Identification of tophi in ultrasound imaging based on transfer learning and clinical practice
Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive art...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 12507 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-39508-5 |
Cover
Loading…
Abstract | Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy. |
---|---|
AbstractList | Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy. Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy. Abstract Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy. |
ArticleNumber | 12507 |
Author | Chang, Chi-Ching Peng, Syu-Jyun Lee, Hsiang-Yen Chang, Ching-Kuei Wu, Bing-Fei Lin, Tzu-Min Lin, Ke-Hung |
Author_xml | – sequence: 1 givenname: Tzu-Min surname: Lin fullname: Lin, Tzu-Min organization: Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital – sequence: 2 givenname: Hsiang-Yen surname: Lee fullname: Lee, Hsiang-Yen organization: Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital – sequence: 3 givenname: Ching-Kuei surname: Chang fullname: Chang, Ching-Kuei organization: Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital – sequence: 4 givenname: Ke-Hung surname: Lin fullname: Lin, Ke-Hung organization: Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital – sequence: 5 givenname: Chi-Ching surname: Chang fullname: Chang, Chi-Ching organization: Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital – sequence: 6 givenname: Bing-Fei surname: Wu fullname: Wu, Bing-Fei organization: Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University – sequence: 7 givenname: Syu-Jyun surname: Peng fullname: Peng, Syu-Jyun email: sjpeng2019@tmu.edu.tw organization: Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37532752$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvFSEYhompsbX2D7gwk7hxM8p1gJUxjZeTNHGjWwnDZcoJB44w08R_L-dMrW0XZQPhe96XF_hegpOUkwPgNYLvESTiQ6WISdFDTHoiGRQ9ewbOMKSsxwTjk3vrU3BR6xa2wbCkSL4Ap4QzgjnDZ-DXxro0Bx-MnkNOXfbdnPfXoQupW-JcdM1Lsl3Y6SmkqRt1dbZrXKuk6l3potMlHUq6YSaG1Jxity_azMG4V-C517G6i9v5HPz88vnH5bf-6vvXzeWnq94wiuYeEWqdRVZoh0dvmLYQcsu9Hg6pNSED01hIipnBjljJRiE8IdJxrK1nkJyDzeprs96qfWl5yx-VdVDHjVwmpUsLFJ3CdKCeC04QdlRyK7k0HFMOR8whg7p5fVy99su4c9a09yk6PjB9WEnhWk35RrV_kQfb5vDu1qHk34urs9qFalyMOrm8VIUFZQMbCKQNffsI3ealpPZWB4pKwhhDjXpzP9Jdln__2AC8AqbkWovzdwiCh1xCrf2iWr-oY78o1kTikciE-dgG7VohPi0lq7S2c9Lkyv_YT6j-Alkn04c |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2024_134763 crossref_primary_10_1016_j_ultrasmedbio_2024_12_009 |
Cites_doi | 10.1007/s00296-009-1002-8 10.3389/fmed.2021.589197 10.1016/j.jbspin.2014.03.011 10.1016/j.jacr.2019.06.004 10.1177/1941738116664326 10.1016/j.ultrasmedbio.2015.05.015 10.1016/j.jbspin.2020.09.014 10.1016/j.ultrasmedbio.2017.01.012 10.1109/5.726791 10.1136/ard.2008.099713 10.1016/j.compbiomed.2021.105117 10.1007/s13244-018-0639-9 10.1136/annrheumdis-2015-208237 10.2169/internalmedicine.56.7923 10.3949/ccjm.75.Suppl_5.S5 10.7326/M16-0462 10.1093/rheumatology/kex445 10.1186/s13075-021-02568-x 10.1093/rheumatology/key303 10.1093/rheumatology/keac367 10.1007/s00296-018-4033-1 10.1016/j.imu.2016.06.003 10.1136/annrheumdis-2012-202301 10.3899/jrheum.141164 10.1016/j.semarthrit.2010.09.003 10.1016/j.ultrasmedbio.2017.10.005 10.1016/j.eng.2018.11.020 10.1038/s41584-020-0441-1 10.1136/annrheumdis-2020-217392 10.14366/usg.20080 10.1016/j.semarthrit.2017.09.012 10.1371/journal.pone.0184059 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-39508-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_2464f787312e497d979c72470b27050a PMC10397312 37532752 10_1038_s41598_023_39508_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC 112-2628-E-038-001-MY3 – fundername: Ministry of Education (MOE), Taiwan – fundername: ; – fundername: ; grantid: NSTC 112-2628-E-038-001-MY3 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-134ded1d8ae2bfc5ad007d7fa60005a3365a289425c2e3d95b88f339e72adf503 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 18:42:05 EDT 2025 Fri Jul 11 01:06:45 EDT 2025 Wed Aug 13 04:20:38 EDT 2025 Mon Jul 21 05:57:00 EDT 2025 Tue Jul 01 03:57:10 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Fri Feb 21 02:37:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-134ded1d8ae2bfc5ad007d7fa60005a3365a289425c2e3d95b88f339e72adf503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-39508-5 |
PMID | 37532752 |
PQID | 2844935551 |
PQPubID | 2041939 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2464f787312e497d979c72470b27050a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10397312 proquest_miscellaneous_2845656304 proquest_journals_2844935551 pubmed_primary_37532752 crossref_primary_10_1038_s41598_023_39508_5 crossref_citationtrail_10_1038_s41598_023_39508_5 springer_journals_10_1038_s41598_023_39508_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-02 |
PublicationDateYYYYMMDD | 2023-08-02 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yu, Tan, Sng, Li, Sia (CR23) 2015; 41 Choi (CR16) 2009; 68 Cipolletta (CR31) 2021; 8 Burlina, Billings, Joshi, Albayda (CR20) 2017; 12 Liu (CR29) 2019; 5 Cipolletta, Abhishek, Di Battista, Grassi, Filippucci (CR15) 2023; 62 Stamp (CR32) 2011; 40 Hadjerci (CR25) 2015 Cipolletta (CR13) 2021; 23 Nwawka (CR17) 2016; 8 Mielnik, Fojcik, Segen, Kulbacki (CR22) 2018; 44 Dehlin, Jacobsson, Roddy (CR2) 2020; 16 Quader, Hodgson, Mulpuri, Schaeffer, Abugharbieh (CR21) 2017; 43 Chowalloor, Keen (CR26) 2013; 72 Mandell (CR1) 2008; 75 Shin, Yang, Lee, Kim (CR19) 2021; 40 Garner, Wessell (CR5) 2018; 38 Ebstein (CR14) 2019; 58 Akkus (CR34) 2019; 16 Hayashi (CR3) 2017; 56 Lee, Song (CR18) 2018; 47 Hammer (CR11) 2020; 79 Thiele, Schlesinger (CR8) 2010; 30 Dalbeth, Doyle (CR10) 2018; 57 Perez-Ruiz, Martin, Canteli (CR33) 2007; 34 Lecun, Bottou, Bengio, Haffner (CR27) 1998; 86 Hadjerci (CR24) 2016; 3 Newberry (CR4) 2017; 166 Neogi (CR6) 2015; 74 Grainger (CR9) 2015; 42 Ebstein (CR12) 2020; 87 Ottaviani (CR7) 2015; 82 Yamashita, Nishio, Do, Togashi (CR28) 2018; 9 Fiorentino (CR30) 2022; 141 SJ Newberry (39508_CR4) 2017; 166 P Burlina (39508_CR20) 2017; 12 BF Mandell (39508_CR1) 2008; 75 M Dehlin (39508_CR2) 2020; 16 YH Lee (39508_CR18) 2018; 47 E Ebstein (39508_CR12) 2020; 87 S Yu (39508_CR23) 2015; 41 HB Hammer (39508_CR11) 2020; 79 Z Akkus (39508_CR34) 2019; 16 RG Thiele (39508_CR8) 2010; 30 N Quader (39508_CR21) 2017; 43 S Liu (39508_CR29) 2019; 5 E Cipolletta (39508_CR31) 2021; 8 Y Lecun (39508_CR27) 1998; 86 Y Shin (39508_CR19) 2021; 40 E Cipolletta (39508_CR13) 2021; 23 S Ottaviani (39508_CR7) 2015; 82 F Perez-Ruiz (39508_CR33) 2007; 34 MC Fiorentino (39508_CR30) 2022; 141 N Dalbeth (39508_CR10) 2018; 57 E Cipolletta (39508_CR15) 2023; 62 HW Garner (39508_CR5) 2018; 38 P Mielnik (39508_CR22) 2018; 44 R Yamashita (39508_CR28) 2018; 9 O Hadjerci (39508_CR24) 2016; 3 LK Stamp (39508_CR32) 2011; 40 T Neogi (39508_CR6) 2015; 74 HK Choi (39508_CR16) 2009; 68 PV Chowalloor (39508_CR26) 2013; 72 O Hadjerci (39508_CR25) 2015 RD Hayashi (39508_CR3) 2017; 56 R Grainger (39508_CR9) 2015; 42 E Ebstein (39508_CR14) 2019; 58 OK Nwawka (39508_CR17) 2016; 8 |
References_xml | – volume: 30 start-page: 495 year: 2010 end-page: 503 ident: CR8 article-title: Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved publication-title: Rheumatol. Int. doi: 10.1007/s00296-009-1002-8 – volume: 8 start-page: 589197 year: 2021 ident: CR31 article-title: Artificial intelligence for ultrasound informative image selection of metacarpal head cartilage. A pilot study publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2021.589197 – volume: 82 start-page: 42 year: 2015 end-page: 44 ident: CR7 article-title: Ultrasound in gout: A useful tool for following urate-lowering therapy publication-title: Jt. Bone Spine doi: 10.1016/j.jbspin.2014.03.011 – volume: 16 start-page: 1318 year: 2019 end-page: 1328 ident: CR34 article-title: A survey of deep-learning applications in ultrasound: Artificial intelligence-powered ultrasound for improving clinical workflow publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2019.06.004 – volume: 8 start-page: 429 year: 2016 end-page: 437 ident: CR17 article-title: Update in musculoskeletal ultrasound research publication-title: Sports Health doi: 10.1177/1941738116664326 – volume: 41 start-page: 2677 year: 2015 end-page: 2689 ident: CR23 article-title: Lumbar ultrasound image feature extraction and classification with support vector machine publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2015.05.015 – volume: 87 start-page: 647 year: 2020 end-page: 651 ident: CR12 article-title: UltraSound evaluation in follow-up of urate-lowering therapy in gout phase 2 (USEFUL-2): Duration of flare prophylaxis publication-title: Jt. Bone Spine doi: 10.1016/j.jbspin.2020.09.014 – volume: 43 start-page: 1252 year: 2017 end-page: 1262 ident: CR21 article-title: Automatic evaluation of scan adequacy and dysplasia metrics in 2-D ultrasound images of the neonatal hip publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2017.01.012 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR27 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 68 start-page: 1609 year: 2009 end-page: 1612 ident: CR16 article-title: Dual energy computed tomography in tophaceous gout publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.2008.099713 – year: 2015 ident: CR25 publication-title: Nerve Localization by Machine Learning Framework with New Feature Selection Algorithm (Image Analysis and Processing—ICIAP 20 – volume: 141 start-page: 105117 year: 2022 ident: CR30 article-title: A deep-learning framework for metacarpal-head cartilage-thickness estimation in ultrasound rheumatological images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105117 – volume: 9 start-page: 611 year: 2018 end-page: 629 ident: CR28 article-title: Convolutional neural networks: An overview and application in radiology publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – volume: 74 start-page: 1789 year: 2015 end-page: 1798 ident: CR6 article-title: 2015 Gout classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2015-208237 – volume: 56 start-page: 1071 year: 2017 end-page: 1077 ident: CR3 article-title: Multiple gouty tophi with bone erosion and destruction: A report of an early-onset case in an obese patient publication-title: Intern. Med. doi: 10.2169/internalmedicine.56.7923 – volume: 75 start-page: S5 issue: Suppl 5 year: 2008 end-page: 8 ident: CR1 article-title: Clinical manifestations of hyperuricemia and gout publication-title: Clevel. Clin. J. Med. doi: 10.3949/ccjm.75.Suppl_5.S5 – volume: 166 start-page: 27 year: 2017 end-page: 36 ident: CR4 article-title: Diagnosis of gout: A systematic review in support of an American college of physicians clinical practice guideline publication-title: Ann. Intern. Med. doi: 10.7326/M16-0462 – volume: 57 start-page: i27 year: 2018 end-page: i34 ident: CR10 article-title: Imaging tools to measure treatment response in gout publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/kex445 – volume: 23 start-page: 1 year: 2021 end-page: 10 ident: CR13 article-title: Sonographic estimation of monosodium urate burden predicts the fulfillment of the 2016 remission criteria for gout: A 12-month study publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-021-02568-x – volume: 58 start-page: 410 year: 2019 end-page: 417 ident: CR14 article-title: Ultrasound evaluation in follow-up of urate-lowering therapy in gout: The USEFUL study publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/key303 – volume: 62 start-page: 1108 year: 2023 end-page: 1116 ident: CR15 article-title: Ultrasonography in the prediction of gout flares: A 12-month prospective observational study publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/keac367 – volume: 38 start-page: 1339 year: 2018 end-page: 1344 ident: CR5 article-title: Current status of ultrasound and dual-energy computed tomography in the evaluation of gout publication-title: Rheumatol. Int. doi: 10.1007/s00296-018-4033-1 – volume: 3 start-page: 29 year: 2016 end-page: 43 ident: CR24 article-title: Computer-aided detection system for nerve identification using ultrasound images: A comparative study publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2016.06.003 – volume: 72 start-page: 638 year: 2013 end-page: 645 ident: CR26 article-title: A systematic review of ultrasonography in gout and asymptomatic hyperuricaemia publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2012-202301 – volume: 42 start-page: 2460 year: 2015 end-page: 2464 ident: CR9 article-title: Imaging as an outcome measure in gout studies: Report from the OMERACT gout working group publication-title: J. Rheumatol. doi: 10.3899/jrheum.141164 – volume: 40 start-page: 483 year: 2011 end-page: 500 ident: CR32 article-title: Serum urate as a soluble biomarker in chronic gout-evidence that serum urate fulfills the OMERACT validation criteria for soluble biomarkers publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2010.09.003 – volume: 44 start-page: 489 year: 2018 end-page: 494 ident: CR22 article-title: A novel method of synovitis stratification in ultrasound using machine learning algorithms: Results from clinical validation of the MEDUSA project publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2017.10.005 – volume: 5 start-page: 261 year: 2019 end-page: 275 ident: CR29 article-title: Deep learning in medical ultrasound analysis: A review publication-title: Engineering doi: 10.1016/j.eng.2018.11.020 – volume: 16 start-page: 380 year: 2020 end-page: 390 ident: CR2 article-title: Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-020-0441-1 – volume: 34 start-page: 1888 year: 2007 end-page: 1893 ident: CR33 article-title: Ultrasonographic measurement of tophi as an outcome measure for chronic gout publication-title: J. Rheumatol. – volume: 79 start-page: 1500 year: 2020 end-page: 1505 ident: CR11 article-title: Ultrasound shows rapid reduction of crystal depositions during a treat-to-target approach in gout patients: 12-month results from the NOR-Gout study publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2020-217392 – volume: 40 start-page: 30 year: 2021 end-page: 44 ident: CR19 article-title: Artificial intelligence in musculoskeletal ultrasound imaging publication-title: Ultrasonography doi: 10.14366/usg.20080 – volume: 47 start-page: 703 year: 2018 end-page: 709 ident: CR18 article-title: Diagnostic accuracy of ultrasound in patients with gout: A meta-analysis publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2017.09.012 – volume: 12 start-page: e0184059 year: 2017 ident: CR20 article-title: Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods publication-title: PLoS ONE doi: 10.1371/journal.pone.0184059 – volume: 72 start-page: 638 year: 2013 ident: 39508_CR26 publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2012-202301 – volume: 74 start-page: 1789 year: 2015 ident: 39508_CR6 publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2015-208237 – volume: 43 start-page: 1252 year: 2017 ident: 39508_CR21 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2017.01.012 – volume: 8 start-page: 589197 year: 2021 ident: 39508_CR31 publication-title: Front. Med. (Lausanne) doi: 10.3389/fmed.2021.589197 – volume: 82 start-page: 42 year: 2015 ident: 39508_CR7 publication-title: Jt. Bone Spine doi: 10.1016/j.jbspin.2014.03.011 – volume: 8 start-page: 429 year: 2016 ident: 39508_CR17 publication-title: Sports Health doi: 10.1177/1941738116664326 – volume: 16 start-page: 380 year: 2020 ident: 39508_CR2 publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-020-0441-1 – volume: 75 start-page: S5 issue: Suppl 5 year: 2008 ident: 39508_CR1 publication-title: Clevel. Clin. J. Med. doi: 10.3949/ccjm.75.Suppl_5.S5 – volume: 57 start-page: i27 year: 2018 ident: 39508_CR10 publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/kex445 – volume: 30 start-page: 495 year: 2010 ident: 39508_CR8 publication-title: Rheumatol. Int. doi: 10.1007/s00296-009-1002-8 – volume: 42 start-page: 2460 year: 2015 ident: 39508_CR9 publication-title: J. Rheumatol. doi: 10.3899/jrheum.141164 – volume: 58 start-page: 410 year: 2019 ident: 39508_CR14 publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/key303 – volume: 5 start-page: 261 year: 2019 ident: 39508_CR29 publication-title: Engineering doi: 10.1016/j.eng.2018.11.020 – volume: 44 start-page: 489 year: 2018 ident: 39508_CR22 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2017.10.005 – volume: 87 start-page: 647 year: 2020 ident: 39508_CR12 publication-title: Jt. Bone Spine doi: 10.1016/j.jbspin.2020.09.014 – volume: 34 start-page: 1888 year: 2007 ident: 39508_CR33 publication-title: J. Rheumatol. – volume: 141 start-page: 105117 year: 2022 ident: 39508_CR30 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105117 – volume: 38 start-page: 1339 year: 2018 ident: 39508_CR5 publication-title: Rheumatol. Int. doi: 10.1007/s00296-018-4033-1 – volume: 166 start-page: 27 year: 2017 ident: 39508_CR4 publication-title: Ann. Intern. Med. doi: 10.7326/M16-0462 – volume: 9 start-page: 611 year: 2018 ident: 39508_CR28 publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – volume: 12 start-page: e0184059 year: 2017 ident: 39508_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0184059 – volume-title: Nerve Localization by Machine Learning Framework with New Feature Selection Algorithm (Image Analysis and Processing—ICIAP 20 year: 2015 ident: 39508_CR25 – volume: 79 start-page: 1500 year: 2020 ident: 39508_CR11 publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2020-217392 – volume: 56 start-page: 1071 year: 2017 ident: 39508_CR3 publication-title: Intern. Med. doi: 10.2169/internalmedicine.56.7923 – volume: 47 start-page: 703 year: 2018 ident: 39508_CR18 publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2017.09.012 – volume: 40 start-page: 483 year: 2011 ident: 39508_CR32 publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2010.09.003 – volume: 16 start-page: 1318 year: 2019 ident: 39508_CR34 publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2019.06.004 – volume: 86 start-page: 2278 year: 1998 ident: 39508_CR27 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 3 start-page: 29 year: 2016 ident: 39508_CR24 publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2016.06.003 – volume: 40 start-page: 30 year: 2021 ident: 39508_CR19 publication-title: Ultrasonography doi: 10.14366/usg.20080 – volume: 41 start-page: 2677 year: 2015 ident: 39508_CR23 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2015.05.015 – volume: 62 start-page: 1108 year: 2023 ident: 39508_CR15 publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/keac367 – volume: 68 start-page: 1609 year: 2009 ident: 39508_CR16 publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.2008.099713 – volume: 23 start-page: 1 year: 2021 ident: 39508_CR13 publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-021-02568-x |
SSID | ssj0000529419 |
Score | 2.428107 |
Snippet | Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute... Abstract Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12507 |
SubjectTerms | 631/250 692/4023 Arthritis Arthritis, Gouty Computed tomography Crystals Gout Gout - diagnostic imaging Humanities and Social Sciences Humans Inflammation Machine Learning Metabolic disorders multidisciplinary Neural networks Reproducibility of Results Rheumatism Science Science (multidisciplinary) Tomography Tomography, X-Ray Computed - methods Transfer learning Ultrasonic imaging Ultrasonography - methods Ultrasound Uric acid Uric Acid - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJSQuiFIeSwsyEjdY1evH2j4Coqo4cKJST1hePyBS2aAmOfTfd8beDQ3PS29RdjYazUMzE3u-j5BXUKR7A5W4jb2HAUUa2Q4myDYzlTJ8QhoRvG3xqT89kx_P1fkNqi-8E1bhgavhjrnsZYaoEh1P0upotQ2aS80GrplipTWCmndjmKqo3tzKzk5bMkyY4xVUKtwm46IVyHzaqp1KVAD7_9Rl_n5Z8pcT01KITh6Q-1MHSd9WzffJnTQ-JHcrp-TVAflSV2_z9F8cXWaK2AELuhjp5gJ-e4VESnTxvdATUaxikYLcunSw6ZJOPBJfqQexeXGSzttUj8jZyYfP70_biUShDUp2SDUvY4pdND7xIQflI3QFUWffo5W8EL3yMHRB6gaeRLRqMCYLYZPmPmbFxGOyNy7H9JSARkNmNkSdYKpkYbA6Db4Lue9jhmGUN6SbDerChDCORBcXrpx0C-OqExw4wRUnONWQ19t3flR8jX9Kv0M_bSURG7t8ARHjpohx_4uYhhzNXnZTwq4cVGmJUPOqa8jL7WNINTw_8WNabooMtr-CyYY8qUGx1UTA2Me1AhuYnXDZUXX3ybj4VuC88TAelW3Imzmyfur1d1s8uw1bHJJ7HFMC78DwI7K3vtyk59BlrYcXJaGuAZKOH4c priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLVd6BgozEDaI6fsTJqQJEVXHgRKU9YTl-lJVK0u7j0H_fGcdJtTx6W21mVxPPjGfG45mPkPfgpOsGPHHpawsJimxk2TVOlpGpEOETwojgbYvv9emZ_LZQi3zgts7XKqc9MW3UfnB4Rn4E26jEWeCqOr68KhE1CqurGULjPnmAo8sw-dILPZ-xYBVLVm3ulWGiOVqDv8KeMi5KgfinpdrxR2ls_79izb-vTP5RN03u6OSA7Oc4kn4aBf-Y3Av9E_JwRJa8fkp-jg24MZ_I0SFSnCCwpMuebi_gv9cIp0SXvxNIEUVf5inQbVIcG1Y0o0mcUwtkU_sknXqqnpGzk68_vpyWGUqhdEpWCDgvffCVb2zgXXTKeogNvI62xlWyQtTKQuoFBux4EL5VXdNEIdqgufVRMfGc7PVDH14S4KiLrHVeB8gtmetaHTpbuVjXPkJKygtSTQtqXJ4zjnAXFybVu0VjRiEYEIJJQjCqIB_m31yOUzbupP6McpopcUJ2-mJYnZtscIbLWkbYjUTFg2y1b3XrNJeadVwzxWxBDicpm2y2a3OrZAV5Nz8Gg8Mqiu3DsE00GAQLJgvyYlSKmRMByR_XCtag2VGXHVZ3n_TLX2moN5bkkdmCfJw065av_6_Fq7tf4zV5xFHZ8Y4LPyR7m9U2vIEoatO9TaZyAw_CGR0 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwEB6VIiQuiLIG2spI3CDC8RI7R3hqVXHgRKWesJzYLk8qeegtB_49M86CHhQkblEyiUaecWbGs3wAr9FI1xYtcRlqjwGKsqpsbafKxHVMeEUwIlRt8am-uFQfr_TVAYipFyYX7eeRlvk3PVWHvdugoaFmMCFLScClpb4Dd2l0O5XxLerFfK5CmStVNWN_DJf2llf3bFAe1X-bf_lnmeRvudJsgs4fwoPRd2TvB26P4CD2j-DegCb54zF8GZpu03gKx1aJ0dSAJVv2bHeD394QhBJbfsvARIzsV2BIt82-a1yzEUHimnkkm1om2dRH9QQuz88-Ly7KET6h7LSqCGRehRiqYH0Ubeq0D-gPBJN8Tavkpay1x3ALN20nogyNbq1NUjbRCB-S5vIpHParPj4H5KhNvOmCiRhP8q5tTGx91aW6DgnDUFFANS2o68bZ4gRxceNyjltaNwjBoRBcFoLTBbyZ3_k-TNb4J_UHktNMSVOx843V-tqNWuKEqlXCP5CsRFSNCY1pOiOU4a0wXHNfwPEkZTdu1Y1D-6xoyLyuCng1P8ZNRpkT38fVLtOQ4yu5KuDZoBQzJxIDPmE0roHdU5c9Vvef9MuveZA3peGJ2QLeTpr1i6-_r8WL_yN_CfcFKT_VuYhjONyud_EEPalte5q3zk9hxBbx priority: 102 providerName: Springer Nature |
Title | Identification of tophi in ultrasound imaging based on transfer learning and clinical practice |
URI | https://link.springer.com/article/10.1038/s41598-023-39508-5 https://www.ncbi.nlm.nih.gov/pubmed/37532752 https://www.proquest.com/docview/2844935551 https://www.proquest.com/docview/2845656304 https://pubmed.ncbi.nlm.nih.gov/PMC10397312 https://doaj.org/article/2464f787312e497d979c72470b27050a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEB_ugeAX8W30LCv4TaPJPrLJB5FeueMoeIha6CfDJrt7FmqqfYD33zuzSSrVKvgpIZmEYR6ZmezO_ACeY5DOcozEsc0MFigyl3GV1zL2iXIezwhGhHZbXGYXEzmequkB9HBHnQBXe0s7wpOaLOevfny_fosO_6ZtGc9frzAIUaMYF7EgUNNYHcIxRiZNUA7vunS_nfXNCxmwPmgIe4x88q6PZv9rdmJVGOm_Lw_9czvlb2uqIVSd34ZbXY7Jhq1R3IED19yFGy3q5PU9-Nw25_rubx1beEbTBWZs1rDNHN-9IqglNvsaAIwYxTnLkG4dcly3ZB3SxBUzSNa3VrK-3-o-TM7PPo0u4g5mIa6VTAmMXlpnU5sbxytfK2Mxb7Dam4wkZoTIlMGyDJ275k7YQlV57oUonObGepWIB3DULBr3CJCjyidFbbXDujOpq0K7yqS1zzLrsVzlEaS9QMu6m0FOUBjzMqyFi7xslVCiEsqghFJF8GL7zLd2Asc_qU9JT1tKmp4dLiyWV2XnjCWXmfT4pRIpd7LQttBFrbnUScV1ohITwUmv5bK3yBLjuKRh9CqN4Nn2NjojrbCYxi02gYYSZJHICB62RrHlRGBhyLVCGeQ75rLD6u6dZvYlDPym5XpiNoKXvWX94uvvsnj8X5J7Ajc52T5th-EncLRebtxTTLjW1QAO9VQP4Hg4HH8c4_H07PL9B7w6ykaD8BNjEPzsJ4l6J9A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYwETxA18ZHjASEKrba0rBBqpT5hnNguK5Wk7CHUP8VvZCZXtRx969tqMxt5PeM5PMcH8ByNdJKhJQ5tYjBAkZkMi6yUoY-U8_iJYESo2mKSjA_lhyN1tAa_-l4YKqvsdWKjqG1d0h35JqpRSbPAVfzm9EdIqFGUXe0hNFqx2HNnPzFkm7_efY_8fcH5zvbBu3HYoQqEpZIxYa9L62xsM-N44UtlLJpJm3qTkP9ihEiUwSgEZbnkTthcFVnmhchdyo31KhL43iuwLgXSj2B9a3vy6fNwq0N5MxnnXXdOJLLNOVpI6mLjIhSEuBqqFQvYAAX8y7v9u0jzj0xtYwB3bsKNznNlb1tRuwVrrroNV1ssy7M78KVt-fXdHSCrPaOZBVM2rdjyBN89JwAnNv3ewCIxsp6WId2i8ZzdjHX4FcfMIFnfsMn6Lq67cHgp23wPRlVduQeAKyp8lJc2dRjNRmWRp64wcemTxHoMgnkAcb-huuwmmxPAxoluMuwi0y0TNDJBN0zQKoCXw29O27keF1JvEZ8GSprJ3XxRz451d8Q1l4n0qP9EzJ3MU5uneZlymUYFTyMVmQA2ei7rTlHM9blYB_BseIxHnPI2pnL1sqEht1tEMoD7rVAMKxEYbvJU4R5kK-KystTVJ9X0WzNGnIoAaLEBvOol63xd_9-Lhxf_jadwbXzwcV_v7072HsF1ToJPFTZ8A0aL2dI9Rh9uUTzpDg6Dr5d9Vn8D27xXZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJN_IiTA0JAqVqKKg5U2hPGie2yUsmWfQj1r_HrmHGSrZZHb72tNt5o1vO2Z-YDeIZOuijRE6eusJigyFKmddnINGTKB_xEMCJUbXFQ7B7KD2M13oBfQy8MlVUONjEaajdt6Ix8hGZU0ixwlY9CXxbxaXvn9cmPlBCk6KZ1gNPoRGTfn_7E9G3-am8bef2c8533n9_tpj3CQNoomRMOu3Te5a60ntehUdahy3Q62IJiGStEoSxmJCjXDffCVaouyyBE5TW3LqhM4HsvwWUt0G2iLumxXp3v0A2azKu-TycT5WiOvpL62bhIBWGvpmrNF0bIgH_FuX-Xa_5xZxtd4c4NuN7HsOxNJ3Q3YcO3t-BKh2p5ehu-dM2_oT8NZNPAaHrBhE1atjzGd88JyolNvkeAJEZ-1DFct4gxtJ-xHsniiFlcNrRusqGf6w4cXsgm34XNdtr6-4AU1SGrGqc95rVZU1fa1zZvQlG4gOkwTyAfNtQ0_Yxzgto4NvGuXZSmY4JBJpjIBKMSeLH6zUk34ePc1W-JT6uVNJ07fjGdHZle2Q2XhQxoCUXOvay0q3TVaC51VnOdqcwmsDVw2fQmY27OBDyBp6vHqOx0g2NbP13GNRSAi0wmcK8TihUlAhNPrhXuQbkmLmukrj9pJ9_iQHEqByBiE3g5SNYZXf_fiwfn_40ncBU11HzcO9h_CNc4yT2V2vAt2FzMlv4RBnOL-nHUGgZfL1pNfwMV51o0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+tophi+in+ultrasound+imaging+based+on+transfer+learning+and+clinical+practice&rft.jtitle=Scientific+reports&rft.au=Lin%2C+Tzu-Min&rft.au=Lee%2C+Hsiang-Yen&rft.au=Chang%2C+Ching-Kuei&rft.au=Lin%2C+Ke-Hung&rft.date=2023-08-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-39508-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_39508_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |