Multispecies interactions across trophic levels at macroscales: retrospective and future directions

Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape specie...

Full description

Saved in:
Bibliographic Details
Published inEcography (Copenhagen) Vol. 38; no. 4; pp. 346 - 357
Main Authors Kissling, W. Daniel, Schleuning, Matthias
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2015
Nordic Society Oikos
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape species distributions and diversity patterns at macroecological extents remains less clear. Here, we provide an overview of recent and potential future developments in macroecology that explore the role of antagonistic and mutualistic interactions among multiple species across trophic levels. Recent studies broadly represent two analytical methods (analyses of species richness and ecological networks) and provide evidence that plant–animal interactions (e.g. pollination, frugivory) and predator–prey interactions influence large-scale richness patterns and that ecological network structure varies systematically at macroscales. Current methodological problems and challenges are related to defining the functional links in cross-trophic richness analyses, understanding trait effects in multispecies interactions, and addressing sampling effects when analyzing multiple ecological networks across large spatial extents. Key topics for future research are 1) testing paleoclimatic imprints on interaction diversity, 2) understanding macroevolution and the phylogenetic structure of multispecies interactions, 3) quantifying contemporary spatial and temporal variability in complex ecological networks, and 4) predicting novel interactions under global change. Moreover, we see great potential for a deeper bidirectional integration of macroecology and network research, e.g. by analyses of trait complementarity and functional diversity of interacting groups and by employing species distribution modeling to predict changes in functional network structure. Addressing these key topics and achieving a better integration between these two research fields will significantly advance our understanding of the ecological and evolutionary drivers of multispecies interactions. This could also help to develop more realistic forecasts of changes in biodiversity under climate and land use change.
AbstractList Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively demonstrated at local spatial scales. However, how local species interactions scale-up to large spatial scales and how they contribute to shape species distributions and diversity patterns at macroecological extents remains less clear. Here, we provide an overview of recent and potential future developments in macroecology that explore the role of antagonistic and mutualistic interactions among multiple species across trophic levels. Recent studies broadly represent two analytical methods (analyses of species richness and ecological networks) and provide evidence that plant-animal interactions (e.g. pollination, frugivory) and predator-prey interactions influence large-scale richness patterns and that ecological network structure varies systematically at macroscales. Current methodological problems and challenges are related to defining the functional links in cross-trophic richness analyses, understanding trait effects in multispecies interactions, and addressing sampling effects when analyzing multiple ecological networks across large spatial extents. Key topics for future research are 1) testing paleoclimatic imprints on interaction diversity, 2) understanding macroevolution and the phylogenetic structure of multispecies interactions, 3) quantifying contemporary spatial and temporal variability in complex ecological networks, and 4) predicting novel interactions under global change. Moreover, we see great potential for a deeper bidirectional integration of macroecology and network research, e.g. by analyses of trait complementarity and functional diversity of interacting groups and by employing species distribution modeling to predict changes in functional network structure. Addressing these key topics and achieving a better integration between these two research fields will significantly advance our understanding of the ecological and evolutionary drivers of multispecies interactions. This could also help to develop more realistic forecasts of changes in biodiversity under climate and land use change.
Author Kissling, W. Daniel
Schleuning, Matthias
Author_xml – sequence: 1
  givenname: W. Daniel
  surname: Kissling
  fullname: Kissling, W. Daniel
  email: danielkissling@web.de
  organization: Inst. for Biodiversity and Ecosystem Dynamics (IBED), Univ. of Amsterdam, GE Amsterdam, PO Box 94248, NL-1090, Netherlands
– sequence: 2
  givenname: Matthias
  surname: Schleuning
  fullname: Schleuning, Matthias
  organization: Biodiversity and Climate Research Centre (BiK-F) and Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt (Main), DE-60325, Germany
BookMark eNqF0UFvFCEUB3BiauK2evETkHjQmEwLw8CAN7utW5NqPWj1RoB9Y1lnZ0Zgavfby-yYHhqjXEjg9ye89w7RQdd3gNBzSo5pXifg-u_HhEiqHqEFFYQUhMv6AC2IIqKouSJP0GGMG0JoqYRcIPdhbJOPAzgPEfsuQTAu-b6L2LjQx4hT6Icb73ALt9Dm04S3-xtnWohvcIAMpnzyt4BNt8bNmMYAeO0DzC89RY8b00Z49mc_Ql_enX9eXhSXV6v3y7eXheMVVUVplKWqsWAtKNUo6UjlrCVElFbA2vFSuNo2DSjDGF9TQSspjaVOipI2HNgRejW_O4T-5wgx6a2PDtrWdNCPUdOa8Iqz3Jz_U1EzpmRZ8kxfPKCbfgxdLiQrIfMnSkqzIrPaNy1Ao51PZio_BeNbTYmeBqSnAen9gHLk9YPIEPzWhN3f8cmMf_kWdv-Q-nx5tZoTL-fEJqY-3CcmGcxws9NM6kqzSmRZzNLHBHf30oQfOreh5vrrx5U-O2OflqfX1_ob-w3cq8Hg
CitedBy_id crossref_primary_10_1890_15_0830_1
crossref_primary_10_3897_rio_3_e14944
crossref_primary_10_1111_eva_13750
crossref_primary_10_1016_j_baae_2019_06_002
crossref_primary_10_1038_s41467_019_12995_9
crossref_primary_10_1111_1365_2656_14116
crossref_primary_10_1002_ecy_3686
crossref_primary_10_1111_oik_07953
crossref_primary_10_1111_ecog_03396
crossref_primary_10_3390_ani12010057
crossref_primary_10_1111_1365_2656_12459
crossref_primary_10_1002_ecy_3165
crossref_primary_10_1111_ecog_03592
crossref_primary_10_1016_j_jenvman_2019_109479
crossref_primary_10_1111_geb_13156
crossref_primary_10_3390_d15010061
crossref_primary_10_1111_brv_12366
crossref_primary_10_1007_s10340_018_0958_0
crossref_primary_10_1111_jbi_15085
crossref_primary_10_1111_geb_12776
crossref_primary_10_1002_ecy_1756
crossref_primary_10_1073_pnas_2100966118
crossref_primary_10_1111_ecog_01646
crossref_primary_10_1111_plb_12593
crossref_primary_10_1098_rstb_2023_0131
crossref_primary_10_1111_oik_08756
crossref_primary_10_1111_2041_210X_13329
crossref_primary_10_1038_s41598_019_56515_7
crossref_primary_10_1098_rspb_2018_0949
crossref_primary_10_3390_ani11123392
crossref_primary_10_1111_jbi_13493
crossref_primary_10_1016_j_ecolmodel_2022_109949
crossref_primary_10_1111_1365_2435_12530
crossref_primary_10_1111_oik_02998
crossref_primary_10_1111_ecog_02604
crossref_primary_10_1111_gcb_14828
crossref_primary_10_1111_geb_12925
crossref_primary_10_1111_ecog_00983
crossref_primary_10_1111_ecog_02561
crossref_primary_10_1111_ecog_06566
crossref_primary_10_1111_ecog_06841
crossref_primary_10_1111_oik_06688
crossref_primary_10_3390_d15010001
crossref_primary_10_1111_ecog_05079
crossref_primary_10_1002_ece3_2517
crossref_primary_10_1002_ecy_1521
crossref_primary_10_1016_j_actao_2018_02_011
crossref_primary_10_1371_journal_pone_0240614
crossref_primary_10_1016_j_tree_2016_06_009
crossref_primary_10_1098_rspb_2022_2547
crossref_primary_10_1098_rspb_2018_2193
crossref_primary_10_1111_geb_12833
crossref_primary_10_1002_lno_11699
crossref_primary_10_3390_cells10030644
crossref_primary_10_1111_1365_2656_12683
crossref_primary_10_1111_oik_02792
crossref_primary_10_1086_683606
crossref_primary_10_1111_2041_210X_12936
crossref_primary_10_1111_ecog_03443
crossref_primary_10_1111_jbi_14447
crossref_primary_10_13157_arla_63_1_2016_rp7
crossref_primary_10_1146_annurev_ecolsys_012220_120819
crossref_primary_10_1002_ece3_4908
crossref_primary_10_1111_geb_12311
crossref_primary_10_1080_14888386_2015_1068709
Cites_doi 10.1126/science.1210173
10.1034/j.1600-0706.2002.980215.x
10.1098/rspb.2004.2909
10.1086/345479
10.1890/07-1206.1
10.1007/s00442-008-1255-z
10.1016/j.tree.2010.03.002
10.1016/j.biocon.2010.05.018
10.1890/12-1577.1
10.1111/j.1365-2699.2012.02737.x
10.1126/science.1216556
10.1016/B978-0-12-396992-7.00002-2
10.1111/j.1461-0248.2011.01649.x
10.1111/j.1461-0248.2010.01485.x
10.1098/rspb.2008.1921
10.1111/j.1558-5646.2008.00317.x
10.1126/science.1172393
10.3732/ajb.1200469
10.1098/rstb.2010.0008
10.1017/CBO9780511815683.013
10.1111/j.1461-0248.2011.01639.x
10.1086/282070
10.1038/nclimate1954
10.1126/science.1188528
10.1111/ele.12043
10.1146/annurev.ecolsys.39.110707.173430
10.1098/rspb.2006.0311
10.1111/j.1461-0248.2009.01437.x
10.1371/journal.pone.0025891
10.1126/science.1222732
10.1098/rspb.2011.2367
10.1111/ele.12235
10.1086/653667
10.1111/j.1461-0248.2008.01170.x
10.1111/j.1365-2699.2008.01963.x
10.1111/j.1461-0248.2012.01772.x
10.1111/j.1600-0706.2009.17594.x
10.1086/282400
10.1111/j.1365-2699.2009.02128.x
10.1111/ele.12081
10.1126/science.1237184
10.1126/science.1205106
10.1890/11-1803.1
10.7208/chicago/9780226118697.001.0001
10.1146/annurev-ecolsys-102209-144718
10.1890/12-1342.1
10.1098/rstb.2011.0059
10.1371/journal.pone.0027785
10.1098/rspb.2009.0413
10.1098/rspb.2008.1005
10.1371/journal.pone.0056979
10.1046/j.1466-822X.2003.00042.x
10.1073/pnas.1120467109
10.1111/j.1469-185X.2012.00235.x
10.1111/j.1365-2699.2011.02628.x
10.1111/jbi.12063
10.1126/science.1209175
10.1111/j.1461-0248.2008.01250.x
10.1111/2041-210X.12103
10.1111/geb.12134
10.1126/science.1233774
10.1002/ece3.843
10.1126/science.1232728
10.1016/j.tree.2013.05.004
10.1098/rstb.2012.0238
10.1371/journal.pbio.0060102
10.1111/gcb.12467
10.1111/j.1461-0248.2012.01782.x
10.1890/ES12-00048.1
10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2
10.1890/09-1842.1
10.1890/12-1213.1
10.1111/1365-2435.12005
10.1111/j.1600-0587.2013.00574.x
10.1111/j.1600-0587.2013.00643.x
10.1111/geb.12151
10.7208/chicago/9780226023328.001.0001
10.1016/j.cub.2012.08.015
10.1017/CBO9780511542107
10.1038/44766
10.1111/nyas.12184
10.1038/nature05956
10.1111/j.1466-8238.2012.00777.x
10.1016/j.tree.2012.07.004
10.1111/j.1600-0706.2010.18927.x
10.1016/j.tree.2006.02.002
10.1093/aob/mcp027
10.1111/j.1600-0587.2013.00201.x
10.1111/ele.12002
10.1016/j.tree.2005.04.005
10.1126/science.1123412
10.1111/j.1600-0706.2011.20210.x
10.1371/journal.pone.0019374
10.1111/j.1365-2656.2008.01460.x
10.1126/science.243.4895.1145
10.1111/j.1365-2699.2011.02663.x
10.1111/ele.12245
10.1111/j.1466-8238.2007.00379.x
10.1111/j.1523-1739.2012.01927.x
ContentType Journal Article
Copyright 2015 Nordic Society Oikos
2014 The Authors
Ecography © 2015 Nordic Society Oikos
Copyright_xml – notice: 2015 Nordic Society Oikos
– notice: 2014 The Authors
– notice: Ecography © 2015 Nordic Society Oikos
DBID BSCLL
AAYXX
CITATION
7SN
7SS
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.1111/ecog.00819
DatabaseName Istex
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Environmental Science Collection
Entomology Abstracts
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts
CrossRef

Publicly Available Content Database

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1600-0587
EndPage 357
ExternalDocumentID 3642387901
10_1111_ecog_00819
ECOG819
ecography.38.4.346
ark_67375_WNG_DD3PCBVV_X
Genre article
GrantInformation_xml – fundername: Univ. of Amsterdam (UvA)
– fundername: the Hesse Ministry of Higher Education, Research, and the Arts
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2AX
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAONW
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACBWZ
ACCFJ
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADULT
ADXAS
ADZOD
AEEJZ
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AFAZZ
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AGUYK
AHXOZ
AICQM
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AQVQM
ASPBG
AS~
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
CCPQU
COF
CS3
D-E
D-F
DATOO
DCZOG
DOOOF
DPXWK
DR2
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
GTFYD
H.T
H.X
HCIFZ
HF~
HGD
HTVGU
HVGLF
HZI
HZ~
IAO
IEP
IHE
IPSME
ITC
IX1
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2W
P2X
P4D
PATMY
PIMPY
PYCSY
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AANHP
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ACCMX
AEUYN
AAYXX
CITATION
PHGZM
PHGZT
7SN
7SS
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c5419-2a9b19fbebbe99f98c04cbb0062b6edc526c7bffe9a335d161488ab1c8621f5e3
IEDL.DBID BENPR
ISSN 0906-7590
IngestDate Fri Jul 11 18:33:23 EDT 2025
Fri Jul 11 00:08:35 EDT 2025
Fri Jul 25 03:30:45 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Jul 01 00:51:07 EDT 2025
Wed Jan 22 16:39:09 EST 2025
Thu Jul 03 22:06:58 EDT 2025
Wed Oct 30 09:48:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5419-2a9b19fbebbe99f98c04cbb0062b6edc526c7bffe9a335d161488ab1c8621f5e3
Notes ArticleID:ECOG819
the Hesse Ministry of Higher Education, Research, and the Arts
Univ. of Amsterdam (UvA)
ark:/67375/WNG-DD3PCBVV-X
istex:ABB0CED28827E2695E7D839C9E21DCC8BE91129E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1668148211?pq-origsite=%requestingapplication%
PQID 1668148211
PQPubID 1006513
PageCount 12
ParticipantIDs proquest_miscellaneous_1705453819
proquest_miscellaneous_1673398225
proquest_journals_1668148211
crossref_citationtrail_10_1111_ecog_00819
crossref_primary_10_1111_ecog_00819
wiley_primary_10_1111_ecog_00819_ECOG819
jstor_primary_ecography_38_4_346
istex_primary_ark_67375_WNG_DD3PCBVV_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Copenhagen
PublicationTitle Ecography (Copenhagen)
PublicationTitleAlternate Ecography
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nordic Society Oikos
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nordic Society Oikos
– name: John Wiley & Sons, Inc
References Schleuning M. et al. 2014b. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Global Ecol. Biogeogr. 23: 385-394.
Carstensen D. W. et al. 2012. Biogeographical modules and island roles: a comparison of Wallacea and the West Indies. J. Biogeogr. 39: 739-749.
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884.
Gravel D. et al. 2013. Inferring food web structure from redator-prey body size relationships. Methods Ecol. Evol. 4: 1083-1090.
Schleuning M. et al. 2014a. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17: 454-463.
Dalsgaard B. et al. 2011. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS One 6: e25891.
Kissling W. D. et al. 2008. Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Global Ecol. Biogeogr. 17: 327-339.
Ollerton J. and Cranmer L. 2002. Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98: 340-350.
Burkle L. A. et al. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339: 1611-1615.
Eklöf A. et al. 2013. The dimensionality of ecological networks. Ecol. Lett. 16: 577-583.
Estes J. A. et al. 2011. Trophic downgrading of planet Earth. Science 333: 301-306.
Jablonski D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62: 715-739.
Kissling W. D. et al. 2012b. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109: 7379-7384.
Villéger S. et al. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290-2301.
Woodward G. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20: 402-409.
Sandom C. et al. 2013. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94: 1112-1122.
Dunn R. R. et al. 2009. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B 276: 3037-3045.
Thompson J. N. 2005. The geographic mosaic of coevolution. - Univ. of Chicago Press.
Zhang J. et al. 2013. Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. J. Biogeogr. 40: 1131-1142.
Hagen M. et al. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46: 89-210.
Petanidou T. et al. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11: 564-575.
Ings T. C. et al. 2009. Ecological networks - beyond food webs. J. Anim. Ecol. 78: 253-269.
Ramirez S. R. et al. 2011. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333: 1742-1746.
Gibson R. H. et al. 2011. Sampling method influences the structure of plant-pollinator networks. Oikos 120: 822-831.
Stang M. et al. 2009. Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann. Bot. 103: 1459-1469.
Zarnetske P. L. et al. 2012. Biotic multipliers of climate change. Science 336: 1516-1518.
Morris R. J. et al. 2014. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17: 340-349.
Kissling W. D. et al. 2007. Food plant diversity as broad- scale determinant of avian frugivore richness. Proc. R. Soc. B 274: 799-808.
Fritz S. A. et al. 2013. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28: 509-516.
Markl J. S. et al. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26: 1072-1081.
Wisz M. S. et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88: 15-30.
Kaiser-Bunbury C. N. et al. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442-452.
Olesen J. M. and Jordano P. 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83: 2416-2424.
Brown J. H. and Maurer B. A. 1989. Macroecology - the division of food and space among species on continents. Science 243: 1145-1150.
Grace J. B. et al. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: art73.
Bascompte J. et al. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431-433.
Kitching R. L. 2000. Food webs and container habitats: the natural history and ecology of phytotelmata. - Cambridge Univ. Press.
Kissling W. D. et al. 2012a. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39: 2163-2178.
Dupont Y. L. et al. 2009. Spatio-temporal variation in the structure of pollination networks. Oikos 118: 1261-1269.
Albouy C. et al. 2014. From projected species distribution to food-web structure under climate change. Global Change Biol. 20: 730-741.
Schleuning M. et al. 2011b. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS One 6: e27785.
Guimarães Jr, P. R. et al. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14: 877-885.
Staniczenko P. P. A. et al. 2010. Structural dynamics and robustness of food webs. Ecol. Lett. 13: 891-899.
Pigot A. L. and Tobias J. A. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16: 330-338.
Gilman S. E. et al. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25: 325-331.
Pearson R. G. and Dawson T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12: 361-371.
Poisot T. et al. 2012. The dissimilarity of species interaction networks. Ecol. Lett. 15: 1353-1361.
Rivera-Hutinel A. et al. 2012. Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93: 1593-1603.
Stouffer D. B. et al. 2012. Evolutionary conservation of species' roles in food webs. Science 335: 1489-1492.
Field R. et al. 2009. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36: 132-147.
Dalsgaard B. et al. 2009. Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159: 757-766.
Paine R. T. 1966. Food web complexity and species diversity. Am. Nat. 100: 65-75.
Galetti M. et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340: 1086-1090.
Schurr F. M. et al. 2012. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39: 2146-2162.
Svenning J.-C. and Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100: 1266-1286.
McGill B. J. 2011. Matters of scale. Science 328: 575-576.
Schemske D. W. et al. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245-269.
Memmott J. et al. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271: 2605-2611.
Tylianakis J. M. et al. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11: 1351-1363.
Fordham D. A. et al. 2013. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3: 899-903.
Hawkins B. A. and Porter E. E. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. Am. Nat. 161: 40-49.
Kissling W. D. et al. 2010. Woody plants and the prediction of climate-change impacts on bird diversity. Phil. Trans. R. Soc. B 365: 2035-2045.
Montoya D. et al. 2012. Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol. Evol. 27: 666-672.
Jetz W. et al. 2009. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276: 269-278.
Donatti C. I. et al. 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14: 773-781.
Schleuning M. et al. 2011a. Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology 92: 26-36.
Pellissier L. et al. 2013. Combining food web and species distribution models for improved community projections. Ecol. Evol. 3: 4572-4583.
Ferger S. W. et al. 2014. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecol. Biogeogr. 23: 541-549.
Dale M. R. T. and Fortin M.-J. 2010. From graphs to spatial graphs. Annu. Rev. Ecol. Evol. Syst. 41: 21-38.
Araújo M. B. and Rozenfeld A. 2014. The geographic scaling of biotic interactions. Ecography 37: 1-10.
Hansen D. M. and Galetti M. 2009. The forgotten megafauna. Science 324: 42-43.
Junker R. R. et al. 2013. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27: 329-341.
Dunne J. A. et al. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biol. 6: e102.
Hutchinson G. E. 1959. Homage to Santa Rosalia or why there are so many kinds of animals. Am. Nat. 93: 145-159.
Plein M. et al. 2013. Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94: 1296-1306.
Blach-Overgaard A. et al. 2013. Multimillion-year clim
2013; 3
2012; 121
2014b; 23
2013; 4
2009; 40
2013; 28
2013; 27
2010; 13
2013; 22
2013; 1297
2002; 98
2010; 143
2009; 276
2005; 20
2008; 6
2012; 15
2011; 14
2009; 118
2012; 367
2013; 8
1999; 401
2014; 23
2009; 159
2014a; 17
2014; 20
2003; 12
2011; 366
2011; 328
2010; 25
2012a; 39
2013; 16
2000
2006; 21
2002; 83
2013; 94
2003; 161
2012; 27
2012; 26
2014; 17
2008; 62
2012; 335
2012; 336
2012; 22
2009; 324
2011; 120
2011; 334
2011; 333
2007; 448
2012
2013; 88
2013; 40
2010; 365
2008; 17
2009
2013; 100
2005
2012; 39
2012b; 109
2004
2008; 11
2013; 341
2011a; 92
2013; 340
2011; 6
2010; 41
2006; 312
2009; 78
2012; 93
2009; 36
2013; 36
2012; 3
1966; 100
1959; 93
2013; 339
2004; 271
2011b; 6
1989; 243
2007; 274
2010; 176
2014; 37
2008; 89
2014
2013
2012; 279
2012; 46
2009; 103
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
Olesen J. M. (e_1_2_6_62_1) 2012
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_85_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_82_1
Marquet P. A. (e_1_2_6_52_1) 2004
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Araújo M. B. (e_1_2_6_3_1) 2014; 37
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: Hansen D. M. and Galetti M. 2009. The forgotten megafauna. Science 324: 42-43.
– reference: Junker R. R. et al. 2013. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27: 329-341.
– reference: Kissling W. D. et al. 2007. Food plant diversity as broad- scale determinant of avian frugivore richness. Proc. R. Soc. B 274: 799-808.
– reference: Schleuning M. et al. 2011b. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS One 6: e27785.
– reference: Stang M. et al. 2009. Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann. Bot. 103: 1459-1469.
– reference: Menke S. et al. 2012. Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos 121: 1553-1566.
– reference: Ferger S. W. et al. 2014. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecol. Biogeogr. 23: 541-549.
– reference: Estes J. A. et al. 2011. Trophic downgrading of planet Earth. Science 333: 301-306.
– reference: Staniczenko P. P. A. et al. 2010. Structural dynamics and robustness of food webs. Ecol. Lett. 13: 891-899.
– reference: Kitching R. L. 2000. Food webs and container habitats: the natural history and ecology of phytotelmata. - Cambridge Univ. Press.
– reference: Fleming T. H. and Kress W. J. 2013. The ornaments of life: coevolution and conservation in the tropics. - Chicago Univ. Press.
– reference: Galetti M. et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340: 1086-1090.
– reference: Woodward G. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20: 402-409.
– reference: Gibson R. H. et al. 2011. Sampling method influences the structure of plant-pollinator networks. Oikos 120: 822-831.
– reference: McInnes L. et al. 2013. Do global diversity patterns of vertebrates reflect those of monocots? PLoS One 8: e56979.
– reference: Sandom C. et al. 2013. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94: 1112-1122.
– reference: Wisz M. S. et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88: 15-30.
– reference: Plein M. et al. 2013. Constant properties of plant-frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94: 1296-1306.
– reference: Schleuning M. et al. 2014b. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Global Ecol. Biogeogr. 23: 385-394.
– reference: Brown J. H. and Maurer B. A. 1989. Macroecology - the division of food and space among species on continents. Science 243: 1145-1150.
– reference: Donatti C. I. et al. 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14: 773-781.
– reference: Schleuning M. et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22: 1925-1931.
– reference: Urban M. C. et al. 2013. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297: 44-60.
– reference: Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884.
– reference: Blach-Overgaard A. et al. 2013. Multimillion-year climatic effects on palm species diversity in Africa. Ecology 94: 2426-2435.
– reference: Poisot T. et al. 2012. The dissimilarity of species interaction networks. Ecol. Lett. 15: 1353-1361.
– reference: Dunn R. R. et al. 2009. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B 276: 3037-3045.
– reference: Kissling W. D. et al. 2012a. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39: 2163-2178.
– reference: Kissling W. D. et al. 2010. Woody plants and the prediction of climate-change impacts on bird diversity. Phil. Trans. R. Soc. B 365: 2035-2045.
– reference: Albouy C. et al. 2014. From projected species distribution to food-web structure under climate change. Global Change Biol. 20: 730-741.
– reference: Jablonski D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62: 715-739.
– reference: Hawkins B. A. and Porter E. E. 2003. Does herbivore diversity depend on plant diversity? The case of California butterflies. Am. Nat. 161: 40-49.
– reference: Schemske D. W. et al. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245-269.
– reference: Thompson J. N. 2005. The geographic mosaic of coevolution. - Univ. of Chicago Press.
– reference: Hutchinson G. E. 1959. Homage to Santa Rosalia or why there are so many kinds of animals. Am. Nat. 93: 145-159.
– reference: Markl J. S. et al. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv. Biol. 26: 1072-1081.
– reference: Fritz S. A. et al. 2013. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28: 509-516.
– reference: Morris R. J. et al. 2014. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 17: 340-349.
– reference: Pearson R. G. and Dawson T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12: 361-371.
– reference: Grace J. B. et al. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3: art73.
– reference: Dunne J. A. et al. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biol. 6: e102.
– reference: Eklöf A. et al. 2013. The dimensionality of ecological networks. Ecol. Lett. 16: 577-583.
– reference: Jetz W. et al. 2009. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276: 269-278.
– reference: Tylianakis J. M. et al. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11: 1351-1363.
– reference: Johnson C. N. 2009. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B 276: 2509-2519.
– reference: Dupont Y. L. et al. 2009. Spatio-temporal variation in the structure of pollination networks. Oikos 118: 1261-1269.
– reference: Trøjelsgaard K. and Olesen J. M. 2013. Macroecology of pollination networks. Global Ecol. Biogeogr. 22: 149-162.
– reference: Urban M. C. et al. 2012. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279: 2072-2080.
– reference: Dalsgaard B. et al. 2013. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36: 1331-1340.
– reference: Kissling W. D. et al. 2008. Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Global Ecol. Biogeogr. 17: 327-339.
– reference: Guimarães Jr, P. R. et al. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14: 877-885.
– reference: Svenning J.-C. and Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100: 1266-1286.
– reference: Paine R. T. 1966. Food web complexity and species diversity. Am. Nat. 100: 65-75.
– reference: Gravel D. et al. 2011. Persistence increases with diversity and connectance in trophic metacommunities. PLoS One 6: e19374.
– reference: McGill B. J. 2011. Matters of scale. Science 328: 575-576.
– reference: Wiens J. J. 2011. The niche, biogeography and species interactions. Phil. Trans. R. Soc. B 366: 2336-2350.
– reference: Petanidou T. et al. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11: 564-575.
– reference: Montoya D. et al. 2012. Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol. Evol. 27: 666-672.
– reference: Schurr F. M. et al. 2012. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39: 2146-2162.
– reference: Blois J. L. et al. 2013. Climate change and the past, present, and future of biotic interactions. Science 341: 499-504.
– reference: Kissling W. D. et al. 2012b. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109: 7379-7384.
– reference: Dale M. R. T. and Fortin M.-J. 2010. From graphs to spatial graphs. Annu. Rev. Ecol. Evol. Syst. 41: 21-38.
– reference: Dalsgaard B. et al. 2009. Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159: 757-766.
– reference: Schleuning M. et al. 2014a. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17: 454-463.
– reference: Hegland S. J. et al. 2010. How to monitor ecological communities cost-efficiently: the example of plant-pollinator networks. Biol. Conserv. 143: 2092-2101.
– reference: Kaiser-Bunbury C. N. et al. 2010. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442-452.
– reference: Schleuning M. et al. 2011a. Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology 92: 26-36.
– reference: Pellissier L. et al. 2013. Combining food web and species distribution models for improved community projections. Ecol. Evol. 3: 4572-4583.
– reference: McGill B. J. et al. 2006. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21: 178-185.
– reference: Qian H. et al. 2009. Effects of woody plant species richness on mammal species richness in southern Africa. J. Biogeogr. 36: 1685-1697.
– reference: Bascompte J. et al. 2006. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431-433.
– reference: Olesen J. M. and Jordano P. 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83: 2416-2424.
– reference: Carstensen D. W. et al. 2012. Biogeographical modules and island roles: a comparison of Wallacea and the West Indies. J. Biogeogr. 39: 739-749.
– reference: Rivera-Hutinel A. et al. 2012. Effects of sampling completeness on the structure of plant-pollinator networks. Ecology 93: 1593-1603.
– reference: Fordham D. A. et al. 2013. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3: 899-903.
– reference: Zhang J. et al. 2013. Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. J. Biogeogr. 40: 1131-1142.
– reference: Hagen M. et al. 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46: 89-210.
– reference: Memmott J. et al. 2004. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271: 2605-2611.
– reference: Field R. et al. 2009. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36: 132-147.
– reference: Rezende E. L. et al. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448: 925-928.
– reference: Nyman T. et al. 2012. Climate-driven diversity dynamics in plants and plant-feeding insects. Ecol. Lett. 15: 889-898.
– reference: Gravel D. et al. 2013. Inferring food web structure from redator-prey body size relationships. Methods Ecol. Evol. 4: 1083-1090.
– reference: Ollerton J. and Cranmer L. 2002. Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98: 340-350.
– reference: Sandel B. et al. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334: 660-664.
– reference: Svenning J.-C. et al. 2014. The influence of interspecific interactions on species range expansion rates. Ecography doi: 10.1111/j.1600-0587.2013.00574.x
– reference: Rohr R. P. et al. 2010. Modeling food webs: exploring unexplained structure using latent traits. Am. Nat. 176: 170-177.
– reference: Villéger S. et al. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290-2301.
– reference: Burkle L. A. et al. 2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339: 1611-1615.
– reference: Lurgi M. et al. 2012. Novel communities from climate change. Phil. Trans. R. Soc. B 367: 2913-2922.
– reference: Dalsgaard B. et al. 2011. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS One 6: e25891.
– reference: Pigot A. L. and Tobias J. A. 2013. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16: 330-338.
– reference: Stouffer D. B. et al. 2012. Evolutionary conservation of species' roles in food webs. Science 335: 1489-1492.
– reference: Araújo M. B. and Rozenfeld A. 2014. The geographic scaling of biotic interactions. Ecography 37: 1-10.
– reference: Ramirez S. R. et al. 2011. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333: 1742-1746.
– reference: Gilman S. E. et al. 2010. A framework for community interactions under climate change. Trends Ecol. Evol. 25: 325-331.
– reference: Zarnetske P. L. et al. 2012. Biotic multipliers of climate change. Science 336: 1516-1518.
– reference: Boulangeat I. et al. 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol. Lett. 15: 584-593.
– reference: Ings T. C. et al. 2009. Ecological networks - beyond food webs. J. Anim. Ecol. 78: 253-269.
– year: 2005
– volume: 328
  start-page: 575
  year: 2011
  end-page: 576
  article-title: Matters of scale
  publication-title: Science
– volume: 3
  start-page: 899
  year: 2013
  end-page: 903
  article-title: Adapted conservation measures are required to save the Iberian lynx in a changing climate
  publication-title: Nat. Clim. Change
– volume: 15
  start-page: 1353
  year: 2012
  end-page: 1361
  article-title: The dissimilarity of species interaction networks
  publication-title: Ecol. Lett.
– volume: 121
  start-page: 1553
  year: 2012
  end-page: 1566
  article-title: Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest
  publication-title: Oikos
– volume: 100
  start-page: 1266
  year: 2013
  end-page: 1286
  article-title: Disequilibrium vegetation dynamics under future climate change
  publication-title: Am. J. Bot.
– volume: 39
  start-page: 2163
  year: 2012a
  end-page: 2178
  article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents
  publication-title: J. Biogeogr.
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends Ecol. Evol.
– volume: 40
  start-page: 245
  year: 2009
  end-page: 269
  article-title: Is there a latitudinal gradient in the importance of biotic interactions?
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 20
  start-page: 730
  year: 2014
  end-page: 741
  article-title: From projected species distribution to food‐web structure under climate change
  publication-title: Global Change Biol.
– volume: 39
  start-page: 739
  year: 2012
  end-page: 749
  article-title: Biogeographical modules and island roles: a comparison of Wallacea and the West Indies
  publication-title: J. Biogeogr.
– volume: 39
  start-page: 2146
  year: 2012
  end-page: 2162
  article-title: How to understand species' niches and range dynamics: a demographic research agenda for biogeography
  publication-title: J. Biogeogr.
– volume: 92
  start-page: 26
  year: 2011a
  end-page: 36
  article-title: Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata
  publication-title: Ecology
– volume: 23
  start-page: 385
  year: 2014b
  end-page: 394
  article-title: At a loss for birds: insularity increases asymmetry in seed‐dispersal networks
  publication-title: Global Ecol. Biogeogr.
– volume: 41
  start-page: 21
  year: 2010
  end-page: 38
  article-title: From graphs to spatial graphs
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 4
  start-page: 1083
  year: 2013
  end-page: 1090
  article-title: Inferring food web structure from redator–prey body size relationships
  publication-title: Methods Ecol. Evol.
– volume: 23
  start-page: 541
  year: 2014
  end-page: 549
  article-title: Food resources and vegetation structure mediate climatic effects on species richness of birds
  publication-title: Global Ecol. Biogeogr.
– volume: 6
  year: 2011b
  article-title: Forest fragmentation and selective logging have inconsistent effects on multiple animal‐mediated ecosystem processes in a tropical forest
  publication-title: PLoS One
– volume: 17
  start-page: 327
  year: 2008
  end-page: 339
  article-title: Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects?
  publication-title: Global Ecol. Biogeogr.
– volume: 120
  start-page: 822
  year: 2011
  end-page: 831
  article-title: Sampling method influences the structure of plant–pollinator networks
  publication-title: Oikos
– volume: 17
  start-page: 340
  year: 2014
  end-page: 349
  article-title: Antagonistic interaction networks are structured independently of latitude and host guild
  publication-title: Ecol. Lett.
– volume: 1297
  start-page: 44
  year: 2013
  end-page: 60
  article-title: Moving forward: dispersal and species interactions determine biotic responses to climate change
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 15
  start-page: 584
  year: 2012
  end-page: 593
  article-title: Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances
  publication-title: Ecol. Lett.
– volume: 366
  start-page: 2336
  year: 2011
  end-page: 2350
  article-title: The niche, biogeography and species interactions
  publication-title: Phil. Trans. R. Soc. B
– volume: 312
  start-page: 431
  year: 2006
  end-page: 433
  article-title: Asymmetric coevolutionary networks facilitate biodiversity maintenance
  publication-title: Science
– volume: 3
  start-page: 4572
  year: 2013
  end-page: 4583
  article-title: Combining food web and species distribution models for improved community projections
  publication-title: Ecol. Evol.
– volume: 6
  year: 2008
  article-title: Compilation and network analyses of Cambrian food webs
  publication-title: PLoS Biol.
– volume: 367
  start-page: 2913
  year: 2012
  end-page: 2922
  article-title: Novel communities from climate change
  publication-title: Phil. Trans. R. Soc. B
– volume: 365
  start-page: 2035
  year: 2010
  end-page: 2045
  article-title: Woody plants and the prediction of climate‐change impacts on bird diversity
  publication-title: Phil. Trans. R. Soc. B
– volume: 276
  start-page: 3037
  year: 2009
  end-page: 3045
  article-title: The sixth mass coextinction: are most endangered species parasites and mutualists?
  publication-title: Proc. R. Soc. B
– volume: 8
  year: 2013
  article-title: Do global diversity patterns of vertebrates reflect those of monocots?
  publication-title: PLoS One
– volume: 40
  start-page: 1131
  year: 2013
  end-page: 1142
  article-title: Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada
  publication-title: J. Biogeogr.
– volume: 13
  start-page: 442
  year: 2010
  end-page: 452
  article-title: The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour
  publication-title: Ecol. Lett.
– volume: 78
  start-page: 253
  year: 2009
  end-page: 269
  article-title: Ecological networks – beyond food webs
  publication-title: J. Anim. Ecol.
– start-page: 219
  year: 2009
  end-page: 239
– volume: 15
  start-page: 889
  year: 2012
  end-page: 898
  article-title: Climate‐driven diversity dynamics in plants and plant‐feeding insects
  publication-title: Ecol. Lett.
– volume: 17
  start-page: 454
  year: 2014a
  end-page: 463
  article-title: Ecological, historical and evolutionary determinants of modularity in weighted seed‐dispersal networks
  publication-title: Ecol. Lett.
– volume: 336
  start-page: 1516
  year: 2012
  end-page: 1518
  article-title: Biotic multipliers of climate change
  publication-title: Science
– volume: 401
  start-page: 877
  year: 1999
  end-page: 884
  article-title: Inferring the historical patterns of biological evolution
  publication-title: Nature
– volume: 271
  start-page: 2605
  year: 2004
  end-page: 2611
  article-title: Tolerance of pollination networks to species extinctions
  publication-title: Proc. R. Soc. B
– volume: 324
  start-page: 42
  year: 2009
  end-page: 43
  article-title: The forgotten megafauna
  publication-title: Science
– volume: 100
  start-page: 65
  year: 1966
  end-page: 75
  article-title: Food web complexity and species diversity
  publication-title: Am. Nat.
– volume: 88
  start-page: 15
  year: 2013
  end-page: 30
  article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling
  publication-title: Biol. Rev.
– volume: 118
  start-page: 1261
  year: 2009
  end-page: 1269
  article-title: Spatio‐temporal variation in the structure of pollination networks
  publication-title: Oikos
– volume: 13
  start-page: 891
  year: 2010
  end-page: 899
  article-title: Structural dynamics and robustness of food webs
  publication-title: Ecol. Lett.
– volume: 22
  start-page: 1925
  year: 2012
  end-page: 1931
  article-title: Specialization of mutualistic interaction networks decreases toward tropical latitudes
  publication-title: Curr. Biol.
– volume: 334
  start-page: 660
  year: 2011
  end-page: 664
  article-title: The influence of Late Quaternary climate‐change velocity on species endemism
  publication-title: Science
– volume: 36
  start-page: 132
  year: 2009
  end-page: 147
  article-title: Spatial species‐richness gradients across scales: a meta‐analysis
  publication-title: J. Biogeogr.
– volume: 159
  start-page: 757
  year: 2009
  end-page: 766
  article-title: Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size
  publication-title: Oecologia
– year: 2013
– volume: 243
  start-page: 1145
  year: 1989
  end-page: 1150
  article-title: Macroecology – the division of food and space among species on continents
  publication-title: Science
– volume: 93
  start-page: 145
  year: 1959
  end-page: 159
  article-title: Homage to Santa Rosalia or why there are so many kinds of animals
  publication-title: Am. Nat.
– volume: 103
  start-page: 1459
  year: 2009
  end-page: 1469
  article-title: Size‐specific interaction patterns and size matching in a plant–pollinator interaction web
  publication-title: Ann. Bot.
– volume: 11
  start-page: 564
  year: 2008
  end-page: 575
  article-title: Long‐term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization
  publication-title: Ecol. Lett.
– year: 2014
  article-title: The influence of interspecific interactions on species range expansion rates
  publication-title: Ecography
– volume: 94
  start-page: 2426
  year: 2013
  end-page: 2435
  article-title: Multimillion‐year climatic effects on palm species diversity in Africa
  publication-title: Ecology
– volume: 20
  start-page: 402
  year: 2005
  end-page: 409
  article-title: Body size in ecological networks
  publication-title: Trends Ecol. Evol.
– volume: 36
  start-page: 1685
  year: 2009
  end-page: 1697
  article-title: Effects of woody plant species richness on mammal species richness in southern Africa
  publication-title: J. Biogeogr.
– volume: 11
  start-page: 1351
  year: 2008
  end-page: 1363
  article-title: Global change and species interactions in terrestrial ecosystems
  publication-title: Ecol. Lett.
– volume: 448
  start-page: 925
  year: 2007
  end-page: 928
  article-title: Non‐random coextinctions in phylogenetically structured mutualistic networks
  publication-title: Nature
– volume: 98
  start-page: 340
  year: 2002
  end-page: 350
  article-title: Latitudinal trends in plant–pollinator interactions: are tropical plants more specialised?
  publication-title: Oikos
– volume: 83
  start-page: 2416
  year: 2002
  end-page: 2424
  article-title: Geographic patterns in plant–pollinator mutualistic networks
  publication-title: Ecology
– volume: 14
  start-page: 877
  year: 2011
  end-page: 885
  article-title: Evolution and coevolution in mutualistic networks
  publication-title: Ecol. Lett.
– volume: 333
  start-page: 1742
  year: 2011
  end-page: 1746
  article-title: Asynchronous diversification in a specialized plant–pollinator mutualism
  publication-title: Science
– volume: 14
  start-page: 773
  year: 2011
  end-page: 781
  article-title: Analysis of a hyper‐diverse seed dispersal network: modularity and underlying mechanisms
  publication-title: Ecol. Lett.
– volume: 27
  start-page: 329
  year: 2013
  end-page: 341
  article-title: Specialization on traits as basis for the niche‐breadth of flower visitors and as structuring mechanism of ecological networks
  publication-title: Funct. Ecol.
– volume: 37
  start-page: 1
  year: 2014
  end-page: 10
  article-title: The geographic scaling of biotic interactions
  publication-title: Ecography
– volume: 143
  start-page: 2092
  year: 2010
  end-page: 2101
  article-title: How to monitor ecological communities cost‐efficiently: the example of plant–pollinator networks
  publication-title: Biol. Conserv.
– volume: 25
  start-page: 325
  year: 2010
  end-page: 331
  article-title: A framework for community interactions under climate change
  publication-title: Trends Ecol. Evol.
– volume: 62
  start-page: 715
  year: 2008
  end-page: 739
  article-title: Biotic interactions and macroevolution: extensions and mismatches across scales and levels
  publication-title: Evolution
– volume: 89
  start-page: 2290
  year: 2008
  end-page: 2301
  article-title: New multidimensional functional diversity indices for a multifaceted framework in functional ecology
  publication-title: Ecology
– volume: 109
  start-page: 7379
  year: 2012b
  end-page: 7384
  article-title: Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 16
  start-page: 330
  year: 2013
  end-page: 338
  article-title: Species interactions constrain geographic range expansion over evolutionary time
  publication-title: Ecol. Lett.
– volume: 6
  year: 2011
  article-title: Persistence increases with diversity and connectance in trophic metacommunities
  publication-title: PLoS One
– volume: 27
  start-page: 666
  year: 2012
  end-page: 672
  article-title: Emerging perspectives in the restoration of biodiversity‐based ecosystem services
  publication-title: Trends Ecol. Evol.
– volume: 26
  start-page: 1072
  year: 2012
  end-page: 1081
  article-title: Meta‐analysis of the effects of human disturbance on seed dispersal by animals
  publication-title: Conserv. Biol.
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
  publication-title: Global Ecol. Biogeogr.
– volume: 93
  start-page: 1593
  year: 2012
  end-page: 1603
  article-title: Effects of sampling completeness on the structure of plant–pollinator networks
  publication-title: Ecology
– volume: 94
  start-page: 1112
  year: 2013
  end-page: 1122
  article-title: Mammal predator and prey species richness are strongly linked at macroscales
  publication-title: Ecology
– volume: 36
  start-page: 1331
  year: 2013
  end-page: 1340
  article-title: Historical climate‐change influences modularity and nestedness of pollination networks
  publication-title: Ecography
– start-page: 191
  year: 2004
  end-page: 209
– year: 2000
– volume: 333
  start-page: 301
  year: 2011
  end-page: 306
  article-title: Trophic downgrading of planet Earth
  publication-title: Science
– volume: 6
  year: 2011
  article-title: Specialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate‐change velocity
  publication-title: PLoS One
– volume: 340
  start-page: 1086
  year: 2013
  end-page: 1090
  article-title: Functional extinction of birds drives rapid evolutionary changes in seed size
  publication-title: Science
– volume: 276
  start-page: 2509
  year: 2009
  end-page: 2519
  article-title: Ecological consequences of Late Quaternary extinctions of megafauna
  publication-title: Proc. R. Soc. B
– volume: 341
  start-page: 499
  year: 2013
  end-page: 504
  article-title: Climate change and the past, present, and future of biotic interactions
  publication-title: Science
– volume: 161
  start-page: 40
  year: 2003
  end-page: 49
  article-title: Does herbivore diversity depend on plant diversity? The case of California butterflies
  publication-title: Am. Nat.
– volume: 276
  start-page: 269
  year: 2009
  end-page: 278
  article-title: Global associations between terrestrial producer and vertebrate consumer diversity
  publication-title: Proc. R. Soc. B
– volume: 176
  start-page: 170
  year: 2010
  end-page: 177
  article-title: Modeling food webs: exploring unexplained structure using latent traits
  publication-title: Am. Nat.
– volume: 46
  start-page: 89
  year: 2012
  end-page: 210
  article-title: Biodiversity, species interactions and ecological networks in a fragmented world
  publication-title: Adv. Ecol. Res.
– volume: 16
  start-page: 577
  year: 2013
  end-page: 583
  article-title: The dimensionality of ecological networks
  publication-title: Ecol. Lett.
– volume: 279
  start-page: 2072
  year: 2012
  end-page: 2080
  article-title: On a collision course: competition and dispersal differences create no‐analogue communities and cause extinctions during climate change
  publication-title: Proc. R. Soc. B
– volume: 28
  start-page: 509
  year: 2013
  end-page: 516
  article-title: Diversity in time and space: wanted dead and alive
  publication-title: Trends Ecol. Evol.
– volume: 335
  start-page: 1489
  year: 2012
  end-page: 1492
  article-title: Evolutionary conservation of species' roles in food webs
  publication-title: Science
– volume: 22
  start-page: 149
  year: 2013
  end-page: 162
  article-title: Macroecology of pollination networks
  publication-title: Global Ecol. Biogeogr.
– volume: 3
  year: 2012
  article-title: Guidelines for a graph‐theoretic implementation of structural equation modeling
  publication-title: Ecosphere
– start-page: 374
  year: 2012
  end-page: 391
– volume: 94
  start-page: 1296
  year: 2013
  end-page: 1306
  article-title: Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time
  publication-title: Ecology
– volume: 274
  start-page: 799
  year: 2007
  end-page: 808
  article-title: Food plant diversity as broad‐ scale determinant of avian frugivore richness
  publication-title: Proc. R. Soc. B
– volume: 339
  start-page: 1611
  year: 2013
  end-page: 1615
  article-title: Plant–pollinator interactions over 120 years: loss of species, co‐occurrence, and function
  publication-title: Science
– ident: e_1_2_6_77_1
  doi: 10.1126/science.1210173
– ident: e_1_2_6_63_1
  doi: 10.1034/j.1600-0706.2002.980215.x
– ident: e_1_2_6_56_1
  doi: 10.1098/rspb.2004.2909
– ident: e_1_2_6_35_1
  doi: 10.1086/345479
– ident: e_1_2_6_97_1
  doi: 10.1890/07-1206.1
– ident: e_1_2_6_12_1
  doi: 10.1007/s00442-008-1255-z
– ident: e_1_2_6_28_1
  doi: 10.1016/j.tree.2010.03.002
– ident: e_1_2_6_36_1
  doi: 10.1016/j.biocon.2010.05.018
– ident: e_1_2_6_5_1
  doi: 10.1890/12-1577.1
– ident: e_1_2_6_86_1
  doi: 10.1111/j.1365-2699.2012.02737.x
– ident: e_1_2_6_89_1
  doi: 10.1126/science.1216556
– ident: e_1_2_6_33_1
  doi: 10.1016/B978-0-12-396992-7.00002-2
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1461-0248.2011.01649.x
– ident: e_1_2_6_88_1
  doi: 10.1111/j.1461-0248.2010.01485.x
– ident: e_1_2_6_41_1
  doi: 10.1098/rspb.2008.1921
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1558-5646.2008.00317.x
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1172393
– ident: e_1_2_6_90_1
  doi: 10.3732/ajb.1200469
– ident: e_1_2_6_46_1
  doi: 10.1098/rstb.2010.0008
– ident: e_1_2_6_79_1
  doi: 10.1017/CBO9780511815683.013
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1461-0248.2011.01639.x
– ident: e_1_2_6_37_1
  doi: 10.1086/282070
– ident: e_1_2_6_24_1
  doi: 10.1038/nclimate1954
– ident: e_1_2_6_53_1
  doi: 10.1126/science.1188528
– ident: e_1_2_6_69_1
  doi: 10.1111/ele.12043
– ident: e_1_2_6_80_1
  doi: 10.1146/annurev.ecolsys.39.110707.173430
– ident: e_1_2_6_44_1
  doi: 10.1098/rspb.2006.0311
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1461-0248.2009.01437.x
– ident: e_1_2_6_13_1
  doi: 10.1371/journal.pone.0025891
– ident: e_1_2_6_101_1
  doi: 10.1126/science.1222732
– ident: e_1_2_6_95_1
  doi: 10.1098/rspb.2011.2367
– ident: e_1_2_6_59_1
  doi: 10.1111/ele.12235
– ident: e_1_2_6_76_1
  doi: 10.1086/653667
– ident: e_1_2_6_68_1
  doi: 10.1111/j.1461-0248.2008.01170.x
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-2699.2008.01963.x
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1461-0248.2012.01772.x
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1600-0706.2009.17594.x
– ident: e_1_2_6_65_1
  doi: 10.1086/282400
– ident: e_1_2_6_72_1
  doi: 10.1111/j.1365-2699.2009.02128.x
– ident: e_1_2_6_19_1
  doi: 10.1111/ele.12081
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1237184
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1205106
– ident: e_1_2_6_75_1
  doi: 10.1890/11-1803.1
– ident: e_1_2_6_92_1
  doi: 10.7208/chicago/9780226118697.001.0001
– ident: e_1_2_6_11_1
  doi: 10.1146/annurev-ecolsys-102209-144718
– ident: e_1_2_6_78_1
  doi: 10.1890/12-1342.1
– ident: e_1_2_6_98_1
  doi: 10.1098/rstb.2011.0059
– ident: e_1_2_6_82_1
  doi: 10.1371/journal.pone.0027785
– ident: e_1_2_6_16_1
  doi: 10.1098/rspb.2009.0413
– ident: e_1_2_6_40_1
  doi: 10.1098/rspb.2008.1005
– ident: e_1_2_6_55_1
  doi: 10.1371/journal.pone.0056979
– ident: e_1_2_6_66_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_6_48_1
  doi: 10.1073/pnas.1120467109
– ident: e_1_2_6_99_1
  doi: 10.1111/j.1469-185X.2012.00235.x
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2699.2011.02628.x
– ident: e_1_2_6_102_1
  doi: 10.1111/jbi.12063
– ident: e_1_2_6_73_1
  doi: 10.1126/science.1209175
– ident: e_1_2_6_94_1
  doi: 10.1111/j.1461-0248.2008.01250.x
– ident: e_1_2_6_31_1
  doi: 10.1111/2041-210X.12103
– ident: e_1_2_6_85_1
  doi: 10.1111/geb.12134
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1233774
– ident: e_1_2_6_67_1
  doi: 10.1002/ece3.843
– ident: e_1_2_6_9_1
  doi: 10.1126/science.1232728
– ident: e_1_2_6_25_1
  doi: 10.1016/j.tree.2013.05.004
– ident: e_1_2_6_50_1
  doi: 10.1098/rstb.2012.0238
– ident: e_1_2_6_17_1
  doi: 10.1371/journal.pbio.0060102
– ident: e_1_2_6_2_1
  doi: 10.1111/gcb.12467
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1461-0248.2012.01782.x
– ident: e_1_2_6_29_1
  doi: 10.1890/ES12-00048.1
– ident: e_1_2_6_61_1
  doi: 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2
– ident: e_1_2_6_81_1
  doi: 10.1890/09-1842.1
– ident: e_1_2_6_70_1
  doi: 10.1890/12-1213.1
– ident: e_1_2_6_42_1
  doi: 10.1111/1365-2435.12005
– ident: e_1_2_6_91_1
  doi: 10.1111/j.1600-0587.2013.00574.x
– volume: 37
  start-page: 1
  year: 2014
  ident: e_1_2_6_3_1
  article-title: The geographic scaling of biotic interactions
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2013.00643.x
– ident: e_1_2_6_21_1
  doi: 10.1111/geb.12151
– ident: e_1_2_6_23_1
  doi: 10.7208/chicago/9780226023328.001.0001
– ident: e_1_2_6_83_1
  doi: 10.1016/j.cub.2012.08.015
– ident: e_1_2_6_49_1
  doi: 10.1017/CBO9780511542107
– ident: e_1_2_6_64_1
  doi: 10.1038/44766
– ident: e_1_2_6_96_1
  doi: 10.1111/nyas.12184
– ident: e_1_2_6_74_1
  doi: 10.1038/nature05956
– ident: e_1_2_6_93_1
  doi: 10.1111/j.1466-8238.2012.00777.x
– ident: e_1_2_6_58_1
  doi: 10.1016/j.tree.2012.07.004
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1600-0706.2010.18927.x
– ident: e_1_2_6_54_1
  doi: 10.1016/j.tree.2006.02.002
– start-page: 374
  volume-title: Evolution of plant–pollinator relationships
  year: 2012
  ident: e_1_2_6_62_1
– ident: e_1_2_6_87_1
  doi: 10.1093/aob/mcp027
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1600-0587.2013.00201.x
– ident: e_1_2_6_71_1
  doi: 10.1111/ele.12002
– ident: e_1_2_6_100_1
  doi: 10.1016/j.tree.2005.04.005
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1123412
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1600-0706.2011.20210.x
– ident: e_1_2_6_30_1
  doi: 10.1371/journal.pone.0019374
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2656.2008.01460.x
– start-page: 191
  volume-title: Frontiers of biogeography: new directions in the geography of nature
  year: 2004
  ident: e_1_2_6_52_1
– ident: e_1_2_6_8_1
  doi: 10.1126/science.243.4895.1145
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2699.2011.02663.x
– ident: e_1_2_6_84_1
  doi: 10.1111/ele.12245
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1466-8238.2007.00379.x
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1523-1739.2012.01927.x
SSID ssj0012968
Score 2.3926256
Snippet Trophic interactions among multiple species are ubiquitous in nature and their importance for structuring ecological communities has been extensively...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 346
SubjectTerms analytical methods
biogeography
climate
functional diversity
global change
land use change
Macroecology
Macroevolution
phylogeny
pollination
predator-prey relationships
prediction
Review & synthesis
species diversity
temporal variation
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jIvji97A6JaKIPvTSNEnbiC96d7chOEXcvC8SkjRB2ewdbS-of705SdttIkN8amhOSpKez_acXxB6SiubC0VdWuWlSJk2WSoMJyl1XFSKEpuFKtd3B8X-IXu75MsN9GqshYn4ENMHN5CMoK9BwJXuzgk55NfMgkXzChiStcAj-jhhR3k7FurgMuFD5pKLbMAmhTSes6EXrNEV2NgfY2LiBZfzvOMaLM_uDfRlnHNMODmerXs9M7_-gHP830XdRNcHlxS_jjx0C23Y5ja6Gg-p_OlbCzO0thZnVXF-wKAWujvIhDJeKNr0cTcGBIo21kt0WIWF475dnX79ZvAJ5Cj5uz3-Hno8h9juJW6tJxiLPrFqahyxTnC0uPCku-hwd_Fpvp8OpzekhjMi0lwJTYTTVmsrhBOVyZjRIOW5LmxteF6YUjtnPatQXhNAJK2UJsbHWMRxS7fQZrNq7D2ENTWCM8eVcoLZWntXu66LzJQ0F0xVeYJejG9RmgHaHE7YOJFjiAP7KsO-JujJRHsaAT3-SvUsMMNEotpjSIErufx8sCd3duiH-ZujI7lMEA7cMhHCMwLUuKSVZJKyIkHbIyPJQUF0khRFBRCshCTo8dTtRRv-16jGrtZAU1IK-Ir8EprS-9ychik_D5x1yarkYv5-z1_v_zvpA3TNu4g85ipto82-XduH3g3r9aMgbr8BMwEw4w
  priority: 102
  providerName: Wiley-Blackwell
Title Multispecies interactions across trophic levels at macroscales: retrospective and future directions
URI https://api.istex.fr/ark:/67375/WNG-DD3PCBVV-X/fulltext.pdf
https://www.jstor.org/stable/ecography.38.4.346
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fecog.00819
https://www.proquest.com/docview/1668148211
https://www.proquest.com/docview/1673398225
https://www.proquest.com/docview/1705453819
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwEA9uD2G_iN-GdXNENkR_qDZJ0zb-Iu6t2xB8juHm-y0kaYri7Htr30D_e3Np2jmQ91NDcw1pLpfcJXefQ-iAFZYKxeq4oLmIU22SWBhOYlZzUShGbOKjXD_PstOL9NOcz8OBWxfcKoc10S_U1cLAGfk7kmUFYFYS8mF5HUPWKLhdDSk0NtDELcGFM74mh-Xs7Hy8R6DCB8MlwtnNORdJACgFXx7wz3nrd8Q7W9IERvf34J14R-_8V3v128_xQ_Qg6I34Y8_oR-iebR6j-30myT-uVJpQ2i5vQ9fcB0F2uyfI-FhbiKx0xjEGmIi2D2rosPIdw6t2sfz-w-ArcCRyb1f4l69xbLTde9xaRzBEZmLVVLgHJMH9tggtPUUXx-XX6WkcUizEhqdExFQJTUStrdZWiFoUJkmNBlGkOrOV4TQzua5r6_jJeEUANrRQmhhnCJGaW7aNNptFY58hrJkRPK25UrVIbaWdPlxVWWJyRkWqChqhN8MoSxPwxyENxpUc7BDgiPQcidD-SLvsUTf-S_XKM2skUe1P8FPLufw2O5FHR-xsenh5KecRwp6bIyG04fHAJStkKlmaRWh3YLQMUtzJ2zkXoZdjtZM_uFRRjV3cAE3OGIAg8jU0uVOMOfNdfu0n0Zq_kuX0y4l7Pl_fox205XQ33jsR7aLNVXtjXzj9aKX3ghDsOQvhnP4Fv08SGA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVoi9IL4mCgOM-BA8BJI4TmIkhFjbrWNbmaZt9M2zHUcgRlrSTrB_ir8Rn_MxJqG-7SlWfLFs39m-i-9-B_CcpibkkuZeGibci5T2Pa5Z4NGc8VTSwPguynVvHI-Ook8TNlmBP00sDLpVNnui26izqcZ_5G-DOE4RszIIPsx-epg1Cm9XmxQalVjsmPNf1mSbv98eWP6-CMPN4WF_5NVZBTzNooB7oeQq4LkyShnOc55qP9IKpS9Usck0C2OdqDw3dgiUZQEiZaZSBdrq_kHODLXtXoNuRK0p04HuxnC8f9DeW4TcBd_53NrpCeN-DYiKvkPoD_TGncCXjsAucvN34w15Sc_9V1t2x93mLbhZ66nkYyVYt2HFFHfgepW58tyWhrourQ0vQuXsB_VeMb8L2sX2YiSnNcYJwlKUVRDFnEjXMbIop7Ov3zQ5Rccl-3ZBfrgaKzZm_o6UxhI0kaBEFhmpAFBIdQxjS_fg6Eomfw06xbQw94EoqjmLciZlziOTKat_Z1ns64SGPJJp2IPXzSwLXeOdY9qNU9HYPcgR4TjSg2ct7axC-fgv1UvHrJZElt_RLy5h4st4SwwGdL-_cXwsJj0gjpstIbbh8McFTUUkaBT3YL1htKh3jbm4kPEePG2r7XrHSxxZmOkZ0iSUIugiW0KTWEWcUdflV06IloxKDPuft-zzwfIePYEbo8O9XbG7Pd55CKtWb2SVA9M6dBblmXlkdbOFelwvCAInV70G_wKeWE8-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VXYF6QbwqAgWMeAgOoUkcJzESQnQfbSksq4qWvbm24whE2V2yW0H_Gr8Oj_MoldDeeooVTyzbM7Zn4plvAJ7SzERc0sLPopT7sdKBzzULfVownkkamsBFuX4cJbuH8fsJm6zBnyYWBt0qmz3RbdT5TOM_8q0wSTLErAzDraJ2ixj3h2_nP33MIIU3rU06jUpE9s3ZL2u-Ld7s9S2vn0XRcPC5t-vXGQZ8zeKQ-5HkKuSFMkoZzgue6SDWCiUxUonJNYsSnaqiMHY4lOUhomZmUoXa2gFhwQy17V6BbmqtoqAD3e3BaHzQ3mFE3AXiBdza7CnjQQ2Oin5E6Bv0yp3GF47DLnL2d-MZeUHn_Vdzdkff8AZcr3VW8q4SspuwZqa34GqVxfLMlga6Lm0MzsPm7Af1vrG4DdrF-WJUpzXMCUJUlFVAxYJI1zGyLGfzr980OUEnJvt2SX64GitCZvGalMYSNFGhRE5zUoGhkOpIxpbuwOGlTP4GdKazqbkLRFHNWVwwKQsem1xZXTzPk0CnNOKxzCIPXjazLHSNfY4pOE5EYwMhR4TjiAdPWtp5hfjxX6rnjlktiSy_o49cysSX0Y7o9-m4t310JCYeEMfNlhDbcFjkgmYiFjROPNhsGC3qHWQhzuXdg8dttV37eKEjp2Z2ijQppQjAyFbQpFYpZ9R1-YUTohWjEoPepx37vLe6R4_gml174sPeaP8-rFsVklW-TJvQWZan5oFV05bqYb0eCBxf9hL8CwZ6U3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispecies+interactions+across+trophic+levels+at+macroscales%3A+retrospective+and+future+directions&rft.jtitle=Ecography+%28Copenhagen%29&rft.au=Kissling%2C+WDaniel&rft.au=Schleuning%2C+Matthias&rft.date=2015-04-01&rft.issn=0906-7590&rft.eissn=1600-0587&rft.volume=38&rft.issue=4&rft.spage=346&rft.epage=357&rft_id=info:doi/10.1111%2Fecog.00819&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-7590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-7590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-7590&client=summon