Determining the Neural Substrates of Goal-Directed Learning in the Human Brain
Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome...
Saved in:
Published in | The Journal of neuroscience Vol. 27; no. 15; pp. 4019 - 4026 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
11.04.2007
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans. |
---|---|
AbstractList | Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans. Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans. |
Author | Valentin, Vivian V O'Doherty, John P Dickinson, Anthony |
Author_xml | – sequence: 1 fullname: Valentin, Vivian V – sequence: 2 fullname: Dickinson, Anthony – sequence: 3 fullname: O'Doherty, John P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17428979$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1v0zAUhi00xLrBX5hyBVcptuOPWEJI0I1tqOokxq4txzlpjRJ7sxMq_j3uOirgZle-OM9z_MqvT9CRDx4QOiN4Tjit3n9dXdx9u7ldXM8xF6zEck4xli_QLE9VSRkmR2iGqcSlYJIdo5OUfuBMYCJfoWMiGa2VVDO0OocR4uC88-ti3ECxgimavridmjRGM0IqQldcBtOX5y6CHaEtlmDiI-_8o3I1DcYXn6Nx_jV62Zk-wZun8xTdfbn4vrgqlzeX14tPy9JyRsaScKYaxYTtKl5X1EoGipuaNYRZqoBxriwTbSdqDm1FAGqhgFa24dyYumurU_Rxv_d-agZoLfgcttf30Q0m_tLBOP3vxLuNXoefWghJORN5wdunBTE8TJBGPbhkoe-NhzAlLXElqazksyBRgguqVAbP_o50yPLnrTPwYQ_YGFKK0GnrRjO6sEvoek2w3lWrD9XqXbUaS72rNuviP_1ww3Piu724cevNNpeo02D6PsckervdUpltnT-Mqn4DUSi2wQ |
CitedBy_id | crossref_primary_10_1038_npp_2009_124 crossref_primary_10_1016_j_neuron_2015_10_044 crossref_primary_10_1177_17456916221120033 crossref_primary_10_1016_j_psyneuen_2014_12_017 crossref_primary_10_1038_s41386_021_01123_1 crossref_primary_10_1016_j_brs_2016_02_002 crossref_primary_10_1016_j_neuron_2017_09_031 crossref_primary_10_1002_jnr_23521 crossref_primary_10_1016_j_ynstr_2023_100528 crossref_primary_10_1523_JNEUROSCI_6456_10_2011 crossref_primary_10_1016_j_psyneuen_2011_02_002 crossref_primary_10_1523_JNEUROSCI_1088_12_2012 crossref_primary_10_1007_s00429_009_0222_8 crossref_primary_10_1016_j_tics_2024_10_006 crossref_primary_10_1038_s41386_021_01108_0 crossref_primary_10_1111_j_1460_9568_2012_08023_x crossref_primary_10_1016_j_neuroimage_2011_11_058 crossref_primary_10_1016_j_schres_2016_10_004 crossref_primary_10_3389_fpsyt_2022_836965 crossref_primary_10_1162_jocn_a_01967 crossref_primary_10_1016_j_nlm_2011_08_006 crossref_primary_10_1152_jn_01030_2009 crossref_primary_10_1038_nrn2753 crossref_primary_10_1016_j_neuroimage_2014_12_036 crossref_primary_10_1007_s00426_012_0467_3 crossref_primary_10_3389_fnbeh_2022_938403 crossref_primary_10_1016_j_cub_2021_03_091 crossref_primary_10_1038_ncomms5390 crossref_primary_10_3758_s13415_023_01104_5 crossref_primary_10_1016_j_cobeha_2016_02_010 crossref_primary_10_1016_j_neuroimage_2023_120002 crossref_primary_10_1523_JNEUROSCI_3086_12_2013 crossref_primary_10_1073_pnas_1207531110 crossref_primary_10_1073_pnas_1609194114 crossref_primary_10_3758_s13415_024_01231_7 crossref_primary_10_1177_0269881110388324 crossref_primary_10_1162_jocn_a_02144 crossref_primary_10_1111_ejn_13586 crossref_primary_10_1093_cercor_bhn098 crossref_primary_10_1371_journal_pone_0094778 crossref_primary_10_1016_j_euroneuro_2015_12_033 crossref_primary_10_1016_j_neuron_2021_06_003 crossref_primary_10_1523_JNEUROSCI_4089_09_2010 crossref_primary_10_1523_JNEUROSCI_1304_12_2012 crossref_primary_10_1038_s41596_024_01054_3 crossref_primary_10_1016_j_neubiorev_2019_01_019 crossref_primary_10_1016_j_conb_2011_04_002 crossref_primary_10_1016_j_neubiorev_2014_03_027 crossref_primary_10_1093_brain_awx105 crossref_primary_10_1016_j_bandc_2018_05_005 crossref_primary_10_1016_j_neuron_2011_02_027 crossref_primary_10_1038_npp_2010_151 crossref_primary_10_1016_j_neubiorev_2013_08_007 crossref_primary_10_1038_nn_4114 crossref_primary_10_1073_pnas_1217832110 crossref_primary_10_1111_j_1460_9568_2009_06799_x crossref_primary_10_1098_rstb_2013_0478 crossref_primary_10_1523_JNEUROSCI_3927_14_2014 crossref_primary_10_1176_appi_ajp_2011_10071062 crossref_primary_10_1002_hup_2285 crossref_primary_10_1523_JNEUROSCI_6421_10_2011 crossref_primary_10_1098_rstb_2013_0475 crossref_primary_10_1016_j_neuroimage_2017_06_012 crossref_primary_10_1177_2470547018758043 crossref_primary_10_1016_j_pnpbp_2019_03_016 crossref_primary_10_1016_j_addicn_2023_100066 crossref_primary_10_1038_s41467_024_48577_7 crossref_primary_10_1016_j_tics_2012_01_005 crossref_primary_10_3390_nu6010319 crossref_primary_10_1038_tp_2012_59 crossref_primary_10_1162_jocn_2010_21514 crossref_primary_10_1016_j_neuroimage_2014_04_036 crossref_primary_10_3389_fnins_2016_00137 crossref_primary_10_1038_sj_npp_npp2009124 crossref_primary_10_1111_adb_12505 crossref_primary_10_2174_1570159X16666180426151746 crossref_primary_10_1038_nn_2956 crossref_primary_10_3758_s13415_014_0325_4 crossref_primary_10_3758_s13428_023_02263_6 crossref_primary_10_1177_0956797612463080 crossref_primary_10_1038_s41598_020_76060_y crossref_primary_10_1093_cercor_bhq145 crossref_primary_10_1371_journal_pone_0279841 crossref_primary_10_1111_j_1749_6632_2011_06290_x crossref_primary_10_1038_s41467_023_43747_5 crossref_primary_10_1002_aur_1613 crossref_primary_10_1016_j_bandc_2022_105843 crossref_primary_10_1186_s12993_016_0099_7 crossref_primary_10_1017_S1092852913000564 crossref_primary_10_3389_fnbeh_2022_963776 crossref_primary_10_1038_s41598_019_49884_6 crossref_primary_10_1016_j_psc_2018_10_008 crossref_primary_10_3389_fnins_2019_00065 crossref_primary_10_1016_j_cobeha_2021_02_004 crossref_primary_10_1093_cercor_bhs244 crossref_primary_10_1016_j_conb_2010_03_001 crossref_primary_10_1016_j_jecp_2011_08_008 crossref_primary_10_1097_WNN_0b013e318192cce0 crossref_primary_10_1073_pnas_1002258107 crossref_primary_10_3758_s13420_016_0226_1 crossref_primary_10_1162_jocn_a_00953 crossref_primary_10_1523_ENEURO_0382_17_2018 crossref_primary_10_1523_JNEUROSCI_2033_15_2016 crossref_primary_10_1523_JNEUROSCI_3080_12_2012 crossref_primary_10_1016_j_cobeha_2015_06_004 crossref_primary_10_1016_j_cub_2019_10_058 crossref_primary_10_1038_nn_3561 crossref_primary_10_3389_fpsyt_2014_00052 crossref_primary_10_1196_annals_1401_036 crossref_primary_10_1159_000362840 crossref_primary_10_3758_s13415_014_0288_5 crossref_primary_10_1038_s41467_019_08662_8 crossref_primary_10_1523_JNEUROSCI_2532_12_2013 crossref_primary_10_1146_annurev_psych_010416_044216 crossref_primary_10_1016_j_neuroimage_2014_12_071 crossref_primary_10_1152_jn_00086_2014 crossref_primary_10_1007_s11055_023_01413_9 crossref_primary_10_1016_j_nicl_2024_103676 crossref_primary_10_1111_j_1460_9568_2010_07438_x crossref_primary_10_1016_j_beproc_2018_10_014 crossref_primary_10_1111_jnc_15342 crossref_primary_10_1016_j_neubiorev_2009_11_015 crossref_primary_10_1016_j_cortex_2015_11_004 crossref_primary_10_1016_j_conb_2012_08_003 crossref_primary_10_1523_JNEUROSCI_3751_09_2009 crossref_primary_10_1016_j_biopsycho_2012_02_016 crossref_primary_10_1371_journal_pcbi_1007443 crossref_primary_10_1016_j_firesaf_2022_103539 crossref_primary_10_1016_j_pnpbp_2018_01_010 crossref_primary_10_1177_02698811211044679 crossref_primary_10_1007_s11940_007_0021_6 crossref_primary_10_1016_j_bpsc_2022_08_014 crossref_primary_10_1016_j_cobeha_2017_12_005 crossref_primary_10_1038_nn_4080 crossref_primary_10_1016_j_neuroimage_2012_12_003 crossref_primary_10_1111_gbb_12489 crossref_primary_10_1523_JNEUROSCI_1677_16_2016 crossref_primary_10_7554_eLife_67517 crossref_primary_10_1093_cercor_bhw067 crossref_primary_10_1111_jere_12016 crossref_primary_10_1523_ENEURO_0240_18_2018 crossref_primary_10_3389_fpsyg_2017_01333 crossref_primary_10_1196_annals_1401_017 crossref_primary_10_3945_ajcn_112_053801 crossref_primary_10_1038_ncomms3264 crossref_primary_10_1523_JNEUROSCI_1639_09_2009 crossref_primary_10_1016_j_neubiorev_2022_104826 crossref_primary_10_1016_j_cub_2019_12_007 crossref_primary_10_1111_j_1460_9568_2008_06202_x crossref_primary_10_1016_j_cortex_2019_08_002 crossref_primary_10_1016_j_neuron_2018_12_029 crossref_primary_10_1073_pnas_1922273117 crossref_primary_10_1016_j_physbeh_2013_03_025 crossref_primary_10_1523_JNEUROSCI_3304_11_2011 crossref_primary_10_1002_brb3_1240 crossref_primary_10_1016_j_neuron_2012_09_005 crossref_primary_10_1521_soco_2008_26_5_593 crossref_primary_10_1111_ejn_13961 crossref_primary_10_1016_j_psyneuen_2016_12_008 crossref_primary_10_1038_s42003_024_07253_8 crossref_primary_10_1159_000362838 crossref_primary_10_1016_j_neuron_2021_12_018 crossref_primary_10_1523_JNEUROSCI_3473_16_2017 crossref_primary_10_1371_journal_pcbi_1008552 crossref_primary_10_1162_jocn_a_00709 crossref_primary_10_1007_s00213_019_05330_z crossref_primary_10_1016_j_cobeha_2021_03_027 crossref_primary_10_1007_s11229_018_1712_0 crossref_primary_10_1016_j_cobeha_2017_09_012 crossref_primary_10_1523_JNEUROSCI_4146_13_2014 crossref_primary_10_3389_fncom_2014_00170 crossref_primary_10_1016_j_neunet_2015_08_006 crossref_primary_10_1016_j_biopsych_2014_06_005 crossref_primary_10_1017_S0033291719001429 crossref_primary_10_1073_pnas_1609094113 crossref_primary_10_1111_nyas_13356 crossref_primary_10_1016_j_neuroimage_2008_08_021 crossref_primary_10_1016_j_neunet_2009_03_004 crossref_primary_10_1016_j_biopsych_2007_11_014 crossref_primary_10_1371_journal_pcbi_1006316 crossref_primary_10_1016_j_brat_2023_104417 crossref_primary_10_1016_j_cub_2010_08_048 crossref_primary_10_1089_brain_2013_0184 crossref_primary_10_1111_j_1460_9568_2012_08211_x crossref_primary_10_1038_s41598_020_61892_5 crossref_primary_10_1038_s41598_018_27678_6 crossref_primary_10_1016_j_conb_2011_02_009 crossref_primary_10_1177_02698811231216325 crossref_primary_10_1523_JNEUROSCI_0979_09_2009 crossref_primary_10_1016_j_bandc_2021_105754 crossref_primary_10_1016_j_neuroimage_2009_06_007 crossref_primary_10_1038_mp_2014_44 crossref_primary_10_3389_fnhum_2014_00587 crossref_primary_10_1177_1362361313477919 crossref_primary_10_1016_j_eurpsy_2017_08_001 crossref_primary_10_1016_j_neuron_2012_09_027 crossref_primary_10_1371_journal_pbio_3000951 crossref_primary_10_1111_ejn_12897 crossref_primary_10_1111_adb_12009 crossref_primary_10_1016_j_neuroscience_2011_09_065 crossref_primary_10_1038_s41386_020_0600_8 crossref_primary_10_3389_fncom_2022_1060101 crossref_primary_10_1038_s41598_024_72455_3 crossref_primary_10_1111_ejn_16456 crossref_primary_10_1523_JNEUROSCI_2026_09_2009 crossref_primary_10_1016_j_biopsych_2017_04_006 crossref_primary_10_1016_j_ijchp_2024_100531 crossref_primary_10_3389_fnbeh_2021_655029 crossref_primary_10_1016_j_bbr_2010_12_009 crossref_primary_10_3389_fnins_2020_00281 crossref_primary_10_3724_SP_J_1042_2019_01044 crossref_primary_10_1016_j_ijlp_2019_101504 crossref_primary_10_1523_JNEUROSCI_1235_14_2014 crossref_primary_10_1016_j_neuron_2013_04_037 crossref_primary_10_3389_fnhum_2014_00590 crossref_primary_10_1111_acer_13094 crossref_primary_10_1080_02699931_2017_1359017 crossref_primary_10_1177_1073858413499407 crossref_primary_10_1038_mp_2015_46 crossref_primary_10_1111_j_1749_6632_2009_05420_x crossref_primary_10_1007_BF02938542 crossref_primary_10_1016_j_neulet_2016_02_062 crossref_primary_10_1111_j_1749_6632_2012_06768_x crossref_primary_10_1038_s41562_018_0527_9 crossref_primary_10_1017_S0033291719000230 crossref_primary_10_3389_fpsyg_2021_683024 crossref_primary_10_5665_sleep_6222 crossref_primary_10_1038_tp_2013_107 crossref_primary_10_1016_j_neubiorev_2014_08_012 crossref_primary_10_1007_s00221_012_3284_4 crossref_primary_10_1007_s00429_014_0893_7 crossref_primary_10_1111_j_1460_9568_2009_06991_x crossref_primary_10_1523_JNEUROSCI_4374_12_2013 crossref_primary_10_1523_JNEUROSCI_4253_15_2016 crossref_primary_10_1016_j_bbr_2010_12_038 crossref_primary_10_1038_npp_2016_256 crossref_primary_10_1073_pnas_2016884118 crossref_primary_10_1016_j_neubiorev_2014_05_008 crossref_primary_10_1093_scan_nsw157 crossref_primary_10_1146_annurev_psych_122414_033417 crossref_primary_10_1523_JNEUROSCI_1787_11_2011 crossref_primary_10_1523_JNEUROSCI_3295_11_2011 crossref_primary_10_1111_j_1476_5381_2011_01422_x crossref_primary_10_1016_j_neuroimage_2014_06_024 crossref_primary_10_3389_fnhum_2022_886600 crossref_primary_10_1016_j_pnpbp_2024_111037 crossref_primary_10_1016_j_neuron_2012_02_038 crossref_primary_10_1007_s13164_020_00490_w crossref_primary_10_1007_s40429_020_00324_w crossref_primary_10_1038_s41539_023_00206_6 crossref_primary_10_1016_j_cobeha_2021_04_019 crossref_primary_10_1080_17470218_2015_1062527 crossref_primary_10_1016_j_psyneuen_2021_105596 crossref_primary_10_1523_JNEUROSCI_1556_07_2007 crossref_primary_10_1523_JNEUROSCI_1500_09_2009 crossref_primary_10_3758_s13415_015_0347_6 crossref_primary_10_1016_j_neubiorev_2013_06_013 crossref_primary_10_1007_s00213_017_4655_0 crossref_primary_10_3758_s13415_021_00904_x crossref_primary_10_1016_j_bbr_2011_10_042 crossref_primary_10_3389_fnsys_2019_00028 crossref_primary_10_1073_pnas_1307925110 crossref_primary_10_1007_s40501_015_0056_3 crossref_primary_10_1016_j_neuron_2019_01_046 crossref_primary_10_1016_j_neuroscience_2014_07_021 crossref_primary_10_3389_fpsyg_2016_01821 crossref_primary_10_1016_j_conctc_2024_101414 crossref_primary_10_1038_s41398_024_02965_1 crossref_primary_10_1111_j_1460_9568_2009_06796_x crossref_primary_10_1162_jocn_a_01088 crossref_primary_10_1016_j_foodres_2014_12_034 crossref_primary_10_1038_s41598_018_21449_z crossref_primary_10_1016_j_neuroscience_2016_07_030 crossref_primary_10_1093_brain_awy123 crossref_primary_10_1016_j_tics_2012_07_007 crossref_primary_10_1111_j_1460_9568_2009_06992_x crossref_primary_10_1016_j_neuron_2013_04_008 crossref_primary_10_1371_journal_pcbi_1004463 crossref_primary_10_1523_JNEUROSCI_1234_09_2009 crossref_primary_10_1126_science_1168450 crossref_primary_10_5674_jjppp_28_45 crossref_primary_10_1093_scan_nsw012 crossref_primary_10_1016_j_cobeha_2017_08_011 crossref_primary_10_1007_s40429_016_0089_8 crossref_primary_10_3758_s13420_023_00573_5 crossref_primary_10_1002_hipo_22175 crossref_primary_10_1016_j_jmp_2008_12_005 crossref_primary_10_1038_srep31378 crossref_primary_10_1016_j_pneurobio_2011_01_006 crossref_primary_10_1016_j_neuron_2013_09_007 crossref_primary_10_1016_j_neuropsychologia_2022_108142 crossref_primary_10_1038_s41467_019_13261_8 crossref_primary_10_1523_JNEUROSCI_3354_10_2011 crossref_primary_10_1016_j_geb_2016_05_001 crossref_primary_10_1016_j_neuroimage_2020_116834 crossref_primary_10_1002_hipo_22179 crossref_primary_10_3389_fphar_2024_1405446 crossref_primary_10_1162_jocn_a_01655 crossref_primary_10_1016_j_biopsych_2017_09_026 crossref_primary_10_1016_j_neuropharm_2013_05_033 crossref_primary_10_1007_s00213_021_05890_z crossref_primary_10_3758_s13420_018_0313_6 crossref_primary_10_1523_JNEUROSCI_4677_14_2015 crossref_primary_10_1016_j_neubiorev_2019_12_025 crossref_primary_10_1016_j_physbeh_2012_03_023 crossref_primary_10_1016_j_nlm_2020_107319 crossref_primary_10_1038_s41467_020_16385_4 crossref_primary_10_1016_j_cognition_2013_12_002 crossref_primary_10_1002_jnr_24594 crossref_primary_10_1371_journal_pcbi_1011692 crossref_primary_10_1523_JNEUROSCI_4647_10_2011 crossref_primary_10_1016_j_biopsych_2013_02_002 crossref_primary_10_1016_j_neuron_2013_11_028 crossref_primary_10_1038_srep32477 crossref_primary_10_3758_s13420_011_0030_x crossref_primary_10_1016_j_neuroimage_2023_120170 crossref_primary_10_1371_journal_pone_0234424 crossref_primary_10_1007_s00426_009_0230_6 crossref_primary_10_1111_j_1460_9568_2011_07920_x crossref_primary_10_3389_fnbeh_2016_00213 crossref_primary_10_1523_JNEUROSCI_4461_10_2011 crossref_primary_10_1152_jn_00180_2020 crossref_primary_10_1016_j_neuroimage_2017_09_062 crossref_primary_10_1177_1073858414568317 crossref_primary_10_1007_s11920_025_01588_7 crossref_primary_10_1038_nn_3068 crossref_primary_10_3389_fnins_2019_00915 crossref_primary_10_1111_j_1460_9568_2009_06834_x crossref_primary_10_1016_j_jasrep_2015_11_002 crossref_primary_10_1038_npp_2013_55 crossref_primary_10_1038_srep29079 crossref_primary_10_1016_j_conb_2008_08_003 crossref_primary_10_1111_j_1369_1600_2009_00193_x crossref_primary_10_1162_jocn_a_01990 crossref_primary_10_31083_j_jin_2019_03_141 crossref_primary_10_1016_j_molmet_2012_06_002 crossref_primary_10_1038_s41467_017_02615_9 crossref_primary_10_1002_hipo_23167 crossref_primary_10_1016_j_cortex_2020_02_009 crossref_primary_10_3389_fnins_2015_00188 crossref_primary_10_1016_j_pnpbp_2017_06_029 crossref_primary_10_1038_nn_2635 crossref_primary_10_1098_rsos_220226 crossref_primary_10_1162_jocn_a_00425 crossref_primary_10_1016_j_neuropsychologia_2015_10_035 crossref_primary_10_1016_j_nlm_2013_11_003 crossref_primary_10_1111_acer_14441 crossref_primary_10_1080_17470218_2010_518242 crossref_primary_10_1016_j_psyneuen_2009_12_010 crossref_primary_10_1038_npp_2009_131 |
Cites_doi | 10.3758/BF03209051 10.1136/jnnp.57.12.1518 10.1016/S0896-6273(02)00963-7 10.1038/nn1314 10.1371/journal.pbio.0040233 10.1007/BF00235545 10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-# 10.1523/JNEUROSCI.23-21-07931.2003 10.1126/science.1087919 10.1016/S0028-3908(98)00033-1 10.1016/j.bbr.2003.09.023 10.1016/j.neuron.2006.06.032 10.1097/00001756-200003200-00046 10.1038/nn1279 10.1093/brain/awg168 10.1038/nature04676 10.1126/science.1094285 10.1016/j.neuron.2005.07.018 10.1093/brain/awg180 10.1126/science.1084204 10.1523/JNEUROSCI.1921-05.2005 10.1016/0010-0277(94)90018-3 10.1098/rstb.1985.0010 10.1016/0306-4522(94)90592-4 10.1093/cercor/13.4.400 10.1038/nn1339 10.1111/j.1460-9568.2005.04218.x 10.1017/S0033291700049163 10.1016/S0896-6273(03)00474-4 10.1038/nn1560 10.1016/S1053-8119(03)00073-9 10.3758/BF03199935 10.1016/S0896-6273(02)00603-7 10.1016/j.neuron.2006.06.027 10.1080/14640748208400878 10.1111/j.1460-9568.2004.03095.x 10.1523/JNEUROSCI.20-11-04311.2000 10.1037/0097-7403.11.4.520 10.1037/0097-7403.30.2.104 10.1093/cercor/10.3.295 10.1038/19525 10.1038/nature04766 10.1523/JNEUROSCI.1921-04.2004 10.1523/JNEUROSCI.23-29-09632.2003 10.3758/BF03199161 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Society for Neuroscience 0270-6474/07/274019-08$15.00/0 2007 |
Copyright_xml | – notice: Copyright © 2007 Society for Neuroscience 0270-6474/07/274019-08$15.00/0 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.0564-07.2007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 4026 |
ExternalDocumentID | PMC6672546 17428979 10_1523_JNEUROSCI_0564_07_2007 www27_15_4019 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R03MH075763 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c541t-1549b946cf35832c74e95a84b14c29e4559c46df685ed31ee869e23cb55aa8fd3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:07:13 EDT 2025 Fri Jul 11 16:25:46 EDT 2025 Fri Jul 11 16:51:07 EDT 2025 Thu Apr 03 07:00:00 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Jul 01 02:58:44 EDT 2025 Tue Nov 10 19:47:17 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c541t-1549b946cf35832c74e95a84b14c29e4559c46df685ed31ee869e23cb55aa8fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/27/15/4019.full.pdf |
PMID | 17428979 |
PQID | 19656299 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672546 proquest_miscellaneous_70372737 proquest_miscellaneous_19656299 pubmed_primary_17428979 crossref_citationtrail_10_1523_JNEUROSCI_0564_07_2007 crossref_primary_10_1523_JNEUROSCI_0564_07_2007 highwire_smallpub1_www27_15_4019 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-11 |
PublicationDateYYYYMMDD | 2007-04-11 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2007 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303245099000_27.15.4019.16 2023041303245099000_27.15.4019.38 2023041303245099000_27.15.4019.39 2023041303245099000_27.15.4019.14 2023041303245099000_27.15.4019.36 2023041303245099000_27.15.4019.15 2023041303245099000_27.15.4019.37 2023041303245099000_27.15.4019.18 2023041303245099000_27.15.4019.19 2023041303245099000_27.15.4019.31 Balleine (2023041303245099000_27.15.4019.4) 1998; 26 2023041303245099000_27.15.4019.12 2023041303245099000_27.15.4019.34 2023041303245099000_27.15.4019.13 O'Doherty (2023041303245099000_27.15.4019.32) 2000; 11 2023041303245099000_27.15.4019.35 2023041303245099000_27.15.4019.11 2023041303245099000_27.15.4019.33 O'Doherty (2023041303245099000_27.15.4019.30) 2003; 23 Thorpe (2023041303245099000_27.15.4019.41) 1983; 49 2023041303245099000_27.15.4019.9 2023041303245099000_27.15.4019.6 Baxter (2023041303245099000_27.15.4019.5) 2000; 20 2023041303245099000_27.15.4019.7 2023041303245099000_27.15.4019.8 Adams (2023041303245099000_27.15.4019.1) 1982; 34B 2023041303245099000_27.15.4019.27 2023041303245099000_27.15.4019.28 2023041303245099000_27.15.4019.3 Dickinson (2023041303245099000_27.15.4019.17) 1995; 23 2023041303245099000_27.15.4019.25 2023041303245099000_27.15.4019.26 2023041303245099000_27.15.4019.29 2023041303245099000_27.15.4019.20 2023041303245099000_27.15.4019.42 2023041303245099000_27.15.4019.40 2023041303245099000_27.15.4019.23 2023041303245099000_27.15.4019.45 Colwill (2023041303245099000_27.15.4019.10) 1988; 16 2023041303245099000_27.15.4019.24 2023041303245099000_27.15.4019.43 2023041303245099000_27.15.4019.22 2023041303245099000_27.15.4019.44 Garner (2023041303245099000_27.15.4019.21) 1982; 12 Arana (2023041303245099000_27.15.4019.2) 2003; 23 |
References_xml | – volume: 16 start-page: 105 year: 1988 ident: 2023041303245099000_27.15.4019.10 article-title: The role of response-reinforcer associations increases throughout extended instrumental training publication-title: Anim Learn Behav doi: 10.3758/BF03209051 – ident: 2023041303245099000_27.15.4019.37 doi: 10.1136/jnnp.57.12.1518 – ident: 2023041303245099000_27.15.4019.14 doi: 10.1016/S0896-6273(02)00963-7 – ident: 2023041303245099000_27.15.4019.22 doi: 10.1038/nn1314 – ident: 2023041303245099000_27.15.4019.28 doi: 10.1371/journal.pbio.0040233 – volume: 49 start-page: 93 year: 1983 ident: 2023041303245099000_27.15.4019.41 article-title: The orbitofrontal cortex: neuronal activity in the behaving monkey publication-title: Exp Brain Res doi: 10.1007/BF00235545 – ident: 2023041303245099000_27.15.4019.8 doi: 10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-# – volume: 23 start-page: 7931 year: 2003 ident: 2023041303245099000_27.15.4019.30 article-title: Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-21-07931.2003 – ident: 2023041303245099000_27.15.4019.23 doi: 10.1126/science.1087919 – ident: 2023041303245099000_27.15.4019.3 doi: 10.1016/S0028-3908(98)00033-1 – ident: 2023041303245099000_27.15.4019.11 doi: 10.1016/j.bbr.2003.09.023 – ident: 2023041303245099000_27.15.4019.18 doi: 10.1016/j.neuron.2006.06.032 – volume: 11 start-page: 893 year: 2000 ident: 2023041303245099000_27.15.4019.32 article-title: Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex publication-title: NeuroReport doi: 10.1097/00001756-200003200-00046 – ident: 2023041303245099000_27.15.4019.40 doi: 10.1038/nn1279 – ident: 2023041303245099000_27.15.4019.25 doi: 10.1093/brain/awg168 – ident: 2023041303245099000_27.15.4019.35 doi: 10.1038/nature04676 – ident: 2023041303245099000_27.15.4019.31 doi: 10.1126/science.1094285 – ident: 2023041303245099000_27.15.4019.38 doi: 10.1016/j.neuron.2005.07.018 – ident: 2023041303245099000_27.15.4019.19 doi: 10.1093/brain/awg180 – ident: 2023041303245099000_27.15.4019.29 doi: 10.1126/science.1084204 – ident: 2023041303245099000_27.15.4019.34 doi: 10.1523/JNEUROSCI.1921-05.2005 – ident: 2023041303245099000_27.15.4019.6 doi: 10.1016/0010-0277(94)90018-3 – ident: 2023041303245099000_27.15.4019.16 doi: 10.1098/rstb.1985.0010 – ident: 2023041303245099000_27.15.4019.20 doi: 10.1016/0306-4522(94)90592-4 – ident: 2023041303245099000_27.15.4019.27 doi: 10.1093/cercor/13.4.400 – ident: 2023041303245099000_27.15.4019.43 doi: 10.1038/nn1339 – ident: 2023041303245099000_27.15.4019.45 doi: 10.1111/j.1460-9568.2005.04218.x – volume: 12 start-page: 871 year: 1982 ident: 2023041303245099000_27.15.4019.21 article-title: The eating attitudes test: psychometric features and clinical correlates publication-title: Psychol Med doi: 10.1017/S0033291700049163 – ident: 2023041303245099000_27.15.4019.39 doi: 10.1016/S0896-6273(03)00474-4 – ident: 2023041303245099000_27.15.4019.12 doi: 10.1038/nn1560 – ident: 2023041303245099000_27.15.4019.15 doi: 10.1016/S1053-8119(03)00073-9 – volume: 23 start-page: 197 year: 1995 ident: 2023041303245099000_27.15.4019.17 article-title: Motivational control after extended instrumental training publication-title: Anim Learn Behav doi: 10.3758/BF03199935 – ident: 2023041303245099000_27.15.4019.33 doi: 10.1016/S0896-6273(02)00603-7 – ident: 2023041303245099000_27.15.4019.36 doi: 10.1016/j.neuron.2006.06.027 – volume: 34B start-page: 77 year: 1982 ident: 2023041303245099000_27.15.4019.1 article-title: Variations in the sensitivity of instrumental responding to reinforcer devaluation publication-title: Q J Exp Psychol doi: 10.1080/14640748208400878 – ident: 2023041303245099000_27.15.4019.44 doi: 10.1111/j.1460-9568.2004.03095.x – volume: 20 start-page: 4311 year: 2000 ident: 2023041303245099000_27.15.4019.5 article-title: Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-11-04311.2000 – ident: 2023041303245099000_27.15.4019.9 doi: 10.1037/0097-7403.11.4.520 – ident: 2023041303245099000_27.15.4019.24 doi: 10.1037/0097-7403.30.2.104 – ident: 2023041303245099000_27.15.4019.7 doi: 10.1093/cercor/10.3.295 – ident: 2023041303245099000_27.15.4019.42 doi: 10.1038/19525 – ident: 2023041303245099000_27.15.4019.13 doi: 10.1038/nature04766 – ident: 2023041303245099000_27.15.4019.26 doi: 10.1523/JNEUROSCI.1921-04.2004 – volume: 23 start-page: 9632 year: 2003 ident: 2023041303245099000_27.15.4019.2 article-title: Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-29-09632.2003 – volume: 26 start-page: 46 year: 1998 ident: 2023041303245099000_27.15.4019.4 article-title: The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety publication-title: Anim Learn Behav doi: 10.3758/BF03199161 |
SSID | ssj0007017 |
Score | 2.4340303 |
Snippet | Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4019 |
SubjectTerms | Adult Brain - physiology Brain Mapping - methods Citrus Extinction, Psychological - physiology Female Goals Humans Learning - physiology Lycopersicon esculentum Male Neurons - physiology Psychomotor Performance - physiology |
Title | Determining the Neural Substrates of Goal-Directed Learning in the Human Brain |
URI | http://www.jneurosci.org/cgi/content/abstract/27/15/4019 https://www.ncbi.nlm.nih.gov/pubmed/17428979 https://www.proquest.com/docview/19656299 https://www.proquest.com/docview/70372737 https://pubmed.ncbi.nlm.nih.gov/PMC6672546 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcuHCAOURnjow3JzGtiTbx9IAbWFy6WN608iyPM2Q2B2akIH_wn9lV5IduxOmwMWTcexkne_LaldafUvI2xJ9XqxVYCDnCRhXLEjLeByoIi40WM5Cbat8p-LwjB1f8IvB4Fenamm1zEf659Z9Jf-DKpwDXHGX7D8g234onIDXgC8cAWE4_hXGE1_L0mx5QqUNVPcAZ2BFZ22ZxqdazQPn2SC4_NJMhfj6RjeJ_x4bRXTj1M2OMRurdlQvWyKcKxywnATB-ew7Ooq2YHYy01_bbWVen6BbXjOpL1HTt6kF9pvMmsmHBNdRws3kw0mt7aP1LHDOK0ogLWWuA8_IeOca2dWcsOt9nTJAwzLe8aVwYbbVyXMrNnE8xVrHk4OjEcRwLBgnVlagewOAdbWw0EPaBYml61rT19y-MRa2FYrr9TpKZMglWnGH3I0gC8EGGZOjz-1An4xtQ-f2Uf0GdDBvb7txqFDrLemHQY009bY052a1bif8OX1A7nsu0H1HwodkYKpHZHe_Ust68YO-o7aS2C7R7JJph5cUSEYdL-mGl7QuaY-XtOElnVX2FstLann5mJx9_HB6cBj4vh2B5ixcBqj6l2dM6DLmMGDohJmMq5TlIdNRZhgksZqJohQpN0UcGpOKzESxzjlXKi2L-AnZqerKPCM0L8JUiXFuINBlEE3mJmVRVAjBi4xnKRsS3vyMUntRe-ytMpeY3AISskVCIhJynGDj1WRI9tr7rpysy6130AYleb1Q8zmAEsoeTYbkTYOeBCeNK2-qMvXqWqJsp4DA789XwMCLmQR8zVOH9sYsz5ghSXo8aC9Agfj-O9Xs0grFC5Fgu4vnt5v-gtzb_L1fkp3lt5V5BdH2Mn9tOf8bHvnRyA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+Neural+Substrates+of+Goal-Directed+Learning+in+the+Human+Brain&rft.jtitle=The+Journal+of+neuroscience&rft.au=Valentin%2C+Vivian+V&rft.au=Dickinson%2C+Anthony&rft.au=O%27Doherty%2C+John+P&rft.date=2007-04-11&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=27&rft.issue=15&rft.spage=4019&rft_id=info:doi/10.1523%2FJNEUROSCI.0564-07.2007&rft_id=info%3Apmid%2F17428979&rft.externalDBID=n%2Fa&rft.externalDocID=www27_15_4019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |