Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes

The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method i...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 6; no. 1; pp. 230 - 243
Main Authors Wang, Xiao-Feng, Li, Meng-Lu, Fang, Qing-Qing, Zhao, Wan-Yi, Lou, Dong, Hu, Yan-Yan, Chen, Jun, Wang, Xiao-Zhi, Tan, Wei-Qiang
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.01.2021
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. [Display omitted] •High voltage monophasic pulsed current (HVMPC) is the relatively optimal parameter to improve diabetic wounds healing.•HVMPC promotes the proliferation and migration capacity of human umbilical vein endothelial cells (HUVECs).•Chitosan-Vaseline® gauze (CVG) promotes the healing of diabetic wounds for providing a good microenvironment.•The flexible electrical stimulation (ES) chitosan dressing is a therapeutic method for diabetic wound treatments.
AbstractList The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds . In studies carried out , we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo . In studies carried out in vitro , we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. Image 1 • High voltage monophasic pulsed current (HVMPC) is the relatively optimal parameter to improve diabetic wounds healing. • HVMPC promotes the proliferation and migration capacity of human umbilical vein endothelial cells (HUVECs). • Chitosan-Vaseline ® gauze (CVG) promotes the healing of diabetic wounds for providing a good microenvironment. • The flexible electrical stimulation (ES) chitosan dressing is a therapeutic method for diabetic wound treatments.
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds. [Display omitted] •High voltage monophasic pulsed current (HVMPC) is the relatively optimal parameter to improve diabetic wounds healing.•HVMPC promotes the proliferation and migration capacity of human umbilical vein endothelial cells (HUVECs).•Chitosan-Vaseline® gauze (CVG) promotes the healing of diabetic wounds for providing a good microenvironment.•The flexible electrical stimulation (ES) chitosan dressing is a therapeutic method for diabetic wound treatments.
Author Li, Meng-Lu
Chen, Jun
Fang, Qing-Qing
Wang, Xiao-Zhi
Wang, Xiao-Feng
Zhao, Wan-Yi
Hu, Yan-Yan
Lou, Dong
Tan, Wei-Qiang
Author_xml – sequence: 1
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
– sequence: 2
  givenname: Meng-Lu
  surname: Li
  fullname: Li, Meng-Lu
  organization: Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
– sequence: 3
  givenname: Qing-Qing
  surname: Fang
  fullname: Fang, Qing-Qing
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
– sequence: 4
  givenname: Wan-Yi
  surname: Zhao
  fullname: Zhao, Wan-Yi
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
– sequence: 5
  givenname: Dong
  surname: Lou
  fullname: Lou, Dong
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
– sequence: 6
  givenname: Yan-Yan
  surname: Hu
  fullname: Hu, Yan-Yan
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
– sequence: 7
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
– sequence: 8
  givenname: Xiao-Zhi
  surname: Wang
  fullname: Wang, Xiao-Zhi
  email: xw224@zju.edu.cn
  organization: Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
– sequence: 9
  givenname: Wei-Qiang
  surname: Tan
  fullname: Tan, Wei-Qiang
  email: tanweixxxx@zju.edu.cn
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32913931$$D View this record in MEDLINE/PubMed
BookMark eNqFksFuEzEQhleoiJbSV4A9ckmwd73e9QGkKqJQqRIXQNysWXs2mcixi-2k8FI8BE-G27RVy6UX2_LM__2W539ZHfjgsarecDbnjMt36_lIAUzeQJ43rGFzNswZa59VR43omhlX6sfBg_NhdZLSmjHG-7Kw_kV12DaKt6rlR5U_c_iLRoc1OjQ5kgFXp0ybrYNMwdcWd2SwvqK8qhcryiGBn32HhI48_v1T24gpkV_WYExBRMiY6quw9bZeIbjrChUKwYil8qp6PoFLeHK7H1ffzj5-XXyeXXz5dL44vZiZTvA843aQU6cMCjVZ1aMSKDrBVDt2o5LMss6AEAamSY6qBy4ltD0fxTBAKzou2uPqfM-1Adb6MtIG4m8dgPTNRYhLDTGTcain0XYgZadYYUoFQ9MYnCbBsGua1vLC-rBnXW7HDVqDPkdwj6CPK55Wehl2ui9PGeRQAG9vATH83GLKekOpfJYDj2GbdCMEl1xI0ZfW1w-97k3uBlYa3u8bTAwpRZy0oXwzqWJNTnOmrzOi1_o-I_o6I5oNumSk6Pv_9HcWTytP90osc9sRRp0MoTdoKZbklI-lJxn_AA-M3vo
CitedBy_id crossref_primary_10_1002_adhm_202100557
crossref_primary_10_1186_s12302_024_00872_2
crossref_primary_10_1021_acsbiomaterials_4c00631
crossref_primary_10_1016_j_cej_2021_130563
crossref_primary_10_1016_j_ijbiomac_2021_04_150
crossref_primary_10_1021_acsaelm_3c00637
crossref_primary_10_1002_adsr_202200018
crossref_primary_10_1007_s10853_024_10240_3
crossref_primary_10_1016_j_amjoto_2022_103650
crossref_primary_10_1016_j_reactfunctpolym_2022_105233
crossref_primary_10_1016_j_bioadv_2022_212773
crossref_primary_10_1089_genbio_2022_0014
crossref_primary_10_1177_01455613221150571
crossref_primary_10_1002_smll_202206231
crossref_primary_10_1016_j_cej_2023_148096
crossref_primary_10_1007_s10787_023_01407_6
crossref_primary_10_1007_s42995_023_00180_3
crossref_primary_10_1002_advs_202304048
crossref_primary_10_3390_gels9090738
crossref_primary_10_1111_exd_14396
crossref_primary_10_1002_adtp_202300125
crossref_primary_10_1093_pnasnexus_pgac002
crossref_primary_10_1002_adhm_202300064
crossref_primary_10_2147_JIR_S371939
crossref_primary_10_3390_jnt4010004
crossref_primary_10_1371_journal_pone_0303692
crossref_primary_10_1016_j_bioadv_2022_213055
crossref_primary_10_1186_s12902_022_01029_z
crossref_primary_10_1016_j_colsurfb_2022_112341
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1016_j_bios_2021_113479
crossref_primary_10_1080_00914037_2023_2239421
crossref_primary_10_1109_ACCESS_2022_3229686
crossref_primary_10_1002_anbr_202200088
crossref_primary_10_1002_VIW_20230110
crossref_primary_10_1016_j_carpta_2024_100497
crossref_primary_10_1016_j_cej_2023_142457
crossref_primary_10_1002_adhm_202303143
crossref_primary_10_1089_wound_2021_0194
crossref_primary_10_1002_admt_202300796
crossref_primary_10_1080_16583655_2022_2054607
crossref_primary_10_1016_j_compositesb_2022_109804
crossref_primary_10_2147_JIR_S376692
crossref_primary_10_1021_acs_analchem_0c04956
crossref_primary_10_1002_adhm_202401735
crossref_primary_10_1016_j_nanoen_2022_107393
crossref_primary_10_1021_acsaem_4c00462
crossref_primary_10_1016_j_carbpol_2023_121340
crossref_primary_10_1002_adma_202007502
crossref_primary_10_1021_acsnano_4c14320
crossref_primary_10_1088_1742_6596_2809_1_012022
crossref_primary_10_1002_adhm_202302183
crossref_primary_10_1016_j_drudis_2023_103673
crossref_primary_10_1007_s00339_024_07444_4
crossref_primary_10_1002_adhm_202304365
crossref_primary_10_1021_acsabm_0c01190
crossref_primary_10_1063_5_0173663
crossref_primary_10_1002_adfm_202100852
crossref_primary_10_1007_s10439_023_03371_2
crossref_primary_10_1016_S2096_6911_21_00090_X
crossref_primary_10_3389_fbioe_2023_1239183
crossref_primary_10_1002_adfm_202111022
crossref_primary_10_1021_acsabm_1c00880
crossref_primary_10_1166_jbt_2023_3250
crossref_primary_10_3390_toxins15050344
crossref_primary_10_1021_acs_nanolett_3c00300
crossref_primary_10_1016_j_carbpol_2023_121507
crossref_primary_10_1111_wrr_13119
crossref_primary_10_1016_j_envres_2023_115912
crossref_primary_10_1021_acsami_2c13026
crossref_primary_10_1002_adhm_202400170
Cites_doi 10.1007/s10856-018-6027-7
10.1111/wrr.12789
10.1089/wound.2013.0459
10.1189/jlb.3A0815-390R
10.3390/md13031133
10.1111/j.1742-481X.2012.01085.x
10.1161/01.CIR.0000018166.84319.55
10.1111/vde.12328
10.1016/j.actbio.2013.04.019
10.1016/j.semcdb.2008.12.009
10.1152/ajpcell.00389.2001
10.1007/BF02364157
10.1053/j.semvascsurg.2016.01.003
10.1016/j.clindermatol.2006.12.005
10.1016/j.ijfoodmicro.2014.04.029
10.1016/j.ijbiomac.2018.02.075
10.1002/jor.21235
10.1038/200378a0
10.1089/wound.2013.0445
10.1016/S0070-2153(03)58001-2
10.1111/wrr.12747
10.1038/sj.jid.5700701
10.1002/jcp.22448
10.1111/wrr.12526
10.3310/hta5090
10.1111/wrr.12303
10.3389/fphar.2018.00739
10.1093/ptj/63.10.1593
10.1302/2058-5241.3.180010
10.1002/aenm.201500959
10.1007/s00268-002-6737-2
10.1098/rstb.2004.1466
10.1001/archderm.1988.01670060018009
10.1002/adhm.201501018
10.1097/00006534-200009030-00013
10.1007/s00125-018-4557-7
10.12968/bjcn.2017.22.Sup12.S36
10.1007/s00403-012-1278-5
10.1089/wound.2013.0451
10.12968/jowc.2016.25.2.68
10.1159/000339613
10.1006/cyto.1996.0074
10.1016/j.bbrc.2019.11.040
10.1038/193293a0
10.1111/iwj.13043
10.1021/acsami.7b03296
10.1242/jcs.109.1.199
10.1007/s11695-018-3459-6
10.1097/01.ASW.0000533722.06780.03
10.1111/j.1524-475X.2012.00763.x
10.1038/488146a
10.1111/j.1467-2494.2006.00344.x
10.1177/0885328218801114
10.1038/jid.2010.96
10.3109/10799893.2015.1030412
10.2174/1574888X13666180502100620
10.1155/2017/8407249
10.12968/jowc.2018.27.Sup9a.S32
10.1016/j.freeradbiomed.2019.10.008
10.12968/jowc.2018.27.5.296
10.1046/j.1523-1747.1998.00381.x
10.1021/acs.biomac.7b01180
10.1128/AEM.68.4.1864-1871.2002
10.1208/s12249-018-1131-z
10.1111/j.1600-0722.1995.tb00016.x
10.1371/journal.pone.0226696
10.1016/j.actbio.2019.07.004
10.2147/IJN.S161680
10.1111/wrr.12594
10.1016/j.yexcr.2015.01.015
10.3892/ijmm.2016.2542
10.4269/ajtmh.19-0387
10.1088/0967-3334/17/2/001
10.1073/pnas.1804262115
10.1016/j.scr.2011.08.001
10.1097/PRS.0000000000002681
10.1177/1534734605275733
10.12968/jowc.2016.25.3.122
10.1159/000064517
ContentType Journal Article
Copyright 2020 [The Author/The Authors]
2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020
Copyright_xml – notice: 2020 [The Author/The Authors]
– notice: 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
– notice: 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2020.08.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 243
ExternalDocumentID oai_doaj_org_article_fbd5a66590ca469a822ceff40e5223d1
PMC7451868
32913931
10_1016_j_bioactmat_2020_08_003
S2452199X20301493
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c541t-1d86f59ce49fd97e94e454093b5b960d05ca44caff6b97a166a371b488a345143
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:21:00 EDT 2025
Thu Aug 21 18:34:52 EDT 2025
Fri Jul 11 06:05:48 EDT 2025
Mon Jul 21 06:05:26 EDT 2025
Tue Jul 01 02:11:23 EDT 2025
Thu Apr 24 22:54:27 EDT 2025
Wed May 17 01:53:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diabetic wounds
Electrical stimulation
Flexible electronic device
Chitosan-vaseline® gauze
Wound healing
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-1d86f59ce49fd97e94e454093b5b960d05ca44caff6b97a166a371b488a345143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/fbd5a66590ca469a822ceff40e5223d1
PMID 32913931
PQID 2441614647
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_fbd5a66590ca469a822ceff40e5223d1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7451868
proquest_miscellaneous_2441614647
pubmed_primary_32913931
crossref_citationtrail_10_1016_j_bioactmat_2020_08_003
crossref_primary_10_1016_j_bioactmat_2020_08_003
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2021
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Kruse, Nuutila, Lee, Kiwanuka, Singh, Caterson, Eriksson, Sorensen (bib76) 2015; 23
Zhao, Qin, Reid, Pu, Hara, Zhao (bib18) 2012; 8
Qiu, Li, Liu, Cen, Shan, Zhang, Liu, Wang, Zhu, Qiu (bib53) 2018; 28
Winter (bib28) 1962; 193
Kim, Hong, Wallace, Park (bib45) 2015; 5
McCarty, Cochrane, Clegg, Percival (bib75) 2012; 20
Nair (bib16) 2018; 27
Kruse, Nuutila, Lee, Kiwanuka, Singh, Caterson, Eriksson, Sorensen (bib20) 2015; 23
Zhao, Fang, Wang, Wang, Zhang, Shi, Zheng, Zhang, Hu, Ma, Tan (bib41) 2020; 28
Krieger (bib55) 2012; 488
Nuccitelli (bib8) 2003; 58
Ahmad, Minhas, Ahmad, Sohail, Abdullah, Badshah (bib36) 2018; 19
Zhao (bib13) 2009; 20
Rana, Kumar, Sharma (bib56) 2018; 13
Fang, Wang, Zhao, Shi, Lou, Chen, Zhang, Wang, Ma, Tan (bib43) 2020; 102
Loots, Lamme, Zeegelaar, Mekkes, Bos, Middelkoop (bib80) 1998; 111
Rutter (bib84) 2017; 22
Huber, Tegl, Mensah, Beer, Baumann, Borth, Sygmund, Ludwig, Guebitz (bib3) 2017; 9
Game, Jeffcoate (bib32) 2016; 138
Tarusha, Paoletti, Travan, Marsich (bib73) 2018; 29
Chen, Jia, Kang, Zhang, Liu, Yang, Yan, Zuo, Guo, Jiang, Qi, Liu, Cui, Santos, Deng (bib57) 2016; 5
Hunt (bib29) 2000; 106
Kwan, Cheing, Vong, Lo (bib46) 2013; 10
Alnahdi, John, Raza (bib64) 2019; 14
Hubner, Brauchle, Smola, Madlener, Fassler, Werner (bib69) 1996; 8
Younes, Rinaudo (bib39) 2015; 13
Kloth (bib44) 2014; 3
Redd, Cooper, Wood, Stramer, Martin (bib83) 2004; 359
Mavrogenis, Megaloikonomos, Antoniadou, Igoumenou, Panagopoulos, Dimopoulos, Moulakakis, Sfyroeras, Lazaris (bib7) 2018; 3
Lambers, Piessens, Bloem, Pronk, Finkel (bib25) 2006; 28
Polak, Franek, Taradaj (bib48) 2014; 3
Ren, Han, Xuan, Lv, Gong, Yan, Wan, Guo, Liu, Xu, Sun, Yang, Liu (bib63) 2019; 145
Oza, Kulkarni (bib52) 2018; 9
Lallyett, Yeung, Nielson, Zeef, Chapman-Jones, Kjaer, Kadler (bib15) 2018; 31
Shen, Wang, Wang, Zhou, Zhang, Li (bib88) 2020; 521
Walter, Rittig, Bahlmann, Kirchmair, Silver, Murayama, Nishimura, Losordo, Asahara, Isner (bib71) 2002; 105
Wlaschin, Ninkovic, Griesgraber, Colak Atan, Young, Pereira, Solberg, Smith, Parks, McNulty, Langer-Anderson (bib78) 2019; 27
Yang, Yang, Cui, Feng, Du, Song, Tong, Yang, Wang, Zeng, Zou, Sun (bib35) 2018; 13
Bullard, Longaker, Lorenz (bib82) 2003; 27
Pak, Park, Oh, Lee, Jun, Lee, Oh, Kwak, Rhie (bib42) 2019; 16
Hoare, Rajnicek, McCaig, Barker, Wilson (bib17) 2016; 99
Menke, Ward, Witten, Bonchev, Diegelmann (bib27) 2007; 25
Percival, Finnegan, Donelli, Vuotto, Rimmer, Lipsky (bib21) 2016; 42
Scheiner, Mortimer, Roessmann (bib59) 1990; 18
Li, Kolega (bib11) 2002; 39
Huang, Akaishi, Ogawa (bib87) 2012; 304
Reinke, Sorg (bib79) 2012; 49
Atiyeh, Hayek (bib30) 2004; 1
Ousey, Cutting, Rogers, Rippon (bib77) 2016; 25
Cui, Zhang, Wang, Liu, Ming, Hou, Lv, Fang, Yu (bib68) 2016; 37
Scalise, Bianchi, Tartaglione, Bolletta, Pierangeli, Torresetti, Marazzi, Di Benedetto (bib74) 2015; 28
Xu, Liu, Ma, Yuan, Lu, Yang (bib50) 2017; 12
Losi, Briganti, Errico, Lisella, Sanguinetti, Chiellini, Soldani (bib61) 2013; 9
Kloth (bib14) 2005; 4
Katzel, Wolenski, Loiselle, Basile, Flick, Langstein, Hilton, Awad, Hammert, O'Keefe (bib89) 2011; 29
Stewart, Cole, Legan, Slade, Vandeven, Schaffner (bib26) 2002; 68
Nishimura, Isseroff, Nuccitelli (bib12) 1996; 109
Soliman, Abdo Nassan, Ismail (bib51) 2016; 15
Rippon, Ousey, Cutting (bib85) 2016; 25
Guo, Song, Reid, Gu, Forrester, Jahoda, Zhao (bib19) 2010; 130
Falanga (bib24) 1988; 124
Winter (bib33) 1963; 200
Cui, Pan, Pan (bib62) 2017
Sun, Liu, Liu, Feng, Yang, Zhou (bib67) 2015; 35
Li, Lu, Zhou, Yu, Lu, Xiao, Dai, Wu, Lan (bib38) 2017; 18
Cullum, Nelson, Flemming, Sheldon (bib4) 2001; 5
Lengheden, Jansson (bib22) 1995; 103
Nair (bib37) 2018; 27
Xie, Shi, Sheng, Han, Li, Zhao, Jiang, Feng, Li, Gu (bib66) 2019; 19
Liu, Tian, Li, Liu, Liu, Zhang, Zhang, Yan, Han (bib65) 2016; 11
Khouri, Kotzki, Roustit, Blaise, Gueyffier, Cracowski (bib58) 2017; 25
Barker, Jaffe, Vanable (bib10) 1982; 242
Chang, Heo, Choi, Lee (bib6) 2018; 97
Xie, Yi, Wang, Hou, Jiang (bib34) 2018; 112
Wang, Chu, Wen, Fu, Qian, Wo, Wang, Wang (bib86) 2015; 332
Eming, Krieg, Davidson (bib81) 2007; 127
Newton, Karselis (bib60) 1983; 63
Kruse, Singh, Targosinski, Sinha, Sorensen, Eriksson, Nuutila (bib23) 2017; 25
Younes, Sellimi, Rinaudo, Jellouli, Nasri (bib40) 2014; 185
Spence, Pomeranz (bib54) 1996; 17
Duan, Yu, Xu, Wang, Feng, Mao, Gao (bib72) 2019; 96
Ashrafi, Alonso-Rasgado, Baguneid, Bayat (bib47) 2016; 27
Konop, Czuwara, Klodzinska, Laskowska, Zielenkiewicz, Brzozowska, Nabavi, Rudnicka (bib5) 2018; 33
Zhu, Cankova, Iwanaszko, Lichtor, Mrksich, Ameer (bib2) 2018; 115
Kloth (bib49) 2009; 6
Papetti, Herman (bib70) 2002; 282
Kolosova, Nethery, Kern (bib90) 2011; 226
Ma (bib1) 2018; 61
Martin-Granados, McCaig (bib9) 2014; 3
Rippon, Ousey, Cutting (bib31) 2016; 25
Yang (10.1016/j.bioactmat.2020.08.003_bib35) 2018; 13
Eming (10.1016/j.bioactmat.2020.08.003_bib81) 2007; 127
Soliman (10.1016/j.bioactmat.2020.08.003_bib51) 2016; 15
Xu (10.1016/j.bioactmat.2020.08.003_bib50) 2017; 12
Hunt (10.1016/j.bioactmat.2020.08.003_bib29) 2000; 106
Mavrogenis (10.1016/j.bioactmat.2020.08.003_bib7) 2018; 3
Rana (10.1016/j.bioactmat.2020.08.003_bib56) 2018; 13
Rippon (10.1016/j.bioactmat.2020.08.003_bib85) 2016; 25
Falanga (10.1016/j.bioactmat.2020.08.003_bib24) 1988; 124
Walter (10.1016/j.bioactmat.2020.08.003_bib71) 2002; 105
Zhao (10.1016/j.bioactmat.2020.08.003_bib13) 2009; 20
McCarty (10.1016/j.bioactmat.2020.08.003_bib75) 2012; 20
Sun (10.1016/j.bioactmat.2020.08.003_bib67) 2015; 35
Lallyett (10.1016/j.bioactmat.2020.08.003_bib15) 2018; 31
Cullum (10.1016/j.bioactmat.2020.08.003_bib4) 2001; 5
Ahmad (10.1016/j.bioactmat.2020.08.003_bib36) 2018; 19
Atiyeh (10.1016/j.bioactmat.2020.08.003_bib30) 2004; 1
Kloth (10.1016/j.bioactmat.2020.08.003_bib14) 2005; 4
Zhao (10.1016/j.bioactmat.2020.08.003_bib41) 2020; 28
Alnahdi (10.1016/j.bioactmat.2020.08.003_bib64) 2019; 14
Barker (10.1016/j.bioactmat.2020.08.003_bib10) 1982; 242
Nair (10.1016/j.bioactmat.2020.08.003_bib16) 2018; 27
Rutter (10.1016/j.bioactmat.2020.08.003_bib84) 2017; 22
Papetti (10.1016/j.bioactmat.2020.08.003_bib70) 2002; 282
Tarusha (10.1016/j.bioactmat.2020.08.003_bib73) 2018; 29
Chang (10.1016/j.bioactmat.2020.08.003_bib6) 2018; 97
Hoare (10.1016/j.bioactmat.2020.08.003_bib17) 2016; 99
Konop (10.1016/j.bioactmat.2020.08.003_bib5) 2018; 33
Qiu (10.1016/j.bioactmat.2020.08.003_bib53) 2018; 28
Menke (10.1016/j.bioactmat.2020.08.003_bib27) 2007; 25
Nuccitelli (10.1016/j.bioactmat.2020.08.003_bib8) 2003; 58
Liu (10.1016/j.bioactmat.2020.08.003_bib65) 2016; 11
Wlaschin (10.1016/j.bioactmat.2020.08.003_bib78) 2019; 27
Younes (10.1016/j.bioactmat.2020.08.003_bib39) 2015; 13
Kloth (10.1016/j.bioactmat.2020.08.003_bib44) 2014; 3
Winter (10.1016/j.bioactmat.2020.08.003_bib33) 1963; 200
Ousey (10.1016/j.bioactmat.2020.08.003_bib77) 2016; 25
Martin-Granados (10.1016/j.bioactmat.2020.08.003_bib9) 2014; 3
Scalise (10.1016/j.bioactmat.2020.08.003_bib74) 2015; 28
Xie (10.1016/j.bioactmat.2020.08.003_bib66) 2019; 19
Zhu (10.1016/j.bioactmat.2020.08.003_bib2) 2018; 115
Duan (10.1016/j.bioactmat.2020.08.003_bib72) 2019; 96
Huang (10.1016/j.bioactmat.2020.08.003_bib87) 2012; 304
Guo (10.1016/j.bioactmat.2020.08.003_bib19) 2010; 130
Cui (10.1016/j.bioactmat.2020.08.003_bib62) 2017
Losi (10.1016/j.bioactmat.2020.08.003_bib61) 2013; 9
Scheiner (10.1016/j.bioactmat.2020.08.003_bib59) 1990; 18
Zhao (10.1016/j.bioactmat.2020.08.003_bib18) 2012; 8
Xie (10.1016/j.bioactmat.2020.08.003_bib34) 2018; 112
Kruse (10.1016/j.bioactmat.2020.08.003_bib23) 2017; 25
Ashrafi (10.1016/j.bioactmat.2020.08.003_bib47) 2016; 27
Cui (10.1016/j.bioactmat.2020.08.003_bib68) 2016; 37
Lengheden (10.1016/j.bioactmat.2020.08.003_bib22) 1995; 103
Newton (10.1016/j.bioactmat.2020.08.003_bib60) 1983; 63
Kloth (10.1016/j.bioactmat.2020.08.003_bib49) 2009; 6
Spence (10.1016/j.bioactmat.2020.08.003_bib54) 1996; 17
Redd (10.1016/j.bioactmat.2020.08.003_bib83) 2004; 359
Nishimura (10.1016/j.bioactmat.2020.08.003_bib12) 1996; 109
Shen (10.1016/j.bioactmat.2020.08.003_bib88) 2020; 521
Rippon (10.1016/j.bioactmat.2020.08.003_bib31) 2016; 25
Kruse (10.1016/j.bioactmat.2020.08.003_bib20) 2015; 23
Chen (10.1016/j.bioactmat.2020.08.003_bib57) 2016; 5
Krieger (10.1016/j.bioactmat.2020.08.003_bib55) 2012; 488
Reinke (10.1016/j.bioactmat.2020.08.003_bib79) 2012; 49
Khouri (10.1016/j.bioactmat.2020.08.003_bib58) 2017; 25
Kruse (10.1016/j.bioactmat.2020.08.003_bib76) 2015; 23
Ma (10.1016/j.bioactmat.2020.08.003_bib1) 2018; 61
Fang (10.1016/j.bioactmat.2020.08.003_bib43) 2020; 102
Oza (10.1016/j.bioactmat.2020.08.003_bib52) 2018; 9
Kim (10.1016/j.bioactmat.2020.08.003_bib45) 2015; 5
Huber (10.1016/j.bioactmat.2020.08.003_bib3) 2017; 9
Bullard (10.1016/j.bioactmat.2020.08.003_bib82) 2003; 27
Katzel (10.1016/j.bioactmat.2020.08.003_bib89) 2011; 29
Game (10.1016/j.bioactmat.2020.08.003_bib32) 2016; 138
Stewart (10.1016/j.bioactmat.2020.08.003_bib26) 2002; 68
Winter (10.1016/j.bioactmat.2020.08.003_bib28) 1962; 193
Ren (10.1016/j.bioactmat.2020.08.003_bib63) 2019; 145
Hubner (10.1016/j.bioactmat.2020.08.003_bib69) 1996; 8
Li (10.1016/j.bioactmat.2020.08.003_bib38) 2017; 18
Percival (10.1016/j.bioactmat.2020.08.003_bib21) 2016; 42
Kwan (10.1016/j.bioactmat.2020.08.003_bib46) 2013; 10
Polak (10.1016/j.bioactmat.2020.08.003_bib48) 2014; 3
Wang (10.1016/j.bioactmat.2020.08.003_bib86) 2015; 332
Loots (10.1016/j.bioactmat.2020.08.003_bib80) 1998; 111
Younes (10.1016/j.bioactmat.2020.08.003_bib40) 2014; 185
Li (10.1016/j.bioactmat.2020.08.003_bib11) 2002; 39
Nair (10.1016/j.bioactmat.2020.08.003_bib37) 2018; 27
Pak (10.1016/j.bioactmat.2020.08.003_bib42) 2019; 16
Lambers (10.1016/j.bioactmat.2020.08.003_bib25) 2006; 28
Kolosova (10.1016/j.bioactmat.2020.08.003_bib90) 2011; 226
References_xml – volume: 97
  year: 2018
  ident: bib6
  article-title: The appropriate management algorithm for diabetic foot: a single-center retrospective study over 12 years
  publication-title: Medicine (Baltim.)
– volume: 105
  start-page: 3017
  year: 2002
  end-page: 3024
  ident: bib71
  article-title: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells
  publication-title: Circulation
– volume: 25
  start-page: 70
  year: 2016
  end-page: 75
  ident: bib31
  article-title: Wound healing and hyper-hydration: a counterintuitive model
  publication-title: J. Wound Care
– volume: 488
  start-page: 146
  year: 2012
  end-page: 147
  ident: bib55
  article-title: Extreme mechanics: buckling down
  publication-title: Nature
– volume: 124
  start-page: 872
  year: 1988
  end-page: 877
  ident: bib24
  article-title: Occlusive wound dressings. Why, when, which?
  publication-title: Arch. Dermatol.
– volume: 12
  year: 2017
  ident: bib50
  article-title: Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats
  publication-title: PloS One
– volume: 282
  start-page: C947
  year: 2002
  end-page: C970
  ident: bib70
  article-title: Mechanisms of normal and tumor-derived angiogenesis
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 130
  start-page: 2320
  year: 2010
  end-page: 2327
  ident: bib19
  article-title: Effects of physiological electric fields on migration of human dermal fibroblasts
  publication-title: J. Invest. Dermatol.
– volume: 106
  start-page: 613
  year: 2000
  end-page: 614
  ident: bib29
  article-title: Accelerated healing of full-thickness skin wounds in a wet environment - Discussion
  publication-title: Plast. Reconstr. Surg.
– volume: 13
  start-page: 4987
  year: 2018
  end-page: 5002
  ident: bib35
  article-title: Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 739
  year: 2018
  ident: bib52
  article-title: Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia
  publication-title: Front. Pharmacol.
– volume: 39
  start-page: 391
  year: 2002
  end-page: 404
  ident: bib11
  article-title: Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells
  publication-title: J. Vasc. Res.
– volume: 58
  start-page: 1
  year: 2003
  end-page: 26
  ident: bib8
  article-title: A role for endogenous electric fields in wound healing
  publication-title: Curr. Top. Dev. Biol.
– volume: 332
  start-page: 202
  year: 2015
  end-page: 211
  ident: bib86
  article-title: Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-beta/Smad signaling in hypertrophic scar fibroblasts
  publication-title: Exp. Cell Res.
– volume: 3
  start-page: 127
  year: 2014
  end-page: 138
  ident: bib9
  article-title: Harnessing the electric spark of life to cure skin wounds
  publication-title: Adv. Wound Care
– volume: 29
  start-page: 684
  year: 2011
  end-page: 693
  ident: bib89
  article-title: Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing
  publication-title: J. Orthop. Res.
– volume: 193
  start-page: 293
  year: 1962
  end-page: 294
  ident: bib28
  article-title: Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig
  publication-title: Nature
– volume: 10
  start-page: 121
  year: 2013
  end-page: 131
  ident: bib46
  article-title: Electrophysical therapy for managing diabetic foot ulcers: a systematic review
  publication-title: Int. Wound J.
– volume: 115
  start-page: 6816
  year: 2018
  end-page: 6821
  ident: bib2
  article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 16
  start-page: 379
  year: 2019
  end-page: 386
  ident: bib42
  article-title: Comparison of the efficacy and safety of povidone-iodine foam dressing (Betafoam), hydrocellular foam dressing (Allevyn), and petrolatum gauze for split-thickness skin graft donor site dressing
  publication-title: Int. Wound J.
– volume: 42
  start-page: 293
  year: 2016
  end-page: 309
  ident: bib21
  article-title: Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH
  publication-title: Crit. Rev. Microbiol.
– volume: 127
  start-page: 514
  year: 2007
  end-page: 525
  ident: bib81
  article-title: Inflammation in wound repair: molecular and cellular mechanisms
  publication-title: J. Invest. Dermatol.
– volume: 3
  start-page: 104
  year: 2014
  end-page: 117
  ident: bib48
  article-title: High-voltage pulsed current electrical stimulation in wound treatment
  publication-title: Adv. Wound Care
– volume: 28
  start-page: 4014
  year: 2018
  end-page: 4021
  ident: bib53
  article-title: Comparison of great curvature plication with duodenal-jejunal bypass (GCP-DJB) and sleeve gastrectomy (SG) on metabolic indices and gut hormones in type 2 diabetes mellitus rats
  publication-title: Obes. Surg.
– volume: 20
  start-page: 125
  year: 2012
  end-page: 136
  ident: bib75
  article-title: The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing
  publication-title: Wound Repair Regen.
– volume: 23
  start-page: 456
  year: 2015
  end-page: 464
  ident: bib20
  article-title: The external microenvironment of healing skin wounds
  publication-title: Wound Repair Regen.
– volume: 27
  start-page: S32
  year: 2018
  end-page: S36
  ident: bib37
  article-title: Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series
  publication-title: J. Wound Care
– volume: 19
  start-page: 783
  year: 2019
  end-page: 791
  ident: bib66
  article-title: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)
  publication-title: Mol. Med. Rep.
– volume: 521
  start-page: 1042
  year: 2020
  end-page: 1048
  ident: bib88
  article-title: miR-145-5p attenuates hypertrophic scar via reducing Smad2/Smad3 expression
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 25
  start-page: 883
  year: 2017
  end-page: 891
  ident: bib58
  article-title: Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis
  publication-title: Wound Repair Regen.
– volume: 3
  start-page: 513
  year: 2018
  end-page: 525
  ident: bib7
  article-title: Current concepts for the evaluation and management of diabetic foot ulcers
  publication-title: Efort Open Rev
– volume: 27
  year: 2016
  ident: bib47
  article-title: The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals
  publication-title: Vet. Dermatol.
– volume: 22
  start-page: S36
  year: 2017
  end-page: S40
  ident: bib84
  article-title: Obtaining the optimum moist wound healing environment
  publication-title: Br. J. Community Nurs.
– volume: 37
  start-page: 1299
  year: 2016
  end-page: 1309
  ident: bib68
  article-title: Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways
  publication-title: Int. J. Mol. Med.
– volume: 25
  start-page: 122
  year: 2016
  end-page: 130
  ident: bib77
  article-title: The importance of hydration in wound healing: reinvigorating the clinical perspective
  publication-title: J. Wound Care
– volume: 19
  start-page: 3199
  year: 2018
  end-page: 3209
  ident: bib36
  article-title: Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes
  publication-title: AAPS PharmSciTech
– volume: 242
  start-page: R358
  year: 1982
  end-page: R366
  ident: bib10
  article-title: The glabrous epidermis of cavies contains a powerful battery
  publication-title: Am. J. Physiol.
– volume: 31
  start-page: 322
  year: 2018
  end-page: 327
  ident: bib15
  article-title: Changes in S100 proteins identified in healthy skin following electrical stimulation: relevance for wound healing
  publication-title: Adv. Skin Wound Care
– volume: 18
  start-page: 407
  year: 1990
  end-page: 425
  ident: bib59
  article-title: Imbalanced biphasic electrical stimulation: muscle tissue damage
  publication-title: Ann. Biomed. Eng.
– volume: 28
  start-page: 151
  year: 2015
  end-page: 159
  ident: bib74
  article-title: Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors
  publication-title: Semin. Vasc. Surg.
– volume: 9
  start-page: 7814
  year: 2013
  end-page: 7821
  ident: bib61
  article-title: Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice
  publication-title: Acta Biomater.
– volume: 185
  start-page: 57
  year: 2014
  end-page: 63
  ident: bib40
  article-title: Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities
  publication-title: Int. J. Food Microbiol.
– volume: 13
  start-page: 438
  year: 2018
  end-page: 446
  ident: bib56
  article-title: Endothelial progenitor cells as molecular targets in vascular senescence and repair
  publication-title: Curr. Stem Cell Res. Ther.
– volume: 68
  start-page: 1864
  year: 2002
  end-page: 1871
  ident: bib26
  article-title: Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects
  publication-title: Appl. Environ. Microbiol.
– volume: 11
  year: 2016
  ident: bib65
  article-title: Up-regulation of CREG expression by the transcription factor GATA1 inhibits high glucose- and high palmitate-induced apoptosis in human umbilical vein endothelial cells
  publication-title: PloS One
– volume: 61
  start-page: 1249
  year: 2018
  end-page: 1260
  ident: bib1
  article-title: Epidemiology of diabetes and diabetic complications in China
  publication-title: Diabetologia
– volume: 1
  start-page: 111
  year: 2004
  end-page: 121
  ident: bib30
  article-title: An update on management of acute and chronic open wounds: the importance of moist environment in optimal wound healing
  publication-title: J Medicinal Chemistry Reviews
– volume: 8
  start-page: 548
  year: 1996
  end-page: 556
  ident: bib69
  article-title: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice
  publication-title: Cytokine
– volume: 112
  start-page: 1225
  year: 2018
  end-page: 1233
  ident: bib34
  article-title: Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing
  publication-title: Int. J. Biol. Macromol.
– volume: 138
  start-page: 158S
  year: 2016
  end-page: 164S
  ident: bib32
  article-title: Dressing and diabetic foot ulcers: a current review of the evidence
  publication-title: Plast. Reconstr. Surg.
– volume: 14
  year: 2019
  ident: bib64
  article-title: N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells
  publication-title: PloS One
– volume: 63
  start-page: 1593
  year: 1983
  end-page: 1596
  ident: bib60
  article-title: Skin pH following high voltage pulsed galvanic stimulation
  publication-title: Phys. Ther.
– volume: 109
  start-page: 199
  year: 1996
  end-page: 207
  ident: bib12
  article-title: Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds
  publication-title: J. Cell Sci.
– volume: 27
  start-page: 54
  year: 2003
  end-page: 61
  ident: bib82
  article-title: Fetal wound healing: current biology
  publication-title: World J. Surg.
– volume: 103
  start-page: 148
  year: 1995
  end-page: 155
  ident: bib22
  article-title: Ph effects on experimental wound-healing of human fibroblasts in-vitro
  publication-title: Eur. J. Oral Sci.
– volume: 25
  start-page: 19
  year: 2007
  end-page: 25
  ident: bib27
  article-title: Impaired wound healing
  publication-title: Clin. Dermatol.
– volume: 3
  start-page: 81
  year: 2014
  end-page: 90
  ident: bib44
  article-title: Electrical stimulation technologies for wound healing
  publication-title: Adv. Wound Care
– volume: 99
  start-page: 1141
  year: 2016
  end-page: 1151
  ident: bib17
  article-title: Electric fields are novel determinants of human macrophage functions
  publication-title: J. Leukoc. Biol.
– volume: 6
  start-page: 30
  year: 2009
  end-page: 37
  ident: bib49
  article-title: Wound healing with conductive electrical stimulation—it's the dosage that counts
  publication-title: J Wound Technol
– volume: 5
  start-page: 907
  year: 2016
  end-page: 918
  ident: bib57
  article-title: Upregulating hif-1alpha by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound
  publication-title: Adv Healthc Mater
– volume: 23
  start-page: 456
  year: 2015
  end-page: 464
  ident: bib76
  article-title: The external microenvironment of healing skin wounds
  publication-title: Wound Repair Regen.
– volume: 145
  start-page: 357
  year: 2019
  end-page: 373
  ident: bib63
  article-title: Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation
  publication-title: Free Radic. Biol. Med.
– volume: 13
  start-page: 1133
  year: 2015
  end-page: 1174
  ident: bib39
  article-title: Chitin and chitosan preparation from marine sources. Structure, properties and applications
  publication-title: Mar. Drugs
– volume: 226
  start-page: 1248
  year: 2011
  end-page: 1254
  ident: bib90
  article-title: Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells
  publication-title: J. Cell. Physiol.
– volume: 102
  start-page: 468
  year: 2020
  end-page: 475
  ident: bib43
  article-title: Development of a chitosan-vaseline gauze dressing with wound-healing properties in murine models
  publication-title: Am. J. Trop. Med. Hyg.
– year: 2017
  ident: bib62
  article-title: Danggui buxue extract-loaded liposomes in thermosensitive gel enhance in vivo dermal wound healing via activation of the VEGF/PI3K/Akt and TGF-beta/smads signaling pathway
  publication-title: Evid Based Complement Alternat Med
– volume: 5
  year: 2015
  ident: bib45
  article-title: Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions
  publication-title: Adv Energy Mater
– volume: 20
  start-page: 674
  year: 2009
  end-page: 682
  ident: bib13
  article-title: Electrical fields in wound healing-An overriding signal that directs cell migration
  publication-title: Semin. Cell Dev. Biol.
– volume: 304
  start-page: 589
  year: 2012
  end-page: 597
  ident: bib87
  article-title: Mechanosignaling pathways in cutaneous scarring
  publication-title: Arch. Dermatol. Res.
– volume: 15
  start-page: 45
  year: 2016
  end-page: 54
  ident: bib51
  article-title: Origanum majoranum extract modulates gene expression, hepatic and renal changes in a rat model of type 2 diabetes
  publication-title: Iran. J. Pharm. Res. (IJPR)
– volume: 25
  start-page: 68
  year: 2016
  end-page: 75
  ident: bib85
  article-title: Wound healing and hyper-hydration: a counterintuitive model
  publication-title: J. Wound Care
– volume: 8
  start-page: 38
  year: 2012
  end-page: 48
  ident: bib18
  article-title: Directing migration of endothelial progenitor cells with applied DC electric fields
  publication-title: Stem Cell Res.
– volume: 111
  start-page: 850
  year: 1998
  end-page: 857
  ident: bib80
  article-title: Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds
  publication-title: J. Invest. Dermatol.
– volume: 4
  start-page: 23
  year: 2005
  end-page: 44
  ident: bib14
  article-title: Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials
  publication-title: Int. J. Low. Extrem. Wounds
– volume: 5
  start-page: 1
  year: 2001
  end-page: 221
  ident: bib4
  article-title: Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy
  publication-title: Health Technol. Assess.
– volume: 200
  start-page: 378
  year: 1963
  end-page: 379
  ident: bib33
  article-title: Effect of air exposure and occlusion on experimental human skin wounds
  publication-title: Nature
– volume: 17
  start-page: 57
  year: 1996
  end-page: 69
  ident: bib54
  article-title: Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis
  publication-title: Physiol. Meas.
– volume: 359
  start-page: 777
  year: 2004
  end-page: 784
  ident: bib83
  article-title: Wound healing and inflammation: embryos reveal the way to perfect repair
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 25
  start-page: 260
  year: 2017
  end-page: 269
  ident: bib23
  article-title: The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study
  publication-title: Wound Repair Regen.
– volume: 28
  start-page: 359
  year: 2006
  end-page: 370
  ident: bib25
  article-title: Natural skin surface pH is on average below 5, which is beneficial for its resident flora
  publication-title: Int. J. Cosmet. Sci.
– volume: 29
  year: 2018
  ident: bib73
  article-title: Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 28
  start-page: 326
  year: 2020
  end-page: 337
  ident: bib41
  article-title: Chitosan-calcium alginate dressing promotes wound healing: a preliminary study
  publication-title: Wound Repair Regen.
– volume: 27
  start-page: 296
  year: 2018
  end-page: 306
  ident: bib16
  article-title: Microcurrent as an adjunct therapy to accelerate chronic wound healing and reduce patient pain
  publication-title: J. Wound Care
– volume: 18
  start-page: 3766
  year: 2017
  end-page: 3775
  ident: bib38
  article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing
  publication-title: Biomacromolecules
– volume: 35
  start-page: 600
  year: 2015
  end-page: 604
  ident: bib67
  article-title: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis
  publication-title: J Recept Sig Transd
– volume: 27
  start-page: 622
  year: 2019
  end-page: 633
  ident: bib78
  article-title: The impact of first-aid dressing design on healing of porcine partial thickness wounds
  publication-title: Wound Repair Regen.
– volume: 96
  start-page: 137
  year: 2019
  end-page: 148
  ident: bib72
  article-title: Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells
  publication-title: Acta Biomater.
– volume: 9
  start-page: 15307
  year: 2017
  end-page: 15316
  ident: bib3
  article-title: A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment
  publication-title: ACS Appl. Mater. Interfaces
– volume: 33
  start-page: 527
  year: 2018
  end-page: 540
  ident: bib5
  article-title: Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: in vitro and in vivo studies
  publication-title: J. Biomater. Appl.
– volume: 49
  start-page: 35
  year: 2012
  end-page: 43
  ident: bib79
  article-title: Wound repair and regeneration
  publication-title: Eur. Surg. Res.
– volume: 29
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib73
  article-title: Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-018-6027-7
– volume: 28
  start-page: 326
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.003_bib41
  article-title: Chitosan-calcium alginate dressing promotes wound healing: a preliminary study
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12789
– volume: 3
  start-page: 81
  year: 2014
  ident: 10.1016/j.bioactmat.2020.08.003_bib44
  article-title: Electrical stimulation technologies for wound healing
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2013.0459
– volume: 99
  start-page: 1141
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib17
  article-title: Electric fields are novel determinants of human macrophage functions
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.3A0815-390R
– volume: 13
  start-page: 1133
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib39
  article-title: Chitin and chitosan preparation from marine sources. Structure, properties and applications
  publication-title: Mar. Drugs
  doi: 10.3390/md13031133
– volume: 10
  start-page: 121
  year: 2013
  ident: 10.1016/j.bioactmat.2020.08.003_bib46
  article-title: Electrophysical therapy for managing diabetic foot ulcers: a systematic review
  publication-title: Int. Wound J.
  doi: 10.1111/j.1742-481X.2012.01085.x
– volume: 105
  start-page: 3017
  year: 2002
  ident: 10.1016/j.bioactmat.2020.08.003_bib71
  article-title: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000018166.84319.55
– volume: 27
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib47
  article-title: The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals
  publication-title: Vet. Dermatol.
  doi: 10.1111/vde.12328
– volume: 9
  start-page: 7814
  year: 2013
  ident: 10.1016/j.bioactmat.2020.08.003_bib61
  article-title: Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.04.019
– volume: 20
  start-page: 674
  year: 2009
  ident: 10.1016/j.bioactmat.2020.08.003_bib13
  article-title: Electrical fields in wound healing-An overriding signal that directs cell migration
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2008.12.009
– volume: 282
  start-page: C947
  year: 2002
  ident: 10.1016/j.bioactmat.2020.08.003_bib70
  article-title: Mechanisms of normal and tumor-derived angiogenesis
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00389.2001
– volume: 1
  start-page: 111
  year: 2004
  ident: 10.1016/j.bioactmat.2020.08.003_bib30
  article-title: An update on management of acute and chronic open wounds: the importance of moist environment in optimal wound healing
  publication-title: J Medicinal Chemistry Reviews
– volume: 18
  start-page: 407
  year: 1990
  ident: 10.1016/j.bioactmat.2020.08.003_bib59
  article-title: Imbalanced biphasic electrical stimulation: muscle tissue damage
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02364157
– volume: 28
  start-page: 151
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib74
  article-title: Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors
  publication-title: Semin. Vasc. Surg.
  doi: 10.1053/j.semvascsurg.2016.01.003
– volume: 25
  start-page: 19
  year: 2007
  ident: 10.1016/j.bioactmat.2020.08.003_bib27
  article-title: Impaired wound healing
  publication-title: Clin. Dermatol.
  doi: 10.1016/j.clindermatol.2006.12.005
– volume: 185
  start-page: 57
  year: 2014
  ident: 10.1016/j.bioactmat.2020.08.003_bib40
  article-title: Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.04.029
– volume: 112
  start-page: 1225
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib34
  article-title: Carboxymethyl konjac glucomannan - crosslinked chitosan sponges for wound dressing
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.02.075
– volume: 29
  start-page: 684
  year: 2011
  ident: 10.1016/j.bioactmat.2020.08.003_bib89
  article-title: Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.21235
– volume: 200
  start-page: 378
  year: 1963
  ident: 10.1016/j.bioactmat.2020.08.003_bib33
  article-title: Effect of air exposure and occlusion on experimental human skin wounds
  publication-title: Nature
  doi: 10.1038/200378a0
– volume: 3
  start-page: 104
  year: 2014
  ident: 10.1016/j.bioactmat.2020.08.003_bib48
  article-title: High-voltage pulsed current electrical stimulation in wound treatment
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2013.0445
– volume: 19
  start-page: 783
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.003_bib66
  article-title: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)
  publication-title: Mol. Med. Rep.
– volume: 58
  start-page: 1
  year: 2003
  ident: 10.1016/j.bioactmat.2020.08.003_bib8
  article-title: A role for endogenous electric fields in wound healing
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/S0070-2153(03)58001-2
– volume: 27
  start-page: 622
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.003_bib78
  article-title: The impact of first-aid dressing design on healing of porcine partial thickness wounds
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12747
– volume: 127
  start-page: 514
  year: 2007
  ident: 10.1016/j.bioactmat.2020.08.003_bib81
  article-title: Inflammation in wound repair: molecular and cellular mechanisms
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/sj.jid.5700701
– volume: 226
  start-page: 1248
  year: 2011
  ident: 10.1016/j.bioactmat.2020.08.003_bib90
  article-title: Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22448
– volume: 25
  start-page: 260
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib23
  article-title: The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12526
– volume: 5
  start-page: 1
  year: 2001
  ident: 10.1016/j.bioactmat.2020.08.003_bib4
  article-title: Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy
  publication-title: Health Technol. Assess.
  doi: 10.3310/hta5090
– volume: 23
  start-page: 456
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib76
  article-title: The external microenvironment of healing skin wounds
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12303
– volume: 9
  start-page: 739
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib52
  article-title: Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00739
– volume: 63
  start-page: 1593
  year: 1983
  ident: 10.1016/j.bioactmat.2020.08.003_bib60
  article-title: Skin pH following high voltage pulsed galvanic stimulation
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/63.10.1593
– volume: 3
  start-page: 513
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib7
  article-title: Current concepts for the evaluation and management of diabetic foot ulcers
  publication-title: Efort Open Rev
  doi: 10.1302/2058-5241.3.180010
– volume: 5
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib45
  article-title: Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500959
– volume: 27
  start-page: 54
  year: 2003
  ident: 10.1016/j.bioactmat.2020.08.003_bib82
  article-title: Fetal wound healing: current biology
  publication-title: World J. Surg.
  doi: 10.1007/s00268-002-6737-2
– volume: 359
  start-page: 777
  year: 2004
  ident: 10.1016/j.bioactmat.2020.08.003_bib83
  article-title: Wound healing and inflammation: embryos reveal the way to perfect repair
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2004.1466
– volume: 124
  start-page: 872
  year: 1988
  ident: 10.1016/j.bioactmat.2020.08.003_bib24
  article-title: Occlusive wound dressings. Why, when, which?
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.1988.01670060018009
– volume: 5
  start-page: 907
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib57
  article-title: Upregulating hif-1alpha by hydrogel nanofibrous scaffolds for rapidly recruiting angiogenesis relative cells in diabetic wound
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201501018
– volume: 106
  start-page: 613
  year: 2000
  ident: 10.1016/j.bioactmat.2020.08.003_bib29
  article-title: Accelerated healing of full-thickness skin wounds in a wet environment - Discussion
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-200009030-00013
– volume: 97
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib6
  article-title: The appropriate management algorithm for diabetic foot: a single-center retrospective study over 12 years
  publication-title: Medicine (Baltim.)
– volume: 61
  start-page: 1249
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib1
  article-title: Epidemiology of diabetes and diabetic complications in China
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4557-7
– volume: 12
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib50
  article-title: Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats
  publication-title: PloS One
– volume: 25
  start-page: 70
  issue: 68
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib31
  article-title: Wound healing and hyper-hydration: a counterintuitive model
  publication-title: J. Wound Care
– volume: 22
  start-page: S36
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib84
  article-title: Obtaining the optimum moist wound healing environment
  publication-title: Br. J. Community Nurs.
  doi: 10.12968/bjcn.2017.22.Sup12.S36
– volume: 304
  start-page: 589
  year: 2012
  ident: 10.1016/j.bioactmat.2020.08.003_bib87
  article-title: Mechanosignaling pathways in cutaneous scarring
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s00403-012-1278-5
– volume: 3
  start-page: 127
  year: 2014
  ident: 10.1016/j.bioactmat.2020.08.003_bib9
  article-title: Harnessing the electric spark of life to cure skin wounds
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2013.0451
– volume: 6
  start-page: 30
  year: 2009
  ident: 10.1016/j.bioactmat.2020.08.003_bib49
  article-title: Wound healing with conductive electrical stimulation—it's the dosage that counts
  publication-title: J Wound Technol
– volume: 25
  start-page: 68
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib85
  article-title: Wound healing and hyper-hydration: a counterintuitive model
  publication-title: J. Wound Care
  doi: 10.12968/jowc.2016.25.2.68
– volume: 49
  start-page: 35
  year: 2012
  ident: 10.1016/j.bioactmat.2020.08.003_bib79
  article-title: Wound repair and regeneration
  publication-title: Eur. Surg. Res.
  doi: 10.1159/000339613
– volume: 8
  start-page: 548
  year: 1996
  ident: 10.1016/j.bioactmat.2020.08.003_bib69
  article-title: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice
  publication-title: Cytokine
  doi: 10.1006/cyto.1996.0074
– volume: 11
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib65
  article-title: Up-regulation of CREG expression by the transcription factor GATA1 inhibits high glucose- and high palmitate-induced apoptosis in human umbilical vein endothelial cells
  publication-title: PloS One
– volume: 521
  start-page: 1042
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.003_bib88
  article-title: miR-145-5p attenuates hypertrophic scar via reducing Smad2/Smad3 expression
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.11.040
– volume: 193
  start-page: 293
  year: 1962
  ident: 10.1016/j.bioactmat.2020.08.003_bib28
  article-title: Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig
  publication-title: Nature
  doi: 10.1038/193293a0
– volume: 16
  start-page: 379
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.003_bib42
  article-title: Comparison of the efficacy and safety of povidone-iodine foam dressing (Betafoam), hydrocellular foam dressing (Allevyn), and petrolatum gauze for split-thickness skin graft donor site dressing
  publication-title: Int. Wound J.
  doi: 10.1111/iwj.13043
– volume: 9
  start-page: 15307
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib3
  article-title: A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03296
– volume: 109
  start-page: 199
  year: 1996
  ident: 10.1016/j.bioactmat.2020.08.003_bib12
  article-title: Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.109.1.199
– volume: 28
  start-page: 4014
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib53
  article-title: Comparison of great curvature plication with duodenal-jejunal bypass (GCP-DJB) and sleeve gastrectomy (SG) on metabolic indices and gut hormones in type 2 diabetes mellitus rats
  publication-title: Obes. Surg.
  doi: 10.1007/s11695-018-3459-6
– volume: 31
  start-page: 322
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib15
  article-title: Changes in S100 proteins identified in healthy skin following electrical stimulation: relevance for wound healing
  publication-title: Adv. Skin Wound Care
  doi: 10.1097/01.ASW.0000533722.06780.03
– volume: 20
  start-page: 125
  year: 2012
  ident: 10.1016/j.bioactmat.2020.08.003_bib75
  article-title: The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2012.00763.x
– volume: 488
  start-page: 146
  year: 2012
  ident: 10.1016/j.bioactmat.2020.08.003_bib55
  article-title: Extreme mechanics: buckling down
  publication-title: Nature
  doi: 10.1038/488146a
– volume: 28
  start-page: 359
  year: 2006
  ident: 10.1016/j.bioactmat.2020.08.003_bib25
  article-title: Natural skin surface pH is on average below 5, which is beneficial for its resident flora
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/j.1467-2494.2006.00344.x
– volume: 33
  start-page: 527
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib5
  article-title: Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: in vitro and in vivo studies
  publication-title: J. Biomater. Appl.
  doi: 10.1177/0885328218801114
– volume: 130
  start-page: 2320
  year: 2010
  ident: 10.1016/j.bioactmat.2020.08.003_bib19
  article-title: Effects of physiological electric fields on migration of human dermal fibroblasts
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2010.96
– volume: 23
  start-page: 456
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib20
  article-title: The external microenvironment of healing skin wounds
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12303
– volume: 42
  start-page: 293
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib21
  article-title: Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH
  publication-title: Crit. Rev. Microbiol.
– volume: 35
  start-page: 600
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib67
  article-title: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis
  publication-title: J Recept Sig Transd
  doi: 10.3109/10799893.2015.1030412
– volume: 13
  start-page: 438
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib56
  article-title: Endothelial progenitor cells as molecular targets in vascular senescence and repair
  publication-title: Curr. Stem Cell Res. Ther.
  doi: 10.2174/1574888X13666180502100620
– year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib62
  article-title: Danggui buxue extract-loaded liposomes in thermosensitive gel enhance in vivo dermal wound healing via activation of the VEGF/PI3K/Akt and TGF-beta/smads signaling pathway
  publication-title: Evid Based Complement Alternat Med
  doi: 10.1155/2017/8407249
– volume: 27
  start-page: S32
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib37
  article-title: Nano-colloidal silver and chitosan bioactive wound dressings in managing diabetic foot ulcers: case series
  publication-title: J. Wound Care
  doi: 10.12968/jowc.2018.27.Sup9a.S32
– volume: 145
  start-page: 357
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.003_bib63
  article-title: Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.10.008
– volume: 27
  start-page: 296
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib16
  article-title: Microcurrent as an adjunct therapy to accelerate chronic wound healing and reduce patient pain
  publication-title: J. Wound Care
  doi: 10.12968/jowc.2018.27.5.296
– volume: 111
  start-page: 850
  year: 1998
  ident: 10.1016/j.bioactmat.2020.08.003_bib80
  article-title: Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds
  publication-title: J. Invest. Dermatol.
  doi: 10.1046/j.1523-1747.1998.00381.x
– volume: 18
  start-page: 3766
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib38
  article-title: Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01180
– volume: 15
  start-page: 45
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib51
  article-title: Origanum majoranum extract modulates gene expression, hepatic and renal changes in a rat model of type 2 diabetes
  publication-title: Iran. J. Pharm. Res. (IJPR)
– volume: 242
  start-page: R358
  year: 1982
  ident: 10.1016/j.bioactmat.2020.08.003_bib10
  article-title: The glabrous epidermis of cavies contains a powerful battery
  publication-title: Am. J. Physiol.
– volume: 68
  start-page: 1864
  year: 2002
  ident: 10.1016/j.bioactmat.2020.08.003_bib26
  article-title: Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.4.1864-1871.2002
– volume: 19
  start-page: 3199
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib36
  article-title: Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-018-1131-z
– volume: 103
  start-page: 148
  year: 1995
  ident: 10.1016/j.bioactmat.2020.08.003_bib22
  article-title: Ph effects on experimental wound-healing of human fibroblasts in-vitro
  publication-title: Eur. J. Oral Sci.
  doi: 10.1111/j.1600-0722.1995.tb00016.x
– volume: 14
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.003_bib64
  article-title: N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells
  publication-title: PloS One
  doi: 10.1371/journal.pone.0226696
– volume: 96
  start-page: 137
  year: 2019
  ident: 10.1016/j.bioactmat.2020.08.003_bib72
  article-title: Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.07.004
– volume: 13
  start-page: 4987
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib35
  article-title: Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S161680
– volume: 25
  start-page: 883
  year: 2017
  ident: 10.1016/j.bioactmat.2020.08.003_bib58
  article-title: Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.12594
– volume: 332
  start-page: 202
  year: 2015
  ident: 10.1016/j.bioactmat.2020.08.003_bib86
  article-title: Functional characterization of TRAP1-like protein involved in modulating fibrotic processes mediated by TGF-beta/Smad signaling in hypertrophic scar fibroblasts
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2015.01.015
– volume: 37
  start-page: 1299
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib68
  article-title: Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2016.2542
– volume: 102
  start-page: 468
  year: 2020
  ident: 10.1016/j.bioactmat.2020.08.003_bib43
  article-title: Development of a chitosan-vaseline gauze dressing with wound-healing properties in murine models
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.19-0387
– volume: 17
  start-page: 57
  year: 1996
  ident: 10.1016/j.bioactmat.2020.08.003_bib54
  article-title: Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/17/2/001
– volume: 115
  start-page: 6816
  year: 2018
  ident: 10.1016/j.bioactmat.2020.08.003_bib2
  article-title: Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1804262115
– volume: 8
  start-page: 38
  year: 2012
  ident: 10.1016/j.bioactmat.2020.08.003_bib18
  article-title: Directing migration of endothelial progenitor cells with applied DC electric fields
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2011.08.001
– volume: 138
  start-page: 158S
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib32
  article-title: Dressing and diabetic foot ulcers: a current review of the evidence
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/PRS.0000000000002681
– volume: 4
  start-page: 23
  year: 2005
  ident: 10.1016/j.bioactmat.2020.08.003_bib14
  article-title: Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials
  publication-title: Int. J. Low. Extrem. Wounds
  doi: 10.1177/1534734605275733
– volume: 25
  start-page: 122
  year: 2016
  ident: 10.1016/j.bioactmat.2020.08.003_bib77
  article-title: The importance of hydration in wound healing: reinvigorating the clinical perspective
  publication-title: J. Wound Care
  doi: 10.12968/jowc.2016.25.3.122
– volume: 39
  start-page: 391
  year: 2002
  ident: 10.1016/j.bioactmat.2020.08.003_bib11
  article-title: Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells
  publication-title: J. Vasc. Res.
  doi: 10.1159/000064517
SSID ssj0001700007
Score 2.4972181
Snippet The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 230
SubjectTerms Chitosan-vaseline® gauze
Diabetic wounds
Electrical stimulation
Flexible electronic device
Wound healing
Title Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes
URI https://dx.doi.org/10.1016/j.bioactmat.2020.08.003
https://www.ncbi.nlm.nih.gov/pubmed/32913931
https://www.proquest.com/docview/2441614647
https://pubmed.ncbi.nlm.nih.gov/PMC7451868
https://doaj.org/article/fbd5a66590ca469a822ceff40e5223d1
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hnrggqhYIbdEicbWwvV_e3qBqFCHBiaDcVvtJU7VO1aTiX_Ej-suYWdtRTA-59BrHa-_OjOfNevweIZ8apZ3QkRcBXBgKlBAKJ3wqdJ2sDkooXeH3zt9_yNmcf1uIxY7UF_aEdfTA3cJ9Ti4IK6XQpbdQyllIaD6mxMsIyIGFXPhAztsppq47UhjMfqgsx0WN3RSLUXOXW66s3wAmhAqxLjOJ5yCb1aemzOA_ylBPEej_jZQ7mWn6mrzqISX90k3lkLyI7RFpp8h06W4i7YRu0BYUwvm2l-uiIeIzguI-LL24grhe27b4ZfP36fHxLw25Qbb9Ta33MAQySqzpHxRhoggu8cgSRum3bo_JfHr582JW9NoKhRe82hRVaGQS2keuU9Aqah6Ri08zJxwUNaEUsNzc25Sk08pWUlqmKgfhbhlHkPWGHLSrNr4jFBCD8l5WDTLFs8Y1sUrw6AhQTAofmJwQOSyr8T3xOOpf3Jihw-zabO1h0B4GlTFLNiHl9sS7jntj_ylf0W7bvyN5dv4BXMr0LmX2udSEnA9WNz0O6fAFDLXcfwcfBz8xEKn4-sW2cfWwNgCkAF5zydWEvO38ZnufrEZ6VgaXViOPGk1kfKRdXmU2cAXmaGTz_jlmfkJe1tizk7eYTsnB5v4hngHo2rgPOb7-AchCLPU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+electrical+stimulation+device+with+Chitosan-Vaseline%C2%AE+dressing+accelerates+wound+healing+in+diabetes&rft.jtitle=Bioactive+materials&rft.au=Wang%2C+Xiao-Feng&rft.au=Li%2C+Meng-Lu&rft.au=Fang%2C+Qing-Qing&rft.au=Zhao%2C+Wan-Yi&rft.date=2021-01-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=6&rft.issue=1&rft.spage=230&rft.epage=243&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.08.003&rft_id=info%3Apmid%2F32913931&rft.externalDocID=PMC7451868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon