Digital Photography and 3D MRI-based Multimodal Imaging for Individualized Planning of Resective Neocortical Epilepsy Surgery
Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must...
Saved in:
Published in | Epilepsia (Copenhagen) Vol. 43; no. 12; pp. 1543 - 1550 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston, MA, USA
Blackwell Science Inc
01.12.2002
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0013-9580 1528-1167 |
DOI | 10.1046/j.1528-1157.2002.30002.x |
Cover
Abstract | Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography–based grid localization in combination with preoperative three‐dimensional (3D) magnetic resonance imaging (MRI) for clinical routine.
Methods: Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain‐surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co‐registered with imaging‐based techniques such as single‐photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI).
Results: Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging‐based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co‐registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement.
Conclusions: Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence. |
---|---|
AbstractList | Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine.PURPOSEInvasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine.Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI).METHODSDigital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI).Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement.RESULTSDigital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement.Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.CONCLUSIONSDigital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence. Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography–based grid localization in combination with preoperative three‐dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Methods: Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain‐surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co‐registered with imaging‐based techniques such as single‐photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Results: Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging‐based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co‐registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Conclusions: Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence. Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography–based grid localization in combination with preoperative three‐dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Methods: Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain‐surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co‐registered with imaging‐based techniques such as single‐photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Results: Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging‐based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co‐registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Conclusions: Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence. Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence. |
Author | WELLMER Jorg ELGER Christian E. WIDMAN Guido VAN ROOST Dirk VON OERTZEN Joachim URBACH Horst KONIG Roy SCHALLER Carlo |
Author_xml | – sequence: 1 givenname: Jörg surname: WELLMER fullname: WELLMER, Jörg organization: Department of Epileptology, University of Bonn, Bonn, Germany – sequence: 2 givenname: Joachim surname: VON OERTZEN fullname: VON OERTZEN, Joachim organization: Department of Epileptology, University of Bonn, Bonn, Germany – sequence: 3 givenname: Carlo surname: SCHALLER fullname: SCHALLER, Carlo organization: Department of Neurosurgery, University of Bonn, Bonn, Germany – sequence: 4 givenname: Horst surname: URBACH fullname: URBACH, Horst organization: Department of Radiology/Neuroradiology, University of Bonn, Bonn, Germany – sequence: 5 givenname: Roy surname: KONIG fullname: KONIG, Roy organization: Department of Radiology/Neuroradiology, University of Bonn, Bonn, Germany – sequence: 6 givenname: Guido surname: WIDMAN fullname: WIDMAN, Guido organization: Department of Epileptology, University of Bonn, Bonn, Germany – sequence: 7 givenname: Dirk surname: VAN ROOST fullname: VAN ROOST, Dirk organization: Department of Neurosurgery, University of Bonn, Bonn, Germany – sequence: 8 givenname: Christian E surname: ELGER fullname: ELGER, Christian E organization: Department of Epileptology, University of Bonn, Bonn, Germany |
BackLink | https://cir.nii.ac.jp/crid/1573668924634635136$$DView record in CiNii http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14414447$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12460257$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkU1v1DAQhi1URLeFv4B8gN6y-COJnQsSapcSqYVV6d1ybCf1KomDnZQGif9ep7uoEieQRmNL88w79rwn4Kh3vQEAYrTGKM0_7NY4IzzBOGNrghBZU7TkhxdgdSjk7AisEMI0KTKOjsFJCLvIsJzRV-AYkzRHJGMr8PvCNnaULdzeudE1Xg53M5S9hvQCXt-USSWD0fB6akfbOR25spON7RtYOw_LXtt7qyfZ2l-R2ray75eaq-GNCUaN9t7Ar8Yp50erYvNmsK0Zwgy_T74xfn4NXtayDebN4TwFt583t-dfkqtvl-X5p6tEZSkmSYW4roqcM1ojraksjFIMEYV1VtRpgSnjTGWMEJ4ijgirM5RWXBWFMTmRkp6Cs73s4N2PyYRRdDYo08b3GjcFwQgjnHESwbcHcKo6o8XgbSf9LP7sKwLvD4AM8UO1l72y4ZlL0xjpwvE9p7wLwZv6GUFisVDsxOKUWCwUi4XiyULxEFs__tWqokGjdf3opW3_Q-BnXPb8z4PFZls-XaPAu71Ab20cvuQI0zznRdwDjZFhmtNH3Ji-wQ |
CODEN | EPILAK |
CitedBy_id | crossref_primary_10_1016_j_eplepsyres_2011_01_011 crossref_primary_10_1016_j_clinph_2011_03_011 crossref_primary_10_1016_j_neuroimage_2015_01_015 crossref_primary_10_1016_j_nicl_2018_07_026 crossref_primary_10_1097_00019052_200404000_00014 crossref_primary_10_1111_j_1535_7597_2004_04117_x crossref_primary_10_1177_197140090401700327 crossref_primary_10_1111_j_1528_1167_2012_03545_x crossref_primary_10_1038_s41598_017_10707_1 crossref_primary_10_1016_j_nicl_2015_12_001 crossref_primary_10_1142_S012906571230001X crossref_primary_10_3171_2016_12_JNS161676 crossref_primary_10_1016_j_jneumeth_2016_08_007 crossref_primary_10_1016_j_neuroimage_2012_06_039 crossref_primary_10_1016_j_clinph_2017_10_018 crossref_primary_10_1016_j_eplepsyres_2014_08_011 crossref_primary_10_1093_brain_awr212 crossref_primary_10_1016_j_clinph_2009_02_002 crossref_primary_10_1111_epi_12980 crossref_primary_10_1016_j_yebeh_2012_03_027 crossref_primary_10_1109_TBME_2020_2977531 crossref_primary_10_4028_www_scientific_net_AMR_1049_1050_1641 crossref_primary_10_4015_S1016237214500513 crossref_primary_10_1016_j_clinph_2007_03_002 crossref_primary_10_1111_j_1528_1167_2005_00296_x crossref_primary_10_1111_j_1528_1167_2005_05205_x crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1007_s11548_013_0915_6 crossref_primary_10_3171_2013_2_JNS121450 crossref_primary_10_1016_j_clinph_2013_01_030 crossref_primary_10_1016_j_nicl_2014_07_015 crossref_primary_10_1111_epi_12827 crossref_primary_10_1002_hbm_23876 crossref_primary_10_1080_13554794_2017_1387275 crossref_primary_10_1002_hbm_20963 crossref_primary_10_1017_S1355617707070397 crossref_primary_10_1016_j_mri_2007_02_003 crossref_primary_10_1038_s41598_021_84610_1 crossref_primary_10_1016_j_jneumeth_2007_01_019 crossref_primary_10_1016_j_clinph_2014_03_034 crossref_primary_10_1227_01_neu_0000316250_69898_23 crossref_primary_10_1227_NEU_0000000000000473 crossref_primary_10_1016_j_clinph_2022_03_012 crossref_primary_10_1016_j_jneumeth_2019_108396 crossref_primary_10_1080_01616412_2018_1484588 crossref_primary_10_1093_brain_awx051 crossref_primary_10_1007_s11548_009_0378_y crossref_primary_10_1016_j_neuroimage_2010_03_007 crossref_primary_10_1016_j_jneumeth_2008_06_028 crossref_primary_10_1016_j_neuroimage_2013_06_046 crossref_primary_10_3389_fninf_2017_00014 crossref_primary_10_1111_j_1528_1167_2009_02192_x crossref_primary_10_1016_j_clinph_2007_02_021 crossref_primary_10_1053_j_sult_2007_11_004 crossref_primary_10_1016_j_clinph_2017_03_005 crossref_primary_10_1109_TMI_2018_2868045 crossref_primary_10_1016_j_clinph_2005_10_005 crossref_primary_10_1016_j_clinph_2004_06_020 crossref_primary_10_1016_j_neuroimage_2011_11_046 crossref_primary_10_1227_NEU_0b013e31820783ba crossref_primary_10_1016_j_clinph_2012_09_031 crossref_primary_10_1227_01_neu_0000303992_87987_17 crossref_primary_10_1007_s00701_010_0675_9 crossref_primary_10_1016_j_jneumeth_2009_10_005 crossref_primary_10_1016_S0920_1211_03_00038_X crossref_primary_10_1002_hbm_21233 crossref_primary_10_1016_j_eplepsyres_2009_08_002 crossref_primary_10_1016_j_wneu_2018_04_036 crossref_primary_10_1002_hbm_23577 |
Cites_doi | 10.1159/000121275 10.4065/75.6.615 10.1148/radiology.172.3.2788893 10.1097/00004728-199209000-00018 10.1007/BF01400656 10.1016/S0920-1211(00)00137-6 10.1097/00006123-199911000-00033 10.1212/WNL.50.2.445 |
ContentType | Journal Article |
Copyright | 2003 INIST-CNRS |
Copyright_xml | – notice: 2003 INIST-CNRS |
DBID | RYH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1046/j.1528-1157.2002.30002.x |
DatabaseName | CiNii Complete CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1528-1167 |
EndPage | 1550 |
ExternalDocumentID | 12460257 14414447 10_1046_j_1528_1157_2002_30002_x EPI30002 10010880292 |
Genre | reviewArticle Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGYGG AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 RYH SUPJJ TEORI TR2 UB1 V8K V9Y W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT 24P AAGKA AANHP ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEUQT AFPWT AHEFC AI. ASPBG AVWKF AZFZN ESX FEDTE FYBCS HF~ HVGLF IPNFZ OHT PALCI RIWAO RJQFR SAMSI VH1 WRC WUP AAYXX AGHNM AGQPQ CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c5412-b08db96873f0dd3a9ecc702c1d59f4913787c57228408027f504b8c99ee62aa3 |
IEDL.DBID | DR2 |
ISSN | 0013-9580 |
IngestDate | Fri Jul 11 00:44:29 EDT 2025 Wed Feb 19 02:35:08 EST 2025 Mon Jul 21 09:14:32 EDT 2025 Tue Jul 01 03:03:00 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Wed Jan 22 16:46:14 EST 2025 Thu Jun 26 23:07:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Performance evaluation Human Nervous system diseases Treatment resistance Epilepsy Exploration Surgical resection Anticonvulsant Nuclear magnetic resonance imaging Digital photography Cerebral disorder Neocortical epilepsy-Grid electrodes-3D MRI-Multimodal presurgical evaluation-Grid displacement Three dimensional representation Surgery Central nervous system disease Medical imagery Preoperative |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5412-b08db96873f0dd3a9ecc702c1d59f4913787c57228408027f504b8c99ee62aa3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1528-1157.2002.30002.x |
PMID | 12460257 |
PQID | 72728782 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_72728782 pubmed_primary_12460257 pascalfrancis_primary_14414447 crossref_primary_10_1046_j_1528_1157_2002_30002_x crossref_citationtrail_10_1046_j_1528_1157_2002_30002_x wiley_primary_10_1046_j_1528_1157_2002_30002_x_EPI30002 nii_cinii_1573668924634635136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2002 |
PublicationDateYYYYMMDD | 2002-12-01 |
PublicationDate_xml | – month: 12 year: 2002 text: December 2002 |
PublicationDecade | 2000 |
PublicationPlace | Boston, MA, USA |
PublicationPlace_xml | – name: Boston, MA, USA – name: Malden, MA – name: United States |
PublicationTitle | Epilepsia (Copenhagen) |
PublicationTitleAlternate | Epilepsia |
PublicationTitle_FL | Epilepsia |
PublicationYear | 2002 |
Publisher | Blackwell Science Inc Blackwell |
Publisher_xml | – name: Blackwell Science Inc – name: Blackwell |
References | 1994; 128 2002; 23 1993; 33 2000; 41 2000; 75 1997 1999; 45 1996 1989; 172 1997; 27 1999; 20 1993 1998; 50 1992; 16 1999; 50 Bootsvelt K (e_1_2_6_11_2) 1993; 33 Knowlton RC (e_1_2_6_17_2) 1997 e_1_2_6_20_2 Hogan RE (e_1_2_6_7_2) 1999; 20 Spencer SS (e_1_2_6_2_2) 1996 Schulze‐Bonhage AH‐J (e_1_2_6_9_2) 2002; 23 Jayakar P (e_1_2_6_3_2) 1997 e_1_2_6_8_2 e_1_2_6_18_2 Engel J (e_1_2_6_13_2) 1999; 50 e_1_2_6_19_2 e_1_2_6_4_2 e_1_2_6_6_2 Arroyo S (e_1_2_6_10_2) 1993 e_1_2_6_5_2 Bookheimer SY (e_1_2_6_16_2) 1997 e_1_2_6_12_2 e_1_2_6_21_2 Henry TR (e_1_2_6_15_2) 1997 Berkovic SF (e_1_2_6_14_2) 1997 |
References_xml | – start-page: 1785 year: 1997 end-page: 93 – volume: 27 start-page: 304 year: 1997 end-page: 10 article-title: Three‐dimensional reconstruction and surgical navigation in pediatric epilepsy surgery. publication-title: Pediatr Neurosurg – start-page: 969 year: 1997 end-page: 75 – volume: 50 start-page: 445 year: 1998 end-page: 54 article-title: Subtraction ictal SPECT co‐registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. publication-title: Neurology – volume: 23 start-page: 400 year: 2002 end-page: 3 article-title: Visualization of subdural strip and grid electrodes using curvilinear reformatting of 3D MR imaging data sets. publication-title: Am J Neuroradiol – volume: 33 start-page: 185 year: 1993 end-page: 8 article-title: Intrakranielle EcoG‐Elektroden. publication-title: Radiologe – start-page: 947 year: 1997 end-page: 67 – volume: 50 start-page: 40 year: 1999 end-page: 52 article-title: Multimodal approaches in the evaluation of epilepsy patients for surgery. publication-title: Electroencephalogr Clin Neurophysiol Suppl – start-page: 1081 year: 1997 end-page: 97 – volume: 41 start-page: 169 year: 2000 end-page: 78 article-title: Usefulness of 3‐D reconstructed images of the human cerebral cortex for localization of subdural electrodes in epilepsy surgery. publication-title: Epilepsy Res – start-page: 562 year: 1996 end-page: 88 – volume: 20 start-page: 1054 year: 1999 end-page: 8 article-title: Triple‐technique (MR imaging, single‐photon emission CT, and CT) coregistration for image‐guided surgical evaluation of patients with intractable epilepsy. publication-title: AJNR Am J Neuroradiol – volume: 75 start-page: 615 year: 2000 end-page: 24 article-title: Subtraction ictal SPECT coregistered to MRI for seizure focus localization in partial epilepsy. publication-title: Mayo Clin Proc – volume: 128 start-page: 84 year: 1994 end-page: 7 article-title: Subdural and depth electrodes in the presurgical evaluation of epilepsy. publication-title: Acta Neurochir (Wien) – volume: 16 start-page: 764 year: 1992 end-page: 73 article-title: Retrospective fusion of radiographic and MR data for localization of subdural electrodes. publication-title: J Comput Assist Tomogr – volume: 45 start-page: 1186 year: 1999 end-page: 91 article-title: Utility of digital camera‐derived intraoperative images in the planning of epilepsy surgery for children. publication-title: Neurosurgery – start-page: 1053 year: 1997 end-page: 65 – start-page: 377 year: 1993 end-page: 85 – volume: 172 start-page: 783 year: 1989 end-page: 9 article-title: The brain: integrated three‐dimensional display of MR and PET images. publication-title: Radiology – ident: e_1_2_6_19_2 – volume: 23 start-page: 400 year: 2002 ident: e_1_2_6_9_2 article-title: Visualization of subdural strip and grid electrodes using curvilinear reformatting of 3D MR imaging data sets. publication-title: Am J Neuroradiol – start-page: 969 volume-title: Epilepsy: a comprehensive textbook year: 1997 ident: e_1_2_6_14_2 – ident: e_1_2_6_8_2 doi: 10.1159/000121275 – volume: 33 start-page: 185 year: 1993 ident: e_1_2_6_11_2 article-title: Intrakranielle EcoG‐Elektroden. publication-title: Radiologe – start-page: 947 volume-title: Epilepsy: a comprehensive textbook year: 1997 ident: e_1_2_6_15_2 – start-page: 1053 volume-title: Epilepsy: a comprehensive textbook year: 1997 ident: e_1_2_6_16_2 – volume: 50 start-page: 40 year: 1999 ident: e_1_2_6_13_2 article-title: Multimodal approaches in the evaluation of epilepsy patients for surgery. publication-title: Electroencephalogr Clin Neurophysiol Suppl – ident: e_1_2_6_20_2 doi: 10.4065/75.6.615 – start-page: 1081 volume-title: Epilepsy: a comprehensive textbook year: 1997 ident: e_1_2_6_17_2 – ident: e_1_2_6_18_2 doi: 10.1148/radiology.172.3.2788893 – start-page: 1785 volume-title: Epilepsy: a comprehensive textbook year: 1997 ident: e_1_2_6_3_2 – volume: 20 start-page: 1054 year: 1999 ident: e_1_2_6_7_2 article-title: Triple‐technique (MR imaging, single‐photon emission CT, and CT) coregistration for image‐guided surgical evaluation of patients with intractable epilepsy. publication-title: AJNR Am J Neuroradiol – start-page: 377 volume-title: Surgical treatment of epilepsies year: 1993 ident: e_1_2_6_10_2 – start-page: 562 volume-title: The treatment of epilepsy year: 1996 ident: e_1_2_6_2_2 – ident: e_1_2_6_5_2 doi: 10.1097/00004728-199209000-00018 – ident: e_1_2_6_4_2 doi: 10.1007/BF01400656 – ident: e_1_2_6_6_2 doi: 10.1016/S0920-1211(00)00137-6 – ident: e_1_2_6_12_2 doi: 10.1097/00006123-199911000-00033 – ident: e_1_2_6_21_2 doi: 10.1212/WNL.50.2.445 |
SSID | ssj0007673 |
Score | 2.016549 |
Snippet | Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of... Purpose: Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of... Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure... |
SourceID | proquest pubmed pascalfrancis crossref wiley nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1543 |
SubjectTerms | 3D MRI Adolescent Adult Biological and medical sciences Brain Mapping Child Electrodes, Implanted Electroencephalography Epilepsy - diagnosis Epilepsy - physiopathology Epilepsy - surgery Feasibility Studies Female Grid displacement Grid electrodes Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional Magnetic Resonance Imaging Male Medical sciences Middle Aged Multimodal presurgical evaluation Neocortex - physiopathology Neocortex - surgery Neocortical epilepsy Nervous system (semeiology, syndromes) Neurology Patient Care Planning Photography Sensitivity and Specificity |
Title | Digital Photography and 3D MRI-based Multimodal Imaging for Individualized Planning of Resective Neocortical Epilepsy Surgery |
URI | https://cir.nii.ac.jp/crid/1573668924634635136 https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1528-1157.2002.30002.x https://www.ncbi.nlm.nih.gov/pubmed/12460257 https://www.proquest.com/docview/72728782 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgD4gX7pcAG37gNZUT35JHRDutSJumMaS9RY7tQDeWVLSVYC_wH_iH_BLOcZxWRXuYEFIVVapPXDvHPp9zLh8hb8oabARs-ynzTKfCCJkaV_iUyVxozJWUPkRbHKmDj-L9mTyL8U-YC9PXh1i_cMOVEfZrXOCm7llIWKhue47UPXACyqQOkQYjjqt7hHgSescy-uOTTSUpraKzOeNpKQsWg3qig_PaG21ZqtvtbIZxk2YBU9f0nBfXgdJtjBuM1P59cjEMr49NuRitlvXIXv1V-fH_jP8BuRexLH3bK99Dcsu3j8idw-itf0x-jGefkJOEHn_ulrE0NjWto3xMD0-mv3_-QhvqaEgCvuwctJxeBtYkClCaTte5YrMraDXQK9GuoRgvGDZqeuQ7OD-HF_J0MoeBzBff6Yc-1_sJOd2fnL47SCPhQ2qlCGRAhatLVWjeMOe4KUG_NMtt5mTZiDLjsLtYqXMwqZgirBvJRF3YsvRe5cbwp2Sn7Vr_nFBoxJxSvuDWCi0dwGLjGRb-ETZvnEyIHp5tZWMxdOTk-FIFp7zABDac3gqnF6k68ypMb_UtIdlact4XBLmBzC6oD3SEV_iRK1XAuVdx-EhQ1oTsbSnW5sYAVoUQOiGvB02rYPmjT8e0vlstKvSjF4DyEvKsV8CNLHQAgBZkdVCjG__banI8DV9f_LPkS3J3YM1h2Suys_y68rsA3pb1XliWfwDMVi_D |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgSLAX7pcA2_zAa4oT23HyiNZODazVNIq0tyiJnVGxJdXaSrAX-A_7h_slO8dxWhXtYUJIVVWpPklzei6ffW6EfEgK8BFg9n1mmPJFLqSf69j4TIZCYa2kNDbbYhwNv4nPJ_LEjQPCWpi2P8TqwA01w9prVHA8kP7owpKtlssQtkCBVDbVoMdRvXsAKB8IwB24E-sfr3tJqciFmwPuJzJmLq3HhThvvdKGr7pfT6eYOZnPgXlVO_XiNli6iXKtmzp4Qs66B2yzU370louiV17-1fvxP3HgKXns4Cz91MrfM3LP1M_Jw5EL2L8gv_vTUxxLQo--NwvXHZvmtaa8T0fH6fWfK3Sjmto64PNGw8r03A5OooCmaboqF5tewqpuwhJtKoopg9ZW07FpYAttz-TpYAZPMpv_ol_bcu-XZHIwmOwPfTfzwS-lsPOAYl0kUax4xbTmeQIiplhYBlomlUgCDgamlCoEr4pVwqqSTBRxmSTGRGGe81dkq25q84ZQWMR0FJmYl6VQUgMyzg3D3j-iDCstPaK6PzcrXT90HMtxltm4vMAaNmRvhuzFaZ1hZtmb_fRIsKKctT1B7kCzA_IDN8J3-JJHUQxb34jDS4K2eGR3Q7LWFwa8KoRQHtnrRC0DC4Bhnbw2zXKeYSg9BqDnkdetBK5p4QaAaYFWWTm686_NBkep_fj2nyn3yKPhZHSYHabjL-_IdjdEhwXvydbiYml2AMstil2rozfg_jPi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BkSouvB8G2u6Bq8Pa-7KPiCSqgUZRKVJvlu1dQ1RqR00ilV7gP_AP-SXMrNeJgnqoEJJlWfKOH-OZnW89L0JepyXYCJj2Q2aZDkUhZFiYxIZMxkJjrqS0Ltpiog4_i_en8tTHP2EuTFcfYv3DDTXDzdeo4HNTv_FeyU7JZQwroEhqF2kw4KjdA8CTd4QCYIEA6XhTSkor722OeJjKhPmoHu_hvPZKW6bqdjObYeBksQDe1V3Ti-tQ6TbIdVZqfJ-c9e_XBaecDVbLclBd_VX68f8w4AG558EsfdtJ30NyyzaPyO6Rd9c_Jj-Gsy_YlIROv7ZLXxubFo2hfEiPjrPfP3-hETXUZQGftwZGZueubRIFLE2zdbLY7ApG9f2VaFtTDBh0MzWd2BYW0O6PPB3N4UXmi-_0U5fs_YScjEcn7w5D3_EhrKRw3YASU6Yq0bxmxvAiBQHTLK4iI9NapBGH6aWSOgabijnCupZMlEmVptaquCj4U7LTtI19TigMYkYpm_CqEloawMWFZVj5R1RxbWRAdP9t88pXQ8emHN9y55UXmMGG7M2RvdirM84de_PLgERrynlXEeQGNHsgPnAj3MNJrlQCC1_FYZOgKwHZ3xKszYUBrQohdEAOeknLQf_RqVM0tl0tcnSkJwDzAvKsE8ANLdwAEC3QaidGN37afDTN3OGLf6Y8ILvT4Tj_mE0-vCR3-w46LHpFdpYXK7sHQG5Z7jsN_QP-KDKR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+photography+and+3D+MRI-based+multimodal+imaging+for+individualized+planning+of+resective+neocortical+epilepsy+surgery&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Wellmer%2C+J%C3%B6rg&rft.au=von+Oertzen%2C+Joachim&rft.au=Schaller%2C+Carlo&rft.au=Urbach%2C+Horst&rft.date=2002-12-01&rft.issn=0013-9580&rft.volume=43&rft.issue=12&rft.spage=1543&rft_id=info:doi/10.1046%2Fj.1528-1157.2002.30002.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon |