Using random forests to uncover the predictive power of distance-varying cell interactions in tumor microenvironments
Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this...
Saved in:
Published in | PLoS computational biology Vol. 20; no. 6; p. e1011361 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.06.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions. We present an approach to achieve these goals based on summarizing spatial relationships in the TME using spatial K functions, and then applying functional data analysis and random forest models to both predict outcomes of interest and identify important spatial relationships. This approach is shown to be effective in simulation experiments at both identifying important spatial interactions while also controlling the false discovery rate. We further used the proposed approach to interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple negative breast cancer and lung cancer patients. The methods proposed are publicly available in a companion R package funkycells. |
---|---|
AbstractList | Tumor microenvironments (TMEs) contain vast amounts of information on patient’s cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions. We present an approach to achieve these goals based on summarizing spatial relationships in the TME using spatial
K
functions, and then applying functional data analysis and random forest models to both predict outcomes of interest and identify important spatial relationships. This approach is shown to be effective in simulation experiments at both identifying important spatial interactions while also controlling the false discovery rate. We further used the proposed approach to interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple negative breast cancer and lung cancer patients. The methods proposed are publicly available in a companion
R
package
funkycells
.
Spatial data on the tumor microenvironment (TME) are becoming more prevalent. Existing methods to interrogate such data often have several limitations: (1) they can rely on estimating the spatial relationships among cells by examining simple counts of cells within a
single
radius, (2) they may not come with ways to evaluate the statistical significance of any findings, or (3) they model individual interactions independently of other interactions. Our approach leverages techniques in spatial statistics and uses a benchmark ensemble machine learning method to address each of these deficiencies; it (1) uses
K
functions to encode the relative densities of cells over all radii up to a user-selected maximum radius, (2) employs permutation and cross-validation to evaluate the statistical significance of any findings on the spatial interactions in the TME, and (3) models multiple interactions simultaneously. Our approach is freely available with an
R
implementation called
funkycells
. In the analysis of two real data sets, we have seen that the method performs well, and gives the expected results. We think this will be a robust tool for researchers looking to interrogate TME data. Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions. We present an approach to achieve these goals based on summarizing spatial relationships in the TME using spatial K functions, and then applying functional data analysis and random forest models to both predict outcomes of interest and identify important spatial relationships. This approach is shown to be effective in simulation experiments at both identifying important spatial interactions while also controlling the false discovery rate. We further used the proposed approach to interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple negative breast cancer and lung cancer patients. The methods proposed are publicly available in a companion R package funkycells. Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions. We present an approach to achieve these goals based on summarizing spatial relationships in the TME using spatial K functions, and then applying functional data analysis and random forest models to both predict outcomes of interest and identify important spatial relationships. This approach is shown to be effective in simulation experiments at both identifying important spatial interactions while also controlling the false discovery rate. We further used the proposed approach to interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple negative breast cancer and lung cancer patients. The methods proposed are publicly available in a companion R package funkycells.Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions. We present an approach to achieve these goals based on summarizing spatial relationships in the TME using spatial K functions, and then applying functional data analysis and random forest models to both predict outcomes of interest and identify important spatial relationships. This approach is shown to be effective in simulation experiments at both identifying important spatial interactions while also controlling the false discovery rate. We further used the proposed approach to interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple negative breast cancer and lung cancer patients. The methods proposed are publicly available in a companion R package funkycells. |
Audience | Academic |
Author | Marceaux, Claire Asselin-Labat, Marie-Liesse Hywood, Jack D Yokote, Kenta VanderDoes, Jeremy Rice, Gregory |
AuthorAffiliation | 1 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada 3 Department of Medical Biology, The University of Melbourne, Parkville, Australia 4 Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Australia 2 Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia University of Connecticut School of Medicine, UNITED STATES |
AuthorAffiliation_xml | – name: 1 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada – name: 3 Department of Medical Biology, The University of Melbourne, Parkville, Australia – name: University of Connecticut School of Medicine, UNITED STATES – name: 4 Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Australia – name: 2 Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
Author_xml | – sequence: 1 givenname: Jeremy orcidid: 0009-0001-9885-3073 surname: VanderDoes fullname: VanderDoes, Jeremy organization: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada – sequence: 2 givenname: Claire surname: Marceaux fullname: Marceaux, Claire organization: Department of Medical Biology, The University of Melbourne, Parkville, Australia – sequence: 3 givenname: Kenta orcidid: 0000-0002-0817-7076 surname: Yokote fullname: Yokote, Kenta organization: Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia – sequence: 4 givenname: Marie-Liesse surname: Asselin-Labat fullname: Asselin-Labat, Marie-Liesse organization: Department of Medical Biology, The University of Melbourne, Parkville, Australia – sequence: 5 givenname: Gregory surname: Rice fullname: Rice, Gregory organization: Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada – sequence: 6 givenname: Jack D orcidid: 0000-0002-2028-2629 surname: Hywood fullname: Hywood, Jack D organization: Department of Anatomical Pathology, Royal Melbourne Hospital, Melbourne, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38875302$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkk1v1DAQhiNURNuFf4AgEhc47BLHTuycUFXxsVIFEtCz5TjjrVeJvdjOAv-eCZtWXdQLyiHjyTPvZMbveXbivIMse06KFaGcvN36MTjVr3a6tStSEEJr8ig7I1VFl5xW4uRefJqdx7gtCgyb-kl2SoXgFS3Ks2y8jtZt8qBc54fc-AAxxTz5fHTa7yHk6QbyXYDO6mT3GPqfmPQm72xMymlY7lX4PUlo6PvcugRBIepdxEOexsGHfLA6eHB7G7wbwKX4NHtsVB_h2fxeZNcf3n-__LS8-vJxfXlxtdQVI2lJRAttTRputAHW1GWhSUFLYSoFreGGFZTzqq5LzlkJNRSt0bwhzEDLqBaMLrKXB91d76OcNxYlLUTdsJLjQhbZ-kB0Xm3lLtgBx5FeWfk34cNGqpCs7kHqlpYAoqMVbVgrsFHXsEoQ0IKWSkxa7-ZuYztAp3HSoPoj0eMvzt7Ijd9LQkpSCE5R4fWsEPyPEa9CDjZOi1UO_Dj9eI0XVwkmEH31D_rweDO1UTiBdcZjYz2JygveNDX6oKyQWj1A4dMBXh3azljMHxW8OSpAJsGvtFFjjHL97et_sJ-PWXZg0S8xBjB3yyOFnFx_O6ScXC9n12PZi_uLvyu6tTn9A9S0ARw |
Cites_doi | 10.1002/sam.10103 10.1371/journal.pcbi.1008741 10.1201/b19708 10.1126/sciadv.aax5851 10.1016/j.lungcan.2018.01.022 10.1111/1467-9574.00144 10.1369/jhc.6A7134.2007 10.1016/j.cmet.2018.11.014 10.1038/ncomms9390 10.3389/fimmu.2023.1135489 10.1186/1471-2105-8-25 10.1186/s12874-021-01375-x 10.1098/rsif.2020.0879 10.1093/bioadv/vbac039 10.1126/sciadv.abj1624 10.1038/s41592-021-01203-6 10.1016/j.cell.2018.07.010 10.1038/ncomms15095 10.2307/3212829 10.1016/j.labinv.2023.100158 10.1016/j.ccell.2023.03.015 10.1016/j.cell.2018.08.039 10.1038/s41598-022-23229-2 10.1111/j.2517-6161.1977.tb01615.x 10.1093/forestscience/38.4.806 10.1038/s41467-020-15315-8 10.1038/s42003-021-02361-1 10.1038/s41587-019-0207-y 10.1038/nmeth.2869 10.3389/fmolb.2021.668340 10.1093/biomet/36.1-2.18 10.2307/2334136 10.1038/s41598-020-75180-9 10.1186/s13058-016-0783-4 10.1371/journal.pcbi.1009486 10.1016/j.spasta.2016.06.002 10.1007/s12282-020-01110-2 10.1201/b15326 10.1038/nm.3488 10.1016/j.csbj.2022.09.005 10.1038/s41586-019-1876-x 10.1371/journal.pone.0157368 10.1214/15-AOS1337 10.1038/s41586-023-06298-9 10.1016/j.cell.2020.10.021 10.1186/s13073-022-01075-1 10.1023/A:1010933404324 10.1038/s41596-021-00556-8 10.1158/1538-7445.AM2019-4694 10.15252/msb.20209798 10.1016/j.jmoldx.2011.08.002 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 VanderDoes et al 2024 VanderDoes et al 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 VanderDoes et al 2024 VanderDoes et al – notice: 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1011361 |
DatabaseName | PubMed CrossRef Gale In Context: Canada Science in Context ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
DocumentTitleAlternate | Investigating distance-varying interactions in tumor microenvironments |
EISSN | 1553-7358 |
Editor | Mendes, Pedro |
Editor_xml | – sequence: 1 givenname: Pedro surname: Mendes fullname: Mendes, Pedro |
ExternalDocumentID | 3086942700 oai_doaj_org_article_cb32ee8d35394b8791d94581ec832a80 A799688725 10_1371_journal_pcbi_1011361 38875302 |
Genre | Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: RGPIN-03723 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M0N M1P M48 M7P M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M AAYXX CITATION AFPKN 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c541t-18beb6197fcfe49620c10328f5aebf7f4037756627742e6e0bfc7914feb43c843 |
IEDL.DBID | RPM |
ISSN | 1553-7358 1553-734X |
IngestDate | Thu Nov 28 02:59:37 EST 2024 Tue Oct 22 15:15:48 EDT 2024 Tue Sep 17 21:28:41 EDT 2024 Sat Oct 26 04:49:48 EDT 2024 Thu Oct 10 22:14:36 EDT 2024 Tue Nov 19 21:33:39 EST 2024 Tue Nov 12 23:38:42 EST 2024 Sat Sep 28 21:29:04 EDT 2024 Sat Sep 28 21:12:55 EDT 2024 Fri Nov 22 03:10:37 EST 2024 Sat Nov 02 12:26:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright: © 2024 VanderDoes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-18beb6197fcfe49620c10328f5aebf7f4037756627742e6e0bfc7914feb43c843 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-2028-2629 0000-0002-0817-7076 0009-0001-9885-3073 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210873/ |
PMID | 38875302 |
PQID | 3086942700 |
PQPubID | 1436340 |
PageCount | e1011361 |
ParticipantIDs | plos_journals_3086942700 doaj_primary_oai_doaj_org_article_cb32ee8d35394b8791d94581ec832a80 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11210873 proquest_miscellaneous_3068755848 proquest_journals_3086942700 gale_infotracmisc_A799688725 gale_infotracacademiconefile_A799688725 gale_incontextgauss_ISR_A799688725 gale_incontextgauss_ISN_A799688725 crossref_primary_10_1371_journal_pcbi_1011361 pubmed_primary_38875302 |
PublicationCentury | 2000 |
PublicationDate | 20240614 |
PublicationDateYYYYMMDD | 2024-06-14 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240614 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | L Keren (pcbi.1011361.ref013) 2019; 5 ER Parra (pcbi.1011361.ref029) 2021; 8 A Penttinen (pcbi.1011361.ref060) 1992; 38 C Herbel (pcbi.1011361.ref006) 2019; 79 Y Wang (pcbi.1011361.ref010) 2021 S Barua (pcbi.1011361.ref026) 2018; 117 ZE Toth (pcbi.1011361.ref001) 2007; 55 H Ishwaran (pcbi.1011361.ref061) 2011; 4 T Vu (pcbi.1011361.ref031) 2022; 18 L Keren (pcbi.1011361.ref012) 2018; 174 C Giesen (pcbi.1011361.ref003) 2014; 11 pcbi.1011361.ref051 BD Ripley (pcbi.1011361.ref024) 1977; 39 pcbi.1011361.ref054 JR Lin (pcbi.1011361.ref004) 2015; 6 T Sugie (pcbi.1011361.ref040) 2020; 27 L Breiman (pcbi.1011361.ref053) 1984 MS Bartlett (pcbi.1011361.ref022) 1964; 51 JA Bull (pcbi.1011361.ref027) 2020; 10 CM Schürch (pcbi.1011361.ref017) 2020; 183 H Sadeghirad (pcbi.1011361.ref049) 2023; 14 NP Canete (pcbi.1011361.ref030) 2021; n/a BN Boots (pcbi.1011361.ref058) 1988 X Zhu (pcbi.1011361.ref059) 2020; 12 A Färkkilä (pcbi.1011361.ref021) 2020; 11 M Angelo (pcbi.1011361.ref002) 2014; 20 A Patwa (pcbi.1011361.ref041) 2021; 4 M Thomas (pcbi.1011361.ref056) 1949; 36 SM Lewis (pcbi.1011361.ref008) 2021; 18 AJ Canning (pcbi.1011361.ref048) 2022; 12 JD Hywood (pcbi.1011361.ref033) 2021; 18 Y Goltsev (pcbi.1011361.ref005) 2018; 174 HY Chen (pcbi.1011361.ref045) 2022; 20 KL Pickett (pcbi.1011361.ref062) 2021; 21 JD Hywood (pcbi.1011361.ref032) 2016; 17 J Illian (pcbi.1011361.ref014) 2008 S Seal (pcbi.1011361.ref034) 2022; 2 Q Li (pcbi.1011361.ref047) 2022; 8 F Wang (pcbi.1011361.ref043) 2012; 14 S Black (pcbi.1011361.ref044) 2021; 16 ER Parra (pcbi.1011361.ref028) 2021; 11 BD Lehmann (pcbi.1011361.ref039) 2016; 11 A Baddeley (pcbi.1011361.ref016) 2015 C Strobl (pcbi.1011361.ref055) 2007; 8 YWE Lin (pcbi.1011361.ref011) 2021; 17 JL Carstens (pcbi.1011361.ref025) 2017; 8 G Bottai (pcbi.1011361.ref038) 2016; 18 L Breiman (pcbi.1011361.ref052) 2001; 45 SK Saka (pcbi.1011361.ref007) 2019; 37 BD Ripley (pcbi.1011361.ref023) 1976; 13 CG Williams (pcbi.1011361.ref046) 2022; 14 M Yi (pcbi.1011361.ref035) 2023; 103 G Gaglia (pcbi.1011361.ref009) 2023; 41 S Jiang (pcbi.1011361.ref018) 2022; 55 HW Jackson (pcbi.1011361.ref020) 2020; 578 RF Barber (pcbi.1011361.ref037) 2015; 43 N Damond (pcbi.1011361.ref019) 2019; 29 JO Ramsay (pcbi.1011361.ref036) 2005 VR Zanotelli (pcbi.1011361.ref050) 2020; 16 AJ Baddeley (pcbi.1011361.ref057) 2000; 54 PJ Diggle (pcbi.1011361.ref015) 2013 S Greenbaum (pcbi.1011361.ref042) 2023; 619 |
References_xml | – volume: 4 start-page: 115 issue: 1 year: 2011 ident: pcbi.1011361.ref061 article-title: Random survival forests for high-dimensional data publication-title: Statistical analysis and data mining doi: 10.1002/sam.10103 contributor: fullname: H Ishwaran – volume: 17 start-page: e1008741 issue: 3 year: 2021 ident: pcbi.1011361.ref011 article-title: Graph of graphs analysis for multiplexed data with application to imaging mass cytometry publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1008741 contributor: fullname: YWE Lin – volume-title: Spatial point patterns: methodology and applications with R year: 2015 ident: pcbi.1011361.ref016 doi: 10.1201/b19708 contributor: fullname: A Baddeley – volume: 5 start-page: eaax5851 issue: 10 year: 2019 ident: pcbi.1011361.ref013 article-title: MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure publication-title: Science advances doi: 10.1126/sciadv.aax5851 contributor: fullname: L Keren – volume-title: Springer series in statistics year: 2005 ident: pcbi.1011361.ref036 contributor: fullname: JO Ramsay – volume: 117 start-page: 73 year: 2018 ident: pcbi.1011361.ref026 article-title: Spatial interaction of tumor cells and regulatory T cells correlates with survival in non-small cell lung cancer publication-title: Lung Cancer doi: 10.1016/j.lungcan.2018.01.022 contributor: fullname: S Barua – volume: 54 start-page: 329 issue: 3 year: 2000 ident: pcbi.1011361.ref057 article-title: Non-and semi-parametric estimation of interaction in inhomogeneous point patterns publication-title: Statistica Neerlandica doi: 10.1111/1467-9574.00144 contributor: fullname: AJ Baddeley – volume: 55 start-page: 545 issue: 6 year: 2007 ident: pcbi.1011361.ref001 article-title: Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species publication-title: Journal of Histochemistry & Cytochemistry doi: 10.1369/jhc.6A7134.2007 contributor: fullname: ZE Toth – volume: 29 start-page: 755 issue: 3 year: 2019 ident: pcbi.1011361.ref019 article-title: A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry publication-title: Cell Metabolism doi: 10.1016/j.cmet.2018.11.014 contributor: fullname: N Damond – volume: 6 start-page: 8390 issue: 1 year: 2015 ident: pcbi.1011361.ref004 article-title: Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method publication-title: Nature communications doi: 10.1038/ncomms9390 contributor: fullname: JR Lin – volume: n/a start-page: 7776 issue: n/a year: 2021 ident: pcbi.1011361.ref030 article-title: spicyR: Spatial analysis of in situ cytometry data in R publication-title: Health & Medicine Week contributor: fullname: NP Canete – volume-title: Statistical analysis and modelling of spatial point patterns year: 2008 ident: pcbi.1011361.ref014 contributor: fullname: J Illian – volume: 14 start-page: 1135489 year: 2023 ident: pcbi.1011361.ref049 article-title: Compartmentalized spatial profiling of the tumor microenvironment in head and neck squamous cell carcinoma identifies immune checkpoint molecules and tumor necrosis factor receptor superfamily members as biomarkers of response to immunotherapy publication-title: Frontiers in immunology doi: 10.3389/fimmu.2023.1135489 contributor: fullname: H Sadeghirad – volume: 8 start-page: 25 issue: 1 year: 2007 ident: pcbi.1011361.ref055 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution publication-title: BMC bioinformatics doi: 10.1186/1471-2105-8-25 contributor: fullname: C Strobl – volume: 21 start-page: 1 issue: 1 year: 2021 ident: pcbi.1011361.ref062 article-title: Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker publication-title: BMC medical research methodology doi: 10.1186/s12874-021-01375-x contributor: fullname: KL Pickett – volume: 18 start-page: 20200879 issue: 176 year: 2021 ident: pcbi.1011361.ref033 article-title: Detection and characterization of chemotaxis without cell tracking publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2020.0879 contributor: fullname: JD Hywood – ident: pcbi.1011361.ref054 – start-page: 2021 year: 2021 ident: pcbi.1011361.ref010 article-title: Cell graph neural networks enable the digital staging of tumor microenvironment and precise prediction of patient survival in gastric cancer publication-title: medRxiv contributor: fullname: Y Wang – volume: 2 start-page: vbac039 issue: 1 year: 2022 ident: pcbi.1011361.ref034 article-title: DenVar: density-based variation analysis of multiplex imaging data publication-title: Bioinformatics Advances doi: 10.1093/bioadv/vbac039 contributor: fullname: S Seal – volume: 8 start-page: eabj1624 issue: 18 year: 2022 ident: pcbi.1011361.ref047 article-title: CancerVar: An artificial intelligence-empowered platform for clinical interpretation of somatic mutations in cancer publication-title: Science advances doi: 10.1126/sciadv.abj1624 contributor: fullname: Q Li – volume: 18 start-page: 997 issue: 9 year: 2021 ident: pcbi.1011361.ref008 article-title: Spatial omics and multiplexed imaging to explore cancer biology publication-title: Nature methods doi: 10.1038/s41592-021-01203-6 contributor: fullname: SM Lewis – volume: 174 start-page: 968 issue: 4 year: 2018 ident: pcbi.1011361.ref005 article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging publication-title: Cell doi: 10.1016/j.cell.2018.07.010 contributor: fullname: Y Goltsev – volume: 8 start-page: 15095 issue: 1 year: 2017 ident: pcbi.1011361.ref025 article-title: Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer publication-title: Nature communications doi: 10.1038/ncomms15095 contributor: fullname: JL Carstens – volume: 13 start-page: 255 issue: 2 year: 1976 ident: pcbi.1011361.ref023 article-title: The second-order analysis of stationary point processes publication-title: Journal of applied probability doi: 10.2307/3212829 contributor: fullname: BD Ripley – volume: 103 start-page: 100158 issue: 8 year: 2023 ident: pcbi.1011361.ref035 article-title: Quantile Index Biomarkers Based on Single-Cell Expression Data publication-title: Laboratory Investigation doi: 10.1016/j.labinv.2023.100158 contributor: fullname: M Yi – volume: 41 start-page: 871 issue: 5 year: 2023 ident: pcbi.1011361.ref009 article-title: Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma publication-title: Cancer cell doi: 10.1016/j.ccell.2023.03.015 contributor: fullname: G Gaglia – volume: 174 start-page: 1373 issue: 6 year: 2018 ident: pcbi.1011361.ref012 article-title: A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging publication-title: Cell doi: 10.1016/j.cell.2018.08.039 contributor: fullname: L Keren – volume: 12 start-page: 18487 issue: 1 year: 2022 ident: pcbi.1011361.ref048 article-title: Parallel functional annotation of cancer-associated missense mutations in histone methyltransferases publication-title: Scientific reports doi: 10.1038/s41598-022-23229-2 contributor: fullname: AJ Canning – volume: 39 start-page: 172 issue: 2 year: 1977 ident: pcbi.1011361.ref024 article-title: Modelling Spatial Patterns publication-title: Journal of the Royal Statistical Society Series B, Methodological doi: 10.1111/j.2517-6161.1977.tb01615.x contributor: fullname: BD Ripley – volume: 38 start-page: 806 issue: 4 year: 1992 ident: pcbi.1011361.ref060 article-title: Marked point processes in forest statistics publication-title: Forest science doi: 10.1093/forestscience/38.4.806 contributor: fullname: A Penttinen – volume: 12 start-page: 117 issue: 2 year: 2020 ident: pcbi.1011361.ref059 article-title: Single-Cell Clustering Based on Shared Nearest Neighbor and Graph Partitioning publication-title: Interdisciplinary sciences: computational life sciences contributor: fullname: X Zhu – volume: 11 start-page: 1459 issue: 1 year: 2020 ident: pcbi.1011361.ref021 article-title: Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer publication-title: Nature communications doi: 10.1038/s41467-020-15315-8 contributor: fullname: A Färkkilä – volume: 4 start-page: 852 issue: 1 year: 2021 ident: pcbi.1011361.ref041 article-title: Multiplexed imaging analysis of the tumor-immune microenvironment reveals predictors of outcome in triple-negative breast cancer publication-title: Communications biology doi: 10.1038/s42003-021-02361-1 contributor: fullname: A Patwa – volume: 37 start-page: 1080 issue: 9 year: 2019 ident: pcbi.1011361.ref007 article-title: Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues publication-title: Nature biotechnology doi: 10.1038/s41587-019-0207-y contributor: fullname: SK Saka – volume: 11 start-page: 417 issue: 4 year: 2014 ident: pcbi.1011361.ref003 article-title: Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry publication-title: Nature methods doi: 10.1038/nmeth.2869 contributor: fullname: C Giesen – volume: 8 start-page: 668340 year: 2021 ident: pcbi.1011361.ref029 article-title: Methods to determine and analyze the cellular spatial distribution extracted from multiplex immunofluorescence data to understand the tumor microenvironment publication-title: Frontiers in Molecular Biosciences doi: 10.3389/fmolb.2021.668340 contributor: fullname: ER Parra – volume: 36 start-page: 18 issue: 1-2 year: 1949 ident: pcbi.1011361.ref056 article-title: A Generalization Of Poisson’s Binomial Limit For Use In Ecology publication-title: Biometrika doi: 10.1093/biomet/36.1-2.18 contributor: fullname: M Thomas – volume: 51 start-page: 299 issue: 3/4 year: 1964 ident: pcbi.1011361.ref022 article-title: The Spectral Analysis of Two-Dimensional Point Processes publication-title: Biometrika doi: 10.2307/2334136 contributor: fullname: MS Bartlett – volume: 55 start-page: 1118 issue: 6 year: 2022 ident: pcbi.1011361.ref018 article-title: Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments publication-title: Immunity (Cambridge, Mass) contributor: fullname: S Jiang – volume: 10 start-page: 18624 issue: 1 year: 2020 ident: pcbi.1011361.ref027 article-title: Combining multiple spatial statistics enhances the description of immune cell localisation within tumours publication-title: Scientific reports doi: 10.1038/s41598-020-75180-9 contributor: fullname: JA Bull – volume: 18 start-page: 121 issue: 1 year: 2016 ident: pcbi.1011361.ref038 article-title: An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers publication-title: Breast cancer research: BCR doi: 10.1186/s13058-016-0783-4 contributor: fullname: G Bottai – volume: 18 start-page: e1009486 issue: 6 year: 2022 ident: pcbi.1011361.ref031 article-title: SPF: a spatial and functional data analytic approach to cell imaging data publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1009486 contributor: fullname: T Vu – volume: 17 start-page: 199 year: 2016 ident: pcbi.1011361.ref032 article-title: Statistical analysis of spatially homogeneous dynamic agent-based processes using functional time series analysis publication-title: Spatial Statistics doi: 10.1016/j.spasta.2016.06.002 contributor: fullname: JD Hywood – volume: 27 start-page: 519 issue: 4 year: 2020 ident: pcbi.1011361.ref040 article-title: Multispectral quantitative immunohistochemical analysis of tumor-infiltrating lymphocytes in relation to programmed death-ligand 1 expression in triple-negative breast cancer publication-title: Breast cancer (Tokyo, Japan) doi: 10.1007/s12282-020-01110-2 contributor: fullname: T Sugie – volume-title: Statistical analysis of spatial and spatio-temporal point patterns year: 2013 ident: pcbi.1011361.ref015 doi: 10.1201/b15326 contributor: fullname: PJ Diggle – volume: 20 start-page: 436 issue: 4 year: 2014 ident: pcbi.1011361.ref002 article-title: Multiplexed ion beam imaging of human breast tumors publication-title: Nature medicine doi: 10.1038/nm.3488 contributor: fullname: M Angelo – volume-title: Point pattern analysis. Scientific geography series; v. 8 year: 1988 ident: pcbi.1011361.ref058 contributor: fullname: BN Boots – volume: 20 start-page: 5256 year: 2022 ident: pcbi.1011361.ref045 article-title: Navigating the cellular landscape in tissue: Recent advances in defining the pathogenesis of human disease publication-title: Computational and structural biotechnology journal doi: 10.1016/j.csbj.2022.09.005 contributor: fullname: HY Chen – volume: 578 start-page: 615 issue: 7796 year: 2020 ident: pcbi.1011361.ref020 article-title: The single-cell pathology landscape of breast cancer publication-title: Nature (London) doi: 10.1038/s41586-019-1876-x contributor: fullname: HW Jackson – volume: 11 start-page: e0157368 issue: 6 year: 2016 ident: pcbi.1011361.ref039 article-title: Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection publication-title: PloS one doi: 10.1371/journal.pone.0157368 contributor: fullname: BD Lehmann – volume: 43 start-page: 2055 issue: 5 year: 2015 ident: pcbi.1011361.ref037 article-title: Controlling The False Discovery Rate Via Knockoffs publication-title: The Annals of statistics doi: 10.1214/15-AOS1337 contributor: fullname: RF Barber – volume: 619 start-page: 595 issue: 7970 year: 2023 ident: pcbi.1011361.ref042 article-title: A spatially resolved timeline of the human maternal-fetal interface publication-title: Nature (London) doi: 10.1038/s41586-023-06298-9 contributor: fullname: S Greenbaum – volume: 183 start-page: 838 issue: 3 year: 2020 ident: pcbi.1011361.ref017 article-title: Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front publication-title: Cell doi: 10.1016/j.cell.2020.10.021 contributor: fullname: CM Schürch – volume: 14 start-page: 1 issue: 1 year: 2022 ident: pcbi.1011361.ref046 article-title: An introduction to spatial transcriptomics for biomedical research publication-title: Genome medicine doi: 10.1186/s13073-022-01075-1 contributor: fullname: CG Williams – volume: 45 start-page: 5 issue: 1 year: 2001 ident: pcbi.1011361.ref052 article-title: Random Forests publication-title: Machine learning doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 11 start-page: 1 issue: 1 year: 2021 ident: pcbi.1011361.ref028 article-title: Identification of distinct immune landscapes using an automated nine-color multiplex immunofluorescence staining panel and image analysis in paraffin tumor tissues publication-title: Scientific reports contributor: fullname: ER Parra – volume: 16 start-page: 3802 issue: 8 year: 2021 ident: pcbi.1011361.ref044 article-title: CODEX multiplexed tissue imaging with DNA-conjugated antibodies publication-title: Nature protocols doi: 10.1038/s41596-021-00556-8 contributor: fullname: S Black – volume: 79 start-page: 4694 issue: 13_Supplement year: 2019 ident: pcbi.1011361.ref006 article-title: Evaluation of tumor-associated antigen expression with the MACSima high-content imaging platform publication-title: Cancer Research doi: 10.1158/1538-7445.AM2019-4694 contributor: fullname: C Herbel – volume-title: Classification and Regression Trees year: 1984 ident: pcbi.1011361.ref053 contributor: fullname: L Breiman – volume: 16 start-page: e9798 issue: 12 year: 2020 ident: pcbi.1011361.ref050 article-title: A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids publication-title: Molecular Systems Biology doi: 10.15252/msb.20209798 contributor: fullname: VR Zanotelli – volume: 14 start-page: 22 issue: 1 year: 2012 ident: pcbi.1011361.ref043 article-title: RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues publication-title: The Journal of molecular diagnostics: JMD doi: 10.1016/j.jmoldx.2011.08.002 contributor: fullname: F Wang – ident: pcbi.1011361.ref051 |
SSID | ssj0035896 |
Score | 2.4802866 |
Snippet | Tumor microenvironments (TMEs) contain vast amounts of information on patient's cancer through their cellular composition and the spatial distribution of tumor... Tumor microenvironments (TMEs) contain vast amounts of information on patient’s cancer through their cellular composition and the spatial distribution of tumor... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1011361 |
SubjectTerms | Biology and Life Sciences Breast cancer Cancer Cancer therapies Care and treatment Cell culture Cell interaction Cell interactions Data analysis Datasets Development and progression Expected values Functionals Geospatial data Immune system Immunotherapy Information management Ion beams Lung cancer Machine learning Medical research Medicine and Health Sciences Medicine, Experimental Methods Microenvironments Neutrophils Physical Sciences Predictions Prognosis Research and Analysis Methods Scholarships & fellowships Spatial data Spatial distribution Statistics Tumor cells Tumor microenvironment Tumors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA_yQPAifu_TVaIInuq2-WjS4youq-Ae1IV3C02a6MK-tvRD8L93pul7vMqKFy-FNtNCZqbJ_NqZ3xDyOmjhuAKYCv5QwIGniWWSJXlpha6YdqLAAufPF_n5pfi0kZuDVl-YExbpgaPiTpzlzHtdcckLYbUqsqoQUmfegS-WOqL1lO3AVFyDudRTZy5sipMoLjZz0RxX2clso7ets1eIXTOeZ4tNaeLu36_Qq_a66W8KP__MojzYls7ukbtzPElP4zzuk1u-fkBuxw6Tvx6ScUoJoLAhVc2WQoAKz-7p0FDYzjB5k0L8R9sO_9bgukdbbJpGm0ArjCvBIZKfZYeVUBS_8FMkl-hiKUQPJ3QYt01Ht5jUd1gx94hcnn349v48mTstJE6KbEgybb0FKKWCC14UOUvdRLQXZOltUEGkXCmJXPGApH3uUxscWEIEbwV3WvDHZFU3tT8iFCsyq7xkWksmKu0Ky3JdKg-my6tS6zVJdqo2bSTUMNNfNQVAJOrMoGnMbJo1eYf22MsiHfZ0AZzEzE5i_uUka_IKrWmQ8KLGjJrv5dj35uPXC3OqAPHBSsvkX4W-LITezEKhAau7cq5igMkjkdZC8nghCa-tWwwfoWft5twbDuCyEJgHAHfuvO3m4Zf7YXwoZsnVvhlRJgf4CSElaPlJdM693rhGZJqyNdELt10odjlSX_2Y-MYzJJnTij_9H6Z4Ru4wiAsx2y4Tx2Q1dKN_DnHdYF9Mr_BvQ19J2g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_gENJeEIyPHQwUEBJPZc1Hm_QJDcQxkNgDMOneoiZNt0lcW_qBxH-P3eaOFQ1eTrqL215tx7ET-2dCXpZaOqEgTAV9yOBDxJHlCY_S3EpdcO1khgXOn0_TkzP5aZ2sw4ZbF9IqtzZxNNRF7XCP_EiA751JPCZ90_yIsGsUnq6GFho3yS3GVYopfXr1YWuJRaLH_lzYGidSQq5D6ZxQ7ChI6nXj7CVGsEykbLY0jQj-Ozu9aL7X3XVO6N-5lFcWp9Vdcid4lfR4UoN75Iav9sntqc_kr32yhy7lhMh8nwxjlgCFNaqoNxR8VnhQR_uawgqH-ZwUXELatHiAg6aQNthHjdYlLdDVBB2JfuYtFkdR3PSniDfRTtURHXyh_bCpW7rBPL-rRXQPyNnq_bd3J1FovhC5RLI-Ytp6C9GVKl3pZZby2I3Ye2WSe1uqUsZCqQTh4yG49qmPbelUxmTprRROS_GQLKq68geEYpFmkeZc64TLQrvM8lTnyluwxEWu9ZJEW76bZsLYMONBm4LYZGKgQTmZIKcleYvC2dEiQvb4Q92emzDhjLOCe68LkYhMwpMyVmQy0cw7sGG5jpfkBYrWIAZGhUk25_nQdebj11NzrCAIBOPLk38SfZkRvQpEZQ0q4PJQ2AAvj9haM8rDGSXMZDcbPkA1275zZ_7oPFy5Vb3rh5_vhvGmmDhX-XpAmhQiUvAygcuPJk3d8U1oDFZjviR6psMzxs5HqsuLEYKcIe6cVuLx___XE7LHwQnE1DomD8mibwf_FJy43j4bZ-pv0HBGLQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF7KEcEX8d6jVVYRfEpJ9pLdPIhUsVShfVAP9G3Jbja10JPEXMT-e2dyo5FT8OVAzk42ZGZ2dr7sXAh5m2vhuAKYCvqQwA8PA8skC-LUCp0x7USCCc6nZ_HJRnw9l-d7ZOrZOjKw2QntsJ_Upr46_PPr-gMs-Pd91wYVTTcdVs5eIhqNOOKhOwz2RgzyOhXzuQKXuu_Yhc1yAgVXYzLdbbMsNqu-pv9suVfVVdnsckv_ja68sV0dPyD3Rz-THg2K8ZDs-eIRuTt0nrx-TLo-VIDCRpWVWwqOK8zd0LaksM1hUCcFv5BWNZ7ioD2kFTZTo2VOM_Q3QVGC32mNGVIUv_xTLDpRDykSDVzQttuWNd1isN_NTLonZHP8-cenk2DswBA4KaI2iLT1FiCWyl3uRRKz0PUF-HKZepurXIRcKYk15AFh-9iHNncqiUTureBOC_6UrIqy8PuEYqZmFqdMa8lEpl1iWaxT5S2Y4yzVek2CidWmGgptmP60TQFAGXhmUDRmFM2afER5zLRYJrv_o6wvzLjqjLOcea8zLnki4ElJlCVC6sg7MGSpDtfkDUrTYCGMAiNtLtKuacyX72fmSAESBAvM5K1E3xZE70aivASpu3TMboCXxwJbC8qDBSUsZ7cY3kfNmt65MRxAZyIwPgDunLRt9_DreRgnxei5wpcd0sQAS8HVBC4_G5Rz5hvXiFhDtiZ6obYLxi5HisuffR3yCIvPacWf_8eDX5B7DNxBDLKLxAFZtXXnX4I719pX_Qr9C0FBSZs priority: 102 providerName: Scholars Portal |
Title | Using random forests to uncover the predictive power of distance-varying cell interactions in tumor microenvironments |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38875302 https://www.proquest.com/docview/3086942700 https://www.proquest.com/docview/3068755848 https://pubmed.ncbi.nlm.nih.gov/PMC11210873 https://doaj.org/article/cb32ee8d35394b8791d94581ec832a80 http://dx.doi.org/10.1371/journal.pcbi.1011361 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJlkIvpe9smy5qKfTkXduSLfmYhGzTwi4hbWBvxpLlNBA_8KPQf98Z2V7ikl56Mexq_NJ8kmbkb2YI-ZRJrpkANxXwEMGBuY7yA98JE8Vl6kvNIwxw3mzDi2v-bRfsDkg4xsJY0r5Wt8viLl8Wtz8tt7LK9Wrkia0uN2ceZr2Sgq0OySGsv6OP3s-_LJC2KhcWxHEE47shYI4JbzXoZ1nhHQCMHguxVAyTaLUPOyvj2mRT-O8n6ll1VzYPWaF_kynvrU7rZ-TpYFbSk_7xn5MDU7wgj_tCk79fks4yAyisS2mZU7BT4doNbUsKqxpyOCmYgbSq8aMNTn-0wtpptMxoiuYl4ML5ldQYEEVxo59ijom6j4ho4Adtu7ysaY7cvvuBc6_I9fr8x9mFMxRccHTAvdbxpDIKPCqR6czwKPRdbfPtZUFiVCYy7jIhAkwZDw61CY2rMi0ij2dGcaYlZ6_JrCgLc0QoBmamYeJLGfg8lTpSfigTYRTMvmki5Zw4Y1fHVZ9XI7Yf1wT4I32fxaileNDSnJyiPvaymBXb_lHWN_GAjVgr5hsjUxawiMOdIi-NeCA9o2HeSqQ7Jx9RmzHmvSiQWHOTdE0Tf_2-jU8EOH4AAz_4p9DVROjzIJSVoHWdDMEM8PKYT2sieTyRhNGrJ81HiKzxnZuYgY8ZcaQDwJkj2h5u_rBvxosiWa4wZYcyIeAZLEvo5Tc9OPf9NkJ9TuQEtpOOnbbAKLRpx8dR9_b_T31HnvhgFCLVzuPHZNbWnXkPRl2rFjCSdwKOcv1lQR6dnm8vrxZ2gwSOGy4Xdoz_AeEYUG4 |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12765,21388,24318,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,73745,74035,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELagE2IvCAZsHQMMQuIpLLGd2HlCG9rUwVahsUl9s2LHGZNokiUtEv-eu8QtCxq8VGp9SZq78_nOvvuOkHeFEpZLCFNBH1L44GFgWMyCJDNC5UxZkWKB89k0mVyKz7N45jfcWp9WubKJnaHOK4t75PscfO9U4DHpx_omwK5ReLrqW2jcJxuInB6PyMbh0fTr-coW81h1HbqwOU4guZj54jkuo30vqw-1NdcYw0Y8iQaLU4fhv7bUo_pH1d7lhv6dTXlreTp-TB55v5Ie9IrwhNxz5RZ50Hea_LVFNtGp7DGZn5JllydAYZXKqzkFrxUe1NJFRWGNw4xOCk4hrRs8wkFjSGvspEargubobIKWBD-zBsujKG77U0ScaPr6iBa-0MVyXjV0jpl-t8vonpHL46OLT5PAt18IbCyiRRAp4wzEV7KwhRNpwkLboe8VceZMIQsRciljBJCH8NolLjSFlWkkCmcEt0rw52RUVqXbIRTLNPMkY0rFTOTKpoYlKpPOgC3OM6XGJFjxXdc9yobujtokRCc9AzXKSXs5jckhCmdNixjZ3Q9Vc6X9lNPWcOacynnMUwFPSqM8FbGKnAUrlqlwTN6iaDWiYJSYZnOVLdtWn3yb6gMJYSCYXxb_k-h8QPTeExUVqIDNfGkDvDyiaw0o9waUMJftYHgH1Wz1zq3-o_Vw5Ur17h5-sx7Gm2LqXOmqJdIkEJOCnwlc3u41dc03rjBcDdmYqIEODxg7HCmvv3cg5BEizynJd___v16Th5OLs1N9ejL98oJsMnAJMdEuEntktGiW7iW4dAvzys_b37MVSn4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE2gvE4yPdQwwCImn0MR2YucJbbBq46OaBpP6FsWOPSbRJCQtEv89d4lbFjR4qdT62jTn833k7n5HyCunhOESwlSQhxReeBhoFrMgybVQBVNGpNjg_HmWnFyID_N47uufWl9WudaJnaIuKoPPyCccfO9UYJp04nxZxNn76dv6R4ATpDDT6sdp3CZbYBVDNiJbR8ezs_O1Xuax6qZ14aCcQHIx9410XEYTv29vaqOvMJ6NeBINDFWH57_R2qP6e9Xe5JL-XVl5zVRN75Ed72PSw14o7pNbttwld_qpk792yTY6mD0-8wOy6moGKFisolpQ8GDhQi1dVhTsHVZ3UnAQad1gOgcVI61xqhqtHC3Q8QSJCX7mDbZKUUwBUESfaPpeiRbe0OVqUTV0gVV_11vqHpKL6fHXdyeBH8UQmFhEyyBS2mqItaQzzoo0YaHpkPhcnFvtpBMhlzJGMHkItW1iQ-2MTCPhrBbcKMEfkVFZlXaPUGzZLJKcKRUzUSiTapaoXFoNernIlRqTYM33rO4RN7Iu7SYhUukZmOE-ZX6fxuQIN2dDi3jZ3QdVc5n545cZzZm1quAxTwVcKY2KVMQqsgY0Wq7CMXmJW5shIkaJsnWZr9o2O_0yyw4lhISgiln8T6LzAdFrT-QqEAGT-zYHuHlE2hpQHgwo4VybwfIeitn6ntvszwmAb65F7-blF5tl_FEsoytttUKaBOJT8DmBy497Sd3wjSsMXUM2JmogwwPGDlfKq28dIHmEKHRK8v3__6_n5C4c2ezT6ezjE7LNwDvEmrtIHJDRslnZp-DdLfUzf2x_AzvUTqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+random+forests+to+uncover+the+predictive+power+of+distance-varying+cell+interactions+in+tumor+microenvironments&rft.jtitle=PLoS+computational+biology&rft.au=VanderDoes%2C+Jeremy&rft.au=Marceaux%2C+Claire&rft.au=Yokote%2C+Kenta&rft.au=Asselin-Labat%2C+Marie-Liesse&rft.date=2024-06-14&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=20&rft.issue=6&rft.spage=e1011361&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |