Determining the Neural Substrates of Goal-Directed Learning in the Human Brain

Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 27; no. 15; pp. 4019 - 4026
Main Authors Valentin, Vivian V, Dickinson, Anthony, O'Doherty, John P
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 11.04.2007
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.
AbstractList Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.
Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.
Author Valentin, Vivian V
O'Doherty, John P
Dickinson, Anthony
Author_xml – sequence: 1
  fullname: Valentin, Vivian V
– sequence: 2
  fullname: Dickinson, Anthony
– sequence: 3
  fullname: O'Doherty, John P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17428979$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1v0zAUhi00xLrBX5hyBVcptuOPWEJI0I1tqOokxq4txzlpjRJ7sxMq_j3uOirgZle-OM9z_MqvT9CRDx4QOiN4Tjit3n9dXdx9u7ldXM8xF6zEck4xli_QLE9VSRkmR2iGqcSlYJIdo5OUfuBMYCJfoWMiGa2VVDO0OocR4uC88-ti3ECxgimavridmjRGM0IqQldcBtOX5y6CHaEtlmDiI-_8o3I1DcYXn6Nx_jV62Zk-wZun8xTdfbn4vrgqlzeX14tPy9JyRsaScKYaxYTtKl5X1EoGipuaNYRZqoBxriwTbSdqDm1FAGqhgFa24dyYumurU_Rxv_d-agZoLfgcttf30Q0m_tLBOP3vxLuNXoefWghJORN5wdunBTE8TJBGPbhkoe-NhzAlLXElqazksyBRgguqVAbP_o50yPLnrTPwYQ_YGFKK0GnrRjO6sEvoek2w3lWrD9XqXbUaS72rNuviP_1ww3Piu724cevNNpeo02D6PsckervdUpltnT-Mqn4DUSi2wQ
CitedBy_id crossref_primary_10_1038_npp_2009_124
crossref_primary_10_1016_j_neuron_2015_10_044
crossref_primary_10_1177_17456916221120033
crossref_primary_10_1016_j_psyneuen_2014_12_017
crossref_primary_10_1038_s41386_021_01123_1
crossref_primary_10_1016_j_brs_2016_02_002
crossref_primary_10_1016_j_neuron_2017_09_031
crossref_primary_10_1002_jnr_23521
crossref_primary_10_1016_j_ynstr_2023_100528
crossref_primary_10_1523_JNEUROSCI_6456_10_2011
crossref_primary_10_1016_j_psyneuen_2011_02_002
crossref_primary_10_1523_JNEUROSCI_1088_12_2012
crossref_primary_10_1007_s00429_009_0222_8
crossref_primary_10_1016_j_tics_2024_10_006
crossref_primary_10_1038_s41386_021_01108_0
crossref_primary_10_1111_j_1460_9568_2012_08023_x
crossref_primary_10_1016_j_neuroimage_2011_11_058
crossref_primary_10_1016_j_schres_2016_10_004
crossref_primary_10_3389_fpsyt_2022_836965
crossref_primary_10_1162_jocn_a_01967
crossref_primary_10_1016_j_nlm_2011_08_006
crossref_primary_10_1152_jn_01030_2009
crossref_primary_10_1038_nrn2753
crossref_primary_10_1016_j_neuroimage_2014_12_036
crossref_primary_10_1007_s00426_012_0467_3
crossref_primary_10_3389_fnbeh_2022_938403
crossref_primary_10_1016_j_cub_2021_03_091
crossref_primary_10_1038_ncomms5390
crossref_primary_10_3758_s13415_023_01104_5
crossref_primary_10_1016_j_cobeha_2016_02_010
crossref_primary_10_1016_j_neuroimage_2023_120002
crossref_primary_10_1523_JNEUROSCI_3086_12_2013
crossref_primary_10_1073_pnas_1207531110
crossref_primary_10_1073_pnas_1609194114
crossref_primary_10_3758_s13415_024_01231_7
crossref_primary_10_1177_0269881110388324
crossref_primary_10_1162_jocn_a_02144
crossref_primary_10_1111_ejn_13586
crossref_primary_10_1093_cercor_bhn098
crossref_primary_10_1371_journal_pone_0094778
crossref_primary_10_1016_j_euroneuro_2015_12_033
crossref_primary_10_1016_j_neuron_2021_06_003
crossref_primary_10_1523_JNEUROSCI_4089_09_2010
crossref_primary_10_1523_JNEUROSCI_1304_12_2012
crossref_primary_10_1038_s41596_024_01054_3
crossref_primary_10_1016_j_neubiorev_2019_01_019
crossref_primary_10_1016_j_conb_2011_04_002
crossref_primary_10_1016_j_neubiorev_2014_03_027
crossref_primary_10_1093_brain_awx105
crossref_primary_10_1016_j_bandc_2018_05_005
crossref_primary_10_1016_j_neuron_2011_02_027
crossref_primary_10_1038_npp_2010_151
crossref_primary_10_1016_j_neubiorev_2013_08_007
crossref_primary_10_1038_nn_4114
crossref_primary_10_1073_pnas_1217832110
crossref_primary_10_1111_j_1460_9568_2009_06799_x
crossref_primary_10_1098_rstb_2013_0478
crossref_primary_10_1523_JNEUROSCI_3927_14_2014
crossref_primary_10_1176_appi_ajp_2011_10071062
crossref_primary_10_1002_hup_2285
crossref_primary_10_1523_JNEUROSCI_6421_10_2011
crossref_primary_10_1098_rstb_2013_0475
crossref_primary_10_1016_j_neuroimage_2017_06_012
crossref_primary_10_1177_2470547018758043
crossref_primary_10_1016_j_pnpbp_2019_03_016
crossref_primary_10_1016_j_addicn_2023_100066
crossref_primary_10_1038_s41467_024_48577_7
crossref_primary_10_1016_j_tics_2012_01_005
crossref_primary_10_3390_nu6010319
crossref_primary_10_1038_tp_2012_59
crossref_primary_10_1162_jocn_2010_21514
crossref_primary_10_1016_j_neuroimage_2014_04_036
crossref_primary_10_3389_fnins_2016_00137
crossref_primary_10_1038_sj_npp_npp2009124
crossref_primary_10_1111_adb_12505
crossref_primary_10_2174_1570159X16666180426151746
crossref_primary_10_1038_nn_2956
crossref_primary_10_3758_s13415_014_0325_4
crossref_primary_10_3758_s13428_023_02263_6
crossref_primary_10_1177_0956797612463080
crossref_primary_10_1038_s41598_020_76060_y
crossref_primary_10_1093_cercor_bhq145
crossref_primary_10_1371_journal_pone_0279841
crossref_primary_10_1111_j_1749_6632_2011_06290_x
crossref_primary_10_1038_s41467_023_43747_5
crossref_primary_10_1002_aur_1613
crossref_primary_10_1016_j_bandc_2022_105843
crossref_primary_10_1186_s12993_016_0099_7
crossref_primary_10_1017_S1092852913000564
crossref_primary_10_3389_fnbeh_2022_963776
crossref_primary_10_1038_s41598_019_49884_6
crossref_primary_10_1016_j_psc_2018_10_008
crossref_primary_10_3389_fnins_2019_00065
crossref_primary_10_1016_j_cobeha_2021_02_004
crossref_primary_10_1093_cercor_bhs244
crossref_primary_10_1016_j_conb_2010_03_001
crossref_primary_10_1016_j_jecp_2011_08_008
crossref_primary_10_1097_WNN_0b013e318192cce0
crossref_primary_10_1073_pnas_1002258107
crossref_primary_10_3758_s13420_016_0226_1
crossref_primary_10_1162_jocn_a_00953
crossref_primary_10_1523_ENEURO_0382_17_2018
crossref_primary_10_1523_JNEUROSCI_2033_15_2016
crossref_primary_10_1523_JNEUROSCI_3080_12_2012
crossref_primary_10_1016_j_cobeha_2015_06_004
crossref_primary_10_1016_j_cub_2019_10_058
crossref_primary_10_1038_nn_3561
crossref_primary_10_3389_fpsyt_2014_00052
crossref_primary_10_1196_annals_1401_036
crossref_primary_10_1159_000362840
crossref_primary_10_3758_s13415_014_0288_5
crossref_primary_10_1038_s41467_019_08662_8
crossref_primary_10_1523_JNEUROSCI_2532_12_2013
crossref_primary_10_1146_annurev_psych_010416_044216
crossref_primary_10_1016_j_neuroimage_2014_12_071
crossref_primary_10_1152_jn_00086_2014
crossref_primary_10_1007_s11055_023_01413_9
crossref_primary_10_1016_j_nicl_2024_103676
crossref_primary_10_1111_j_1460_9568_2010_07438_x
crossref_primary_10_1016_j_beproc_2018_10_014
crossref_primary_10_1111_jnc_15342
crossref_primary_10_1016_j_neubiorev_2009_11_015
crossref_primary_10_1016_j_cortex_2015_11_004
crossref_primary_10_1016_j_conb_2012_08_003
crossref_primary_10_1523_JNEUROSCI_3751_09_2009
crossref_primary_10_1016_j_biopsycho_2012_02_016
crossref_primary_10_1371_journal_pcbi_1007443
crossref_primary_10_1016_j_firesaf_2022_103539
crossref_primary_10_1016_j_pnpbp_2018_01_010
crossref_primary_10_1177_02698811211044679
crossref_primary_10_1007_s11940_007_0021_6
crossref_primary_10_1016_j_bpsc_2022_08_014
crossref_primary_10_1016_j_cobeha_2017_12_005
crossref_primary_10_1038_nn_4080
crossref_primary_10_1016_j_neuroimage_2012_12_003
crossref_primary_10_1111_gbb_12489
crossref_primary_10_1523_JNEUROSCI_1677_16_2016
crossref_primary_10_7554_eLife_67517
crossref_primary_10_1093_cercor_bhw067
crossref_primary_10_1111_jere_12016
crossref_primary_10_1523_ENEURO_0240_18_2018
crossref_primary_10_3389_fpsyg_2017_01333
crossref_primary_10_1196_annals_1401_017
crossref_primary_10_3945_ajcn_112_053801
crossref_primary_10_1038_ncomms3264
crossref_primary_10_1523_JNEUROSCI_1639_09_2009
crossref_primary_10_1016_j_neubiorev_2022_104826
crossref_primary_10_1016_j_cub_2019_12_007
crossref_primary_10_1111_j_1460_9568_2008_06202_x
crossref_primary_10_1016_j_cortex_2019_08_002
crossref_primary_10_1016_j_neuron_2018_12_029
crossref_primary_10_1073_pnas_1922273117
crossref_primary_10_1016_j_physbeh_2013_03_025
crossref_primary_10_1523_JNEUROSCI_3304_11_2011
crossref_primary_10_1002_brb3_1240
crossref_primary_10_1016_j_neuron_2012_09_005
crossref_primary_10_1521_soco_2008_26_5_593
crossref_primary_10_1111_ejn_13961
crossref_primary_10_1016_j_psyneuen_2016_12_008
crossref_primary_10_1038_s42003_024_07253_8
crossref_primary_10_1159_000362838
crossref_primary_10_1016_j_neuron_2021_12_018
crossref_primary_10_1523_JNEUROSCI_3473_16_2017
crossref_primary_10_1371_journal_pcbi_1008552
crossref_primary_10_1162_jocn_a_00709
crossref_primary_10_1007_s00213_019_05330_z
crossref_primary_10_1016_j_cobeha_2021_03_027
crossref_primary_10_1007_s11229_018_1712_0
crossref_primary_10_1016_j_cobeha_2017_09_012
crossref_primary_10_1523_JNEUROSCI_4146_13_2014
crossref_primary_10_3389_fncom_2014_00170
crossref_primary_10_1016_j_neunet_2015_08_006
crossref_primary_10_1016_j_biopsych_2014_06_005
crossref_primary_10_1017_S0033291719001429
crossref_primary_10_1073_pnas_1609094113
crossref_primary_10_1111_nyas_13356
crossref_primary_10_1016_j_neuroimage_2008_08_021
crossref_primary_10_1016_j_neunet_2009_03_004
crossref_primary_10_1016_j_biopsych_2007_11_014
crossref_primary_10_1371_journal_pcbi_1006316
crossref_primary_10_1016_j_brat_2023_104417
crossref_primary_10_1016_j_cub_2010_08_048
crossref_primary_10_1089_brain_2013_0184
crossref_primary_10_1111_j_1460_9568_2012_08211_x
crossref_primary_10_1038_s41598_020_61892_5
crossref_primary_10_1038_s41598_018_27678_6
crossref_primary_10_1016_j_conb_2011_02_009
crossref_primary_10_1177_02698811231216325
crossref_primary_10_1523_JNEUROSCI_0979_09_2009
crossref_primary_10_1016_j_bandc_2021_105754
crossref_primary_10_1016_j_neuroimage_2009_06_007
crossref_primary_10_1038_mp_2014_44
crossref_primary_10_3389_fnhum_2014_00587
crossref_primary_10_1177_1362361313477919
crossref_primary_10_1016_j_eurpsy_2017_08_001
crossref_primary_10_1016_j_neuron_2012_09_027
crossref_primary_10_1371_journal_pbio_3000951
crossref_primary_10_1111_ejn_12897
crossref_primary_10_1111_adb_12009
crossref_primary_10_1016_j_neuroscience_2011_09_065
crossref_primary_10_1038_s41386_020_0600_8
crossref_primary_10_3389_fncom_2022_1060101
crossref_primary_10_1038_s41598_024_72455_3
crossref_primary_10_1111_ejn_16456
crossref_primary_10_1523_JNEUROSCI_2026_09_2009
crossref_primary_10_1016_j_biopsych_2017_04_006
crossref_primary_10_1016_j_ijchp_2024_100531
crossref_primary_10_3389_fnbeh_2021_655029
crossref_primary_10_1016_j_bbr_2010_12_009
crossref_primary_10_3389_fnins_2020_00281
crossref_primary_10_3724_SP_J_1042_2019_01044
crossref_primary_10_1016_j_ijlp_2019_101504
crossref_primary_10_1523_JNEUROSCI_1235_14_2014
crossref_primary_10_1016_j_neuron_2013_04_037
crossref_primary_10_3389_fnhum_2014_00590
crossref_primary_10_1111_acer_13094
crossref_primary_10_1080_02699931_2017_1359017
crossref_primary_10_1177_1073858413499407
crossref_primary_10_1038_mp_2015_46
crossref_primary_10_1111_j_1749_6632_2009_05420_x
crossref_primary_10_1007_BF02938542
crossref_primary_10_1016_j_neulet_2016_02_062
crossref_primary_10_1111_j_1749_6632_2012_06768_x
crossref_primary_10_1038_s41562_018_0527_9
crossref_primary_10_1017_S0033291719000230
crossref_primary_10_3389_fpsyg_2021_683024
crossref_primary_10_5665_sleep_6222
crossref_primary_10_1038_tp_2013_107
crossref_primary_10_1016_j_neubiorev_2014_08_012
crossref_primary_10_1007_s00221_012_3284_4
crossref_primary_10_1007_s00429_014_0893_7
crossref_primary_10_1111_j_1460_9568_2009_06991_x
crossref_primary_10_1523_JNEUROSCI_4374_12_2013
crossref_primary_10_1523_JNEUROSCI_4253_15_2016
crossref_primary_10_1016_j_bbr_2010_12_038
crossref_primary_10_1038_npp_2016_256
crossref_primary_10_1073_pnas_2016884118
crossref_primary_10_1016_j_neubiorev_2014_05_008
crossref_primary_10_1093_scan_nsw157
crossref_primary_10_1146_annurev_psych_122414_033417
crossref_primary_10_1523_JNEUROSCI_1787_11_2011
crossref_primary_10_1523_JNEUROSCI_3295_11_2011
crossref_primary_10_1111_j_1476_5381_2011_01422_x
crossref_primary_10_1016_j_neuroimage_2014_06_024
crossref_primary_10_3389_fnhum_2022_886600
crossref_primary_10_1016_j_pnpbp_2024_111037
crossref_primary_10_1016_j_neuron_2012_02_038
crossref_primary_10_1007_s13164_020_00490_w
crossref_primary_10_1007_s40429_020_00324_w
crossref_primary_10_1038_s41539_023_00206_6
crossref_primary_10_1016_j_cobeha_2021_04_019
crossref_primary_10_1080_17470218_2015_1062527
crossref_primary_10_1016_j_psyneuen_2021_105596
crossref_primary_10_1523_JNEUROSCI_1556_07_2007
crossref_primary_10_1523_JNEUROSCI_1500_09_2009
crossref_primary_10_3758_s13415_015_0347_6
crossref_primary_10_1016_j_neubiorev_2013_06_013
crossref_primary_10_1007_s00213_017_4655_0
crossref_primary_10_3758_s13415_021_00904_x
crossref_primary_10_1016_j_bbr_2011_10_042
crossref_primary_10_3389_fnsys_2019_00028
crossref_primary_10_1073_pnas_1307925110
crossref_primary_10_1007_s40501_015_0056_3
crossref_primary_10_1016_j_neuron_2019_01_046
crossref_primary_10_1016_j_neuroscience_2014_07_021
crossref_primary_10_3389_fpsyg_2016_01821
crossref_primary_10_1016_j_conctc_2024_101414
crossref_primary_10_1038_s41398_024_02965_1
crossref_primary_10_1111_j_1460_9568_2009_06796_x
crossref_primary_10_1162_jocn_a_01088
crossref_primary_10_1016_j_foodres_2014_12_034
crossref_primary_10_1038_s41598_018_21449_z
crossref_primary_10_1016_j_neuroscience_2016_07_030
crossref_primary_10_1093_brain_awy123
crossref_primary_10_1016_j_tics_2012_07_007
crossref_primary_10_1111_j_1460_9568_2009_06992_x
crossref_primary_10_1016_j_neuron_2013_04_008
crossref_primary_10_1371_journal_pcbi_1004463
crossref_primary_10_1523_JNEUROSCI_1234_09_2009
crossref_primary_10_1126_science_1168450
crossref_primary_10_5674_jjppp_28_45
crossref_primary_10_1093_scan_nsw012
crossref_primary_10_1016_j_cobeha_2017_08_011
crossref_primary_10_1007_s40429_016_0089_8
crossref_primary_10_3758_s13420_023_00573_5
crossref_primary_10_1002_hipo_22175
crossref_primary_10_1016_j_jmp_2008_12_005
crossref_primary_10_1038_srep31378
crossref_primary_10_1016_j_pneurobio_2011_01_006
crossref_primary_10_1016_j_neuron_2013_09_007
crossref_primary_10_1016_j_neuropsychologia_2022_108142
crossref_primary_10_1038_s41467_019_13261_8
crossref_primary_10_1523_JNEUROSCI_3354_10_2011
crossref_primary_10_1016_j_geb_2016_05_001
crossref_primary_10_1016_j_neuroimage_2020_116834
crossref_primary_10_1002_hipo_22179
crossref_primary_10_3389_fphar_2024_1405446
crossref_primary_10_1162_jocn_a_01655
crossref_primary_10_1016_j_biopsych_2017_09_026
crossref_primary_10_1016_j_neuropharm_2013_05_033
crossref_primary_10_1007_s00213_021_05890_z
crossref_primary_10_3758_s13420_018_0313_6
crossref_primary_10_1523_JNEUROSCI_4677_14_2015
crossref_primary_10_1016_j_neubiorev_2019_12_025
crossref_primary_10_1016_j_physbeh_2012_03_023
crossref_primary_10_1016_j_nlm_2020_107319
crossref_primary_10_1038_s41467_020_16385_4
crossref_primary_10_1016_j_cognition_2013_12_002
crossref_primary_10_1002_jnr_24594
crossref_primary_10_1371_journal_pcbi_1011692
crossref_primary_10_1523_JNEUROSCI_4647_10_2011
crossref_primary_10_1016_j_biopsych_2013_02_002
crossref_primary_10_1016_j_neuron_2013_11_028
crossref_primary_10_1038_srep32477
crossref_primary_10_3758_s13420_011_0030_x
crossref_primary_10_1016_j_neuroimage_2023_120170
crossref_primary_10_1371_journal_pone_0234424
crossref_primary_10_1007_s00426_009_0230_6
crossref_primary_10_1111_j_1460_9568_2011_07920_x
crossref_primary_10_3389_fnbeh_2016_00213
crossref_primary_10_1523_JNEUROSCI_4461_10_2011
crossref_primary_10_1152_jn_00180_2020
crossref_primary_10_1016_j_neuroimage_2017_09_062
crossref_primary_10_1177_1073858414568317
crossref_primary_10_1007_s11920_025_01588_7
crossref_primary_10_1038_nn_3068
crossref_primary_10_3389_fnins_2019_00915
crossref_primary_10_1111_j_1460_9568_2009_06834_x
crossref_primary_10_1016_j_jasrep_2015_11_002
crossref_primary_10_1038_npp_2013_55
crossref_primary_10_1038_srep29079
crossref_primary_10_1016_j_conb_2008_08_003
crossref_primary_10_1111_j_1369_1600_2009_00193_x
crossref_primary_10_1162_jocn_a_01990
crossref_primary_10_31083_j_jin_2019_03_141
crossref_primary_10_1016_j_molmet_2012_06_002
crossref_primary_10_1038_s41467_017_02615_9
crossref_primary_10_1002_hipo_23167
crossref_primary_10_1016_j_cortex_2020_02_009
crossref_primary_10_3389_fnins_2015_00188
crossref_primary_10_1016_j_pnpbp_2017_06_029
crossref_primary_10_1038_nn_2635
crossref_primary_10_1098_rsos_220226
crossref_primary_10_1162_jocn_a_00425
crossref_primary_10_1016_j_neuropsychologia_2015_10_035
crossref_primary_10_1016_j_nlm_2013_11_003
crossref_primary_10_1111_acer_14441
crossref_primary_10_1080_17470218_2010_518242
crossref_primary_10_1016_j_psyneuen_2009_12_010
crossref_primary_10_1038_npp_2009_131
Cites_doi 10.3758/BF03209051
10.1136/jnnp.57.12.1518
10.1016/S0896-6273(02)00963-7
10.1038/nn1314
10.1371/journal.pbio.0040233
10.1007/BF00235545
10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#
10.1523/JNEUROSCI.23-21-07931.2003
10.1126/science.1087919
10.1016/S0028-3908(98)00033-1
10.1016/j.bbr.2003.09.023
10.1016/j.neuron.2006.06.032
10.1097/00001756-200003200-00046
10.1038/nn1279
10.1093/brain/awg168
10.1038/nature04676
10.1126/science.1094285
10.1016/j.neuron.2005.07.018
10.1093/brain/awg180
10.1126/science.1084204
10.1523/JNEUROSCI.1921-05.2005
10.1016/0010-0277(94)90018-3
10.1098/rstb.1985.0010
10.1016/0306-4522(94)90592-4
10.1093/cercor/13.4.400
10.1038/nn1339
10.1111/j.1460-9568.2005.04218.x
10.1017/S0033291700049163
10.1016/S0896-6273(03)00474-4
10.1038/nn1560
10.1016/S1053-8119(03)00073-9
10.3758/BF03199935
10.1016/S0896-6273(02)00603-7
10.1016/j.neuron.2006.06.027
10.1080/14640748208400878
10.1111/j.1460-9568.2004.03095.x
10.1523/JNEUROSCI.20-11-04311.2000
10.1037/0097-7403.11.4.520
10.1037/0097-7403.30.2.104
10.1093/cercor/10.3.295
10.1038/19525
10.1038/nature04766
10.1523/JNEUROSCI.1921-04.2004
10.1523/JNEUROSCI.23-29-09632.2003
10.3758/BF03199161
ContentType Journal Article
Copyright Copyright © 2007 Society for Neuroscience 0270-6474/07/274019-08$15.00/0 2007
Copyright_xml – notice: Copyright © 2007 Society for Neuroscience 0270-6474/07/274019-08$15.00/0 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.0564-07.2007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 4026
ExternalDocumentID PMC6672546
17428979
10_1523_JNEUROSCI_0564_07_2007
www27_15_4019
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R03MH075763
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c541t-1549b946cf35832c74e95a84b14c29e4559c46df685ed31ee869e23cb55aa8fd3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:07:13 EDT 2025
Fri Jul 11 16:25:46 EDT 2025
Fri Jul 11 16:51:07 EDT 2025
Thu Apr 03 07:00:00 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 02:58:44 EDT 2025
Tue Nov 10 19:47:17 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-1549b946cf35832c74e95a84b14c29e4559c46df685ed31ee869e23cb55aa8fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.jneurosci.org/content/jneuro/27/15/4019.full.pdf
PMID 17428979
PQID 19656299
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6672546
proquest_miscellaneous_70372737
proquest_miscellaneous_19656299
pubmed_primary_17428979
crossref_citationtrail_10_1523_JNEUROSCI_0564_07_2007
crossref_primary_10_1523_JNEUROSCI_0564_07_2007
highwire_smallpub1_www27_15_4019
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-11
PublicationDateYYYYMMDD 2007-04-11
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2007
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041303245099000_27.15.4019.16
2023041303245099000_27.15.4019.38
2023041303245099000_27.15.4019.39
2023041303245099000_27.15.4019.14
2023041303245099000_27.15.4019.36
2023041303245099000_27.15.4019.15
2023041303245099000_27.15.4019.37
2023041303245099000_27.15.4019.18
2023041303245099000_27.15.4019.19
2023041303245099000_27.15.4019.31
Balleine (2023041303245099000_27.15.4019.4) 1998; 26
2023041303245099000_27.15.4019.12
2023041303245099000_27.15.4019.34
2023041303245099000_27.15.4019.13
O'Doherty (2023041303245099000_27.15.4019.32) 2000; 11
2023041303245099000_27.15.4019.35
2023041303245099000_27.15.4019.11
2023041303245099000_27.15.4019.33
O'Doherty (2023041303245099000_27.15.4019.30) 2003; 23
Thorpe (2023041303245099000_27.15.4019.41) 1983; 49
2023041303245099000_27.15.4019.9
2023041303245099000_27.15.4019.6
Baxter (2023041303245099000_27.15.4019.5) 2000; 20
2023041303245099000_27.15.4019.7
2023041303245099000_27.15.4019.8
Adams (2023041303245099000_27.15.4019.1) 1982; 34B
2023041303245099000_27.15.4019.27
2023041303245099000_27.15.4019.28
2023041303245099000_27.15.4019.3
Dickinson (2023041303245099000_27.15.4019.17) 1995; 23
2023041303245099000_27.15.4019.25
2023041303245099000_27.15.4019.26
2023041303245099000_27.15.4019.29
2023041303245099000_27.15.4019.20
2023041303245099000_27.15.4019.42
2023041303245099000_27.15.4019.40
2023041303245099000_27.15.4019.23
2023041303245099000_27.15.4019.45
Colwill (2023041303245099000_27.15.4019.10) 1988; 16
2023041303245099000_27.15.4019.24
2023041303245099000_27.15.4019.43
2023041303245099000_27.15.4019.22
2023041303245099000_27.15.4019.44
Garner (2023041303245099000_27.15.4019.21) 1982; 12
Arana (2023041303245099000_27.15.4019.2) 2003; 23
References_xml – volume: 16
  start-page: 105
  year: 1988
  ident: 2023041303245099000_27.15.4019.10
  article-title: The role of response-reinforcer associations increases throughout extended instrumental training
  publication-title: Anim Learn Behav
  doi: 10.3758/BF03209051
– ident: 2023041303245099000_27.15.4019.37
  doi: 10.1136/jnnp.57.12.1518
– ident: 2023041303245099000_27.15.4019.14
  doi: 10.1016/S0896-6273(02)00963-7
– ident: 2023041303245099000_27.15.4019.22
  doi: 10.1038/nn1314
– ident: 2023041303245099000_27.15.4019.28
  doi: 10.1371/journal.pbio.0040233
– volume: 49
  start-page: 93
  year: 1983
  ident: 2023041303245099000_27.15.4019.41
  article-title: The orbitofrontal cortex: neuronal activity in the behaving monkey
  publication-title: Exp Brain Res
  doi: 10.1007/BF00235545
– ident: 2023041303245099000_27.15.4019.8
  doi: 10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#
– volume: 23
  start-page: 7931
  year: 2003
  ident: 2023041303245099000_27.15.4019.30
  article-title: Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-21-07931.2003
– ident: 2023041303245099000_27.15.4019.23
  doi: 10.1126/science.1087919
– ident: 2023041303245099000_27.15.4019.3
  doi: 10.1016/S0028-3908(98)00033-1
– ident: 2023041303245099000_27.15.4019.11
  doi: 10.1016/j.bbr.2003.09.023
– ident: 2023041303245099000_27.15.4019.18
  doi: 10.1016/j.neuron.2006.06.032
– volume: 11
  start-page: 893
  year: 2000
  ident: 2023041303245099000_27.15.4019.32
  article-title: Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex
  publication-title: NeuroReport
  doi: 10.1097/00001756-200003200-00046
– ident: 2023041303245099000_27.15.4019.40
  doi: 10.1038/nn1279
– ident: 2023041303245099000_27.15.4019.25
  doi: 10.1093/brain/awg168
– ident: 2023041303245099000_27.15.4019.35
  doi: 10.1038/nature04676
– ident: 2023041303245099000_27.15.4019.31
  doi: 10.1126/science.1094285
– ident: 2023041303245099000_27.15.4019.38
  doi: 10.1016/j.neuron.2005.07.018
– ident: 2023041303245099000_27.15.4019.19
  doi: 10.1093/brain/awg180
– ident: 2023041303245099000_27.15.4019.29
  doi: 10.1126/science.1084204
– ident: 2023041303245099000_27.15.4019.34
  doi: 10.1523/JNEUROSCI.1921-05.2005
– ident: 2023041303245099000_27.15.4019.6
  doi: 10.1016/0010-0277(94)90018-3
– ident: 2023041303245099000_27.15.4019.16
  doi: 10.1098/rstb.1985.0010
– ident: 2023041303245099000_27.15.4019.20
  doi: 10.1016/0306-4522(94)90592-4
– ident: 2023041303245099000_27.15.4019.27
  doi: 10.1093/cercor/13.4.400
– ident: 2023041303245099000_27.15.4019.43
  doi: 10.1038/nn1339
– ident: 2023041303245099000_27.15.4019.45
  doi: 10.1111/j.1460-9568.2005.04218.x
– volume: 12
  start-page: 871
  year: 1982
  ident: 2023041303245099000_27.15.4019.21
  article-title: The eating attitudes test: psychometric features and clinical correlates
  publication-title: Psychol Med
  doi: 10.1017/S0033291700049163
– ident: 2023041303245099000_27.15.4019.39
  doi: 10.1016/S0896-6273(03)00474-4
– ident: 2023041303245099000_27.15.4019.12
  doi: 10.1038/nn1560
– ident: 2023041303245099000_27.15.4019.15
  doi: 10.1016/S1053-8119(03)00073-9
– volume: 23
  start-page: 197
  year: 1995
  ident: 2023041303245099000_27.15.4019.17
  article-title: Motivational control after extended instrumental training
  publication-title: Anim Learn Behav
  doi: 10.3758/BF03199935
– ident: 2023041303245099000_27.15.4019.33
  doi: 10.1016/S0896-6273(02)00603-7
– ident: 2023041303245099000_27.15.4019.36
  doi: 10.1016/j.neuron.2006.06.027
– volume: 34B
  start-page: 77
  year: 1982
  ident: 2023041303245099000_27.15.4019.1
  article-title: Variations in the sensitivity of instrumental responding to reinforcer devaluation
  publication-title: Q J Exp Psychol
  doi: 10.1080/14640748208400878
– ident: 2023041303245099000_27.15.4019.44
  doi: 10.1111/j.1460-9568.2004.03095.x
– volume: 20
  start-page: 4311
  year: 2000
  ident: 2023041303245099000_27.15.4019.5
  article-title: Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-11-04311.2000
– ident: 2023041303245099000_27.15.4019.9
  doi: 10.1037/0097-7403.11.4.520
– ident: 2023041303245099000_27.15.4019.24
  doi: 10.1037/0097-7403.30.2.104
– ident: 2023041303245099000_27.15.4019.7
  doi: 10.1093/cercor/10.3.295
– ident: 2023041303245099000_27.15.4019.42
  doi: 10.1038/19525
– ident: 2023041303245099000_27.15.4019.13
  doi: 10.1038/nature04766
– ident: 2023041303245099000_27.15.4019.26
  doi: 10.1523/JNEUROSCI.1921-04.2004
– volume: 23
  start-page: 9632
  year: 2003
  ident: 2023041303245099000_27.15.4019.2
  article-title: Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-29-09632.2003
– volume: 26
  start-page: 46
  year: 1998
  ident: 2023041303245099000_27.15.4019.4
  article-title: The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety
  publication-title: Anim Learn Behav
  doi: 10.3758/BF03199161
SSID ssj0007017
Score 2.4340303
Snippet Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4019
SubjectTerms Adult
Brain - physiology
Brain Mapping - methods
Citrus
Extinction, Psychological - physiology
Female
Goals
Humans
Learning - physiology
Lycopersicon esculentum
Male
Neurons - physiology
Psychomotor Performance - physiology
Title Determining the Neural Substrates of Goal-Directed Learning in the Human Brain
URI http://www.jneurosci.org/cgi/content/abstract/27/15/4019
https://www.ncbi.nlm.nih.gov/pubmed/17428979
https://www.proquest.com/docview/19656299
https://www.proquest.com/docview/70372737
https://pubmed.ncbi.nlm.nih.gov/PMC6672546
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcuHCAOURnjow3JzGtiTbx9IAbWFy6WN608iyPM2Q2B2akIH_wn9lV5IduxOmwMWTcexkne_LaldafUvI2xJ9XqxVYCDnCRhXLEjLeByoIi40WM5Cbat8p-LwjB1f8IvB4Fenamm1zEf659Z9Jf-DKpwDXHGX7D8g234onIDXgC8cAWE4_hXGE1_L0mx5QqUNVPcAZ2BFZ22ZxqdazQPn2SC4_NJMhfj6RjeJ_x4bRXTj1M2OMRurdlQvWyKcKxywnATB-ew7Ooq2YHYy01_bbWVen6BbXjOpL1HTt6kF9pvMmsmHBNdRws3kw0mt7aP1LHDOK0ogLWWuA8_IeOca2dWcsOt9nTJAwzLe8aVwYbbVyXMrNnE8xVrHk4OjEcRwLBgnVlagewOAdbWw0EPaBYml61rT19y-MRa2FYrr9TpKZMglWnGH3I0gC8EGGZOjz-1An4xtQ-f2Uf0GdDBvb7txqFDrLemHQY009bY052a1bif8OX1A7nsu0H1HwodkYKpHZHe_Ust68YO-o7aS2C7R7JJph5cUSEYdL-mGl7QuaY-XtOElnVX2FstLann5mJx9_HB6cBj4vh2B5ixcBqj6l2dM6DLmMGDohJmMq5TlIdNRZhgksZqJohQpN0UcGpOKzESxzjlXKi2L-AnZqerKPCM0L8JUiXFuINBlEE3mJmVRVAjBi4xnKRsS3vyMUntRe-ytMpeY3AISskVCIhJynGDj1WRI9tr7rpysy6130AYleb1Q8zmAEsoeTYbkTYOeBCeNK2-qMvXqWqJsp4DA789XwMCLmQR8zVOH9sYsz5ghSXo8aC9Agfj-O9Xs0grFC5Fgu4vnt5v-gtzb_L1fkp3lt5V5BdH2Mn9tOf8bHvnRyA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+Neural+Substrates+of+Goal-Directed+Learning+in+the+Human+Brain&rft.jtitle=The+Journal+of+neuroscience&rft.au=Valentin%2C+Vivian+V&rft.au=Dickinson%2C+Anthony&rft.au=O%27Doherty%2C+John+P&rft.date=2007-04-11&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=27&rft.issue=15&rft.spage=4019&rft_id=info:doi/10.1523%2FJNEUROSCI.0564-07.2007&rft_id=info%3Apmid%2F17428979&rft.externalDBID=n%2Fa&rft.externalDocID=www27_15_4019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon