Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method i...
Saved in:
Published in | Bioactive materials Vol. 6; no. 1; pp. 230 - 243 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.01.2021
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.
[Display omitted]
•High voltage monophasic pulsed current (HVMPC) is the relatively optimal parameter to improve diabetic wounds healing.•HVMPC promotes the proliferation and migration capacity of human umbilical vein endothelial cells (HUVECs).•Chitosan-Vaseline® gauze (CVG) promotes the healing of diabetic wounds for providing a good microenvironment.•The flexible electrical stimulation (ES) chitosan dressing is a therapeutic method for diabetic wound treatments. |
---|---|
AbstractList | The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds . In studies carried out , we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo . In studies carried out in vitro , we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. Image 1 • High voltage monophasic pulsed current (HVMPC) is the relatively optimal parameter to improve diabetic wounds healing. • HVMPC promotes the proliferation and migration capacity of human umbilical vein endothelial cells (HUVECs). • Chitosan-Vaseline ® gauze (CVG) promotes the healing of diabetic wounds for providing a good microenvironment. • The flexible electrical stimulation (ES) chitosan dressing is a therapeutic method for diabetic wound treatments. The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. [Display omitted] •High voltage monophasic pulsed current (HVMPC) is the relatively optimal parameter to improve diabetic wounds healing.•HVMPC promotes the proliferation and migration capacity of human umbilical vein endothelial cells (HUVECs).•Chitosan-Vaseline® gauze (CVG) promotes the healing of diabetic wounds for providing a good microenvironment.•The flexible electrical stimulation (ES) chitosan dressing is a therapeutic method for diabetic wound treatments. |
Author | Li, Meng-Lu Chen, Jun Fang, Qing-Qing Wang, Xiao-Zhi Wang, Xiao-Feng Zhao, Wan-Yi Hu, Yan-Yan Lou, Dong Tan, Wei-Qiang |
Author_xml | – sequence: 1 givenname: Xiao-Feng surname: Wang fullname: Wang, Xiao-Feng organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China – sequence: 2 givenname: Meng-Lu surname: Li fullname: Li, Meng-Lu organization: Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China – sequence: 3 givenname: Qing-Qing surname: Fang fullname: Fang, Qing-Qing organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China – sequence: 4 givenname: Wan-Yi surname: Zhao fullname: Zhao, Wan-Yi organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China – sequence: 5 givenname: Dong surname: Lou fullname: Lou, Dong organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China – sequence: 6 givenname: Yan-Yan surname: Hu fullname: Hu, Yan-Yan organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China – sequence: 7 givenname: Jun surname: Chen fullname: Chen, Jun organization: Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China – sequence: 8 givenname: Xiao-Zhi surname: Wang fullname: Wang, Xiao-Zhi email: xw224@zju.edu.cn organization: Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China – sequence: 9 givenname: Wei-Qiang surname: Tan fullname: Tan, Wei-Qiang email: tanweixxxx@zju.edu.cn organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32913931$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFuEzEQhleoiJbSV4A9ckmwd73e9QGkKqJQqRIXQNysWXs2mcixi-2k8FI8BE-G27RVy6UX2_LM__2W539ZHfjgsarecDbnjMt36_lIAUzeQJ43rGFzNswZa59VR43omhlX6sfBg_NhdZLSmjHG-7Kw_kV12DaKt6rlR5U_c_iLRoc1OjQ5kgFXp0ybrYNMwdcWd2SwvqK8qhcryiGBn32HhI48_v1T24gpkV_WYExBRMiY6quw9bZeIbjrChUKwYil8qp6PoFLeHK7H1ffzj5-XXyeXXz5dL44vZiZTvA843aQU6cMCjVZ1aMSKDrBVDt2o5LMss6AEAamSY6qBy4ltD0fxTBAKzou2uPqfM-1Adb6MtIG4m8dgPTNRYhLDTGTcain0XYgZadYYUoFQ9MYnCbBsGua1vLC-rBnXW7HDVqDPkdwj6CPK55Wehl2ui9PGeRQAG9vATH83GLKekOpfJYDj2GbdCMEl1xI0ZfW1w-97k3uBlYa3u8bTAwpRZy0oXwzqWJNTnOmrzOi1_o-I_o6I5oNumSk6Pv_9HcWTytP90osc9sRRp0MoTdoKZbklI-lJxn_AA-M3vo |
CitedBy_id | crossref_primary_10_1002_adhm_202100557 crossref_primary_10_1186_s12302_024_00872_2 crossref_primary_10_1021_acsbiomaterials_4c00631 crossref_primary_10_1016_j_cej_2021_130563 crossref_primary_10_1016_j_ijbiomac_2021_04_150 crossref_primary_10_1021_acsaelm_3c00637 crossref_primary_10_1002_adsr_202200018 crossref_primary_10_1007_s10853_024_10240_3 crossref_primary_10_1016_j_amjoto_2022_103650 crossref_primary_10_1016_j_reactfunctpolym_2022_105233 crossref_primary_10_1016_j_bioadv_2022_212773 crossref_primary_10_1089_genbio_2022_0014 crossref_primary_10_1177_01455613221150571 crossref_primary_10_1002_smll_202206231 crossref_primary_10_1016_j_cej_2023_148096 crossref_primary_10_1007_s10787_023_01407_6 crossref_primary_10_1007_s42995_023_00180_3 crossref_primary_10_1002_advs_202304048 crossref_primary_10_3390_gels9090738 crossref_primary_10_1111_exd_14396 crossref_primary_10_1002_adtp_202300125 crossref_primary_10_1093_pnasnexus_pgac002 crossref_primary_10_1002_adhm_202300064 crossref_primary_10_2147_JIR_S371939 crossref_primary_10_3390_jnt4010004 crossref_primary_10_1371_journal_pone_0303692 crossref_primary_10_1016_j_bioadv_2022_213055 crossref_primary_10_1186_s12902_022_01029_z crossref_primary_10_1016_j_colsurfb_2022_112341 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1016_j_bios_2021_113479 crossref_primary_10_1080_00914037_2023_2239421 crossref_primary_10_1109_ACCESS_2022_3229686 crossref_primary_10_1002_anbr_202200088 crossref_primary_10_1002_VIW_20230110 crossref_primary_10_1016_j_carpta_2024_100497 crossref_primary_10_1016_j_cej_2023_142457 crossref_primary_10_1002_adhm_202303143 crossref_primary_10_1089_wound_2021_0194 crossref_primary_10_1002_admt_202300796 crossref_primary_10_1080_16583655_2022_2054607 crossref_primary_10_1016_j_compositesb_2022_109804 crossref_primary_10_2147_JIR_S376692 crossref_primary_10_1021_acs_analchem_0c04956 crossref_primary_10_1002_adhm_202401735 crossref_primary_10_1016_j_nanoen_2022_107393 crossref_primary_10_1021_acsaem_4c00462 crossref_primary_10_1016_j_carbpol_2023_121340 crossref_primary_10_1002_adma_202007502 crossref_primary_10_1021_acsnano_4c14320 crossref_primary_10_1088_1742_6596_2809_1_012022 crossref_primary_10_1002_adhm_202302183 crossref_primary_10_1016_j_drudis_2023_103673 crossref_primary_10_1007_s00339_024_07444_4 crossref_primary_10_1002_adhm_202304365 crossref_primary_10_1021_acsabm_0c01190 crossref_primary_10_1063_5_0173663 crossref_primary_10_1002_adfm_202100852 crossref_primary_10_1007_s10439_023_03371_2 crossref_primary_10_1016_S2096_6911_21_00090_X crossref_primary_10_3389_fbioe_2023_1239183 crossref_primary_10_1002_adfm_202111022 crossref_primary_10_1021_acsabm_1c00880 crossref_primary_10_1166_jbt_2023_3250 crossref_primary_10_3390_toxins15050344 crossref_primary_10_1021_acs_nanolett_3c00300 crossref_primary_10_1016_j_carbpol_2023_121507 crossref_primary_10_1111_wrr_13119 crossref_primary_10_1016_j_envres_2023_115912 crossref_primary_10_1021_acsami_2c13026 crossref_primary_10_1002_adhm_202400170 |
Cites_doi | 10.1007/s10856-018-6027-7 10.1111/wrr.12789 10.1089/wound.2013.0459 10.1189/jlb.3A0815-390R 10.3390/md13031133 10.1111/j.1742-481X.2012.01085.x 10.1161/01.CIR.0000018166.84319.55 10.1111/vde.12328 10.1016/j.actbio.2013.04.019 10.1016/j.semcdb.2008.12.009 10.1152/ajpcell.00389.2001 10.1007/BF02364157 10.1053/j.semvascsurg.2016.01.003 10.1016/j.clindermatol.2006.12.005 10.1016/j.ijfoodmicro.2014.04.029 10.1016/j.ijbiomac.2018.02.075 10.1002/jor.21235 10.1038/200378a0 10.1089/wound.2013.0445 10.1016/S0070-2153(03)58001-2 10.1111/wrr.12747 10.1038/sj.jid.5700701 10.1002/jcp.22448 10.1111/wrr.12526 10.3310/hta5090 10.1111/wrr.12303 10.3389/fphar.2018.00739 10.1093/ptj/63.10.1593 10.1302/2058-5241.3.180010 10.1002/aenm.201500959 10.1007/s00268-002-6737-2 10.1098/rstb.2004.1466 10.1001/archderm.1988.01670060018009 10.1002/adhm.201501018 10.1097/00006534-200009030-00013 10.1007/s00125-018-4557-7 10.12968/bjcn.2017.22.Sup12.S36 10.1007/s00403-012-1278-5 10.1089/wound.2013.0451 10.12968/jowc.2016.25.2.68 10.1159/000339613 10.1006/cyto.1996.0074 10.1016/j.bbrc.2019.11.040 10.1038/193293a0 10.1111/iwj.13043 10.1021/acsami.7b03296 10.1242/jcs.109.1.199 10.1007/s11695-018-3459-6 10.1097/01.ASW.0000533722.06780.03 10.1111/j.1524-475X.2012.00763.x 10.1038/488146a 10.1111/j.1467-2494.2006.00344.x 10.1177/0885328218801114 10.1038/jid.2010.96 10.3109/10799893.2015.1030412 10.2174/1574888X13666180502100620 10.1155/2017/8407249 10.12968/jowc.2018.27.Sup9a.S32 10.1016/j.freeradbiomed.2019.10.008 10.12968/jowc.2018.27.5.296 10.1046/j.1523-1747.1998.00381.x 10.1021/acs.biomac.7b01180 10.1128/AEM.68.4.1864-1871.2002 10.1208/s12249-018-1131-z 10.1111/j.1600-0722.1995.tb00016.x 10.1371/journal.pone.0226696 10.1016/j.actbio.2019.07.004 10.2147/IJN.S161680 10.1111/wrr.12594 10.1016/j.yexcr.2015.01.015 10.3892/ijmm.2016.2542 10.4269/ajtmh.19-0387 10.1088/0967-3334/17/2/001 10.1073/pnas.1804262115 10.1016/j.scr.2011.08.001 10.1097/PRS.0000000000002681 10.1177/1534734605275733 10.12968/jowc.2016.25.3.122 10.1159/000064517 |
ContentType | Journal Article |
Copyright | 2020 [The Author/The Authors] 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 |
Copyright_xml | – notice: 2020 [The Author/The Authors] – notice: 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. – notice: 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2020.08.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 243 |
ExternalDocumentID | oai_doaj_org_article_fbd5a66590ca469a822ceff40e5223d1 PMC7451868 32913931 10_1016_j_bioactmat_2020_08_003 S2452199X20301493 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c541t-1d86f59ce49fd97e94e454093b5b960d05ca44caff6b97a166a371b488a345143 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:21:00 EDT 2025 Thu Aug 21 18:34:52 EDT 2025 Fri Jul 11 06:05:48 EDT 2025 Mon Jul 21 06:05:26 EDT 2025 Tue Jul 01 02:11:23 EDT 2025 Thu Apr 24 22:54:27 EDT 2025 Wed May 17 01:53:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Diabetic wounds Electrical stimulation Flexible electronic device Chitosan-vaseline® gauze Wound healing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-1d86f59ce49fd97e94e454093b5b960d05ca44caff6b97a166a371b488a345143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/fbd5a66590ca469a822ceff40e5223d1 |
PMID | 32913931 |
PQID | 2441614647 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fbd5a66590ca469a822ceff40e5223d1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7451868 proquest_miscellaneous_2441614647 pubmed_primary_32913931 crossref_citationtrail_10_1016_j_bioactmat_2020_08_003 crossref_primary_10_1016_j_bioactmat_2020_08_003 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2021 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Kruse, Nuutila, Lee, Kiwanuka, Singh, Caterson, Eriksson, Sorensen (bib76) 2015; 23 Zhao, Qin, Reid, Pu, Hara, Zhao (bib18) 2012; 8 Qiu, Li, Liu, Cen, Shan, Zhang, Liu, Wang, Zhu, Qiu (bib53) 2018; 28 Winter (bib28) 1962; 193 Kim, Hong, Wallace, Park (bib45) 2015; 5 McCarty, Cochrane, Clegg, Percival (bib75) 2012; 20 Nair (bib16) 2018; 27 Kruse, Nuutila, Lee, Kiwanuka, Singh, Caterson, Eriksson, Sorensen (bib20) 2015; 23 Zhao, Fang, Wang, Wang, Zhang, Shi, Zheng, Zhang, Hu, Ma, Tan (bib41) 2020; 28 Krieger (bib55) 2012; 488 Nuccitelli (bib8) 2003; 58 Ahmad, Minhas, Ahmad, Sohail, Abdullah, Badshah (bib36) 2018; 19 Zhao (bib13) 2009; 20 Rana, Kumar, Sharma (bib56) 2018; 13 Fang, Wang, Zhao, Shi, Lou, Chen, Zhang, Wang, Ma, Tan (bib43) 2020; 102 Loots, Lamme, Zeegelaar, Mekkes, Bos, Middelkoop (bib80) 1998; 111 Rutter (bib84) 2017; 22 Huber, Tegl, Mensah, Beer, Baumann, Borth, Sygmund, Ludwig, Guebitz (bib3) 2017; 9 Game, Jeffcoate (bib32) 2016; 138 Tarusha, Paoletti, Travan, Marsich (bib73) 2018; 29 Chen, Jia, Kang, Zhang, Liu, Yang, Yan, Zuo, Guo, Jiang, Qi, Liu, Cui, Santos, Deng (bib57) 2016; 5 Hunt (bib29) 2000; 106 Kwan, Cheing, Vong, Lo (bib46) 2013; 10 Alnahdi, John, Raza (bib64) 2019; 14 Hubner, Brauchle, Smola, Madlener, Fassler, Werner (bib69) 1996; 8 Younes, Rinaudo (bib39) 2015; 13 Kloth (bib44) 2014; 3 Redd, Cooper, Wood, Stramer, Martin (bib83) 2004; 359 Mavrogenis, Megaloikonomos, Antoniadou, Igoumenou, Panagopoulos, Dimopoulos, Moulakakis, Sfyroeras, Lazaris (bib7) 2018; 3 Lambers, Piessens, Bloem, Pronk, Finkel (bib25) 2006; 28 Polak, Franek, Taradaj (bib48) 2014; 3 Ren, Han, Xuan, Lv, Gong, Yan, Wan, Guo, Liu, Xu, Sun, Yang, Liu (bib63) 2019; 145 Oza, Kulkarni (bib52) 2018; 9 Lallyett, Yeung, Nielson, Zeef, Chapman-Jones, Kjaer, Kadler (bib15) 2018; 31 Shen, Wang, Wang, Zhou, Zhang, Li (bib88) 2020; 521 Walter, Rittig, Bahlmann, Kirchmair, Silver, Murayama, Nishimura, Losordo, Asahara, Isner (bib71) 2002; 105 Wlaschin, Ninkovic, Griesgraber, Colak Atan, Young, Pereira, Solberg, Smith, Parks, McNulty, Langer-Anderson (bib78) 2019; 27 Yang, Yang, Cui, Feng, Du, Song, Tong, Yang, Wang, Zeng, Zou, Sun (bib35) 2018; 13 Bullard, Longaker, Lorenz (bib82) 2003; 27 Pak, Park, Oh, Lee, Jun, Lee, Oh, Kwak, Rhie (bib42) 2019; 16 Hoare, Rajnicek, McCaig, Barker, Wilson (bib17) 2016; 99 Menke, Ward, Witten, Bonchev, Diegelmann (bib27) 2007; 25 Percival, Finnegan, Donelli, Vuotto, Rimmer, Lipsky (bib21) 2016; 42 Scheiner, Mortimer, Roessmann (bib59) 1990; 18 Li, Kolega (bib11) 2002; 39 Huang, Akaishi, Ogawa (bib87) 2012; 304 Reinke, Sorg (bib79) 2012; 49 Atiyeh, Hayek (bib30) 2004; 1 Ousey, Cutting, Rogers, Rippon (bib77) 2016; 25 Cui, Zhang, Wang, Liu, Ming, Hou, Lv, Fang, Yu (bib68) 2016; 37 Scalise, Bianchi, Tartaglione, Bolletta, Pierangeli, Torresetti, Marazzi, Di Benedetto (bib74) 2015; 28 Xu, Liu, Ma, Yuan, Lu, Yang (bib50) 2017; 12 Losi, Briganti, Errico, Lisella, Sanguinetti, Chiellini, Soldani (bib61) 2013; 9 Kloth (bib14) 2005; 4 Katzel, Wolenski, Loiselle, Basile, Flick, Langstein, Hilton, Awad, Hammert, O'Keefe (bib89) 2011; 29 Stewart, Cole, Legan, Slade, Vandeven, Schaffner (bib26) 2002; 68 Nishimura, Isseroff, Nuccitelli (bib12) 1996; 109 Soliman, Abdo Nassan, Ismail (bib51) 2016; 15 Rippon, Ousey, Cutting (bib85) 2016; 25 Guo, Song, Reid, Gu, Forrester, Jahoda, Zhao (bib19) 2010; 130 Falanga (bib24) 1988; 124 Winter (bib33) 1963; 200 Cui, Pan, Pan (bib62) 2017 Sun, Liu, Liu, Feng, Yang, Zhou (bib67) 2015; 35 Li, Lu, Zhou, Yu, Lu, Xiao, Dai, Wu, Lan (bib38) 2017; 18 Cullum, Nelson, Flemming, Sheldon (bib4) 2001; 5 Lengheden, Jansson (bib22) 1995; 103 Nair (bib37) 2018; 27 Xie, Shi, Sheng, Han, Li, Zhao, Jiang, Feng, Li, Gu (bib66) 2019; 19 Liu, Tian, Li, Liu, Liu, Zhang, Zhang, Yan, Han (bib65) 2016; 11 Khouri, Kotzki, Roustit, Blaise, Gueyffier, Cracowski (bib58) 2017; 25 Barker, Jaffe, Vanable (bib10) 1982; 242 Chang, Heo, Choi, Lee (bib6) 2018; 97 Xie, Yi, Wang, Hou, Jiang (bib34) 2018; 112 Wang, Chu, Wen, Fu, Qian, Wo, Wang, Wang (bib86) 2015; 332 Eming, Krieg, Davidson (bib81) 2007; 127 Newton, Karselis (bib60) 1983; 63 Kruse, Singh, Targosinski, Sinha, Sorensen, Eriksson, Nuutila (bib23) 2017; 25 Younes, Sellimi, Rinaudo, Jellouli, Nasri (bib40) 2014; 185 Spence, Pomeranz (bib54) 1996; 17 Duan, Yu, Xu, Wang, Feng, Mao, Gao (bib72) 2019; 96 Ashrafi, Alonso-Rasgado, Baguneid, Bayat (bib47) 2016; 27 Konop, Czuwara, Klodzinska, Laskowska, Zielenkiewicz, Brzozowska, Nabavi, Rudnicka (bib5) 2018; 33 Zhu, Cankova, Iwanaszko, Lichtor, Mrksich, Ameer (bib2) 2018; 115 Kloth (bib49) 2009; 6 Papetti, Herman (bib70) 2002; 282 Kolosova, Nethery, Kern (bib90) 2011; 226 Ma (bib1) 2018; 61 Martin-Granados, McCaig (bib9) 2014; 3 Rippon, Ousey, Cutting (bib31) 2016; 25 Yang (10.1016/j.bioactmat.2020.08.003_bib35) 2018; 13 Eming (10.1016/j.bioactmat.2020.08.003_bib81) 2007; 127 Soliman (10.1016/j.bioactmat.2020.08.003_bib51) 2016; 15 Xu (10.1016/j.bioactmat.2020.08.003_bib50) 2017; 12 Hunt (10.1016/j.bioactmat.2020.08.003_bib29) 2000; 106 Mavrogenis (10.1016/j.bioactmat.2020.08.003_bib7) 2018; 3 Rana (10.1016/j.bioactmat.2020.08.003_bib56) 2018; 13 Rippon (10.1016/j.bioactmat.2020.08.003_bib85) 2016; 25 Falanga (10.1016/j.bioactmat.2020.08.003_bib24) 1988; 124 Walter (10.1016/j.bioactmat.2020.08.003_bib71) 2002; 105 Zhao (10.1016/j.bioactmat.2020.08.003_bib13) 2009; 20 McCarty (10.1016/j.bioactmat.2020.08.003_bib75) 2012; 20 Sun (10.1016/j.bioactmat.2020.08.003_bib67) 2015; 35 Lallyett (10.1016/j.bioactmat.2020.08.003_bib15) 2018; 31 Cullum (10.1016/j.bioactmat.2020.08.003_bib4) 2001; 5 Ahmad (10.1016/j.bioactmat.2020.08.003_bib36) 2018; 19 Atiyeh (10.1016/j.bioactmat.2020.08.003_bib30) 2004; 1 Kloth (10.1016/j.bioactmat.2020.08.003_bib14) 2005; 4 Zhao (10.1016/j.bioactmat.2020.08.003_bib41) 2020; 28 Alnahdi (10.1016/j.bioactmat.2020.08.003_bib64) 2019; 14 Barker (10.1016/j.bioactmat.2020.08.003_bib10) 1982; 242 Nair (10.1016/j.bioactmat.2020.08.003_bib16) 2018; 27 Rutter (10.1016/j.bioactmat.2020.08.003_bib84) 2017; 22 Papetti (10.1016/j.bioactmat.2020.08.003_bib70) 2002; 282 Tarusha (10.1016/j.bioactmat.2020.08.003_bib73) 2018; 29 Chang (10.1016/j.bioactmat.2020.08.003_bib6) 2018; 97 Hoare (10.1016/j.bioactmat.2020.08.003_bib17) 2016; 99 Konop (10.1016/j.bioactmat.2020.08.003_bib5) 2018; 33 Qiu (10.1016/j.bioactmat.2020.08.003_bib53) 2018; 28 Menke (10.1016/j.bioactmat.2020.08.003_bib27) 2007; 25 Nuccitelli (10.1016/j.bioactmat.2020.08.003_bib8) 2003; 58 Liu (10.1016/j.bioactmat.2020.08.003_bib65) 2016; 11 Wlaschin (10.1016/j.bioactmat.2020.08.003_bib78) 2019; 27 Younes (10.1016/j.bioactmat.2020.08.003_bib39) 2015; 13 Kloth (10.1016/j.bioactmat.2020.08.003_bib44) 2014; 3 Winter (10.1016/j.bioactmat.2020.08.003_bib33) 1963; 200 Ousey (10.1016/j.bioactmat.2020.08.003_bib77) 2016; 25 Martin-Granados (10.1016/j.bioactmat.2020.08.003_bib9) 2014; 3 Scalise (10.1016/j.bioactmat.2020.08.003_bib74) 2015; 28 Xie (10.1016/j.bioactmat.2020.08.003_bib66) 2019; 19 Zhu (10.1016/j.bioactmat.2020.08.003_bib2) 2018; 115 Duan (10.1016/j.bioactmat.2020.08.003_bib72) 2019; 96 Huang (10.1016/j.bioactmat.2020.08.003_bib87) 2012; 304 Guo (10.1016/j.bioactmat.2020.08.003_bib19) 2010; 130 Cui (10.1016/j.bioactmat.2020.08.003_bib62) 2017 Losi (10.1016/j.bioactmat.2020.08.003_bib61) 2013; 9 Scheiner (10.1016/j.bioactmat.2020.08.003_bib59) 1990; 18 Zhao (10.1016/j.bioactmat.2020.08.003_bib18) 2012; 8 Xie (10.1016/j.bioactmat.2020.08.003_bib34) 2018; 112 Kruse (10.1016/j.bioactmat.2020.08.003_bib23) 2017; 25 Ashrafi (10.1016/j.bioactmat.2020.08.003_bib47) 2016; 27 Cui (10.1016/j.bioactmat.2020.08.003_bib68) 2016; 37 Lengheden (10.1016/j.bioactmat.2020.08.003_bib22) 1995; 103 Newton (10.1016/j.bioactmat.2020.08.003_bib60) 1983; 63 Kloth (10.1016/j.bioactmat.2020.08.003_bib49) 2009; 6 Spence (10.1016/j.bioactmat.2020.08.003_bib54) 1996; 17 Redd (10.1016/j.bioactmat.2020.08.003_bib83) 2004; 359 Nishimura (10.1016/j.bioactmat.2020.08.003_bib12) 1996; 109 Shen (10.1016/j.bioactmat.2020.08.003_bib88) 2020; 521 Rippon (10.1016/j.bioactmat.2020.08.003_bib31) 2016; 25 Kruse (10.1016/j.bioactmat.2020.08.003_bib20) 2015; 23 Chen (10.1016/j.bioactmat.2020.08.003_bib57) 2016; 5 Krieger (10.1016/j.bioactmat.2020.08.003_bib55) 2012; 488 Reinke (10.1016/j.bioactmat.2020.08.003_bib79) 2012; 49 Khouri (10.1016/j.bioactmat.2020.08.003_bib58) 2017; 25 Kruse (10.1016/j.bioactmat.2020.08.003_bib76) 2015; 23 Ma (10.1016/j.bioactmat.2020.08.003_bib1) 2018; 61 Fang (10.1016/j.bioactmat.2020.08.003_bib43) 2020; 102 Oza (10.1016/j.bioactmat.2020.08.003_bib52) 2018; 9 Kim (10.1016/j.bioactmat.2020.08.003_bib45) 2015; 5 Huber (10.1016/j.bioactmat.2020.08.003_bib3) 2017; 9 Bullard (10.1016/j.bioactmat.2020.08.003_bib82) 2003; 27 Katzel (10.1016/j.bioactmat.2020.08.003_bib89) 2011; 29 Game (10.1016/j.bioactmat.2020.08.003_bib32) 2016; 138 Stewart (10.1016/j.bioactmat.2020.08.003_bib26) 2002; 68 Winter (10.1016/j.bioactmat.2020.08.003_bib28) 1962; 193 Ren (10.1016/j.bioactmat.2020.08.003_bib63) 2019; 145 Hubner (10.1016/j.bioactmat.2020.08.003_bib69) 1996; 8 Li (10.1016/j.bioactmat.2020.08.003_bib38) 2017; 18 Percival (10.1016/j.bioactmat.2020.08.003_bib21) 2016; 42 Kwan (10.1016/j.bioactmat.2020.08.003_bib46) 2013; 10 Polak (10.1016/j.bioactmat.2020.08.003_bib48) 2014; 3 Wang (10.1016/j.bioactmat.2020.08.003_bib86) 2015; 332 Loots (10.1016/j.bioactmat.2020.08.003_bib80) 1998; 111 Younes (10.1016/j.bioactmat.2020.08.003_bib40) 2014; 185 Li (10.1016/j.bioactmat.2020.08.003_bib11) 2002; 39 Nair (10.1016/j.bioactmat.2020.08.003_bib37) 2018; 27 Pak (10.1016/j.bioactmat.2020.08.003_bib42) 2019; 16 Lambers (10.1016/j.bioactmat.2020.08.003_bib25) 2006; 28 Kolosova (10.1016/j.bioactmat.2020.08.003_bib90) 2011; 226 |
References_xml | – volume: 97 year: 2018 ident: bib6 article-title: The appropriate management algorithm for diabetic foot: a single-center retrospective study over 12 years publication-title: Medicine (Baltim.) – volume: 105 start-page: 3017 year: 2002 end-page: 3024 ident: bib71 article-title: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells publication-title: Circulation – volume: 25 start-page: 70 year: 2016 end-page: 75 ident: bib31 article-title: Wound healing and hyper-hydration: a counterintuitive model publication-title: J. Wound Care – volume: 488 start-page: 146 year: 2012 end-page: 147 ident: bib55 article-title: Extreme mechanics: buckling down publication-title: Nature – volume: 124 start-page: 872 year: 1988 end-page: 877 ident: bib24 article-title: Occlusive wound dressings. Why, when, which? publication-title: Arch. Dermatol. – volume: 12 year: 2017 ident: bib50 article-title: Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats publication-title: PloS One – volume: 282 start-page: C947 year: 2002 end-page: C970 ident: bib70 article-title: Mechanisms of normal and tumor-derived angiogenesis publication-title: Am. J. Physiol. Cell Physiol. – volume: 130 start-page: 2320 year: 2010 end-page: 2327 ident: bib19 article-title: Effects of physiological electric fields on migration of human dermal fibroblasts publication-title: J. Invest. Dermatol. – volume: 106 start-page: 613 year: 2000 end-page: 614 ident: bib29 article-title: Accelerated healing of full-thickness skin wounds in a wet environment - Discussion publication-title: Plast. Reconstr. Surg. – volume: 13 start-page: 4987 year: 2018 end-page: 5002 ident: bib35 article-title: Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties publication-title: Int. J. Nanomed. – volume: 9 start-page: 739 year: 2018 ident: bib52 article-title: Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia publication-title: Front. Pharmacol. – volume: 39 start-page: 391 year: 2002 end-page: 404 ident: bib11 article-title: Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells publication-title: J. Vasc. Res. – volume: 58 start-page: 1 year: 2003 end-page: 26 ident: bib8 article-title: A role for endogenous electric fields in wound healing publication-title: Curr. Top. Dev. Biol. – volume: 332 start-page: 202 year: 2015 end-page: 211 ident: bib86 article-title: Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-beta/Smad signaling in hypertrophic scar fibroblasts publication-title: Exp. Cell Res. – volume: 3 start-page: 127 year: 2014 end-page: 138 ident: bib9 article-title: Harnessing the electric spark of life to cure skin wounds publication-title: Adv. Wound Care – volume: 29 start-page: 684 year: 2011 end-page: 693 ident: bib89 article-title: Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing publication-title: J. Orthop. Res. – volume: 193 start-page: 293 year: 1962 end-page: 294 ident: bib28 article-title: Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig publication-title: Nature – volume: 10 start-page: 121 year: 2013 end-page: 131 ident: bib46 article-title: Electrophysical therapy for managing diabetic foot ulcers: a systematic review publication-title: Int. Wound J. – volume: 115 start-page: 6816 year: 2018 end-page: 6821 ident: bib2 article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 379 year: 2019 end-page: 386 ident: bib42 article-title: Comparison of the efficacy and safety of povidone-iodine foam dressing (Betafoam), hydrocellular foam dressing (Allevyn), and petrolatum gauze for split-thickness skin graft donor site dressing publication-title: Int. Wound J. – volume: 42 start-page: 293 year: 2016 end-page: 309 ident: bib21 article-title: Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH publication-title: Crit. Rev. Microbiol. – volume: 127 start-page: 514 year: 2007 end-page: 525 ident: bib81 article-title: Inflammation in wound repair: molecular and cellular mechanisms publication-title: J. Invest. Dermatol. – volume: 3 start-page: 104 year: 2014 end-page: 117 ident: bib48 article-title: High-voltage pulsed current electrical stimulation in wound treatment publication-title: Adv. Wound Care – volume: 28 start-page: 4014 year: 2018 end-page: 4021 ident: bib53 article-title: Comparison of great curvature plication with duodenal-jejunal bypass (GCP-DJB) and sleeve gastrectomy (SG) on metabolic indices and gut hormones in type 2 diabetes mellitus rats publication-title: Obes. Surg. – volume: 20 start-page: 125 year: 2012 end-page: 136 ident: bib75 article-title: The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing publication-title: Wound Repair Regen. – volume: 23 start-page: 456 year: 2015 end-page: 464 ident: bib20 article-title: The external microenvironment of healing skin wounds publication-title: Wound Repair Regen. – volume: 27 start-page: S32 year: 2018 end-page: S36 ident: bib37 article-title: Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series publication-title: J. Wound Care – volume: 19 start-page: 783 year: 2019 end-page: 791 ident: bib66 article-title: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review) publication-title: Mol. Med. Rep. – volume: 521 start-page: 1042 year: 2020 end-page: 1048 ident: bib88 article-title: miR-145-5p attenuates hypertrophic scar via reducing Smad2/Smad3 expression publication-title: Biochem. Biophys. Res. Commun. – volume: 25 start-page: 883 year: 2017 end-page: 891 ident: bib58 article-title: Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis publication-title: Wound Repair Regen. – volume: 3 start-page: 513 year: 2018 end-page: 525 ident: bib7 article-title: Current concepts for the evaluation and management of diabetic foot ulcers publication-title: Efort Open Rev – volume: 27 year: 2016 ident: bib47 article-title: The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals publication-title: Vet. Dermatol. – volume: 22 start-page: S36 year: 2017 end-page: S40 ident: bib84 article-title: Obtaining the optimum moist wound healing environment publication-title: Br. J. Community Nurs. – volume: 37 start-page: 1299 year: 2016 end-page: 1309 ident: bib68 article-title: Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways publication-title: Int. J. Mol. Med. – volume: 25 start-page: 122 year: 2016 end-page: 130 ident: bib77 article-title: The importance of hydration in wound healing: reinvigorating the clinical perspective publication-title: J. Wound Care – volume: 19 start-page: 3199 year: 2018 end-page: 3209 ident: bib36 article-title: Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes publication-title: AAPS PharmSciTech – volume: 242 start-page: R358 year: 1982 end-page: R366 ident: bib10 article-title: The glabrous epidermis of cavies contains a powerful battery publication-title: Am. J. Physiol. – volume: 31 start-page: 322 year: 2018 end-page: 327 ident: bib15 article-title: Changes in S100 proteins identified in healthy skin following electrical stimulation: relevance for wound healing publication-title: Adv. Skin Wound Care – volume: 18 start-page: 407 year: 1990 end-page: 425 ident: bib59 article-title: Imbalanced biphasic electrical stimulation: muscle tissue damage publication-title: Ann. Biomed. Eng. – volume: 28 start-page: 151 year: 2015 end-page: 159 ident: bib74 article-title: Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors publication-title: Semin. Vasc. Surg. – volume: 9 start-page: 7814 year: 2013 end-page: 7821 ident: bib61 article-title: Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice publication-title: Acta Biomater. – volume: 185 start-page: 57 year: 2014 end-page: 63 ident: bib40 article-title: Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities publication-title: Int. J. Food Microbiol. – volume: 13 start-page: 438 year: 2018 end-page: 446 ident: bib56 article-title: Endothelial progenitor cells as molecular targets in vascular senescence and repair publication-title: Curr. Stem Cell Res. Ther. – volume: 68 start-page: 1864 year: 2002 end-page: 1871 ident: bib26 article-title: Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects publication-title: Appl. Environ. Microbiol. – volume: 11 year: 2016 ident: bib65 article-title: Up-regulation of CREG expression by the transcription factor GATA1 inhibits high glucose- and high palmitate-induced apoptosis in human umbilical vein endothelial cells publication-title: PloS One – volume: 61 start-page: 1249 year: 2018 end-page: 1260 ident: bib1 article-title: Epidemiology of diabetes and diabetic complications in China publication-title: Diabetologia – volume: 1 start-page: 111 year: 2004 end-page: 121 ident: bib30 article-title: An update on management of acute and chronic open wounds: the importance of moist environment in optimal wound healing publication-title: J Medicinal Chemistry Reviews – volume: 8 start-page: 548 year: 1996 end-page: 556 ident: bib69 article-title: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice publication-title: Cytokine – volume: 112 start-page: 1225 year: 2018 end-page: 1233 ident: bib34 article-title: Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing publication-title: Int. J. Biol. Macromol. – volume: 138 start-page: 158S year: 2016 end-page: 164S ident: bib32 article-title: Dressing and diabetic foot ulcers: a current review of the evidence publication-title: Plast. Reconstr. Surg. – volume: 14 year: 2019 ident: bib64 article-title: N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells publication-title: PloS One – volume: 63 start-page: 1593 year: 1983 end-page: 1596 ident: bib60 article-title: Skin pH following high voltage pulsed galvanic stimulation publication-title: Phys. Ther. – volume: 109 start-page: 199 year: 1996 end-page: 207 ident: bib12 article-title: Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds publication-title: J. Cell Sci. – volume: 27 start-page: 54 year: 2003 end-page: 61 ident: bib82 article-title: Fetal wound healing: current biology publication-title: World J. Surg. – volume: 103 start-page: 148 year: 1995 end-page: 155 ident: bib22 article-title: Ph effects on experimental wound-healing of human fibroblasts in-vitro publication-title: Eur. J. Oral Sci. – volume: 25 start-page: 19 year: 2007 end-page: 25 ident: bib27 article-title: Impaired wound healing publication-title: Clin. Dermatol. – volume: 3 start-page: 81 year: 2014 end-page: 90 ident: bib44 article-title: Electrical stimulation technologies for wound healing publication-title: Adv. Wound Care – volume: 99 start-page: 1141 year: 2016 end-page: 1151 ident: bib17 article-title: Electric fields are novel determinants of human macrophage functions publication-title: J. Leukoc. Biol. – volume: 6 start-page: 30 year: 2009 end-page: 37 ident: bib49 article-title: Wound healing with conductive electrical stimulation—it's the dosage that counts publication-title: J Wound Technol – volume: 5 start-page: 907 year: 2016 end-page: 918 ident: bib57 article-title: Upregulating hif-1alpha by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound publication-title: Adv Healthc Mater – volume: 23 start-page: 456 year: 2015 end-page: 464 ident: bib76 article-title: The external microenvironment of healing skin wounds publication-title: Wound Repair Regen. – volume: 145 start-page: 357 year: 2019 end-page: 373 ident: bib63 article-title: Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation publication-title: Free Radic. Biol. Med. – volume: 13 start-page: 1133 year: 2015 end-page: 1174 ident: bib39 article-title: Chitin and chitosan preparation from marine sources. Structure, properties and applications publication-title: Mar. Drugs – volume: 226 start-page: 1248 year: 2011 end-page: 1254 ident: bib90 article-title: Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells publication-title: J. Cell. Physiol. – volume: 102 start-page: 468 year: 2020 end-page: 475 ident: bib43 article-title: Development of a chitosan-vaseline gauze dressing with wound-healing properties in murine models publication-title: Am. J. Trop. Med. Hyg. – year: 2017 ident: bib62 article-title: Danggui buxue extract-loaded liposomes in thermosensitive gel enhance in vivo dermal wound healing via activation of the VEGF/PI3K/Akt and TGF-beta/smads signaling pathway publication-title: Evid Based Complement Alternat Med – volume: 5 year: 2015 ident: bib45 article-title: Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions publication-title: Adv Energy Mater – volume: 20 start-page: 674 year: 2009 end-page: 682 ident: bib13 article-title: Electrical fields in wound healing-An overriding signal that directs cell migration publication-title: Semin. Cell Dev. Biol. – volume: 304 start-page: 589 year: 2012 end-page: 597 ident: bib87 article-title: Mechanosignaling pathways in cutaneous scarring publication-title: Arch. Dermatol. Res. – volume: 15 start-page: 45 year: 2016 end-page: 54 ident: bib51 article-title: Origanum majoranum extract modulates gene expression, hepatic and renal changes in a rat model of type 2 diabetes publication-title: Iran. J. Pharm. Res. (IJPR) – volume: 25 start-page: 68 year: 2016 end-page: 75 ident: bib85 article-title: Wound healing and hyper-hydration: a counterintuitive model publication-title: J. Wound Care – volume: 8 start-page: 38 year: 2012 end-page: 48 ident: bib18 article-title: Directing migration of endothelial progenitor cells with applied DC electric fields publication-title: Stem Cell Res. – volume: 111 start-page: 850 year: 1998 end-page: 857 ident: bib80 article-title: Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds publication-title: J. Invest. Dermatol. – volume: 4 start-page: 23 year: 2005 end-page: 44 ident: bib14 article-title: Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials publication-title: Int. J. Low. Extrem. Wounds – volume: 5 start-page: 1 year: 2001 end-page: 221 ident: bib4 article-title: Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy publication-title: Health Technol. Assess. – volume: 200 start-page: 378 year: 1963 end-page: 379 ident: bib33 article-title: Effect of air exposure and occlusion on experimental human skin wounds publication-title: Nature – volume: 17 start-page: 57 year: 1996 end-page: 69 ident: bib54 article-title: Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis publication-title: Physiol. Meas. – volume: 359 start-page: 777 year: 2004 end-page: 784 ident: bib83 article-title: Wound healing and inflammation: embryos reveal the way to perfect repair publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 25 start-page: 260 year: 2017 end-page: 269 ident: bib23 article-title: The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study publication-title: Wound Repair Regen. – volume: 28 start-page: 359 year: 2006 end-page: 370 ident: bib25 article-title: Natural skin surface pH is on average below 5, which is beneficial for its resident flora publication-title: Int. J. Cosmet. Sci. – volume: 29 year: 2018 ident: bib73 article-title: Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds publication-title: J. Mater. Sci. Mater. Med. – volume: 28 start-page: 326 year: 2020 end-page: 337 ident: bib41 article-title: Chitosan-calcium alginate dressing promotes wound healing: a preliminary study publication-title: Wound Repair Regen. – volume: 27 start-page: 296 year: 2018 end-page: 306 ident: bib16 article-title: Microcurrent as an adjunct therapy to accelerate chronic wound healing and reduce patient pain publication-title: J. Wound Care – volume: 18 start-page: 3766 year: 2017 end-page: 3775 ident: bib38 article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing publication-title: Biomacromolecules – volume: 35 start-page: 600 year: 2015 end-page: 604 ident: bib67 article-title: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis publication-title: J Recept Sig Transd – volume: 27 start-page: 622 year: 2019 end-page: 633 ident: bib78 article-title: The impact of first-aid dressing design on healing of porcine partial thickness wounds publication-title: Wound Repair Regen. – volume: 96 start-page: 137 year: 2019 end-page: 148 ident: bib72 article-title: Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells publication-title: Acta Biomater. – volume: 9 start-page: 15307 year: 2017 end-page: 15316 ident: bib3 article-title: A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment publication-title: ACS Appl. Mater. Interfaces – volume: 33 start-page: 527 year: 2018 end-page: 540 ident: bib5 article-title: Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: in vitro and in vivo studies publication-title: J. Biomater. Appl. – volume: 49 start-page: 35 year: 2012 end-page: 43 ident: bib79 article-title: Wound repair and regeneration publication-title: Eur. Surg. Res. – volume: 29 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib73 article-title: Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-018-6027-7 – volume: 28 start-page: 326 year: 2020 ident: 10.1016/j.bioactmat.2020.08.003_bib41 article-title: Chitosan-calcium alginate dressing promotes wound healing: a preliminary study publication-title: Wound Repair Regen. doi: 10.1111/wrr.12789 – volume: 3 start-page: 81 year: 2014 ident: 10.1016/j.bioactmat.2020.08.003_bib44 article-title: Electrical stimulation technologies for wound healing publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0459 – volume: 99 start-page: 1141 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib17 article-title: Electric fields are novel determinants of human macrophage functions publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.3A0815-390R – volume: 13 start-page: 1133 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib39 article-title: Chitin and chitosan preparation from marine sources. Structure, properties and applications publication-title: Mar. Drugs doi: 10.3390/md13031133 – volume: 10 start-page: 121 year: 2013 ident: 10.1016/j.bioactmat.2020.08.003_bib46 article-title: Electrophysical therapy for managing diabetic foot ulcers: a systematic review publication-title: Int. Wound J. doi: 10.1111/j.1742-481X.2012.01085.x – volume: 105 start-page: 3017 year: 2002 ident: 10.1016/j.bioactmat.2020.08.003_bib71 article-title: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells publication-title: Circulation doi: 10.1161/01.CIR.0000018166.84319.55 – volume: 27 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib47 article-title: The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals publication-title: Vet. Dermatol. doi: 10.1111/vde.12328 – volume: 9 start-page: 7814 year: 2013 ident: 10.1016/j.bioactmat.2020.08.003_bib61 article-title: Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.04.019 – volume: 20 start-page: 674 year: 2009 ident: 10.1016/j.bioactmat.2020.08.003_bib13 article-title: Electrical fields in wound healing-An overriding signal that directs cell migration publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.12.009 – volume: 282 start-page: C947 year: 2002 ident: 10.1016/j.bioactmat.2020.08.003_bib70 article-title: Mechanisms of normal and tumor-derived angiogenesis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00389.2001 – volume: 1 start-page: 111 year: 2004 ident: 10.1016/j.bioactmat.2020.08.003_bib30 article-title: An update on management of acute and chronic open wounds: the importance of moist environment in optimal wound healing publication-title: J Medicinal Chemistry Reviews – volume: 18 start-page: 407 year: 1990 ident: 10.1016/j.bioactmat.2020.08.003_bib59 article-title: Imbalanced biphasic electrical stimulation: muscle tissue damage publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02364157 – volume: 28 start-page: 151 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib74 article-title: Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors publication-title: Semin. Vasc. Surg. doi: 10.1053/j.semvascsurg.2016.01.003 – volume: 25 start-page: 19 year: 2007 ident: 10.1016/j.bioactmat.2020.08.003_bib27 article-title: Impaired wound healing publication-title: Clin. Dermatol. doi: 10.1016/j.clindermatol.2006.12.005 – volume: 185 start-page: 57 year: 2014 ident: 10.1016/j.bioactmat.2020.08.003_bib40 article-title: Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2014.04.029 – volume: 112 start-page: 1225 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib34 article-title: Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.075 – volume: 29 start-page: 684 year: 2011 ident: 10.1016/j.bioactmat.2020.08.003_bib89 article-title: Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing publication-title: J. Orthop. Res. doi: 10.1002/jor.21235 – volume: 200 start-page: 378 year: 1963 ident: 10.1016/j.bioactmat.2020.08.003_bib33 article-title: Effect of air exposure and occlusion on experimental human skin wounds publication-title: Nature doi: 10.1038/200378a0 – volume: 3 start-page: 104 year: 2014 ident: 10.1016/j.bioactmat.2020.08.003_bib48 article-title: High-voltage pulsed current electrical stimulation in wound treatment publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0445 – volume: 19 start-page: 783 year: 2019 ident: 10.1016/j.bioactmat.2020.08.003_bib66 article-title: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review) publication-title: Mol. Med. Rep. – volume: 58 start-page: 1 year: 2003 ident: 10.1016/j.bioactmat.2020.08.003_bib8 article-title: A role for endogenous electric fields in wound healing publication-title: Curr. Top. Dev. Biol. doi: 10.1016/S0070-2153(03)58001-2 – volume: 27 start-page: 622 year: 2019 ident: 10.1016/j.bioactmat.2020.08.003_bib78 article-title: The impact of first-aid dressing design on healing of porcine partial thickness wounds publication-title: Wound Repair Regen. doi: 10.1111/wrr.12747 – volume: 127 start-page: 514 year: 2007 ident: 10.1016/j.bioactmat.2020.08.003_bib81 article-title: Inflammation in wound repair: molecular and cellular mechanisms publication-title: J. Invest. Dermatol. doi: 10.1038/sj.jid.5700701 – volume: 226 start-page: 1248 year: 2011 ident: 10.1016/j.bioactmat.2020.08.003_bib90 article-title: Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22448 – volume: 25 start-page: 260 year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib23 article-title: The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study publication-title: Wound Repair Regen. doi: 10.1111/wrr.12526 – volume: 5 start-page: 1 year: 2001 ident: 10.1016/j.bioactmat.2020.08.003_bib4 article-title: Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy publication-title: Health Technol. Assess. doi: 10.3310/hta5090 – volume: 23 start-page: 456 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib76 article-title: The external microenvironment of healing skin wounds publication-title: Wound Repair Regen. doi: 10.1111/wrr.12303 – volume: 9 start-page: 739 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib52 article-title: Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00739 – volume: 63 start-page: 1593 year: 1983 ident: 10.1016/j.bioactmat.2020.08.003_bib60 article-title: Skin pH following high voltage pulsed galvanic stimulation publication-title: Phys. Ther. doi: 10.1093/ptj/63.10.1593 – volume: 3 start-page: 513 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib7 article-title: Current concepts for the evaluation and management of diabetic foot ulcers publication-title: Efort Open Rev doi: 10.1302/2058-5241.3.180010 – volume: 5 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib45 article-title: Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions publication-title: Adv Energy Mater doi: 10.1002/aenm.201500959 – volume: 27 start-page: 54 year: 2003 ident: 10.1016/j.bioactmat.2020.08.003_bib82 article-title: Fetal wound healing: current biology publication-title: World J. Surg. doi: 10.1007/s00268-002-6737-2 – volume: 359 start-page: 777 year: 2004 ident: 10.1016/j.bioactmat.2020.08.003_bib83 article-title: Wound healing and inflammation: embryos reveal the way to perfect repair publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2004.1466 – volume: 124 start-page: 872 year: 1988 ident: 10.1016/j.bioactmat.2020.08.003_bib24 article-title: Occlusive wound dressings. Why, when, which? publication-title: Arch. Dermatol. doi: 10.1001/archderm.1988.01670060018009 – volume: 5 start-page: 907 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib57 article-title: Upregulating hif-1alpha by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound publication-title: Adv Healthc Mater doi: 10.1002/adhm.201501018 – volume: 106 start-page: 613 year: 2000 ident: 10.1016/j.bioactmat.2020.08.003_bib29 article-title: Accelerated healing of full-thickness skin wounds in a wet environment - Discussion publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-200009030-00013 – volume: 97 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib6 article-title: The appropriate management algorithm for diabetic foot: a single-center retrospective study over 12 years publication-title: Medicine (Baltim.) – volume: 61 start-page: 1249 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib1 article-title: Epidemiology of diabetes and diabetic complications in China publication-title: Diabetologia doi: 10.1007/s00125-018-4557-7 – volume: 12 year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib50 article-title: Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats publication-title: PloS One – volume: 25 start-page: 70 issue: 68 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib31 article-title: Wound healing and hyper-hydration: a counterintuitive model publication-title: J. Wound Care – volume: 22 start-page: S36 year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib84 article-title: Obtaining the optimum moist wound healing environment publication-title: Br. J. Community Nurs. doi: 10.12968/bjcn.2017.22.Sup12.S36 – volume: 304 start-page: 589 year: 2012 ident: 10.1016/j.bioactmat.2020.08.003_bib87 article-title: Mechanosignaling pathways in cutaneous scarring publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-012-1278-5 – volume: 3 start-page: 127 year: 2014 ident: 10.1016/j.bioactmat.2020.08.003_bib9 article-title: Harnessing the electric spark of life to cure skin wounds publication-title: Adv. Wound Care doi: 10.1089/wound.2013.0451 – volume: 6 start-page: 30 year: 2009 ident: 10.1016/j.bioactmat.2020.08.003_bib49 article-title: Wound healing with conductive electrical stimulation—it's the dosage that counts publication-title: J Wound Technol – volume: 25 start-page: 68 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib85 article-title: Wound healing and hyper-hydration: a counterintuitive model publication-title: J. Wound Care doi: 10.12968/jowc.2016.25.2.68 – volume: 49 start-page: 35 year: 2012 ident: 10.1016/j.bioactmat.2020.08.003_bib79 article-title: Wound repair and regeneration publication-title: Eur. Surg. Res. doi: 10.1159/000339613 – volume: 8 start-page: 548 year: 1996 ident: 10.1016/j.bioactmat.2020.08.003_bib69 article-title: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice publication-title: Cytokine doi: 10.1006/cyto.1996.0074 – volume: 11 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib65 article-title: Up-regulation of CREG expression by the transcription factor GATA1 inhibits high glucose- and high palmitate-induced apoptosis in human umbilical vein endothelial cells publication-title: PloS One – volume: 521 start-page: 1042 year: 2020 ident: 10.1016/j.bioactmat.2020.08.003_bib88 article-title: miR-145-5p attenuates hypertrophic scar via reducing Smad2/Smad3 expression publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.11.040 – volume: 193 start-page: 293 year: 1962 ident: 10.1016/j.bioactmat.2020.08.003_bib28 article-title: Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig publication-title: Nature doi: 10.1038/193293a0 – volume: 16 start-page: 379 year: 2019 ident: 10.1016/j.bioactmat.2020.08.003_bib42 article-title: Comparison of the efficacy and safety of povidone-iodine foam dressing (Betafoam), hydrocellular foam dressing (Allevyn), and petrolatum gauze for split-thickness skin graft donor site dressing publication-title: Int. Wound J. doi: 10.1111/iwj.13043 – volume: 9 start-page: 15307 year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib3 article-title: A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03296 – volume: 109 start-page: 199 year: 1996 ident: 10.1016/j.bioactmat.2020.08.003_bib12 article-title: Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds publication-title: J. Cell Sci. doi: 10.1242/jcs.109.1.199 – volume: 28 start-page: 4014 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib53 article-title: Comparison of great curvature plication with duodenal-jejunal bypass (GCP-DJB) and sleeve gastrectomy (SG) on metabolic indices and gut hormones in type 2 diabetes mellitus rats publication-title: Obes. Surg. doi: 10.1007/s11695-018-3459-6 – volume: 31 start-page: 322 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib15 article-title: Changes in S100 proteins identified in healthy skin following electrical stimulation: relevance for wound healing publication-title: Adv. Skin Wound Care doi: 10.1097/01.ASW.0000533722.06780.03 – volume: 20 start-page: 125 year: 2012 ident: 10.1016/j.bioactmat.2020.08.003_bib75 article-title: The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing publication-title: Wound Repair Regen. doi: 10.1111/j.1524-475X.2012.00763.x – volume: 488 start-page: 146 year: 2012 ident: 10.1016/j.bioactmat.2020.08.003_bib55 article-title: Extreme mechanics: buckling down publication-title: Nature doi: 10.1038/488146a – volume: 28 start-page: 359 year: 2006 ident: 10.1016/j.bioactmat.2020.08.003_bib25 article-title: Natural skin surface pH is on average below 5, which is beneficial for its resident flora publication-title: Int. J. Cosmet. Sci. doi: 10.1111/j.1467-2494.2006.00344.x – volume: 33 start-page: 527 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib5 article-title: Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: in vitro and in vivo studies publication-title: J. Biomater. Appl. doi: 10.1177/0885328218801114 – volume: 130 start-page: 2320 year: 2010 ident: 10.1016/j.bioactmat.2020.08.003_bib19 article-title: Effects of physiological electric fields on migration of human dermal fibroblasts publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2010.96 – volume: 23 start-page: 456 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib20 article-title: The external microenvironment of healing skin wounds publication-title: Wound Repair Regen. doi: 10.1111/wrr.12303 – volume: 42 start-page: 293 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib21 article-title: Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH publication-title: Crit. Rev. Microbiol. – volume: 35 start-page: 600 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib67 article-title: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis publication-title: J Recept Sig Transd doi: 10.3109/10799893.2015.1030412 – volume: 13 start-page: 438 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib56 article-title: Endothelial progenitor cells as molecular targets in vascular senescence and repair publication-title: Curr. Stem Cell Res. Ther. doi: 10.2174/1574888X13666180502100620 – year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib62 article-title: Danggui buxue extract-loaded liposomes in thermosensitive gel enhance in vivo dermal wound healing via activation of the VEGF/PI3K/Akt and TGF-beta/smads signaling pathway publication-title: Evid Based Complement Alternat Med doi: 10.1155/2017/8407249 – volume: 27 start-page: S32 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib37 article-title: Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series publication-title: J. Wound Care doi: 10.12968/jowc.2018.27.Sup9a.S32 – volume: 145 start-page: 357 year: 2019 ident: 10.1016/j.bioactmat.2020.08.003_bib63 article-title: Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.10.008 – volume: 27 start-page: 296 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib16 article-title: Microcurrent as an adjunct therapy to accelerate chronic wound healing and reduce patient pain publication-title: J. Wound Care doi: 10.12968/jowc.2018.27.5.296 – volume: 111 start-page: 850 year: 1998 ident: 10.1016/j.bioactmat.2020.08.003_bib80 article-title: Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds publication-title: J. Invest. Dermatol. doi: 10.1046/j.1523-1747.1998.00381.x – volume: 18 start-page: 3766 year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib38 article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01180 – volume: 15 start-page: 45 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib51 article-title: Origanum majoranum extract modulates gene expression, hepatic and renal changes in a rat model of type 2 diabetes publication-title: Iran. J. Pharm. Res. (IJPR) – volume: 242 start-page: R358 year: 1982 ident: 10.1016/j.bioactmat.2020.08.003_bib10 article-title: The glabrous epidermis of cavies contains a powerful battery publication-title: Am. J. Physiol. – volume: 68 start-page: 1864 year: 2002 ident: 10.1016/j.bioactmat.2020.08.003_bib26 article-title: Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.4.1864-1871.2002 – volume: 19 start-page: 3199 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib36 article-title: Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes publication-title: AAPS PharmSciTech doi: 10.1208/s12249-018-1131-z – volume: 103 start-page: 148 year: 1995 ident: 10.1016/j.bioactmat.2020.08.003_bib22 article-title: Ph effects on experimental wound-healing of human fibroblasts in-vitro publication-title: Eur. J. Oral Sci. doi: 10.1111/j.1600-0722.1995.tb00016.x – volume: 14 year: 2019 ident: 10.1016/j.bioactmat.2020.08.003_bib64 article-title: N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells publication-title: PloS One doi: 10.1371/journal.pone.0226696 – volume: 96 start-page: 137 year: 2019 ident: 10.1016/j.bioactmat.2020.08.003_bib72 article-title: Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.004 – volume: 13 start-page: 4987 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib35 article-title: Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S161680 – volume: 25 start-page: 883 year: 2017 ident: 10.1016/j.bioactmat.2020.08.003_bib58 article-title: Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis publication-title: Wound Repair Regen. doi: 10.1111/wrr.12594 – volume: 332 start-page: 202 year: 2015 ident: 10.1016/j.bioactmat.2020.08.003_bib86 article-title: Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-beta/Smad signaling in hypertrophic scar fibroblasts publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2015.01.015 – volume: 37 start-page: 1299 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib68 article-title: Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2542 – volume: 102 start-page: 468 year: 2020 ident: 10.1016/j.bioactmat.2020.08.003_bib43 article-title: Development of a chitosan-vaseline gauze dressing with wound-healing properties in murine models publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.19-0387 – volume: 17 start-page: 57 year: 1996 ident: 10.1016/j.bioactmat.2020.08.003_bib54 article-title: Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis publication-title: Physiol. Meas. doi: 10.1088/0967-3334/17/2/001 – volume: 115 start-page: 6816 year: 2018 ident: 10.1016/j.bioactmat.2020.08.003_bib2 article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1804262115 – volume: 8 start-page: 38 year: 2012 ident: 10.1016/j.bioactmat.2020.08.003_bib18 article-title: Directing migration of endothelial progenitor cells with applied DC electric fields publication-title: Stem Cell Res. doi: 10.1016/j.scr.2011.08.001 – volume: 138 start-page: 158S year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib32 article-title: Dressing and diabetic foot ulcers: a current review of the evidence publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0000000000002681 – volume: 4 start-page: 23 year: 2005 ident: 10.1016/j.bioactmat.2020.08.003_bib14 article-title: Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials publication-title: Int. J. Low. Extrem. Wounds doi: 10.1177/1534734605275733 – volume: 25 start-page: 122 year: 2016 ident: 10.1016/j.bioactmat.2020.08.003_bib77 article-title: The importance of hydration in wound healing: reinvigorating the clinical perspective publication-title: J. Wound Care doi: 10.12968/jowc.2016.25.3.122 – volume: 39 start-page: 391 year: 2002 ident: 10.1016/j.bioactmat.2020.08.003_bib11 article-title: Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells publication-title: J. Vasc. Res. doi: 10.1159/000064517 |
SSID | ssj0001700007 |
Score | 2.4972181 |
Snippet | The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 230 |
SubjectTerms | Chitosan-vaseline® gauze Diabetic wounds Electrical stimulation Flexible electronic device Wound healing |
Title | Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes |
URI | https://dx.doi.org/10.1016/j.bioactmat.2020.08.003 https://www.ncbi.nlm.nih.gov/pubmed/32913931 https://www.proquest.com/docview/2441614647 https://pubmed.ncbi.nlm.nih.gov/PMC7451868 https://doaj.org/article/fbd5a66590ca469a822ceff40e5223d1 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hnrggqhYIbdEicbWwvV_e3qBqFCHBiaDcVvtJU7VO1aTiX_Ej-suYWdtRTA-59BrHa-_OjOfNevweIZ8apZ3QkRcBXBgKlBAKJ3wqdJ2sDkooXeH3zt9_yNmcf1uIxY7UF_aEdfTA3cJ9Ti4IK6XQpbdQyllIaD6mxMsIyIGFXPhAztsppq47UhjMfqgsx0WN3RSLUXOXW66s3wAmhAqxLjOJ5yCb1aemzOA_ylBPEej_jZQ7mWn6mrzqISX90k3lkLyI7RFpp8h06W4i7YRu0BYUwvm2l-uiIeIzguI-LL24grhe27b4ZfP36fHxLw25Qbb9Ta33MAQySqzpHxRhoggu8cgSRum3bo_JfHr582JW9NoKhRe82hRVaGQS2keuU9Aqah6Ri08zJxwUNaEUsNzc25Sk08pWUlqmKgfhbhlHkPWGHLSrNr4jFBCD8l5WDTLFs8Y1sUrw6AhQTAofmJwQOSyr8T3xOOpf3Jihw-zabO1h0B4GlTFLNiHl9sS7jntj_ylf0W7bvyN5dv4BXMr0LmX2udSEnA9WNz0O6fAFDLXcfwcfBz8xEKn4-sW2cfWwNgCkAF5zydWEvO38ZnufrEZ6VgaXViOPGk1kfKRdXmU2cAXmaGTz_jlmfkJe1tizk7eYTsnB5v4hngHo2rgPOb7-AchCLPU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+electrical+stimulation+device+with+Chitosan-Vaseline%C2%AE+dressing+accelerates+wound+healing+in+diabetes&rft.jtitle=Bioactive+materials&rft.au=Wang%2C+Xiao-Feng&rft.au=Li%2C+Meng-Lu&rft.au=Fang%2C+Qing-Qing&rft.au=Zhao%2C+Wan-Yi&rft.date=2021-01-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=6&rft.issue=1&rft.spage=230&rft.epage=243&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.08.003&rft_id=info%3Apmid%2F32913931&rft.externalDocID=PMC7451868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |