Digital Photography and 3D MRI-based Multimodal Imaging for Individualized Planning of Resective Neocortical Epilepsy Surgery

Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 43; no. 12; pp. 1543 - 1550
Main Authors WELLMER, Jörg, VON OERTZEN, Joachim, SCHALLER, Carlo, URBACH, Horst, KONIG, Roy, WIDMAN, Guido, VAN ROOST, Dirk, ELGER, Christian E
Format Journal Article
LanguageEnglish
Published Boston, MA, USA Blackwell Science Inc 01.12.2002
Blackwell
Subjects
Online AccessGet full text
ISSN0013-9580
1528-1167
DOI10.1046/j.1528-1157.2002.30002.x

Cover

Abstract Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography–based grid localization in combination with preoperative three‐dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Methods: Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain‐surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co‐registered with imaging‐based techniques such as single‐photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Results: Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging‐based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co‐registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Conclusions: Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.
AbstractList Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine.PURPOSEInvasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine.Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI).METHODSDigital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI).Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement.RESULTSDigital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement.Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.CONCLUSIONSDigital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.
Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography–based grid localization in combination with preoperative three‐dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Methods: Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain‐surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co‐registered with imaging‐based techniques such as single‐photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Results: Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging‐based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co‐registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Conclusions: Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.
Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography–based grid localization in combination with preoperative three‐dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Methods: Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain‐surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co‐registered with imaging‐based techniques such as single‐photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Results: Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging‐based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co‐registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Conclusions: Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.
Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.
Author WELLMER Jorg
ELGER Christian E.
WIDMAN Guido
VAN ROOST Dirk
VON OERTZEN Joachim
URBACH Horst
KONIG Roy
SCHALLER Carlo
Author_xml – sequence: 1
  givenname: Jörg
  surname: WELLMER
  fullname: WELLMER, Jörg
  organization: Department of Epileptology, University of Bonn, Bonn, Germany
– sequence: 2
  givenname: Joachim
  surname: VON OERTZEN
  fullname: VON OERTZEN, Joachim
  organization: Department of Epileptology, University of Bonn, Bonn, Germany
– sequence: 3
  givenname: Carlo
  surname: SCHALLER
  fullname: SCHALLER, Carlo
  organization: Department of Neurosurgery, University of Bonn, Bonn, Germany
– sequence: 4
  givenname: Horst
  surname: URBACH
  fullname: URBACH, Horst
  organization: Department of Radiology/Neuroradiology, University of Bonn, Bonn, Germany
– sequence: 5
  givenname: Roy
  surname: KONIG
  fullname: KONIG, Roy
  organization: Department of Radiology/Neuroradiology, University of Bonn, Bonn, Germany
– sequence: 6
  givenname: Guido
  surname: WIDMAN
  fullname: WIDMAN, Guido
  organization: Department of Epileptology, University of Bonn, Bonn, Germany
– sequence: 7
  givenname: Dirk
  surname: VAN ROOST
  fullname: VAN ROOST, Dirk
  organization: Department of Neurosurgery, University of Bonn, Bonn, Germany
– sequence: 8
  givenname: Christian E
  surname: ELGER
  fullname: ELGER, Christian E
  organization: Department of Epileptology, University of Bonn, Bonn, Germany
BackLink https://cir.nii.ac.jp/crid/1573668924634635136$$DView record in CiNii
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14414447$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12460257$$D View this record in MEDLINE/PubMed
BookMark eNqVkU1v1DAQhi1URLeFv4B8gN6y-COJnQsSapcSqYVV6d1ybCf1KomDnZQGif9ep7uoEieQRmNL88w79rwn4Kh3vQEAYrTGKM0_7NY4IzzBOGNrghBZU7TkhxdgdSjk7AisEMI0KTKOjsFJCLvIsJzRV-AYkzRHJGMr8PvCNnaULdzeudE1Xg53M5S9hvQCXt-USSWD0fB6akfbOR25spON7RtYOw_LXtt7qyfZ2l-R2ray75eaq-GNCUaN9t7Ar8Yp50erYvNmsK0Zwgy_T74xfn4NXtayDebN4TwFt583t-dfkqtvl-X5p6tEZSkmSYW4roqcM1ojraksjFIMEYV1VtRpgSnjTGWMEJ4ijgirM5RWXBWFMTmRkp6Cs73s4N2PyYRRdDYo08b3GjcFwQgjnHESwbcHcKo6o8XgbSf9LP7sKwLvD4AM8UO1l72y4ZlL0xjpwvE9p7wLwZv6GUFisVDsxOKUWCwUi4XiyULxEFs__tWqokGjdf3opW3_Q-BnXPb8z4PFZls-XaPAu71Ab20cvuQI0zznRdwDjZFhmtNH3Ji-wQ
CODEN EPILAK
CitedBy_id crossref_primary_10_1016_j_eplepsyres_2011_01_011
crossref_primary_10_1016_j_clinph_2011_03_011
crossref_primary_10_1016_j_neuroimage_2015_01_015
crossref_primary_10_1016_j_nicl_2018_07_026
crossref_primary_10_1097_00019052_200404000_00014
crossref_primary_10_1111_j_1535_7597_2004_04117_x
crossref_primary_10_1177_197140090401700327
crossref_primary_10_1111_j_1528_1167_2012_03545_x
crossref_primary_10_1038_s41598_017_10707_1
crossref_primary_10_1016_j_nicl_2015_12_001
crossref_primary_10_1142_S012906571230001X
crossref_primary_10_3171_2016_12_JNS161676
crossref_primary_10_1016_j_jneumeth_2016_08_007
crossref_primary_10_1016_j_neuroimage_2012_06_039
crossref_primary_10_1016_j_clinph_2017_10_018
crossref_primary_10_1016_j_eplepsyres_2014_08_011
crossref_primary_10_1093_brain_awr212
crossref_primary_10_1016_j_clinph_2009_02_002
crossref_primary_10_1111_epi_12980
crossref_primary_10_1016_j_yebeh_2012_03_027
crossref_primary_10_1109_TBME_2020_2977531
crossref_primary_10_4028_www_scientific_net_AMR_1049_1050_1641
crossref_primary_10_4015_S1016237214500513
crossref_primary_10_1016_j_clinph_2007_03_002
crossref_primary_10_1111_j_1528_1167_2005_00296_x
crossref_primary_10_1111_j_1528_1167_2005_05205_x
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1007_s11548_013_0915_6
crossref_primary_10_3171_2013_2_JNS121450
crossref_primary_10_1016_j_clinph_2013_01_030
crossref_primary_10_1016_j_nicl_2014_07_015
crossref_primary_10_1111_epi_12827
crossref_primary_10_1002_hbm_23876
crossref_primary_10_1080_13554794_2017_1387275
crossref_primary_10_1002_hbm_20963
crossref_primary_10_1017_S1355617707070397
crossref_primary_10_1016_j_mri_2007_02_003
crossref_primary_10_1038_s41598_021_84610_1
crossref_primary_10_1016_j_jneumeth_2007_01_019
crossref_primary_10_1016_j_clinph_2014_03_034
crossref_primary_10_1227_01_neu_0000316250_69898_23
crossref_primary_10_1227_NEU_0000000000000473
crossref_primary_10_1016_j_clinph_2022_03_012
crossref_primary_10_1016_j_jneumeth_2019_108396
crossref_primary_10_1080_01616412_2018_1484588
crossref_primary_10_1093_brain_awx051
crossref_primary_10_1007_s11548_009_0378_y
crossref_primary_10_1016_j_neuroimage_2010_03_007
crossref_primary_10_1016_j_jneumeth_2008_06_028
crossref_primary_10_1016_j_neuroimage_2013_06_046
crossref_primary_10_3389_fninf_2017_00014
crossref_primary_10_1111_j_1528_1167_2009_02192_x
crossref_primary_10_1016_j_clinph_2007_02_021
crossref_primary_10_1053_j_sult_2007_11_004
crossref_primary_10_1016_j_clinph_2017_03_005
crossref_primary_10_1109_TMI_2018_2868045
crossref_primary_10_1016_j_clinph_2005_10_005
crossref_primary_10_1016_j_clinph_2004_06_020
crossref_primary_10_1016_j_neuroimage_2011_11_046
crossref_primary_10_1227_NEU_0b013e31820783ba
crossref_primary_10_1016_j_clinph_2012_09_031
crossref_primary_10_1227_01_neu_0000303992_87987_17
crossref_primary_10_1007_s00701_010_0675_9
crossref_primary_10_1016_j_jneumeth_2009_10_005
crossref_primary_10_1016_S0920_1211_03_00038_X
crossref_primary_10_1002_hbm_21233
crossref_primary_10_1016_j_eplepsyres_2009_08_002
crossref_primary_10_1016_j_wneu_2018_04_036
crossref_primary_10_1002_hbm_23577
Cites_doi 10.1159/000121275
10.4065/75.6.615
10.1148/radiology.172.3.2788893
10.1097/00004728-199209000-00018
10.1007/BF01400656
10.1016/S0920-1211(00)00137-6
10.1097/00006123-199911000-00033
10.1212/WNL.50.2.445
ContentType Journal Article
Copyright 2003 INIST-CNRS
Copyright_xml – notice: 2003 INIST-CNRS
DBID RYH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1046/j.1528-1157.2002.30002.x
DatabaseName CiNii Complete
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-1167
EndPage 1550
ExternalDocumentID 12460257
14414447
10_1046_j_1528_1157_2002_30002_x
EPI30002
10010880292
Genre reviewArticle
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIVO
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGYGG
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
RYH
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAGKA
AANHP
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEUQT
AFPWT
AHEFC
AI.
ASPBG
AVWKF
AZFZN
ESX
FEDTE
FYBCS
HF~
HVGLF
IPNFZ
OHT
PALCI
RIWAO
RJQFR
SAMSI
VH1
WRC
WUP
AAYXX
AGHNM
AGQPQ
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c5412-b08db96873f0dd3a9ecc702c1d59f4913787c57228408027f504b8c99ee62aa3
IEDL.DBID DR2
ISSN 0013-9580
IngestDate Fri Jul 11 00:44:29 EDT 2025
Wed Feb 19 02:35:08 EST 2025
Mon Jul 21 09:14:32 EDT 2025
Tue Jul 01 03:03:00 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Wed Jan 22 16:46:14 EST 2025
Thu Jun 26 23:07:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Performance evaluation
Human
Nervous system diseases
Treatment resistance
Epilepsy
Exploration
Surgical resection
Anticonvulsant
Nuclear magnetic resonance imaging
Digital photography
Cerebral disorder
Neocortical epilepsy-Grid electrodes-3D MRI-Multimodal presurgical evaluation-Grid displacement
Three dimensional representation
Surgery
Central nervous system disease
Medical imagery
Preoperative
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5412-b08db96873f0dd3a9ecc702c1d59f4913787c57228408027f504b8c99ee62aa3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1528-1157.2002.30002.x
PMID 12460257
PQID 72728782
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_72728782
pubmed_primary_12460257
pascalfrancis_primary_14414447
crossref_primary_10_1046_j_1528_1157_2002_30002_x
crossref_citationtrail_10_1046_j_1528_1157_2002_30002_x
wiley_primary_10_1046_j_1528_1157_2002_30002_x_EPI30002
nii_cinii_1573668924634635136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2002
PublicationDateYYYYMMDD 2002-12-01
PublicationDate_xml – month: 12
  year: 2002
  text: December 2002
PublicationDecade 2000
PublicationPlace Boston, MA, USA
PublicationPlace_xml – name: Boston, MA, USA
– name: Malden, MA
– name: United States
PublicationTitle Epilepsia (Copenhagen)
PublicationTitleAlternate Epilepsia
PublicationTitle_FL Epilepsia
PublicationYear 2002
Publisher Blackwell Science Inc
Blackwell
Publisher_xml – name: Blackwell Science Inc
– name: Blackwell
References 1994; 128
2002; 23
1993; 33
2000; 41
2000; 75
1997
1999; 45
1996
1989; 172
1997; 27
1999; 20
1993
1998; 50
1992; 16
1999; 50
Bootsvelt K (e_1_2_6_11_2) 1993; 33
Knowlton RC (e_1_2_6_17_2) 1997
e_1_2_6_20_2
Hogan RE (e_1_2_6_7_2) 1999; 20
Spencer SS (e_1_2_6_2_2) 1996
Schulze‐Bonhage AH‐J (e_1_2_6_9_2) 2002; 23
Jayakar P (e_1_2_6_3_2) 1997
e_1_2_6_8_2
e_1_2_6_18_2
Engel J (e_1_2_6_13_2) 1999; 50
e_1_2_6_19_2
e_1_2_6_4_2
e_1_2_6_6_2
Arroyo S (e_1_2_6_10_2) 1993
e_1_2_6_5_2
Bookheimer SY (e_1_2_6_16_2) 1997
e_1_2_6_12_2
e_1_2_6_21_2
Henry TR (e_1_2_6_15_2) 1997
Berkovic SF (e_1_2_6_14_2) 1997
References_xml – start-page: 1785
  year: 1997
  end-page: 93
– volume: 27
  start-page: 304
  year: 1997
  end-page: 10
  article-title: Three‐dimensional reconstruction and surgical navigation in pediatric epilepsy surgery.
  publication-title: Pediatr Neurosurg
– start-page: 969
  year: 1997
  end-page: 75
– volume: 50
  start-page: 445
  year: 1998
  end-page: 54
  article-title: Subtraction ictal SPECT co‐registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus.
  publication-title: Neurology
– volume: 23
  start-page: 400
  year: 2002
  end-page: 3
  article-title: Visualization of subdural strip and grid electrodes using curvilinear reformatting of 3D MR imaging data sets.
  publication-title: Am J Neuroradiol
– volume: 33
  start-page: 185
  year: 1993
  end-page: 8
  article-title: Intrakranielle EcoG‐Elektroden.
  publication-title: Radiologe
– start-page: 947
  year: 1997
  end-page: 67
– volume: 50
  start-page: 40
  year: 1999
  end-page: 52
  article-title: Multimodal approaches in the evaluation of epilepsy patients for surgery.
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– start-page: 1081
  year: 1997
  end-page: 97
– volume: 41
  start-page: 169
  year: 2000
  end-page: 78
  article-title: Usefulness of 3‐D reconstructed images of the human cerebral cortex for localization of subdural electrodes in epilepsy surgery.
  publication-title: Epilepsy Res
– start-page: 562
  year: 1996
  end-page: 88
– volume: 20
  start-page: 1054
  year: 1999
  end-page: 8
  article-title: Triple‐technique (MR imaging, single‐photon emission CT, and CT) coregistration for image‐guided surgical evaluation of patients with intractable epilepsy.
  publication-title: AJNR Am J Neuroradiol
– volume: 75
  start-page: 615
  year: 2000
  end-page: 24
  article-title: Subtraction ictal SPECT coregistered to MRI for seizure focus localization in partial epilepsy.
  publication-title: Mayo Clin Proc
– volume: 128
  start-page: 84
  year: 1994
  end-page: 7
  article-title: Subdural and depth electrodes in the presurgical evaluation of epilepsy.
  publication-title: Acta Neurochir (Wien)
– volume: 16
  start-page: 764
  year: 1992
  end-page: 73
  article-title: Retrospective fusion of radiographic and MR data for localization of subdural electrodes.
  publication-title: J Comput Assist Tomogr
– volume: 45
  start-page: 1186
  year: 1999
  end-page: 91
  article-title: Utility of digital camera‐derived intraoperative images in the planning of epilepsy surgery for children.
  publication-title: Neurosurgery
– start-page: 1053
  year: 1997
  end-page: 65
– start-page: 377
  year: 1993
  end-page: 85
– volume: 172
  start-page: 783
  year: 1989
  end-page: 9
  article-title: The brain: integrated three‐dimensional display of MR and PET images.
  publication-title: Radiology
– ident: e_1_2_6_19_2
– volume: 23
  start-page: 400
  year: 2002
  ident: e_1_2_6_9_2
  article-title: Visualization of subdural strip and grid electrodes using curvilinear reformatting of 3D MR imaging data sets.
  publication-title: Am J Neuroradiol
– start-page: 969
  volume-title: Epilepsy: a comprehensive textbook
  year: 1997
  ident: e_1_2_6_14_2
– ident: e_1_2_6_8_2
  doi: 10.1159/000121275
– volume: 33
  start-page: 185
  year: 1993
  ident: e_1_2_6_11_2
  article-title: Intrakranielle EcoG‐Elektroden.
  publication-title: Radiologe
– start-page: 947
  volume-title: Epilepsy: a comprehensive textbook
  year: 1997
  ident: e_1_2_6_15_2
– start-page: 1053
  volume-title: Epilepsy: a comprehensive textbook
  year: 1997
  ident: e_1_2_6_16_2
– volume: 50
  start-page: 40
  year: 1999
  ident: e_1_2_6_13_2
  article-title: Multimodal approaches in the evaluation of epilepsy patients for surgery.
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– ident: e_1_2_6_20_2
  doi: 10.4065/75.6.615
– start-page: 1081
  volume-title: Epilepsy: a comprehensive textbook
  year: 1997
  ident: e_1_2_6_17_2
– ident: e_1_2_6_18_2
  doi: 10.1148/radiology.172.3.2788893
– start-page: 1785
  volume-title: Epilepsy: a comprehensive textbook
  year: 1997
  ident: e_1_2_6_3_2
– volume: 20
  start-page: 1054
  year: 1999
  ident: e_1_2_6_7_2
  article-title: Triple‐technique (MR imaging, single‐photon emission CT, and CT) coregistration for image‐guided surgical evaluation of patients with intractable epilepsy.
  publication-title: AJNR Am J Neuroradiol
– start-page: 377
  volume-title: Surgical treatment of epilepsies
  year: 1993
  ident: e_1_2_6_10_2
– start-page: 562
  volume-title: The treatment of epilepsy
  year: 1996
  ident: e_1_2_6_2_2
– ident: e_1_2_6_5_2
  doi: 10.1097/00004728-199209000-00018
– ident: e_1_2_6_4_2
  doi: 10.1007/BF01400656
– ident: e_1_2_6_6_2
  doi: 10.1016/S0920-1211(00)00137-6
– ident: e_1_2_6_12_2
  doi: 10.1097/00006123-199911000-00033
– ident: e_1_2_6_21_2
  doi: 10.1212/WNL.50.2.445
SSID ssj0007673
Score 2.016549
Snippet Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of...
Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of...
Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1543
SubjectTerms 3D MRI
Adolescent
Adult
Biological and medical sciences
Brain Mapping
Child
Electrodes, Implanted
Electroencephalography
Epilepsy - diagnosis
Epilepsy - physiopathology
Epilepsy - surgery
Feasibility Studies
Female
Grid displacement
Grid electrodes
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Male
Medical sciences
Middle Aged
Multimodal presurgical evaluation
Neocortex - physiopathology
Neocortex - surgery
Neocortical epilepsy
Nervous system (semeiology, syndromes)
Neurology
Patient Care Planning
Photography
Sensitivity and Specificity
Title Digital Photography and 3D MRI-based Multimodal Imaging for Individualized Planning of Resective Neocortical Epilepsy Surgery
URI https://cir.nii.ac.jp/crid/1573668924634635136
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1528-1157.2002.30002.x
https://www.ncbi.nlm.nih.gov/pubmed/12460257
https://www.proquest.com/docview/72728782
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgD4gX7pcAG37gNZUT35JHRDutSJumMaS9RY7tQDeWVLSVYC_wH_iH_BLOcZxWRXuYEFIVVapPXDvHPp9zLh8hb8oabARs-ynzTKfCCJkaV_iUyVxozJWUPkRbHKmDj-L9mTyL8U-YC9PXh1i_cMOVEfZrXOCm7llIWKhue47UPXACyqQOkQYjjqt7hHgSescy-uOTTSUpraKzOeNpKQsWg3qig_PaG21ZqtvtbIZxk2YBU9f0nBfXgdJtjBuM1P59cjEMr49NuRitlvXIXv1V-fH_jP8BuRexLH3bK99Dcsu3j8idw-itf0x-jGefkJOEHn_ulrE0NjWto3xMD0-mv3_-QhvqaEgCvuwctJxeBtYkClCaTte5YrMraDXQK9GuoRgvGDZqeuQ7OD-HF_J0MoeBzBff6Yc-1_sJOd2fnL47SCPhQ2qlCGRAhatLVWjeMOe4KUG_NMtt5mTZiDLjsLtYqXMwqZgirBvJRF3YsvRe5cbwp2Sn7Vr_nFBoxJxSvuDWCi0dwGLjGRb-ETZvnEyIHp5tZWMxdOTk-FIFp7zABDac3gqnF6k68ypMb_UtIdlact4XBLmBzC6oD3SEV_iRK1XAuVdx-EhQ1oTsbSnW5sYAVoUQOiGvB02rYPmjT8e0vlstKvSjF4DyEvKsV8CNLHQAgBZkdVCjG__banI8DV9f_LPkS3J3YM1h2Suys_y68rsA3pb1XliWfwDMVi_D
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgSLAX7pcA2_zAa4oT23HyiNZODazVNIq0tyiJnVGxJdXaSrAX-A_7h_slO8dxWhXtYUJIVVWpPklzei6ffW6EfEgK8BFg9n1mmPJFLqSf69j4TIZCYa2kNDbbYhwNv4nPJ_LEjQPCWpi2P8TqwA01w9prVHA8kP7owpKtlssQtkCBVDbVoMdRvXsAKB8IwB24E-sfr3tJqciFmwPuJzJmLq3HhThvvdKGr7pfT6eYOZnPgXlVO_XiNli6iXKtmzp4Qs66B2yzU370louiV17-1fvxP3HgKXns4Cz91MrfM3LP1M_Jw5EL2L8gv_vTUxxLQo--NwvXHZvmtaa8T0fH6fWfK3Sjmto64PNGw8r03A5OooCmaboqF5tewqpuwhJtKoopg9ZW07FpYAttz-TpYAZPMpv_ol_bcu-XZHIwmOwPfTfzwS-lsPOAYl0kUax4xbTmeQIiplhYBlomlUgCDgamlCoEr4pVwqqSTBRxmSTGRGGe81dkq25q84ZQWMR0FJmYl6VQUgMyzg3D3j-iDCstPaK6PzcrXT90HMtxltm4vMAaNmRvhuzFaZ1hZtmb_fRIsKKctT1B7kCzA_IDN8J3-JJHUQxb34jDS4K2eGR3Q7LWFwa8KoRQHtnrRC0DC4Bhnbw2zXKeYSg9BqDnkdetBK5p4QaAaYFWWTm686_NBkep_fj2nyn3yKPhZHSYHabjL-_IdjdEhwXvydbiYml2AMstil2rozfg_jPi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BkSouvB8G2u6Bq8Pa-7KPiCSqgUZRKVJvlu1dQ1RqR00ilV7gP_AP-SXMrNeJgnqoEJJlWfKOH-OZnW89L0JepyXYCJj2Q2aZDkUhZFiYxIZMxkJjrqS0Ltpiog4_i_en8tTHP2EuTFcfYv3DDTXDzdeo4HNTv_FeyU7JZQwroEhqF2kw4KjdA8CTd4QCYIEA6XhTSkor722OeJjKhPmoHu_hvPZKW6bqdjObYeBksQDe1V3Ti-tQ6TbIdVZqfJ-c9e_XBaecDVbLclBd_VX68f8w4AG558EsfdtJ30NyyzaPyO6Rd9c_Jj-Gsy_YlIROv7ZLXxubFo2hfEiPjrPfP3-hETXUZQGftwZGZueubRIFLE2zdbLY7ApG9f2VaFtTDBh0MzWd2BYW0O6PPB3N4UXmi-_0U5fs_YScjEcn7w5D3_EhrKRw3YASU6Yq0bxmxvAiBQHTLK4iI9NapBGH6aWSOgabijnCupZMlEmVptaquCj4U7LTtI19TigMYkYpm_CqEloawMWFZVj5R1RxbWRAdP9t88pXQ8emHN9y55UXmMGG7M2RvdirM84de_PLgERrynlXEeQGNHsgPnAj3MNJrlQCC1_FYZOgKwHZ3xKszYUBrQohdEAOeknLQf_RqVM0tl0tcnSkJwDzAvKsE8ANLdwAEC3QaidGN37afDTN3OGLf6Y8ILvT4Tj_mE0-vCR3-w46LHpFdpYXK7sHQG5Z7jsN_QP-KDKR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+photography+and+3D+MRI-based+multimodal+imaging+for+individualized+planning+of+resective+neocortical+epilepsy+surgery&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Wellmer%2C+J%C3%B6rg&rft.au=von+Oertzen%2C+Joachim&rft.au=Schaller%2C+Carlo&rft.au=Urbach%2C+Horst&rft.date=2002-12-01&rft.issn=0013-9580&rft.volume=43&rft.issue=12&rft.spage=1543&rft_id=info:doi/10.1046%2Fj.1528-1157.2002.30002.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon