Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins
Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computat...
Saved in:
Published in | Nature communications Vol. 14; no. 1; p. 2713 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data.
Zinc is an essential metal for many proteins. Here, the authors propose a model based on 3D convolutional networks to predict the location of zinc in experimental and computationally predicted structures within a framework readily extensible to other metals. |
---|---|
AbstractList | Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data.
Zinc is an essential metal for many proteins. Here, the authors propose a model based on 3D convolutional networks to predict the location of zinc in experimental and computationally predicted structures within a framework readily extensible to other metals. Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data. Abstract Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data. Abstract Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data. Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein interactions because they are biologically abundant, tether to the protein using strong interactions, and have favorable catalytic properties. Computational design of metalloproteins is however hampered by the complex electronic structure of many biologically relevant metals such as zinc . In this work, we develop two tools - Metal3D (based on 3D convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the location prediction of zinc ions in protein structures. Comparison with other currently available tools shows that Metal3D is the most accurate zinc ion location predictor to date with predictions within 0.70 ± 0.64 Å of experimental locations. Metal3D outputs a confidence metric for each predicted site and works on proteins with few homologes in the protein data bank. Metal3D predicts a global zinc density that can be used for annotation of computationally predicted structures and a per residue zinc density that can be used in protein design workflows. Currently trained on zinc, the framework of Metal3D is readily extensible to other metals by modifying the training data.Zinc is an essential metal for many proteins. Here, the authors propose a model based on 3D convolutional networks to predict the location of zinc in experimental and computationally predicted structures within a framework readily extensible to other metals. |
ArticleNumber | 2713 |
Author | Rothlisberger, Ursula Levy, Andrea Dürr, Simon L. |
Author_xml | – sequence: 1 givenname: Simon L. orcidid: 0000-0002-4304-8106 surname: Dürr fullname: Dürr, Simon L. organization: Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL) – sequence: 2 givenname: Andrea orcidid: 0000-0003-1255-859X surname: Levy fullname: Levy, Andrea organization: Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL) – sequence: 3 givenname: Ursula orcidid: 0000-0002-1704-8591 surname: Rothlisberger fullname: Rothlisberger, Ursula email: ursula.roethlisberger@epfl.ch organization: Laboratory of Computational Chemistry and Biochemistry,Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37169763$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhiNUREvpC7BAkdiwCcS32GGDUMulUhEbWFsTexxySOyDnYD69jgnpbQs8MZjzze_7fH_uDjywWNRPCX1S1Iz9SpxwhtZ1ZRVTCpZV82D4oTWnFREUnZ0Jz4uzlLa1XmwlijOHxXHTJKmlQ07KeATzjCyi9cllD16jDCWFnFfjgjRD74vXYQJf4X4vXQhlmDMEmHGclrryiH4cgwG5jXYR7SDOYTDugozDj49KR46GBOe3cynxdf3776cf6yuPn-4PH97VRnByVwR2xE0wClHYpE1BEUtpFW8NUyAgM6pzhpj0ULrjGG1hcZmiDIFxEnFTovLTdcG2Ol9HCaI1zrAoA8bIfYa4jyYEXWjwHZMWMfQ8obaVgq0VgmiHHbg2qz1ZtPaL92E1qCfc2Puid7P-OGb7sNPTWoihWhEVnhxoxDDjwXTrKchGRxH8BiWpKkiTAjOyYo-_wfdhSX63KuVooy2jNFM0Y0yMaQU0d3ehtR6dYTeHKGzI_TBEbrJRc_uvuO25M__Z4BtQMop32P8e_Z_ZH8D4NjFOw |
CitedBy_id | crossref_primary_10_1073_pnas_2314199121 crossref_primary_10_1038_s41467_024_46149_3 crossref_primary_10_1073_pnas_2219036120 crossref_primary_10_1002_jcc_27242 crossref_primary_10_1093_bioinformatics_btad653 crossref_primary_10_4236_msce_2024_124008 |
Cites_doi | 10.1038/nchem.1201 10.1021/ja00079a046 10.1021/acs.jctc.7b00125 10.1021/acs.jcim.0c00827 10.1038/s41598-018-34533-1 10.1093/bioinformatics/btx350 10.1126/science.aau3744 10.1021/acs.jcim.1c01109 10.1038/nbt.3988 10.1016/0263-7855(96)00018-5 10.1007/s00775-008-0404-5 10.1093/bioinformatics/bty583 10.1093/bioinformatics/btac534 10.1021/acs.jcim.6b00407 10.1038/nsb723 10.1038/s41570-021-00339-5 10.1038/s41467-022-28313-9 10.1093/jn/130.5.1437S 10.1021/bi9526692 10.1016/j.xcrp.2022.101046 10.1093/bioinformatics/btw396 10.1093/nar/28.1.235 10.1371/journal.pcbi.1008291 10.1093/bioinformatics/bty813 10.1007/s10479-005-5724-z 10.1021/ic301645j 10.1021/jacs.7b10660 10.1038/s41598-017-16777-5 10.1126/science.1648261 10.21105/joss.00279 10.1038/nature17968 10.1093/bioinformatics/btu829 10.1016/0003-2697(85)90409-9 10.1021/bi00089a005 10.1002/minf.201800169 10.1038/s41592-019-0666-6 10.1002/prot.25081 10.1038/s41467-021-24070-3 10.1016/0076-6879(86)27014-7 10.1038/nrmicro2057 10.1021/acs.jctc.6b00049 10.1126/science.abj8754 10.1021/acssynbio.0c00345 10.1038/s41592-019-0686-2 10.1186/1471-2105-8-39 10.1038/s41467-021-27396-0 10.1021/ar900273t 10.1038/s41586-021-03819-2 10.1021/acs.jcim.2c00306 10.1021/ja208015j 10.1073/pnas.92.11.5017 10.1021/ic401072d 10.1126/science.aao6326 10.1016/0022-2836(92)90531-N 10.1093/protein/gzw026 10.1021/cr400458x 10.1021/cr500628b 10.1371/journal.pone.0039252 10.1371/journal.pone.0172743 10.1021/jacs.0c01329 10.1002/prot.22913 10.1186/s12859-017-1702-0 10.1038/s41586-021-03828-1 10.1002/anie.202009226 10.1038/nprot.2013.172 10.1126/science.8346440 10.1038/s42256-019-0119-z 10.1038/nchem.1290 10.1021/bi00255a003 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 10.2210/pdb2cba/pdb 10.48550/arxiv.2102.09844 10.1101/2021.12.22.473759 10.48550/arxiv.1201.0490 10.2210/pdb3rzv/pdb 10.5281/zenodo.7015849 10.2210/pdb4i0w/pdb 10.1101/2021.11.26.470110 10.5281/zenodo.5713801 10.2210/pdb2okq/pdb 10.48550/arxiv.1712.05889 10.2210/pdb6kfn/pdb 10.48550/arxiv.2202.05146 10.3389/fchem.2021.692200 10.48550/arxiv.1912.01703 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-37870-6 |
DatabaseName | Springer_OA刊 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 2713 |
ExternalDocumentID | oai_doaj_org_article_68adb35df3ed462d975edd8518febaf9 10_1038_s41467_023_37870_6 37169763 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 200020-185092 funderid: https://doi.org/10.13039/501100001711 – fundername: ; grantid: 200020-185092 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c541t-1db1eca424e1de361e5057d849c35a5abf8bdccdeda9fcc30da6d1e5238a1f783 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:16:39 EDT 2024 Tue Sep 17 21:32:07 EDT 2024 Fri Oct 25 09:35:56 EDT 2024 Thu Oct 10 21:11:02 EDT 2024 Fri Aug 23 02:41:47 EDT 2024 Sat Sep 28 08:12:17 EDT 2024 Fri Oct 11 20:48:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-1db1eca424e1de361e5057d849c35a5abf8bdccdeda9fcc30da6d1e5238a1f783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4304-8106 0000-0002-1704-8591 0000-0003-1255-859X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175565/ |
PMID | 37169763 |
PQID | 2812329332 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68adb35df3ed462d975edd8518febaf9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10175565 proquest_miscellaneous_2813554415 proquest_journals_2812329332 crossref_primary_10_1038_s41467_023_37870_6 pubmed_primary_37169763 springer_journals_10_1038_s41467_023_37870_6 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-11 |
PublicationDateYYYYMMDD | 2023-05-11 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chalkley, Mann, DeGrado (CR7) 2021; 6 Tunyasuvunakool (CR72) 2021; 596 Song, Sengupta, Jr. Merz (CR13) 2020; 142 Håkansson, Carlsson, Svensson, Liljas (CR49) 1992; 227 CR38 Krantz, Sosnick (CR71) 2001; 8 CR79 CR78 Bozkurt, Perez, Hovius, Browning, Rothlisberger (CR17) 2018; 140 Salgado, Radford, Tezcan (CR10) 2010; 43 Lovell, Word, Richardson, Richardson (CR85) 2000; 40 Feehan, Franklin, Slusky (CR33) 2021; 12 Lin (CR21) 2016; 56 Koohi-Moghadam (CR4) 2019; 1 Ippolito, Jr Baird, McGee, Christianson, Fierke (CR67) 1995; 92 Jumper (CR27) 2021; 596 Brodin (CR8) 2012; 4 Gainza (CR35) 2019; 17 Barber-Zucker, Shaanan, Zarivach (CR75) 2017; 7 Chih-Hao (CR22) 2022; 38 Li, Yang, Capra, Gerstein (CR40) 2020; 16 Kiefer, Fierke (CR64) 1994; 33 Ippolito, Christianson (CR66) 1993; 32 Yang (CR16) 2021; 61 McCall, Huang, Fierke (CR45) 2022; 130 Huang, Lesburg, Kiefer, Fierke, Christianson (CR68) 1996; 35 Sridhar, Ross, Biggin (CR57) 2017; 12 Sánchez-Aparicio (CR25) 2020; 61 Shroff (CR30) 2020; 9 Laitaoja, Valjakka, Jänis (CR52) 2013; 52 Anand (CR31) 2022; 13 CR48 Brylinski, Skolnick (CR24) 2010; 79 Morozenko, Stuchebrukhov (CR56) 2016; 84 CR46 Song, Wilson, Farquhar, Lewis, Emerson (CR63) 2012; 51 CR44 CR88 Skalic, Varela-Rial, Jiménez, Martínez-Rosell, De Fabritiis (CR37) 2018; 35 CR43 CR87 CR42 Kiefer, Ippolito, Fierke, Christianson (CR65) 1993; 115 CR86 Greener, Moffat, Jones (CR60) 2018; 8 Haberal, Oğul (CR26) 2019; 38 CR82 Baek (CR28) 2021; 373 Arnold, Haymore (CR70) 1991; 252 Savage, Wlodawer (CR55) 1986; 127 Hunt, Neece, Ginsburg (CR50) 1985; 146 Torng, Altman (CR29) 2017; 18 Handel, Williams, DeGrado (CR69) 1993; 261 Passerini, Andreini, Menchetti, Rosato, Frasconi (CR19) 2007; 8 Waldron, Robinson (CR61) 2009; 7 CR18 Der (CR9) 2011; 134 CR59 CR58 Andreini, Bertini, Cavallaro, Holliday, Thornton (CR3) 2008; 13 CR54 Park, Seok (CR39) 2022; 62 de Boer, Kroese, Mannor, Rubinstein (CR80) 2005; 134 Virtanen (CR81) 2020; 17 Pang, Xu, Yazal, Prendergas (CR51) 2000; 9 Steinegger, Söding (CR74) 2017; 35 Key, Dydio, Clark, Hartwig (CR6) 2016; 534 Lu, Lin, Lin, Yu (CR41) 2012; 7 Rego, Koes (CR84) 2014; 31 Rana (CR47) 2018; 359 Alford (CR14) 2017; 13 Renaud (CR34) 2021; 12 Raschka (CR76) 2017; 2 Zastrow, Peacock, Stuckey, Pecoraro (CR12) 2011; 4 Guffy, Der, Kuhlman (CR2) 2016; 29 Doerr, Harvey, Noé, De Fabritiis (CR77) 2016; 12 Studer (CR5) 2018; 362 Berman (CR73) 2000; 28 Kakkis, Gagnon, Esselborn, Britt, Tezcan (CR11) 2020; 59 CR23 Jiménez, Doerr, Martínez-Rosell, Rose, De Fabritiis (CR36) 2017; 33 Zheng (CR53) 2014; 9 Torng, Altman (CR32) 2018; 35 Yu (CR1) 2014; 114 Brunk, Rothlisberger (CR15) 2015; 115 Hu, Dong, Yang, Zhang (CR20) 2016; 32 Mohamadi (CR62) 2022; 3 Humphrey, Dalke, Schulten (CR83) 1996; 14 A Mohamadi (37870_CR62) 2022; 3 BA Krantz (37870_CR71) 2001; 8 M Steinegger (37870_CR74) 2017; 35 SL Guffy (37870_CR2) 2016; 29 JB Hunt (37870_CR50) 1985; 146 W Torng (37870_CR32) 2018; 35 J-E Sánchez-Aparicio (37870_CR25) 2020; 61 S Studer (37870_CR5) 2018; 362 C-H Lu (37870_CR41) 2012; 7 MS Rana (37870_CR47) 2018; 359 37870_CR23 J Jumper (37870_CR27) 2021; 596 A Kakkis (37870_CR11) 2020; 59 JG Greener (37870_CR60) 2018; 8 SC Lovell (37870_CR85) 2000; 40 H Zheng (37870_CR53) 2014; 9 TM Handel (37870_CR69) 1993; 261 X Hu (37870_CR20) 2016; 32 P Virtanen (37870_CR81) 2020; 17 Y-F Lin (37870_CR21) 2016; 56 37870_CR82 N Renaud (37870_CR34) 2021; 12 37870_CR42 37870_CR86 ML Zastrow (37870_CR12) 2011; 4 37870_CR78 37870_CR79 37870_CR38 RF Alford (37870_CR14) 2017; 13 HM Key (37870_CR6) 2016; 534 R Shroff (37870_CR30) 2020; 9 Z Yang (37870_CR16) 2021; 61 H Song (37870_CR63) 2012; 51 A Passerini (37870_CR19) 2007; 8 W Humphrey (37870_CR83) 1996; 14 LF Song (37870_CR13) 2020; 142 I Haberal (37870_CR26) 2019; 38 N Anand (37870_CR31) 2022; 13 R Feehan (37870_CR33) 2021; 12 EN Salgado (37870_CR10) 2010; 43 M Brylinski (37870_CR24) 2010; 79 N Rego (37870_CR84) 2014; 31 A Sridhar (37870_CR57) 2017; 12 P-T de Boer (37870_CR80) 2005; 134 HM Berman (37870_CR73) 2000; 28 JD Brodin (37870_CR8) 2012; 4 37870_CR43 37870_CR87 M Baek (37870_CR28) 2021; 373 M Skalic (37870_CR37) 2018; 35 37870_CR44 37870_CR88 F Yu (37870_CR1) 2014; 114 37870_CR46 S Park (37870_CR39) 2022; 62 37870_CR48 S Barber-Zucker (37870_CR75) 2017; 7 FH Arnold (37870_CR70) 1991; 252 C-c Huang (37870_CR68) 1996; 35 BS Der (37870_CR9) 2011; 134 L Chih-Hao (37870_CR22) 2022; 38 P Gainza (37870_CR35) 2019; 17 JA Ippolito (37870_CR66) 1993; 32 K McCall (37870_CR45) 2022; 130 W Torng (37870_CR29) 2017; 18 H Savage (37870_CR55) 1986; 127 A Morozenko (37870_CR56) 2016; 84 KJ Waldron (37870_CR61) 2009; 7 S Doerr (37870_CR77) 2016; 12 C Andreini (37870_CR3) 2008; 13 K Tunyasuvunakool (37870_CR72) 2021; 596 YP Pang (37870_CR51) 2000; 9 LL Kiefer (37870_CR65) 1993; 115 S Raschka (37870_CR76) 2017; 2 M Koohi-Moghadam (37870_CR4) 2019; 1 37870_CR54 37870_CR58 37870_CR59 LL Kiefer (37870_CR64) 1994; 33 E Brunk (37870_CR15) 2015; 115 37870_CR18 J Jiménez (37870_CR36) 2017; 33 M Laitaoja (37870_CR52) 2013; 52 MJ Chalkley (37870_CR7) 2021; 6 B Li (37870_CR40) 2020; 16 K Håkansson (37870_CR49) 1992; 227 JA Ippolito (37870_CR67) 1995; 92 E Bozkurt (37870_CR17) 2018; 140 |
References_xml | – volume: 4 start-page: 118 year: 2011 end-page: 123 ident: CR12 article-title: Hydrolytic catalysis and structural stabilization in a designed metalloprotein publication-title: Nat. Chem. doi: 10.1038/nchem.1201 contributor: fullname: Pecoraro – volume: 115 start-page: 12581 year: 1993 end-page: 12582 ident: CR65 article-title: Redesigning the zinc binding site of human carbonic anhydrase II: structure of a His2Asp-Zn + metal coordination polyhedron publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00079a046 contributor: fullname: Christianson – volume: 13 start-page: 3031 year: 2017 end-page: 3048 ident: CR14 article-title: The Rosetta all-atom energy function for macromolecular modeling and design publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00125 contributor: fullname: Alford – volume: 61 start-page: 311 year: 2020 end-page: 323 ident: CR25 article-title: BioMetAll: identifying metal-binding sites in proteins from backbone preorganization publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00827 contributor: fullname: Sánchez-Aparicio – volume: 8 year: 2018 ident: CR60 article-title: Design of metalloproteins and novel protein folds using variational autoencoders publication-title: Sci. Rep. doi: 10.1038/s41598-018-34533-1 contributor: fullname: Jones – ident: CR87 – volume: 33 start-page: 3036 year: 2017 end-page: 3042 ident: CR36 article-title: DeepSite: protein-binding site predictor using 3d-convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx350 contributor: fullname: De Fabritiis – volume: 362 start-page: 1285 year: 2018 end-page: 1288 ident: CR5 article-title: Evolution of a highly active and enantiospecific metalloenzyme from short peptides publication-title: Science doi: 10.1126/science.aau3744 contributor: fullname: Studer – volume: 61 start-page: 5658 year: 2021 end-page: 5672 ident: CR16 article-title: Multiscale workflow for modeling ligand complexes of zinc metalloproteins publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c01109 contributor: fullname: Yang – ident: CR54 – volume: 35 start-page: 1026 year: 2017 end-page: 1028 ident: CR74 article-title: MMseqs2 Enables sensitive protein sequence searching for the analysis of massive data sets publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3988 contributor: fullname: Söding – volume: 14 start-page: 33–38, 27–28 year: 1996 ident: CR83 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 contributor: fullname: Schulten – ident: CR58 – volume: 13 start-page: 1205 year: 2008 end-page: 1218 ident: CR3 article-title: Metal ions in biological catalysis: from enzyme databases to general principles publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-008-0404-5 contributor: fullname: Thornton – volume: 35 start-page: 243 year: 2018 end-page: 250 ident: CR37 article-title: LigVoxel: inpainting binding pockets using 3d-convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty583 contributor: fullname: De Fabritiis – ident: CR42 – volume: 38 start-page: 4428 year: 2022 end-page: 4429 ident: CR22 article-title: MIB2: metal ion-binding site prediction and modeling server publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac534 contributor: fullname: Chih-Hao – ident: CR46 – volume: 56 start-page: 2287 year: 2016 end-page: 2291 ident: CR21 article-title: MIB: metal ion-binding site prediction and docking server publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00407 contributor: fullname: Lin – volume: 8 start-page: 1042 year: 2001 end-page: 1047 ident: CR71 article-title: Engineered metal binding sites map the heterogeneous folding landscape of a coiled coil publication-title: Nat. Struct. Biol. doi: 10.1038/nsb723 contributor: fullname: Sosnick – volume: 6 start-page: 31 year: 2021 end-page: 50 ident: CR7 article-title: De novo metalloprotein design publication-title: Nat. Rev. Chem doi: 10.1038/s41570-021-00339-5 contributor: fullname: DeGrado – volume: 13 year: 2022 ident: CR31 article-title: Protein sequence design with a learned potential publication-title: Nat. Commun. doi: 10.1038/s41467-022-28313-9 contributor: fullname: Anand – volume: 130 start-page: 1437S year: 2022 end-page: 1446S ident: CR45 article-title: Function and mechanism of zinc metalloenzymes publication-title: J. Nutr. doi: 10.1093/jn/130.5.1437S contributor: fullname: Fierke – volume: 35 start-page: 3439 year: 1996 end-page: 3446 ident: CR68 article-title: Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II publication-title: Biochemistry doi: 10.1021/bi9526692 contributor: fullname: Christianson – volume: 3 start-page: 101046 year: 2022 ident: CR62 article-title: An ensemble 3D deep-learning model to predict protein metal-binding site publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.101046 contributor: fullname: Mohamadi – ident: CR88 – volume: 32 start-page: 3260 year: 2016 end-page: 3269 ident: CR20 article-title: Recognizing metal and acid radical ion-binding sites by integratingab initiomodeling with template-based transferals publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw396 contributor: fullname: Zhang – volume: 28 start-page: 235 year: 2000 end-page: 242 ident: CR73 article-title: The protein data bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 contributor: fullname: Berman – volume: 16 start-page: e1008291 year: 2020 ident: CR40 article-title: Predicting changes in protein thermodynamic stability upon point mutation with deep 3d convolutional neural networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008291 contributor: fullname: Gerstein – volume: 35 start-page: 1503 year: 2018 end-page: 1512 ident: CR32 article-title: High precision protein functional site detection using 3d convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty813 contributor: fullname: Altman – ident: CR78 – volume: 134 start-page: 19 year: 2005 end-page: 67 ident: CR80 article-title: A tutorial on the cross-entropy method publication-title: Ann. Oper. Res. doi: 10.1007/s10479-005-5724-z contributor: fullname: Rubinstein – volume: 51 start-page: 11098 year: 2012 end-page: 11105 ident: CR63 article-title: Revisiting zinc coordination in human carbonic anhydrase II publication-title: Inorg. Chem. doi: 10.1021/ic301645j contributor: fullname: Emerson – volume: 140 start-page: 4517 year: 2018 end-page: 4521 ident: CR17 article-title: Genetic algorithm based design and experimental characterization of a highly thermostable metalloprotein publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10660 contributor: fullname: Rothlisberger – volume: 7 year: 2017 ident: CR75 article-title: Transition metal binding selectivity in proteins and its correlation with the phylogenomic classification of the cation diffusion facilitator protein family publication-title: Sci. Rep. doi: 10.1038/s41598-017-16777-5 contributor: fullname: Zarivach – volume: 252 start-page: 1796 year: 1991 end-page: 1797 ident: CR70 article-title: Engineered metal-binding proteins: purification to protein folding publication-title: Science doi: 10.1126/science.1648261 contributor: fullname: Haymore – volume: 2 start-page: 279 year: 2017 ident: CR76 article-title: BioPandas: working with molecular structures in pandas dataframes publication-title: JOSS doi: 10.21105/joss.00279 contributor: fullname: Raschka – volume: 534 start-page: 534 year: 2016 end-page: 537 ident: CR6 article-title: Abiological catalysis by artificial haem proteins containing noble metals in place of iron publication-title: Nature doi: 10.1038/nature17968 contributor: fullname: Hartwig – volume: 31 start-page: 1322 year: 2014 end-page: 1324 ident: CR84 article-title: 3Dmol.js: molecular visualization with WebGL publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu829 contributor: fullname: Koes – volume: 146 start-page: 150 year: 1985 end-page: 157 ident: CR50 article-title: The use of 4-(2-Pyridylazo)resorcinol in studies of zinc release from escherichia coli aspartate transcarbamoylase publication-title: Anal. Biochem. doi: 10.1016/0003-2697(85)90409-9 contributor: fullname: Ginsburg – ident: CR18 – ident: CR43 – volume: 32 start-page: 9901 year: 1993 end-page: 9905 ident: CR66 article-title: Structure of an engineered His3 Cys zinc binding site in human carbonic anhydrase II publication-title: Biochemistry doi: 10.1021/bi00089a005 contributor: fullname: Christianson – volume: 38 start-page: 1800169 year: 2019 ident: CR26 article-title: Prediction of protein metal binding sites using deep neural networks publication-title: Mol. Inf. doi: 10.1002/minf.201800169 contributor: fullname: Oğul – volume: 17 start-page: 184 year: 2019 end-page: 192 ident: CR35 article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning publication-title: Nat. Methods doi: 10.1038/s41592-019-0666-6 contributor: fullname: Gainza – volume: 84 start-page: 1347 year: 2016 end-page: 1357 ident: CR56 article-title: Dowser++, a new method of hydrating protein structures publication-title: Proteins doi: 10.1002/prot.25081 contributor: fullname: Stuchebrukhov – volume: 12 year: 2021 ident: CR33 article-title: Machine learning differentiates enzymatic and non-enzymatic metals in proteins publication-title: Nat. Commun. doi: 10.1038/s41467-021-24070-3 contributor: fullname: Slusky – volume: 127 start-page: 162 year: 1986 end-page: 183 ident: CR55 article-title: Determination of water structure around biomolecules using X-ray and neutron diffraction methods publication-title: Methods Enzymol. doi: 10.1016/0076-6879(86)27014-7 contributor: fullname: Wlodawer – volume: 7 start-page: 25 year: 2009 end-page: 35 ident: CR61 article-title: How do bacterial cells ensure that metalloproteins get the correct metal? publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2057 contributor: fullname: Robinson – volume: 12 start-page: 1845 year: 2016 end-page: 1852 ident: CR77 article-title: HTMD: high-throughput molecular dynamics for molecular discovery publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00049 contributor: fullname: De Fabritiis – ident: CR82 – volume: 373 start-page: 871 year: 2021 end-page: 876 ident: CR28 article-title: Accurate prediction of protein structures and interactions using a three-track neural network publication-title: Science doi: 10.1126/science.abj8754 contributor: fullname: Baek – volume: 9 start-page: 2927 year: 2020 end-page: 2935 ident: CR30 article-title: Discovery of novel gain-of-function mutations guided by structure-based deep learning publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00345 contributor: fullname: Shroff – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: CR81 article-title: SciPy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 contributor: fullname: Virtanen – ident: CR79 – volume: 8 year: 2007 ident: CR19 article-title: Predicting zinc binding at the proteome level publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-39 contributor: fullname: Frasconi – volume: 12 year: 2021 ident: CR34 article-title: DeepRank: a deep learning framework for data mining 3d protein-protein interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-021-27396-0 contributor: fullname: Renaud – ident: CR86 – volume: 43 start-page: 661 year: 2010 end-page: 672 ident: CR10 article-title: Metal-directed protein self-assembly publication-title: Acc. Chem. Res. doi: 10.1021/ar900273t contributor: fullname: Tezcan – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR27 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 contributor: fullname: Jumper – volume: 62 start-page: 3157 year: 2022 end-page: 3168 ident: CR39 article-title: GalaxyWater-CNN: prediction of water positions on the protein structure by a 3d-convolutional neural network publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00306 contributor: fullname: Seok – volume: 134 start-page: 375 year: 2011 end-page: 385 ident: CR9 article-title: Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208015j contributor: fullname: Der – volume: 92 start-page: 5017 year: 1995 end-page: 5021 ident: CR67 article-title: Structure-assisted redesign of a protein-zinc-binding site with femtomolar affinity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.11.5017 contributor: fullname: Fierke – ident: CR23 – volume: 52 start-page: 10983 year: 2013 end-page: 10991 ident: CR52 article-title: Zinc coordination spheres in protein structures publication-title: Inorg. Chem. doi: 10.1021/ic401072d contributor: fullname: Jänis – volume: 359 start-page: eaao6326 year: 2018 ident: CR47 article-title: Fatty acyl recognition and transfer by an integral membrane -Acyltransferase publication-title: Science doi: 10.1126/science.aao6326 contributor: fullname: Rana – volume: 227 start-page: 1192 year: 1992 end-page: 1204 ident: CR49 article-title: Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90531-N contributor: fullname: Liljas – volume: 29 start-page: 327 year: 2016 end-page: 338 ident: CR2 article-title: Probing the minimal determinants of zinc binding with computational protein design publication-title: Protein Eng. Design Sel. doi: 10.1093/protein/gzw026 contributor: fullname: Kuhlman – ident: CR44 – volume: 114 start-page: 3495 year: 2014 end-page: 3578 ident: CR1 article-title: Protein design: toward functional metalloenzymes publication-title: Chem. Rev. doi: 10.1021/cr400458x contributor: fullname: Yu – ident: CR48 – volume: 9 start-page: 1857 year: 2000 end-page: 1865 ident: CR51 article-title: Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach publication-title: Protein Sci. contributor: fullname: Prendergas – volume: 115 start-page: 6217 year: 2015 end-page: 6263 ident: CR15 article-title: Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states publication-title: Chem. Rev. doi: 10.1021/cr500628b contributor: fullname: Rothlisberger – ident: CR38 – volume: 7 start-page: e39252 year: 2012 ident: CR41 article-title: Prediction of metal ion–binding sites in proteins using the fragment transformation method publication-title: PLoS ONE doi: 10.1371/journal.pone.0039252 contributor: fullname: Yu – volume: 12 start-page: e0172743 year: 2017 ident: CR57 article-title: Waterdock 2.0: water placement prediction for holo-structures with a pymol plugin publication-title: PLoS ONE doi: 10.1371/journal.pone.0172743 contributor: fullname: Biggin – volume: 142 start-page: 6365 year: 2020 end-page: 6374 ident: CR13 article-title: Thermodynamics of transition metal ion binding to proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01329 contributor: fullname: Jr. Merz – volume: 79 start-page: 735 year: 2010 end-page: 751 ident: CR24 article-title: FINDSITE-metal: integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level publication-title: Proteins doi: 10.1002/prot.22913 contributor: fullname: Skolnick – volume: 18 year: 2017 ident: CR29 article-title: 3D deep convolutional neural networks for amino acid environment similarity analysis publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1702-0 contributor: fullname: Altman – volume: 596 start-page: 590 year: 2021 end-page: 596 ident: CR72 article-title: Highly accurate protein structure prediction for the human proteome publication-title: Nature doi: 10.1038/s41586-021-03828-1 contributor: fullname: Tunyasuvunakool – volume: 59 start-page: 21940 year: 2020 end-page: 21944 ident: CR11 article-title: Metal templated design of chemically switchable protein assemblies with high affinity coordination sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009226 contributor: fullname: Tezcan – volume: 9 start-page: 156 year: 2014 end-page: 70 ident: CR53 article-title: Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.172 contributor: fullname: Zheng – ident: CR59 – volume: 261 start-page: 879 year: 1993 end-page: 885 ident: CR69 article-title: Metal ion-dependent modulation of the dynamics of a designed protein publication-title: Science doi: 10.1126/science.8346440 contributor: fullname: DeGrado – volume: 1 start-page: 561 year: 2019 end-page: 567 ident: CR4 article-title: Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0119-z contributor: fullname: Koohi-Moghadam – volume: 4 start-page: 375 year: 2012 end-page: 382 ident: CR8 article-title: Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays publication-title: Nat. Chem. doi: 10.1038/nchem.1290 contributor: fullname: Brodin – volume: 33 start-page: 15233 year: 1994 end-page: 15240 ident: CR64 article-title: Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites publication-title: Biochemistry doi: 10.1021/bi00255a003 contributor: fullname: Fierke – volume: 40 start-page: 389 year: 2000 end-page: 408 ident: CR85 article-title: The penultimate rotamer library publication-title: Proteins doi: 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 contributor: fullname: Richardson – volume: 6 start-page: 31 year: 2021 ident: 37870_CR7 publication-title: Nat. Rev. Chem doi: 10.1038/s41570-021-00339-5 contributor: fullname: MJ Chalkley – volume: 59 start-page: 21940 year: 2020 ident: 37870_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009226 contributor: fullname: A Kakkis – volume: 31 start-page: 1322 year: 2014 ident: 37870_CR84 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu829 contributor: fullname: N Rego – volume: 17 start-page: 261 year: 2020 ident: 37870_CR81 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 contributor: fullname: P Virtanen – volume: 61 start-page: 311 year: 2020 ident: 37870_CR25 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00827 contributor: fullname: J-E Sánchez-Aparicio – volume: 115 start-page: 6217 year: 2015 ident: 37870_CR15 publication-title: Chem. Rev. doi: 10.1021/cr500628b contributor: fullname: E Brunk – volume: 13 start-page: 1205 year: 2008 ident: 37870_CR3 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-008-0404-5 contributor: fullname: C Andreini – ident: 37870_CR48 doi: 10.2210/pdb2cba/pdb – volume: 362 start-page: 1285 year: 2018 ident: 37870_CR5 publication-title: Science doi: 10.1126/science.aau3744 contributor: fullname: S Studer – volume: 35 start-page: 1026 year: 2017 ident: 37870_CR74 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3988 contributor: fullname: M Steinegger – volume: 16 start-page: e1008291 year: 2020 ident: 37870_CR40 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008291 contributor: fullname: B Li – volume: 8 start-page: 1042 year: 2001 ident: 37870_CR71 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb723 contributor: fullname: BA Krantz – ident: 37870_CR58 doi: 10.48550/arxiv.2102.09844 – volume: 8 year: 2018 ident: 37870_CR60 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34533-1 contributor: fullname: JG Greener – volume: 7 start-page: 25 year: 2009 ident: 37870_CR61 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2057 contributor: fullname: KJ Waldron – ident: 37870_CR59 doi: 10.1101/2021.12.22.473759 – ident: 37870_CR82 doi: 10.48550/arxiv.1201.0490 – volume: 52 start-page: 10983 year: 2013 ident: 37870_CR52 publication-title: Inorg. Chem. doi: 10.1021/ic401072d contributor: fullname: M Laitaoja – volume: 79 start-page: 735 year: 2010 ident: 37870_CR24 publication-title: Proteins doi: 10.1002/prot.22913 contributor: fullname: M Brylinski – volume: 13 start-page: 3031 year: 2017 ident: 37870_CR14 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00125 contributor: fullname: RF Alford – ident: 37870_CR46 doi: 10.2210/pdb3rzv/pdb – volume: 40 start-page: 389 year: 2000 ident: 37870_CR85 publication-title: Proteins doi: 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 contributor: fullname: SC Lovell – volume: 35 start-page: 243 year: 2018 ident: 37870_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty583 contributor: fullname: M Skalic – ident: 37870_CR87 doi: 10.5281/zenodo.7015849 – volume: 12 year: 2021 ident: 37870_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24070-3 contributor: fullname: R Feehan – volume: 35 start-page: 3439 year: 1996 ident: 37870_CR68 publication-title: Biochemistry doi: 10.1021/bi9526692 contributor: fullname: C-c Huang – volume: 12 start-page: 1845 year: 2016 ident: 37870_CR77 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00049 contributor: fullname: S Doerr – volume: 14 start-page: 33–38, 27–28 year: 1996 ident: 37870_CR83 publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 contributor: fullname: W Humphrey – volume: 13 year: 2022 ident: 37870_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28313-9 contributor: fullname: N Anand – volume: 7 start-page: e39252 year: 2012 ident: 37870_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0039252 contributor: fullname: C-H Lu – volume: 9 start-page: 156 year: 2014 ident: 37870_CR53 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.172 contributor: fullname: H Zheng – volume: 33 start-page: 15233 year: 1994 ident: 37870_CR64 publication-title: Biochemistry doi: 10.1021/bi00255a003 contributor: fullname: LL Kiefer – ident: 37870_CR44 doi: 10.2210/pdb4i0w/pdb – ident: 37870_CR23 doi: 10.1101/2021.11.26.470110 – volume: 596 start-page: 583 year: 2021 ident: 37870_CR27 publication-title: Nature doi: 10.1038/s41586-021-03819-2 contributor: fullname: J Jumper – volume: 9 start-page: 1857 year: 2000 ident: 37870_CR51 publication-title: Protein Sci. contributor: fullname: YP Pang – volume: 51 start-page: 11098 year: 2012 ident: 37870_CR63 publication-title: Inorg. Chem. doi: 10.1021/ic301645j contributor: fullname: H Song – volume: 32 start-page: 3260 year: 2016 ident: 37870_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw396 contributor: fullname: X Hu – volume: 1 start-page: 561 year: 2019 ident: 37870_CR4 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0119-z contributor: fullname: M Koohi-Moghadam – volume: 534 start-page: 534 year: 2016 ident: 37870_CR6 publication-title: Nature doi: 10.1038/nature17968 contributor: fullname: HM Key – volume: 4 start-page: 118 year: 2011 ident: 37870_CR12 publication-title: Nat. Chem. doi: 10.1038/nchem.1201 contributor: fullname: ML Zastrow – ident: 37870_CR88 doi: 10.5281/zenodo.5713801 – volume: 29 start-page: 327 year: 2016 ident: 37870_CR2 publication-title: Protein Eng. Design Sel. doi: 10.1093/protein/gzw026 contributor: fullname: SL Guffy – volume: 43 start-page: 661 year: 2010 ident: 37870_CR10 publication-title: Acc. Chem. Res. doi: 10.1021/ar900273t contributor: fullname: EN Salgado – volume: 130 start-page: 1437S year: 2022 ident: 37870_CR45 publication-title: J. Nutr. doi: 10.1093/jn/130.5.1437S contributor: fullname: K McCall – volume: 38 start-page: 4428 year: 2022 ident: 37870_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac534 contributor: fullname: L Chih-Hao – ident: 37870_CR42 doi: 10.2210/pdb2okq/pdb – ident: 37870_CR86 – volume: 38 start-page: 1800169 year: 2019 ident: 37870_CR26 publication-title: Mol. Inf. doi: 10.1002/minf.201800169 contributor: fullname: I Haberal – volume: 252 start-page: 1796 year: 1991 ident: 37870_CR70 publication-title: Science doi: 10.1126/science.1648261 contributor: fullname: FH Arnold – volume: 4 start-page: 375 year: 2012 ident: 37870_CR8 publication-title: Nat. Chem. doi: 10.1038/nchem.1290 contributor: fullname: JD Brodin – volume: 32 start-page: 9901 year: 1993 ident: 37870_CR66 publication-title: Biochemistry doi: 10.1021/bi00089a005 contributor: fullname: JA Ippolito – volume: 134 start-page: 375 year: 2011 ident: 37870_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208015j contributor: fullname: BS Der – volume: 12 year: 2021 ident: 37870_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27396-0 contributor: fullname: N Renaud – volume: 8 year: 2007 ident: 37870_CR19 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-39 contributor: fullname: A Passerini – ident: 37870_CR78 doi: 10.48550/arxiv.1712.05889 – ident: 37870_CR54 – volume: 7 year: 2017 ident: 37870_CR75 publication-title: Sci. Rep. doi: 10.1038/s41598-017-16777-5 contributor: fullname: S Barber-Zucker – volume: 56 start-page: 2287 year: 2016 ident: 37870_CR21 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00407 contributor: fullname: Y-F Lin – volume: 2 start-page: 279 year: 2017 ident: 37870_CR76 publication-title: JOSS doi: 10.21105/joss.00279 contributor: fullname: S Raschka – volume: 33 start-page: 3036 year: 2017 ident: 37870_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx350 contributor: fullname: J Jiménez – volume: 114 start-page: 3495 year: 2014 ident: 37870_CR1 publication-title: Chem. Rev. doi: 10.1021/cr400458x contributor: fullname: F Yu – volume: 84 start-page: 1347 year: 2016 ident: 37870_CR56 publication-title: Proteins doi: 10.1002/prot.25081 contributor: fullname: A Morozenko – ident: 37870_CR43 doi: 10.2210/pdb6kfn/pdb – volume: 3 start-page: 101046 year: 2022 ident: 37870_CR62 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.101046 contributor: fullname: A Mohamadi – volume: 115 start-page: 12581 year: 1993 ident: 37870_CR65 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00079a046 contributor: fullname: LL Kiefer – ident: 37870_CR38 doi: 10.48550/arxiv.2202.05146 – volume: 373 start-page: 871 year: 2021 ident: 37870_CR28 publication-title: Science doi: 10.1126/science.abj8754 contributor: fullname: M Baek – volume: 127 start-page: 162 year: 1986 ident: 37870_CR55 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(86)27014-7 contributor: fullname: H Savage – volume: 140 start-page: 4517 year: 2018 ident: 37870_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10660 contributor: fullname: E Bozkurt – volume: 359 start-page: eaao6326 year: 2018 ident: 37870_CR47 publication-title: Science doi: 10.1126/science.aao6326 contributor: fullname: MS Rana – volume: 28 start-page: 235 year: 2000 ident: 37870_CR73 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 contributor: fullname: HM Berman – volume: 227 start-page: 1192 year: 1992 ident: 37870_CR49 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90531-N contributor: fullname: K Håkansson – volume: 261 start-page: 879 year: 1993 ident: 37870_CR69 publication-title: Science doi: 10.1126/science.8346440 contributor: fullname: TM Handel – volume: 596 start-page: 590 year: 2021 ident: 37870_CR72 publication-title: Nature doi: 10.1038/s41586-021-03828-1 contributor: fullname: K Tunyasuvunakool – volume: 9 start-page: 2927 year: 2020 ident: 37870_CR30 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00345 contributor: fullname: R Shroff – volume: 142 start-page: 6365 year: 2020 ident: 37870_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01329 contributor: fullname: LF Song – volume: 18 year: 2017 ident: 37870_CR29 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1702-0 contributor: fullname: W Torng – ident: 37870_CR18 doi: 10.3389/fchem.2021.692200 – volume: 35 start-page: 1503 year: 2018 ident: 37870_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty813 contributor: fullname: W Torng – volume: 134 start-page: 19 year: 2005 ident: 37870_CR80 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-005-5724-z contributor: fullname: P-T de Boer – volume: 17 start-page: 184 year: 2019 ident: 37870_CR35 publication-title: Nat. Methods doi: 10.1038/s41592-019-0666-6 contributor: fullname: P Gainza – volume: 61 start-page: 5658 year: 2021 ident: 37870_CR16 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c01109 contributor: fullname: Z Yang – volume: 12 start-page: e0172743 year: 2017 ident: 37870_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0172743 contributor: fullname: A Sridhar – volume: 62 start-page: 3157 year: 2022 ident: 37870_CR39 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00306 contributor: fullname: S Park – volume: 146 start-page: 150 year: 1985 ident: 37870_CR50 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(85)90409-9 contributor: fullname: JB Hunt – ident: 37870_CR79 doi: 10.48550/arxiv.1912.01703 – volume: 92 start-page: 5017 year: 1995 ident: 37870_CR67 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.11.5017 contributor: fullname: JA Ippolito |
SSID | ssj0000391844 |
Score | 2.4992838 |
Snippet | Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein... Abstract Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein... Abstract Metal ions are essential cofactors for many proteins and play a crucial role in many applications such as enzyme design or design of protein-protein... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2713 |
SubjectTerms | 631/114/1305 631/114/469 631/45/612/1141 631/535/1267 Annotations Artificial neural networks Binding Sites Deep Learning Density Design Electronic structure Extensibility Heavy metals Humanities and Social Sciences Ions - chemistry Machine learning Metal ions Metalloproteins - metabolism Metals Metals - chemistry multidisciplinary Neural networks Predictions Protein interaction Proteins Science Science (multidisciplinary) Three dimensional models Zinc Zinc - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbNtvpPNubr2UR1pMLewtJKr3uwZ5hZ-bgv7cq6Rl3fODF23R3BkJ9VamvSPIVYy_xZR-t6VqbbGiVBAwpLOBazLUpId-1IdIF59PP5uRMfTrX59dafdGZsCoPXA13ZFyAKDWMMoMyPQxWZwDkCW7MMYz16p7Q14qpsgbLAUsXNd-S6aQ7WqmyJmCKwphCJ23NXiYqgv1_Ypm_H5b8Zce0JKLjO-z2zCD52zrzu-xGnu6xm7Wn5Pf7LJxm5NPywxse-EXVlOaQ85LP_SEu-Lg9j8WRsPKQ0obkIvg3-h9HmDjlN8KLL69oG6f8vKSnBbXGXD1gZ8cfv7w_aec-Cm3SSqxbAVHkFFSvsoAsjchUlYBTQ5I6aETDRUgJMoRhTEl2EAzgIMzmQYzWyYfsYFpM-THjqUvBmRHLZmNVtC70IzJEq2EIXQzCNOzV1qZ-WeUyfNnmls5XBDwi4AsCHke_I7PvRpLUdXmBDuBnB_D_coCGHW5B83P8rXzviCoOUvYNe7H7jJFD2yFhyotNGUNkCxlMwx5VjHczkSQihEtvw9we-ntT3f8yXX4t6ty0xmmkyQ17vXWUn_P6uy2e_A9bPGW3evJwUpcVh-xgfbXJz5A0rePzEh8_ALCwFsQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojxTWmQkbhA1jh3b4YJoYamQyolKvVl-ZdsDybKPQ_89M46z1fK67SZeyevPM_PZY39DyBt4WDslq1J5ZUvBA5gULOBKiLXeA99V1uEF5_Nv8uxCfL1sLvOG2yofq5x8YnLUYfC4R35cawz-sPyuPyx-llg1CrOruYTGXXKPoRIe3hSffdnusaD6uRYi35WpuD5eieQZIFCBZcFULeVOPEqy_X_jmn8emfwtb5rC0ewReZh5JP04Ar9P7sT-Mbk_Vpa8eULseQRWzT-9p5bOR2VpGmJc0FwlYk676VQWBdpKrfcbFI2gP_B3FMCiGOUQNbpYYjInfbzGbwMWyFw9JRezz99Pz8pcTaH0jWDrkgXHoreiFpGFyCWLuDYJWrSeN7YBTLQL3ocYbNt5z6tgZYBGENMt65Tmz8heP_TxBaG-8lbLDhbPUgmntK074ImqCa2tnGWyIG-nMTWLUTTDpGQ312ZEwAACJiFgoPUJDvu2JQpepwfDcm6y_RipbXC8CR2PQcg6tKqJIQBd1F10tmsLcjiBZrIVrsztnCnI6-1rsB9Mitg-DpvUBikX8JiCPB8x3vaEo5QQOOCC6B30d7q6-6a_vkoa3ejpGiDLBXk3TZTbfv17LA7-_zdekgdY7h5PLzB2SPbWy008AlK0dq_SzP8FUlMMcw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIiQuiPJMaZGRuEFgEzu2g4Sq8qgqpOXESr1ZfmVbCbLbfUj03zPjJIsWlhu3JLYlZ74ZzzeyPQPwEj-WTslRrryyueABTQoDuBx9rffId5V1dMF5_FWeT8SXi-piD4ZyR70AlztDO6onNVl8f_Pz-uYEDf59d2Vcv12KZO7ofdBcUP9yeQtul4IL0vhxT_fTysxrDGhEf3dm99At_5TS-O_inn8fofxjHzW5p7P7cK_nley0U4QD2IvtA7jTVZq8eQh2HPEH-ad3zLJpl2mahRjnrK8aMWXNcEqLIY1l1vs1JZFgP2gcQ_AYeT1Ckc0XtLmTHq_obUYFM5ePYHL2-dvH87yvrpD7ShSrvAiuiN6KUsQiRC6LSLFK0KL2vLIVYqRd8D7EYOvGez4KVgbshD7eFo3S_DHst7M2PgXmR95q2WAwLZVwStuyQd6oqlDbkbOFzODVIFMz75JomLT5zbXpEDCIgEkIGOz9gcS-6UkJsNOH2WJqensyUtvgeBUaHoOQZahVFUNA-qib6GxTZ3A0gGYGpTKlJgJZc15m8GLTjPZEmyS2jbN16kMUDHlNBk86jDcz4ZRaCBfkDPQW-ltT3W5pry5Tzm5a-Sokzxm8HhTl97z-LYvD_yGLZ3C3JA2nnLPFEeyvFut4jFRq5Z4n-_gFPGcdng priority: 102 providerName: Scholars Portal – databaseName: Springer_OA刊 dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERIXxJu0BRmJG0TE8TPcYKGqkMqJSr1ZfqX0QHbV3T3w75lxsosC5cAtiSeS5c-T-ZyxvwF4jQ_bYHRTm2h8LUVCl8IFXI2xNkbku8YHOuB89lWfnssvF-piksmhszCz_L2w79ayuDJGFnQFnFu1vg13FNcNzeCFXuz_p5DSuZVyOhdz86uz2FMk-m_ilX9vj_wjR1pCz8kDuD9xRvZhBPkh3MrDI7g7VpH8-Rj8WUYGLT69Z55djirSLOW8YlNFiEvW73ZgMaSozMe4JYEI9oPeYwgMo4hGCLHVNSVuyuUV3S2pGOb6CZyffP62OK2nygl1VJJvap4Cz9HLVmaestA80zokWdlFobzC8bchxZhy8l0fo2iS1wmNMH573hsrnsLBsBzyc2Cxid7qHhfK2shgrG975IRGpc43wXNdwZvdmLrVKJDhSmJbWDci4BABVxBwaP2Rhn1vSeLW5QFi7iZfcdr6FIRKvchJ6jZ1RuWUkBraPgffdxUc70Bzk8etXWuJHHZCtBW82jejr1ACxA95uS02RK-Qs1TwbMR43xNBskH4sa3AztCfdXXeMlx9L3rc9FVTSIwreLubKL_79e-xOPw_8yO4R6XuaecC58dwsLne5hdIiDbhZfGEX9jFBXE priority: 102 providerName: Springer Nature |
Title | Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins |
URI | https://link.springer.com/article/10.1038/s41467-023-37870-6 https://www.ncbi.nlm.nih.gov/pubmed/37169763 https://www.proquest.com/docview/2812329332 https://search.proquest.com/docview/2813554415 https://pubmed.ncbi.nlm.nih.gov/PMC10175565 https://doaj.org/article/68adb35df3ed462d975edd8518febaf9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLkLigngTWCojcYNsk9ixHW7dsmVVqasVsFJvlmM73Uo0rfo48O8ZO0nZ8rhwSVvbUS1_M5lv4vEMwDtszErBk1gYoWNGLaoUOnAx2lpjkO8KXfoDzpMrfnnDxtN8egS8OwsTgvZNOT-rvy_O6vltiK1cLUy_ixPrX0-GXoxyZCL9YzgWlN7x0cPzlxbotrD2hExCZX_DwvMAzRPqEwpo7AsXUZ8nJqT_vGOQQt7-v5HNP2Mmf9s4DfZo9AgetkSSDJoJP4YjVz-B-01pyR9PQU8c0mr66SPRZNaklibWuRVpy0TMSNWFZRHkrUQbs_NZI8jC30cQLeLNnIeNrNZ-Nyd8nftfS18hc_MMbkYX34aXcVtOITY5S7dxasvUGc0y5lLrKE-dd06sZIWhuc4RFFlaY6yzuqiMoYnV3OIgNOo6rYSkz-GkXtbuJRCTGC15hd4zF6wUUmcVEkWR20InpU55BO-7NVWrJmuGCrvdVKoGDIVgqACGwtHnftn3I33G69CwXM9Ui7viUtuS5raizjKe2ULkzlrki7Jypa6KCE470FSrhhuVSc8YC0qzCN7uu1GB_K6Irt1yF8Z4zoVEJoIXDcb7mXQyEoE8QP9gqoc9KLMhSXcnoxF86ATl17z-vRav_v-fXsODzIu4Ty2bnsLJdr1zb5AxbcseqslU4FWOPvfg3mAw_jrGz_OLq-sv2Drkw154F4HXCZO9oE4_AflAHX4 |
link.rule.ids | 230,315,733,786,790,870,891,2115,12083,12792,21416,24346,27955,27956,31752,31753,33406,33407,33777,33778,41153,42222,43343,43633,43838,51609,53825,53827,74100,74390,74657 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiGcJFDASN4iaxI7jcEEUWi3QXSHUSr1Zju0sPZAs-zjw75lxvFstr1s2cSSvP8_MZ4_zDcBLvFk0lczSylYmFdyhSeECLsVYay3y3co09IHzZCrH5-LTRXkRN9yW8VjlxicGR-16S3vkh4Wi4I_L7-Lt_EdKVaMouxpLaFyHPZLcVCPYOzqefvm63WUh_XMlRPxaJuPqcCmCb8BQhbaFkzWVOxEpCPf_jW3-eWjyt8xpCEgnd-B2ZJLs3QD9Xbjmu3twY6gt-fM-mIlHXs0_vGGGzQZtaea8n7NYJ2LG2s25LIbElRlr1yQbwb7TewzhYhTnCDc2X1A6J1xe0q-eSmQuH8D5yfHZ-3Ea6ymkthT5Ks1dk3trRCF87jyXuafViVOitrw0JaKiGmet887UrbU8c0Y6bIRR3eRtpfhDGHV95x8Bs5k1Sra4fJaVaCplihaZYlW62mSNyWUCrzZjqueDbIYO6W6u9ICARgR0QEBj6yMa9m1LkrwON_rFTEcL0lIZ1_DStdw7IQtXV6V3Dgmjan1j2jqBgw1oOtrhUl_NmgRebB-jBVFaxHS-X4c2RLqQySSwP2C87QknMSF0wQmoHfR3urr7pLv8FlS6ydeVSJcTeL2ZKFf9-vdYPP7_33gON8dnk1N9-nH6-QncKmgek5ZsfgCj1WLtnyJFWjXPoh38AqZQEMo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JjtQwEC3BIBAXxE5gACNxg6iT2LEdLggYWsMyIw6M1DfLsZ1mDnSaXg78PVWO06Nmu2VxJMe1PacqrwCe48WqVbLIlVM2F9yjSeEGLsdY6xziXWVb-sH55FQen4mPs3qW6p_Wqaxy9InRUfve0TfySaUp-OP2u5p0qSziy9H09fJHTh2kKNOa2mlchisYJQtq46Bmave9hZjQtRDpv5mC68laRC-BQQutDNU2l3uxKVL4_w13_lk--VsONYam6U24kTAlezMowS24FBa34erQZfLnHbAnARE2P3rFLJsPLNPMh7BkqWPEnHVjhRZDCMusc1sikGDf6TmGgmMU8UiCbLmixE48PKeznpplru_C2fT913fHeeqskLtalJu89G0ZnBWVCKUPXJaB9ilei8bx2tYoH91653zwtumc44W30uMgjO-27JTm9-Bg0S_CA2CucFbLDjfSUolWaVt1iBlV7RtbtLaUGbwY19QsBwINExPfXJtBAgYlYKIEDI5-S8u-G0nk1_FCv5qbZEtGautbXvuOBy9k5RtVB-8ROuoutLZrMjgchWaSRa7Nhf5k8Gx3G22JEiR2EfptHEPwCzFNBvcHGe9mwolWCJ1xBnpP-ntT3b-zOP8W-brJ69UInDN4OSrKxbz-vRYP__8aT-EaGoD5_OH00yO4XpEaE6lseQgHm9U2PEastGmfRCP4BZ4WE4c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal3D%3A+a+general+deep+learning+framework+for+accurate+metal+ion+location+prediction+in+proteins&rft.jtitle=Nature+communications&rft.au=Simon+L.+D%C3%BCrr&rft.au=Andrea+Levy&rft.au=Ursula+Rothlisberger&rft.date=2023-05-11&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41467-023-37870-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_68adb35df3ed462d975edd8518febaf9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |