Identification of tophi in ultrasound imaging based on transfer learning and clinical practice

Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive art...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 12507 - 7
Main Authors Lin, Tzu-Min, Lee, Hsiang-Yen, Chang, Ching-Kuei, Lin, Ke-Hung, Chang, Chi-Ching, Wu, Bing-Fei, Peng, Syu-Jyun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-39508-5

Cover

Loading…
Abstract Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.
AbstractList Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.
Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.
Abstract Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute arthritis with intolerable pain as well as articular and periarticular inflammation. Tophi can also promote chronic inflammatory and erosive arthritis. 2015 ACR/EULAR Gout Classification criteria include clinical, laboratory, and imaging findings, where cases of gout are indicated by a threshold score of ≥ 8. Some imaging-related findings, such as a double contour sign in ultrasound, urate in dual-energy computed tomography, or radiographic gout-related erosion, generate a score of up to 4. Clearly, the diagnosis of gout is largely assisted by imaging findings; however, dual-energy computed tomography is expensive and exposes the patient to high levels of radiation. Although musculoskeletal ultrasound is non-invasive and inexpensive, the reliability of the results depends on expert experience. In the current study, we applied transfer learning to train a convolutional neural network for the identification of tophi in ultrasound images. The accuracy of predictions varied with the convolutional neural network model, as follows: InceptionV3 (0.871 ± 0.020), ResNet101 (0.913 ± 0.015), and VGG19 (0.918 ± 0.020). The sensitivity was as follows: InceptionV3 (0.507 ± 0.060), ResNet101 (0.680 ± 0.056), and VGG19 (0.747 ± 0.056). The precision was as follows: InceptionV3 (0.767 ± 0.091), ResNet101 (0.863 ± 0.098), and VGG19 (0.825 ± 0.062). Our results demonstrate that it is possible to retrain deep convolutional neural networks to identify the patterns of tophi in ultrasound images with a high degree of accuracy.
ArticleNumber 12507
Author Chang, Chi-Ching
Peng, Syu-Jyun
Lee, Hsiang-Yen
Chang, Ching-Kuei
Wu, Bing-Fei
Lin, Tzu-Min
Lin, Ke-Hung
Author_xml – sequence: 1
  givenname: Tzu-Min
  surname: Lin
  fullname: Lin, Tzu-Min
  organization: Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital
– sequence: 2
  givenname: Hsiang-Yen
  surname: Lee
  fullname: Lee, Hsiang-Yen
  organization: Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital
– sequence: 3
  givenname: Ching-Kuei
  surname: Chang
  fullname: Chang, Ching-Kuei
  organization: Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital
– sequence: 4
  givenname: Ke-Hung
  surname: Lin
  fullname: Lin, Ke-Hung
  organization: Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital
– sequence: 5
  givenname: Chi-Ching
  surname: Chang
  fullname: Chang, Chi-Ching
  organization: Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital
– sequence: 6
  givenname: Bing-Fei
  surname: Wu
  fullname: Wu, Bing-Fei
  organization: Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University
– sequence: 7
  givenname: Syu-Jyun
  surname: Peng
  fullname: Peng, Syu-Jyun
  email: sjpeng2019@tmu.edu.tw
  organization: Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37532752$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvFSEYhompsbX2D7gwk7hxM8p1gJUxjZeTNHGjWwnDZcoJB44w08R_L-dMrW0XZQPhe96XF_hegpOUkwPgNYLvESTiQ6WISdFDTHoiGRQ9ewbOMKSsxwTjk3vrU3BR6xa2wbCkSL4Ap4QzgjnDZ-DXxro0Bx-MnkNOXfbdnPfXoQupW-JcdM1Lsl3Y6SmkqRt1dbZrXKuk6l3potMlHUq6YSaG1Jxity_azMG4V-C517G6i9v5HPz88vnH5bf-6vvXzeWnq94wiuYeEWqdRVZoh0dvmLYQcsu9Hg6pNSED01hIipnBjljJRiE8IdJxrK1nkJyDzeprs96qfWl5yx-VdVDHjVwmpUsLFJ3CdKCeC04QdlRyK7k0HFMOR8whg7p5fVy99su4c9a09yk6PjB9WEnhWk35RrV_kQfb5vDu1qHk34urs9qFalyMOrm8VIUFZQMbCKQNffsI3ealpPZWB4pKwhhDjXpzP9Jdln__2AC8AqbkWovzdwiCh1xCrf2iWr-oY78o1kTikciE-dgG7VohPi0lq7S2c9Lkyv_YT6j-Alkn04c
CitedBy_id crossref_primary_10_1016_j_colsurfa_2024_134763
crossref_primary_10_1016_j_ultrasmedbio_2024_12_009
Cites_doi 10.1007/s00296-009-1002-8
10.3389/fmed.2021.589197
10.1016/j.jbspin.2014.03.011
10.1016/j.jacr.2019.06.004
10.1177/1941738116664326
10.1016/j.ultrasmedbio.2015.05.015
10.1016/j.jbspin.2020.09.014
10.1016/j.ultrasmedbio.2017.01.012
10.1109/5.726791
10.1136/ard.2008.099713
10.1016/j.compbiomed.2021.105117
10.1007/s13244-018-0639-9
10.1136/annrheumdis-2015-208237
10.2169/internalmedicine.56.7923
10.3949/ccjm.75.Suppl_5.S5
10.7326/M16-0462
10.1093/rheumatology/kex445
10.1186/s13075-021-02568-x
10.1093/rheumatology/key303
10.1093/rheumatology/keac367
10.1007/s00296-018-4033-1
10.1016/j.imu.2016.06.003
10.1136/annrheumdis-2012-202301
10.3899/jrheum.141164
10.1016/j.semarthrit.2010.09.003
10.1016/j.ultrasmedbio.2017.10.005
10.1016/j.eng.2018.11.020
10.1038/s41584-020-0441-1
10.1136/annrheumdis-2020-217392
10.14366/usg.20080
10.1016/j.semarthrit.2017.09.012
10.1371/journal.pone.0184059
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-39508-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7
ExternalDocumentID oai_doaj_org_article_2464f787312e497d979c72470b27050a
PMC10397312
37532752
10_1038_s41598_023_39508_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC 112-2628-E-038-001-MY3
– fundername: Ministry of Education (MOE), Taiwan
– fundername: ;
– fundername: ;
  grantid: NSTC 112-2628-E-038-001-MY3
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-134ded1d8ae2bfc5ad007d7fa60005a3365a289425c2e3d95b88f339e72adf503
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 18:42:05 EDT 2025
Fri Jul 11 01:06:45 EDT 2025
Wed Aug 13 04:20:38 EDT 2025
Mon Jul 21 05:57:00 EDT 2025
Tue Jul 01 03:57:10 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Fri Feb 21 02:37:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-134ded1d8ae2bfc5ad007d7fa60005a3365a289425c2e3d95b88f339e72adf503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-39508-5
PMID 37532752
PQID 2844935551
PQPubID 2041939
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_2464f787312e497d979c72470b27050a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10397312
proquest_miscellaneous_2845656304
proquest_journals_2844935551
pubmed_primary_37532752
crossref_primary_10_1038_s41598_023_39508_5
crossref_citationtrail_10_1038_s41598_023_39508_5
springer_journals_10_1038_s41598_023_39508_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-02
PublicationDateYYYYMMDD 2023-08-02
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Yu, Tan, Sng, Li, Sia (CR23) 2015; 41
Choi (CR16) 2009; 68
Cipolletta (CR31) 2021; 8
Burlina, Billings, Joshi, Albayda (CR20) 2017; 12
Liu (CR29) 2019; 5
Cipolletta, Abhishek, Di Battista, Grassi, Filippucci (CR15) 2023; 62
Stamp (CR32) 2011; 40
Hadjerci (CR25) 2015
Cipolletta (CR13) 2021; 23
Nwawka (CR17) 2016; 8
Mielnik, Fojcik, Segen, Kulbacki (CR22) 2018; 44
Dehlin, Jacobsson, Roddy (CR2) 2020; 16
Quader, Hodgson, Mulpuri, Schaeffer, Abugharbieh (CR21) 2017; 43
Chowalloor, Keen (CR26) 2013; 72
Mandell (CR1) 2008; 75
Shin, Yang, Lee, Kim (CR19) 2021; 40
Garner, Wessell (CR5) 2018; 38
Ebstein (CR14) 2019; 58
Akkus (CR34) 2019; 16
Hayashi (CR3) 2017; 56
Lee, Song (CR18) 2018; 47
Hammer (CR11) 2020; 79
Thiele, Schlesinger (CR8) 2010; 30
Dalbeth, Doyle (CR10) 2018; 57
Perez-Ruiz, Martin, Canteli (CR33) 2007; 34
Lecun, Bottou, Bengio, Haffner (CR27) 1998; 86
Hadjerci (CR24) 2016; 3
Newberry (CR4) 2017; 166
Neogi (CR6) 2015; 74
Grainger (CR9) 2015; 42
Ebstein (CR12) 2020; 87
Ottaviani (CR7) 2015; 82
Yamashita, Nishio, Do, Togashi (CR28) 2018; 9
Fiorentino (CR30) 2022; 141
SJ Newberry (39508_CR4) 2017; 166
P Burlina (39508_CR20) 2017; 12
BF Mandell (39508_CR1) 2008; 75
M Dehlin (39508_CR2) 2020; 16
YH Lee (39508_CR18) 2018; 47
E Ebstein (39508_CR12) 2020; 87
S Yu (39508_CR23) 2015; 41
HB Hammer (39508_CR11) 2020; 79
Z Akkus (39508_CR34) 2019; 16
RG Thiele (39508_CR8) 2010; 30
N Quader (39508_CR21) 2017; 43
S Liu (39508_CR29) 2019; 5
E Cipolletta (39508_CR31) 2021; 8
Y Lecun (39508_CR27) 1998; 86
Y Shin (39508_CR19) 2021; 40
E Cipolletta (39508_CR13) 2021; 23
S Ottaviani (39508_CR7) 2015; 82
F Perez-Ruiz (39508_CR33) 2007; 34
MC Fiorentino (39508_CR30) 2022; 141
N Dalbeth (39508_CR10) 2018; 57
E Cipolletta (39508_CR15) 2023; 62
HW Garner (39508_CR5) 2018; 38
P Mielnik (39508_CR22) 2018; 44
R Yamashita (39508_CR28) 2018; 9
O Hadjerci (39508_CR24) 2016; 3
LK Stamp (39508_CR32) 2011; 40
T Neogi (39508_CR6) 2015; 74
HK Choi (39508_CR16) 2009; 68
PV Chowalloor (39508_CR26) 2013; 72
O Hadjerci (39508_CR25) 2015
RD Hayashi (39508_CR3) 2017; 56
R Grainger (39508_CR9) 2015; 42
E Ebstein (39508_CR14) 2019; 58
OK Nwawka (39508_CR17) 2016; 8
References_xml – volume: 30
  start-page: 495
  year: 2010
  end-page: 503
  ident: CR8
  article-title: Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved
  publication-title: Rheumatol. Int.
  doi: 10.1007/s00296-009-1002-8
– volume: 8
  start-page: 589197
  year: 2021
  ident: CR31
  article-title: Artificial intelligence for ultrasound informative image selection of metacarpal head cartilage. A pilot study
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2021.589197
– volume: 82
  start-page: 42
  year: 2015
  end-page: 44
  ident: CR7
  article-title: Ultrasound in gout: A useful tool for following urate-lowering therapy
  publication-title: Jt. Bone Spine
  doi: 10.1016/j.jbspin.2014.03.011
– volume: 16
  start-page: 1318
  year: 2019
  end-page: 1328
  ident: CR34
  article-title: A survey of deep-learning applications in ultrasound: Artificial intelligence-powered ultrasound for improving clinical workflow
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2019.06.004
– volume: 8
  start-page: 429
  year: 2016
  end-page: 437
  ident: CR17
  article-title: Update in musculoskeletal ultrasound research
  publication-title: Sports Health
  doi: 10.1177/1941738116664326
– volume: 41
  start-page: 2677
  year: 2015
  end-page: 2689
  ident: CR23
  article-title: Lumbar ultrasound image feature extraction and classification with support vector machine
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2015.05.015
– volume: 87
  start-page: 647
  year: 2020
  end-page: 651
  ident: CR12
  article-title: UltraSound evaluation in follow-up of urate-lowering therapy in gout phase 2 (USEFUL-2): Duration of flare prophylaxis
  publication-title: Jt. Bone Spine
  doi: 10.1016/j.jbspin.2020.09.014
– volume: 43
  start-page: 1252
  year: 2017
  end-page: 1262
  ident: CR21
  article-title: Automatic evaluation of scan adequacy and dysplasia metrics in 2-D ultrasound images of the neonatal hip
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2017.01.012
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR27
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 68
  start-page: 1609
  year: 2009
  end-page: 1612
  ident: CR16
  article-title: Dual energy computed tomography in tophaceous gout
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.2008.099713
– year: 2015
  ident: CR25
  publication-title: Nerve Localization by Machine Learning Framework with New Feature Selection Algorithm (Image Analysis and Processing—ICIAP 20
– volume: 141
  start-page: 105117
  year: 2022
  ident: CR30
  article-title: A deep-learning framework for metacarpal-head cartilage-thickness estimation in ultrasound rheumatological images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105117
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: CR28
  article-title: Convolutional neural networks: An overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 74
  start-page: 1789
  year: 2015
  end-page: 1798
  ident: CR6
  article-title: 2015 Gout classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2015-208237
– volume: 56
  start-page: 1071
  year: 2017
  end-page: 1077
  ident: CR3
  article-title: Multiple gouty tophi with bone erosion and destruction: A report of an early-onset case in an obese patient
  publication-title: Intern. Med.
  doi: 10.2169/internalmedicine.56.7923
– volume: 75
  start-page: S5
  issue: Suppl 5
  year: 2008
  end-page: 8
  ident: CR1
  article-title: Clinical manifestations of hyperuricemia and gout
  publication-title: Clevel. Clin. J. Med.
  doi: 10.3949/ccjm.75.Suppl_5.S5
– volume: 166
  start-page: 27
  year: 2017
  end-page: 36
  ident: CR4
  article-title: Diagnosis of gout: A systematic review in support of an American college of physicians clinical practice guideline
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M16-0462
– volume: 57
  start-page: i27
  year: 2018
  end-page: i34
  ident: CR10
  article-title: Imaging tools to measure treatment response in gout
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/kex445
– volume: 23
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR13
  article-title: Sonographic estimation of monosodium urate burden predicts the fulfillment of the 2016 remission criteria for gout: A 12-month study
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-021-02568-x
– volume: 58
  start-page: 410
  year: 2019
  end-page: 417
  ident: CR14
  article-title: Ultrasound evaluation in follow-up of urate-lowering therapy in gout: The USEFUL study
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/key303
– volume: 62
  start-page: 1108
  year: 2023
  end-page: 1116
  ident: CR15
  article-title: Ultrasonography in the prediction of gout flares: A 12-month prospective observational study
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/keac367
– volume: 38
  start-page: 1339
  year: 2018
  end-page: 1344
  ident: CR5
  article-title: Current status of ultrasound and dual-energy computed tomography in the evaluation of gout
  publication-title: Rheumatol. Int.
  doi: 10.1007/s00296-018-4033-1
– volume: 3
  start-page: 29
  year: 2016
  end-page: 43
  ident: CR24
  article-title: Computer-aided detection system for nerve identification using ultrasound images: A comparative study
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2016.06.003
– volume: 72
  start-page: 638
  year: 2013
  end-page: 645
  ident: CR26
  article-title: A systematic review of ultrasonography in gout and asymptomatic hyperuricaemia
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2012-202301
– volume: 42
  start-page: 2460
  year: 2015
  end-page: 2464
  ident: CR9
  article-title: Imaging as an outcome measure in gout studies: Report from the OMERACT gout working group
  publication-title: J. Rheumatol.
  doi: 10.3899/jrheum.141164
– volume: 40
  start-page: 483
  year: 2011
  end-page: 500
  ident: CR32
  article-title: Serum urate as a soluble biomarker in chronic gout-evidence that serum urate fulfills the OMERACT validation criteria for soluble biomarkers
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2010.09.003
– volume: 44
  start-page: 489
  year: 2018
  end-page: 494
  ident: CR22
  article-title: A novel method of synovitis stratification in ultrasound using machine learning algorithms: Results from clinical validation of the MEDUSA project
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2017.10.005
– volume: 5
  start-page: 261
  year: 2019
  end-page: 275
  ident: CR29
  article-title: Deep learning in medical ultrasound analysis: A review
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.020
– volume: 16
  start-page: 380
  year: 2020
  end-page: 390
  ident: CR2
  article-title: Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-020-0441-1
– volume: 34
  start-page: 1888
  year: 2007
  end-page: 1893
  ident: CR33
  article-title: Ultrasonographic measurement of tophi as an outcome measure for chronic gout
  publication-title: J. Rheumatol.
– volume: 79
  start-page: 1500
  year: 2020
  end-page: 1505
  ident: CR11
  article-title: Ultrasound shows rapid reduction of crystal depositions during a treat-to-target approach in gout patients: 12-month results from the NOR-Gout study
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2020-217392
– volume: 40
  start-page: 30
  year: 2021
  end-page: 44
  ident: CR19
  article-title: Artificial intelligence in musculoskeletal ultrasound imaging
  publication-title: Ultrasonography
  doi: 10.14366/usg.20080
– volume: 47
  start-page: 703
  year: 2018
  end-page: 709
  ident: CR18
  article-title: Diagnostic accuracy of ultrasound in patients with gout: A meta-analysis
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2017.09.012
– volume: 12
  start-page: e0184059
  year: 2017
  ident: CR20
  article-title: Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184059
– volume: 72
  start-page: 638
  year: 2013
  ident: 39508_CR26
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2012-202301
– volume: 74
  start-page: 1789
  year: 2015
  ident: 39508_CR6
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2015-208237
– volume: 43
  start-page: 1252
  year: 2017
  ident: 39508_CR21
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2017.01.012
– volume: 8
  start-page: 589197
  year: 2021
  ident: 39508_CR31
  publication-title: Front. Med. (Lausanne)
  doi: 10.3389/fmed.2021.589197
– volume: 82
  start-page: 42
  year: 2015
  ident: 39508_CR7
  publication-title: Jt. Bone Spine
  doi: 10.1016/j.jbspin.2014.03.011
– volume: 8
  start-page: 429
  year: 2016
  ident: 39508_CR17
  publication-title: Sports Health
  doi: 10.1177/1941738116664326
– volume: 16
  start-page: 380
  year: 2020
  ident: 39508_CR2
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-020-0441-1
– volume: 75
  start-page: S5
  issue: Suppl 5
  year: 2008
  ident: 39508_CR1
  publication-title: Clevel. Clin. J. Med.
  doi: 10.3949/ccjm.75.Suppl_5.S5
– volume: 57
  start-page: i27
  year: 2018
  ident: 39508_CR10
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/kex445
– volume: 30
  start-page: 495
  year: 2010
  ident: 39508_CR8
  publication-title: Rheumatol. Int.
  doi: 10.1007/s00296-009-1002-8
– volume: 42
  start-page: 2460
  year: 2015
  ident: 39508_CR9
  publication-title: J. Rheumatol.
  doi: 10.3899/jrheum.141164
– volume: 58
  start-page: 410
  year: 2019
  ident: 39508_CR14
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/key303
– volume: 5
  start-page: 261
  year: 2019
  ident: 39508_CR29
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.020
– volume: 44
  start-page: 489
  year: 2018
  ident: 39508_CR22
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2017.10.005
– volume: 87
  start-page: 647
  year: 2020
  ident: 39508_CR12
  publication-title: Jt. Bone Spine
  doi: 10.1016/j.jbspin.2020.09.014
– volume: 34
  start-page: 1888
  year: 2007
  ident: 39508_CR33
  publication-title: J. Rheumatol.
– volume: 141
  start-page: 105117
  year: 2022
  ident: 39508_CR30
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105117
– volume: 38
  start-page: 1339
  year: 2018
  ident: 39508_CR5
  publication-title: Rheumatol. Int.
  doi: 10.1007/s00296-018-4033-1
– volume: 166
  start-page: 27
  year: 2017
  ident: 39508_CR4
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M16-0462
– volume: 9
  start-page: 611
  year: 2018
  ident: 39508_CR28
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 12
  start-page: e0184059
  year: 2017
  ident: 39508_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184059
– volume-title: Nerve Localization by Machine Learning Framework with New Feature Selection Algorithm (Image Analysis and Processing—ICIAP 20
  year: 2015
  ident: 39508_CR25
– volume: 79
  start-page: 1500
  year: 2020
  ident: 39508_CR11
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2020-217392
– volume: 56
  start-page: 1071
  year: 2017
  ident: 39508_CR3
  publication-title: Intern. Med.
  doi: 10.2169/internalmedicine.56.7923
– volume: 47
  start-page: 703
  year: 2018
  ident: 39508_CR18
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2017.09.012
– volume: 40
  start-page: 483
  year: 2011
  ident: 39508_CR32
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2010.09.003
– volume: 16
  start-page: 1318
  year: 2019
  ident: 39508_CR34
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2019.06.004
– volume: 86
  start-page: 2278
  year: 1998
  ident: 39508_CR27
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 3
  start-page: 29
  year: 2016
  ident: 39508_CR24
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2016.06.003
– volume: 40
  start-page: 30
  year: 2021
  ident: 39508_CR19
  publication-title: Ultrasonography
  doi: 10.14366/usg.20080
– volume: 41
  start-page: 2677
  year: 2015
  ident: 39508_CR23
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2015.05.015
– volume: 62
  start-page: 1108
  year: 2023
  ident: 39508_CR15
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/keac367
– volume: 68
  start-page: 1609
  year: 2009
  ident: 39508_CR16
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.2008.099713
– volume: 23
  start-page: 1
  year: 2021
  ident: 39508_CR13
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-021-02568-x
SSID ssj0000529419
Score 2.428107
Snippet Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and acute...
Abstract Gout is a common metabolic disorder characterized by deposits of monosodium urate monohydrate crystals (tophi) in soft tissue, triggering intense and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12507
SubjectTerms 631/250
692/4023
Arthritis
Arthritis, Gouty
Computed tomography
Crystals
Gout
Gout - diagnostic imaging
Humanities and Social Sciences
Humans
Inflammation
Machine Learning
Metabolic disorders
multidisciplinary
Neural networks
Reproducibility of Results
Rheumatism
Science
Science (multidisciplinary)
Tomography
Tomography, X-Ray Computed - methods
Transfer learning
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Uric acid
Uric Acid - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJSQuiFIeSwsyEjdY1evH2j4Coqo4cKJST1hePyBS2aAmOfTfd8beDQ3PS29RdjYazUMzE3u-j5BXUKR7A5W4jb2HAUUa2Q4myDYzlTJ8QhoRvG3xqT89kx_P1fkNqi-8E1bhgavhjrnsZYaoEh1P0upotQ2aS80GrplipTWCmndjmKqo3tzKzk5bMkyY4xVUKtwm46IVyHzaqp1KVAD7_9Rl_n5Z8pcT01KITh6Q-1MHSd9WzffJnTQ-JHcrp-TVAflSV2_z9F8cXWaK2AELuhjp5gJ-e4VESnTxvdATUaxikYLcunSw6ZJOPBJfqQexeXGSzttUj8jZyYfP70_biUShDUp2SDUvY4pdND7xIQflI3QFUWffo5W8EL3yMHRB6gaeRLRqMCYLYZPmPmbFxGOyNy7H9JSARkNmNkSdYKpkYbA6Db4Lue9jhmGUN6SbDerChDCORBcXrpx0C-OqExw4wRUnONWQ19t3flR8jX9Kv0M_bSURG7t8ARHjpohx_4uYhhzNXnZTwq4cVGmJUPOqa8jL7WNINTw_8WNabooMtr-CyYY8qUGx1UTA2Me1AhuYnXDZUXX3ybj4VuC88TAelW3Imzmyfur1d1s8uw1bHJJ7HFMC78DwI7K3vtyk59BlrYcXJaGuAZKOH4c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLVd6BgozEDaI6fsTJqQJEVXHgRKU9YTl-lJVK0u7j0H_fGcdJtTx6W21mVxPPjGfG45mPkPfgpOsGPHHpawsJimxk2TVOlpGpEOETwojgbYvv9emZ_LZQi3zgts7XKqc9MW3UfnB4Rn4E26jEWeCqOr68KhE1CqurGULjPnmAo8sw-dILPZ-xYBVLVm3ulWGiOVqDv8KeMi5KgfinpdrxR2ls_79izb-vTP5RN03u6OSA7Oc4kn4aBf-Y3Av9E_JwRJa8fkp-jg24MZ_I0SFSnCCwpMuebi_gv9cIp0SXvxNIEUVf5inQbVIcG1Y0o0mcUwtkU_sknXqqnpGzk68_vpyWGUqhdEpWCDgvffCVb2zgXXTKeogNvI62xlWyQtTKQuoFBux4EL5VXdNEIdqgufVRMfGc7PVDH14S4KiLrHVeB8gtmetaHTpbuVjXPkJKygtSTQtqXJ4zjnAXFybVu0VjRiEYEIJJQjCqIB_m31yOUzbupP6McpopcUJ2-mJYnZtscIbLWkbYjUTFg2y1b3XrNJeadVwzxWxBDicpm2y2a3OrZAV5Nz8Gg8Mqiu3DsE00GAQLJgvyYlSKmRMByR_XCtag2VGXHVZ3n_TLX2moN5bkkdmCfJw065av_6_Fq7tf4zV5xFHZ8Y4LPyR7m9U2vIEoatO9TaZyAw_CGR0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwEB6VIiQuiLIG2spI3CDC8RI7R3hqVXHgRKWesJzYLk8qeegtB_49M86CHhQkblEyiUaecWbGs3wAr9FI1xYtcRlqjwGKsqpsbafKxHVMeEUwIlRt8am-uFQfr_TVAYipFyYX7eeRlvk3PVWHvdugoaFmMCFLScClpb4Dd2l0O5XxLerFfK5CmStVNWN_DJf2llf3bFAe1X-bf_lnmeRvudJsgs4fwoPRd2TvB26P4CD2j-DegCb54zF8GZpu03gKx1aJ0dSAJVv2bHeD394QhBJbfsvARIzsV2BIt82-a1yzEUHimnkkm1om2dRH9QQuz88-Ly7KET6h7LSqCGRehRiqYH0Ubeq0D-gPBJN8Tavkpay1x3ALN20nogyNbq1NUjbRCB-S5vIpHParPj4H5KhNvOmCiRhP8q5tTGx91aW6DgnDUFFANS2o68bZ4gRxceNyjltaNwjBoRBcFoLTBbyZ3_k-TNb4J_UHktNMSVOx843V-tqNWuKEqlXCP5CsRFSNCY1pOiOU4a0wXHNfwPEkZTdu1Y1D-6xoyLyuCng1P8ZNRpkT38fVLtOQ4yu5KuDZoBQzJxIDPmE0roHdU5c9Vvef9MuveZA3peGJ2QLeTpr1i6-_r8WL_yN_CfcFKT_VuYhjONyud_EEPalte5q3zk9hxBbx
  priority: 102
  providerName: Springer Nature
Title Identification of tophi in ultrasound imaging based on transfer learning and clinical practice
URI https://link.springer.com/article/10.1038/s41598-023-39508-5
https://www.ncbi.nlm.nih.gov/pubmed/37532752
https://www.proquest.com/docview/2844935551
https://www.proquest.com/docview/2845656304
https://pubmed.ncbi.nlm.nih.gov/PMC10397312
https://doaj.org/article/2464f787312e497d979c72470b27050a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEB_ugeAX8W30LCv4TaPJPrLJB5FeueMoeIha6CfDJrt7FmqqfYD33zuzSSrVKvgpIZmEYR6ZmezO_ACeY5DOcozEsc0MFigyl3GV1zL2iXIezwhGhHZbXGYXEzmequkB9HBHnQBXe0s7wpOaLOevfny_fosO_6ZtGc9frzAIUaMYF7EgUNNYHcIxRiZNUA7vunS_nfXNCxmwPmgIe4x88q6PZv9rdmJVGOm_Lw_9czvlb2uqIVSd34ZbXY7Jhq1R3IED19yFGy3q5PU9-Nw25_rubx1beEbTBWZs1rDNHN-9IqglNvsaAIwYxTnLkG4dcly3ZB3SxBUzSNa3VrK-3-o-TM7PPo0u4g5mIa6VTAmMXlpnU5sbxytfK2Mxb7Dam4wkZoTIlMGyDJ275k7YQlV57oUonObGepWIB3DULBr3CJCjyidFbbXDujOpq0K7yqS1zzLrsVzlEaS9QMu6m0FOUBjzMqyFi7xslVCiEsqghFJF8GL7zLd2Asc_qU9JT1tKmp4dLiyWV2XnjCWXmfT4pRIpd7LQttBFrbnUScV1ohITwUmv5bK3yBLjuKRh9CqN4Nn2NjojrbCYxi02gYYSZJHICB62RrHlRGBhyLVCGeQ75rLD6u6dZvYlDPym5XpiNoKXvWX94uvvsnj8X5J7Ajc52T5th-EncLRebtxTTLjW1QAO9VQP4Hg4HH8c4_H07PL9B7w6ykaD8BNjEPzsJ4l6J9A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYwETxA18ZHjASEKrba0rBBqpT5hnNguK5Wk7CHUP8VvZCZXtRx969tqMxt5PeM5PMcH8ByNdJKhJQ5tYjBAkZkMi6yUoY-U8_iJYESo2mKSjA_lhyN1tAa_-l4YKqvsdWKjqG1d0h35JqpRSbPAVfzm9EdIqFGUXe0hNFqx2HNnPzFkm7_efY_8fcH5zvbBu3HYoQqEpZIxYa9L62xsM-N44UtlLJpJm3qTkP9ihEiUwSgEZbnkTthcFVnmhchdyo31KhL43iuwLgXSj2B9a3vy6fNwq0N5MxnnXXdOJLLNOVpI6mLjIhSEuBqqFQvYAAX8y7v9u0jzj0xtYwB3bsKNznNlb1tRuwVrrroNV1ssy7M78KVt-fXdHSCrPaOZBVM2rdjyBN89JwAnNv3ewCIxsp6WId2i8ZzdjHX4FcfMIFnfsMn6Lq67cHgp23wPRlVduQeAKyp8lJc2dRjNRmWRp64wcemTxHoMgnkAcb-huuwmmxPAxoluMuwi0y0TNDJBN0zQKoCXw29O27keF1JvEZ8GSprJ3XxRz451d8Q1l4n0qP9EzJ3MU5uneZlymUYFTyMVmQA2ei7rTlHM9blYB_BseIxHnPI2pnL1sqEht1tEMoD7rVAMKxEYbvJU4R5kK-KystTVJ9X0WzNGnIoAaLEBvOol63xd_9-Lhxf_jadwbXzwcV_v7072HsF1ToJPFTZ8A0aL2dI9Rh9uUTzpDg6Dr5d9Vn8D27xXZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJN_IiTA0JAqVqKKg5U2hPGie2yUsmWfQj1r_HrmHGSrZZHb72tNt5o1vO2Z-YDeIZOuijRE6eusJigyFKmddnINGTKB_xEMCJUbXFQ7B7KD2M13oBfQy8MlVUONjEaajdt6Ix8hGZU0ixwlY9CXxbxaXvn9cmPlBCk6KZ1gNPoRGTfn_7E9G3-am8bef2c8533n9_tpj3CQNoomRMOu3Te5a60ntehUdahy3Q62IJiGStEoSxmJCjXDffCVaouyyBE5TW3LqhM4HsvwWUt0G2iLumxXp3v0A2azKu-TycT5WiOvpL62bhIBWGvpmrNF0bIgH_FuX-Xa_5xZxtd4c4NuN7HsOxNJ3Q3YcO3t-BKh2p5ehu-dM2_oT8NZNPAaHrBhE1atjzGd88JyolNvkeAJEZ-1DFct4gxtJ-xHsniiFlcNrRusqGf6w4cXsgm34XNdtr6-4AU1SGrGqc95rVZU1fa1zZvQlG4gOkwTyAfNtQ0_Yxzgto4NvGuXZSmY4JBJpjIBKMSeLH6zUk34ePc1W-JT6uVNJ07fjGdHZle2Q2XhQxoCUXOvay0q3TVaC51VnOdqcwmsDVw2fQmY27OBDyBp6vHqOx0g2NbP13GNRSAi0wmcK8TihUlAhNPrhXuQbkmLmukrj9pJ9_iQHEqByBiE3g5SNYZXf_fiwfn_40ncBU11HzcO9h_CNc4yT2V2vAt2FzMlv4RBnOL-nHUGgZfL1pNfwMV51o0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+tophi+in+ultrasound+imaging+based+on+transfer+learning+and+clinical+practice&rft.jtitle=Scientific+reports&rft.au=Lin%2C+Tzu-Min&rft.au=Lee%2C+Hsiang-Yen&rft.au=Chang%2C+Ching-Kuei&rft.au=Lin%2C+Ke-Hung&rft.date=2023-08-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-39508-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_39508_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon