Prospective cold metal working and analysis of deformation susceptibility of CuMg alloys with high magnesium content

Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research o...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 6447 - 11
Main Authors Strzępek, Paweł, Zasadzińska, Małgorzata
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research on many copper alloys, such as copper alloys with high content of magnesium which were never tested before. The limitations regarding cold metal working of CuMg alloys is the main objective of this paper. Here we show that the tested materials exhibit much higher mechanical properties than currently used as electric conductors and carrying-conducting equipment materials such as pure copper, aluminum, M63 brass or CuNiSi alloy. The results were obtained using Hollomon relation, Considére criterion, Gubkin method and hardness measurements. It lead to assessing the prospective cold metal working of CuMg alloys with 2 wt% of magnesium up to 4 wt% of magnesium. The test range included upsetting with 10–50% of cold deformation. It provided the results on evolution of mechanical properties and deformability of tested alloys. Additional information was provided based on the alloys subjected to 50% of strain. The results have proven that as the amount of magnesium increased so did the assessed values, however, it was also linked with increasing friction coefficient. Measured hardness was 2 times higher and calculated Ultimate Tensile Strength (UTS) was even 2.5 times higher in reference to pure copper in the as-cast state. However, with magnesium content at 3.6 wt% or higher, the elevated amount of α + β phase causes brittleness making it impossible to subject these materials to cold metal working processes. We anticipate our assay to be a starting point for more sophisticated models and experimental research concerning cold metal working processes of CuMg alloys of high-strength, which may lead to developing novel and promising set of alloys.
AbstractList Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research on many copper alloys, such as copper alloys with high content of magnesium which were never tested before. The limitations regarding cold metal working of CuMg alloys is the main objective of this paper. Here we show that the tested materials exhibit much higher mechanical properties than currently used as electric conductors and carrying-conducting equipment materials such as pure copper, aluminum, M63 brass or CuNiSi alloy. The results were obtained using Hollomon relation, Considére criterion, Gubkin method and hardness measurements. It lead to assessing the prospective cold metal working of CuMg alloys with 2 wt% of magnesium up to 4 wt% of magnesium. The test range included upsetting with 10-50% of cold deformation. It provided the results on evolution of mechanical properties and deformability of tested alloys. Additional information was provided based on the alloys subjected to 50% of strain. The results have proven that as the amount of magnesium increased so did the assessed values, however, it was also linked with increasing friction coefficient. Measured hardness was 2 times higher and calculated Ultimate Tensile Strength (UTS) was even 2.5 times higher in reference to pure copper in the as-cast state. However, with magnesium content at 3.6 wt% or higher, the elevated amount of α + β phase causes brittleness making it impossible to subject these materials to cold metal working processes. We anticipate our assay to be a starting point for more sophisticated models and experimental research concerning cold metal working processes of CuMg alloys of high-strength, which may lead to developing novel and promising set of alloys.
Abstract Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research on many copper alloys, such as copper alloys with high content of magnesium which were never tested before. The limitations regarding cold metal working of CuMg alloys is the main objective of this paper. Here we show that the tested materials exhibit much higher mechanical properties than currently used as electric conductors and carrying-conducting equipment materials such as pure copper, aluminum, M63 brass or CuNiSi alloy. The results were obtained using Hollomon relation, Considére criterion, Gubkin method and hardness measurements. It lead to assessing the prospective cold metal working of CuMg alloys with 2 wt% of magnesium up to 4 wt% of magnesium. The test range included upsetting with 10–50% of cold deformation. It provided the results on evolution of mechanical properties and deformability of tested alloys. Additional information was provided based on the alloys subjected to 50% of strain. The results have proven that as the amount of magnesium increased so did the assessed values, however, it was also linked with increasing friction coefficient. Measured hardness was 2 times higher and calculated Ultimate Tensile Strength (UTS) was even 2.5 times higher in reference to pure copper in the as-cast state. However, with magnesium content at 3.6 wt% or higher, the elevated amount of α + β phase causes brittleness making it impossible to subject these materials to cold metal working processes. We anticipate our assay to be a starting point for more sophisticated models and experimental research concerning cold metal working processes of CuMg alloys of high-strength, which may lead to developing novel and promising set of alloys.
Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research on many copper alloys, such as copper alloys with high content of magnesium which were never tested before. The limitations regarding cold metal working of CuMg alloys is the main objective of this paper. Here we show that the tested materials exhibit much higher mechanical properties than currently used as electric conductors and carrying-conducting equipment materials such as pure copper, aluminum, M63 brass or CuNiSi alloy. The results were obtained using Hollomon relation, Considére criterion, Gubkin method and hardness measurements. It lead to assessing the prospective cold metal working of CuMg alloys with 2 wt% of magnesium up to 4 wt% of magnesium. The test range included upsetting with 10-50% of cold deformation. It provided the results on evolution of mechanical properties and deformability of tested alloys. Additional information was provided based on the alloys subjected to 50% of strain. The results have proven that as the amount of magnesium increased so did the assessed values, however, it was also linked with increasing friction coefficient. Measured hardness was 2 times higher and calculated Ultimate Tensile Strength (UTS) was even 2.5 times higher in reference to pure copper in the as-cast state. However, with magnesium content at 3.6 wt% or higher, the elevated amount of α + β phase causes brittleness making it impossible to subject these materials to cold metal working processes. We anticipate our assay to be a starting point for more sophisticated models and experimental research concerning cold metal working processes of CuMg alloys of high-strength, which may lead to developing novel and promising set of alloys.Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the increase of mechanical properties its plasticity and workability decreases. Constant development and demand in this area has led to research on many copper alloys, such as copper alloys with high content of magnesium which were never tested before. The limitations regarding cold metal working of CuMg alloys is the main objective of this paper. Here we show that the tested materials exhibit much higher mechanical properties than currently used as electric conductors and carrying-conducting equipment materials such as pure copper, aluminum, M63 brass or CuNiSi alloy. The results were obtained using Hollomon relation, Considére criterion, Gubkin method and hardness measurements. It lead to assessing the prospective cold metal working of CuMg alloys with 2 wt% of magnesium up to 4 wt% of magnesium. The test range included upsetting with 10-50% of cold deformation. It provided the results on evolution of mechanical properties and deformability of tested alloys. Additional information was provided based on the alloys subjected to 50% of strain. The results have proven that as the amount of magnesium increased so did the assessed values, however, it was also linked with increasing friction coefficient. Measured hardness was 2 times higher and calculated Ultimate Tensile Strength (UTS) was even 2.5 times higher in reference to pure copper in the as-cast state. However, with magnesium content at 3.6 wt% or higher, the elevated amount of α + β phase causes brittleness making it impossible to subject these materials to cold metal working processes. We anticipate our assay to be a starting point for more sophisticated models and experimental research concerning cold metal working processes of CuMg alloys of high-strength, which may lead to developing novel and promising set of alloys.
ArticleNumber 6447
Author Zasadzińska, Małgorzata
Strzępek, Paweł
Author_xml – sequence: 1
  givenname: Paweł
  surname: Strzępek
  fullname: Strzępek, Paweł
  email: strzepek@agh.edu.pl
  organization: Faculty of Non-Ferrous Metals, AGH University of Krakow
– sequence: 2
  givenname: Małgorzata
  surname: Zasadzińska
  fullname: Zasadzińska, Małgorzata
  organization: Faculty of Non-Ferrous Metals, AGH University of Krakow
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38499616$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLwF9J7BNCq7ZUKoIDnC1_JevFsRfbabX_Hu-mhbaHWrJsed5788Yzr6sjH7ypqrcQfIQA00-JwJbRBiDStD2guIEvqhMESNsgjNDRg_txdZbSBpTVIkYge1UdY0oY62B3UuUfMaStUdnemFoFp-vJZOHq2xB_Wz_Wwuuyhdslm-ow1NoMIU4i2-DrNCdlttlK62ze7aOr-VuhOBd2qb61eV2v7biuJzF6k-w8lQQ-G5_fVC8H4ZI5uztPq18X5z9XX5vr75dXqy_XjWoJzA1kAEnWmQ5CRSDCygxUdrpnLQFME9SLAREtpMEaQAA6glUpSmlEW8mERPi0ulp0dRAbvo12EnHHg7D88BDiyEXMVjnDe62x6ShsWykJ6SXTuCdSAEpNSQBp0fq8aG1nORmtShlRuEeijyPervkYbjgEjNCe9UXhw51CDH9mkzKfbPlA54Q3YU4csY4yBFtICvT9E-gmzLG04YDCgFAG9pbePbT0z8t9dwuALgBVmpyiGbiy-dC74tC6Yo3vZ4kvs8TLLPHDLHFYqOgJ9V79WRJeSKmA_Wjif9vPsP4CSUndFw
CitedBy_id crossref_primary_10_3390_ma17225467
crossref_primary_10_3390_ma17122980
crossref_primary_10_3390_pr12102200
Cites_doi 10.1016/j.msea.2020.139815
10.1016/j.msea.2021.142149
10.1016/j.acme.2019.04.005
10.1016/j.jmatprotec.2017.01.021
10.1016/j.applthermaleng.2022.119911
10.1016/j.jmatprotec.2017.11.061
10.1016/j.msea.2019.138048
10.3390/ma16103632
10.1016/j.jallcom.2020.156006
10.4028/www.scientific.net/MSF.992.751
10.1016/j.jallcom.2018.09.040
10.2320/matertrans.M2014220
10.1016/j.jallcom.2014.12.043
10.3390/en15062093
10.1016/j.jmatprotec.2015.09.040
10.1007/BF00716174
10.3390/met9101084
10.1016/S1644-9665(12)60192-7
10.1016/S1644-9665(12)60204-0
10.3390/met13050888
10.3390/met10010105
10.1016/j.fusengdes.2020.111766
10.1016/j.applthermaleng.2023.120067
10.1016/S1002-0721(14)60183-6
10.7494/jcme.2021.5.4.103
10.1016/j.matpr.2018.10.345
10.1016/j.jallcom.2015.01.234
10.1088/0022-3727/7/7/305
10.1016/j.acme.2017.11.004
10.1016/S1003-6326(19)64968-X
10.1002/0471777447.ch4
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-57083-1
DatabaseName Open Access Journals from Springer Nature
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database ProQuest
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Open Access Journals from Springer Nature
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_7dd3e68155bb447b9d374ba088eabe18
PMC10948797
38499616
10_1038_s41598_024_57083_1
Genre Journal Article
GrantInformation_xml – fundername: Narodowe Centrum Badań i Rozwoju
  grantid: LIDER/33/0121/L-11/19/NCBR/2020
  funderid: http://dx.doi.org/10.13039/501100005632
– fundername: Narodowe Centrum Badań i Rozwoju
  grantid: LIDER/33/0121/L-11/19/NCBR/2020
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-1902b96e611c4123cef8b6d795409d427af24dabe3d0100643c961cd285b9ab23
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:06 EDT 2025
Thu Aug 21 18:34:47 EDT 2025
Fri Jul 11 04:35:59 EDT 2025
Wed Aug 13 03:26:18 EDT 2025
Mon Jul 21 06:00:35 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 00:51:37 EDT 2025
Fri Feb 21 02:37:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metal working
Deformation
CuMg
Hollomon
Copper alloys
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-1902b96e611c4123cef8b6d795409d427af24dabe3d0100643c961cd285b9ab23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-57083-1
PMID 38499616
PQID 2963048908
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7dd3e68155bb447b9d374ba088eabe18
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10948797
proquest_miscellaneous_2968921514
proquest_journals_2963048908
pubmed_primary_38499616
crossref_citationtrail_10_1038_s41598_024_57083_1
crossref_primary_10_1038_s41598_024_57083_1
springer_journals_10_1038_s41598_024_57083_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-18
PublicationDateYYYYMMDD 2024-03-18
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mohebbi, Akbarzadeh (CR16) 2018; 255
Kukhar, Klimov, Chernenko, Balalayeva (CR28) 2020; 992
Joo, Hwang, Kim, Im (CR1) 2017; 244
Liang, Wang, Wang, Liu, Fu (CR34) 2019; 9
Bowen, Partridge (CR35) 1974; 7
Chen (CR33) 2014; 32
Gorsse, Ouvard, Goune, Poulon-Quintin (CR26) 2015; 633
CR39
Kawecki, Sieja-Smaga, Korzeń, Majchrowska, Noga (CR3) 2021; 5
Schubert, Anderko (CR32) 1951; 38
Pranshanth, Satish, Ajay Kumar (CR9) 2018; 5
Lee, Im, Matsumoto, Utsunomiya (CR11) 2021; 799
Reddy, Ghosh (CR17) 2016; 229
Cao (CR14) 2020; 843
Zimniak, Radkiewicz (CR2) 2008; 8
Shahriyari (CR12) 2022; 831
Wang, Deng, Li, Li (CR6) 2023; 221
Rodriguez-Calvillo, Ferrer, Cabrera-Marrero (CR24) 2015; 626
Li, Deng, Li, Wang, Wang, Huang (CR7) 2023; 224
Bochniak, Korbel, Ostachowski, Lagoda (CR19) 2018; 18
Vergera-Hernandez (CR5) 2023; 13
Hollomon (CR31) 1945; 162
Gronostajski, Hawryluk (CR18) 2008; 8
Ito, Matsunaga, Mori, Maki (CR23) 2014; 55
CR29
Tardieu (CR10) 2019; 761
Strzępek, Zasadzińska (CR27) 2022; 15
Martinez, Qian, Kabayama, Prisco (CR36) 2020; 10
Zhang (CR4) 2023; 16
Li (CR13) 2019; 771
CR22
Thangakani (CR8) 2022
CR21
Gronostajski (CR20) 2019; 19
Tong, Li, Zhang, Li, Zheng (CR25) 2019; 29
CR40
Avitzur (CR37) 1968
Dieter (CR30) 1986
Kundig, Cowie, Kutz (CR38) 2005
Zhang, Li, Sheng, Gao, Lei (CR15) 2020; 159
JA Thangakani (57083_CR8) 2022
X Vergera-Hernandez (57083_CR5) 2023; 13
W Bochniak (57083_CR19) 2018; 18
S Gorsse (57083_CR26) 2015; 633
S Tardieu (57083_CR10) 2019; 761
M Pranshanth (57083_CR9) 2018; 5
Z Gronostajski (57083_CR18) 2008; 8
Y Chen (57083_CR33) 2014; 32
GE Dieter (57083_CR30) 1986
YX Tong (57083_CR25) 2019; 29
57083_CR39
B Avitzur (57083_CR37) 1968
B Wang (57083_CR6) 2023; 221
F Shahriyari (57083_CR12) 2022; 831
Z Gronostajski (57083_CR20) 2019; 19
VV Kukhar (57083_CR28) 2020; 992
PP Reddy (57083_CR17) 2016; 229
HS Joo (57083_CR1) 2017; 244
KJA Kundig (57083_CR38) 2005
Z Zhang (57083_CR4) 2023; 16
Y Cao (57083_CR14) 2020; 843
Z Zimniak (57083_CR2) 2008; 8
R Li (57083_CR13) 2019; 771
Y Ito (57083_CR23) 2014; 55
MS Mohebbi (57083_CR16) 2018; 255
P Rodriguez-Calvillo (57083_CR24) 2015; 626
JH Hollomon (57083_CR31) 1945; 162
57083_CR29
L Li (57083_CR7) 2023; 224
P Strzępek (57083_CR27) 2022; 15
R Zhang (57083_CR15) 2020; 159
57083_CR22
D Liang (57083_CR34) 2019; 9
S Lee (57083_CR11) 2021; 799
57083_CR21
GAS Martinez (57083_CR36) 2020; 10
AW Bowen (57083_CR35) 1974; 7
57083_CR40
A Kawecki (57083_CR3) 2021; 5
K Schubert (57083_CR32) 1951; 38
References_xml – ident: CR22
– volume: 799
  start-page: 139815
  year: 2021
  ident: CR11
  article-title: Strength and electrical conductivity of Cu-Al alloy sheets by cryogenic high-speed rolling
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139815
– volume: 831
  start-page: 142149
  year: 2022
  ident: CR12
  article-title: Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.142149
– volume: 19
  start-page: 898
  issue: 3
  year: 2019
  end-page: 941
  ident: CR20
  article-title: Recent development trends in metal forming
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2019.04.005
– volume: 244
  start-page: 51
  year: 2017
  end-page: 61
  ident: CR1
  article-title: Effect of continuous hybrid process on mechanical and electrical properties of rectangular pure copper wire
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.01.021
– volume: 221
  start-page: 119911
  year: 2023
  ident: CR6
  article-title: Design and test of smart heat exchanger based on shape memory alloys
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119911
– ident: CR39
– volume: 255
  start-page: 35
  year: 2018
  end-page: 46
  ident: CR16
  article-title: Constitutive equation and FEM analysis of incremental cryo-rolling of UFG AA 1050 and AA 5052
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.11.061
– volume: 761
  start-page: 138048
  year: 2019
  ident: CR10
  article-title: Nanostructured 1% silver-copper composite wires with a high tensile strength and a high electrical conductivity
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138048
– volume: 162
  start-page: 268
  year: 1945
  end-page: 290
  ident: CR31
  publication-title: Trans. Tms-AIME
– volume: 16
  start-page: 3632
  issue: 10
  year: 2023
  ident: CR4
  article-title: Achieving high strength and high conductivity of Cu-6 wt%Ag sheets by controlling the aging cooling rate
  publication-title: Materials
  doi: 10.3390/ma16103632
– volume: 843
  start-page: 156006
  year: 2020
  ident: CR14
  article-title: Effect of inclusion on strength and conductivity of Cu-Ni-Si alloys with discontinuous precipitation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.156006
– year: 1968
  ident: CR37
  publication-title: Metal Forming, Processes and Analysis
– volume: 992
  start-page: 751
  year: 2020
  end-page: 756
  ident: CR28
  article-title: Correlation of barreling effect with boundary friction coefficient during upsetting of various materials workpieces under processing conditions
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.992.751
– volume: 771
  start-page: 1044
  year: 2019
  end-page: 1051
  ident: CR13
  article-title: Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.09.040
– volume: 55
  start-page: 1738
  issue: 11
  year: 2014
  end-page: 1741
  ident: CR23
  article-title: Effect of plastic deformation on the proof strength and electrical conductivity of copper-magnesium supersaturated solid-solution alloys
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2014220
– ident: CR29
– volume: 626
  start-page: 340
  year: 2015
  end-page: 348
  ident: CR24
  article-title: Analysis of microstructure and strengthening in CuMg alloys deformed by equal channel angular pressing
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.12.043
– volume: 15
  start-page: 2093
  year: 2022
  ident: CR27
  article-title: Pure alloy additive or preliminary alloy: A comparative study on obtaining high-strength copper magnesium alloys designed for electrical power systems
  publication-title: Energies
  doi: 10.3390/en15062093
– ident: CR40
– year: 2022
  ident: CR8
  publication-title: Nanotechnology in the Automotive Industry: Chapter 14—Applications of Copper Alloy Nanoparticles in Automotive Industry
– volume: 229
  start-page: 329
  year: 2016
  end-page: 337
  ident: CR17
  article-title: Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.09.040
– volume: 38
  start-page: 46
  year: 1951
  ident: CR32
  article-title: Kristallstruktur von CuMg2
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00716174
– volume: 9
  start-page: 1084
  issue: 10
  year: 2019
  ident: CR34
  article-title: Effects of Zr, Y on the microstructure and properties of As-Cast Cu-0.5Y-xZr (wt%) alloys
  publication-title: Metals
  doi: 10.3390/met9101084
– ident: CR21
– volume: 8
  start-page: 39
  issue: 2
  year: 2008
  end-page: 55
  ident: CR18
  article-title: The main aspects of precision forging
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/S1644-9665(12)60192-7
– volume: 8
  start-page: 173
  year: 2008
  end-page: 179
  ident: CR2
  article-title: The electroplastic effect in the cold-drawing of copper wires for the automotive industry
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/S1644-9665(12)60204-0
– year: 1986
  ident: CR30
  publication-title: Mechanical Metallurgy
– volume: 13
  start-page: 888
  issue: 5
  year: 2023
  ident: CR5
  article-title: Powder metallurgy fabrication and characterization of Ti6Al4V/xCu alloys for biomedical applications
  publication-title: Metals
  doi: 10.3390/met13050888
– volume: 10
  start-page: 105
  issue: 1
  year: 2020
  ident: CR36
  article-title: Effect of process parameters in copper-wire drawing
  publication-title: Metals
  doi: 10.3390/met10010105
– volume: 159
  start-page: 111766
  year: 2020
  ident: CR15
  article-title: Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.111766
– volume: 224
  start-page: 120067
  year: 2023
  ident: CR7
  article-title: Shape memory alloys enabled smart heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120067
– volume: 32
  start-page: 1056
  issue: 11
  year: 2014
  end-page: 1063
  ident: CR33
  article-title: Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(14)60183-6
– volume: 5
  start-page: 103
  issue: 4
  year: 2021
  end-page: 107
  ident: CR3
  article-title: Research on mechanical and electrical properties of Cu-Ag alloys designed for the construction of high magnetic field generators
  publication-title: J. Cast. Mater.
  doi: 10.7494/jcme.2021.5.4.103
– volume: 5
  start-page: 25404
  issue: 113
  year: 2018
  end-page: 254011
  ident: CR9
  article-title: Effect of brass and silver on mechanical properties of copper
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.10.345
– volume: 633
  start-page: 42
  year: 2015
  end-page: 47
  ident: CR26
  article-title: Microstructural design of new high conductivity–high strength Cu-based alloy
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.234
– volume: 7
  start-page: 969
  year: 1974
  ident: CR35
  article-title: Limitations of the Hollomon strain-hardening equation
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/7/7/305
– volume: 18
  start-page: 679
  year: 2018
  end-page: 686
  ident: CR19
  article-title: Plastic flow of metals under cyclic change of deformation path conditions
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2017.11.004
– volume: 29
  start-page: 595
  issue: 3
  year: 2019
  end-page: 600
  ident: CR25
  article-title: High strength and high electrical conductivity CuMg alloy prepared by cryorolling
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(19)64968-X
– year: 2005
  ident: CR38
  article-title: Copper and copper alloys
  publication-title: Mechanical Engineers' Handbook: Materials and Mechanical Design, 1, Third Edition Chapter 4
  doi: 10.1002/0471777447.ch4
– volume: 7
  start-page: 969
  year: 1974
  ident: 57083_CR35
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/7/7/305
– volume: 18
  start-page: 679
  year: 2018
  ident: 57083_CR19
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2017.11.004
– volume: 15
  start-page: 2093
  year: 2022
  ident: 57083_CR27
  publication-title: Energies
  doi: 10.3390/en15062093
– ident: 57083_CR40
– volume-title: Mechanical Engineers' Handbook: Materials and Mechanical Design, 1, Third Edition Chapter 4
  year: 2005
  ident: 57083_CR38
  doi: 10.1002/0471777447.ch4
– volume: 8
  start-page: 39
  issue: 2
  year: 2008
  ident: 57083_CR18
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/S1644-9665(12)60192-7
– volume-title: Mechanical Metallurgy
  year: 1986
  ident: 57083_CR30
– volume: 5
  start-page: 103
  issue: 4
  year: 2021
  ident: 57083_CR3
  publication-title: J. Cast. Mater.
  doi: 10.7494/jcme.2021.5.4.103
– volume: 8
  start-page: 173
  year: 2008
  ident: 57083_CR2
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/S1644-9665(12)60204-0
– volume: 771
  start-page: 1044
  year: 2019
  ident: 57083_CR13
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2018.09.040
– volume: 55
  start-page: 1738
  issue: 11
  year: 2014
  ident: 57083_CR23
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2014220
– volume: 992
  start-page: 751
  year: 2020
  ident: 57083_CR28
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.992.751
– volume: 221
  start-page: 119911
  year: 2023
  ident: 57083_CR6
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119911
– volume: 229
  start-page: 329
  year: 2016
  ident: 57083_CR17
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.09.040
– volume: 162
  start-page: 268
  year: 1945
  ident: 57083_CR31
  publication-title: Trans. Tms-AIME
– ident: 57083_CR29
– volume: 9
  start-page: 1084
  issue: 10
  year: 2019
  ident: 57083_CR34
  publication-title: Metals
  doi: 10.3390/met9101084
– volume: 5
  start-page: 25404
  issue: 113
  year: 2018
  ident: 57083_CR9
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.10.345
– ident: 57083_CR21
– volume: 159
  start-page: 111766
  year: 2020
  ident: 57083_CR15
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.111766
– volume-title: Metal Forming, Processes and Analysis
  year: 1968
  ident: 57083_CR37
– volume: 626
  start-page: 340
  year: 2015
  ident: 57083_CR24
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.12.043
– volume: 10
  start-page: 105
  issue: 1
  year: 2020
  ident: 57083_CR36
  publication-title: Metals
  doi: 10.3390/met10010105
– volume: 224
  start-page: 120067
  year: 2023
  ident: 57083_CR7
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120067
– volume: 29
  start-page: 595
  issue: 3
  year: 2019
  ident: 57083_CR25
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(19)64968-X
– ident: 57083_CR39
– volume: 843
  start-page: 156006
  year: 2020
  ident: 57083_CR14
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.156006
– volume: 32
  start-page: 1056
  issue: 11
  year: 2014
  ident: 57083_CR33
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(14)60183-6
– volume-title: Nanotechnology in the Automotive Industry: Chapter 14—Applications of Copper Alloy Nanoparticles in Automotive Industry
  year: 2022
  ident: 57083_CR8
– volume: 761
  start-page: 138048
  year: 2019
  ident: 57083_CR10
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138048
– volume: 244
  start-page: 51
  year: 2017
  ident: 57083_CR1
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.01.021
– volume: 16
  start-page: 3632
  issue: 10
  year: 2023
  ident: 57083_CR4
  publication-title: Materials
  doi: 10.3390/ma16103632
– volume: 13
  start-page: 888
  issue: 5
  year: 2023
  ident: 57083_CR5
  publication-title: Metals
  doi: 10.3390/met13050888
– volume: 38
  start-page: 46
  year: 1951
  ident: 57083_CR32
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00716174
– volume: 831
  start-page: 142149
  year: 2022
  ident: 57083_CR12
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.142149
– volume: 633
  start-page: 42
  year: 2015
  ident: 57083_CR26
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.01.234
– ident: 57083_CR22
– volume: 799
  start-page: 139815
  year: 2021
  ident: 57083_CR11
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.139815
– volume: 255
  start-page: 35
  year: 2018
  ident: 57083_CR16
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.11.061
– volume: 19
  start-page: 898
  issue: 3
  year: 2019
  ident: 57083_CR20
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2019.04.005
SSID ssj0000529419
Score 2.4307353
Snippet Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However, with the...
Abstract Metal alloys designated for cold metal working exhibit much higher strength properties than pure materials due to solid-solution hardening. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6447
SubjectTerms 639/166/988
639/301/1005
639/301/1023
639/301/299
639/301/930
Alloys
Aluminum
Cold
Copper
Copper alloys
CuMg
Deformability
Deformation
Experimental research
Hardness
Hollomon
Humanities and Social Sciences
Magnesium
Mechanical properties
Metal working
Metals
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIWj9Wq0TwpkvfJNlNctTSUgqKBwu9hWST1cJ7u6X7Fnn_vZNk37bPz4uHvWwSGOYj85tkZkLIGw_WOQwTSoQGTSmC4KXDcLkELjwCOmigTVm-n-rTc3F2UV3ceuor5oTl9sCZcYfSex5qhW7POSGk055L4SwaR7AuQCrzRZ93K5jKXb2ZFqCnKpkFV4cDeqpYTcZEWUnEHSXseKLUsP93KPPXZMmfbkyTIzp5QO5PCJK-z5Q_JHdC94jczW9KbvbJ-vN1vy2fpChlT1cBATb9nk_Fqe08frkTCe1b6sNcv0iHcUhZLilhdhNHj8aPuGS57DcDjUe2NLY3piv7FXfIy3FFY6Y7UvyYnJ8cfzk6LaenFcqmErAuEQYwp-tQAzQCnVcTWuVqLzUCOO0Fk7ZlwiODuceALcKWRtfQeKYqp61j_AnZ6_ouPCPUO8YCt0y2fiFE1VqpoQrgrQDXMGgLAls2m2bqOx6fv1iadP_NlcmiMSgak0RjoCBv5zVXuevGX2d_iNKbZ8aO2ekH6pGZ9Mj8S48KcrCVvZnMeDAMtyfc4vQCh1_Pw2iA8VbFdqEf0xylI3ASBXmaVWWmhCsMKGuoC6J2lGiH1N2R7vJbavINGHcrqWVB3m317YauP_Pi-f_gxQtyj0VDiWmL6oDsra_H8BKx19q9Smb2A0EFK0o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixQxEA66IngR39u6SgRvGnby6E5yEl1cFkHx4MLcQl69Lsx0r9PTyPx7K-nHMj720JdOAkmqKvnqkSqE3gRqnQM1gQA08EREwYkDdZlQLgIAOuppnaN8v1Zn5-LzslyOBrduDKuczsR8UIfWJxv5MQNOAW7TC_X-6idJVaOSd3UsoXEb3UmpyxJXy6WcbSzJiyWoHt_KLLg67uC-Sm_KmCClBPRB6N59lNP2_wtr_h0y-YffNF9Hpw_Q_RFH4g8D4R-iW7F5hO4OlSV3j9H226adHlFioHXA6wgwG_8abOPYNgG-IR8Jbmsc4vyKEXd9l2NdctjsLrWe9F9gyGrV7jqcDLc4JTnGa3sB5-Rlv8Yp3h1m_ASdn376fnJGxgILxJeCbgmAAeZ0FStKvYArzMdauSpIDTBOB8GkrZkI1kUeQG1L4MXrivrAVOm0dYw_RQdN28RDhINjLHLLZB0WQpS1lZqWkQYrqPOM1gWi0zYbP2YfT0UwViZ7wbkyA2kMkMZk0hhaoLfzmKsh98aNvT8m6s09U97s_KPdXJhRDI0MgcdKAYhyTgjpdOBSOAtHbYRlUlWgo4n2ZhTmzlyzXoFez80ghsm3YpvY9rmP0gk-iQI9G1hlnglXoFZWtCqQ2mOivanutzSXP3Kqbwrat5JaFujdxG_X8_r_Xjy_eRkv0D2WRCCFJaojdLDd9PElYKute5UF6Dcr0SJW
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhodBLadKXmzSo0FsrunrYko7b0BAWWgptIDchWXIa2LXDek3Zf9-R_CjbJoEefLEkGHtGo2-kmU8IvfPUOgdhAgFoUBIRBCcOwmVCufAA6GhJq5Tl-7W4uBSLq_xqD7GxFiYl7SdKy-Smx-ywjy0sNLEYjAmSS4ANBCKeg0jVDrZ9MJ8vvi-mnZV4diWoHipkZlzdMXhnFUpk_XchzH8TJf86LU2L0PlT9GRAj3jey3uI9kJ9hB7190lun6HNt3Uzlk5i0LDHqwDgGv_qd8SxrT08PQsJbirsw1S7iNuuTRkuKVl2G1vPui8wZLlsti2O27U4Uhvjlb0G73jTrXDMcgeJn6PL888_zi7IcK0CKXNBNwQgAHO6CAWlpYCFqwyVcoWXGsCb9oJJWzHhrQvcQ7AWIUupC1p6pnKnrWP8Bdqvmzq8Qtg7xgK3TFZ-JkReWalpHqi3grqS0SpDdPzNphw4x-PVF0uTzr65Mr1qDKjGJNUYmqH305jbnnHjwd6fovamnpEtO71o1tdmsB4jveehUACdnBNCOu25FM6Cgw3wmVRl6GTUvRmmcGsYuCZwb3oGzW-nZph88UTF1qHpUh-lI2gSGXrZm8okCVcQTBa0yJDaMaIdUXdb6pufieCbQsytpJYZ-jDa2x-57v8Xr_-v-zF6zOKUiMmJ6gTtb9ZdeAMIa-NOhyn1GyDxIXU
  priority: 102
  providerName: Springer Nature
Title Prospective cold metal working and analysis of deformation susceptibility of CuMg alloys with high magnesium content
URI https://link.springer.com/article/10.1038/s41598-024-57083-1
https://www.ncbi.nlm.nih.gov/pubmed/38499616
https://www.proquest.com/docview/2963048908
https://www.proquest.com/docview/2968921514
https://pubmed.ncbi.nlm.nih.gov/PMC10948797
https://doaj.org/article/7dd3e68155bb447b9d374ba088eabe18
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfGJiReEN9kjMpIvEFgdpzYfkCoqzZNlTZNQKW-WXbsjEltwppG0P-es_OBCoUnHqJIsS05vjvf7-z7QOi1JdoYMBNigAZ5zBxLYgPmckwSZgHQkZwUwcv3Mjufsek8ne-hvtxRt4D1TtPO15OarRbvftxuPoLAf2hDxsX7GpSQDxSjLE45QIoYrKED0EzcVzS46OB-m-ubSkZkFzuze-iWfgpp_Hdhzz9dKH-7Rw3q6ewBut_hSjxuGeEh2nPlI3S3rTS5eYzWV6uqD6rEQHuLlw7-GH9vz8qxLi08bX4SXBXYuiGqEddNHXxfghvtxrdOmgsYslhUmxr7g1zskx7jpb6GffOmWWLv_w4zfoJmZ6dfJudxV3AhzlNG1jGAA2pk5jJCcgYqLXeFMJnlEmCdtIxyXVBmtXGJBTPOg5lcZiS3VKRGakOTp2i_rEr3HGFrKHWJprywx4ylheaSpI5YzYjJKSkiRPplVnmXjdwXxViocCueCNWSRgFpVCCNIhF6M4z51ubi-GfvE0-9oafPox0-VKtr1Yml4tYmLhMAqoxhjBtpE86Mhq3XwW8SEaGjnvaq501FYdOCjU8eQ_OroRnE0t-16NJVTegjpIdTLELPWlYZZpIIMDMzkkVIbDHR1lS3W8qbryH1NwFrXHDJI_S257df8_r7Whz-j7V4ge5RLyjemVEcof31qnEvAZGtzQjd4XM-Qgfj8fTzFN4np5dXn-DrJJuMwinHKAjiT-YGOJs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAASPBCaKuHSe2DwhBodrShzi00t6MXymVdpOy2VW1f4rfyNh5VMujtx5yiR3J8YxnvvG8EHrtiDYGzIQUoIFNmWdZasBcTknGHAA6YkkZo3yPivEJ-zrJJxvoV58LE8Iqe5kYBbWrbbgj36bAKcBtciQ-nP9MQ9eo4F3tW2i0bLHvVxdgsjXv9z4Dfd9QuvvleGecdl0FUpszskhBA1IjC18QYhnIbetLYQrHJWAX6RjluqTMaeMzB7ZK0NhWFsQ6KnIjtQmFDkDk3wDFOwrGHp_w4U4neM0YkV1uzigT2w3ox5DDRlmac0A7KVnTf7FNwL-w7d8hmn_4aaP6272L7nS4FX9sGe0e2vDVfXSz7WS5eoAW3-Z1n7SJgbccnnmA9fiivYvHunLwtPVPcF1i54esSdwsmxhbE8N0V2F0Z3kIn0yn9arB4aIYh6LKeKZPQS6fLWc4xNfDih-ik2vZ-kdos6or_wRhZyj1maa8dCPG8lJzSXJPnGbEWErKBJF-m5Xtqp2HphtTFb3umVAtaRSQRkXSKJKgt8M3522tjytnfwrUG2aGOt3xRT0_Vd2xV9y5zBcCQJsxjHEjXcaZ0SDaPfwmEQna6mmvOuHRqEtWT9CrYRiOffDl6MrXyzhHyADXWIIet6wyrCQTYMYWpEiQWGOitaWuj1RnP2JpcQLWvuCSJ-hdz2-X6_r_Xjy9-jdeolvj48MDdbB3tP8M3abhOISQSLGFNhfzpX8OuG5hXsTDhNH36z69vwF4Il4N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiHcDBYwEJ4h27TixfUCIPlYthdUKUak3Y8dOqbSblM2uqv1r_DrGzqNaHr31kEvsSI5nPPON54XQa0u0MWAmxAAN8pg5lsQGzOWYJMwCoCM5KUKU7zg7PGGfTtPTDfSry4XxYZWdTAyC2la5vyMfUOAU4DY5FIOiDYuY7I8-XPyMfQcp72nt2mk0LHLsVpdgvtXvj_aB1m8oHR182zuM2w4DcZ4ysohBG1IjM5cRkjOQ4bkrhMksl4BjpGWU64Iyq41LLNgtXnvnMiO5pSI1Uhtf9ADE_xb3VtEm2to9GE--9jc83ofGiGwzdYaJGNSgLX1GG2VxygH7xGRNG4amAf9Cun8HbP7htQ3KcHQP3W1RLP7YsN19tOHKB-hW09dy9RAtJvOqS-HEwGkWzxyAfHzZ3MxjXVp4mmoouCqwdX0OJa6XdYi0CUG7Kz-6t_wCn0yn1arG_toY-xLLeKbPQEqfL2fYR9vDih-hkxvZ_Mdos6xKt42wNZS6RFNe2CFjaaG5JKkjVjNickqKCJFum1Xe1j73LTimKvjgE6Ea0iggjQqkUSRCb_tvLprKH9fO3vXU62f6qt3hRTU_U60QUNzaxGUCIJwxjHEjbcKZ0SDoHfwmERHa6WivWlFSqyvGj9CrfhiEgPfs6NJVyzBHSA_eWISeNKzSryQRYNRmJIuQWGOitaWuj5TnP0KhcQK2v-CSR-hdx29X6_r_Xjy9_jdeottwctXno_HxM3SH-tPg4yPFDtpczJfuOYC8hXnRniaMvt_0Af4N2g9jqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospective+cold+metal+working+and+analysis+of+deformation+susceptibility+of+CuMg+alloys+with+high+magnesium+content&rft.jtitle=Scientific+reports&rft.au=Pawe%C5%82+Strz%C4%99pek&rft.au=Ma%C5%82gorzata+Zasadzi%C5%84ska&rft.date=2024-03-18&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-024-57083-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7dd3e68155bb447b9d374ba088eabe18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon