 5 year: 2011 ident: 876_CR190 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.01.024 – volume: 17 start-page: 378 year: 2009 ident: 876_CR237 publication-title: Trends Microbiol doi: 10.1016/j.tim.2009.05.004 – volume: 342 start-page: 65 year: 2019 ident: 876_CR224 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.008 – volume: 6 start-page: 1749 year: 2012 ident: 876_CR214 publication-title: ISME J doi: 10.1038/ismej.2012.11 – volume: 12 start-page: 547 year: 2019 ident: 876_CR245 publication-title: Nat Geosci doi: 10.1038/s41561-019-0373-z – volume: 6 start-page: eaay6792 issue: 13 year: 2020 ident: 876_CR75 publication-title: Sci Adv doi: 10.1126/sciadv.aay6792 – ident: 876_CR36 doi: 10.1038/ngeo2940 – volume: 50 start-page: 147 year: 2014 ident: 876_CR154 publication-title: Biol Fertil Soils doi: 10.1007/s00374-013-0822-6 – volume: 26 start-page: 6631 year: 2020 ident: 876_CR251 publication-title: Glob Chang Biol doi: 10.1111/gcb.15365 – volume: 214 start-page: 103525 year: 2021 ident: 876_CR255 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2021.103525 – volume: 112 start-page: 48 year: 2012 ident: 876_CR81 publication-title: Agric Syst doi: 10.1016/j.agsy.2012.07.001 – volume: 12 start-page: 4351 year: 2020 ident: 876_CR113 publication-title: Sustainability doi: 10.3390/su12114351 – volume: 171 start-page: 61 issue: 1 year: 2008 ident: 876_CR131 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200700048 – volume: 39 start-page: 54 year: 2019 ident: 876_CR27 publication-title: Agron Sustain Dev doi: 10.1007/s13593-019-0599-6 – volume: 88 start-page: 90 year: 2015 ident: 876_CR189 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108068 – volume: 191 start-page: 77 year: 1997 ident: 876_CR95 publication-title: Plant Soil doi: 10.1023/A:1004213929699 – volume: 19 start-page: 5117 year: 2017 ident: 876_CR250 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13990 – ident: 876_CR34 doi: 10.1016/s0038-0717(99)00105-4 – volume: 8 start-page: 218 year: 2020 ident: 876_CR69 publication-title: Front Environ Sci doi: 10.3389/fenvs.2020.514701 – volume: 11 start-page: 5125 year: 2020 ident: 876_CR172 publication-title: Nat Commun doi: 10.1038/s41467-020-18795-w – volume: 112 start-page: 177 year: 2017 ident: 876_CR181 publication-title: Org Geochem doi: 10.1016/j.orggeochem.2017.06.012 – ident: 876_CR164 doi: 10.1038/s41561-021-00744-x – volume: 40 start-page: 172 year: 2008 ident: 876_CR203 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.07.021 – ident: 876_CR241 doi: 10.1021/acs.est.7b01427 – volume: 27 start-page: 904 year: 2021 ident: 876_CR74 publication-title: Glob Chang Biol doi: 10.1111/gcb.15441 – volume: 252 start-page: 126832 year: 2021 ident: 876_CR98 publication-title: Microbiol Res doi: 10.1016/j.micres.2021.126832 – ident: 876_CR211 doi: 10.3389/fmicb.2012.00348 – volume: 188 start-page: 3 year: 2019 ident: 876_CR225 publication-title: Soil Tillage Res doi: 10.1016/j.still.2017.12.002 – volume: 28 start-page: 683 year: 2013 ident: 876_CR86 publication-title: Ecol Res doi: 10.1007/s11284-012-1022-9 – volume: 128 start-page: 3 year: 2005 ident: 876_CR60 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.022 – volume: 92 start-page: 1052e1062 year: 2011 ident: 876_CR128 publication-title: Ecology doi: 10.1890/10-1307.1 – ident: 876_CR139 doi: 10.1371/journal.pone.0108769 – volume: 176 start-page: 313 issue: 3-4 year: 2004 ident: 876_CR35 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2004.01.011 – ident: 876_CR47 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 876_CR100 publication-title: Nat Commun doi: 10.1038/s41467-022-34951-w – volume: 106 start-page: 77 year: 2010 ident: 876_CR124 publication-title: Adv Agron doi: 10.1016/S0065-2113(10)06003-7 – volume: 47 start-page: 485 year: 1996 ident: 876_CR14 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.1996.tb01848.x – volume: 17 start-page: 5223 year: 2020 ident: 876_CR21 publication-title: Biogeosciences doi: 10.5194/bg-17-5223-2020 – volume: 88 start-page: 2105 year: 2007 ident: 876_CR53 publication-title: Ecology doi: 10.1890/06-1847.1 – volume: 3 start-page: 11 issue: 1 year: 2019 ident: 876_CR54 publication-title: Soil Syst doi: 10.3390/soilsystems3010011 – volume: 652 start-page: 523 year: 2019 ident: 876_CR119 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.236 – volume: 24 start-page: 1762 issue: 4 year: 2018 ident: 876_CR133 publication-title: Glob Chang Biol doi: 10.1111/gcb.14009 – volume: 92 start-page: 163 year: 2007 ident: 876_CR64 publication-title: Adv Agron doi: 10.1016/S0065-2113(04)92003-2 – ident: 876_CR42 doi: 10.5194/gmd-14-3879-2021 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 876_CR84 publication-title: Nat Commun doi: 10.1038/s41467-017-01116-z – volume: 53 start-page: 899 year: 2018 ident: 876_CR183 publication-title: J Environ Sci Health Part A doi: 10.1080/10934529.2018.1459076 – start-page: 155 volume-title: Advances in Agronomy year: 2008 ident: 876_CR6 doi: 10.1016/S0065-2113(08)00606-8 – volume: 114 start-page: 9575 year: 2017 ident: 876_CR208 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1706103114 – volume: 1 start-page: 238 year: 2008 ident: 876_CR150 publication-title: Nat Geosci doi: 10.1038/ngeo155 – ident: 876_CR11 doi: 10.3389/fsoil.2022.831775 – volume: 196 start-page: 79 year: 2012 ident: 876_CR166 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04225.x – volume: 8 start-page: 1911 year: 2011 ident: 876_CR38 publication-title: Biogeosciences doi: 10.5194/bg-8-1911-2011 – volume: 94 start-page: 48 year: 2016 ident: 876_CR72 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.11.007 – volume: 74 start-page: 65 year: 1996 ident: 876_CR223 publication-title: Geoderma doi: 10.1016/S0016-7061(96)00036-5 – volume: 38 start-page: 1 year: 1996 ident: 876_CR216 publication-title: J Anal Appl Pyrolysis doi: 10.1016/S0165-2370(96)00954-0 – volume: 39 start-page: 827 year: 2007 ident: 876_CR33 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.09.030 – volume: 461 start-page: 117844 year: 2020 ident: 876_CR146 publication-title: For Ecol Managt doi: 10.1016/j.foreco.2019.117844 – ident: 876_CR142 doi: 10.1111/gcb.14859 – volume: 43 start-page: 273 year: 2015 ident: 876_CR29 publication-title: Annu Rev Earth Pl Sc doi: 10.1146/annurev-earth-060614-105038 – volume: 3 start-page: 1 year: 2013 ident: 876_CR163 publication-title: Nat Clim Chang doi: 10.1038/NCLIMATE1692 – start-page: 496 volume-title: Humus chemistry: genesis, composition, reactions year: 1994 ident: 876_CR227 – volume: 102 start-page: e03328 year: 2021 ident: 876_CR101 publication-title: Ecology doi: 10.1002/ecy.3328 – volume: 153 start-page: 1 year: 2015 ident: 876_CR230 publication-title: Soil Tillage Res doi: 10.1016/j.still.2015.04.007 – volume: 71 start-page: 133 year: 2020 ident: 876_CR247 publication-title: Eur J Soil Sci doi: 10.1111/ejss.12909 – volume: 104 start-page: 512 year: 2019 ident: 876_CR68 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2019.05.035 – volume: 337 start-page: 641 year: 2019 ident: 876_CR199 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.009 – volume: 128 start-page: 167 year: 2005 ident: 876_CR70 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.024 – volume: 98 start-page: 109 year: 2016 ident: 876_CR184 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.04.001 – volume: 17 start-page: 1097 year: 2011 ident: 876_CR126 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2010.02278.x – volume: 127 start-page: 157 year: 2016 ident: 876_CR118 publication-title: Biogeochemistry doi: 10.1007/s10533-015-0180-6 – volume: 145 start-page: 112 year: 2020 ident: 876_CR32 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2020.112122 – volume: 85 start-page: 467 year: 2005 ident: 876_CR110 publication-title: Can J Soil Sci doi: 10.4141/S04-081 – volume: 2 start-page: 17105 year: 2017 ident: 876_CR159 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.105 – volume-title: Soil Ecology year: 2001 ident: 876_CR143 doi: 10.1007/978-94-017-5279-4 – start-page: 67 volume-title: Soil organic matter in sustainable agriculture year: 2004 ident: 876_CR248 – volume: 12 start-page: 61 year: 2020 ident: 876_CR144 publication-title: Earth Syst Sci Data doi: 10.5194/essd-12-61-2020 – volume: 60 start-page: 297 year: 2009 ident: 876_CR140 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2008.01110.x – volume: 515 start-page: 505 issue: 7528 year: 2014 ident: 876_CR16 publication-title: Nature doi: 10.1038/nature13855 – volume: 3 start-page: 315 year: 2010 ident: 876_CR107 publication-title: Nat Geosci doi: 10.1038/ngeo844 – ident: 876_CR24 doi: 10.1029/2011JG001790 – volume: 60 start-page: 230 year: 2009 ident: 876_CR151 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2008.01111.x – volume: 22 start-page: 3838 year: 2020 ident: 876_CR239 publication-title: Environ Microbiol doi: 10.1111/1462-2920.15159 – volume: 137 start-page: 27 year: 2018 ident: 876_CR204 publication-title: Biogeochemistry doi: 10.1007/s10533-017-0410-1 – volume: 80 start-page: 146 year: 2015 ident: 876_CR218 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.09.023 – ident: 876_CR198 doi: 10.1016/B978-0-12-811050-8.00003-0/B978-0-12-811050-8.00003-0 – volume: 18 start-page: 1781 year: 2012 ident: 876_CR66 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2012.02665.x – volume: 13 start-page: 529 year: 2020 ident: 876_CR148 publication-title: Nat Geosci doi: 10.1038/s41561-020-0612-3 – volume: 35 start-page: 41 year: 1949 ident: 876_CR99 publication-title: C Acad Agric Fr – ident: 876_CR147 doi: 10.4324/9780203762264-17 – ident: 876_CR141 doi: 10.1016/j.scitotenv.2021.150883 – volume: 25 start-page: 3578 year: 2019 ident: 876_CR158 publication-title: Glob Chang Biol doi: 10.1111/gcb.14781 – volume: 6 start-page: 751 year: 2016 ident: 876_CR37 publication-title: Nat Clim Chang doi: 10.1038/nclimate3071 – volume: 2 start-page: 402 issue: 6 year: 2021 ident: 876_CR122 publication-title: Nature Rev Earth Environ doi: 10.1038/s43017-021-00162-y – volume: 129 start-page: 21 year: 2016 ident: 876_CR73 publication-title: Biogeochemistry doi: 10.1007/s10533-016-0217-5 – volume: 124 start-page: 143 year: 2005 ident: 876_CR152 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.04.009 – volume: 236 start-page: 243 year: 2017 ident: 876_CR40 publication-title: Agr Ecosyst Environt doi: 10.1016/j.agee.2016.12.011 – volume: 5 start-page: 588 year: 2015 ident: 876_CR117 publication-title: Nat Clim Chang doi: 10.1038/nclimate2580 – volume: 34 start-page: e2019GB006387 year: 2020 ident: 876_CR56 publication-title: Glob Biogeochem Cycles doi: 10.1029/2019GB006387 – volume: 21 start-page: 530 year: 2011 ident: 876_CR106 publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2010.11.007 – volume: 39 start-page: 2183 year: 2007 ident: 876_CR246 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.03.007 – volume: 281 start-page: 291 year: 2006 ident: 876_CR26 publication-title: Plant Soil doi: 10.1007/s11104-005-4628-7 – volume: 12 start-page: 1 year: 2021 ident: 876_CR207 publication-title: Nat Commun doi: 10.1038/s41467-021-21079-6 – volume: 24 start-page: 1563 year: 2018 ident: 876_CR252 publication-title: Glob Chang Biol doi: 10.1111/gcb.13979 – volume: 140 start-page: 1 year: 2018 ident: 876_CR31 publication-title: Biogeochemistry doi: 10.1007/s10533-018-0478-2 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 876_CR85 publication-title: Nat Commun doi: 10.1038/s41467-022-31540-9 – ident: 876_CR109 doi: 10.1016/j.scitotenv.2021.151051 – ident: 876_CR169 doi: 10.1080/10643389.2020.1838214 – volume: 58 start-page: 701 year: 2008 ident: 876_CR217 publication-title: Bio Sci doi: 10.1641/B580807 – start-page: 59 volume-title: Dixon, G. R. year: 2010 ident: 876_CR105 doi: 10.1007/978-90-481-9479-7_3 – volume: 24 start-page: e458 year: 2018 ident: 876_CR132 publication-title: Glob Chang Biol doi: 10.1111/gcb.13887 – volume: 130 start-page: 1 year: 2015 ident: 876_CR123 publication-title: AdvAgron doi: 10.1016/bs.agron.2014.10.005 – volume: 117 start-page: 215 year: 2020 ident: 876_CR157 publication-title: Nutr Cycl Agroecosyst doi: 10.1007/s10705-020-10065-x – volume: 8 start-page: 352 year: 2005 ident: 876_CR234 publication-title: Ecosystems doi: 10.1007/s10021-004-0259-8 – ident: 876_CR137 – volume: 7 start-page: 55 year: 2019 ident: 876_CR243 publication-title: Front Environ Sci doi: 10.3389/fenvs.2019.00055 – volume: 15 start-page: 1058 year: 2012 ident: 876_CR2 publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2012.01807.x – volume: 6 start-page: 6707 year: 2015 ident: 876_CR135 publication-title: Nat Commun doi: 10.1038/ncomms7707 – volume: 53 start-page: 479 year: 2017 ident: 876_CR242 publication-title: Biol Fertil Soils doi: 10.1007/s00374-017-1191-3 – volume: 117 start-page: 169 year: 2014 ident: 876_CR7 publication-title: Biogeochemistry doi: 10.1007/s10533-013-9856-y – volume: 171 start-page: 91 year: 2008 ident: 876_CR168 publication-title: J Plant Nutr Soil Sci doi: 10.1002/jpln.200700049 – volume: 39 start-page: 9009 year: 2005 ident: 876_CR231 publication-title: Environ Sci Technol doi: 10.1021/es050778q – volume: 40 start-page: 1 year: 2010 ident: 876_CR127 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643380802000974 – volume: 40 start-page: 616 year: 2008 ident: 876_CR102 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.09.008 – volume: 17 start-page: 4961 year: 2020 ident: 876_CR71 publication-title: Biogeosciences doi: 10.5194/bg-17-4961-2020 – volume: 62 start-page: 237 year: 2011 ident: 876_CR58 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01333.x – ident: 876_CR41 – volume: 404 start-page: 115262 year: 2021 ident: 876_CR155 publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115262 – volume: 154 start-page: 103655 year: 2020 ident: 876_CR57 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2020.103655 – volume: 43 start-page: 86 year: 2011 ident: 876_CR79 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.09.017 – volume: 113 start-page: 10968 year: 2016 ident: 876_CR257 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1608454113 – volume: 10 start-page: 1146 year: 2019 ident: 876_CR116 publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01146 – volume: 13 start-page: 104 year: 2010 ident: 876_CR209 publication-title: Environ Sci Pol doi: 10.1016/j.envsci.2009.12.005 – ident: 876_CR82 doi: 10.1002/9781119438274.ch5 – volume: 644 start-page: 452 year: 2018 ident: 876_CR39 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.322 – volume: 156 start-page: 1 year: 2010 ident: 876_CR244 publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.028 |
SSID | ssj0041774 |
Score | 2.4783454 |
SecondaryResourceType | review_article |
Snippet | There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what... |
SourceID | pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21 |
SubjectTerms | Agrarian society Agriculture Agronomy biomass Biomedical and Life Sciences Carbon sequestration climate Climate change Data management Decision making Environmental Sciences forestry information management Life Sciences Microorganisms Organic carbon Organic matter Particulate organic matter Review Review Article soil soil carbon Soil dynamics Soil organic matter Soil Science & Conservation Soils stakeholders Sustainable Development |
Title | Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review |
URI | https://link.springer.com/article/10.1007/s13593-023-00876-x https://www.ncbi.nlm.nih.gov/pubmed/36777236 https://www.proquest.com/docview/2773851740 https://www.proquest.com/docview/2775954662 https://www.proquest.com/docview/3153744838 https://hal.inrae.fr/hal-04032123 https://pubmed.ncbi.nlm.nih.gov/PMC9901420 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7R9gKHinddSrQgbrAo3pft3qyoJeJ1IlI5WWt7TSMaJ4rTir_BP-7M2k4aSpE4WHG8Y2eV2dn9xjPzLcAbROCxLsuYo74VV9LkPNbWcG2VCB2eKUfvIb98NeOJ-nimz7qisKbPdu9Dkn6m3hS7SU25ZgIP4lHjiBz3NPnuOIonIu3nXxVGnnuZPjjtptGVyvz9GVvL0c45JUPeRpq3Eyb_iJr6xej0Iex3KJKlrdofwT1XP4YH6Y9lx6ThnsDvjnmJtcnoPvvCNWxes5mjat9pM2u6Nk_LzZr59IIVdpmjCKVM4kRzzKY3Es4Z4ltG9BLLthiiYfQSly1uMB41zNYlW3iuYT6zP_HKe5aytj7mKUxOT76Nxrzbf4EXWoUrHlZF4ioXFwlFG6vhsLRo4JogWSmsipKwQBHEKBViX4dfk0INS6WcFVFZII58Brs1_vgBsEoorRB5GcQX6NGZXFehEQjspdSFzVUAYa-GrOjIyWmPjItsQ6tMqstQdZlXXfYrgLfrexYtNcc_pV-jdteCxKo9Tj9ndA3nMUkr-FUYwFGv_Kyz5SYTETH-oOc2DODVuhmtkEIrtnbzSy-jE62MEXfLSFxcIvSGZRzA83Y8rbsjTYRujjQBRFsjbau_2y319NyzgVNgUwns27t-TG66fvffcfh_4i_gvvBWQ3k8R7C7Wl66l4jGVvkA9tIP3z-dDGBnZEYDb4rXaVkv-A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgPMAeEL8X2IZBvIFH7dhOsreq2lSg29Mm7c1yHIdVrGnVdIh_g_-YO8ft1o0h8RA1jS-p1fPZ3-XuPhPyARB4rqoqZ6BvyWSqS5Yrq5myUnAPZ9Lje8ijYz08lV_P1FmkycFamBvx-88tTxVmmAk4kD2NAV58IMFTxvS9gR4sZ13Js8C4jB8M99CIBTJ_f8baInT_HFMgb-PL22mSN2KlYQk6fEIeR-xI-52yn5J7vnlGNvvf55E_wz8nvyPfEu1S0EPOhW_ptKETjzW-43bSxrZAxk3b6fiCOjsvQQQTJWF62afja2nmFFAtRVKJeVcC0VJ8dUtn13iOWmqbis4CwzCb2B9wZY_2aVcV84KcHh6cDIYs7rrAnJJ8wXjtCl_73BUYY6x7vcqCWSsEYpWwMiu4AxFAJjUgXg9fCyd7lZTeiqxygB5fko0GfnyL0FpIJQFvaUAV4MfpUtVcC4DzaaqcLWVC-FINxkVKctwZ48JckSmj6gyozgTVmV8J-bi6Z9YRcvxT-j1odyWIXNrD_sjgNZi9Uly3f_KEbC-Vb6IFt0ZkyPMD_lovIe9WzWB7GFCxjZ9eBhlVKKm1uFsmhSUlAx84zRPyqhtPq-6kOgPnJtUJydZG2lp_11ua8XngAMdwphTQt0_LMXnV9bv_jtf_J_6WPByeHI3M6MvxtzfkkQgWhJk822RjMb_0O4DHFuVuMMQ_YoosWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIg9oPGdMcAg3sBb468ke6sKVYEx8cCkvVmO47CKNa2aDu3f2H_MnZP0gzEkHqKm8SW1ej77d7m7nwl5Cwg8VUWRMtC3ZFLonKXKaqas5LGHM-nxPeTXYz06kZ9P1elaFX_Idu9Ckk1NA7I0VYuDWVEerArfhMK8Mw4HcqoxQJF3wFMJgdqBHnRzsYyTwMOMHwx31mjLZv7-jI2l6fYZJkZeR53Xkyf_iKCGhWm4Q-63iJL2myHwgNzy1UOy3f8xb1k1_CNy1bIw0SYxPWRi-JpOKzrxWPk7rid12xYoumk9HZ9TZ-c5iGD6JEw6h3S8lnxOAetSpJqYN4URNcUXunS2xn5UU1sVdBZ4h9nE_oQr-7RPm1qZx-Rk-PH7YMTavRiYUzJesLh0mS996jKMPJa9XmHB2BXCs4JbmWSxAxHAKyXgYA9fMyd7hZTe8qRwgCmfkK0KfvwZoSWXSgIK04A1wLvTuSpjzQHkC6GczWVE4k4NxrVE5bhfxrlZUSyj6gyozgTVmcuIvFveM2toOv4p_Qa0uxREhu1R_8jgNZjTBK7mv-KI7HXKN61d14YnyP4DXlwvIq-XzWCRGGaxlZ9eBBmVKak1v1lGwEKTgGcs0og8bcbTsjtCJ-DyCB2RZGOkbfR3s6UanwVmcAxySg59e9-NyVXXb_47dv9P_BW5--3D0Bx9Ov7ynNzjwYAwvWePbC3mF_4FgLRF_jLY4W_6rTSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+controversies+on+mechanisms+controlling+soil+carbon+storage%3A+implications+for+interactions+with+practitioners+and+policy-makers.+A+review&rft.jtitle=Agronomy+for+sustainable+development&rft.au=Derrien%2C+Delphine&rft.au=Barr%C3%A9%2C+Pierre&rft.au=Basile-Doelsch%2C+Isabelle&rft.au=C%C3%A9cillon%2C+Lauric&rft.date=2023-02-01&rft.pub=Springer+Paris&rft.issn=1774-0746&rft.eissn=1773-0155&rft.volume=43&rft.issue=1&rft_id=info:doi/10.1007%2Fs13593-023-00876-x&rft.externalDocID=PMC9901420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1774-0746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1774-0746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1774-0746&client=summon |