Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review

There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topi...

Full description

Saved in:
Bibliographic Details
Published inAgronomy for sustainable development Vol. 43; no. 1; p. 21
Main Authors Derrien, Delphine, Barré, Pierre, Basile-Doelsch, Isabelle, Cécillon, Lauric, Chabbi, Abad, Crème, Alexandra, Fontaine, Sébastien, Henneron, Ludovic, Janot, Noémie, Lashermes, Gwenaëlle, Quénéa, Katell, Rees, Frédéric, Dignac, Marie-France
Format Journal Article
LanguageEnglish
Published Paris Springer Paris 01.02.2023
Springer Nature B.V
Springer Verlag/EDP Sciences/INRA
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.
AbstractList There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.
There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.
ArticleNumber 21
Author Chabbi, Abad
Basile-Doelsch, Isabelle
Crème, Alexandra
Cécillon, Lauric
Fontaine, Sébastien
Rees, Frédéric
Lashermes, Gwenaëlle
Dignac, Marie-France
Quénéa, Katell
Derrien, Delphine
Henneron, Ludovic
Barré, Pierre
Janot, Noémie
Author_xml – sequence: 1
  givenname: Delphine
  orcidid: 0000-0002-6482-2316
  surname: Derrien
  fullname: Derrien, Delphine
  email: delphine.derrien@inrae.fr
  organization: INRAE, BEF
– sequence: 2
  givenname: Pierre
  orcidid: 0000-0002-0822-0556
  surname: Barré
  fullname: Barré, Pierre
  organization: Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL
– sequence: 3
  givenname: Isabelle
  orcidid: 0000-0002-0587-8141
  surname: Basile-Doelsch
  fullname: Basile-Doelsch, Isabelle
  organization: Aix Marseille University
– sequence: 4
  givenname: Lauric
  surname: Cécillon
  fullname: Cécillon, Lauric
  organization: Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL University, IPSL
– sequence: 5
  givenname: Abad
  surname: Chabbi
  fullname: Chabbi, Abad
  organization: UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay
– sequence: 6
  givenname: Alexandra
  surname: Crème
  fullname: Crème, Alexandra
  organization: UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay
– sequence: 7
  givenname: Sébastien
  orcidid: 0000-0003-1404-0700
  surname: Fontaine
  fullname: Fontaine, Sébastien
  organization: Université Clermont Auvergne, INRAE, VetAgro Sup
– sequence: 8
  givenname: Ludovic
  surname: Henneron
  fullname: Henneron, Ludovic
  organization: USC ECODIV-Rouen 7603, Normandie Université, UNIROUEN, INRAE
– sequence: 9
  givenname: Noémie
  orcidid: 0000-0001-9287-2532
  surname: Janot
  fullname: Janot, Noémie
  organization: ISPA, Bordeaux Sciences Agro, INRAE
– sequence: 10
  givenname: Gwenaëlle
  surname: Lashermes
  fullname: Lashermes, Gwenaëlle
  organization: Université de Reims Champagne Ardenne, INRAE, FARE
– sequence: 11
  givenname: Katell
  surname: Quénéa
  fullname: Quénéa, Katell
  organization: Sorbonne Université, CNRS, EPHE, PSL, UMR METIS
– sequence: 12
  givenname: Frédéric
  orcidid: 0000-0002-4827-4452
  surname: Rees
  fullname: Rees, Frédéric
  organization: UMR EcoSys, INRAE, AgroParisTech, Université Paris-Saclay
– sequence: 13
  givenname: Marie-France
  orcidid: 0000-0002-0231-5597
  surname: Dignac
  fullname: Dignac, Marie-France
  organization: INRAE, CNRS, Sorbonne Université
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36777236$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-04032123$$DView record in HAL
BookMark eNqFkk1v1DAQhiNURD_gD3BAlrjAIcWfccKh0moFFGklLnC2vM5k1yWxg51s25_BP8bZLAX2UA5WPOPnnZmM3vPsxHkHWfaS4EuCsXwXCRMVyzFNB5eyyO-eZGdEyhQSIU72d55jyYvT7DzGG4z5lHmWnbJCSklZcZb9XI4hgBuQ8W4IfgchWojIO9SB2WpnYxcPb21r3QZFb1tkdFgnJA4-6A28R7brW2v0YL2LqPEBWTdA0GZO3Nphi_p9OCVSC6RdjXqfNPd5p7-nzCVaoAA7C7fPs6eNbiO8OHwvsm8fP3xdXuerL58-Lxer3AhOhpw0poIGSlMxQUiDca2pkEIQLGqquayISQiWpCnJGlJYGY5rzkFTWRvB2EV2Ndftx3UHtUlLCLpVfbCdDvfKa6v-fXF2qzZ-p6oKE05xKvB2LrA9kl0vVmrKYY4ZJZTtSGLfHJoF_2OEOKjORgNtqx34MSpGBJOcl6z8L0qlFJXgRUET-voIvfFjcGlrE8VKQSSf5nz1948-jPrbBAmgM2CCjzFA84AQrCanqdlpKjlN7Z2m7pKoPBIZO-wdkJZl28elbJbG1MdtIPwZ-xHVL-gX618
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_117101
crossref_primary_10_3390_plants13091231
crossref_primary_10_1016_j_envdev_2023_100941
crossref_primary_10_1016_j_scitotenv_2024_176732
crossref_primary_10_5194_soil_11_149_2025
crossref_primary_10_1016_j_jenvman_2024_122367
crossref_primary_10_1016_j_plaphy_2024_109230
crossref_primary_10_1016_j_orggeochem_2024_104848
crossref_primary_10_1016_j_agee_2024_109167
crossref_primary_10_19047_0136_1694_2024_118_79_127
crossref_primary_10_3390_agronomy14092068
crossref_primary_10_1038_s41467_023_38700_5
crossref_primary_10_1093_nsr_nwae059
crossref_primary_10_47115_bsagriculture_1565025
crossref_primary_10_3389_fsufs_2023_1188133
crossref_primary_10_1016_j_scitotenv_2025_178763
crossref_primary_10_5194_bg_21_1037_2024
crossref_primary_10_1016_j_geoderma_2024_116846
crossref_primary_10_1016_j_geoderma_2024_116944
crossref_primary_10_1371_journal_pbio_3002190
crossref_primary_10_1016_j_geoderma_2023_116717
crossref_primary_10_1111_ejss_13536
Cites_doi 10.1007/s11104-020-04651-9
10.1016/j.scitotenv.2018.02.209
10.3389/fmicb.2018.02986
10.2134/jeq2019.01.0036
10.1126/science.1221748
10.1007/s10311-013-0433-3
10.1071/EN10006
10.1038/s42003-019-0684-z
10.1016/S0146-6380(01)00166-8
10.3389/fmicb.2016.01315
10.1038/s41467-017-00407-9
10.2136/sssaj1999.6351350x
10.1038/s41586-018-0328-3
10.1111/gcb.15342
10.1007/s11104-004-0907-y
10.1016/j.soilbio.2018.04.026
10.1038/s41467-018-03406-6
10.1038/ngeo2520
10.1080/17583004.2014.923226
10.1007/s11104-010-0391-5
10.3389/fenvs.2017.00041
10.1007/s10533-022-00942-8
10.1186/s13021-018-0113-5
10.1038/s41467-021-24192-8
10.1016/j.geoderma.2020.114785
10.1038/nature06275
10.1111/ejss.13141
10.1146/annurev.mi.03.100149.002103
10.1046/j.1461-0248.2001.00210.x
10.1007/s10533-017-0373-2
10.1016/j.geoderma2017.01.002
10.1016/j.gca.2011.01.020
10.1016/j.soilbio.2013.06.016
10.1111/j.1365-2389.1997.tb00549.x
10.1111/1365-2745.12200
10.13140/RG.2.2.35757.82405
10.1016/j.soilbio.2019.03.027
10.1038/s41561-020-0634-x
10.2134/jeq2019.02.0002c
10.1016/j.envsoft.2019.04.004
10.1016/j.tim.2015.10.004
10.1016/j.orggeochem.2011.05.002
10.1016/j.soilbio.2018.02.016
10.2136/sssaj2011.0328
10.1038/ncomms13630
10.3334/ORNLDAAC/1827
10.1111/1365-2435.14038
10.1016/j.ecolmodel.2005.08.045
10.1111/gcb.14069
10.3389/feart.2018.00143
10.1016/j.soilbio.2014.08.005
10.1016/S0038-0717(01)00158-4
10.1002/eap.2290
10.1007/s10533-016-0246-0
10.1038/nature10386
10.1016/S0038-0717(00)00179-6
10.1111/j.1365-2389.2006.00811.x
10.1016/j.soilbio.2015.09.005
10.1111/gcb.15550
10.1016/j.soilbio.2015.06.014
10.1016/j.scitotenv.2021.148569
10.5194/bg-2017-395
10.1038/s41561-019-0484-6
10.1016/j.soilbio.2013.01.011
10.3390/e22030277
10.1038/s41467-020-18887-7
10.1007/s10533-018-0475-5
10.1111/j.1365-2389.2000.00348.x
10.1186/s13068-017-0865-2
10.5194/bg-18-1241-2021
10.1016/j.eja.2021.126248
10.1890/14-0777.1
10.1016/j.geoderma.2012.08.003
10.1038/s41467-018-04526-9
10.1126/science.1231923
10.1016/j.agee.2014.02.014
10.1126/science.aax4737
10.1111/1462-2920.15159
10.1017/S0033822200058215
10.1016/j.soilbio.2021.108189
10.1007/s10533-011-9658-z
10.1111/ele.12802
10.3389/fenvs.2020.579904
10.1007/s10533-016-0291-8
10.21203/rs.3.rs-388050/v1
10.2134/jeq2019.02.0041
10.2136/sssaj2004.0347
10.1016/J.EJSOBI.2003.08.002
10.1016/j.scitotenv.2021.146732
10.1007/978-3-642-61094-3_17
10.1071/SR20257
10.1111/gcb.12493
10.1038/s41467-017-01123-0
10.4141/S04-003
10.1038/s41586-019-1280-6
10.1098/rstb.2013.0164
10.1016/S0146-6380(00)00049-8
10.1038/nclimate3286
10.1016/j.geoderma.2018.10.018
10.1038/srep15991
10.1007/s11191-019-00048-y
10.1016/j.still.2018.04.011
10.1093/femsre/fux049
10.5194/bg-18-1703-2021
10.1016/j.orggeochem.2020.104016
10.1016/j.soilbio.2016.11.008
10.1146/annurev.earth.36.031207.124300
10.1038/nature16069
10.1016/j.soilbio.2012.05.011
10.1016/j.soilbio.2016.05.019
10.1016/j.soilbio.2018.06.025
10.1016/j.geoderma.2016.06.027
10.1016/j.soilbio.2005.10.008
10.1007/s13593-015-0284-3
10.1016/j.scitotenv.2016.10.073
10.1016/j.orggeochem.2013.04.011
10.1007/s13593-017-0421-2
10.1007/s10533-018-0509-z
10.1016/j.soilbio.2019.107689
10.1016/j.soilbio.2011.01.024
10.1016/j.tim.2009.05.004
10.1016/j.geoderma.2019.02.008
10.1038/ismej.2012.11
10.1038/s41561-019-0373-z
10.1126/sciadv.aay6792
10.1038/ngeo2940
10.1007/s00374-013-0822-6
10.1111/gcb.15365
10.1016/j.earscirev.2021.103525
10.1016/j.agsy.2012.07.001
10.3390/su12114351
10.1002/jpln.200700048
10.1007/s13593-019-0599-6
10.1016/j.soilbio.2020.108068
10.1023/A:1004213929699
10.1111/1462-2920.13990
10.1016/s0038-0717(99)00105-4
10.3389/fenvs.2020.514701
10.1038/s41467-020-18795-w
10.1016/j.orggeochem.2017.06.012
10.1038/s41561-021-00744-x
10.1016/j.soilbio.2007.07.021
10.1021/acs.est.7b01427
10.1111/gcb.15441
10.1016/j.micres.2021.126832
10.3389/fmicb.2012.00348
10.1016/j.still.2017.12.002
10.1007/s11284-012-1022-9
10.1016/j.geoderma.2004.12.022
10.1890/10-1307.1
10.1371/journal.pone.0108769
10.1016/j.ecolmodel.2004.01.011
10.1038/s41467-022-34951-w
10.1016/S0065-2113(10)06003-7
10.1111/j.1365-2389.1996.tb01848.x
10.5194/bg-17-5223-2020
10.1890/06-1847.1
10.3390/soilsystems3010011
10.1016/j.scitotenv.2018.10.236
10.1111/gcb.14009
10.1016/S0065-2113(04)92003-2
10.5194/gmd-14-3879-2021
10.1038/s41467-017-01116-z
10.1080/10934529.2018.1459076
10.1016/S0065-2113(08)00606-8
10.1073/pnas.1706103114
10.1038/ngeo155
10.3389/fsoil.2022.831775
10.1111/j.1469-8137.2012.04225.x
10.5194/bg-8-1911-2011
10.1016/j.soilbio.2015.11.007
10.1016/S0016-7061(96)00036-5
10.1016/S0165-2370(96)00954-0
10.1016/j.soilbio.2006.09.030
10.1016/j.foreco.2019.117844
10.1111/gcb.14859
10.1146/annurev-earth-060614-105038
10.1038/NCLIMATE1692
10.1002/ecy.3328
10.1016/j.still.2015.04.007
10.1111/ejss.12909
10.1016/j.ecolind.2019.05.035
10.1016/j.geoderma.2018.10.009
10.1016/j.geoderma.2004.12.024
10.1016/j.soilbio.2016.04.001
10.1111/j.1365-2486.2010.02278.x
10.1007/s10533-015-0180-6
10.1016/j.indcrop.2020.112122
10.4141/S04-081
10.1038/nmicrobiol.2017.105
10.1007/978-94-017-5279-4
10.5194/essd-12-61-2020
10.1111/j.1365-2389.2008.01110.x
10.1038/nature13855
10.1038/ngeo844
10.1029/2011JG001790
10.1111/j.1365-2389.2008.01111.x
10.1007/s10533-017-0410-1
10.1016/j.soilbio.2014.09.023
10.1016/B978-0-12-811050-8.00003-0/B978-0-12-811050-8.00003-0
10.1111/j.1365-2486.2012.02665.x
10.1038/s41561-020-0612-3
10.4324/9780203762264-17
10.1016/j.scitotenv.2021.150883
10.1111/gcb.14781
10.1038/nclimate3071
10.1038/s43017-021-00162-y
10.1007/s10533-016-0217-5
10.1016/j.geoderma.2004.04.009
10.1016/j.agee.2016.12.011
10.1038/nclimate2580
10.1029/2019GB006387
10.1016/j.gloenvcha.2010.11.007
10.1016/j.soilbio.2007.03.007
10.1007/s11104-005-4628-7
10.1038/s41467-021-21079-6
10.1111/gcb.13979
10.1007/s10533-018-0478-2
10.1038/s41467-022-31540-9
10.1016/j.scitotenv.2021.151051
10.1080/10643389.2020.1838214
10.1641/B580807
10.1007/978-90-481-9479-7_3
10.1111/gcb.13887
10.1016/bs.agron.2014.10.005
10.1007/s10705-020-10065-x
10.1007/s10021-004-0259-8
10.3389/fenvs.2019.00055
10.1111/j.1461-0248.2012.01807.x
10.1038/ncomms7707
10.1007/s00374-017-1191-3
10.1007/s10533-013-9856-y
10.1002/jpln.200700049
10.1021/es050778q
10.1080/10643380802000974
10.1016/j.soilbio.2007.09.008
10.5194/bg-17-4961-2020
10.1111/j.1365-2389.2010.01333.x
10.1016/j.geoderma.2021.115262
10.1016/j.apsoil.2020.103655
10.1016/j.soilbio.2010.09.017
10.1073/pnas.1608454113
10.3389/fmicb.2019.01146
10.1016/j.envsci.2009.12.005
10.1002/9781119438274.ch5
10.1016/j.scitotenv.2018.06.322
10.1016/j.geoderma.2009.12.028
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
VOOES
5PM
DOI 10.1007/s13593-023-00876-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
AGRICOLA



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Forestry
Environmental Sciences
EISSN 1773-0155
EndPage 21
ExternalDocumentID PMC9901420
oai_HAL_hal_04032123v1
36777236
10_1007_s13593_023_00876_x
Genre Journal Article
Review
GroupedDBID -EM
06D
0R~
0VY
203
23M
29~
2KG
2KM
2LR
2VQ
30V
4.4
406
408
4P2
5GY
67N
6J9
8UJ
96X
AAAVM
AABCJ
AACDK
AAFNC
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAOTM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUBZ
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
PT4
R9I
RED
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7U
Z7V
Z7W
Z81
Z83
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
ABRTQ
7X8
7S9
L.6
1XC
VOOES
5PM
ID FETCH-LOGICAL-c541t-1fc9efe8c93511f00da25755105d2a4791c1fc071f81be7919c40d44ea27dc533
IEDL.DBID U2A
ISSN 1774-0746
IngestDate Thu Aug 21 18:38:42 EDT 2025
Wed Aug 13 07:42:03 EDT 2025
Mon Jul 21 10:38:16 EDT 2025
Fri Jul 11 03:56:48 EDT 2025
Wed Aug 13 05:00:18 EDT 2025
Wed Feb 19 02:25:10 EST 2025
Thu Apr 24 23:13:14 EDT 2025
Tue Jul 01 02:36:39 EDT 2025
Fri Feb 21 02:44:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Inaccessibility
Biomass use
Carbon storage
Chemical recalcitrance
Models
Big data
Management practices
POM
InaccessibilityModels
Language English
License The Author(s) 2023.
Attribution: http://creativecommons.org/licenses/by
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-1fc9efe8c93511f00da25755105d2a4791c1fc071f81be7919c40d44ea27dc533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0822-0556
0000-0002-0231-5597
0000-0003-1404-0700
0000-0002-4827-4452
0000-0002-6482-2316
0000-0001-9287-2532
0000-0002-0587-8141
0000-0002-1416-7712
0000-0002-8269-3562
OpenAccessLink https://link.springer.com/10.1007/s13593-023-00876-x
PMID 36777236
PQID 2773851740
PQPubID 2044462
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9901420
hal_primary_oai_HAL_hal_04032123v1
proquest_miscellaneous_3153744838
proquest_miscellaneous_2775954662
proquest_journals_2773851740
pubmed_primary_36777236
crossref_primary_10_1007_s13593_023_00876_x
crossref_citationtrail_10_1007_s13593_023_00876_x
springer_journals_10_1007_s13593_023_00876_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
– name: France
– name: Heidelberg
PublicationSubtitle A journal of the French National Institute for Agriculture, Food and Environment (INRAE)
PublicationTitle Agronomy for sustainable development
PublicationTitleAbbrev Agron. Sustain. Dev
PublicationTitleAlternate Agron Sustain Dev
PublicationYear 2023
Publisher Springer Paris
Springer Nature B.V
Springer Verlag/EDP Sciences/INRA
Publisher_xml – name: Springer Paris
– name: Springer Nature B.V
– name: Springer Verlag/EDP Sciences/INRA
References UrozSKellyLCTurpaulMPLepleuxCFrey-KlettPThe mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communitiesTrends Microbiol2015237517621:CAS:528:DC%2BC2MXhslWrs7fI10.1016/j.tim.2015.10.00426549581
LeifeldJFuhrerJLong-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon datingEur J Soil Sci2009602302391:CAS:528:DC%2BD1MXkvVWntbk%3D10.1111/j.1365-2389.2008.01111.x
KleberMJohnsonMGAdvances in understanding the molecular structure of soil organic matter: implications for interactions in the environmentAdv Agron2010106771421:CAS:528:DC%2BC3cXovV2nsLo%3D10.1016/S0065-2113(10)06003-7
HopkinsDWDungaitJAJTilstonELSoil microbiology and nutrient cyclingDixon, G. R.2010DordrechtSoil microbiology and sustainable crop production Springer598010.1007/978-90-481-9479-7_3
AngersDARecousSAitaCFate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situEur J Soil Sci19974829530010.1111/j.1365-2389.1997.tb00549.x
FrancavigliaRColemanKWhitmoreAPDoroLUrracciGRubinoMLeddaLChanges in soil organic carbon and climate change–Application of the RothC model in agro-silvo-pastoral Mediterranean systemsAgric Syst2012112485410.1016/j.agsy.2012.07.001
AminBAZChabbertBMoorheadDBertrandIImpact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soilBiogeochemistry20141171691831:CAS:528:DC%2BC2cXotlagsw%3D%3D10.1007/s10533-013-9856-y
HagemannNJosephSSchmidtHPKammannCIHarterJBorchTYoungRBVargaKTaherymoosaviSElliottKWMcKennaAOrganic coating on biochar explains its nutrient retention and stimulation of soil fertilityNat Commun2017810891:CAS:528:DC%2BC1cXovFynsrY%3D10.1038/s41467-017-01123-0290578755715018
LehmannJKleberMThe contentious nature of soil organic matterNature201552860681:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature1606926595271
DerrienDAmelungWComputing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model frameworkEur J Soil Sci20116223725210.1111/j.1365-2389.2010.01333.x
Sainte-MarieJBarrandonMSaint-AndréLGelhayeEMartinFDerrienDC-STABILITY an innovative modeling framework to leverage the continuous representation of organic matterNat Commun2021121131:CAS:528:DC%2BB3MXjvFGqs7w%3D10.1038/s41467-021-21079-6
ZhangJPresleyGNHammelKERyuJSMenkeJRFigueroaMHuDOrrGSchillingJSLocalizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placentaP Natl Acad Sci USA201611310968109731:CAS:528:DC%2BC28XhsV2kurrJ10.1073/pnas.1608454113
BousquetFLe PageCMulti-agent simulations and ecosystem management: a reviewEcol Model20041763-431333210.1016/j.ecolmodel.2004.01.011
BudgeKLeifeldJHiltbrunnerEFuhrerJAlpine grassland soils contain large proportion of labile carbon but indicate long turnover timesBiogeosciences20118191119231:CAS:528:DC%2BC3MXhtlansLzM10.5194/bg-8-1911-2011
GoodellBZhuYKimSKafleKEastwoodDDanielGJellisonJYoshidaMGroomLPingaliSVO’NeillHModification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungiBiotechnol Biofuels2017101791:CAS:528:DC%2BC1cXitVOrs7bO10.1186/s13068-017-0865-2287020845504834
Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Interactions Between Soil Particles and Microorganisms—Impact on the Terrestrial Ecosystems. John Wiley and Sons, Chichester, pp 3–40
Basile-DoelschIBalesdentJPellerinSReviews and syntheses: The mechanisms underlying carbon storage in soilBiogeosciences202017522352421:CAS:528:DC%2BB3MXisVegu74%3D10.5194/bg-17-5223-2020
VestergaardGSchulzSSchölerASchloterMMaking big data smart—how to use metagenomics to understand soil qualityBiol Fertil Soils20175347948410.1007/s00374-017-1191-3
BertrandIChabbertBKurekBRecousSCan the biochemical features and histology of wheat residues explain their decomposition in soil?Plant Soil20062812913071:CAS:528:DC%2BD28Xktlyhtrg%3D10.1007/s11104-005-4628-7
PlanteAFernándezJMHaddixMLSteinwegJMConantRTBiological, chemical and thermal indices of soil organic matter stability in four grassland soilsSoil Biol Biochem2011435105110581:CAS:528:DC%2BC3MXjsFCmtLc%3D10.1016/j.soilbio.2011.01.024
Panettieri M, Rumpel C, Dignac MF, Chabbi A (2017) Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions? Sci Total Environ 576:251–263. https://doi.org/10.1016/j.scitotenv.2016.10.073
WanderMMSoil organic matter fractions and their relevance to soil functionSoil organic matter in sustainable agriculture2004Boca Raton, FLCRC Press67102
Chassé M, Luftalla S, Cécillon L, Baudin F, Abiven S, Chenu C, Barré P (2021) Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics. Biogeosciences 18:1703–1718. https://doi.org/10.5194/bg-18-1703-2021
BalesdentJThe significance of organic separates to carbon dynamics and its modelling in some cultivated soilsEur J Soil Sci1996474854931:CAS:528:DyaK2sXhtFGjsbs%3D10.1111/j.1365-2389.1996.tb01848.x
GeorgiouKAbramoffRZHarteJRileyWJTornMSMicrobial community-level regulation explains soil carbon responses to long-term litter manipulationsNat Commun2017811101:CAS:528:DC%2BC1cXptV2qs74%3D10.1038/s41467-017-01116-z
HenneronLBalesdentJAlvarezGBarréPBaudinFBasile-DoelschICécillonLFernandez-MartinezAHattéCFontaineSBioenergetic control of soil carbon dynamics across depthNat Commun20221311141:CAS:528:DC%2BB38XjtFarsLjN10.1038/s41467-022-34951-w
PuissantJMillsRTERobroekBJMGavazovKPerretteYDe DanieliSSpiegelbergerTButtlerABrunJJCécillonLClimate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grasslandBiogeochemistry2017131231391:CAS:528:DC%2BC2sXhtVKkt74%3D10.1007/s10533-016-0291-8
BillingsSALajthaKMalhotraABerheAAde GraaffMAEarlSFraterrigoJGeorgiouKGrandySHobbieSEMooreJAMNadelhofferKPiersonDRasmussenCSilverWLSulmanBNWeintraubSWiederWSoil organic carbon is not just for soil scientists: measurement recommendations for diverse practitionersEcol Appl202131e022901:STN:280:DC%2BB3svotlertQ%3D%3D10.1002/eap.229033426701
SixJElliottEPaustianKAggregate and soil organic matter dynamics under conventional and no-tillage systemsSoil Sci Soc Am J199963135013581:CAS:528:DyaK1MXns12lsb0%3D10.2136/sssaj1999.6351350x
SchrumpfMKaiserKMayerAHempelGTrumboreSAge distribution, extractability, and stability of mineral-bound organic carbon in central European soilsBiogeosciences202118124112571:CAS:528:DC%2BB3MXhvFCisr%2FL10.5194/bg-18-1241-2021
VidalAWatteauFRemusatLMuellerCWNguyen TuTTBueggerFDerenneSQueneaKEarthworm cast formation and development: a shift from plant litter to mineral associated organic matterFront Environ Sci201975510.3389/fenvs.2019.00055
NaisseCAlexisMPlanteAWiednerKGlaserBPozziACarcailletCCriscuoliIRumpelCCan biochar and hydrochar stability be assessed with chemical methods?Org Geochem20136040441:CAS:528:DC%2BC3sXpvFCisL0%3D10.1016/j.orggeochem.2013.04.011
SchneiderTKeiblingerKSchmidESterflinger-GleixnerKEllersdorferGRoschitzkiBRichterAEberlLZechmeister-BoltensternSRiedelKWho is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functionsISME J20126174917621:CAS:528:DC%2BC38Xht1Gjtb%2FJ10.1038/ismej.2012.11224024003498922
BernardLBasile-DoelschIDerrienDFaninNFontaineSGuenetBKarimiBMarsdenCMaronP-AAdvancing the mechanistic understanding of the priming effect on soil organic matter mineralisationFunct Ecol202236135513771:CAS:528:DC%2BB38XhvV2ltb%2FO10.1111/1365-2435.14038
SixJElliottETPaustianKSoil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agricultureSoil Biol Biochem200032209921031:CAS:528:DC%2BD3MXpvFWg10.1016/S0038-0717(00)00179-6
Zechmeister-BoltensternSKeiblingerKMMooshammerMPenuelasJRichterASardansJWanekWThe application of ecological stoichiometry to plant-microbial-soil organic matter transformationsEcol Monogr20158513315510.1890/14-0777.1
Kögel-KnabnerIGuggenbergerGKleberMKandelerEKalbitzKScheuSEusterhuesKLeinweberPOrgano-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistryJ Plant Nutr Soil Sci2008171161821:CAS:528:DC%2BD1cXisFyhur4%3D10.1002/jpln.200700048
PengerudADignacMFCertiniGStrandLTForteCRasseDPSoil organic matter molecular composition and state of decomposition in three locations of the European ArcticBiogeochemistry20171352772921:CAS:528:DC%2BC2sXhsVyitrjK10.1007/s10533-017-0373-2
Pellerin S, Bamiere L, Dimassi B, Launay C, Martin R, Schiavo M, Angers D, Augusto L, Balesdent J, Basile-Doelsch I, Bellassen V (2019) Storing carbon in French soils. Which potential regarding the 4 per 1000 objective, and to which cost? Synthesis of the study report, July 2019. https://www.inrae.fr/sites/default/files/pdf/etude-4-pour-1000-resume-en-francais-pdf-1_0.pdf
CraineJMMorrowCFiererNMicrobial nitrogen limitation increases decompositionEcology2007882105211310.1890/06-1847.117824441
SchmidtMWITornMSAbivenSDittmarTGuggenbergerGJanssensIAKleberMKögel-KnabnerILehmannJManningDACNannipieriPRasseDPWeinerSTrumboreSEPersistence of soil organic matter as an ecosystem propertyNature201147849561:CAS:528:DC%2BC3MXht1yltrnF10.1038/nature1038621979045
Sposito G (2008) The chemistry of soils. Oxford University Press, New York
DangalSRSandermanJWillsSRamirez-LopezLAccurate and precise prediction of soil properties from a large mid-infrared spectral librarySoil Syst201931111:CAS:528:DC%2BC1MXhs1OntrvE10.3390/soilsystems3010011
DaufresneTLoreauMPlant–herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation?Ecol Lett2001419620610.1046/j.1461-0248.2001.00210.x
LubbersIMPullemanMMVan GroenigenJWCan earthworms simultaneously enhance decomposition and stabilization of plant residue carbon
P Barré (876_CR20) 2018; 140
J Monod (876_CR174) 1949; 3
MM Wander (876_CR248) 2004
J Puissant (876_CR195) 2017; 13
JF Soussana (876_CR225) 2019; 188
JM Craine (876_CR53) 2007; 88
MF Cotrufo (876_CR51) 2019; 12
M Keiluweit (876_CR117) 2015; 5
HH Janzen (876_CR110) 2005; 85
V Paolini (876_CR183) 2018; 53
L Bleuze (876_CR32) 2020; 145
K Budge (876_CR38) 2011; 8
WR Wieder (876_CR252) 2018; 24
M Kleber (876_CR122) 2021; 2
PW Hill (876_CR102) 2008; 40
RA Viscarra Rossel (876_CR245) 2019; 12
F Hagedorn (876_CR92) 2019; 365
P Sollins (876_CR223) 1996; 74
B Goodell (876_CR88) 2017; 10
DL Moorhead (876_CR176) 2013; 66
M Keiluweit (876_CR118) 2016; 127
JAJ Dungait (876_CR66) 2012; 18
I Bertrand (876_CR26) 2006; 281
D Derrien (876_CR58) 2011; 62
C Naisse (876_CR178) 2013; 60
KS Rocci (876_CR202) 2021; 793
S Trumbore (876_CR236) 2009; 37
I Kögel-Knabner (876_CR131) 2008; 171
T Wang (876_CR250) 2017; 19
876_CR185
NP Saadat (876_CR206) 2020; 22
MF Dignac (876_CR60) 2005; 128
876_CR182
I Kögel-Knabner (876_CR130) 2021; 384
RD Bardgett (876_CR16) 2014; 515
S Zechmeister-Boltenstern (876_CR256) 2015; 85
R Alvarez (876_CR4) 2021; 59
G Gleixner (876_CR86) 2013; 28
J Six (876_CR221) 2000; 32
O Traore (876_CR235) 2000; 51
A Miltner (876_CR170) 2012; 111
HR Schulten (876_CR216) 1996; 38
D Derrien (876_CR59) 2006; 57
LC Hicks (876_CR101) 2021; 102
J Balesdent (876_CR14) 1996; 47
C Liang (876_CR159) 2017; 2
N Hagemann (876_CR93) 2017; 8
F Levavasseur (876_CR157) 2020; 117
J Six (876_CR220) 1999; 63
BN Sulman (876_CR229) 2018; 141
N Fanin (876_CR73) 2016; 129
H Clivot (876_CR49) 2019; 118
SA Billings (876_CR28) 2021; 31
MA Bradford (876_CR37) 2016; 6
I Basile-Doelsch (876_CR21) 2020; 17
F Bousquet (876_CR35) 2004; 176
G Vestergaard (876_CR242) 2017; 53
K Möller (876_CR173) 2015; 35
MWI Schmidt (876_CR213) 2011; 478
PC Baveye (876_CR22) 2020; 8
876_CR164
SJ Hall (876_CR94) 2020; 13
DA Angers (876_CR8) 1997; 48
876_CR169
M Kleber (876_CR123) 2015; 130
B Guenet (876_CR89) 2018; 201824
L Dunlop (876_CR67) 2019; 28
876_CR161
S Manzoni (876_CR166) 2012; 196
L Paetsch (876_CR181) 2017; 112
876_CR160
EAG Schuur (876_CR217) 2008; 58
AN Kravchenko (876_CR134) 2017; 287
CR Lawrence (876_CR144) 2020; 12
S Uroz (876_CR237) 2009; 17
DC Olk (876_CR180) 2019; 48
M von Lützow (876_CR246) 2007; 39
N Perveen (876_CR188) 2019; 134
S Chen (876_CR45) 2018; 630
VL Bailey (876_CR12) 2020; 14
876_CR138
876_CR137
C Poeplau (876_CR192) 2013; 192
L Soucémarianadin (876_CR224) 2019; 342
Z Shi (876_CR219) 2018; 9
B Berg (876_CR23) 2014; 78
M Hemkemeyer (876_CR98) 2021; 252
I Bertrand (876_CR27) 2019; 39
S Uroz (876_CR238) 2015; 23
I Virto (876_CR244) 2010; 156
876_CR142
JC Blankinship (876_CR31) 2018; 140
876_CR147
F Rees (876_CR199) 2019; 337
876_CR141
M Sauvadet (876_CR210) 2018; 123
M Pinheiro (876_CR189) 2015; 88
W Amelung (876_CR6) 2008
DL Moorhead (876_CR175) 2012; 53
D Floudas (876_CR77) 2012; 336
T Shahzad (876_CR218) 2015; 80
S Fontaine (876_CR78) 2007; 450
876_CR139
AA Malik (876_CR165) 2016; 100
J Jian (876_CR112) 2021
M Kleber (876_CR125) 2019; 48
SCB Myneni (876_CR177) 2019; 48
876_CR232
FJ Stevenson (876_CR227) 1994
L Drinkwater (876_CR64) 2007; 92
876_CR18
R Cardinael (876_CR40) 2017; 236
876_CR11
J Jouan (876_CR113) 2020; 12
HH Janzen (876_CR111) 2006; 38
A Plante (876_CR190) 2011; 43
J Lehmann (876_CR149) 2015; 528
KA Dynarski (876_CR69) 2020; 8
K Witzgall (876_CR254) 2021; 12
876_CR109
AE Richardson (876_CR200) 2014; 5
A Erktan (876_CR71) 2020; 17
N Fanin (876_CR72) 2016; 94
M Lange (876_CR135) 2015; 6
R Farina (876_CR74) 2021; 27
J Leifeld (876_CR152) 2005; 124
876_CR241
EK Williams (876_CR253) 2018; 6
B Minasny (876_CR171) 2017; 292
D Fowler (876_CR80) 2013; 368
876_CR240
J Balesdent (876_CR15) 2018; 559
F Tivet (876_CR233) 2012; 76
J Leifeld (876_CR151) 2009; 60
M de Nobili (876_CR57) 2020; 154
EA Paul (876_CR184) 2016; 98
S Barot (876_CR17) 2014; 102
876_CR34
A Chabbi (876_CR43) 2017; 7
876_CR211
JD Hemingway (876_CR97) 2019; 570
876_CR36
L Kohl (876_CR132) 2018; 24
K Georgiou (876_CR85) 2022; 13
J Leifeld (876_CR153) 2018; 98
A Favero (876_CR75) 2020; 6
876_CR212
CJ Newcomb (876_CR179) 2017; 8
K Georgiou (876_CR84) 2017; 8
C Poeplau (876_CR193) 2018; 125
J Lejoly (876_CR155) 2021; 404
C Liang (876_CR158) 2019; 25
DP Rasse (876_CR197) 2005; 269
J Lehmann (876_CR150) 2008; 1
DW Hopkins (876_CR105) 2010
C Wang (876_CR249) 2021; 27
MC Rillig (876_CR201) 2004; 84
BAZ Amin (876_CR7) 2014; 117
PM Kopittke (876_CR133) 2018; 24
MI Bird (876_CR29) 2015; 43
876_CR3
876_CR24
N Perveen (876_CR187) 2014; 20
S Keyvanshokouhi (876_CR119) 2019; 652
876_CR226
AC Wadoux (876_CR247) 2020; 71
876_CR104
876_CR1
T Klotzbücher (876_CR128) 2011; 92
P Barré (876_CR19) 2016; 130
G Le Mer (876_CR145) 2020; 144
MF Cotrufo (876_CR52) 2015; 8
A Bispo (876_CR30) 2017; 5
I Kögel-Knabner (876_CR129) 2002; 34
W Amelung (876_CR5) 2020; 11
J Lehmann (876_CR148) 2020; 13
E Hoffland (876_CR103) 2020; 455
MC Rowley (876_CR204) 2018; 137
DE LaRowe (876_CR136) 2011; 75
G Lemaire (876_CR156) 2021; 125
J Hassink (876_CR95) 1997; 191
SR Dangal (876_CR54) 2019; 3
MG Margida (876_CR167) 2020; 141
T Davies-Barnard (876_CR56) 2020; 34
P Rovira (876_CR203) 2008; 40
CM Kallenbach (876_CR116) 2019; 10
M Kleber (876_CR124) 2010; 106
J Sainte-Marie (876_CR207) 2021; 12
IM Lubbers (876_CR163) 2013; 3
CM Kallenbach (876_CR115) 2015; 9
R Sathre (876_CR209) 2010; 13
T Daufresne (876_CR55) 2001; 4
876_CR47
G Lashermes (876_CR140) 2009; 60
R Francaviglia (876_CR81) 2012; 112
876_CR41
I Janssens (876_CR107) 2010; 3
E Boddy (876_CR33) 2007; 39
876_CR42
876_CR44
F Hagedorn (876_CR91) 2015; 88
S Uroz (876_CR239) 2020; 22
A Legout (876_CR146) 2020; 461
B Marschner (876_CR168) 2008; 171
JP Garcet (876_CR83) 2006; 193
B Dimassi (876_CR62) 2014; 188
KE Clemmensen (876_CR48) 2013; 339
C Rumpel (876_CR205) 2011; 338
M Schrumpf (876_CR215) 2021; 18
G Angst (876_CR9) 2019; 2
J Sanderman (876_CR208) 2017; 114
A Pengerud (876_CR186) 2017; 135
P Lavelle (876_CR143) 2001
J Leifeld (876_CR154) 2014; 50
BG Waring (876_CR251) 2020; 26
CM Kallenbach (876_CR114) 2016; 7
T Schneider (876_CR214) 2012; 6
A Don (876_CR63) 2013; 11
876_CR61
876_CR65
J Zhang (876_CR257) 2016; 113
SD Allison (876_CR2) 2012; 15
G Angst (876_CR10) 2021; 156
C Chenu (876_CR46) 2019; 188
L Bernard (876_CR25) 2022; 36
K Ekschmitt (876_CR70) 2005; 128
M Kleber (876_CR121) 2010; 7
Y Sun (876_CR230) 2015; 153
J Six (876_CR222) 2006; 70
MS Torn (876_CR234) 2005; 8
S Hénin (876_CR99) 1949; 35
S Durante (876_CR68) 2019; 104
S Hufnagl-Eichiner (876_CR106) 2011; 21
876_CR198
B Guenet (876_CR90) 2021; 27
IM Lubbers (876_CR162) 2017; 105
A Cambou (876_CR39) 2018; 644
S Miyauchi (876_CR172) 2020; 11
876_CR196
S Fontaine (876_CR79) 2011; 43
R Kleerebezem (876_CR127) 2010; 40
PJ Hatton (876_CR96) 2012; 42
G Janusz (876_CR108) 2017; 41
CA Kirkby (876_CR120) 2013; 60
876_CR82
G Gleixner (876_CR87) 2002; 33
JA Baldock (876_CR13) 2000; 31
M Kleber (876_CR126) 2011; 17
BN Sulman (876_CR228) 2017; 20
A Plante (876_CR191) 2013; 55
K Coleman (876_CR50) 1996
P Finke (876_CR76) 2019; 338
A Vidal (876_CR243) 2019; 7
R Sutton (876_CR231) 2005; 39
GH Yu (876_CR255) 2021; 214
L Henneron (876_CR100) 2022; 13
V Poirier (876_CR194) 2018; 120
References_xml – reference: GeorgiouKJacksonRBVinduškováOAbramoffRZAhlströmAFengWHardenJWPellegriniAAWayne PolleyHSoongJLRileyWJTornMSGlobal stocks and capacity of mineral-associated soil organic carbonNat Commun20221311121:CAS:528:DC%2BB38Xhslegur7F10.1038/s41467-022-31540-9
– reference: Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891. https://doi.org/10.1016/s0038-0717(99)00105-4
– reference: HemingwayJDRothmanDHGrantKERosengardSZEglintonTIDerryLAGalyVVMineral protection regulates long-term global preservation of natural organic carbonNature20195702282311:CAS:528:DC%2BC1MXhtFKgs7bF10.1038/s41586-019-1280-631190013
– reference: NaisseCAlexisMPlanteAWiednerKGlaserBPozziACarcailletCCriscuoliIRumpelCCan biochar and hydrochar stability be assessed with chemical methods?Org Geochem20136040441:CAS:528:DC%2BC3sXpvFCisL0%3D10.1016/j.orggeochem.2013.04.011
– reference: KlotzbücherTKaiserKGuggenbergerGGatzekCKalbitzKA new conceptual model for the fate of lignin in decomposing plant litterEcology2011921052e106210.1890/10-1307.1
– reference: LawrenceCRBeem-MillerJHoytAMMonroeGSierraCAStonerSHeckmanKBlankinshipJCCrowSEMcNicolGTrumboreSLevinePAVinduOTodd-BrownKRasmussenCHicks PriesCESchädelCMcFarlaneKDoetterlSHattéCHeYTreatCHardenJWTornMSEstop-AragonésCAsefaw BerheAKeiluweitMDella Rosa KuhnenAMarin-SpiottaEPlanteAFThompsonAShiZSchimelJPVaughnLJSvon FrommSFWagaiRAn open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0Earth Syst Sci Data202012617610.5194/essd-12-61-2020
– reference: Lehmann J, Abiven S, Kleber M, Pan G, Singh BP, Sohi SP, Zimmerman AR (2015) Persistence of biochar in soil. In: Biochar for environmental management. Routledge, London, pp. 267–314
– reference: FontaineSBarotSBarréPBdiouiNMaryBRumpelCStability of organic carbon in deep soil layers controlled by fresh carbon supplyNature Lett20074502772801:CAS:528:DC%2BD2sXht1yntrjJ10.1038/nature06275
– reference: ErktanARilligMCCarminatiAJoussetAScheuSProtists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer--prey systemsBiogeosciences202017496149801:CAS:528:DC%2BB3MXhsFWmurk%3D10.5194/bg-17-4961-2020
– reference: Sposito G (2008) The chemistry of soils. Oxford University Press, New York
– reference: SaadatNPNiesTRoussetYEbenhöhOThermodynamic Limits and Optimality of Microbial GrowthEntropy2020222771:CAS:528:DC%2BB3cXhsl2qtrnM10.3390/e22030277332860547516730
– reference: HattonPJKleberMZellerBMoniCPlanteAFTownsendKGelhayeLLajthaKDerrienDTransfer of litter-derived N to soil mineral–organic associations: evidence from decadal 15N tracer experimentsOrg Geochem201242148915011:CAS:528:DC%2BC3MXhs1eisrbK10.1016/j.orggeochem.2011.05.002
– reference: Le MerGBarthodJDignacMFBarréPBaudinFRumpelCInferring the impact of earthworms on the stability of organo-mineral associations, by Rock-Eval thermal analysis and 13C NMR spectroscopyOrg Geochem20201441040161:CAS:528:DC%2BB3cXosFWhsb4%3D10.1016/j.orggeochem.2020.104016
– reference: ZhangJPresleyGNHammelKERyuJSMenkeJRFigueroaMHuDOrrGSchillingJSLocalizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placentaP Natl Acad Sci USA201611310968109731:CAS:528:DC%2BC28XhsV2kurrJ10.1073/pnas.1608454113
– reference: MinasnyBMaloneBPMcBratneyABAngersDAArrouaysDChambersAChaplotVChenZSChengKDasBSFieldDJGimonaAHedleyCBHongSYMandalBMarchantBPMartinMMcConkeyBGMulderVLO'RourkeSRicher-de-ForgesACOdehIPadarianJPaustianKPanGXPoggioLSavinIStolbovoyVStockmannUSulaemanYTsuiCCVagenTGvan WesemaelBWinowieckiLSoil carbon 4 per milleGeoderma2017292598610.1016/j.geoderma2017.01.002
– reference: RocciKSLavalleeJMStewartCECotrufoMFSoil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysisSci Total Environ20217931485691:CAS:528:DC%2BB3MXhsVentLnL10.1016/j.scitotenv.2021.14856934328984
– reference: AngstGMuellerCWPraterIAngstŠFrouzJJíkováVPeterseFNieropKGJEarthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromassCommun Biol201924411:CAS:528:DC%2BC1MXitl2lsbzF10.1038/s42003-019-0684-z318151966883063
– reference: LehmannJHanselCMKaiserCKleberMMaherKManzoniSNunanNReichsteinMSchimelJPTornMSWiederWRKögel-KnabnerIPersistence of soil organic carbon caused by functional complexityNat Geosci2020135295341:CAS:528:DC%2BB3cXhsVyltL3L10.1038/s41561-020-0612-3
– reference: CotrufoMFRanalliMGHaddixMLSixJLugatoESoil carbon storage informed by particulate and mineral-associated organic matterNat Geosci2019129899941:CAS:528:DC%2BC1MXitFOlt7nE10.1038/s41561-019-0484-6
– reference: ShahzadTChenuCGenetPBarotSPerveenNMouginCFontaineSContribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland speciesSoil Biol Biochem2015801461551:CAS:528:DC%2BC2cXhslyrt7nO10.1016/j.soilbio.2014.09.023
– reference: PuissantJMillsRTERobroekBJMGavazovKPerretteYDe DanieliSSpiegelbergerTButtlerABrunJJCécillonLClimate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grasslandBiogeochemistry2017131231391:CAS:528:DC%2BC2sXhtVKkt74%3D10.1007/s10533-016-0291-8
– reference: RilligMCArbuscular mycorrhizae, glomalin, and soil aggregationCan J Soil Sci20048435536310.4141/S04-003
– reference: WanderMMSoil organic matter fractions and their relevance to soil functionSoil organic matter in sustainable agriculture2004Boca Raton, FLCRC Press67102
– reference: GarcetJPOrdonezARoosenJVancloosterMMetamodelling: Theory, concepts and application to nitrate leaching modellingEcol Model20061936296441:CAS:528:DC%2BD28Xhs12htLg%3D10.1016/j.ecolmodel.2005.08.045
– reference: KallenbachCMFreySDGrandyASDirect evidence for microbial-derived soil organic matter formation and its ecophysiological controlsNat Commun20167136301:CAS:528:DC%2BC28XitFSns7vO10.1038/ncomms13630278924665133697
– reference: LaRoweDEVan CappellenPDegradation of natural organic matter: a thermodynamic analysisGeochim Cosmochim Acta201175203020421:CAS:528:DC%2BC3MXjsVGhu78%3D10.1016/j.gca.2011.01.020
– reference: PaoliniVPetracchiniFSegretoMTomassettiLNajaNCecinatoAEnvironmental impact of biogas: A short review of current knowledgeJ Environ Sci Health Part A2018538999061:CAS:528:DC%2BC1cXns1Oms7o%3D10.1080/10934529.2018.1459076
– reference: CotrufoMFSoongJLHortonAJCampbellEEHaddixMLWallDHPartonWJFormation of soil organic matter via biochemical and physical pathways of litter mass lossNat Geosci201587767791:CAS:528:DC%2BC2MXhsFaqtb%2FN10.1038/ngeo2520
– reference: ShiZCrowellSLuoYMooreBModel structures amplify uncertainty in predicted soil carbon responses to climate changeNat Commun201891111:CAS:528:DC%2BC1cXhtFenu7fO10.1038/s41467-018-04526-9
– reference: MalikAARothVNHébertMTremblayLDittmarTGleixnerGLinking molecular size, composition and carbon turnover of extractable soil microbial compoundsSoil Biol Biochem201610066731:CAS:528:DC%2BC28Xps1Wkt7w%3D10.1016/j.soilbio.2016.05.019
– reference: BirdMIWynnJGSaizGWursterCMMcBeathAThe pyrogenic carbon cycleAnnu Rev Earth Pl Sc2015432732981:CAS:528:DC%2BC2MXhsVGns7nP10.1146/annurev-earth-060614-105038
– reference: OlkDCBloomPRPerdueEMMcKnightDMChenYFarenhorstASenesiNChinYPSchmitt-KopplinPHertkornNHarirMEnvironmental and agricultural relevance of humic fractions extracted by alkali from soils and natural watersJ Environ Qual2019482172321:CAS:528:DC%2BC1MXps1OjtrY%3D10.2134/jeq2019.02.004130951132
– reference: BispoAAndersenLAngersDABernouxMBrossardMCécillonLComansRNJHarmsenJJonassenKLaméFLhuilleryCMalySMartinEMcelneaAESakaiHWatabeYEglinTKAccounting for carbon stocks in soils and measuring ghgs emission fluxes from soils: do we have the necessary standards?Front Environ Sci201754110.3389/fenvs.2017.00041
– reference: FaninNBertrandIAboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradientSoil Biol Biochem20169448601:CAS:528:DC%2BC2MXhvFWlt7%2FO10.1016/j.soilbio.2015.11.007
– reference: Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I (2016) Enzymatic strategies and carbon use efficiency of a litter decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol https://doi.org/10.3389/fmicb.2016.01315
– reference: ClivotHMounyJ-CDuparqueADinhJ-LDenoroyPHouotSVertèsFTrochardRBouthierASagotSMaryBModeling soil organic carbon evolution in long-term arable experiments with AMG modelEnviron Model Softw20191189911310.1016/j.envsoft.2019.04.004
– reference: RichardsonAEKirkbyCABanerjeeSKirkegaardJAThe inorganic nutrient cost of building soil carbonCarbon Manag201452652681:CAS:528:DC%2BC2cXitFKmu7fE10.1080/17583004.2014.923226
– reference: JanzenHHThe soil carbon dilemma: Shall we hoard it or use it?Soil Biol Biochem2006384194241:CAS:528:DC%2BD28XhsF2jsro%3D10.1016/j.soilbio.2005.10.008
– reference: Antón SR, Derrien D, Urmeneta H, Van der Heijden G, Enrique A, Virto I (2022) Organic carbon storage and dynamics as affected by the adoption of irrigation in a cultivated calcareous mediterranean soil. Front Soil Sci 2(831775):1–18. https://doi.org/10.3389/fsoil.2022.831775
– reference: GleixnerGPoirierNBolRBalesdentJMolecular dynamics of organic matter in a cultivated soilOrg Geochem2002333573661:CAS:528:DC%2BD38XhtlCqu7Y%3D10.1016/S0146-6380(01)00166-8
– reference: Basile-DoelschIBalesdentJPellerinSReviews and syntheses: The mechanisms underlying carbon storage in soilBiogeosciences202017522352421:CAS:528:DC%2BB3MXisVegu74%3D10.5194/bg-17-5223-2020
– reference: LiangCSchimelJPJastrowJDThe importance of anabolism in microbial control over soil carbon storageNat Microbiol20172171051:CAS:528:DC%2BC2sXht1ensbvP10.1038/nmicrobiol.2017.10528741607
– reference: AmelungWBrodowskiSSandhage-HofmannABolRCombining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matterAdvances in Agronomy2008BurlingtonAcademic Press15525010.1016/S0065-2113(08)00606-8
– reference: MargidaMGLashermesGMoorheadDLEstimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litterSoil Biol Biochem20201411076891:CAS:528:DC%2BC1MXisVSkt7vP10.1016/j.soilbio.2019.107689
– reference: BudgeKLeifeldJHiltbrunnerEFuhrerJAlpine grassland soils contain large proportion of labile carbon but indicate long turnover timesBiogeosciences20118191119231:CAS:528:DC%2BC3MXhtlansLzM10.5194/bg-8-1911-2011
– reference: GleixnerGSoil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studiesEcol Res2013286836951:CAS:528:DC%2BC3sXhsVCgu7zE10.1007/s11284-012-1022-9
– reference: PerveenNBarotSAlvarezGKlumppKMartinRRapaportAHerfurthDLouaultFFontaineSPriming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY modelGlob Chang Biol2014201174119010.1111/gcb.1249324339186
– reference: ManzoniSTaylorPRichterAPorporatoAÅgrenGIEnvironmental and stoichiometric controls on microbial carbon-use efficiency in soilsNew Phytol201219679911:CAS:528:DC%2BC38Xht1Cis7fL10.1111/j.1469-8137.2012.04225.x22924405
– reference: VidalAWatteauFRemusatLMuellerCWNguyen TuTTBueggerFDerenneSQueneaKEarthworm cast formation and development: a shift from plant litter to mineral associated organic matterFront Environ Sci201975510.3389/fenvs.2019.00055
– reference: KirkbyCARichardsonAEWadeLJBattenGDBlanchardCKirkegaardJACarbon-nutrient stoichiometry to increase soil carbon sequestrationSoil Biol Biochem20136077861:CAS:528:DC%2BC3sXktlKrt7k%3D10.1016/j.soilbio.2013.01.011
– reference: HemkemeyerMSchwalbSAHeinzeSJoergensenRGWichernFFunctions of elements in soil microorganismsMicrobiol Res20212521268321:CAS:528:DC%2BB3MXitl2jtr%2FM10.1016/j.micres.2021.12683234508963
– reference: WitzgallKVidalASchubertDIHöschenCSchweizerSABueggerFPouteauVChenuCMuellerCWParticulate organic matter as a functional soil component for persistent soil organic carbonNat Commun2021121101:CAS:528:DC%2BB3MXhsFOgu7jO10.1038/s41467-021-24192-8
– reference: UrozSPicardLTurpaultMPAuerLArmengaudJOgerPDual transcriptomics and proteomics analyses of the early stage of interaction between Caballeronia mineralivorans PML1(12) and mineralEnviron Microbiol202022383838621:CAS:528:DC%2BB3cXhvFyju77L10.1111/1462-2920.1515932656915
– reference: DungaitJAJHopkinsDWGregoryASWhitmoreAPSoil organic matter turnover is governed by accessibility not recalcitranceGlob Chang Biol2012181781179610.1111/j.1365-2486.2012.02665.x
– reference: LashermesGNicolardotBParnaudeauVThuriesLChaussodRGuillotinMLLineresMMaryBMetzgerLMorvanTTricaudAVilletteCHouotSIndicator of potential residual carbon in soils after exogenous organic matter applicationEur J Soil Sci2009602973101:CAS:528:DC%2BD1MXkvVWnurc%3D10.1111/j.1365-2389.2008.01110.x
– reference: LangeMEisenhauerNSierraCABesslerHEngelsCGriffithsRIMellado-VázquezPGMalikAARoyJScheuSSteinbeissSThomsonBCTrumboreSEGleixnerGPlant diversity increases soil microbial activity and soil carbon storageNat Commun2015667071:CAS:528:DC%2BC2MXhtF2itrfJ10.1038/ncomms770725848862
– reference: LeifeldJKögel-KnabnerISoil organic matter fractions as early indicators for carbon stock changes under different land-use?Geoderma20051241431551:CAS:528:DC%2BD2cXhtVOru7nN10.1016/j.geoderma.2004.04.009
– reference: FarinaRSándorRAbdallaMEnsemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soilsGlob Chang Biol2021279049281:CAS:528:DC%2BB38XhvFartrjO10.1111/gcb.1544133159712
– reference: UrozSKellyLCTurpaulMPLepleuxCFrey-KlettPThe mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communitiesTrends Microbiol2015237517621:CAS:528:DC%2BC2MXhslWrs7fI10.1016/j.tim.2015.10.00426549581
– reference: Berhe AA, Harden JW, Torn MS, Kleber M, Burton SD, Harte J (2012) Persistence of soil organic matter in eroding versus depositional landform positions. J Geophys Res: Biogeosci 117(G2) https://doi.org/10.1029/2011JG001790
– reference: Allory V, Séré G, Ouvrard S (2022) A meta-analysis of carbon content and stocks in Technosols and identification of the main governing factors. Eur J Soil Sci 73(1). https://doi.org/10.1111/ejss.13141
– reference: Freschet GT, Violle C, Roumet C, Garnier E (2018) Interactions between soil and vegetation: structure of plant communities and soil functioning. In: Lemanceau P, Blouin M (ed) Component of the Critical Zone (Vol. 6: Ecology), ISTE Ltd and John Wiley & Sons, Inc, pp 83-104. https://doi.org/10.1002/9781119438274.ch5
– reference: Lugato E, Lavallee J, Haddix M, Panagos P, Cotrufo F (2021) Different climate sensitivity of particulate and mineral-associated organic matter. Nat Geosci 14. https://doi.org/10.1038/s41561-021-00744-x
– reference: RowleyMCGrandSVerrecchiaEPCalcium-mediated stabilization of soil organic carbonBiogeochemistry201813727491:CAS:528:DC%2BC1cXhs1Wntg%3D%3D10.1007/s10533-017-0410-1
– reference: SandermanJHenglTFiskeGJSoil carbon debt of 12,000 years of human land useP Natl Acad Sci USA2017114957595801:CAS:528:DC%2BC2sXhtlOhtbbE10.1073/pnas.1706103114
– reference: AlvarezRBerhongarayGSoil organic carbon sequestration potential of Pampean soils: comparing methods and estimation for surface and deep layersSoil Res2021593463581:CAS:528:DC%2BB3MXhtV2isLvN10.1071/SR20257
– reference: KleberMWhat is recalcitrant soil organic matter?Environ Chem201073203321:CAS:528:DC%2BC3cXht12jsb%2FE10.1071/EN10006
– reference: WangCQuLYangLLiuDMorrisseyEMiaoRLiuZWangQFangYBaiELarge-scale importance of microbial carbon use efficiency and necromass to soil organic carbonGlob Chang Biol202127203920481:CAS:528:DC%2BB38XhvFeht7nO10.1111/gcb.1555033559308
– reference: Cécillon L, Baudin F, Chenu C, Christensen BT, Franko U, Houot S, Kanari E, Katterer T, Merbach I, van Oort F, Poeplau C (2021) Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval (R) thermal analysis (PARTY (SOC) v2. 0 and PARTY (SOC) v2. 0 (EU)). Geosci Model Dev 14:3879–3898. https://doi.org/10.5194/gmd-14-3879-2021
– reference: ColemanKJenkinsonDSRothC-26.3-A Model for the turnover of carbon in soilEvaluation of soil organic matter models1996Berlin, HeidelbergSpringer23724610.1007/978-3-642-61094-3_17
– reference: BalesdentJBasile-DoelschIChadoeufJCornuSDerrienDFekiacovaZHattéCAtmosphere–soil carbon transfer as a function of soil depthNature201855977155996021:CAS:528:DC%2BC1cXhtlWjsbfE10.1038/s41586-018-0328-329995858
– reference: Cécillon L, Barré P, Coissac E, Plante A, Rasse D (2015) Soil biogeochemistry in the age of big data. In: EGU general assembly conference abstracts, p 6964. https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.6964C/abstract
– reference: WilliamsEKPlanteAFA bioenergetic framework for assessing soil organic matter persistenceFront Earth Sci2018614310.3389/feart.2018.00143
– reference: BalesdentJThe significance of organic separates to carbon dynamics and its modelling in some cultivated soilsEur J Soil Sci1996474854931:CAS:528:DyaK2sXhtFGjsbs%3D10.1111/j.1365-2389.1996.tb01848.x
– reference: WiederWRHartmanMDSulmanBNWangYPKovenCDBonanGBCarbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical modelsGlob Chang Biol2018241563157910.1111/gcb.1397929120516
– reference: AllisonSDA trait-based approach for modelling microbial litter decompositionEcol Lett201215105810701:STN:280:DC%2BC38nntVCnsQ%3D%3D10.1111/j.1461-0248.2012.01807.x22642621
– reference: SunYZengYShiQPanXHuangSNo-tillage controls on runoff: A meta-analysisSoil Tillage Res20151531610.1016/j.still.2015.04.007
– reference: HicksLCLajthaKRouskJNutrient limitation may induce microbial mining for resources from persistent soil organic matterEcology2021102e0332810.1002/ecy.332833705567
– reference: JouanJDe GraeuweMCarofMBaccarRBareilleNBastianSBrognaDBurgioGCouvreurSCupiałMDumontBJacquotA-LMagagnoliSMakulskaJMaréchalKPérèsGRidierASalouTTombarkiewiczBSgolastraFGodinotOLearning Interdisciplinarity and Systems Approaches in Agroecology: Experience with the Serious Game SEGAESustainability202012435110.3390/su12114351
– reference: Kögel-KnabnerIAmelungWSoil organic matter in major pedogenetic soil groupsGeoderma20213841147851:CAS:528:DC%2BB3MXhtVeisLjP10.1016/j.geoderma.2020.114785
– reference: RumpelCKögel-KnabnerIDeep soil organic matter—a key but poorly understood component of terrestrial C cyclePlant Soil20113381431581:CAS:528:DC%2BC3cXhsFKmtLrE10.1007/s11104-010-0391-5
– reference: BaileyVLPriesCHLajthaKWhat do we know about soil carbon destabilization?Environ Res Lett2020140830041:CAS:528:DC%2BB3cXhvFyju77L10.1111/1462-2920.15159
– reference: KleberMJohnsonMGAdvances in understanding the molecular structure of soil organic matter: implications for interactions in the environmentAdv Agron2010106771421:CAS:528:DC%2BC3cXovV2nsLo%3D10.1016/S0065-2113(10)06003-7
– reference: KleberMLehmannJHumic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystemsJ Environ Qual20194822072161:CAS:528:DC%2BC1MXps1Ojtbs%3D10.2134/jeq2019.01.003630951127
– reference: KeyvanshokouhiSCornuSLafolieFBalesdentJGuenetBMoitrierNMoitrierNNougierCFinkePEffects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soilsSci Total Environ20196525235371:CAS:528:DC%2BC1cXitVWjt73I10.1016/j.scitotenv.2018.10.23630368182
– reference: SulmanBNBrzostekERMediciCShevliakovaEMengeDNLPhillipsRPFeedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal associationEcol Lett2017201043105310.1111/ele.1280228669138
– reference: HillPWFarrarJFJonesDLDecoupling of microbial glucose uptake and mineralization in soilSoil Biol Biochem2008406166241:CAS:528:DC%2BD1cXisFKltQ%3D%3D10.1016/j.soilbio.2007.09.008
– reference: BergBDecomposition patterns for foliar litter—a theory for influencing factorsSoil Biol Biochem2014782222321:CAS:528:DC%2BC2cXhsVSqtrvF10.1016/j.soilbio.2014.08.005
– reference: FaveroADaigneaultASohngenBForests: Carbon sequestration, biomass energy, or both?Sci Adv2020613eaay679210.1126/sciadv.aay6792330528757096156
– reference: Janz B, Havermann F, Lashermes G, Zuazo P, Engelsberger F, Torabi SM, Butterbach-Bahl K (2021) Effects of crop residue incorporation and properties on combined soil gaseous N2O, NO, and NH3 emissions—A laboratory-based measurement approach. Sci Total Environ 151051. https://doi.org/10.1016/j.scitotenv.2021.151051
– reference: ReesFDagoisRDerrienDFiorelliJLWatteauFMorelJLSchwartzCSimonnotMOSéréGStorage of carbon in constructed technosols: in situ monitoring over a decadeGeoderma20193376416481:CAS:528:DC%2BC1cXhvFCrsrzL10.1016/j.geoderma.2018.10.009
– reference: PoeplauCDonASixJKaiserMBenbiDChenuCCotrufoMFDerrienDGioacchiniPGrandSGregorichEGriepentrogMGuninaAHaddixMKuzyakovYKühnelAMacdonaldLMSoongJTrigaletSVermeireMLRoviraPvan WesemaelBWiesmeierMYeasminSYevdokimovINiederRIsolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparisonSoil Biol Biochem201812510261:CAS:528:DC%2BC1cXht1yitbjE10.1016/j.soilbio.2018.06.025
– reference: SchmidtMWITornMSAbivenSDittmarTGuggenbergerGJanssensIAKleberMKögel-KnabnerILehmannJManningDACNannipieriPRasseDPWeinerSTrumboreSEPersistence of soil organic matter as an ecosystem propertyNature201147849561:CAS:528:DC%2BC3MXht1yltrnF10.1038/nature1038621979045
– reference: ChenuCAngersDABarréPDerrienDArrouaysDBalesdentJIncreasing organic stocks in agricultural soils: Knowledge gaps and potential innovationsSoil Tillage Res2019188415210.1016/j.still.2018.04.011
– reference: LegoutAHanssonKvan der HeijdenGLaclauJPMareschalLNysCNicolasMSaint-AndréLRangerJChemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cyclingFor Ecol Managt202046111784410.1016/j.foreco.2019.117844
– reference: PlanteABeaupréSRobertsMBaisdenTDistribution of radiocarbon ages in soil organic matter by thermal fractionationRadiocarbon2013552107710831:CAS:528:DC%2BC3sXhslKgu7vK10.1017/S0033822200058215
– reference: MyneniSCBChemistry of natural organic matter—The next step: commentary on a humic substances debateJ Environ Qual2019482332351:CAS:528:DC%2BC1MXps1Ojurk%3D10.2134/jeq2019.02.0002c30951138
– reference: SixJFreySDThietRKBattenKMBacterial and fungal contributions to carbon sequestration in agroecosystemsSoil Sci Soc Am J2006705555691:CAS:528:DC%2BD28Xis1Cru70%3D10.2136/sssaj2004.0347
– reference: BarréPPlanteAFCécillonLLutfallaSBaudinFBernardSChristensenBTEglinTFernandezJMHouotSKättererTLe GuillouCMacdonaldAvan OortFChenuCThe energetic and chemical signatures of persistent soil organic matterBiogeochemistry20161301121:CAS:528:DC%2BC28Xhs1Sktb3M10.1007/s10533-016-0246-0
– reference: PaulEAThe nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilizationSoil Biol Biochem2016981091261:CAS:528:DC%2BC28XmsVejurg%3D10.1016/j.soilbio.2016.04.001
– reference: Hufnagl-EichinerSWolfSDrinkwaterLAssessing social–ecological coupling: Agriculture and hypoxia in the Gulf of MexicoGlob Environ Chang20112153053910.1016/j.gloenvcha.2010.11.007
– reference: Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Interactions Between Soil Particles and Microorganisms—Impact on the Terrestrial Ecosystems. John Wiley and Sons, Chichester, pp 3–40
– reference: HassinkJThe capacity of soils to preserve organic C and N by their association with clay and silt particlesPlant Soil199719177871:CAS:528:DyaK2sXltVKju7g%3D10.1023/A:1004213929699
– reference: KleberMNicoPSPlanteAFilleyTKramerMSwanstonCSollinsPOld and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivityGlob Chang Biol2011171097110710.1111/j.1365-2486.2010.02278.x
– reference: The Future of Food and Agriculture—Trends and Challenges (2017) FAO, Rome, Italie. http://www.fao.org/3/a-i6583e.pdf
– reference: KeiluweitMBougoureJNicoPPett-RidgeJWeberPKKleberMMineral protection of soil carbon counteracted by root exudatesNat Clim Chang201555885951:CAS:528:DC%2BC2MXlvVent7c%3D10.1038/nclimate2580
– reference: SathreRO’ConnorJMeta-analysis of greenhouse gas displacement factors of wood product substitutionEnviron Sci Pol2010131041141:CAS:528:DC%2BC3cXjtVCns78%3D10.1016/j.envsci.2009.12.005
– reference: Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L (2015) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep-UK 5. https://doi.org/10.1038/srep15991.
– reference: LehmannJSolomonDKinyangiJDatheLWirickSJacobsenCSpatial complexity of soil organic matter forms at nanometre scalesNat Geosci200812382421:CAS:528:DC%2BD1cXktVCisb0%3D10.1038/ngeo155
– reference: MiltnerABombachPSchmidt-BrückenBKästnerMSOM genesis: microbial biomass as a significant sourceBiogeochemistry201211141551:CAS:528:DC%2BC3sXhslaqsbg%3D10.1007/s10533-011-9658-z
– reference: MöllerKEffects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activityA review. Agron Sustain Dev201535102110411:CAS:528:DC%2BC2MXjvFektr0%3D10.1007/s13593-015-0284-3
– reference: BarotSBornhofenSLoeuilleNPerveenNShahzadTFontaineSNutrient enrichment and local competition influence the evolution of plant mineralization strategy, a modelling approachJ Ecol201410235736610.1111/1365-2745.12200
– reference: DimassiBMaryBWyllemanRLabreucheJCoutureDPirauxFCohanJPLong-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 yearsAgric Ecosyst Environ201418813414610.1016/j.agee.2014.02.014
– reference: HagedornFBruderhoferNFerrariANiklausPATracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow?Soil Biol Biochem2015883333431:CAS:528:DC%2BC2MXhtVyiu73P10.1016/j.soilbio.2015.06.014
– reference: Viscarra RosselRALeeJBehrensTLuoZBaldockJRichardsAContinental-scale soil carbon composition and vulnerability modulated by regional environmental controlsNat Geosci2019125475521:CAS:528:DC%2BC1MXhtVyqtL7J10.1038/s41561-019-0373-z
– reference: JanzenHHSoil carbon: A measure of ecosystem response in a changing world?Can J Soil Sci2005854674801:CAS:528:DC%2BD28Xjs1GgsA%3D%3D10.4141/S04-081
– reference: SixJElliottEPaustianKAggregate and soil organic matter dynamics under conventional and no-tillage systemsSoil Sci Soc Am J199963135013581:CAS:528:DyaK1MXns12lsb0%3D10.2136/sssaj1999.6351350x
– reference: HenneronLBalesdentJAlvarezGBarréPBaudinFBasile-DoelschICécillonLFernandez-MartinezAHattéCFontaineSBioenergetic control of soil carbon dynamics across depthNat Commun20221311141:CAS:528:DC%2BB38XjtFarsLjN10.1038/s41467-022-34951-w
– reference: Panettieri M, Rumpel C, Dignac MF, Chabbi A (2017) Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions? Sci Total Environ 576:251–263. https://doi.org/10.1016/j.scitotenv.2016.10.073
– reference: PengerudADignacMFCertiniGStrandLTForteCRasseDPSoil organic matter molecular composition and state of decomposition in three locations of the European ArcticBiogeochemistry20171352772921:CAS:528:DC%2BC2sXhsVyitrjK10.1007/s10533-017-0373-2
– reference: TraoreOGroleau-RenaudVPlantureuxSTubeilehABoeuf-TremblayVEffect of root mucilage and modelled root exudates on soil structureEur J Soil Sci20005157558110.1111/j.1365-2389.2000.00348.x
– reference: AmelungWBossioDde VriesWKögel-KnabnerILehmannJAmundsonRBolRCollinsCLalRLeifeldJMinasnyBPanGPaustianKRumpelCSandermanJvan GroenigenJWMooneySvan WesemaelBWanderMChabbiATowards a global-scale soil climate mitigation strategyNat Commun20201111101:CAS:528:DC%2BB3cXit1OjtLfK10.1038/s41467-020-18887-7
– reference: Barré P, Angers DA, Basile-Doelsch I, Bispo A, Cécillon L, Chenu C, Chevallier T, Derrien D, Eglin T, Pellerin S (2017) Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies? Biogeosci Discuss 1-12. https://doi.org/10.5194/bg-2017-395
– reference: KeiluweitMNicoPSKleberMFendorfSAre oxygen limitations under recognized regulators of organic carbon turnover in upland soils?Biogeochemistry20161271571711:CAS:528:DC%2BC28Xhs1Kgtbg%3D10.1007/s10533-015-0180-6
– reference: AngstGMuellerKENieropKSimpsonMJPlant- or microbial-derived? A review on the molecular composition of stabilized soil organic matterSoil Biol Biochem2021156131:CAS:528:DC%2BB3MXmt1akt7Y%3D10.1016/j.soilbio.2021.108189
– reference: PerveenNBarotSMaireVCotrufoMFShahzadTBlagodatskayaEStewartCEDingWSiddiqMRDimassiBMaryBFontaineSUniversality of priming effect: An analysis using thirty five soils with contrasted properties sampled from five continentsSoil Biol Biochem20191341621711:CAS:528:DC%2BC1MXmvFSks7w%3D10.1016/j.soilbio.2019.03.027
– reference: LavellePSpainAVSoil Ecology2001DordrechtKluwer Academic Publishers10.1007/978-94-017-5279-4
– reference: Raous S, King C, Alletto L, Bougon N, Chenu C, Cortet J, Derrien D, Dictor MC, François Y, Keller C, Perrin AS, Pousse N, Rémy E, Rennes S, Servain F, Tournebize J (2020) Recommandations méthodologiques pour le montage de projets collaboratifs entre acteurs de la Recherche et des Territoires. Rapport du Comité Scientifique Technique et d'Innovation (CSTI) du Réseau National d'Expertise Scientifique et Technique sur les sols (RNEST). https://doi.org/10.13140/RG.2.2.35757.82405
– reference: SuttonRSpositoGMolecular structure in soil humic substances: the new viewEnviron Sci Technol200539900990151:CAS:528:DC%2BD2MXhtFGmtb7L10.1021/es050778q16382919
– reference: BaveyePCSchneeLSBoivinPLabaMRadulovichRSoil organic matter research and climate change: merely re-storing carbon versus restoring soil functionsFront Environ Sci2020816110.3389/fenvs.2020.579904
– reference: DaufresneTLoreauMPlant–herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation?Ecol Lett2001419620610.1046/j.1461-0248.2001.00210.x
– reference: Recous S, Lashermes G, Bertrand I, Duru M, Pellerin S (2019) C–N–P decoupling processes linked to arable cropping management systems in relation with intensification of production. In: Agroecosystem Diversity: Reconciling contemporary agriculture and environmental quality. Academic Press. Elsevier, London, pp 35–53. https://doi.org/10.1016/B978-0-12-811050-8.00003-0/B978-0-12-811050-8.00003-0
– reference: BardgettRDVan Der PuttenWHBelowground biodiversity and ecosystem functioningNature201451575285055111:CAS:528:DC%2BC2cXitFamsrnM10.1038/nature1385525428498
– reference: GuenetBCamino-SerranoMCiaisPTifafiMMaignanFSoongJLJanssensIAImpact of priming on global soil carbon stocksGlob Chang Biol20182018241873188310.1111/gcb.14069
– reference: KohlLPhilbenMEdwardsKAPodrebaracFAWarrenJZieglerSEThe origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradientGlob Chang Biol201824e458e47310.1111/gcb.1388728871609
– reference: ChenSMartinMPSabyNPWalterCAngersDAArrouaysDFine resolution map of top-and subsoil carbon sequestration potential in FranceSci Total Environ20186303894001:CAS:528:DC%2BC1cXjtlymur0%3D10.1016/j.scitotenv.2018.02.20929482147
– reference: SixJElliottETPaustianKSoil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agricultureSoil Biol Biochem200032209921031:CAS:528:DC%2BD3MXpvFWg10.1016/S0038-0717(00)00179-6
– reference: GuenetBGabrielleBChenuCArrouaysDBalesdentJBernouxMBruniECalimanJPCardinaelRChenSCiaisPCan N2O emissions offset the benefits from soil organic carbon storage?Glob Chang Biol2021272372561:CAS:528:DC%2BB38XhvFehsbfN10.1111/gcb.1534232894815
– reference: Martin TMP, Esculier F, Levavasseur F, Houot S (2020) Human urine-based fertilizers: A review. Crit Rev Environ Sci Technol https://doi.org/10.1080/10643389.2020.1838214
– reference: PaetschLMuellerCWRumpelCAngstŠWiesheuACGirardinCIvlevaNPNiessnerRKögel-KnabnerIA multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter compositionOrg Geochem20171121771861:CAS:528:DC%2BC2sXhtFGhs7%2FK10.1016/j.orggeochem.2017.06.012
– reference: HopkinsDWDungaitJAJTilstonELSoil microbiology and nutrient cyclingDixon, G. R.2010DordrechtSoil microbiology and sustainable crop production Springer598010.1007/978-90-481-9479-7_3
– reference: StevensonFJHumus chemistry: genesis, composition, reactions19942New YorkJohn Wiley & Sons496
– reference: LeifeldJvon LützowMChemical and microbial activation energies of soil organic matter decompositionBiol Fertil Soils2014501471531:CAS:528:DC%2BC2cXjt1Gjsg%3D%3D10.1007/s00374-013-0822-6
– reference: Lorenz M, Hofmann D, Steffen B, Fischer K, Thiele-Bruhn S (2021) The molecular composition of extractable soil microbial compounds and their contribution to soil organic matter vary with soil depth and tree species. Sci Total Environ 146732. https://doi.org/10.1016/j.scitotenv.2021.146732
– reference: HagedornFGavazovKAlexanderJMAbove and belowground linkages shape responses of mountain vegetation to climate changeScience20193656458111911231:CAS:528:DC%2BC1MXhslGktr7E10.1126/science.aax473731515385
– reference: TivetFde MoraesCSáBPRLetourmyPBriedisCFerreiraAOdos SantosBThiago Massao InagakiJSoil carbon inventory by wet oxidation and dry combustion methods: Effects of land use, soil texture gradients, and sampling septh on the linear model of C-equivalent correction factorSoil Sci Soc Am J2012763104810591:CAS:528:DC%2BC38XosFeju7k%3D10.2136/sssaj2011.0328
– reference: PoeplauCDonASensitivity of soil organic carbon stocks and fractions to different land-use changes across EuropeGeoderma20131921892011:CAS:528:DC%2BC38XhvVajtLfK10.1016/j.geoderma.2012.08.003
– reference: DonARödenbeckCGleixnerGUnexpected control of soil carbon turnover by soil carbon concentrationEnviron Chem Lett2013114074131:CAS:528:DC%2BC3sXhtlCqsrrL10.1007/s10311-013-0433-3
– reference: YuGHKuzyakovYFenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cyclingEarth Sci Rev20212141035251:CAS:528:DC%2BB3MXjvFKkt74%3D10.1016/j.earscirev.2021.103525
– reference: Kögel-KnabnerIThe macromolecular organic composition of plant and microbial residues as inputs to soil organic matterSoil Biol Biochem20023413916210.1016/S0038-0717(01)00158-4
– reference: MonodJThe growth of bacterial culturesAnnu Rev Microbiol194933713941:CAS:528:DyaG3cXlt1GitQ%3D%3D10.1146/annurev.mi.03.100149.002103
– reference: Hofman J, Dušek L (2003) Biochemical analysis of soil organic matter and microbial biomass composition—a pilot study. Eur J Soil Biol 39:217–224. https://doi.org/10.1016/J.EJSOBI.2003.08.002
– reference: Larrère R (2018) Considérations sur les controverses. https://4p1000sete2018.sciencesconf.org/data/pages/Controverses_version_longue_RLarrere.pdf
– reference: CardinaelRChevallierTCambouABéralCBarthèsGCDuprazCDurandCKouakouaEChenuCIncreased soil organic carbon stocks under agroforestry: A survey of six different sites in FranceAgr Ecosyst Environt201723624325510.1016/j.agee.2016.12.011
– reference: MarschnerBBrodowskiSDrevesAGleixnerGGudeAGrootesPMHamerUHeimAJandlGJiRKaiserKKalbitzKKramerCLeinweberPRethemeyerJSchäfferASchmidtMWISchwarkLWiesenbergGLBHow relevant is recalcitrance for the stabilization of organic matter in soils?J Plant Nutr Soil Sci2008171911101:CAS:528:DC%2BD1cXisFyhurw%3D10.1002/jpln.200700049
– reference: Pellerin S, Bamiere L, Dimassi B, Launay C, Martin R, Schiavo M, Angers D, Augusto L, Balesdent J, Basile-Doelsch I, Bellassen V (2019) Storing carbon in French soils. Which potential regarding the 4 per 1000 objective, and to which cost? Synthesis of the study report, July 2019. https://www.inrae.fr/sites/default/files/pdf/etude-4-pour-1000-resume-en-francais-pdf-1_0.pdf
– reference: LubbersIMvan GroenigenKJFonteSJSixJBrussaardLvan GroenigenJWGreenhouse-gas emissions from soils increased by earthwormsNat Clim Chang201331810.1038/NCLIMATE1692
– reference: BousquetFLe PageCMulti-agent simulations and ecosystem management: a reviewEcol Model20041763-431333210.1016/j.ecolmodel.2004.01.011
– reference: de NobiliMBravoCChenYThe spontaneous secondary synthesis of soil organic matter components: A critical examination of the soil continuum model theoryAppl Soil Ecol202015410365510.1016/j.apsoil.2020.103655
– reference: EkschmittKLiuMVetterSFoxOWoltersVStrategies used by soil biota to overcome soil organic matter stability–why is dead organic matter left over in soil?Geoderma200512816717610.1016/j.geoderma.2004.12.024
– reference: KallenbachCMGrandyASFreySDDiefendorfAFMicrobial physiology and necromass regulate agricultural soil carbon accumulationSoil Biol Biochem201592792901:CAS:528:DC%2BC2MXhsFKnsb7I10.1016/j.soilbio.2015.09.005
– reference: Schlesinger WH (2022) Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry, 1-9. https://doi.org/10.1007/s10533-022-00942-8
– reference: VestergaardGSchulzSSchölerASchloterMMaking big data smart—how to use metagenomics to understand soil qualityBiol Fertil Soils20175347948410.1007/s00374-017-1191-3
– reference: von LützowMKögel-KnabnerIEkschmittKFlessaHGuggenbergerGMatznerEMarschnerBSOM fractionation methods: relevance to functional pools and to stabilization mechanismsSoil Biol Biochem200739218322071:CAS:528:DC%2BD2sXmsFKrsr4%3D10.1016/j.soilbio.2007.03.007
– reference: Lu X, Lu X, Liao Y (2018) Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content. Front Microbiol 9.https://doi.org/10.3389/fmicb.2018.02986
– reference: WangTTianZBengtsonPTunlidAPerssonPMineral surface-reactive metabolites secreted during fungal decomposition contribute to the formation of soil organic matterEnviron Microbiol201719511751291:CAS:528:DC%2BC2sXitVCrsL3E10.1111/1462-2920.1399029124857
– reference: BleuzeLChabbertBLashermesGRecousSHemp harvest time impacts on the dynamics of microbial colonization and hemp stems degradation during dew rettingInd Crop Prod20201451121201:CAS:528:DC%2BB3cXhs1SgsLk%3D10.1016/j.indcrop.2020.112122
– reference: FowlerDCoyleMSkibaUSuttonMACapeJNReisSSheppardLJJenkinsAGrizzettiBGallowayJNVitousekPLeachABouwmanAFButterbach-BahlKDentenerFStevensonDAmannMVossMThe global nitrogen cycle in the twenty-first centuryPhilos Trans Royal Soc B: Biol Sci20133681621201301641:CAS:528:DC%2BC3sXht1Wkt77O10.1098/rstb.2013.0164
– reference: GoodellBZhuYKimSKafleKEastwoodDDanielGJellisonJYoshidaMGroomLPingaliSVO’NeillHModification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungiBiotechnol Biofuels2017101791:CAS:528:DC%2BC1cXitVOrs7bO10.1186/s13068-017-0865-2287020845504834
– reference: VirtoIMoniCSwanstonCChenuCTurnover of intra- and extra-aggregate organic matter at the silt-size scaleGeoderma20101561101:CAS:528:DC%2BC3cXjt1Kgsb0%3D10.1016/j.geoderma.2009.12.028
– reference: PinheiroMGarnierPBeguetJMartin LaurentFVieuble GonodLThe millimetre-scale distribution of 2,4-D and its degraders drives the fate of 2,4-D at the soil core scaleSoil Biol Biochem201588901001:CAS:528:DC%2BB3cXisVClsrfF10.1016/j.soilbio.2020.108068
– reference: PoirierVRoumetCMunsonADThe root of the matter: linking root traits and soil organic matter stabilization processesSoil Biol Biochem20181202462591:CAS:528:DC%2BC1cXjsl2rt74%3D10.1016/j.soilbio.2018.02.016
– reference: Dignac MF, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet G, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron PA, Nunan N, Roumet C, Basile-Doelsch I (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:14. https://doi.org/10.1007/s13593-017-0421-2
– reference: SulmanBNMooreJAAbramoffRAverillCKivlinSGeorgiouKSridharBHartmanMDWangGWiederWRBradfordMALuoYMayesMAMorrisonERileyWESalazarASchimelJPTangJClassenATMultiple models and experiments underscore large uncertainty in soil carbon dynamicsBiogeochemistry20181411091231:CAS:528:DC%2BC1cXhvV2qsb%2FM10.1007/s10533-018-0509-z
– reference: HallSJYeCWeintraubSRHockadayWCMolecular trade-offs in soil organic carbon composition at continental scaleNat Geosci2020136876921:CAS:528:DC%2BB3cXhvVCktL%2FM10.1038/s41561-020-0634-x
– reference: CraineJMMorrowCFiererNMicrobial nitrogen limitation increases decompositionEcology2007882105211310.1890/06-1847.117824441
– reference: SchuurEAGBockheimJCanadellJGEuskirchenEFieldCBGoryachkinSVHagemannSKuhryPLafleurPMLeeHMazhitovaGNelsonFERinkeARomanovskyVEShiklomanovNTarnocaiCVenevskySVogelJGZimovSAVulnerability of permafrost carbon to climate change: implications for the globalBio Sci20085870171410.1641/B580807
– reference: BillingsSALajthaKMalhotraABerheAAde GraaffMAEarlSFraterrigoJGeorgiouKGrandySHobbieSEMooreJAMNadelhofferKPiersonDRasmussenCSilverWLSulmanBNWeintraubSWiederWSoil organic carbon is not just for soil scientists: measurement recommendations for diverse practitionersEcol Appl202131e022901:STN:280:DC%2BB3svotlertQ%3D%3D10.1002/eap.229033426701
– reference: KleberMEusterhuesKKeiluweitMMikuttaCMikuttaRNicoPSMineral–organic associations: formation, properties, and relevance in soil environmentsAdvAgron2015130114010.1016/bs.agron.2014.10.005
– reference: Lashermes G, Recous S, Alavoine G, Janz B, Butterbach-Bahl K, Ernfors M, Laville P (2021) N2O emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Sci Total Environ 150883. https://doi.org/10.1016/j.scitotenv.2021.150883
– reference: JanssensIDielemanWLuyssaertSSubkeJ-AReichsteinMCeulemansRCiaisPDolmanAJGraceJMatteucciGPapaleDPiaoSLSchulzeEDTangJLawBEReduction of forest soil respiration in response to nitrogen depositionNat Geosci201033153221:CAS:528:DC%2BC3cXlsFSksLg%3D10.1038/ngeo844
– reference: DignacMFBahriHRumpelCRasseDPBardouxGBalesdentJGirardinCChenuCMariottiACarbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France)Geoderma20051283171:CAS:528:DC%2BD2MXlvV2ks7g%3D10.1016/j.geoderma.2004.12.022
– reference: HofflandEKuyperTWComansRNJCreamerREEco-functionality of organic matter in soilsPlant Soil20204551221:CAS:528:DC%2BB3cXhs1aiur%2FN10.1007/s11104-020-04651-9
– reference: BertrandIViaudVDaufresneTPellerinSRecousSStoichiometry constraints challenge the potential of agroecological practices for the soil C storage. A reviewAgron Sustain Dev2019395410.1007/s13593-019-0599-6
– reference: MiyauchiSKissEKuoADrulaEKohlerASánchez-GarcíaMMorinEAndreopoulosBBarryKWBonitoGBuéMLarge-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traitsNat Commun20201151251:CAS:528:DC%2BB3cXitVOrtLnP10.1038/s41467-020-18795-w330466987550596
– reference: Lavallée JM, Soong JL, Cotrufo MF (2020) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob Chang Biol 26(1):261–273. https://doi.org/10.1111/gcb.14859
– reference: ChabbiALehmannJCiaisPLoescherHWCotrufoMFDonASan ClementsMSchipperLSixJSmithPRumpelCAligning agriculture and climate policyNat Clim Chang2017730730910.1038/nclimate3286
– reference: GeorgiouKAbramoffRZHarteJRileyWJTornMSMicrobial community-level regulation explains soil carbon responses to long-term litter manipulationsNat Commun2017811101:CAS:528:DC%2BC1cXptV2qs74%3D10.1038/s41467-017-01116-z
– reference: TornMSVitousekPMTrumboreSEThe influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modelingEcosystems200583523721:CAS:528:DC%2BD2MXpt1Whu7Y%3D10.1007/s10021-004-0259-8
– reference: WaringBGSulmanBNReedSSmithAPAverillCCreamerCACusackDFHallSJJastrowJDJillingAKemner KMKMKleberMXiaoLXJAPett-RidgeJSchulzMFrom pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing worldGlob Chang Biol2020266631664310.1111/gcb.1536533064359
– reference: Zechmeister-BoltensternSKeiblingerKMMooshammerMPenuelasJRichterASardansJWanekWThe application of ecological stoichiometry to plant-microbial-soil organic matter transformationsEcol Monogr20158513315510.1890/14-0777.1
– reference: BarréPQuénéaKVidalACécillonLChristensenBTKättererTMacdonaldAPetitLPlanteAFvan OortFChenuCMicrobial and plant-derived compounds both contribute to persistent soil organic carbon in temperate soilsBiogeochemistry201814081921:CAS:528:DC%2BC1cXhtl2ltr7N10.1007/s10533-018-0475-5
– reference: KopittkePMHernandez-SorianoMCDalalRCFinnDMenziesNWHoeschenCMuellerCWNitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matterGlob Chang Biol20182441762177010.1111/gcb.1400929211318
– reference: Boye K, Noël V, Tfaily MM, Bone SE, Williams KH, Bargar JR, Fendorf S (2017) Thermodynamically controlled preservation of organic carbon in floodplains. Nat Geosci 10(6):415–419. https://doi.org/10.1038/ngeo2940
– reference: KleberMBourgICCowardEKHanselCMMyneniSCNunanNDynamic interactions at the mineral–organic matter interfaceNature Rev Earth Environ20212640242110.1038/s43017-021-00162-y
– reference: HagemannNJosephSSchmidtHPKammannCIHarterJBorchTYoungRBVargaKTaherymoosaviSElliottKWMcKennaAOrganic coating on biochar explains its nutrient retention and stimulation of soil fertilityNat Commun2017810891:CAS:528:DC%2BC1cXovFynsrY%3D10.1038/s41467-017-01123-0290578755715018
– reference: ClemmensenKEBahrAOvaskainenODahlbergAEkbladAWallanderHStenlidJFinlayRDWardleDALindahlBDRoots and associated fungi drive long-term carbon sequestration in boreal forestScience2013339161516181:CAS:528:DC%2BC3sXksFOhsLk%3D10.1126/science.123192323539604
– reference: AngersDARecousSAitaCFate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situEur J Soil Sci19974829530010.1111/j.1365-2389.1997.tb00549.x
– reference: JianJVargasRAnderson-TeixeiraKJStellEHerrmannVHornMKholodNManzonJMarchesiRParedesDBond-LambertyBPA Global Database of Soil Respiration Data, Version 5.02021Oak Ridge, Tennessee, USAORNL DAAC10.3334/ORNLDAAC/1827
– reference: BaldockJASkjemstadJORole of the soil matrix and minerals in protecting natural organic materials against biological attackOrg Geochem2000316977101:CAS:528:DC%2BD3cXmsFSqu70%3D10.1016/S0146-6380(00)00049-8
– reference: BernardLBasile-DoelschIDerrienDFaninNFontaineSGuenetBKarimiBMarsdenCMaronP-AAdvancing the mechanistic understanding of the priming effect on soil organic matter mineralisationFunct Ecol202236135513771:CAS:528:DC%2BB38XhvV2ltb%2FO10.1111/1365-2435.14038
– reference: KleerebezemRVan LoosdrechtMCA generalized method for thermodynamic state analysis of environmental systemsCrit Rev Environ Sci Technol20104015410.1080/10643380802000974
– reference: Davies-BarnardTFriedlingsteinPThe global distribution of biological nitrogen fixation in terrestrial natural ecosystemsGlob Biogeochem Cycles202034e2019GB0063871:CAS:528:DC%2BB3cXlslGksL0%3D10.1029/2019GB006387
– reference: UrozSCalvarusoCTurpaultMPFrey-KlettPMineral weathering by bacteria: ecology, actors and mechanismsTrends Microbiol2009173783871:CAS:528:DC%2BD1MXhtVehtbbM10.1016/j.tim.2009.05.00419660952
– reference: SauvadetMLashermesGAlavoineGRecousSChauvatMMaronPABertrandIHigh carbon use efficiency and low priming effect promote soil C stabilization under reduced tillageSoil Biol Biochem201812364731:CAS:528:DC%2BC1cXpsV2is70%3D10.1016/j.soilbio.2018.04.026
– reference: DunlopLVeneuFControversies in science. To teach or not to teachSci Educ20192868971010.1007/s11191-019-00048-y
– reference: SchrumpfMKaiserKMayerAHempelGTrumboreSAge distribution, extractability, and stability of mineral-bound organic carbon in central European soilsBiogeosciences202118124112571:CAS:528:DC%2BB3MXhvFCisr%2FL10.5194/bg-18-1241-2021
– reference: LeifeldJFuhrerJLong-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon datingEur J Soil Sci2009602302391:CAS:528:DC%2BD1MXkvVWntbk%3D10.1111/j.1365-2389.2008.01111.x
– reference: CambouAShawRKHuotHVidal BeaudetLHunaultGCannavoPNoldFSchwartzCEstimation of soil organic carbon stocks of two cities, New York City and ParisSci Total Environ20186444524641:CAS:528:DC%2BC1cXht12ju7zF10.1016/j.scitotenv.2018.06.32229981995
– reference: BradfordMAWiederWRBonanGBFiererNRaymondPACrowtherTWManaging uncertainty in soil carbon feedbacks to climate changeNat Clim Chang201667511:CAS:528:DC%2BC28XhtlShtLnO10.1038/nclimate3071
– reference: BlankinshipJCBerheAACrowSEDruhanJLHeckmanKAKeiluweitMLawrenceCRMarín-SpiottaEPlanteAFRasmussenCSchädelCImproving understanding of soil organic matter dynamics by triangulating theories, measurements, and modelsBiogeochemistry20181401131:CAS:528:DC%2BC1cXhsVWhtrvO10.1007/s10533-018-0478-2
– reference: HéninSTurcLEssai de fractionnement des matières organiques du solC Acad Agric Fr1949354143
– reference: DuranteSAugustoLAchatDLLegoutABrédoireFRangerJSeynaveIJabiolBPousseNDiagnosis of forest soil sensitivity to harvesting residues removal–A transfer study of soil science knowledge to forestry practitionersEcol Indic20191045125231:CAS:528:DC%2BC1MXhtVGhsrvP10.1016/j.ecolind.2019.05.035
– reference: KallenbachCMWallensteinMDSchipanksiMEGrandyASManaging agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forwardFront Microbiol201910114610.3389/fmicb.2019.01146311788466543778
– reference: KravchenkoANGuberAKSoil pores and their contributions to soil carbon processesGeoderma201728731391:CAS:528:DC%2BC28XhtFOjurrL10.1016/j.geoderma.2016.06.027
– reference: DangalSRSandermanJWillsSRamirez-LopezLAccurate and precise prediction of soil properties from a large mid-infrared spectral librarySoil Syst201931111:CAS:528:DC%2BC1MXhs1OntrvE10.3390/soilsystems3010011
– reference: LiangCAmelungWLehmannJKästnerMQuantitative assessment of microbial necromass contribution to soil organic matterGlob Chang Biol2019253578359010.1111/gcb.1478131365780
– reference: BoddyEHillPWFarrahJJonesDLFast turnover of low molecular weight compounds of the dissolved organic carbon pool of temperate grassland field soilsSoil Biol Biochem2007398278351:CAS:528:DC%2BD2sXhtlSrtbk%3D10.1016/j.soilbio.2006.09.030
– reference: FontaineSHenaultCAamorABdiouiNBloorJMGMaireVMaryBRevaillotSMaronPAFungi mediate long term sequestration of carbon and nitrogen in soil through their priming effectSoil Biol Biochem20114386961:CAS:528:DC%2BC3cXhsVGrs7rO10.1016/j.soilbio.2010.09.017
– reference: LevavasseurFMaryBChristensenBTDuparqueAFerchaudFKättererTLagrangeHMontenachDResseguierCHouotSThe simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matterNutr Cycl Agroecosyst202011721522910.1007/s10705-020-10065-x
– reference: SchneiderTKeiblingerKSchmidESterflinger-GleixnerKEllersdorferGRoschitzkiBRichterAEberlLZechmeister-BoltensternSRiedelKWho is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functionsISME J20126174917621:CAS:528:DC%2BC38Xht1Gjtb%2FJ10.1038/ismej.2012.11224024003498922
– reference: Dufour L, Herrmann A, Leloup J, Przybylski C, Foti L, Abbadie L, Nunan N (2021) Energetic return on investment determines overall soil microbial activity. Preprint https://doi.org/10.21203/rs.3.rs-388050/v1
– reference: van Groenigen JW, van Kessel C, Hungate BA, Oenema O, Powlson DS, van Groenigen KJ (2017) Sequestering Soil Organic Carbon: A Nitrogen Dilemma Environ. Sci Technol 51:4738–4739. https://doi.org/10.1021/acs.est.7b01427
– reference: LeifeldJMenichettiLThe underappreciated potential of peatlands in global climate change mitigation strategiesSoil Biol Biochem2018981091261:CAS:528:DC%2BC1cXhtFaru73J10.1038/s41467-018-03406-6
– reference: FaninNMoorheadDBertrandIEco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradientBiogeochemistry201612921361:CAS:528:DC%2BC28XosVars7c%3D10.1007/s10533-016-0217-5
– reference: DerrienDMarolCBalabaneMBalesdentJThe turnover of carbohydrate carbon in a cultivated soil estimated by 13C natural abundancesEur J Soil Sci2006575475571:CAS:528:DC%2BD28XptVKjt70%3D10.1111/j.1365-2389.2006.00811.x
– reference: LemaireGTangLBéllangerGZhuYJeuffroyMGForward new paradigms for crop mineral nutrition and fertilization towards sustainable agricultureEur J Agron20211251262481:CAS:528:DC%2BB3MXhtVOmsbbI10.1016/j.eja.2021.126248
– reference: Kögel-KnabnerIGuggenbergerGKleberMKandelerEKalbitzKScheuSEusterhuesKLeinweberPOrgano-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistryJ Plant Nutr Soil Sci2008171161821:CAS:528:DC%2BD1cXisFyhur4%3D10.1002/jpln.200700048
– reference: Chassé M, Luftalla S, Cécillon L, Baudin F, Abiven S, Chenu C, Barré P (2021) Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics. Biogeosciences 18:1703–1718. https://doi.org/10.5194/bg-18-1703-2021
– reference: DynarskiKABossioDAScowKMDynamic stability of soil C: Reassessing the "permanence" of soil carbon sequestrationFront Environ Sci2020821810.3389/fenvs.2020.514701
– reference: MoorheadDLLashermesGSinsabaughRLA theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decompositionSoil Biol Biochem2012531331411:CAS:528:DC%2BC38XhtVels7vP10.1016/j.soilbio.2012.05.011
– reference: LejolyJQuideauSLaganièreJInvasive earthworms affect soil morphological features and carbon stocks in boreal forestsGeoderma20214041152621:CAS:528:DC%2BB3MXisV2msbjP10.1016/j.geoderma.2021.115262
– reference: SchultenHRLeinweberPCharacterization of humic and soil particles by analytical pyrolysis and computer modelingJ Anal Appl Pyrolysis1996381531:CAS:528:DyaK2sXptlSqsA%3D%3D10.1016/S0165-2370(96)00954-0
– reference: RasseDPRumpelCDignacMFIs soil carbon mostly root carbon? Mechanisms for a specific stabilisationPlant Soil20052693413561:CAS:528:DC%2BD2MXks1Oju7c%3D10.1007/s11104-004-0907-y
– reference: TrumboreSRadiocarbon and soil carbon dynamicsAnnu Rev Earth Planet Sci20093747661:CAS:528:DC%2BD1MXmvVCktrk%3D10.1146/annurev.earth.36.031207.124300
– reference: SoussanaJFLutfallaSEhrhardtFRosenstockTLamannaCHavlíkPRichardsMWollenbergELChotteJLTorquebiauECiaisPSmithPLalRMatching policy and science: Rationale for the 4 per 1000-soils for food security and climate initiativeSoil Tillage Res201918831510.1016/j.still.2017.12.002
– reference: LehmannJKleberMThe contentious nature of soil organic matterNature201552860681:CAS:528:DC%2BC2MXhvVOqs7fE10.1038/nature1606926595271
– reference: Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol https://doi.org/10.3389/fmicb.2012.00348
– reference: DerrienDAmelungWComputing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model frameworkEur J Soil Sci20116223725210.1111/j.1365-2389.2010.01333.x
– reference: LubbersIMPullemanMMVan GroenigenJWCan earthworms simultaneously enhance decomposition and stabilization of plant residue carbon?Soil Biol Biochem201710512241:CAS:528:DC%2BC28XhvVeqsLjO10.1016/j.soilbio.2016.11.008
– reference: FloudasDBinderMRileyRBarryKBlanchetteRAHenrissatBMartínezATOtillarRSpataforaJWYadavJSAertsAThe Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomesScience2012336171517191:CAS:528:DC%2BC38XptFWntb0%3D10.1126/science.122174822745431
– reference: JanuszGPawlikASulejJŚwiderska-BurekUJarosz-WilkołazkaAPaszczyńskiALignin degradation: microorganisms, enzymes involved, genomes analysis and evolutionFEMS Microbiol Rev2017419419621:CAS:528:DC%2BC1cXhvFWmtL7M10.1093/femsre/fux049290883555812493
– reference: DrinkwaterLSnappSNutrients in agroecosystems: rethinking the management paradigmAdv Agron2007921631861:CAS:528:DC%2BD1cXktlyjsbY%3D10.1016/S0065-2113(04)92003-2
– reference: FinkePOpolotEBalesdentJBerheAABoeckxPCornuSHardenJHattéCWilliamsEDoetterlSCan SOC modelling be improved by accounting for pedogenesis?Geoderma20193385135241:CAS:528:DC%2BC1cXitVOitL%2FO10.1016/j.geoderma.2018.10.018
– reference: BertrandIChabbertBKurekBRecousSCan the biochemical features and histology of wheat residues explain their decomposition in soil?Plant Soil20062812913071:CAS:528:DC%2BD28Xktlyhtrg%3D10.1007/s11104-005-4628-7
– reference: NewcombCJQafokuNPGrateJWBaileyVLDe YoreoJJDeveloping a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral bindingNat Commun201783961:CAS:528:DC%2BC1cXos1Sksbw%3D10.1038/s41467-017-00407-9288555065577185
– reference: MoorheadDLLashermesGSinsabaughRLWeintraubMNCalculating co-metabolic costs of lignin decay and their impacts on carbon use efficiencySoil Biol Biochem20136617191:CAS:528:DC%2BC3sXhsVahs7jI10.1016/j.soilbio.2013.06.016
– reference: SoucémarianadinLCécillonLChenuCBaudinFNicolasMGirardinCDelahaieABarréPHeterogeneity of the chemical composition and thermal stability of particulate organic matter in French forest soilsGeoderma201934265741:CAS:528:DC%2BC1MXjt1Sktbw%3D10.1016/j.geoderma.2019.02.008
– reference: FrancavigliaRColemanKWhitmoreAPDoroLUrracciGRubinoMLeddaLChanges in soil organic carbon and climate change–Application of the RothC model in agro-silvo-pastoral Mediterranean systemsAgric Syst2012112485410.1016/j.agsy.2012.07.001
– reference: PlanteAFernándezJMHaddixMLSteinwegJMConantRTBiological, chemical and thermal indices of soil organic matter stability in four grassland soilsSoil Biol Biochem2011435105110581:CAS:528:DC%2BC3MXjsFCmtLc%3D10.1016/j.soilbio.2011.01.024
– reference: Sainte-MarieJBarrandonMSaint-AndréLGelhayeEMartinFDerrienDC-STABILITY an innovative modeling framework to leverage the continuous representation of organic matterNat Commun2021121131:CAS:528:DC%2BB3MXjvFGqs7w%3D10.1038/s41467-021-21079-6
– reference: AminBAZChabbertBMoorheadDBertrandIImpact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soilBiogeochemistry20141171691831:CAS:528:DC%2BC2cXotlagsw%3D%3D10.1007/s10533-013-9856-y
– reference: SollinsPHomannPCaldwellBAStabilization and destabilization of soil organic matter: mechanisms and controlsGeoderma1996746510510.1016/S0016-7061(96)00036-5
– reference: WadouxACSamuel-RosaAPoggioLMulderVLA note on knowledge discovery and machine learning in digital soil mappingEur J Soil Sci20207113313610.1111/ejss.12909
– reference: Lashermes G, Moorhead D, Recous S, Bertrand I (2014) Interacting microbe and litter quality controls on litter decomposition: a modeling analysis. PLoS One 9.https://doi.org/10.1371/journal.pone.0108769
– reference: RoviraPKurz-BessonCCoûteauxMMVallejoVRChanges in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetrySoil Biol Biochem2008401721851:CAS:528:DC%2BD2sXhtF2iu7nN10.1016/j.soilbio.2007.07.021
– reference: Valade A, Luyssaert S, Vallet P, Djomo SN, Van Der Kellen IJ, Bellassen V (2018) Carbon costs and benefits of France's biomass energy production target. CBM https://doi.org/10.1186/s13021-018-0113-5
– volume: 455
  start-page: 1
  year: 2020
  ident: 876_CR103
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04651-9
– volume: 630
  start-page: 389
  year: 2018
  ident: 876_CR45
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.02.209
– ident: 876_CR161
  doi: 10.3389/fmicb.2018.02986
– volume: 48
  start-page: 207
  issue: 2
  year: 2019
  ident: 876_CR125
  publication-title: J Environ Qual
  doi: 10.2134/jeq2019.01.0036
– volume: 336
  start-page: 1715
  year: 2012
  ident: 876_CR77
  publication-title: Science
  doi: 10.1126/science.1221748
– volume: 11
  start-page: 407
  year: 2013
  ident: 876_CR63
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-013-0433-3
– volume: 7
  start-page: 320
  year: 2010
  ident: 876_CR121
  publication-title: Environ Chem
  doi: 10.1071/EN10006
– volume: 2
  start-page: 441
  year: 2019
  ident: 876_CR9
  publication-title: Commun Biol
  doi: 10.1038/s42003-019-0684-z
– volume: 33
  start-page: 357
  year: 2002
  ident: 876_CR87
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(01)00166-8
– ident: 876_CR138
  doi: 10.3389/fmicb.2016.01315
– volume: 8
  start-page: 396
  year: 2017
  ident: 876_CR179
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00407-9
– volume: 63
  start-page: 1350
  year: 1999
  ident: 876_CR220
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1999.6351350x
– volume: 559
  start-page: 599
  issue: 7715
  year: 2018
  ident: 876_CR15
  publication-title: Nature
  doi: 10.1038/s41586-018-0328-3
– volume: 27
  start-page: 237
  year: 2021
  ident: 876_CR90
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15342
– volume: 269
  start-page: 341
  year: 2005
  ident: 876_CR197
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0907-y
– volume: 123
  start-page: 64
  year: 2018
  ident: 876_CR210
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.04.026
– volume: 98
  start-page: 109
  year: 2018
  ident: 876_CR153
  publication-title: Soil Biol Biochem
  doi: 10.1038/s41467-018-03406-6
– volume: 8
  start-page: 776
  year: 2015
  ident: 876_CR52
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2520
– volume: 5
  start-page: 265
  year: 2014
  ident: 876_CR200
  publication-title: Carbon Manag
  doi: 10.1080/17583004.2014.923226
– volume: 338
  start-page: 143
  year: 2011
  ident: 876_CR205
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0391-5
– volume: 5
  start-page: 41
  year: 2017
  ident: 876_CR30
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2017.00041
– ident: 876_CR212
  doi: 10.1007/s10533-022-00942-8
– ident: 876_CR240
  doi: 10.1186/s13021-018-0113-5
– volume: 12
  start-page: 1
  year: 2021
  ident: 876_CR254
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24192-8
– volume: 384
  start-page: 114785
  year: 2021
  ident: 876_CR130
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114785
– volume: 450
  start-page: 277
  year: 2007
  ident: 876_CR78
  publication-title: Nature Lett
  doi: 10.1038/nature06275
– ident: 876_CR3
  doi: 10.1111/ejss.13141
– volume: 3
  start-page: 371
  year: 1949
  ident: 876_CR174
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.03.100149.002103
– volume: 4
  start-page: 196
  year: 2001
  ident: 876_CR55
  publication-title: Ecol Lett
  doi: 10.1046/j.1461-0248.2001.00210.x
– volume: 135
  start-page: 277
  year: 2017
  ident: 876_CR186
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0373-2
– volume: 292
  start-page: 59
  year: 2017
  ident: 876_CR171
  publication-title: Geoderma
  doi: 10.1016/j.geoderma2017.01.002
– volume: 75
  start-page: 2030
  year: 2011
  ident: 876_CR136
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2011.01.020
– volume: 66
  start-page: 17
  year: 2013
  ident: 876_CR176
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.06.016
– volume: 48
  start-page: 295
  year: 1997
  ident: 876_CR8
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.1997.tb00549.x
– volume: 102
  start-page: 357
  year: 2014
  ident: 876_CR17
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12200
– ident: 876_CR196
  doi: 10.13140/RG.2.2.35757.82405
– volume: 134
  start-page: 162
  year: 2019
  ident: 876_CR188
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.03.027
– ident: 876_CR226
– ident: 876_CR232
– volume: 13
  start-page: 687
  year: 2020
  ident: 876_CR94
  publication-title: Nat Geosci
  doi: 10.1038/s41561-020-0634-x
– volume: 48
  start-page: 233
  year: 2019
  ident: 876_CR177
  publication-title: J Environ Qual
  doi: 10.2134/jeq2019.02.0002c
– volume: 118
  start-page: 99
  year: 2019
  ident: 876_CR49
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2019.04.004
– volume: 23
  start-page: 751
  year: 2015
  ident: 876_CR238
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2015.10.004
– volume: 42
  start-page: 1489
  year: 2012
  ident: 876_CR96
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2011.05.002
– volume: 120
  start-page: 246
  year: 2018
  ident: 876_CR194
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.02.016
– volume: 76
  start-page: 1048
  issue: 3
  year: 2012
  ident: 876_CR233
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2011.0328
– volume: 7
  start-page: 13630
  year: 2016
  ident: 876_CR114
  publication-title: Nat Commun
  doi: 10.1038/ncomms13630
– volume-title: A Global Database of Soil Respiration Data, Version 5.0
  year: 2021
  ident: 876_CR112
  doi: 10.3334/ORNLDAAC/1827
– volume: 36
  start-page: 1355
  year: 2022
  ident: 876_CR25
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.14038
– volume: 193
  start-page: 629
  year: 2006
  ident: 876_CR83
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2005.08.045
– volume: 201824
  start-page: 1873
  year: 2018
  ident: 876_CR89
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14069
– volume: 6
  start-page: 143
  year: 2018
  ident: 876_CR253
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2018.00143
– volume: 78
  start-page: 222
  year: 2014
  ident: 876_CR23
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.08.005
– volume: 34
  start-page: 139
  year: 2002
  ident: 876_CR129
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(01)00158-4
– volume: 31
  start-page: e02290
  year: 2021
  ident: 876_CR28
  publication-title: Ecol Appl
  doi: 10.1002/eap.2290
– volume: 130
  start-page: 1
  year: 2016
  ident: 876_CR19
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0246-0
– volume: 478
  start-page: 49
  year: 2011
  ident: 876_CR213
  publication-title: Nature
  doi: 10.1038/nature10386
– volume: 32
  start-page: 2099
  year: 2000
  ident: 876_CR221
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 57
  start-page: 547
  year: 2006
  ident: 876_CR59
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2006.00811.x
– volume: 9
  start-page: 279
  year: 2015
  ident: 876_CR115
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.09.005
– volume: 27
  start-page: 2039
  year: 2021
  ident: 876_CR249
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15550
– volume: 88
  start-page: 333
  year: 2015
  ident: 876_CR91
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.06.014
– volume: 793
  start-page: 148569
  year: 2021
  ident: 876_CR202
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.148569
– ident: 876_CR18
  doi: 10.5194/bg-2017-395
– volume: 12
  start-page: 989
  year: 2019
  ident: 876_CR51
  publication-title: Nat Geosci
  doi: 10.1038/s41561-019-0484-6
– volume: 60
  start-page: 77
  year: 2013
  ident: 876_CR120
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2013.01.011
– volume: 22
  start-page: 277
  year: 2020
  ident: 876_CR206
  publication-title: Entropy
  doi: 10.3390/e22030277
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 876_CR5
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18887-7
– volume: 140
  start-page: 81
  year: 2018
  ident: 876_CR20
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0475-5
– volume: 51
  start-page: 575
  year: 2000
  ident: 876_CR235
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2000.00348.x
– volume: 10
  start-page: 179
  year: 2017
  ident: 876_CR88
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-017-0865-2
– volume: 18
  start-page: 1241
  year: 2021
  ident: 876_CR215
  publication-title: Biogeosciences
  doi: 10.5194/bg-18-1241-2021
– volume: 125
  start-page: 126248
  year: 2021
  ident: 876_CR156
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2021.126248
– volume: 85
  start-page: 133
  year: 2015
  ident: 876_CR256
  publication-title: Ecol Monogr
  doi: 10.1890/14-0777.1
– volume: 192
  start-page: 189
  year: 2013
  ident: 876_CR192
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.003
– volume: 9
  start-page: 1
  year: 2018
  ident: 876_CR219
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04526-9
– volume: 339
  start-page: 1615
  year: 2013
  ident: 876_CR48
  publication-title: Science
  doi: 10.1126/science.1231923
– volume: 188
  start-page: 134
  year: 2014
  ident: 876_CR62
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2014.02.014
– volume: 365
  start-page: 1119
  issue: 6458
  year: 2019
  ident: 876_CR92
  publication-title: Science
  doi: 10.1126/science.aax4737
– volume: 14
  start-page: 083004
  year: 2020
  ident: 876_CR12
  publication-title: Environ Res Lett
  doi: 10.1111/1462-2920.15159
– volume: 55
  start-page: 1077
  issue: 2
  year: 2013
  ident: 876_CR191
  publication-title: Radiocarbon
  doi: 10.1017/S0033822200058215
– volume: 156
  start-page: 1
  year: 2021
  ident: 876_CR10
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2021.108189
– volume: 111
  start-page: 41
  year: 2012
  ident: 876_CR170
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9658-z
– volume: 20
  start-page: 1043
  year: 2017
  ident: 876_CR228
  publication-title: Ecol Lett
  doi: 10.1111/ele.12802
– volume: 8
  start-page: 161
  year: 2020
  ident: 876_CR22
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2020.579904
– volume: 13
  start-page: 123
  year: 2017
  ident: 876_CR195
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0291-8
– ident: 876_CR65
  doi: 10.21203/rs.3.rs-388050/v1
– volume: 48
  start-page: 217
  year: 2019
  ident: 876_CR180
  publication-title: J Environ Qual
  doi: 10.2134/jeq2019.02.0041
– volume: 70
  start-page: 555
  year: 2006
  ident: 876_CR222
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2004.0347
– ident: 876_CR104
  doi: 10.1016/J.EJSOBI.2003.08.002
– ident: 876_CR160
  doi: 10.1016/j.scitotenv.2021.146732
– start-page: 237
  volume-title: Evaluation of soil organic matter models
  year: 1996
  ident: 876_CR50
  doi: 10.1007/978-3-642-61094-3_17
– volume: 59
  start-page: 346
  year: 2021
  ident: 876_CR4
  publication-title: Soil Res
  doi: 10.1071/SR20257
– volume: 20
  start-page: 1174
  year: 2014
  ident: 876_CR187
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.12493
– volume: 8
  start-page: 1089
  year: 2017
  ident: 876_CR93
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01123-0
– volume: 84
  start-page: 355
  year: 2004
  ident: 876_CR201
  publication-title: Can J Soil Sci
  doi: 10.4141/S04-003
– volume: 570
  start-page: 228
  year: 2019
  ident: 876_CR97
  publication-title: Nature
  doi: 10.1038/s41586-019-1280-6
– volume: 368
  start-page: 20130164
  issue: 1621
  year: 2013
  ident: 876_CR80
  publication-title: Philos Trans Royal Soc B: Biol Sci
  doi: 10.1098/rstb.2013.0164
– volume: 31
  start-page: 697
  year: 2000
  ident: 876_CR13
  publication-title: Org Geochem
  doi: 10.1016/S0146-6380(00)00049-8
– ident: 876_CR185
– volume: 7
  start-page: 307
  year: 2017
  ident: 876_CR43
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate3286
– volume: 338
  start-page: 513
  year: 2019
  ident: 876_CR76
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.018
– ident: 876_CR1
  doi: 10.1038/srep15991
– volume: 28
  start-page: 689
  year: 2019
  ident: 876_CR67
  publication-title: Sci Educ
  doi: 10.1007/s11191-019-00048-y
– volume: 188
  start-page: 41
  year: 2019
  ident: 876_CR46
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2018.04.011
– volume: 41
  start-page: 941
  year: 2017
  ident: 876_CR108
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fux049
– ident: 876_CR44
  doi: 10.5194/bg-18-1703-2021
– volume: 144
  start-page: 104016
  year: 2020
  ident: 876_CR145
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2020.104016
– volume: 105
  start-page: 12
  year: 2017
  ident: 876_CR162
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.11.008
– volume: 37
  start-page: 47
  year: 2009
  ident: 876_CR236
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.36.031207.124300
– volume: 528
  start-page: 60
  year: 2015
  ident: 876_CR149
  publication-title: Nature
  doi: 10.1038/nature16069
– volume: 53
  start-page: 133
  year: 2012
  ident: 876_CR175
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.05.011
– volume: 100
  start-page: 66
  year: 2016
  ident: 876_CR165
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.05.019
– volume: 125
  start-page: 10
  year: 2018
  ident: 876_CR193
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.06.025
– volume: 287
  start-page: 31
  year: 2017
  ident: 876_CR134
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.027
– volume: 38
  start-page: 419
  year: 2006
  ident: 876_CR111
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.10.008
– volume: 35
  start-page: 1021
  year: 2015
  ident: 876_CR173
  publication-title: A review. Agron Sustain Dev
  doi: 10.1007/s13593-015-0284-3
– ident: 876_CR182
  doi: 10.1016/j.scitotenv.2016.10.073
– volume: 60
  start-page: 40
  year: 2013
  ident: 876_CR178
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2013.04.011
– ident: 876_CR61
  doi: 10.1007/s13593-017-0421-2
– volume: 141
  start-page: 109
  year: 2018
  ident: 876_CR229
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0509-z
– volume: 141
  start-page: 107689
  year: 2020
  ident: 876_CR167
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107689
– volume: 43
  start-page: 1051
  issue: 5
  year: 2011
  ident: 876_CR190
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.01.024
– volume: 17
  start-page: 378
  year: 2009
  ident: 876_CR237
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2009.05.004
– volume: 342
  start-page: 65
  year: 2019
  ident: 876_CR224
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.008
– volume: 6
  start-page: 1749
  year: 2012
  ident: 876_CR214
  publication-title: ISME J
  doi: 10.1038/ismej.2012.11
– volume: 12
  start-page: 547
  year: 2019
  ident: 876_CR245
  publication-title: Nat Geosci
  doi: 10.1038/s41561-019-0373-z
– volume: 6
  start-page: eaay6792
  issue: 13
  year: 2020
  ident: 876_CR75
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aay6792
– ident: 876_CR36
  doi: 10.1038/ngeo2940
– volume: 50
  start-page: 147
  year: 2014
  ident: 876_CR154
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-013-0822-6
– volume: 26
  start-page: 6631
  year: 2020
  ident: 876_CR251
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15365
– volume: 214
  start-page: 103525
  year: 2021
  ident: 876_CR255
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2021.103525
– volume: 112
  start-page: 48
  year: 2012
  ident: 876_CR81
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2012.07.001
– volume: 12
  start-page: 4351
  year: 2020
  ident: 876_CR113
  publication-title: Sustainability
  doi: 10.3390/su12114351
– volume: 171
  start-page: 61
  issue: 1
  year: 2008
  ident: 876_CR131
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200700048
– volume: 39
  start-page: 54
  year: 2019
  ident: 876_CR27
  publication-title: Agron Sustain Dev
  doi: 10.1007/s13593-019-0599-6
– volume: 88
  start-page: 90
  year: 2015
  ident: 876_CR189
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.108068
– volume: 191
  start-page: 77
  year: 1997
  ident: 876_CR95
  publication-title: Plant Soil
  doi: 10.1023/A:1004213929699
– volume: 19
  start-page: 5117
  year: 2017
  ident: 876_CR250
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13990
– ident: 876_CR34
  doi: 10.1016/s0038-0717(99)00105-4
– volume: 8
  start-page: 218
  year: 2020
  ident: 876_CR69
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2020.514701
– volume: 11
  start-page: 5125
  year: 2020
  ident: 876_CR172
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18795-w
– volume: 112
  start-page: 177
  year: 2017
  ident: 876_CR181
  publication-title: Org Geochem
  doi: 10.1016/j.orggeochem.2017.06.012
– ident: 876_CR164
  doi: 10.1038/s41561-021-00744-x
– volume: 40
  start-page: 172
  year: 2008
  ident: 876_CR203
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.07.021
– ident: 876_CR241
  doi: 10.1021/acs.est.7b01427
– volume: 27
  start-page: 904
  year: 2021
  ident: 876_CR74
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.15441
– volume: 252
  start-page: 126832
  year: 2021
  ident: 876_CR98
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2021.126832
– ident: 876_CR211
  doi: 10.3389/fmicb.2012.00348
– volume: 188
  start-page: 3
  year: 2019
  ident: 876_CR225
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2017.12.002
– volume: 28
  start-page: 683
  year: 2013
  ident: 876_CR86
  publication-title: Ecol Res
  doi: 10.1007/s11284-012-1022-9
– volume: 128
  start-page: 3
  year: 2005
  ident: 876_CR60
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.022
– volume: 92
  start-page: 1052e1062
  year: 2011
  ident: 876_CR128
  publication-title: Ecology
  doi: 10.1890/10-1307.1
– ident: 876_CR139
  doi: 10.1371/journal.pone.0108769
– volume: 176
  start-page: 313
  issue: 3-4
  year: 2004
  ident: 876_CR35
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2004.01.011
– ident: 876_CR47
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 876_CR100
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34951-w
– volume: 106
  start-page: 77
  year: 2010
  ident: 876_CR124
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(10)06003-7
– volume: 47
  start-page: 485
  year: 1996
  ident: 876_CR14
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.1996.tb01848.x
– volume: 17
  start-page: 5223
  year: 2020
  ident: 876_CR21
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-5223-2020
– volume: 88
  start-page: 2105
  year: 2007
  ident: 876_CR53
  publication-title: Ecology
  doi: 10.1890/06-1847.1
– volume: 3
  start-page: 11
  issue: 1
  year: 2019
  ident: 876_CR54
  publication-title: Soil Syst
  doi: 10.3390/soilsystems3010011
– volume: 652
  start-page: 523
  year: 2019
  ident: 876_CR119
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.236
– volume: 24
  start-page: 1762
  issue: 4
  year: 2018
  ident: 876_CR133
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14009
– volume: 92
  start-page: 163
  year: 2007
  ident: 876_CR64
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(04)92003-2
– ident: 876_CR42
  doi: 10.5194/gmd-14-3879-2021
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 876_CR84
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01116-z
– volume: 53
  start-page: 899
  year: 2018
  ident: 876_CR183
  publication-title: J Environ Sci Health Part A
  doi: 10.1080/10934529.2018.1459076
– start-page: 155
  volume-title: Advances in Agronomy
  year: 2008
  ident: 876_CR6
  doi: 10.1016/S0065-2113(08)00606-8
– volume: 114
  start-page: 9575
  year: 2017
  ident: 876_CR208
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1706103114
– volume: 1
  start-page: 238
  year: 2008
  ident: 876_CR150
  publication-title: Nat Geosci
  doi: 10.1038/ngeo155
– ident: 876_CR11
  doi: 10.3389/fsoil.2022.831775
– volume: 196
  start-page: 79
  year: 2012
  ident: 876_CR166
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 8
  start-page: 1911
  year: 2011
  ident: 876_CR38
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-1911-2011
– volume: 94
  start-page: 48
  year: 2016
  ident: 876_CR72
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.11.007
– volume: 74
  start-page: 65
  year: 1996
  ident: 876_CR223
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(96)00036-5
– volume: 38
  start-page: 1
  year: 1996
  ident: 876_CR216
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/S0165-2370(96)00954-0
– volume: 39
  start-page: 827
  year: 2007
  ident: 876_CR33
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.09.030
– volume: 461
  start-page: 117844
  year: 2020
  ident: 876_CR146
  publication-title: For Ecol Managt
  doi: 10.1016/j.foreco.2019.117844
– ident: 876_CR142
  doi: 10.1111/gcb.14859
– volume: 43
  start-page: 273
  year: 2015
  ident: 876_CR29
  publication-title: Annu Rev Earth Pl Sc
  doi: 10.1146/annurev-earth-060614-105038
– volume: 3
  start-page: 1
  year: 2013
  ident: 876_CR163
  publication-title: Nat Clim Chang
  doi: 10.1038/NCLIMATE1692
– start-page: 496
  volume-title: Humus chemistry: genesis, composition, reactions
  year: 1994
  ident: 876_CR227
– volume: 102
  start-page: e03328
  year: 2021
  ident: 876_CR101
  publication-title: Ecology
  doi: 10.1002/ecy.3328
– volume: 153
  start-page: 1
  year: 2015
  ident: 876_CR230
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2015.04.007
– volume: 71
  start-page: 133
  year: 2020
  ident: 876_CR247
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12909
– volume: 104
  start-page: 512
  year: 2019
  ident: 876_CR68
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.05.035
– volume: 337
  start-page: 641
  year: 2019
  ident: 876_CR199
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.009
– volume: 128
  start-page: 167
  year: 2005
  ident: 876_CR70
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.024
– volume: 98
  start-page: 109
  year: 2016
  ident: 876_CR184
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.04.001
– volume: 17
  start-page: 1097
  year: 2011
  ident: 876_CR126
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2010.02278.x
– volume: 127
  start-page: 157
  year: 2016
  ident: 876_CR118
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0180-6
– volume: 145
  start-page: 112
  year: 2020
  ident: 876_CR32
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2020.112122
– volume: 85
  start-page: 467
  year: 2005
  ident: 876_CR110
  publication-title: Can J Soil Sci
  doi: 10.4141/S04-081
– volume: 2
  start-page: 17105
  year: 2017
  ident: 876_CR159
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.105
– volume-title: Soil Ecology
  year: 2001
  ident: 876_CR143
  doi: 10.1007/978-94-017-5279-4
– start-page: 67
  volume-title: Soil organic matter in sustainable agriculture
  year: 2004
  ident: 876_CR248
– volume: 12
  start-page: 61
  year: 2020
  ident: 876_CR144
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-12-61-2020
– volume: 60
  start-page: 297
  year: 2009
  ident: 876_CR140
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2008.01110.x
– volume: 515
  start-page: 505
  issue: 7528
  year: 2014
  ident: 876_CR16
  publication-title: Nature
  doi: 10.1038/nature13855
– volume: 3
  start-page: 315
  year: 2010
  ident: 876_CR107
  publication-title: Nat Geosci
  doi: 10.1038/ngeo844
– ident: 876_CR24
  doi: 10.1029/2011JG001790
– volume: 60
  start-page: 230
  year: 2009
  ident: 876_CR151
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2008.01111.x
– volume: 22
  start-page: 3838
  year: 2020
  ident: 876_CR239
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15159
– volume: 137
  start-page: 27
  year: 2018
  ident: 876_CR204
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0410-1
– volume: 80
  start-page: 146
  year: 2015
  ident: 876_CR218
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.09.023
– ident: 876_CR198
  doi: 10.1016/B978-0-12-811050-8.00003-0/B978-0-12-811050-8.00003-0
– volume: 18
  start-page: 1781
  year: 2012
  ident: 876_CR66
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2012.02665.x
– volume: 13
  start-page: 529
  year: 2020
  ident: 876_CR148
  publication-title: Nat Geosci
  doi: 10.1038/s41561-020-0612-3
– volume: 35
  start-page: 41
  year: 1949
  ident: 876_CR99
  publication-title: C Acad Agric Fr
– ident: 876_CR147
  doi: 10.4324/9780203762264-17
– ident: 876_CR141
  doi: 10.1016/j.scitotenv.2021.150883
– volume: 25
  start-page: 3578
  year: 2019
  ident: 876_CR158
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14781
– volume: 6
  start-page: 751
  year: 2016
  ident: 876_CR37
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate3071
– volume: 2
  start-page: 402
  issue: 6
  year: 2021
  ident: 876_CR122
  publication-title: Nature Rev Earth Environ
  doi: 10.1038/s43017-021-00162-y
– volume: 129
  start-page: 21
  year: 2016
  ident: 876_CR73
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0217-5
– volume: 124
  start-page: 143
  year: 2005
  ident: 876_CR152
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.04.009
– volume: 236
  start-page: 243
  year: 2017
  ident: 876_CR40
  publication-title: Agr Ecosyst Environt
  doi: 10.1016/j.agee.2016.12.011
– volume: 5
  start-page: 588
  year: 2015
  ident: 876_CR117
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate2580
– volume: 34
  start-page: e2019GB006387
  year: 2020
  ident: 876_CR56
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2019GB006387
– volume: 21
  start-page: 530
  year: 2011
  ident: 876_CR106
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2010.11.007
– volume: 39
  start-page: 2183
  year: 2007
  ident: 876_CR246
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.03.007
– volume: 281
  start-page: 291
  year: 2006
  ident: 876_CR26
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-4628-7
– volume: 12
  start-page: 1
  year: 2021
  ident: 876_CR207
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21079-6
– volume: 24
  start-page: 1563
  year: 2018
  ident: 876_CR252
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13979
– volume: 140
  start-page: 1
  year: 2018
  ident: 876_CR31
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0478-2
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 876_CR85
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-31540-9
– ident: 876_CR109
  doi: 10.1016/j.scitotenv.2021.151051
– ident: 876_CR169
  doi: 10.1080/10643389.2020.1838214
– volume: 58
  start-page: 701
  year: 2008
  ident: 876_CR217
  publication-title: Bio Sci
  doi: 10.1641/B580807
– start-page: 59
  volume-title: Dixon, G. R.
  year: 2010
  ident: 876_CR105
  doi: 10.1007/978-90-481-9479-7_3
– volume: 24
  start-page: e458
  year: 2018
  ident: 876_CR132
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13887
– volume: 130
  start-page: 1
  year: 2015
  ident: 876_CR123
  publication-title: AdvAgron
  doi: 10.1016/bs.agron.2014.10.005
– volume: 117
  start-page: 215
  year: 2020
  ident: 876_CR157
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1007/s10705-020-10065-x
– volume: 8
  start-page: 352
  year: 2005
  ident: 876_CR234
  publication-title: Ecosystems
  doi: 10.1007/s10021-004-0259-8
– ident: 876_CR137
– volume: 7
  start-page: 55
  year: 2019
  ident: 876_CR243
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2019.00055
– volume: 15
  start-page: 1058
  year: 2012
  ident: 876_CR2
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2012.01807.x
– volume: 6
  start-page: 6707
  year: 2015
  ident: 876_CR135
  publication-title: Nat Commun
  doi: 10.1038/ncomms7707
– volume: 53
  start-page: 479
  year: 2017
  ident: 876_CR242
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-017-1191-3
– volume: 117
  start-page: 169
  year: 2014
  ident: 876_CR7
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9856-y
– volume: 171
  start-page: 91
  year: 2008
  ident: 876_CR168
  publication-title: J Plant Nutr Soil Sci
  doi: 10.1002/jpln.200700049
– volume: 39
  start-page: 9009
  year: 2005
  ident: 876_CR231
  publication-title: Environ Sci Technol
  doi: 10.1021/es050778q
– volume: 40
  start-page: 1
  year: 2010
  ident: 876_CR127
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643380802000974
– volume: 40
  start-page: 616
  year: 2008
  ident: 876_CR102
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.09.008
– volume: 17
  start-page: 4961
  year: 2020
  ident: 876_CR71
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-4961-2020
– volume: 62
  start-page: 237
  year: 2011
  ident: 876_CR58
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2010.01333.x
– ident: 876_CR41
– volume: 404
  start-page: 115262
  year: 2021
  ident: 876_CR155
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115262
– volume: 154
  start-page: 103655
  year: 2020
  ident: 876_CR57
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2020.103655
– volume: 43
  start-page: 86
  year: 2011
  ident: 876_CR79
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2010.09.017
– volume: 113
  start-page: 10968
  year: 2016
  ident: 876_CR257
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1608454113
– volume: 10
  start-page: 1146
  year: 2019
  ident: 876_CR116
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01146
– volume: 13
  start-page: 104
  year: 2010
  ident: 876_CR209
  publication-title: Environ Sci Pol
  doi: 10.1016/j.envsci.2009.12.005
– ident: 876_CR82
  doi: 10.1002/9781119438274.ch5
– volume: 644
  start-page: 452
  year: 2018
  ident: 876_CR39
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.322
– volume: 156
  start-page: 1
  year: 2010
  ident: 876_CR244
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.028
SSID ssj0041774
Score 2.4783454
SecondaryResourceType review_article
Snippet There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Agrarian society
Agriculture
Agronomy
biomass
Biomedical and Life Sciences
Carbon sequestration
climate
Climate change
Data management
Decision making
Environmental Sciences
forestry
information management
Life Sciences
Microorganisms
Organic carbon
Organic matter
Particulate organic matter
Review
Review Article
soil
soil carbon
Soil dynamics
Soil organic matter
Soil Science & Conservation
Soils
stakeholders
Sustainable Development
Title Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review
URI https://link.springer.com/article/10.1007/s13593-023-00876-x
https://www.ncbi.nlm.nih.gov/pubmed/36777236
https://www.proquest.com/docview/2773851740
https://www.proquest.com/docview/2775954662
https://www.proquest.com/docview/3153744838
https://hal.inrae.fr/hal-04032123
https://pubmed.ncbi.nlm.nih.gov/PMC9901420
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7R9gKHinddSrQgbrAo3pft3qyoJeJ1IlI5WWt7TSMaJ4rTir_BP-7M2k4aSpE4WHG8Y2eV2dn9xjPzLcAbROCxLsuYo74VV9LkPNbWcG2VCB2eKUfvIb98NeOJ-nimz7qisKbPdu9Dkn6m3hS7SU25ZgIP4lHjiBz3NPnuOIonIu3nXxVGnnuZPjjtptGVyvz9GVvL0c45JUPeRpq3Eyb_iJr6xej0Iex3KJKlrdofwT1XP4YH6Y9lx6ThnsDvjnmJtcnoPvvCNWxes5mjat9pM2u6Nk_LzZr59IIVdpmjCKVM4kRzzKY3Es4Z4ltG9BLLthiiYfQSly1uMB41zNYlW3iuYT6zP_HKe5aytj7mKUxOT76Nxrzbf4EXWoUrHlZF4ioXFwlFG6vhsLRo4JogWSmsipKwQBHEKBViX4dfk0INS6WcFVFZII58Brs1_vgBsEoorRB5GcQX6NGZXFehEQjspdSFzVUAYa-GrOjIyWmPjItsQ6tMqstQdZlXXfYrgLfrexYtNcc_pV-jdteCxKo9Tj9ndA3nMUkr-FUYwFGv_Kyz5SYTETH-oOc2DODVuhmtkEIrtnbzSy-jE62MEXfLSFxcIvSGZRzA83Y8rbsjTYRujjQBRFsjbau_2y319NyzgVNgUwns27t-TG66fvffcfh_4i_gvvBWQ3k8R7C7Wl66l4jGVvkA9tIP3z-dDGBnZEYDb4rXaVkv-A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgPMAeEL8X2IZBvIFH7dhOsreq2lSg29Mm7c1yHIdVrGnVdIh_g_-YO8ft1o0h8RA1jS-p1fPZ3-XuPhPyARB4rqoqZ6BvyWSqS5Yrq5myUnAPZ9Lje8ijYz08lV_P1FmkycFamBvx-88tTxVmmAk4kD2NAV58IMFTxvS9gR4sZ13Js8C4jB8M99CIBTJ_f8baInT_HFMgb-PL22mSN2KlYQk6fEIeR-xI-52yn5J7vnlGNvvf55E_wz8nvyPfEu1S0EPOhW_ptKETjzW-43bSxrZAxk3b6fiCOjsvQQQTJWF62afja2nmFFAtRVKJeVcC0VJ8dUtn13iOWmqbis4CwzCb2B9wZY_2aVcV84KcHh6cDIYs7rrAnJJ8wXjtCl_73BUYY6x7vcqCWSsEYpWwMiu4AxFAJjUgXg9fCyd7lZTeiqxygB5fko0GfnyL0FpIJQFvaUAV4MfpUtVcC4DzaaqcLWVC-FINxkVKctwZ48JckSmj6gyozgTVmV8J-bi6Z9YRcvxT-j1odyWIXNrD_sjgNZi9Uly3f_KEbC-Vb6IFt0ZkyPMD_lovIe9WzWB7GFCxjZ9eBhlVKKm1uFsmhSUlAx84zRPyqhtPq-6kOgPnJtUJydZG2lp_11ua8XngAMdwphTQt0_LMXnV9bv_jtf_J_6WPByeHI3M6MvxtzfkkQgWhJk822RjMb_0O4DHFuVuMMQ_YoosWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSIg9oPGdMcAg3sBb468ke6sKVYEx8cCkvVmO47CKNa2aDu3f2H_MnZP0gzEkHqKm8SW1ej77d7m7nwl5Cwg8VUWRMtC3ZFLonKXKaqas5LGHM-nxPeTXYz06kZ9P1elaFX_Idu9Ckk1NA7I0VYuDWVEerArfhMK8Mw4HcqoxQJF3wFMJgdqBHnRzsYyTwMOMHwx31mjLZv7-jI2l6fYZJkZeR53Xkyf_iKCGhWm4Q-63iJL2myHwgNzy1UOy3f8xb1k1_CNy1bIw0SYxPWRi-JpOKzrxWPk7rid12xYoumk9HZ9TZ-c5iGD6JEw6h3S8lnxOAetSpJqYN4URNcUXunS2xn5UU1sVdBZ4h9nE_oQr-7RPm1qZx-Rk-PH7YMTavRiYUzJesLh0mS996jKMPJa9XmHB2BXCs4JbmWSxAxHAKyXgYA9fMyd7hZTe8qRwgCmfkK0KfvwZoSWXSgIK04A1wLvTuSpjzQHkC6GczWVE4k4NxrVE5bhfxrlZUSyj6gyozgTVmcuIvFveM2toOv4p_Qa0uxREhu1R_8jgNZjTBK7mv-KI7HXKN61d14YnyP4DXlwvIq-XzWCRGGaxlZ9eBBmVKak1v1lGwEKTgGcs0og8bcbTsjtCJ-DyCB2RZGOkbfR3s6UanwVmcAxySg59e9-NyVXXb_47dv9P_BW5--3D0Bx9Ov7ynNzjwYAwvWePbC3mF_4FgLRF_jLY4W_6rTSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+controversies+on+mechanisms+controlling+soil+carbon+storage%3A+implications+for+interactions+with+practitioners+and+policy-makers.+A+review&rft.jtitle=Agronomy+for+sustainable+development&rft.au=Derrien%2C+Delphine&rft.au=Barr%C3%A9%2C+Pierre&rft.au=Basile-Doelsch%2C+Isabelle&rft.au=C%C3%A9cillon%2C+Lauric&rft.date=2023-02-01&rft.pub=Springer+Paris&rft.issn=1774-0746&rft.eissn=1773-0155&rft.volume=43&rft.issue=1&rft_id=info:doi/10.1007%2Fs13593-023-00876-x&rft.externalDocID=PMC9901420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1774-0746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1774-0746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1774-0746&client=summon