Multispecies interactions across trophic levels at macroscales: retrospective and future directions
Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape specie...
Saved in:
Published in | Ecography (Copenhagen) Vol. 38; no. 4; pp. 346 - 357 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2015
Nordic Society Oikos John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape species distributions and diversity patterns at macroecological extents remains less clear. Here, we provide an overview of recent and potential future developments in macroecology that explore the role of antagonistic and mutualistic interactions among multiple species across trophic levels. Recent studies broadly represent two analytical methods (analyses of species richness and ecological networks) and provide evidence that plant–animal interactions (e.g. pollination, frugivory) and predator–prey interactions influence large-scale richness patterns and that ecological network structure varies systematically at macroscales. Current methodological problems and challenges are related to defining the functional links in cross-trophic richness analyses, understanding trait effects in multispecies interactions, and addressing sampling effects when analyzing multiple ecological networks across large spatial extents. Key topics for future research are 1) testing paleoclimatic imprints on interaction diversity, 2) understanding macroevolution and the phylogenetic structure of multispecies interactions, 3) quantifying contemporary spatial and temporal variability in complex ecological networks, and 4) predicting novel interactions under global change. Moreover, we see great potential for a deeper bidirectional integration of macroecology and network research, e.g. by analyses of trait complementarity and functional diversity of interacting groups and by employing species distribution modeling to predict changes in functional network structure. Addressing these key topics and achieving a better integration between these two research fields will significantly advance our understanding of the ecological and evolutionary drivers of multispecies interactions. This could also help to develop more realistic forecasts of changes in biodiversity under climate and land use change. |
---|---|
AbstractList | Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape species distributions and diversity patterns at macroecological extents remains less clear. Here, we provide an overview of recent and potential future developments in macroecology that explore the role of antagonistic and mutualistic interactions among multiple species across trophic levels. Recent studies broadly represent two analytical methods (analyses of species richness and ecological networks) and provide evidence that plant-animal interactions (e.g. pollination, frugivory) and predator-prey interactions influence large-scale richness patterns and that ecological network structure varies systematically at macroscales. Current methodological problems and challenges are related to defining the functional links in cross-trophic richness analyses, understanding trait effects in multispecies interactions, and addressing sampling effects when analyzing multiple ecological networks across large spatial extents. Key topics for future research are 1) testing paleoclimatic imprints on interaction diversity, 2) understanding macroevolution and the phylogenetic structure of multispecies interactions, 3) quantifying contemporary spatial and temporal variability in complex ecological networks, and 4) predicting novel interactions under global change. Moreover, we see great potential for a deeper bidirectional integration of macroecology and network research, e.g. by analyses of trait complementarity and functional diversity of interacting groups and by employing species distribution modeling to predict changes in functional network structure. Addressing these key topics and achieving a better integration between these two research fields will significantly advance our understanding of the ecological and evolutionary drivers of multispecies interactions. This could also help to develop more realistic forecasts of changes in biodiversity under climate and land use change. |
Author | Kissling, W. Daniel Schleuning, Matthias |
Author_xml | – sequence: 1 givenname: W. Daniel surname: Kissling fullname: Kissling, W. Daniel email: danielkissling@web.de organization: Inst. for Biodiversity and Ecosystem Dynamics (IBED), Univ. of Amsterdam, GE Amsterdam, PO Box 94248, NL-1090, Netherlands – sequence: 2 givenname: Matthias surname: Schleuning fullname: Schleuning, Matthias organization: Biodiversity and Climate Research Centre (BiK-F) and Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt (Main), DE-60325, Germany |
BookMark | eNqF0UFvFCEUB3BiauK2evETkHjQmEwLw8CAN7utW5NqPWj1RoB9Y1lnZ0Zgavfby-yYHhqjXEjg9ye89w7RQdd3gNBzSo5pXifg-u_HhEiqHqEFFYQUhMv6AC2IIqKouSJP0GGMG0JoqYRcIPdhbJOPAzgPEfsuQTAu-b6L2LjQx4hT6Icb73ALt9Dm04S3-xtnWohvcIAMpnzyt4BNt8bNmMYAeO0DzC89RY8b00Z49mc_Ql_enX9eXhSXV6v3y7eXheMVVUVplKWqsWAtKNUo6UjlrCVElFbA2vFSuNo2DSjDGF9TQSspjaVOipI2HNgRejW_O4T-5wgx6a2PDtrWdNCPUdOa8Iqz3Jz_U1EzpmRZ8kxfPKCbfgxdLiQrIfMnSkqzIrPaNy1Ao51PZio_BeNbTYmeBqSnAen9gHLk9YPIEPzWhN3f8cmMf_kWdv-Q-nx5tZoTL-fEJqY-3CcmGcxws9NM6kqzSmRZzNLHBHf30oQfOreh5vrrx5U-O2OflqfX1_ob-w3cq8Hg |
CitedBy_id | crossref_primary_10_1890_15_0830_1 crossref_primary_10_3897_rio_3_e14944 crossref_primary_10_1111_eva_13750 crossref_primary_10_1016_j_baae_2019_06_002 crossref_primary_10_1038_s41467_019_12995_9 crossref_primary_10_1111_1365_2656_14116 crossref_primary_10_1002_ecy_3686 crossref_primary_10_1111_oik_07953 crossref_primary_10_1111_ecog_03396 crossref_primary_10_3390_ani12010057 crossref_primary_10_1111_1365_2656_12459 crossref_primary_10_1002_ecy_3165 crossref_primary_10_1111_ecog_03592 crossref_primary_10_1016_j_jenvman_2019_109479 crossref_primary_10_1111_geb_13156 crossref_primary_10_3390_d15010061 crossref_primary_10_1111_brv_12366 crossref_primary_10_1007_s10340_018_0958_0 crossref_primary_10_1111_jbi_15085 crossref_primary_10_1111_geb_12776 crossref_primary_10_1002_ecy_1756 crossref_primary_10_1073_pnas_2100966118 crossref_primary_10_1111_ecog_01646 crossref_primary_10_1111_plb_12593 crossref_primary_10_1098_rstb_2023_0131 crossref_primary_10_1111_oik_08756 crossref_primary_10_1111_2041_210X_13329 crossref_primary_10_1038_s41598_019_56515_7 crossref_primary_10_1098_rspb_2018_0949 crossref_primary_10_3390_ani11123392 crossref_primary_10_1111_jbi_13493 crossref_primary_10_1016_j_ecolmodel_2022_109949 crossref_primary_10_1111_1365_2435_12530 crossref_primary_10_1111_oik_02998 crossref_primary_10_1111_ecog_02604 crossref_primary_10_1111_gcb_14828 crossref_primary_10_1111_geb_12925 crossref_primary_10_1111_ecog_00983 crossref_primary_10_1111_ecog_02561 crossref_primary_10_1111_ecog_06566 crossref_primary_10_1111_ecog_06841 crossref_primary_10_1111_oik_06688 crossref_primary_10_3390_d15010001 crossref_primary_10_1111_ecog_05079 crossref_primary_10_1002_ece3_2517 crossref_primary_10_1002_ecy_1521 crossref_primary_10_1016_j_actao_2018_02_011 crossref_primary_10_1371_journal_pone_0240614 crossref_primary_10_1016_j_tree_2016_06_009 crossref_primary_10_1098_rspb_2022_2547 crossref_primary_10_1098_rspb_2018_2193 crossref_primary_10_1111_geb_12833 crossref_primary_10_1002_lno_11699 crossref_primary_10_3390_cells10030644 crossref_primary_10_1111_1365_2656_12683 crossref_primary_10_1111_oik_02792 crossref_primary_10_1086_683606 crossref_primary_10_1111_2041_210X_12936 crossref_primary_10_1111_ecog_03443 crossref_primary_10_1111_jbi_14447 crossref_primary_10_13157_arla_63_1_2016_rp7 crossref_primary_10_1146_annurev_ecolsys_012220_120819 crossref_primary_10_1002_ece3_4908 crossref_primary_10_1111_geb_12311 crossref_primary_10_1080_14888386_2015_1068709 |
Cites_doi | 10.1126/science.1210173 10.1034/j.1600-0706.2002.980215.x 10.1098/rspb.2004.2909 10.1086/345479 10.1890/07-1206.1 10.1007/s00442-008-1255-z 10.1016/j.tree.2010.03.002 10.1016/j.biocon.2010.05.018 10.1890/12-1577.1 10.1111/j.1365-2699.2012.02737.x 10.1126/science.1216556 10.1016/B978-0-12-396992-7.00002-2 10.1111/j.1461-0248.2011.01649.x 10.1111/j.1461-0248.2010.01485.x 10.1098/rspb.2008.1921 10.1111/j.1558-5646.2008.00317.x 10.1126/science.1172393 10.3732/ajb.1200469 10.1098/rstb.2010.0008 10.1017/CBO9780511815683.013 10.1111/j.1461-0248.2011.01639.x 10.1086/282070 10.1038/nclimate1954 10.1126/science.1188528 10.1111/ele.12043 10.1146/annurev.ecolsys.39.110707.173430 10.1098/rspb.2006.0311 10.1111/j.1461-0248.2009.01437.x 10.1371/journal.pone.0025891 10.1126/science.1222732 10.1098/rspb.2011.2367 10.1111/ele.12235 10.1086/653667 10.1111/j.1461-0248.2008.01170.x 10.1111/j.1365-2699.2008.01963.x 10.1111/j.1461-0248.2012.01772.x 10.1111/j.1600-0706.2009.17594.x 10.1086/282400 10.1111/j.1365-2699.2009.02128.x 10.1111/ele.12081 10.1126/science.1237184 10.1126/science.1205106 10.1890/11-1803.1 10.7208/chicago/9780226118697.001.0001 10.1146/annurev-ecolsys-102209-144718 10.1890/12-1342.1 10.1098/rstb.2011.0059 10.1371/journal.pone.0027785 10.1098/rspb.2009.0413 10.1098/rspb.2008.1005 10.1371/journal.pone.0056979 10.1046/j.1466-822X.2003.00042.x 10.1073/pnas.1120467109 10.1111/j.1469-185X.2012.00235.x 10.1111/j.1365-2699.2011.02628.x 10.1111/jbi.12063 10.1126/science.1209175 10.1111/j.1461-0248.2008.01250.x 10.1111/2041-210X.12103 10.1111/geb.12134 10.1126/science.1233774 10.1002/ece3.843 10.1126/science.1232728 10.1016/j.tree.2013.05.004 10.1098/rstb.2012.0238 10.1371/journal.pbio.0060102 10.1111/gcb.12467 10.1111/j.1461-0248.2012.01782.x 10.1890/ES12-00048.1 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 10.1890/09-1842.1 10.1890/12-1213.1 10.1111/1365-2435.12005 10.1111/j.1600-0587.2013.00574.x 10.1111/j.1600-0587.2013.00643.x 10.1111/geb.12151 10.7208/chicago/9780226023328.001.0001 10.1016/j.cub.2012.08.015 10.1017/CBO9780511542107 10.1038/44766 10.1111/nyas.12184 10.1038/nature05956 10.1111/j.1466-8238.2012.00777.x 10.1016/j.tree.2012.07.004 10.1111/j.1600-0706.2010.18927.x 10.1016/j.tree.2006.02.002 10.1093/aob/mcp027 10.1111/j.1600-0587.2013.00201.x 10.1111/ele.12002 10.1016/j.tree.2005.04.005 10.1126/science.1123412 10.1111/j.1600-0706.2011.20210.x 10.1371/journal.pone.0019374 10.1111/j.1365-2656.2008.01460.x 10.1126/science.243.4895.1145 10.1111/j.1365-2699.2011.02663.x 10.1111/ele.12245 10.1111/j.1466-8238.2007.00379.x 10.1111/j.1523-1739.2012.01927.x |
ContentType | Journal Article |
Copyright | 2015 Nordic Society Oikos 2014 The Authors Ecography © 2015 Nordic Society Oikos |
Copyright_xml | – notice: 2015 Nordic Society Oikos – notice: 2014 The Authors – notice: Ecography © 2015 Nordic Society Oikos |
DBID | BSCLL AAYXX CITATION 7SN 7SS ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7S9 L.6 |
DOI | 10.1111/ecog.00819 |
DatabaseName | Istex CrossRef Ecology Abstracts Entomology Abstracts (Full archive) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Ecology Abstracts ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Environmental Science Collection Entomology Abstracts ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1600-0587 |
EndPage | 357 |
ExternalDocumentID | 3642387901 10_1111_ecog_00819 ECOG819 ecography.38.4.346 ark_67375_WNG_DD3PCBVV_X |
Genre | article |
GrantInformation_xml | – fundername: Univ. of Amsterdam (UvA) – fundername: the Hesse Ministry of Higher Education, Research, and the Arts |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2AX 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAONW AAXTN AAZKR ABBHK ABCQN ABCUV ABEML ABPLY ABPVW ABTAH ABTLG ABXSQ ACBWZ ACCFJ ACFBH ACGFS ACPOU ACPRK ACSCC ACXQS ADACV ADBBV ADEOM ADIZJ ADMGS ADPDF ADULT ADXAS ADZOD AEEJZ AEEZP AEGXH AEIMD AENEX AEQDE AEUPB AEUQT AFAZZ AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFZJQ AGUYK AHXOZ AICQM AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AQVQM ASPBG AS~ ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD CCPQU COF CS3 D-E D-F DATOO DCZOG DOOOF DPXWK DR2 DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ GTFYD H.T H.X HCIFZ HF~ HGD HTVGU HVGLF HZI HZ~ IAO IEP IHE IPSME ITC IX1 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2W P2X P4D PATMY PIMPY PYCSY Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AANHP ACHIC ACRPL ACYXJ ADNMO AEFGJ AGQPQ AGXDD AIDQK AIDYY ACCMX AEUYN AAYXX CITATION PHGZM PHGZT 7SN 7SS ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c5419-2a9b19fbebbe99f98c04cbb0062b6edc526c7bffe9a335d161488ab1c8621f5e3 |
IEDL.DBID | BENPR |
ISSN | 0906-7590 |
IngestDate | Fri Jul 11 18:33:23 EDT 2025 Fri Jul 11 00:08:35 EDT 2025 Fri Jul 25 03:30:45 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Jul 01 00:51:07 EDT 2025 Wed Jan 22 16:39:09 EST 2025 Thu Jul 03 22:06:58 EDT 2025 Wed Oct 30 09:48:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5419-2a9b19fbebbe99f98c04cbb0062b6edc526c7bffe9a335d161488ab1c8621f5e3 |
Notes | ArticleID:ECOG819 the Hesse Ministry of Higher Education, Research, and the Arts Univ. of Amsterdam (UvA) ark:/67375/WNG-DD3PCBVV-X istex:ABB0CED28827E2695E7D839C9E21DCC8BE91129E ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1668148211?pq-origsite=%requestingapplication% |
PQID | 1668148211 |
PQPubID | 1006513 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1705453819 proquest_miscellaneous_1673398225 proquest_journals_1668148211 crossref_citationtrail_10_1111_ecog_00819 crossref_primary_10_1111_ecog_00819 wiley_primary_10_1111_ecog_00819_ECOG819 jstor_primary_ecography_38_4_346 istex_primary_ark_67375_WNG_DD3PCBVV_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Copenhagen |
PublicationTitle | Ecography (Copenhagen) |
PublicationTitleAlternate | Ecography |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nordic Society Oikos John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nordic Society Oikos – name: John Wiley & Sons, Inc |
References | Schleuning M. et al. 2014b. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Global Ecol. Biogeogr. 23: 385-394. Carstensen D. W. et al. 2012. Biogeographical modules and island roles: a comparison of Wallacea and the West Indies. J. Biogeogr. 39: 739-749. Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884. Gravel D. et al. 2013. Inferring food web structure from redator-prey body size relationships. Methods Ecol. Evol. 4: 1083-1090. Schleuning M. et al. 2014a. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17: 454-463. Dalsgaard B. et al. 2011. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS One 6: e25891. Kissling W. D. et al. 2008. Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Global Ecol. Biogeogr. 17: 327-339. Ollerton J. and Cranmer L. 2002. Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98: 340-350. Burkle L. A. et al. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339: 1611-1615. Eklöf A. et al. 2013. The dimensionality of ecological networks. Ecol. Lett. 16: 577-583. Estes J. A. et al. 2011. Trophic downgrading of planet Earth. Science 333: 301-306. Jablonski D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62: 715-739. Kissling W. D. et al. 2012b. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109: 7379-7384. Villéger S. et al. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290-2301. Woodward G. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20: 402-409. Sandom C. et al. 2013. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94: 1112-1122. Dunn R. R. et al. 2009. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B 276: 3037-3045. Thompson J. N. 2005. The geographic mosaic of coevolution. - Univ. of Chicago Press. Zhang J. et al. 2013. Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. J. Biogeogr. 40: 1131-1142. Hagen M. et al. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46: 89-210. Petanidou T. et al. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11: 564-575. Ings T. C. et al. 2009. Ecological networks - beyond food webs. J. Anim. Ecol. 78: 253-269. Ramirez S. R. et al. 2011. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333: 1742-1746. Gibson R. H. et al. 2011. Sampling method influences the structure of plant-pollinator networks. Oikos 120: 822-831. Stang M. et al. 2009. Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann. Bot. 103: 1459-1469. Zarnetske P. L. et al. 2012. Biotic multipliers of climate change. Science 336: 1516-1518. Morris R. J. et al. 2014. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17: 340-349. Kissling W. D. et al. 2007. Food plant diversity as broad- scale determinant of avian frugivore richness. Proc. R. Soc. B 274: 799-808. Fritz S. A. et al. 2013. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28: 509-516. Markl J. S. et al. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26: 1072-1081. Wisz M. S. et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88: 15-30. Kaiser-Bunbury C. N. et al. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442-452. Olesen J. M. and Jordano P. 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83: 2416-2424. Brown J. H. and Maurer B. A. 1989. Macroecology - the division of food and space among species on continents. Science 243: 1145-1150. Grace J. B. et al. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: art73. Bascompte J. et al. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431-433. Kitching R. L. 2000. Food webs and container habitats: the natural history and ecology of phytotelmata. - Cambridge Univ. Press. Kissling W. D. et al. 2012a. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39: 2163-2178. Dupont Y. L. et al. 2009. Spatio-temporal variation in the structure of pollination networks. Oikos 118: 1261-1269. Albouy C. et al. 2014. From projected species distribution to food-web structure under climate change. Global Change Biol. 20: 730-741. Schleuning M. et al. 2011b. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS One 6: e27785. Guimarães Jr, P. R. et al. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14: 877-885. Staniczenko P. P. A. et al. 2010. Structural dynamics and robustness of food webs. Ecol. Lett. 13: 891-899. Pigot A. L. and Tobias J. A. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16: 330-338. Gilman S. E. et al. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25: 325-331. Pearson R. G. and Dawson T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12: 361-371. Poisot T. et al. 2012. The dissimilarity of species interaction networks. Ecol. Lett. 15: 1353-1361. Rivera-Hutinel A. et al. 2012. Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93: 1593-1603. Stouffer D. B. et al. 2012. Evolutionary conservation of species' roles in food webs. Science 335: 1489-1492. Field R. et al. 2009. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36: 132-147. Dalsgaard B. et al. 2009. Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159: 757-766. Paine R. T. 1966. Food web complexity and species diversity. Am. Nat. 100: 65-75. Galetti M. et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340: 1086-1090. Schurr F. M. et al. 2012. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39: 2146-2162. Svenning J.-C. and Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100: 1266-1286. McGill B. J. 2011. Matters of scale. Science 328: 575-576. Schemske D. W. et al. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245-269. Memmott J. et al. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271: 2605-2611. Tylianakis J. M. et al. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11: 1351-1363. Fordham D. A. et al. 2013. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3: 899-903. Hawkins B. A. and Porter E. E. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. Am. Nat. 161: 40-49. Kissling W. D. et al. 2010. Woody plants and the prediction of climate-change impacts on bird diversity. Phil. Trans. R. Soc. B 365: 2035-2045. Montoya D. et al. 2012. Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol. Evol. 27: 666-672. Jetz W. et al. 2009. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276: 269-278. Donatti C. I. et al. 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14: 773-781. Schleuning M. et al. 2011a. Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology 92: 26-36. Pellissier L. et al. 2013. Combining food web and species distribution models for improved community projections. Ecol. Evol. 3: 4572-4583. Ferger S. W. et al. 2014. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecol. Biogeogr. 23: 541-549. Dale M. R. T. and Fortin M.-J. 2010. From graphs to spatial graphs. Annu. Rev. Ecol. Evol. Syst. 41: 21-38. Araújo M. B. and Rozenfeld A. 2014. The geographic scaling of biotic interactions. Ecography 37: 1-10. Hansen D. M. and Galetti M. 2009. The forgotten megafauna. Science 324: 42-43. Junker R. R. et al. 2013. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27: 329-341. Dunne J. A. et al. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biol. 6: e102. Hutchinson G. E. 1959. Homage to Santa Rosalia or why there are so many kinds of animals. Am. Nat. 93: 145-159. Plein M. et al. 2013. Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94: 1296-1306. Blach-Overgaard A. et al. 2013. Multimillion-year clim 2013; 3 2012; 121 2014b; 23 2013; 4 2009; 40 2013; 28 2013; 27 2010; 13 2013; 22 2013; 1297 2002; 98 2010; 143 2009; 276 2005; 20 2008; 6 2012; 15 2011; 14 2009; 118 2012; 367 2013; 8 1999; 401 2014; 23 2009; 159 2014a; 17 2014; 20 2003; 12 2011; 366 2011; 328 2010; 25 2012a; 39 2013; 16 2000 2006; 21 2002; 83 2013; 94 2003; 161 2012; 27 2012; 26 2014; 17 2008; 62 2012; 335 2012; 336 2012; 22 2009; 324 2011; 120 2011; 334 2011; 333 2007; 448 2012 2013; 88 2013; 40 2010; 365 2008; 17 2009 2013; 100 2005 2012; 39 2012b; 109 2004 2008; 11 2013; 341 2011a; 92 2013; 340 2011; 6 2010; 41 2006; 312 2009; 78 2012; 93 2009; 36 2013; 36 2012; 3 1966; 100 1959; 93 2013; 339 2004; 271 2011b; 6 1989; 243 2007; 274 2010; 176 2014; 37 2008; 89 2014 2013 2012; 279 2012; 46 2009; 103 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 Olesen J. M. (e_1_2_6_62_1) 2012 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_101_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_85_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_100_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_82_1 Marquet P. A. (e_1_2_6_52_1) 2004 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 Araújo M. B. (e_1_2_6_3_1) 2014; 37 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: Hansen D. M. and Galetti M. 2009. The forgotten megafauna. Science 324: 42-43. – reference: Junker R. R. et al. 2013. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27: 329-341. – reference: Kissling W. D. et al. 2007. Food plant diversity as broad- scale determinant of avian frugivore richness. Proc. R. Soc. B 274: 799-808. – reference: Schleuning M. et al. 2011b. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS One 6: e27785. – reference: Stang M. et al. 2009. Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann. Bot. 103: 1459-1469. – reference: Menke S. et al. 2012. Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos 121: 1553-1566. – reference: Ferger S. W. et al. 2014. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecol. Biogeogr. 23: 541-549. – reference: Estes J. A. et al. 2011. Trophic downgrading of planet Earth. Science 333: 301-306. – reference: Staniczenko P. P. A. et al. 2010. Structural dynamics and robustness of food webs. Ecol. Lett. 13: 891-899. – reference: Kitching R. L. 2000. Food webs and container habitats: the natural history and ecology of phytotelmata. - Cambridge Univ. Press. – reference: Fleming T. H. and Kress W. J. 2013. The ornaments of life: coevolution and conservation in the tropics. - Chicago Univ. Press. – reference: Galetti M. et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340: 1086-1090. – reference: Woodward G. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20: 402-409. – reference: Gibson R. H. et al. 2011. Sampling method influences the structure of plant-pollinator networks. Oikos 120: 822-831. – reference: McInnes L. et al. 2013. Do global diversity patterns of vertebrates reflect those of monocots? PLoS One 8: e56979. – reference: Sandom C. et al. 2013. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94: 1112-1122. – reference: Wisz M. S. et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88: 15-30. – reference: Plein M. et al. 2013. Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94: 1296-1306. – reference: Schleuning M. et al. 2014b. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Global Ecol. Biogeogr. 23: 385-394. – reference: Brown J. H. and Maurer B. A. 1989. Macroecology - the division of food and space among species on continents. Science 243: 1145-1150. – reference: Donatti C. I. et al. 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14: 773-781. – reference: Schleuning M. et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22: 1925-1931. – reference: Urban M. C. et al. 2013. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297: 44-60. – reference: Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884. – reference: Blach-Overgaard A. et al. 2013. Multimillion-year climatic effects on palm species diversity in Africa. Ecology 94: 2426-2435. – reference: Poisot T. et al. 2012. The dissimilarity of species interaction networks. Ecol. Lett. 15: 1353-1361. – reference: Dunn R. R. et al. 2009. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B 276: 3037-3045. – reference: Kissling W. D. et al. 2012a. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39: 2163-2178. – reference: Kissling W. D. et al. 2010. Woody plants and the prediction of climate-change impacts on bird diversity. Phil. Trans. R. Soc. B 365: 2035-2045. – reference: Albouy C. et al. 2014. From projected species distribution to food-web structure under climate change. Global Change Biol. 20: 730-741. – reference: Jablonski D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62: 715-739. – reference: Hawkins B. A. and Porter E. E. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. Am. Nat. 161: 40-49. – reference: Schemske D. W. et al. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245-269. – reference: Thompson J. N. 2005. The geographic mosaic of coevolution. - Univ. of Chicago Press. – reference: Hutchinson G. E. 1959. Homage to Santa Rosalia or why there are so many kinds of animals. Am. Nat. 93: 145-159. – reference: Markl J. S. et al. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26: 1072-1081. – reference: Fritz S. A. et al. 2013. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28: 509-516. – reference: Morris R. J. et al. 2014. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17: 340-349. – reference: Pearson R. G. and Dawson T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12: 361-371. – reference: Grace J. B. et al. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: art73. – reference: Dunne J. A. et al. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biol. 6: e102. – reference: Eklöf A. et al. 2013. The dimensionality of ecological networks. Ecol. Lett. 16: 577-583. – reference: Jetz W. et al. 2009. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276: 269-278. – reference: Tylianakis J. M. et al. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11: 1351-1363. – reference: Johnson C. N. 2009. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B 276: 2509-2519. – reference: Dupont Y. L. et al. 2009. Spatio-temporal variation in the structure of pollination networks. Oikos 118: 1261-1269. – reference: Trøjelsgaard K. and Olesen J. M. 2013. Macroecology of pollination networks. Global Ecol. Biogeogr. 22: 149-162. – reference: Urban M. C. et al. 2012. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279: 2072-2080. – reference: Dalsgaard B. et al. 2013. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36: 1331-1340. – reference: Kissling W. D. et al. 2008. Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Global Ecol. Biogeogr. 17: 327-339. – reference: Guimarães Jr, P. R. et al. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14: 877-885. – reference: Svenning J.-C. and Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100: 1266-1286. – reference: Paine R. T. 1966. Food web complexity and species diversity. Am. Nat. 100: 65-75. – reference: Gravel D. et al. 2011. Persistence increases with diversity and connectance in trophic metacommunities. PLoS One 6: e19374. – reference: McGill B. J. 2011. Matters of scale. Science 328: 575-576. – reference: Wiens J. J. 2011. The niche, biogeography and species interactions. Phil. Trans. R. Soc. B 366: 2336-2350. – reference: Petanidou T. et al. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11: 564-575. – reference: Montoya D. et al. 2012. Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol. Evol. 27: 666-672. – reference: Schurr F. M. et al. 2012. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39: 2146-2162. – reference: Blois J. L. et al. 2013. Climate change and the past, present, and future of biotic interactions. Science 341: 499-504. – reference: Kissling W. D. et al. 2012b. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109: 7379-7384. – reference: Dale M. R. T. and Fortin M.-J. 2010. From graphs to spatial graphs. Annu. Rev. Ecol. Evol. Syst. 41: 21-38. – reference: Dalsgaard B. et al. 2009. Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159: 757-766. – reference: Schleuning M. et al. 2014a. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17: 454-463. – reference: Hegland S. J. et al. 2010. How to monitor ecological communities cost-efficiently: the example of plant-pollinator networks. Biol. Conserv. 143: 2092-2101. – reference: Kaiser-Bunbury C. N. et al. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442-452. – reference: Schleuning M. et al. 2011a. Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology 92: 26-36. – reference: Pellissier L. et al. 2013. Combining food web and species distribution models for improved community projections. Ecol. Evol. 3: 4572-4583. – reference: McGill B. J. et al. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21: 178-185. – reference: Qian H. et al. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. J. Biogeogr. 36: 1685-1697. – reference: Bascompte J. et al. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431-433. – reference: Olesen J. M. and Jordano P. 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83: 2416-2424. – reference: Carstensen D. W. et al. 2012. Biogeographical modules and island roles: a comparison of Wallacea and the West Indies. J. Biogeogr. 39: 739-749. – reference: Rivera-Hutinel A. et al. 2012. Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93: 1593-1603. – reference: Fordham D. A. et al. 2013. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3: 899-903. – reference: Zhang J. et al. 2013. Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. J. Biogeogr. 40: 1131-1142. – reference: Hagen M. et al. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46: 89-210. – reference: Memmott J. et al. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271: 2605-2611. – reference: Field R. et al. 2009. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36: 132-147. – reference: Rezende E. L. et al. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448: 925-928. – reference: Nyman T. et al. 2012. Climate-driven diversity dynamics in plants and plant-feeding insects. Ecol. Lett. 15: 889-898. – reference: Gravel D. et al. 2013. Inferring food web structure from redator-prey body size relationships. Methods Ecol. Evol. 4: 1083-1090. – reference: Ollerton J. and Cranmer L. 2002. Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98: 340-350. – reference: Sandel B. et al. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334: 660-664. – reference: Svenning J.-C. et al. 2014. The influence of interspecific interactions on species range expansion rates. Ecography doi: 10.1111/j.1600-0587.2013.00574.x – reference: Rohr R. P. et al. 2010. Modeling food webs: exploring unexplained structure using latent traits. Am. Nat. 176: 170-177. – reference: Villéger S. et al. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290-2301. – reference: Burkle L. A. et al. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339: 1611-1615. – reference: Lurgi M. et al. 2012. Novel communities from climate change. Phil. Trans. R. Soc. B 367: 2913-2922. – reference: Dalsgaard B. et al. 2011. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS One 6: e25891. – reference: Pigot A. L. and Tobias J. A. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16: 330-338. – reference: Stouffer D. B. et al. 2012. Evolutionary conservation of species' roles in food webs. Science 335: 1489-1492. – reference: Araújo M. B. and Rozenfeld A. 2014. The geographic scaling of biotic interactions. Ecography 37: 1-10. – reference: Ramirez S. R. et al. 2011. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333: 1742-1746. – reference: Gilman S. E. et al. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25: 325-331. – reference: Zarnetske P. L. et al. 2012. Biotic multipliers of climate change. Science 336: 1516-1518. – reference: Boulangeat I. et al. 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol. Lett. 15: 584-593. – reference: Ings T. C. et al. 2009. Ecological networks - beyond food webs. J. Anim. Ecol. 78: 253-269. – year: 2005 – volume: 328 start-page: 575 year: 2011 end-page: 576 article-title: Matters of scale publication-title: Science – volume: 3 start-page: 899 year: 2013 end-page: 903 article-title: Adapted conservation measures are required to save the Iberian lynx in a changing climate publication-title: Nat. Clim. Change – volume: 15 start-page: 1353 year: 2012 end-page: 1361 article-title: The dissimilarity of species interaction networks publication-title: Ecol. Lett. – volume: 121 start-page: 1553 year: 2012 end-page: 1566 article-title: Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest publication-title: Oikos – volume: 100 start-page: 1266 year: 2013 end-page: 1286 article-title: Disequilibrium vegetation dynamics under future climate change publication-title: Am. J. Bot. – volume: 39 start-page: 2163 year: 2012a end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: J. Biogeogr. – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends Ecol. Evol. – volume: 40 start-page: 245 year: 2009 end-page: 269 article-title: Is there a latitudinal gradient in the importance of biotic interactions? publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 20 start-page: 730 year: 2014 end-page: 741 article-title: From projected species distribution to food‐web structure under climate change publication-title: Global Change Biol. – volume: 39 start-page: 739 year: 2012 end-page: 749 article-title: Biogeographical modules and island roles: a comparison of Wallacea and the West Indies publication-title: J. Biogeogr. – volume: 39 start-page: 2146 year: 2012 end-page: 2162 article-title: How to understand species' niches and range dynamics: a demographic research agenda for biogeography publication-title: J. Biogeogr. – volume: 92 start-page: 26 year: 2011a end-page: 36 article-title: Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata publication-title: Ecology – volume: 23 start-page: 385 year: 2014b end-page: 394 article-title: At a loss for birds: insularity increases asymmetry in seed‐dispersal networks publication-title: Global Ecol. Biogeogr. – volume: 41 start-page: 21 year: 2010 end-page: 38 article-title: From graphs to spatial graphs publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 4 start-page: 1083 year: 2013 end-page: 1090 article-title: Inferring food web structure from redator–prey body size relationships publication-title: Methods Ecol. Evol. – volume: 23 start-page: 541 year: 2014 end-page: 549 article-title: Food resources and vegetation structure mediate climatic effects on species richness of birds publication-title: Global Ecol. Biogeogr. – volume: 6 year: 2011b article-title: Forest fragmentation and selective logging have inconsistent effects on multiple animal‐mediated ecosystem processes in a tropical forest publication-title: PLoS One – volume: 17 start-page: 327 year: 2008 end-page: 339 article-title: Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? publication-title: Global Ecol. Biogeogr. – volume: 120 start-page: 822 year: 2011 end-page: 831 article-title: Sampling method influences the structure of plant–pollinator networks publication-title: Oikos – volume: 17 start-page: 340 year: 2014 end-page: 349 article-title: Antagonistic interaction networks are structured independently of latitude and host guild publication-title: Ecol. Lett. – volume: 1297 start-page: 44 year: 2013 end-page: 60 article-title: Moving forward: dispersal and species interactions determine biotic responses to climate change publication-title: Ann. N. Y. Acad. Sci. – volume: 15 start-page: 584 year: 2012 end-page: 593 article-title: Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances publication-title: Ecol. Lett. – volume: 366 start-page: 2336 year: 2011 end-page: 2350 article-title: The niche, biogeography and species interactions publication-title: Phil. Trans. R. Soc. B – volume: 312 start-page: 431 year: 2006 end-page: 433 article-title: Asymmetric coevolutionary networks facilitate biodiversity maintenance publication-title: Science – volume: 3 start-page: 4572 year: 2013 end-page: 4583 article-title: Combining food web and species distribution models for improved community projections publication-title: Ecol. Evol. – volume: 6 year: 2008 article-title: Compilation and network analyses of Cambrian food webs publication-title: PLoS Biol. – volume: 367 start-page: 2913 year: 2012 end-page: 2922 article-title: Novel communities from climate change publication-title: Phil. Trans. R. Soc. B – volume: 365 start-page: 2035 year: 2010 end-page: 2045 article-title: Woody plants and the prediction of climate‐change impacts on bird diversity publication-title: Phil. Trans. R. Soc. B – volume: 276 start-page: 3037 year: 2009 end-page: 3045 article-title: The sixth mass coextinction: are most endangered species parasites and mutualists? publication-title: Proc. R. Soc. B – volume: 8 year: 2013 article-title: Do global diversity patterns of vertebrates reflect those of monocots? publication-title: PLoS One – volume: 40 start-page: 1131 year: 2013 end-page: 1142 article-title: Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada publication-title: J. Biogeogr. – volume: 13 start-page: 442 year: 2010 end-page: 452 article-title: The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour publication-title: Ecol. Lett. – volume: 78 start-page: 253 year: 2009 end-page: 269 article-title: Ecological networks – beyond food webs publication-title: J. Anim. Ecol. – start-page: 219 year: 2009 end-page: 239 – volume: 15 start-page: 889 year: 2012 end-page: 898 article-title: Climate‐driven diversity dynamics in plants and plant‐feeding insects publication-title: Ecol. Lett. – volume: 17 start-page: 454 year: 2014a end-page: 463 article-title: Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks publication-title: Ecol. Lett. – volume: 336 start-page: 1516 year: 2012 end-page: 1518 article-title: Biotic multipliers of climate change publication-title: Science – volume: 401 start-page: 877 year: 1999 end-page: 884 article-title: Inferring the historical patterns of biological evolution publication-title: Nature – volume: 271 start-page: 2605 year: 2004 end-page: 2611 article-title: Tolerance of pollination networks to species extinctions publication-title: Proc. R. Soc. B – volume: 324 start-page: 42 year: 2009 end-page: 43 article-title: The forgotten megafauna publication-title: Science – volume: 100 start-page: 65 year: 1966 end-page: 75 article-title: Food web complexity and species diversity publication-title: Am. Nat. – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling publication-title: Biol. Rev. – volume: 118 start-page: 1261 year: 2009 end-page: 1269 article-title: Spatio‐temporal variation in the structure of pollination networks publication-title: Oikos – volume: 13 start-page: 891 year: 2010 end-page: 899 article-title: Structural dynamics and robustness of food webs publication-title: Ecol. Lett. – volume: 22 start-page: 1925 year: 2012 end-page: 1931 article-title: Specialization of mutualistic interaction networks decreases toward tropical latitudes publication-title: Curr. Biol. – volume: 334 start-page: 660 year: 2011 end-page: 664 article-title: The influence of Late Quaternary climate‐change velocity on species endemism publication-title: Science – volume: 36 start-page: 132 year: 2009 end-page: 147 article-title: Spatial species‐richness gradients across scales: a meta‐analysis publication-title: J. Biogeogr. – volume: 159 start-page: 757 year: 2009 end-page: 766 article-title: Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size publication-title: Oecologia – year: 2013 – volume: 243 start-page: 1145 year: 1989 end-page: 1150 article-title: Macroecology – the division of food and space among species on continents publication-title: Science – volume: 93 start-page: 145 year: 1959 end-page: 159 article-title: Homage to Santa Rosalia or why there are so many kinds of animals publication-title: Am. Nat. – volume: 103 start-page: 1459 year: 2009 end-page: 1469 article-title: Size‐specific interaction patterns and size matching in a plant–pollinator interaction web publication-title: Ann. Bot. – volume: 11 start-page: 564 year: 2008 end-page: 575 article-title: Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization publication-title: Ecol. Lett. – year: 2014 article-title: The influence of interspecific interactions on species range expansion rates publication-title: Ecography – volume: 94 start-page: 2426 year: 2013 end-page: 2435 article-title: Multimillion‐year climatic effects on palm species diversity in Africa publication-title: Ecology – volume: 20 start-page: 402 year: 2005 end-page: 409 article-title: Body size in ecological networks publication-title: Trends Ecol. Evol. – volume: 36 start-page: 1685 year: 2009 end-page: 1697 article-title: Effects of woody plant species richness on mammal species richness in southern Africa publication-title: J. Biogeogr. – volume: 11 start-page: 1351 year: 2008 end-page: 1363 article-title: Global change and species interactions in terrestrial ecosystems publication-title: Ecol. Lett. – volume: 448 start-page: 925 year: 2007 end-page: 928 article-title: Non‐random coextinctions in phylogenetically structured mutualistic networks publication-title: Nature – volume: 98 start-page: 340 year: 2002 end-page: 350 article-title: Latitudinal trends in plant–pollinator interactions: are tropical plants more specialised? publication-title: Oikos – volume: 83 start-page: 2416 year: 2002 end-page: 2424 article-title: Geographic patterns in plant–pollinator mutualistic networks publication-title: Ecology – volume: 14 start-page: 877 year: 2011 end-page: 885 article-title: Evolution and coevolution in mutualistic networks publication-title: Ecol. Lett. – volume: 333 start-page: 1742 year: 2011 end-page: 1746 article-title: Asynchronous diversification in a specialized plant–pollinator mutualism publication-title: Science – volume: 14 start-page: 773 year: 2011 end-page: 781 article-title: Analysis of a hyper‐diverse seed dispersal network: modularity and underlying mechanisms publication-title: Ecol. Lett. – volume: 27 start-page: 329 year: 2013 end-page: 341 article-title: Specialization on traits as basis for the niche‐breadth of flower visitors and as structuring mechanism of ecological networks publication-title: Funct. Ecol. – volume: 37 start-page: 1 year: 2014 end-page: 10 article-title: The geographic scaling of biotic interactions publication-title: Ecography – volume: 143 start-page: 2092 year: 2010 end-page: 2101 article-title: How to monitor ecological communities cost‐efficiently: the example of plant–pollinator networks publication-title: Biol. Conserv. – volume: 25 start-page: 325 year: 2010 end-page: 331 article-title: A framework for community interactions under climate change publication-title: Trends Ecol. Evol. – volume: 62 start-page: 715 year: 2008 end-page: 739 article-title: Biotic interactions and macroevolution: extensions and mismatches across scales and levels publication-title: Evolution – volume: 89 start-page: 2290 year: 2008 end-page: 2301 article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology publication-title: Ecology – volume: 109 start-page: 7379 year: 2012b end-page: 7384 article-title: Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide publication-title: Proc. Natl Acad. Sci. USA – volume: 16 start-page: 330 year: 2013 end-page: 338 article-title: Species interactions constrain geographic range expansion over evolutionary time publication-title: Ecol. Lett. – volume: 6 year: 2011 article-title: Persistence increases with diversity and connectance in trophic metacommunities publication-title: PLoS One – volume: 27 start-page: 666 year: 2012 end-page: 672 article-title: Emerging perspectives in the restoration of biodiversity‐based ecosystem services publication-title: Trends Ecol. Evol. – volume: 26 start-page: 1072 year: 2012 end-page: 1081 article-title: Meta‐analysis of the effects of human disturbance on seed dispersal by animals publication-title: Conserv. Biol. – volume: 12 start-page: 361 year: 2003 end-page: 371 article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? publication-title: Global Ecol. Biogeogr. – volume: 93 start-page: 1593 year: 2012 end-page: 1603 article-title: Effects of sampling completeness on the structure of plant–pollinator networks publication-title: Ecology – volume: 94 start-page: 1112 year: 2013 end-page: 1122 article-title: Mammal predator and prey species richness are strongly linked at macroscales publication-title: Ecology – volume: 36 start-page: 1331 year: 2013 end-page: 1340 article-title: Historical climate‐change influences modularity and nestedness of pollination networks publication-title: Ecography – start-page: 191 year: 2004 end-page: 209 – year: 2000 – volume: 333 start-page: 301 year: 2011 end-page: 306 article-title: Trophic downgrading of planet Earth publication-title: Science – volume: 6 year: 2011 article-title: Specialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate‐change velocity publication-title: PLoS One – volume: 340 start-page: 1086 year: 2013 end-page: 1090 article-title: Functional extinction of birds drives rapid evolutionary changes in seed size publication-title: Science – volume: 276 start-page: 2509 year: 2009 end-page: 2519 article-title: Ecological consequences of Late Quaternary extinctions of megafauna publication-title: Proc. R. Soc. B – volume: 341 start-page: 499 year: 2013 end-page: 504 article-title: Climate change and the past, present, and future of biotic interactions publication-title: Science – volume: 161 start-page: 40 year: 2003 end-page: 49 article-title: Does herbivore diversity depend on plant diversity? The case of California butterflies publication-title: Am. Nat. – volume: 276 start-page: 269 year: 2009 end-page: 278 article-title: Global associations between terrestrial producer and vertebrate consumer diversity publication-title: Proc. R. Soc. B – volume: 176 start-page: 170 year: 2010 end-page: 177 article-title: Modeling food webs: exploring unexplained structure using latent traits publication-title: Am. Nat. – volume: 46 start-page: 89 year: 2012 end-page: 210 article-title: Biodiversity, species interactions and ecological networks in a fragmented world publication-title: Adv. Ecol. Res. – volume: 16 start-page: 577 year: 2013 end-page: 583 article-title: The dimensionality of ecological networks publication-title: Ecol. Lett. – volume: 279 start-page: 2072 year: 2012 end-page: 2080 article-title: On a collision course: competition and dispersal differences create no‐analogue communities and cause extinctions during climate change publication-title: Proc. R. Soc. B – volume: 28 start-page: 509 year: 2013 end-page: 516 article-title: Diversity in time and space: wanted dead and alive publication-title: Trends Ecol. Evol. – volume: 335 start-page: 1489 year: 2012 end-page: 1492 article-title: Evolutionary conservation of species' roles in food webs publication-title: Science – volume: 22 start-page: 149 year: 2013 end-page: 162 article-title: Macroecology of pollination networks publication-title: Global Ecol. Biogeogr. – volume: 3 year: 2012 article-title: Guidelines for a graph‐theoretic implementation of structural equation modeling publication-title: Ecosphere – start-page: 374 year: 2012 end-page: 391 – volume: 94 start-page: 1296 year: 2013 end-page: 1306 article-title: Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time publication-title: Ecology – volume: 274 start-page: 799 year: 2007 end-page: 808 article-title: Food plant diversity as broad‐ scale determinant of avian frugivore richness publication-title: Proc. R. Soc. B – volume: 339 start-page: 1611 year: 2013 end-page: 1615 article-title: Plant–pollinator interactions over 120 years: loss of species, co‐occurrence, and function publication-title: Science – ident: e_1_2_6_77_1 doi: 10.1126/science.1210173 – ident: e_1_2_6_63_1 doi: 10.1034/j.1600-0706.2002.980215.x – ident: e_1_2_6_56_1 doi: 10.1098/rspb.2004.2909 – ident: e_1_2_6_35_1 doi: 10.1086/345479 – ident: e_1_2_6_97_1 doi: 10.1890/07-1206.1 – ident: e_1_2_6_12_1 doi: 10.1007/s00442-008-1255-z – ident: e_1_2_6_28_1 doi: 10.1016/j.tree.2010.03.002 – ident: e_1_2_6_36_1 doi: 10.1016/j.biocon.2010.05.018 – ident: e_1_2_6_5_1 doi: 10.1890/12-1577.1 – ident: e_1_2_6_86_1 doi: 10.1111/j.1365-2699.2012.02737.x – ident: e_1_2_6_89_1 doi: 10.1126/science.1216556 – ident: e_1_2_6_33_1 doi: 10.1016/B978-0-12-396992-7.00002-2 – ident: e_1_2_6_32_1 doi: 10.1111/j.1461-0248.2011.01649.x – ident: e_1_2_6_88_1 doi: 10.1111/j.1461-0248.2010.01485.x – ident: e_1_2_6_41_1 doi: 10.1098/rspb.2008.1921 – ident: e_1_2_6_39_1 doi: 10.1111/j.1558-5646.2008.00317.x – ident: e_1_2_6_34_1 doi: 10.1126/science.1172393 – ident: e_1_2_6_90_1 doi: 10.3732/ajb.1200469 – ident: e_1_2_6_46_1 doi: 10.1098/rstb.2010.0008 – ident: e_1_2_6_79_1 doi: 10.1017/CBO9780511815683.013 – ident: e_1_2_6_15_1 doi: 10.1111/j.1461-0248.2011.01639.x – ident: e_1_2_6_37_1 doi: 10.1086/282070 – ident: e_1_2_6_24_1 doi: 10.1038/nclimate1954 – ident: e_1_2_6_53_1 doi: 10.1126/science.1188528 – ident: e_1_2_6_69_1 doi: 10.1111/ele.12043 – ident: e_1_2_6_80_1 doi: 10.1146/annurev.ecolsys.39.110707.173430 – ident: e_1_2_6_44_1 doi: 10.1098/rspb.2006.0311 – ident: e_1_2_6_43_1 doi: 10.1111/j.1461-0248.2009.01437.x – ident: e_1_2_6_13_1 doi: 10.1371/journal.pone.0025891 – ident: e_1_2_6_101_1 doi: 10.1126/science.1222732 – ident: e_1_2_6_95_1 doi: 10.1098/rspb.2011.2367 – ident: e_1_2_6_59_1 doi: 10.1111/ele.12235 – ident: e_1_2_6_76_1 doi: 10.1086/653667 – ident: e_1_2_6_68_1 doi: 10.1111/j.1461-0248.2008.01170.x – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2699.2008.01963.x – ident: e_1_2_6_7_1 doi: 10.1111/j.1461-0248.2012.01772.x – ident: e_1_2_6_18_1 doi: 10.1111/j.1600-0706.2009.17594.x – ident: e_1_2_6_65_1 doi: 10.1086/282400 – ident: e_1_2_6_72_1 doi: 10.1111/j.1365-2699.2009.02128.x – ident: e_1_2_6_19_1 doi: 10.1111/ele.12081 – ident: e_1_2_6_6_1 doi: 10.1126/science.1237184 – ident: e_1_2_6_20_1 doi: 10.1126/science.1205106 – ident: e_1_2_6_75_1 doi: 10.1890/11-1803.1 – ident: e_1_2_6_92_1 doi: 10.7208/chicago/9780226118697.001.0001 – ident: e_1_2_6_11_1 doi: 10.1146/annurev-ecolsys-102209-144718 – ident: e_1_2_6_78_1 doi: 10.1890/12-1342.1 – ident: e_1_2_6_98_1 doi: 10.1098/rstb.2011.0059 – ident: e_1_2_6_82_1 doi: 10.1371/journal.pone.0027785 – ident: e_1_2_6_16_1 doi: 10.1098/rspb.2009.0413 – ident: e_1_2_6_40_1 doi: 10.1098/rspb.2008.1005 – ident: e_1_2_6_55_1 doi: 10.1371/journal.pone.0056979 – ident: e_1_2_6_66_1 doi: 10.1046/j.1466-822X.2003.00042.x – ident: e_1_2_6_48_1 doi: 10.1073/pnas.1120467109 – ident: e_1_2_6_99_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2699.2011.02628.x – ident: e_1_2_6_102_1 doi: 10.1111/jbi.12063 – ident: e_1_2_6_73_1 doi: 10.1126/science.1209175 – ident: e_1_2_6_94_1 doi: 10.1111/j.1461-0248.2008.01250.x – ident: e_1_2_6_31_1 doi: 10.1111/2041-210X.12103 – ident: e_1_2_6_85_1 doi: 10.1111/geb.12134 – ident: e_1_2_6_26_1 doi: 10.1126/science.1233774 – ident: e_1_2_6_67_1 doi: 10.1002/ece3.843 – ident: e_1_2_6_9_1 doi: 10.1126/science.1232728 – ident: e_1_2_6_25_1 doi: 10.1016/j.tree.2013.05.004 – ident: e_1_2_6_50_1 doi: 10.1098/rstb.2012.0238 – ident: e_1_2_6_17_1 doi: 10.1371/journal.pbio.0060102 – ident: e_1_2_6_2_1 doi: 10.1111/gcb.12467 – ident: e_1_2_6_60_1 doi: 10.1111/j.1461-0248.2012.01782.x – ident: e_1_2_6_29_1 doi: 10.1890/ES12-00048.1 – ident: e_1_2_6_61_1 doi: 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 – ident: e_1_2_6_81_1 doi: 10.1890/09-1842.1 – ident: e_1_2_6_70_1 doi: 10.1890/12-1213.1 – ident: e_1_2_6_42_1 doi: 10.1111/1365-2435.12005 – ident: e_1_2_6_91_1 doi: 10.1111/j.1600-0587.2013.00574.x – volume: 37 start-page: 1 year: 2014 ident: e_1_2_6_3_1 article-title: The geographic scaling of biotic interactions publication-title: Ecography doi: 10.1111/j.1600-0587.2013.00643.x – ident: e_1_2_6_21_1 doi: 10.1111/geb.12151 – ident: e_1_2_6_23_1 doi: 10.7208/chicago/9780226023328.001.0001 – ident: e_1_2_6_83_1 doi: 10.1016/j.cub.2012.08.015 – ident: e_1_2_6_49_1 doi: 10.1017/CBO9780511542107 – ident: e_1_2_6_64_1 doi: 10.1038/44766 – ident: e_1_2_6_96_1 doi: 10.1111/nyas.12184 – ident: e_1_2_6_74_1 doi: 10.1038/nature05956 – ident: e_1_2_6_93_1 doi: 10.1111/j.1466-8238.2012.00777.x – ident: e_1_2_6_58_1 doi: 10.1016/j.tree.2012.07.004 – ident: e_1_2_6_27_1 doi: 10.1111/j.1600-0706.2010.18927.x – ident: e_1_2_6_54_1 doi: 10.1016/j.tree.2006.02.002 – start-page: 374 volume-title: Evolution of plant–pollinator relationships year: 2012 ident: e_1_2_6_62_1 – ident: e_1_2_6_87_1 doi: 10.1093/aob/mcp027 – ident: e_1_2_6_14_1 doi: 10.1111/j.1600-0587.2013.00201.x – ident: e_1_2_6_71_1 doi: 10.1111/ele.12002 – ident: e_1_2_6_100_1 doi: 10.1016/j.tree.2005.04.005 – ident: e_1_2_6_4_1 doi: 10.1126/science.1123412 – ident: e_1_2_6_57_1 doi: 10.1111/j.1600-0706.2011.20210.x – ident: e_1_2_6_30_1 doi: 10.1371/journal.pone.0019374 – ident: e_1_2_6_38_1 doi: 10.1111/j.1365-2656.2008.01460.x – start-page: 191 volume-title: Frontiers of biogeography: new directions in the geography of nature year: 2004 ident: e_1_2_6_52_1 – ident: e_1_2_6_8_1 doi: 10.1126/science.243.4895.1145 – ident: e_1_2_6_47_1 doi: 10.1111/j.1365-2699.2011.02663.x – ident: e_1_2_6_84_1 doi: 10.1111/ele.12245 – ident: e_1_2_6_45_1 doi: 10.1111/j.1466-8238.2007.00379.x – ident: e_1_2_6_51_1 doi: 10.1111/j.1523-1739.2012.01927.x |
SSID | ssj0012968 |
Score | 2.3926256 |
Snippet | Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 346 |
SubjectTerms | analytical methods biogeography climate functional diversity global change land use change Macroecology Macroevolution phylogeny pollination predator-prey relationships prediction Review & synthesis species diversity temporal variation |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jIvji97A6JaKIPvTSNEnbiC96d7chOEXcvC8SkjRB2ewdbS-of705SdttIkN8amhOSpKez_acXxB6SiubC0VdWuWlSJk2WSoMJyl1XFSKEpuFKtd3B8X-IXu75MsN9GqshYn4ENMHN5CMoK9BwJXuzgk55NfMgkXzChiStcAj-jhhR3k7FurgMuFD5pKLbMAmhTSes6EXrNEV2NgfY2LiBZfzvOMaLM_uDfRlnHNMODmerXs9M7_-gHP830XdRNcHlxS_jjx0C23Y5ja6Gg-p_OlbCzO0thZnVXF-wKAWujvIhDJeKNr0cTcGBIo21kt0WIWF475dnX79ZvAJ5Cj5uz3-Hno8h9juJW6tJxiLPrFqahyxTnC0uPCku-hwd_Fpvp8OpzekhjMi0lwJTYTTVmsrhBOVyZjRIOW5LmxteF6YUjtnPatQXhNAJK2UJsbHWMRxS7fQZrNq7D2ENTWCM8eVcoLZWntXu66LzJQ0F0xVeYJejG9RmgHaHE7YOJFjiAP7KsO-JujJRHsaAT3-SvUsMMNEotpjSIErufx8sCd3duiH-ZujI7lMEA7cMhHCMwLUuKSVZJKyIkHbIyPJQUF0khRFBRCshCTo8dTtRRv-16jGrtZAU1IK-Ir8EprS-9ychik_D5x1yarkYv5-z1_v_zvpA3TNu4g85ipto82-XduH3g3r9aMgbr8BMwEw4w priority: 102 providerName: Wiley-Blackwell |
Title | Multispecies interactions across trophic levels at macroscales: retrospective and future directions |
URI | https://api.istex.fr/ark:/67375/WNG-DD3PCBVV-X/fulltext.pdf https://www.jstor.org/stable/ecography.38.4.346 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fecog.00819 https://www.proquest.com/docview/1668148211 https://www.proquest.com/docview/1673398225 https://www.proquest.com/docview/1705453819 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwEA9uD2G_iN-GdXNENkR_qDZJ0zb-Iu6t2xB8juHm-y0kaYri7Htr30D_e3Np2jmQ91NDcw1pLpfcJXefQ-iAFZYKxeq4oLmIU22SWBhOYlZzUShGbOKjXD_PstOL9NOcz8OBWxfcKoc10S_U1cLAGfk7kmUFYFYS8mF5HUPWKLhdDSk0NtDELcGFM74mh-Xs7Hy8R6DCB8MlwtnNORdJACgFXx7wz3nrd8Q7W9IERvf34J14R-_8V3v128_xQ_Qg6I34Y8_oR-iebR6j-30myT-uVJpQ2i5vQ9fcB0F2uyfI-FhbiKx0xjEGmIi2D2rosPIdw6t2sfz-w-ArcCRyb1f4l69xbLTde9xaRzBEZmLVVLgHJMH9tggtPUUXx-XX6WkcUizEhqdExFQJTUStrdZWiFoUJkmNBlGkOrOV4TQzua5r6_jJeEUANrRQmhhnCJGaW7aNNptFY58hrJkRPK25UrVIbaWdPlxVWWJyRkWqChqhN8MoSxPwxyENxpUc7BDgiPQcidD-SLvsUTf-S_XKM2skUe1P8FPLufw2O5FHR-xsenh5KecRwp6bIyG04fHAJStkKlmaRWh3YLQMUtzJ2zkXoZdjtZM_uFRRjV3cAE3OGIAg8jU0uVOMOfNdfu0n0Zq_kuX0y4l7Pl_fox205XQ33jsR7aLNVXtjXzj9aKX3ghDsOQvhnP4Fv08SGA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVoi9IL4mCgOM-BA8BJI4TmIkhFjbrWNbmaZt9M2zHUcgRlrSTrB_ir8Rn_MxJqG-7SlWfLFs39m-i-9-B_CcpibkkuZeGibci5T2Pa5Z4NGc8VTSwPguynVvHI-Ook8TNlmBP00sDLpVNnui26izqcZ_5G-DOE4RszIIPsx-epg1Cm9XmxQalVjsmPNf1mSbv98eWP6-CMPN4WF_5NVZBTzNooB7oeQq4LkyShnOc55qP9IKpS9Usck0C2OdqDw3dgiUZQEiZaZSBdrq_kHODLXtXoNuRK0p04HuxnC8f9DeW4TcBd_53NrpCeN-DYiKvkPoD_TGncCXjsAucvN34w15Sc_9V1t2x93mLbhZ66nkYyVYt2HFFHfgepW58tyWhrourQ0vQuXsB_VeMb8L2sX2YiSnNcYJwlKUVRDFnEjXMbIop7Ov3zQ5Rccl-3ZBfrgaKzZm_o6UxhI0kaBEFhmpAFBIdQxjS_fg6Eomfw06xbQw94EoqjmLciZlziOTKat_Z1ns64SGPJJp2IPXzSwLXeOdY9qNU9HYPcgR4TjSg2ct7axC-fgv1UvHrJZElt_RLy5h4st4SwwGdL-_cXwsJj0gjpstIbbh8McFTUUkaBT3YL1htKh3jbm4kPEePG2r7XrHSxxZmOkZ0iSUIugiW0KTWEWcUdflV06IloxKDPuft-zzwfIePYEbo8O9XbG7Pd55CKtWb2SVA9M6dBblmXlkdbOFelwvCAInV70G_wKeWE8- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXYF6QbwqAgWMeAgOoUkcJzESQnQfbSksq4qWvbm24whE2V2yW0H_Gr8Oj_MoldDeeooVTyzbM7Zn4plvAJ7SzERc0sLPopT7sdKBzzULfVownkkamsBFuX4cJbuH8fsJm6zBnyYWBt0qmz3RbdT5TOM_8q0wSTLErAzDraJ2ixj3h2_nP33MIIU3rU06jUpE9s3ZL2u-Ld7s9S2vn0XRcPC5t-vXGQZ8zeKQ-5HkKuSFMkoZzgue6SDWCiUxUonJNYsSnaqiMHY4lOUhomZmUoXa2gFhwQy17V6BbmqtoqAD3e3BaHzQ3mFE3AXiBdza7CnjQQ2Oin5E6Bv0yp3GF47DLnL2d-MZeUHn_Vdzdkff8AZcr3VW8q4SspuwZqa34GqVxfLMlga6Lm0MzsPm7Af1vrG4DdrF-WJUpzXMCUJUlFVAxYJI1zGyLGfzr980OUEnJvt2SX64GitCZvGalMYSNFGhRE5zUoGhkOpIxpbuwOGlTP4GdKazqbkLRFHNWVwwKQsem1xZXTzPk0CnNOKxzCIPXjazLHSNfY4pOE5EYwMhR4TjiAdPWtp5hfjxX6rnjlktiSy_o49cysSX0Y7o9-m4t310JCYeEMfNlhDbcFjkgmYiFjROPNhsGC3qHWQhzuXdg8dttV37eKEjp2Z2ijQppQjAyFbQpFYpZ9R1-YUTohWjEoPepx37vLe6R4_gml174sPeaP8-rFsVklW-TJvQWZan5oFV05bqYb0eCBxf9hL8CwZ6U3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispecies+interactions+across+trophic+levels+at+macroscales%3A+retrospective+and+future+directions&rft.jtitle=Ecography+%28Copenhagen%29&rft.au=Kissling%2C+WDaniel&rft.au=Schleuning%2C+Matthias&rft.date=2015-04-01&rft.issn=0906-7590&rft.eissn=1600-0587&rft.volume=38&rft.issue=4&rft.spage=346&rft.epage=357&rft_id=info:doi/10.1111%2Fecog.00819&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-7590&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-7590&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-7590&client=summon |