Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines

It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F‐actin, a major component of the skeletal structure of dendritic spines, may contribute t...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 22; no. 12; pp. 2995 - 3005
Main Authors Ouyang, Yannan, Wong, Michael, Capani, Francisco, Rensing, Nick, Lee, Chul-Sang, Liu, Qun, Neusch, Clemens, Martone, Maryann E., Wu, Jane Y., Yamada, Kelvin, Ellisman, Mark H., Choi, Dennis W.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.12.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F‐actin, a major component of the skeletal structure of dendritic spines, may contribute to the regulation of synaptic specificity of protein translocation. We found that the stabilization of F‐actin blocked the translocation of GFP‐CaMKII and inhibited the diffusion of 3‐kDa dextran into spines (in 2–3 weeks cultures). Neuronal activation in hippocampal slices and cultured neurons led to an increase in the activation (decrease in the phosphorylation) of the actin depolymerization factor, cofilin, and a decrease in F‐actin. Furthermore, the induction of long‐term potentiation by tetanic stimulation induced local transient depolymerization of F‐actin both in vivo and in hippocampal slices (8–10 weeks), and this local F‐actin depolymerization was blocked by APV, a N‐methyl‐d‐aspartate (NMDA) receptor antagonist. These results suggest that F‐actin may play a role in synaptic specificity by allowing protein translocation into only potentiated spines, gated through its depolymerization, which is probably triggered by the activation of NMDA receptors.
AbstractList It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F-actin, a major component of the skeletal structure of dendritic spines, may contribute to the regulation of synaptic specificity of protein translocation. We found that the stabilization of F-actin blocked the translocation of GFP-CaMKII and inhibited the diffusion of 3-kDa dextran into spines (in 2-3 weeks cultures). Neuronal activation in hippocampal slices and cultured neurons led to an increase in the activation (decrease in the phosphorylation) of the actin depolymerization factor, cofilin, and a decrease in F-actin. Furthermore, the induction of long-term potentiation by tetanic stimulation induced local transient depolymerization of F-actin both in vivo and in hippocampal slices (8-10 weeks), and this local F-actin depolymerization was blocked by APV, a N-methyl-D-aspartate (NMDA) receptor antagonist. These results suggest that F-actin may play a role in synaptic specificity by allowing protein translocation into only potentiated spines, gated through its depolymerization, which is probably triggered by the activation of NMDA receptors.
Abstract It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F‐actin, a major component of the skeletal structure of dendritic spines, may contribute to the regulation of synaptic specificity of protein translocation. We found that the stabilization of F‐actin blocked the translocation of GFP‐CaMKII and inhibited the diffusion of 3‐kDa dextran into spines (in 2–3 weeks cultures). Neuronal activation in hippocampal slices and cultured neurons led to an increase in the activation (decrease in the phosphorylation) of the actin depolymerization factor, cofilin, and a decrease in F‐actin. Furthermore, the induction of long‐term potentiation by tetanic stimulation induced local transient depolymerization of F‐actin both in vivo and in hippocampal slices (8–10 weeks), and this local F‐actin depolymerization was blocked by APV, a N ‐methyl‐ d ‐aspartate (NMDA) receptor antagonist. These results suggest that F‐actin may play a role in synaptic specificity by allowing protein translocation into only potentiated spines, gated through its depolymerization, which is probably triggered by the activation of NMDA receptors.
It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of potentiated dendritic spines. Here, we report that F-actin, a major component of the skeletal structure of dendritic spines, may contribute to the regulation of synaptic specificity of protein translocation. We found that the stabilization of F-actin blocked the translocation of GFP-CaMKII and inhibited the diffusion of 3-kDa dextran into spines (in 2–3 weeks cultures). Neuronal activation in hippocampal slices and cultured neurons led to an increase in the activation (decrease in the phosphorylation) of the actin depolymerization factor, cofilin, and a decrease in F-actin. Furthermore, the induction of long-term potentiation by tetanic stimulation induced local transient depolymerization of F-actin both in vivo and in hippocampal slices (8–10 weeks), and this local F-actin depolymerization was blocked by APV, a N -methyl- d -aspartate (NMDA) receptor antagonist. These results suggest that F-actin may play a role in synaptic specificity by allowing protein translocation into only potentiated spines, gated through its depolymerization, which is probably triggered by the activation of NMDA receptors.
Author Martone, Maryann E.
Neusch, Clemens
Rensing, Nick
Liu, Qun
Wu, Jane Y.
Yamada, Kelvin
Capani, Francisco
Wong, Michael
Choi, Dennis W.
Ellisman, Mark H.
Lee, Chul-Sang
Ouyang, Yannan
AuthorAffiliation 1 Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
3 Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
5 Merck Research Laboratories, West Point, PA 19486, USA
2 Department of Neurosciences 0608, UCSD, La Jolla, CA 92093, USA
4 Departments of Pediatrics, Cell and Developmental Biology and Pharmacology, John F. Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
AuthorAffiliation_xml – name: 2 Department of Neurosciences 0608, UCSD, La Jolla, CA 92093, USA
– name: 3 Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
– name: 5 Merck Research Laboratories, West Point, PA 19486, USA
– name: 1 Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– name: 4 Departments of Pediatrics, Cell and Developmental Biology and Pharmacology, John F. Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
Author_xml – sequence: 1
  givenname: Yannan
  surname: Ouyang
  fullname: Ouyang, Yannan
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– sequence: 2
  givenname: Michael
  surname: Wong
  fullname: Wong, Michael
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– sequence: 3
  givenname: Francisco
  surname: Capani
  fullname: Capani, Francisco
  organization: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 4
  givenname: Nick
  surname: Rensing
  fullname: Rensing, Nick
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Chul-Sang
  surname: Lee
  fullname: Lee, Chul-Sang
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– sequence: 6
  givenname: Qun
  surname: Liu
  fullname: Liu, Qun
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– sequence: 7
  givenname: Clemens
  surname: Neusch
  fullname: Neusch, Clemens
  organization: Department of Neurosciences 0608, UCSD, La Jolla, CA 92093, USA
– sequence: 8
  givenname: Maryann E.
  surname: Martone
  fullname: Martone, Maryann E.
  organization: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 9
  givenname: Jane Y.
  surname: Wu
  fullname: Wu, Jane Y.
  organization: Departments of Pediatrics, Cell and Developmental Biology and Pharmacology, John F. Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
– sequence: 10
  givenname: Kelvin
  surname: Yamada
  fullname: Yamada, Kelvin
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
– sequence: 11
  givenname: Mark H.
  surname: Ellisman
  fullname: Ellisman, Mark H.
  organization: Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 12
  givenname: Dennis W.
  surname: Choi
  fullname: Choi, Dennis W.
  organization: Department of Neurology 8111, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16367766$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vEzEQxS1URNPCV0A-cdvFf9Ze7wEkKE2hqoqEUpWb5fXOgsPGDvamTb49XhIFuOHLWJr3ezOjd4ZOfPCAEKakpPm9Xpa0kqRohFQlI0SUpBKMltsnaHZsnKAZaQQvFJVfT9FZSktCiJKVeIZOqeSyrqWcoXYRjU8O_Ig7sBFMAuw8nhfGjrmuzA63gD1YSMnEHe5DxOOEDMGa0QWPQ4_XMYzgfMrkGLKP76IbncVp7Tyk5-hpb4YELw71HN3NLxcXH4ubz1efLt7dFFZUlBaqq4SUrWr6qgfS05p1ikggjDZ1K4VsaqKqjnCpWN8yxqQwbddwxqmlDeskP0dv977rTbuCzuabohn0OrpV3lwH4_S_He--62_hQTOmsmmdDV4dDGL4uYE06pVLFobBeAibpGldVZyQSaj2QhtDShH64xBK9BSQXuopBz3loKeA9O-A9DajL_9e8g94SCQL3uwFj26A3X8b68vr2-mX-WLPuzTC9sib-EPLmtdC399e6Tl_f_1lwZT-wH8BxeSxKw
CitedBy_id crossref_primary_10_1146_annurev_neuro_31_060407_125646
crossref_primary_10_1523_JNEUROSCI_0983_07_2007
crossref_primary_10_1038_srep26576
crossref_primary_10_1523_JNEUROSCI_1409_18_2018
crossref_primary_10_1016_j_biopsych_2015_03_030
crossref_primary_10_1152_jn_00780_2011
crossref_primary_10_1002_hipo_20489
crossref_primary_10_1093_cercor_bhw122
crossref_primary_10_1016_j_neuroscience_2022_02_021
crossref_primary_10_1523_ENEURO_0342_22_2022
crossref_primary_10_1016_j_brainres_2009_05_073
crossref_primary_10_1523_JNEUROSCI_2106_06_2006
crossref_primary_10_1016_j_bpj_2012_01_031
crossref_primary_10_1111_j_1471_4159_2006_04437_x
crossref_primary_10_1007_s11055_024_01569_y
crossref_primary_10_1523_JNEUROSCI_1735_15_2015
crossref_primary_10_1099_vir_0_047480_0
crossref_primary_10_1101_lm_045013_117
crossref_primary_10_1007_s10827_010_0293_9
crossref_primary_10_1002_dneu_22227
crossref_primary_10_1007_s12035_015_9143_0
crossref_primary_10_1016_j_isci_2023_106723
crossref_primary_10_1038_s41419_020_03325_9
crossref_primary_10_1016_j_bbr_2019_02_014
crossref_primary_10_1111_j_1460_9568_2011_07955_x
crossref_primary_10_1002_syn_20978
crossref_primary_10_1007_s13238_010_0077_z
crossref_primary_10_1016_j_brainres_2014_12_007
crossref_primary_10_1002_iub_2261
crossref_primary_10_1016_j_brainres_2014_12_009
crossref_primary_10_1371_journal_pone_0016197
crossref_primary_10_1254_fpj_130_352
crossref_primary_10_1016_j_neuroscience_2009_01_046
crossref_primary_10_1523_JNEUROSCI_2015_07_2007
crossref_primary_10_1038_srep33685
crossref_primary_10_1016_S0377_1237_10_80096_6
crossref_primary_10_1016_j_brainres_2014_03_023
crossref_primary_10_1586_14737175_8_6_907
crossref_primary_10_1007_s11055_013_9771_7
crossref_primary_10_1016_j_brainres_2007_01_077
crossref_primary_10_1016_j_pnpbp_2019_01_005
crossref_primary_10_1016_j_expneurol_2008_01_029
crossref_primary_10_1016_j_ejcb_2023_151357
crossref_primary_10_1085_jgp_201812261
crossref_primary_10_1007_s10827_011_0377_1
crossref_primary_10_1007_s00441_021_03455_2
crossref_primary_10_1007_s12035_009_8093_9
crossref_primary_10_3390_ijms23042274
crossref_primary_10_1155_2012_873532
crossref_primary_10_1016_j_biopsych_2010_02_016
crossref_primary_10_1111_j_1460_9568_2006_05125_x
crossref_primary_10_1016_j_neuropharm_2006_07_002
crossref_primary_10_1002_hipo_20568
crossref_primary_10_1016_j_bbr_2008_02_033
crossref_primary_10_31857_S0044467723050052
crossref_primary_10_1016_j_neulet_2019_05_006
crossref_primary_10_1074_mcp_M110_007138
crossref_primary_10_1523_JNEUROSCI_1790_06_2006
crossref_primary_10_1007_s10158_013_0155_z
crossref_primary_10_1016_j_conb_2007_04_009
Cites_doi 10.1037/0033-2909.96.3.518
10.1016/j.tins.2003.10.006
10.1113/jphysiol.2003.039099
10.1016/S0896-6273(02)00758-4
10.1074/jbc.275.7.5163
10.1126/science.3672117
10.1002/(SICI)1096-9861(20000306)418:2<164::AID-CNE4>3.0.CO;2-0
10.1126/science.284.5411.162
10.1038/385533a0
10.1146/annurev.neuro.25.112701.142758
10.1016/S0962-8924(00)01876-6
10.1523/JNEUROSCI.17-14-05416.1997
10.1046/j.1365-2443.1996.05005.x
10.1074/jbc.270.29.17582
10.1016/S0896-6273(00)81234-9
10.1126/science.1067844
10.1038/nn1311
10.1038/385439a0
10.1083/jcb.95.1.345
10.1523/JNEUROSCI.20-12-04545.2000
10.1523/JNEUROSCI.16-21-06839.1996
10.1523/JNEUROSCI.20-13-05024.2000
10.1016/S0962-8924(01)02008-6
10.1016/S0896-6273(00)80180-4
10.1523/JNEUROSCI.19-11-04314.1999
10.1126/science.285.5429.895
10.1016/S0092-8674(00)80077-X
10.1016/S0960-9822(00)00845-9
10.1146/annurev.neuro.24.1.299
10.1016/S0896-6273(03)00206-X
10.1073/pnas.79.23.7590
10.1016/S0166-2236(00)01576-9
10.1038/72898
10.1083/jcb.97.4.1169
10.1016/S0962-8924(99)01619-0
10.1002/cne.1199
10.1007/BF01774064
10.1146/annurev.biophys.29.1.545
10.1073/pnas.100139797
10.1016/S0968-0004(99)01511-X
10.1523/JNEUROSCI.20-14-05329.2000
10.1016/S0896-6273(00)80467-5
10.1038/nature01276
10.1126/science.290.5492.754
10.1016/S0896-6273(00)80409-2
10.1126/science.284.5421.1811
10.1016/S0896-6273(02)00785-7
10.1523/JNEUROSCI.19-18-07823.1999
ContentType Journal Article
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
5PM
DOI 10.1111/j.1460-9568.2005.04521.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 3005
ExternalDocumentID 10_1111_j_1460_9568_2005_04521_x
16367766
EJN4521
ark_67375_WNG_F3BJRT28_D
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS017660
– fundername: NINDS NIH HHS
  grantid: NS 042744
– fundername: NCRR NIH HHS
  grantid: RR04050
– fundername: NINDS NIH HHS
  grantid: R01 NS046068
– fundername: NINDS NIH HHS
  grantid: K02 NS045583
– fundername: NINDS NIH HHS
  grantid: NS046068
– fundername: NINDS NIH HHS
  grantid: R21 NS042744
– fundername: NINDS NIH HHS
  grantid: R21 NS045652
– fundername: NINDS NIH HHS
  grantid: R01 NS017660
– fundername: NINDS NIH HHS
  grantid: NS10660
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
-
0R
1AW
31
3N
AAPBV
AAVGM
ABFLS
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
GA
GJ
HZ
IA
IPNFZ
NF
P4A
PQEST
WT
X
Y3
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
5PM
ID FETCH-LOGICAL-c5411-8d4566b89f4fe0f172d806e02197b65697084d03682fb22265abd93231c192d63
IEDL.DBID DR2
ISSN 0953-816X
IngestDate Tue Sep 17 21:22:48 EDT 2024
Fri Aug 16 08:26:05 EDT 2024
Fri Aug 23 01:13:45 EDT 2024
Tue Aug 27 13:49:50 EDT 2024
Fri Jun 04 19:44:39 EDT 2021
Wed Oct 30 09:55:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5411-8d4566b89f4fe0f172d806e02197b65697084d03682fb22265abd93231c192d63
Notes ArticleID:EJN4521
ark:/67375/WNG-F3BJRT28-D
istex:2895AFC2C4D0B8609460A9F41A0F3F7B8E5CA057
 
Chicago, IL 60611, USA (J.Y.W.).
Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA (Y.O.); Institute of Cell Biology and Neuroscience ‘Prof E. De Robertis’, Department of Histology and Cell Biology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina 1121 (F.C.); Korea Research Institute of Bioscience and Biotechnology, Daejon 305‐333, South Korea (C.‐S.L.); Department of Neurology, Georg‐August‐University Göttingen, 37075 Göttingen, Germany (C.N.); Department of Neurology, Northwestern University Medical School
Present addresses
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present addresses: Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA (Y.O.); Institute of Cell Biology and Neuroscience ‘Prof E. De Robertis’, Department of Histology and Cell Biology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina 1121 (F.C.); Korea Research Institute of Bioscience and Biotechnology, Daejon 305-333, South Korea (C.-S.L.); Department of Neurology, Georg-August-University Göttingen, 37075 Göttingen, Germany (C.N.); Department of Neurology, Northwestern University Medical School, Chicago, IL 60611, USA (J.Y.W.).
OpenAccessLink https://europepmc.org/articles/pmc2286827?pdf=render
PMID 16367766
PQID 17443007
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2286827
proquest_miscellaneous_17443007
crossref_primary_10_1111_j_1460_9568_2005_04521_x
pubmed_primary_16367766
wiley_primary_10_1111_j_1460_9568_2005_04521_x_EJN4521
istex_primary_ark_67375_WNG_F3BJRT28_D
ProviderPackageCode 10A
A01
RJQFR
A03
ADOZA
BFHJK
DRMAN
BROTX
AMBMR
DCZOG
K48
MRMAN
~IA
ACFBH
ACAHQ
LEEKS
AFGKR
50Y
50Z
AEUQT
XG1
AAEVG
MRSTM
ACMXC
.3N
MEWTI
AAVGM
Q11
LP7
H.X
LP6
WUP
GAKWD
51W
51X
ACXME
WBKPD
QB0
ADMGS
UB1
AEIMD
ATUGU
WOHZO
G-S
KBYEO
O66
AZBYB
52M
52N
52O
52P
ADEOM
LATKE
ZZTAW
52R
52S
930
BAFTC
52T
MK4
SUPJJ
52U
52V
52W
DRSTM
52X
AFPWT
ALAGY
DR2
G.N
ACPOU
AFZJQ
5LA
ADAWD
702
7PT
66C
ADIZJ
.GA
WXI
AAONW
LYRES
GODZA
LUTES
ALUQN
AAZKR
MSFUL
LC2
AIURR
LC3
ABWRO
AZVAB
WNSPC
PALCI
ABHUG
RX1
ACXQS
BMXJE
R.K
WQJ
MXFUL
P2W
W8V
W99
WYISQ
FUBAC
MSMAN
P2X
WIH
WIK
P2Z
WIJ
BDRZF
BY8
MSSTM
DPXWK
1OB
1OC
3SF
F01
F00
NF~
BRXPI
MXMAN
WRC
AFVGU
F04
ADZMN
8UM
ABCUV
N05
N04
ADDAD
~WT
8-0
8-1
P4A
FZ0
8-3
AGJLS
8-4
P4B
8-5
P4D
IX1
BHBCM
LITHE
SAMSI
J0M
MXSTM
DRFUL
D-6
D-7
33P
Q.N
05W
5HH
AAESR
LOXES
MRFUL
D-F
D-E
AIACR
PublicationCentury 2000
PublicationDate 2005-12
December 2005
2005-Dec
2005-12-00
20051201
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2005
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Halpain, S. (2000) Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci., 23, 141-146.
Ostroff, L.E., Fiala, J.C., Allwardt, B. & Harris, K.M. (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron, 35, 535-545.
Linden, D.J. (1996) A protein synthesis-dependent late phase of cerebellar long-term depression. Neuron, 17, 483-490.
Wear, M.A., Schafer, D.A. & Cooper, J.A. (2000) Actin dynamics: assembly and disassembly of actin networks. Curr. Biol., 10, R891-R895.
Krucker, T., Siggins, G.R. & Halpain, S. (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA, 97, 6856-6861.
Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K. & Inokuchi, K. (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron, 38, 447-460.
Deller, T., Merten, T., Roth, S.U., Mundel, P. & Frotscher, M. (2000) Actin-associated protein synaptopodin in the rat hippocampal formation: localization in the spine neck and close association with the spine apparatus of principal neurons. J. Comp. Neurol., 418, 164-181.
Davis, H.P. & Squire, L.R. (1984) Protein synthesis and memory: a review. Psychol. Bull., 96, 518-559.
Schuman, E.M. (1997) Synapse specificity and long-term information storage. Neuron, 18, 339-342.
Frangiskakis, J.M., Ewart, A.K., Morris, C.A., Mervis, C.B., Bertrand, J., Robinson, B.F., Klein, B.P., Ensing, G.J., Everett, L.A., Green, E.D., Proschel, C., Gutowski, N.J., Noble, M., Atkinson, D.L., Odelberg, S.J. & Keating, M.T. (1996) LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell, 86, 59-69.
Fischer, M., Kaech, S., Knutti, D. & Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron, 20, 847-854.
Bubb, M.R., Spector, I., Beyer, B.B. & Fosen, K.M. (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol. Chem., 275, 5163-5170.
Moriyama, K., Iida, K. & Yahara, I. (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells, 1, 73-86.
Matus, A., Ackermann, M., Pehling, G., Byers, H.R. & Fujiwara, K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA, 79, 7590-7594.
Matus, A. (2000) Actin-based plasticity in dendritic spines. Science, 290, 754-758.
Ouyang, Y., Kantor, D., Harris, K.M., Schuman, E.M. & Kennedy, M.B. (1997) Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J. Neurosci., 17, 5416-5427.
Capani, F., Martone, M.E., Deerinck, T.J. & Ellisman, M.H. (2001) Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol., 435, 156-170.
De Simoni, A., Fernandes, F. & Edwards, F.A. (2004) Spines and dendrites cannot be assumed to distribute dye evenly. Trends Neurosci., 27, 15-16.
Shi, S.H. (2001) Amersham Biosciences & Science Prize. AMPA receptor dynamics and synaptic plasticity. Science, 294, 1851-1852.
Cajal, S.R. (1888) Estructural de los centros nerviosos de la saves. Rev. Trim. Histol. Norm. Pat., 1, 1-10.
Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K. & Malinow, R. (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284, 1811-1816.
Li, Z., Van Aelst, L. & Cline, H.T. (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat. Neurosci., 3, 217-225.
Agnew, B.J., Minamide, L.S. & Bamburg, J.R. (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem., 270, 17582-17587.
Grutzendler, J., Kasthuri, N. & Gan, W.B. (2002) Long-term dendritic spine stability in the adult cortex. Nature, 420, 812-816.
Faulstich, H., Zobeley, S., Rinnerthaler, G. & Small, J.V. (1988) Fluorescent phallotoxins as probes for filamentous actin. J. Muscle Res. Cell Motil., 9, 370-383.
Landis, D.M. & Reese, T.S. (1983) Cytoplasmic organization in cerebellar dendritic spines. J. Cell Biol., 97, 1169-1178.
Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci., 7, 1104-1112.
Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M. & Sheng, M. (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature, 385, 439-442.
Wong, W.T., Faulkner-Jones, B.E., Sanes, J.R. & Wong, R.O. (2000) Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci., 20, 5024-5036.
Ziff, E.B. (1997) Enlightening the postsynaptic density. Neuron, 19, 1163-1174.
Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. & Narumiya, S. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 285, 895-898.
Steward, O. & Schuman, E.M. (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci., 24, 299-325.
Nakayama, A.Y., Harms, M.B. & Luo, L. (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci., 20, 5329-5338.
Fifkova, E. & Delay, R.J. (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol., 95, 345-350.
Malinow, R. & Malenka, R.C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci., 25, 103-126.
Shen, K. & Meyer, T. (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science, 284, 162-166.
Allison, D.W., Chervin, A.S., Gelfand, V.I. & Craig, A.M. (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci., 20, 4545-4554.
Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E.M. & Kennedy, M.B. (1999) Tetanic stimulation leads to increased accumulation of Ca (2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci., 19, 7823-7833.
Condeelis, J. (2001) How is actin polymerization nucleated in vivo? Trends Cell Biol., 11, 288-293.
Bamburg, J.R., McGough, A. & Ono, S. (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol., 9, 364-370.
Frey, U. & Morris, R.G. (1997) Synaptic tagging and long-term potentiation. Nature, 385, 533-536.
Holt, M.R. & Koffer, A. (2001) Cell motility: proline-rich proteins promote protrusions. Trends Cell Biol., 11, 38-46.
Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, L., Jackson, M., Lu, W.Y., MacDonald, J.F., Wang, J.Y., Falls, D.L. & Jia, Z. (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron, 35, 121-133.
De Simoni, A., Griesinger, C.B. & Edwards, F.A. (2003) Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity. J. Physiol., 550, 135-147.
Korn, E.D., Carlier, M.F. & Pantaloni, D. (1987) Actin polymerization and ATP hydrolysis. Science, 238, 638-644.
Kim, C.H. & Lisman, J.E. (1999) A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci., 19, 4314-4324.
Apperson, M.L., Moon, I.S. & Kennedy, M.B. (1996) Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci., 16, 6839-6852.
Pollard, T.D., Blanchoin, L. & Mullins, R.D. (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct., 29, 545-576.
Chen, H., Bernstein, B.W. & Bamburg, J.R. (2000) Regulating actin-filament dynamics in vivo. Trends Biochem. Sci., 25, 19-23.
2000; 418
1982; 79
2000; 29
1996; 17
2000; 25
2004; 27
2000; 23
1982; 95
2000; 3
2002; 35
2004; 7
2000; 20
1983; 97
1999; 285
2003; 38
1999; 284
2000; 275
1888; 1
1992
1996; 16
2001; 24
1998; 20
1995; 270
2003; 550
2000; 290
1999; 9
1984; 96
2002; 25
2001; 294
1988; 9
1987; 238
1999; 19
2000; 10
1997; 385
2002; 420
2000; 97
1997; 19
1997; 18
1997; 17
1996; 1
2001; 11
1996; 86
2001; 435
Apperson M.L. (e_1_2_7_4_1) 1996; 16
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Hartwin (e_1_2_7_23_1) 1992
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Cajal S.R. (e_1_2_7_7_1) 1888; 1
References_xml – volume: 275
  start-page: 5163
  year: 2000
  end-page: 5170
  article-title: Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 162
  year: 1999
  end-page: 166
  article-title: Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation
  publication-title: Science
– volume: 18
  start-page: 339
  year: 1997
  end-page: 342
  article-title: Synapse specificity and long‐term information storage
  publication-title: Neuron
– volume: 238
  start-page: 638
  year: 1987
  end-page: 644
  article-title: Actin polymerization and ATP hydrolysis
  publication-title: Science
– volume: 19
  start-page: 7823
  year: 1999
  end-page: 7833
  article-title: Tetanic stimulation leads to increased accumulation of Ca (2+)/calmodulin‐dependent protein kinase II via dendritic protein synthesis in hippocampal neurons
  publication-title: J. Neurosci.
– volume: 25
  start-page: 103
  year: 2002
  end-page: 126
  article-title: AMPA receptor trafficking and synaptic plasticity
  publication-title: Annu. Rev. Neurosci.
– volume: 19
  start-page: 1163
  year: 1997
  end-page: 1174
  article-title: Enlightening the postsynaptic density
  publication-title: Neuron
– volume: 11
  start-page: 38
  year: 2001
  end-page: 46
  article-title: Cell motility: proline‐rich proteins promote protrusions
  publication-title: Trends Cell Biol.
– volume: 20
  start-page: 5024
  year: 2000
  end-page: 5036
  article-title: Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho
  publication-title: J. Neurosci.
– volume: 20
  start-page: 4545
  year: 2000
  end-page: 4554
  article-title: Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules
  publication-title: J. Neurosci.
– volume: 294
  start-page: 1851
  year: 2001
  end-page: 1852
  article-title: Amersham Biosciences & Science Prize. AMPA receptor dynamics and synaptic plasticity
  publication-title: Science
– volume: 290
  start-page: 754
  year: 2000
  end-page: 758
  article-title: Actin‐based plasticity in dendritic spines
  publication-title: Science
– volume: 96
  start-page: 518
  year: 1984
  end-page: 559
  article-title: Protein synthesis and memory: a review
  publication-title: Psychol. Bull.
– volume: 35
  start-page: 535
  year: 2002
  end-page: 545
  article-title: Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices
  publication-title: Neuron
– volume: 20
  start-page: 847
  year: 1998
  end-page: 854
  article-title: Rapid actin‐based plasticity in dendritic spines
  publication-title: Neuron
– volume: 550
  start-page: 135
  year: 2003
  end-page: 147
  article-title: Development of rat CA1 neurones in acute versus organotypic slices: role of experience in synaptic morphology and activity
  publication-title: J. Physiol.
– start-page: 23
  year: 1992
  end-page: 45
– volume: 385
  start-page: 533
  year: 1997
  end-page: 536
  article-title: Synaptic tagging and long‐term potentiation
  publication-title: Nature
– volume: 38
  start-page: 447
  year: 2003
  end-page: 460
  article-title: Hippocampal LTP is accompanied by enhanced F‐actin content within the dendritic spine that is essential for late LTP maintenance in vivo
  publication-title: Neuron
– volume: 19
  start-page: 4314
  year: 1999
  end-page: 4324
  article-title: A role of actin filament in synaptic transmission and long‐term potentiation
  publication-title: J. Neurosci.
– volume: 23
  start-page: 141
  year: 2000
  end-page: 146
  article-title: Actin and the agile spine: how and why do dendritic spines dance?
  publication-title: Trends Neurosci.
– volume: 27
  start-page: 15
  year: 2004
  end-page: 16
  article-title: Spines and dendrites cannot be assumed to distribute dye evenly
  publication-title: Trends Neurosci.
– volume: 385
  start-page: 439
  year: 1997
  end-page: 442
  article-title: Competitive binding of alpha‐actinin and calmodulin to the NMDA receptor
  publication-title: Nature
– volume: 97
  start-page: 6856
  year: 2000
  end-page: 6861
  article-title: Dynamic actin filaments are required for stable long‐term potentiation (LTP) in area CA1 of the hippocampus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 86
  start-page: 59
  year: 1996
  end-page: 69
  article-title: LIM‐kinase1 hemizygosity implicated in impaired visuospatial constructive cognition
  publication-title: Cell
– volume: 7
  start-page: 1104
  year: 2004
  end-page: 1112
  article-title: Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity
  publication-title: Nat. Neurosci.
– volume: 1
  start-page: 1
  year: 1888
  end-page: 10
  article-title: Estructural de los centros nerviosos de la saves
  publication-title: Rev. Trim. Histol. Norm. Pat.
– volume: 418
  start-page: 164
  year: 2000
  end-page: 181
  article-title: Actin‐associated protein synaptopodin in the rat hippocampal formation: localization in the spine neck and close association with the spine apparatus of principal neurons
  publication-title: J. Comp. Neurol.
– volume: 29
  start-page: 545
  year: 2000
  end-page: 576
  article-title: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 270
  start-page: 17582
  year: 1995
  end-page: 17587
  article-title: Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site
  publication-title: J. Biol. Chem.
– volume: 285
  start-page: 895
  year: 1999
  end-page: 898
  article-title: Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM‐kinase
  publication-title: Science
– volume: 10
  start-page: R891
  year: 2000
  end-page: R895
  article-title: Actin dynamics: assembly and disassembly of actin networks
  publication-title: Curr. Biol.
– volume: 9
  start-page: 364
  year: 1999
  end-page: 370
  article-title: Putting a new twist on actin: ADF/cofilins modulate actin dynamics
  publication-title: Trends Cell Biol.
– volume: 95
  start-page: 345
  year: 1982
  end-page: 350
  article-title: Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity
  publication-title: J. Cell Biol.
– volume: 17
  start-page: 483
  year: 1996
  end-page: 490
  article-title: A protein synthesis‐dependent late phase of cerebellar long‐term depression
  publication-title: Neuron
– volume: 20
  start-page: 5329
  year: 2000
  end-page: 5338
  article-title: Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons
  publication-title: J. Neurosci.
– volume: 435
  start-page: 156
  year: 2001
  end-page: 170
  article-title: Selective localization of high concentrations of F‐actin in subpopulations of dendritic spines in rat central nervous system: a three‐dimensional electron microscopic study
  publication-title: J. Comp. Neurol.
– volume: 9
  start-page: 370
  year: 1988
  end-page: 383
  article-title: Fluorescent phallotoxins as probes for filamentous actin
  publication-title: J. Muscle Res. Cell Motil.
– volume: 24
  start-page: 299
  year: 2001
  end-page: 325
  article-title: Protein synthesis at synaptic sites on dendrites
  publication-title: Annu. Rev. Neurosci.
– volume: 79
  start-page: 7590
  year: 1982
  end-page: 7594
  article-title: High actin concentrations in brain dendritic spines and postsynaptic densities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 217
  year: 2000
  end-page: 225
  article-title: Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo
  publication-title: Nat. Neurosci.
– volume: 25
  start-page: 19
  year: 2000
  end-page: 23
  article-title: Regulating actin‐filament dynamics in vivo
  publication-title: Trends Biochem. Sci.
– volume: 35
  start-page: 121
  year: 2002
  end-page: 133
  article-title: Abnormal spine morphology and enhanced LTP in LIMK‐1 knockout mice
  publication-title: Neuron
– volume: 17
  start-page: 5416
  year: 1997
  end-page: 5427
  article-title: Visualization of the distribution of autophosphorylated calcium/calmodulin‐dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus
  publication-title: J. Neurosci.
– volume: 284
  start-page: 1811
  year: 1999
  end-page: 1816
  article-title: Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation
  publication-title: Science
– volume: 97
  start-page: 1169
  year: 1983
  end-page: 1178
  article-title: Cytoplasmic organization in cerebellar dendritic spines
  publication-title: J. Cell Biol.
– volume: 16
  start-page: 6839
  year: 1996
  end-page: 6852
  article-title: Characterization of densin‐180, a new brain‐specific synaptic protein of the O‐sialoglycoprotein family
  publication-title: J. Neurosci.
– volume: 11
  start-page: 288
  year: 2001
  end-page: 293
  article-title: How is actin polymerization nucleated in vivo?
  publication-title: Trends Cell Biol.
– volume: 420
  start-page: 812
  year: 2002
  end-page: 816
  article-title: Long‐term dendritic spine stability in the adult cortex
  publication-title: Nature
– volume: 1
  start-page: 73
  year: 1996
  end-page: 86
  article-title: Phosphorylation of Ser‐3 of cofilin regulates its essential function on actin
  publication-title: Genes Cells
– ident: e_1_2_7_11_1
  doi: 10.1037/0033-2909.96.3.518
– ident: e_1_2_7_12_1
  doi: 10.1016/j.tins.2003.10.006
– ident: e_1_2_7_13_1
  doi: 10.1113/jphysiol.2003.039099
– ident: e_1_2_7_35_1
  doi: 10.1016/S0896-6273(02)00758-4
– ident: e_1_2_7_6_1
  doi: 10.1074/jbc.275.7.5163
– ident: e_1_2_7_26_1
  doi: 10.1126/science.3672117
– start-page: 23
  volume-title: The Cytoskeleton – a Practical Approach.
  year: 1992
  ident: e_1_2_7_23_1
  contributor:
    fullname: Hartwin
– ident: e_1_2_7_14_1
  doi: 10.1002/(SICI)1096-9861(20000306)418:2<164::AID-CNE4>3.0.CO;2-0
– ident: e_1_2_7_44_1
  doi: 10.1126/science.284.5411.162
– ident: e_1_2_7_19_1
  doi: 10.1038/385533a0
– ident: e_1_2_7_32_1
  doi: 10.1146/annurev.neuro.25.112701.142758
– ident: e_1_2_7_24_1
  doi: 10.1016/S0962-8924(00)01876-6
– ident: e_1_2_7_40_1
  doi: 10.1523/JNEUROSCI.17-14-05416.1997
– ident: e_1_2_7_36_1
  doi: 10.1046/j.1365-2443.1996.05005.x
– ident: e_1_2_7_2_1
  doi: 10.1074/jbc.270.29.17582
– ident: e_1_2_7_43_1
  doi: 10.1016/S0896-6273(00)81234-9
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1067844
– ident: e_1_2_7_38_1
  doi: 10.1038/nn1311
– ident: e_1_2_7_50_1
  doi: 10.1038/385439a0
– ident: e_1_2_7_16_1
  doi: 10.1083/jcb.95.1.345
– ident: e_1_2_7_3_1
  doi: 10.1523/JNEUROSCI.20-12-04545.2000
– volume: 16
  start-page: 6839
  year: 1996
  ident: e_1_2_7_4_1
  article-title: Characterization of densin‐180, a new brain‐specific synaptic protein of the O‐sialoglycoprotein family
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-21-06839.1996
  contributor:
    fullname: Apperson M.L.
– ident: e_1_2_7_49_1
  doi: 10.1523/JNEUROSCI.20-13-05024.2000
– ident: e_1_2_7_10_1
  doi: 10.1016/S0962-8924(01)02008-6
– ident: e_1_2_7_30_1
  doi: 10.1016/S0896-6273(00)80180-4
– volume: 1
  start-page: 1
  year: 1888
  ident: e_1_2_7_7_1
  article-title: Estructural de los centros nerviosos de la saves
  publication-title: Rev. Trim. Histol. Norm. Pat.
  contributor:
    fullname: Cajal S.R.
– ident: e_1_2_7_25_1
  doi: 10.1523/JNEUROSCI.19-11-04314.1999
– ident: e_1_2_7_31_1
  doi: 10.1126/science.285.5429.895
– ident: e_1_2_7_18_1
  doi: 10.1016/S0092-8674(00)80077-X
– ident: e_1_2_7_48_1
  doi: 10.1016/S0960-9822(00)00845-9
– ident: e_1_2_7_47_1
  doi: 10.1146/annurev.neuro.24.1.299
– ident: e_1_2_7_20_1
  doi: 10.1016/S0896-6273(03)00206-X
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.79.23.7590
– ident: e_1_2_7_22_1
  doi: 10.1016/S0166-2236(00)01576-9
– ident: e_1_2_7_29_1
  doi: 10.1038/72898
– ident: e_1_2_7_28_1
  doi: 10.1083/jcb.97.4.1169
– ident: e_1_2_7_5_1
  doi: 10.1016/S0962-8924(99)01619-0
– ident: e_1_2_7_8_1
  doi: 10.1002/cne.1199
– ident: e_1_2_7_15_1
  doi: 10.1007/BF01774064
– ident: e_1_2_7_42_1
  doi: 10.1146/annurev.biophys.29.1.545
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.100139797
– ident: e_1_2_7_9_1
  doi: 10.1016/S0968-0004(99)01511-X
– ident: e_1_2_7_37_1
  doi: 10.1523/JNEUROSCI.20-14-05329.2000
– ident: e_1_2_7_17_1
  doi: 10.1016/S0896-6273(00)80467-5
– ident: e_1_2_7_21_1
  doi: 10.1038/nature01276
– ident: e_1_2_7_33_1
  doi: 10.1126/science.290.5492.754
– ident: e_1_2_7_51_1
  doi: 10.1016/S0896-6273(00)80409-2
– ident: e_1_2_7_46_1
  doi: 10.1126/science.284.5421.1811
– ident: e_1_2_7_39_1
  doi: 10.1016/S0896-6273(02)00785-7
– ident: e_1_2_7_41_1
  doi: 10.1523/JNEUROSCI.19-18-07823.1999
SSID ssj0008645
Score 2.1478798
Snippet It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected subsets of...
Abstract It remains poorly understood as to how newly synthesized proteins that are required to act at specific synapses are translocated into only selected...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2995
SubjectTerms 2-Amino-5-phosphonovalerate - pharmacology
Actin Depolymerizing Factors - metabolism
Actins - metabolism
Animals
Blotting, Western - methods
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cells, Cultured
dendritic spine
Dendritic Spines - metabolism
Dendritic Spines - ultrastructure
Depsipeptides - pharmacology
Dextrans - metabolism
Disks Large Homolog 4 Protein
Dose-Response Relationship, Radiation
Electric Stimulation - methods
Embryo, Mammalian
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
Excitatory Postsynaptic Potentials - radiation effects
F-actin
Fluorescent Antibody Technique - methods
Green Fluorescent Proteins - metabolism
Hippocampus - cytology
In Vitro Techniques
information storage
Intracellular Signaling Peptides and Proteins - metabolism
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
Long-Term Potentiation - radiation effects
LTP
Membrane Proteins - metabolism
Microscopy, Immunoelectron - methods
Microtubule-Associated Proteins - metabolism
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Patch-Clamp Techniques - methods
Phosphorylation - drug effects
Phosphorylation - radiation effects
Potassium Chloride - pharmacology
protein translocation
Protein Transport - drug effects
Protein Transport - physiology
Rats
synaptic specificity
Time Factors
Transfection
Title Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines
URI https://api.istex.fr/ark:/67375/WNG-F3BJRT28-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1460-9568.2005.04521.x
https://www.ncbi.nlm.nih.gov/pubmed/16367766
https://search.proquest.com/docview/17443007
https://pubmed.ncbi.nlm.nih.gov/PMC2286827
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoALj5ZHePqAessS52Enx9J2Wa3EHqpW7M2yY1usqnqrJiu1nPgJ_EZ-CTPOZttADwhxi5TYiSfjzGfnm28Iee8Sl6lUJbFOdR3nVc1ixV0eC2NZYgESMIX7kJ9nfHKaT-fFfItM-lyYTh9is-GGMyN8r3GCK918uMXEyXkSY7LbemMkh0A0QjTJMoHcrsPjGx2pkodqxaitFpeMz4eUnjs7GsSpe2jyq7tA6J9cytsYNwSp8SOy6IfXcVPORqtWj-pvvyk__o_xPyYP10iW7neu94RsWb9Ddvc9rOLPr-keDdzSsGm_Q-4f9HXldokJ4RHTMKkJmLWxdOHp-Of3H5hk4em5uqbaUm8xgwGejwKupi02wsCLjkSXjgaBiYVvoG27hJ68CUUbaHOBRP6n5HR8dHIwide1HuK6yBmLSwNIjuuycrmziQNYZcqEW0AgldCAOSuRlLmBcFumTgOm4YXSBrBnxmrAqIZnz8i2X3r7glAuEiMqZ5nAvFlAPMpxIZjlonYZ4LGIsP7NyotO0kMOlkKJRLNigc5CBrPKq4jsBRfYNFCXZ0iJE4X8Mvskx9nH6fFJWsrDiLzrfUSCXfHvi_J2uWokLP3yDBBZRJ53HnNzc57BA3IeETHwpc0FKAE-POMXX4MUeJqWYBHokwdX-evxyKPpDI9e_mvDV-RBJ2KLxJ7XZLu9XNk3AM9a_TZMvV8szS0s
link.rule.ids 230,315,783,787,888,1378,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+decrease+in+F-actin+may+be+necessary+for+translocation+of+proteins+into+dendritic+spines&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Ouyang%2C+Yannan&rft.au=Wong%2C+Michael&rft.au=Capani%2C+Francisco&rft.au=Rensing%2C+Nick&rft.date=2005-12-01&rft.issn=0953-816X&rft.volume=22&rft.issue=12&rft.spage=2995&rft_id=info:doi/10.1111%2Fj.1460-9568.2005.04521.x&rft_id=info%3Apmid%2F16367766&rft.externalDocID=16367766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon