Nanofibrils in nature and materials engineering

Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological m...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Materials Vol. 3; no. 4; p. 18016
Main Authors Ling, Shengjie, Kaplan, David L., Buehler, Markus J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm. Nanofibrils are abundant and critical structural components in nature that can be exploited for novel and sustainable materials. In this Review, hierarchical design strategies for cellulose, silk and chitin nanofibrils in nature and in materials engineering are discussed.
AbstractList Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.
Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm. Nanofibrils are abundant and critical structural components in nature that can be exploited for novel and sustainable materials. In this Review, hierarchical design strategies for cellulose, silk and chitin nanofibrils in nature and in materials engineering are discussed.
Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.
Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.Nanofibrils are abundant and critical structural components in nature that can be exploited for novel and sustainable materials. In this Review, hierarchical design strategies for cellulose, silk and chitin nanofibrils in nature and in materials engineering are discussed.
ArticleNumber 18016
Author Kaplan, David L.
Buehler, Markus J.
Ling, Shengjie
AuthorAffiliation 5 Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
4 Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
3 Department of Biomedical Engineering, Tufts University, Medford, MA, USA
AuthorAffiliation_xml – name: 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
– name: 2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 4 Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 5 Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
– name: 3 Department of Biomedical Engineering, Tufts University, Medford, MA, USA
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Ling
  fullname: Ling, Shengjie
  organization: School of Physical Science and Technology, ShanghaiTech University, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Department of Biomedical Engineering, Tufts University
– sequence: 2
  givenname: David L.
  surname: Kaplan
  fullname: Kaplan, David L.
  email: David.Kaplan@Tufts.edu
  organization: Department of Biomedical Engineering, Tufts University
– sequence: 3
  givenname: Markus J.
  surname: Buehler
  fullname: Buehler, Markus J.
  email: mbuehler@mit.edu
  organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Center for Materials Science and Engineering, Massachusetts Institute of Technology, Center for Computational Engineering, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34168896$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtPAyEYJEbjo_oHPJgmXry08li6cDExxldi9KJn8u3uR8VsocKuif9eNq3PgyfgY2aYYfbIpg8eCTlkdMqoUKceuohvC-jSlFOmpmy2QXY5lWqiClFu_tjvkIOUXiilTItCK75NdkTBZkrp2S45vQcfrKuia9PY-XGW7SOOwTfjrI3RQZ6jnzuP-eDn-2TL5hEerNcRebq6fLy4mdw9XN9enN9NalnQbmKRQX5boyzrmsuikSWIykprG4BKl7oqUCsoKqCgtKWsoFaiQKi1ZKVoxIicrXSXfbXApkbfRWjNMroFxHcTwJnfN949m3l4M4pzJkuaBU7WAjG89pg6s3CpxrYFj6FPJpuSUnPKZxl6_Af6EvroczwjaKmGHEpl1NFPR19WPv8yA_gKUMeQUkT7BWHUDJ2Z787M0JlhA0n9IdWug86FIZVr_6eKFTUth2Ywftv-h_UB3Jaybg
CitedBy_id crossref_primary_10_1002_adfm_202501380
crossref_primary_10_1038_s41893_024_01268_z
crossref_primary_10_1039_D1MH01965A
crossref_primary_10_1016_j_polymer_2021_123534
crossref_primary_10_1016_j_actbio_2023_11_030
crossref_primary_10_1002_smtd_202300136
crossref_primary_10_1021_acssuschemeng_0c06736
crossref_primary_10_1016_j_jobab_2025_03_001
crossref_primary_10_1002_adom_202000012
crossref_primary_10_1021_acs_biomac_8b01766
crossref_primary_10_1021_acsmaterialslett_3c00273
crossref_primary_10_1088_1748_3190_abe27b
crossref_primary_10_1021_acsapm_4c02085
crossref_primary_10_1016_j_actbio_2019_01_010
crossref_primary_10_1002_aisy_202100136
crossref_primary_10_1007_s10570_023_05360_z
crossref_primary_10_34133_2022_9854063
crossref_primary_10_1016_j_progpolymsci_2018_06_004
crossref_primary_10_1002_adfm_202104991
crossref_primary_10_1021_acs_biomac_9b01198
crossref_primary_10_1021_acsnano_3c00105
crossref_primary_10_1016_j_pmatsci_2025_101430
crossref_primary_10_1002_smll_202205219
crossref_primary_10_1002_anie_201903264
crossref_primary_10_1039_D2GC04271A
crossref_primary_10_1021_acs_biomac_8b01659
crossref_primary_10_1016_j_ijbiomac_2025_140832
crossref_primary_10_1038_s41893_024_01267_0
crossref_primary_10_1016_j_carbpol_2023_121090
crossref_primary_10_1016_j_mechmat_2024_104986
crossref_primary_10_1021_acsabm_9b00034
crossref_primary_10_1021_acsomega_4c06558
crossref_primary_10_1021_acssensors_4c00852
crossref_primary_10_1088_1758_5090_ab06ea
crossref_primary_10_1002_adfm_201806380
crossref_primary_10_1002_adsu_202400965
crossref_primary_10_1002_advs_202410702
crossref_primary_10_1021_acs_macromol_3c01695
crossref_primary_10_1002_advs_202203720
crossref_primary_10_1002_admt_202100107
crossref_primary_10_1002_adfm_202311704
crossref_primary_10_1002_adhm_202001211
crossref_primary_10_3390_pharmaceutics13091440
crossref_primary_10_1021_acsanm_2c00354
crossref_primary_10_1016_j_jcis_2024_07_235
crossref_primary_10_3390_ijms241411818
crossref_primary_10_1039_C8NR00717A
crossref_primary_10_1002_mame_202200538
crossref_primary_10_1016_j_matt_2019_07_016
crossref_primary_10_1021_acs_biomac_0c01653
crossref_primary_10_1007_s00226_022_01385_y
crossref_primary_10_1021_acsami_0c17857
crossref_primary_10_1039_C8NR02159G
crossref_primary_10_1002_smll_202304196
crossref_primary_10_1016_j_polymertesting_2022_107599
crossref_primary_10_1002_smll_202311966
crossref_primary_10_1038_s41467_021_25360_6
crossref_primary_10_1155_2021_7141550
crossref_primary_10_1002_adfm_202214148
crossref_primary_10_1021_acssuschemeng_4c00560
crossref_primary_10_1016_j_ijbiomac_2025_139945
crossref_primary_10_1557_mrs_2018_320
crossref_primary_10_1126_sciadv_adl4000
crossref_primary_10_1002_admt_202000928
crossref_primary_10_1002_adma_202001085
crossref_primary_10_1016_j_jsb_2020_107532
crossref_primary_10_1016_j_cossms_2020_100883
crossref_primary_10_1021_acssuschemeng_2c01668
crossref_primary_10_1021_acssuschemeng_9b05261
crossref_primary_10_1021_acssuschemeng_0c04235
crossref_primary_10_1021_acs_chemmater_2c00021
crossref_primary_10_1021_acsnano_3c03428
crossref_primary_10_1002_smll_202102660
crossref_primary_10_1038_s41467_019_10157_5
crossref_primary_10_1007_s10570_019_02642_3
crossref_primary_10_1002_marc_202300024
crossref_primary_10_1002_adma_201901924
crossref_primary_10_1002_adfm_202207532
crossref_primary_10_1002_adma_202211175
crossref_primary_10_1021_acs_chemrev_2c00125
crossref_primary_10_1016_j_cej_2024_151518
crossref_primary_10_1016_j_cis_2018_10_002
crossref_primary_10_1038_s41598_021_04001_4
crossref_primary_10_1016_j_ijadhadh_2025_103948
crossref_primary_10_1016_j_jcrysgro_2022_126977
crossref_primary_10_1016_j_bioactmat_2020_06_013
crossref_primary_10_1007_s40883_024_00374_w
crossref_primary_10_1016_j_mattod_2025_01_008
crossref_primary_10_1021_acs_biomac_8b01333
crossref_primary_10_1021_acsnano_3c01241
crossref_primary_10_1016_j_carbpol_2020_117058
crossref_primary_10_1021_acsnano_8b03943
crossref_primary_10_1080_02678292_2023_2168776
crossref_primary_10_1021_acsnano_1c11148
crossref_primary_10_1038_s41467_024_55166_1
crossref_primary_10_1016_j_progpolymsci_2021_101469
crossref_primary_10_1021_acs_biomac_1c00183
crossref_primary_10_1021_acs_biomac_1c00065
crossref_primary_10_1016_j_carbon_2024_119227
crossref_primary_10_1002_smll_202411184
crossref_primary_10_1002_adma_202308748
crossref_primary_10_1038_s41467_024_50793_0
crossref_primary_10_3390_ma11101834
crossref_primary_10_1021_acsanm_0c02192
crossref_primary_10_1038_s43246_024_00597_y
crossref_primary_10_1039_D1SM01120K
crossref_primary_10_1002_adom_202200951
crossref_primary_10_1016_j_carbpol_2021_118359
crossref_primary_10_1016_j_carbpol_2021_118118
crossref_primary_10_3389_fmats_2025_1533330
crossref_primary_10_1002_lpor_202400621
crossref_primary_10_1002_adma_202305126
crossref_primary_10_1016_j_compositesb_2022_110213
crossref_primary_10_1039_D2MH00296E
crossref_primary_10_1002_admt_202100773
crossref_primary_10_3389_fbioe_2022_1026876
crossref_primary_10_1002_adfm_202102677
crossref_primary_10_1039_D2CS00813K
crossref_primary_10_1021_acsami_4c13523
crossref_primary_10_3390_biomimetics8020153
crossref_primary_10_3389_frsfm_2024_1341129
crossref_primary_10_1016_S1872_2067_22_64110_X
crossref_primary_10_1007_s10570_022_04674_8
crossref_primary_10_1016_j_mtbio_2021_100179
crossref_primary_10_1038_s41598_023_50967_8
crossref_primary_10_1002_adma_201904311
crossref_primary_10_1002_adma_201804826
crossref_primary_10_1002_adfm_202301404
crossref_primary_10_1080_17480272_2024_2322108
crossref_primary_10_1021_acsnano_0c02302
crossref_primary_10_1038_s41467_024_55097_x
crossref_primary_10_1021_acsanm_1c03708
crossref_primary_10_1039_D2NR00372D
crossref_primary_10_1002_adma_202102658
crossref_primary_10_1039_D0TC05381C
crossref_primary_10_1186_s10086_023_02082_5
crossref_primary_10_1002_adma_202101682
crossref_primary_10_1016_j_euromechsol_2022_104718
crossref_primary_10_1002_adfm_202200267
crossref_primary_10_1016_j_matdes_2022_110486
crossref_primary_10_1016_j_compositesb_2020_108377
crossref_primary_10_1039_D1AN00290B
crossref_primary_10_1021_acsnano_1c00346
crossref_primary_10_1021_acs_biomac_0c00160
crossref_primary_10_1126_sciadv_adn3289
crossref_primary_10_1002_EXP_20220050
crossref_primary_10_1016_j_jconrel_2020_10_026
crossref_primary_10_1021_acsami_4c17701
crossref_primary_10_1007_s42765_022_00171_6
crossref_primary_10_1021_jacs_0c12326
crossref_primary_10_1021_acsami_4c02579
crossref_primary_10_1021_acs_biomac_1c00263
crossref_primary_10_1002_adts_202401461
crossref_primary_10_1360_TB_2024_0577
crossref_primary_10_1002_adma_201802306
crossref_primary_10_1021_acs_langmuir_8b04013
crossref_primary_10_3389_fbioe_2023_1252499
crossref_primary_10_1016_j_est_2023_110037
crossref_primary_10_1103_PhysRevE_101_032610
crossref_primary_10_1098_rsta_2020_0331
crossref_primary_10_1007_s40820_019_0348_z
crossref_primary_10_1021_acssuschemeng_9b07668
crossref_primary_10_1016_j_foodchem_2021_130329
crossref_primary_10_1016_j_matt_2023_11_013
crossref_primary_10_1038_s41467_021_23388_2
crossref_primary_10_1002_adma_202007596
crossref_primary_10_1021_acssuschemeng_4c01260
crossref_primary_10_1021_acs_chemrev_2c00621
crossref_primary_10_1021_acsmaterialslett_1c00378
crossref_primary_10_1038_s41467_023_37036_4
crossref_primary_10_1016_j_coco_2019_11_017
crossref_primary_10_1016_j_jmps_2019_07_001
crossref_primary_10_1016_j_carbpol_2019_115188
crossref_primary_10_1063_5_0226300
crossref_primary_10_1039_C8TC04549F
crossref_primary_10_1080_15440478_2022_2092252
crossref_primary_10_1016_j_isci_2022_103940
crossref_primary_10_1021_acsnano_8b02430
crossref_primary_10_1002_admt_202001180
crossref_primary_10_1002_adfm_202006227
crossref_primary_10_1093_nsr_nwac195
crossref_primary_10_1016_j_cossms_2019_07_003
crossref_primary_10_1002_advs_201801540
crossref_primary_10_14233_ajchem_2022_23730
crossref_primary_10_1557_s43577_024_00664_2
crossref_primary_10_1016_j_actbio_2020_11_037
crossref_primary_10_1021_acsomega_9b04109
crossref_primary_10_3389_fenrg_2023_1212719
crossref_primary_10_1002_ange_201906191
crossref_primary_10_3390_polym15081855
crossref_primary_10_1016_j_matt_2023_12_002
crossref_primary_10_1021_acs_chemrev_1c00683
crossref_primary_10_3390_pharmaceutics15030763
crossref_primary_10_1016_j_ceramint_2021_04_176
crossref_primary_10_1016_j_eml_2023_102111
crossref_primary_10_1002_adfm_202102923
crossref_primary_10_1016_j_cej_2021_130088
crossref_primary_10_1021_acs_biomac_1c01539
crossref_primary_10_1021_acsnano_4c00883
crossref_primary_10_1007_s42765_019_00021_y
crossref_primary_10_1007_s40820_019_0303_z
crossref_primary_10_1021_acssuschemeng_4c01205
crossref_primary_10_1038_s43246_020_00069_z
crossref_primary_10_1039_D4RA05068A
crossref_primary_10_2174_1389201024666221223095315
crossref_primary_10_1016_j_cis_2025_103398
crossref_primary_10_1007_s10570_022_04621_7
crossref_primary_10_1016_j_jma_2021_06_023
crossref_primary_10_1021_acsami_0c07846
crossref_primary_10_1021_acs_biomac_0c00223
crossref_primary_10_1002_pc_25799
crossref_primary_10_1007_s40843_022_2238_6
crossref_primary_10_1016_j_matt_2019_08_018
crossref_primary_10_1016_j_ijbiomac_2023_126730
crossref_primary_10_1039_D4ME00122B
crossref_primary_10_1007_s10570_024_06224_w
crossref_primary_10_1007_s40820_022_01008_y
crossref_primary_10_1021_acssusresmgt_3c00030
crossref_primary_10_1088_2515_7639_ac4ee5
crossref_primary_10_1126_sciadv_abo0946
crossref_primary_10_1021_jacs_3c00636
crossref_primary_10_1021_acs_chemrev_0c01333
crossref_primary_10_1016_j_cis_2019_02_003
crossref_primary_10_1002_adfm_202214245
crossref_primary_10_1016_j_cej_2021_130091
crossref_primary_10_1021_acsnano_2c12855
crossref_primary_10_1021_acs_biomac_2c00372
crossref_primary_10_1002_adma_202310642
crossref_primary_10_1016_j_nantod_2023_101873
crossref_primary_10_1016_j_indcrop_2023_117562
crossref_primary_10_1002_adma_202312707
crossref_primary_10_1016_j_carbpol_2020_117214
crossref_primary_10_1016_j_seppur_2022_121823
crossref_primary_10_1016_j_matt_2021_03_023
crossref_primary_10_1016_j_ijbiomac_2023_124121
crossref_primary_10_1016_j_progpolymsci_2024_101874
crossref_primary_10_1021_acsbiomaterials_1c00181
crossref_primary_10_1080_02678292_2023_2188617
crossref_primary_10_1038_s41467_021_23813_6
crossref_primary_10_14504_ajr_8_S2_11
crossref_primary_10_1016_j_ijbiomac_2023_125778
crossref_primary_10_1021_acsnano_2c01616
crossref_primary_10_1016_j_actbio_2020_10_043
crossref_primary_10_1002_smll_202100066
crossref_primary_10_1016_j_carbpol_2020_116253
crossref_primary_10_1002_adma_202102877
crossref_primary_10_3390_polysaccharides2020018
crossref_primary_10_1021_acsbiomaterials_4c00254
crossref_primary_10_1016_j_nanoen_2022_107963
crossref_primary_10_1016_j_seppur_2024_128607
crossref_primary_10_1021_acs_biomac_0c01596
crossref_primary_10_1016_j_compositesa_2024_108639
crossref_primary_10_1016_j_mtnano_2020_100103
crossref_primary_10_1021_jacs_2c07296
crossref_primary_10_1007_s40032_022_00891_z
crossref_primary_10_1016_j_nanoen_2022_107709
crossref_primary_10_1016_j_dibe_2024_100380
crossref_primary_10_1002_adsu_202100017
crossref_primary_10_1088_1367_2630_ad5759
crossref_primary_10_1002_advs_202413293
crossref_primary_10_1021_acsnano_0c10001
crossref_primary_10_1080_23746149_2024_2358196
crossref_primary_10_1002_adma_202413112
crossref_primary_10_1021_prechem_4c00053
crossref_primary_10_1002_adma_202102500
crossref_primary_10_1016_j_ijbiomac_2023_124223
crossref_primary_10_1016_j_carbpol_2021_118624
crossref_primary_10_1016_j_jmapro_2024_11_031
crossref_primary_10_1002_pi_6699
crossref_primary_10_1007_s40820_021_00591_w
crossref_primary_10_1038_s41893_023_01264_9
crossref_primary_10_1016_j_ijbiomac_2024_132129
crossref_primary_10_1039_C9SM00566H
crossref_primary_10_1016_j_eml_2023_102035
crossref_primary_10_1002_admt_201800557
crossref_primary_10_1007_s10853_020_05086_4
crossref_primary_10_1177_09544119241259071
crossref_primary_10_1007_s42765_023_00265_9
crossref_primary_10_1016_j_ijbiomac_2022_10_228
crossref_primary_10_1021_acs_macromol_0c02492
crossref_primary_10_1021_acsnano_0c04686
crossref_primary_10_1039_D3MH02032K
crossref_primary_10_1016_j_jmps_2021_104560
crossref_primary_10_1016_j_carbpol_2023_120669
crossref_primary_10_1002_smll_202406561
crossref_primary_10_1126_sciadv_adl1884
crossref_primary_10_1016_j_apmt_2020_100623
crossref_primary_10_3390_nano13172399
crossref_primary_10_1016_j_foodhyd_2023_108947
crossref_primary_10_1016_j_carbpol_2023_120791
crossref_primary_10_1021_acs_biomac_1c01625
crossref_primary_10_1021_acsami_9b23378
crossref_primary_10_1016_j_eehl_2023_09_003
crossref_primary_10_1002_adfm_202105045
crossref_primary_10_1021_acsestengg_1c00007
crossref_primary_10_1002_chem_202402624
crossref_primary_10_1002_app_51872
crossref_primary_10_1016_j_ijbiomac_2021_01_159
crossref_primary_10_1021_acsnano_2c04883
crossref_primary_10_1021_acsabm_2c00013
crossref_primary_10_1016_j_nanoen_2023_108723
crossref_primary_10_2174_2210681212666220217121830
crossref_primary_10_1016_j_ijbiomac_2023_127513
crossref_primary_10_1021_acsnano_0c07613
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1038_s43246_024_00722_x
crossref_primary_10_1002_advs_201902743
crossref_primary_10_1016_j_cofs_2024_101134
crossref_primary_10_1016_j_nantod_2024_102228
crossref_primary_10_1016_j_compscitech_2023_110295
crossref_primary_10_1021_acsomega_2c04729
crossref_primary_10_1021_acsnano_1c00746
crossref_primary_10_1016_j_pmatsci_2021_100915
crossref_primary_10_1016_j_jconrel_2023_05_025
crossref_primary_10_1021_acs_iecr_4c02979
crossref_primary_10_1016_j_nanoen_2020_104837
crossref_primary_10_1016_j_engfracmech_2024_110697
crossref_primary_10_1016_j_polymer_2019_122014
crossref_primary_10_1002_anie_201906191
crossref_primary_10_1016_j_carbpol_2022_119133
crossref_primary_10_1016_j_eng_2021_06_030
crossref_primary_10_1002_smll_202301362
crossref_primary_10_1016_j_indcrop_2024_118136
crossref_primary_10_1016_j_seppur_2024_127149
crossref_primary_10_1007_s00339_020_03564_9
crossref_primary_10_1039_D1QM00499A
crossref_primary_10_1016_j_compscitech_2021_108970
crossref_primary_10_1021_acsami_1c02351
crossref_primary_10_1126_sciadv_aax2805
crossref_primary_10_1021_acsnano_0c01372
crossref_primary_10_1039_C8NR04507K
crossref_primary_10_1002_adfm_202316301
crossref_primary_10_1016_j_mtsust_2020_100041
crossref_primary_10_1016_j_sbi_2020_04_007
crossref_primary_10_1038_s41467_024_49076_5
crossref_primary_10_1016_j_scib_2023_09_032
crossref_primary_10_1002_advs_202201287
crossref_primary_10_1016_j_actbio_2023_06_044
crossref_primary_10_1016_j_cofs_2024_101232
crossref_primary_10_3390_polym15071645
crossref_primary_10_1002_ange_201910603
crossref_primary_10_1016_j_actbio_2022_12_040
crossref_primary_10_1002_advs_202103965
crossref_primary_10_1016_j_pmatsci_2019_05_004
crossref_primary_10_1039_D2TB02611B
crossref_primary_10_1002_ijch_201900083
crossref_primary_10_1021_acsengineeringau_3c00058
crossref_primary_10_1002_biot_201700753
crossref_primary_10_1021_acsnano_4c02677
crossref_primary_10_1002_biot_201700754
crossref_primary_10_1016_j_colsurfa_2024_134673
crossref_primary_10_1007_s42765_019_00013_y
crossref_primary_10_3390_coatings11111297
crossref_primary_10_1016_j_cej_2022_134901
crossref_primary_10_1016_j_actbio_2021_02_018
crossref_primary_10_3389_fchem_2020_564014
crossref_primary_10_1002_idm2_12234
crossref_primary_10_1016_j_indcrop_2023_117076
crossref_primary_10_1021_acs_biomac_0c00097
crossref_primary_10_3389_fbioe_2022_1059097
crossref_primary_10_1016_j_jinsphys_2024_104630
crossref_primary_10_1016_j_apmt_2022_101497
crossref_primary_10_1016_j_mtcomm_2019_100776
crossref_primary_10_1021_acssuschemeng_3c07156
crossref_primary_10_1038_s41563_020_0799_0
crossref_primary_10_1016_j_carbpol_2019_01_063
crossref_primary_10_1016_j_chemosphere_2022_134635
crossref_primary_10_1016_j_carbpol_2021_118916
crossref_primary_10_1021_acsami_4c21924
crossref_primary_10_1098_rsos_210399
crossref_primary_10_1039_D1TA06468A
crossref_primary_10_1002_admi_202201962
crossref_primary_10_1016_j_compscitech_2020_108640
crossref_primary_10_1002_adma_201904603
crossref_primary_10_1016_j_compscitech_2024_110668
crossref_primary_10_1021_acssuschemeng_1c02051
crossref_primary_10_1002_adhm_202303153
crossref_primary_10_1016_j_ijbiomac_2024_130353
crossref_primary_10_1002_adma_202416901
crossref_primary_10_1021_acsami_9b07846
crossref_primary_10_1021_acssuschemeng_0c03838
crossref_primary_10_1039_D0TB00896F
crossref_primary_10_1021_acs_jpclett_0c00235
crossref_primary_10_1016_j_esci_2025_100395
crossref_primary_10_1021_acs_biomac_4c00169
crossref_primary_10_1016_j_expthermflusci_2024_111323
crossref_primary_10_1002_marc_202000435
crossref_primary_10_1021_acsnano_8b04379
crossref_primary_10_1016_j_carbpol_2020_116668
crossref_primary_10_1021_acs_accounts_2c00052
crossref_primary_10_1016_j_actbio_2022_05_044
crossref_primary_10_1038_s41467_025_56422_8
crossref_primary_10_1016_j_jmrt_2021_11_021
crossref_primary_10_1002_adfm_201903055
crossref_primary_10_1038_s41563_022_01384_1
crossref_primary_10_1021_acsnano_9b02081
crossref_primary_10_1016_j_jhazmat_2021_126475
crossref_primary_10_1007_s12221_024_00660_y
crossref_primary_10_1016_j_carbpol_2022_119670
crossref_primary_10_1016_j_coco_2019_03_004
crossref_primary_10_1002_admt_202000430
crossref_primary_10_1002_aisy_202200269
crossref_primary_10_1021_acsbiomaterials_8b01560
crossref_primary_10_1016_j_giant_2020_100029
crossref_primary_10_1002_adma_201907143
crossref_primary_10_1039_D2CS00756H
crossref_primary_10_1016_j_carbpol_2019_115609
crossref_primary_10_1021_acssuschemeng_9b01302
crossref_primary_10_1002_adfm_201805305
crossref_primary_10_1360_SSC_2024_0212
crossref_primary_10_1021_acs_langmuir_3c02244
crossref_primary_10_1021_acsmacrolett_8b00678
crossref_primary_10_1002_adma_202401742
crossref_primary_10_1515_hf_2021_0132
crossref_primary_10_1016_j_cej_2021_130837
crossref_primary_10_1080_10408398_2023_2199069
crossref_primary_10_1002_adfm_202210764
crossref_primary_10_1002_adfm_202104596
crossref_primary_10_1038_s41578_020_0195_z
crossref_primary_10_1073_pnas_2000639117
crossref_primary_10_1557_mrs_2020_302
crossref_primary_10_1016_j_coco_2020_100414
crossref_primary_10_1016_j_jmst_2021_04_022
crossref_primary_10_1021_acscatal_1c03465
crossref_primary_10_2174_1876402912666200319152508
crossref_primary_10_1002_adma_202305828
crossref_primary_10_1002_adma_202408385
crossref_primary_10_1021_acsnano_0c08510
crossref_primary_10_1002_adma_202003206
crossref_primary_10_1007_s42765_021_00130_7
crossref_primary_10_1002_adhm_201901287
crossref_primary_10_1007_s44258_024_00038_y
crossref_primary_10_1021_acsnano_9b08747
crossref_primary_10_1002_macp_202000066
crossref_primary_10_1016_j_nanoen_2019_104106
crossref_primary_10_1021_acssuschemeng_2c01978
crossref_primary_10_1016_j_optlastec_2023_110170
crossref_primary_10_1021_acsabm_0c00807
crossref_primary_10_1021_acsnano_9b09610
crossref_primary_10_1002_anie_201910603
crossref_primary_10_1002_ange_201903264
crossref_primary_10_1021_acsnano_0c07570
crossref_primary_10_3390_ma14154239
crossref_primary_10_1002_aenm_202202357
crossref_primary_10_1039_D3CP01175E
crossref_primary_10_1002_sstr_202300080
crossref_primary_10_1039_C8CS01007B
crossref_primary_10_1080_15421406_2023_2176048
crossref_primary_10_3389_fbioe_2021_652384
crossref_primary_10_1016_j_ceja_2021_100114
crossref_primary_10_1002_smll_202406188
crossref_primary_10_1021_acsanm_2c03469
crossref_primary_10_1038_s41551_019_0462_8
crossref_primary_10_1002_adfm_202411631
crossref_primary_10_1016_j_ijbiomac_2023_123627
crossref_primary_10_1016_j_giant_2020_100044
crossref_primary_10_1007_s12221_019_1046_7
crossref_primary_10_1016_j_polymdegradstab_2024_111080
crossref_primary_10_1039_D4TA07560A
crossref_primary_10_1021_acsnano_0c04298
crossref_primary_10_1002_adma_202200865
crossref_primary_10_1126_sciadv_adp3654
crossref_primary_10_1002_adma_202002695
crossref_primary_10_1002_admt_202100296
crossref_primary_10_1039_D4NR02697G
crossref_primary_10_1021_acsanm_1c03488
crossref_primary_10_3390_molecules27072148
crossref_primary_10_1038_s41467_022_31883_3
crossref_primary_10_1007_s11837_019_03340_y
crossref_primary_10_1007_s10570_018_2121_8
crossref_primary_10_1016_j_chempr_2024_06_016
crossref_primary_10_1021_acsbiomaterials_9b00305
crossref_primary_10_1021_acs_chemrev_9b00416
crossref_primary_10_1039_D3NR05533G
crossref_primary_10_1002_smll_202200180
crossref_primary_10_1007_s11468_025_02874_z
crossref_primary_10_1002_adom_202102754
crossref_primary_10_1016_j_jece_2025_115487
crossref_primary_10_1002_marc_201900537
crossref_primary_10_15446_dyna_v87n214_82163
crossref_primary_10_1002_adma_202001238
crossref_primary_10_1073_pnas_1900161116
crossref_primary_10_3390_cosmetics8020040
crossref_primary_10_1021_acssuschemeng_9b02713
crossref_primary_10_1186_s40494_024_01327_w
crossref_primary_10_1016_j_envres_2022_114998
crossref_primary_10_1002_adfm_202314231
crossref_primary_10_1016_j_mtchem_2022_100886
crossref_primary_10_1007_s40843_024_3264_7
crossref_primary_10_1007_s10570_019_02335_x
crossref_primary_10_1002_smll_202403947
crossref_primary_10_1016_j_matdes_2021_109742
crossref_primary_10_1038_s41467_024_47796_2
crossref_primary_10_1021_acsbiomaterials_0c00892
crossref_primary_10_1039_C9SM01975H
crossref_primary_10_1016_j_biomaterials_2020_120299
crossref_primary_10_1021_acs_nanolett_2c01303
crossref_primary_10_1002_adfm_201908121
crossref_primary_10_1073_pnas_1903019116
crossref_primary_10_1021_acsnano_0c06688
crossref_primary_10_1016_j_fbio_2024_104248
crossref_primary_10_1016_j_ijbiomac_2024_138370
crossref_primary_10_1002_pro_4832
crossref_primary_10_1016_j_chempr_2023_03_020
crossref_primary_10_1093_nsr_nwz077
crossref_primary_10_1016_j_mser_2024_100852
crossref_primary_10_1002_adma_202209479
crossref_primary_10_1021_acsnano_4c07701
crossref_primary_10_3389_fbioe_2021_653033
crossref_primary_10_1002_adma_202312299
crossref_primary_10_1016_j_ijbiomac_2025_140966
crossref_primary_10_1002_adfm_202409881
crossref_primary_10_1002_admt_201800141
crossref_primary_10_1002_pc_28044
crossref_primary_10_1093_rb_rbac098
crossref_primary_10_1021_acsmaterialslett_9b00461
crossref_primary_10_34133_2021_1843061
crossref_primary_10_1002_advs_202303058
crossref_primary_10_1016_j_cej_2019_123527
crossref_primary_10_1016_j_jfoodeng_2024_112316
crossref_primary_10_1021_acs_macromol_3c01526
crossref_primary_10_1039_D1CS00896J
crossref_primary_10_1063_5_0157367
crossref_primary_10_1016_j_carbpol_2023_121708
crossref_primary_10_1021_acs_jpcc_1c09077
crossref_primary_10_1038_s41467_024_47665_y
crossref_primary_10_1039_D0TA09701B
crossref_primary_10_1038_s41467_024_47312_6
crossref_primary_10_1007_s42114_022_00440_3
crossref_primary_10_1039_D3GC01098H
crossref_primary_10_1063_5_0083099
crossref_primary_10_1016_j_carbpol_2020_116943
crossref_primary_10_1016_j_indcrop_2024_119388
Cites_doi 10.1038/ncomms5018
10.1021/acsnano.5b06781
10.1002/anie.201303829
10.1002/anie.201410411
10.1038/am.2014.111
10.1002/adfm.201705291
10.1021/bm500566m
10.1021/la0600402
10.1016/j.pmatsci.2007.06.001
10.1126/science.1172051
10.1002/anie.201302687
10.1021/acsnano.6b03355
10.1021/acsnano.7b01221
10.1007/978-3-642-80910-1
10.1002/admt.201600096
10.1021/acs.accounts.6b00616
10.1016/j.matpr.2014.09.021
10.1007/s00226-012-0515-6
10.1021/acsami.5b03091
10.1038/nature01809
10.1016/S0040-8166(72)80042-9
10.1016/j.jtbi.2008.03.010
10.1073/pnas.252340199
10.1038/nature08603
10.1038/ncomms12520
10.1073/pnas.1210105109
10.1002/adma.201303323
10.1126/science.1218764
10.1002/adma.201606208
10.1126/science.1140097
10.1038/ncomms2666
10.1088/1748-3190/11/5/055006
10.1038/nature19946
10.1039/C7SM00384F
10.1038/srep30695
10.1016/j.biomaterials.2015.12.020
10.1038/428819a
10.1098/rsta.2009.0003
10.1021/acs.iecr.6b04010
10.1021/acsnano.6b04191
10.1002/adom.201400279
10.1002/adma.201600786
10.1126/science.1210734
10.1146/annurev-fluid-120710-101200
10.1002/anie.201407141
10.1038/nmat2387
10.1016/j.crvi.2004.07.006
10.1002/anie.201201113
10.1002/adfm.201301737
10.1098/rsif.2012.0341
10.1002/adma.201701323
10.1002/adfm.201502566
10.1016/j.progpolymsci.2015.07.003
10.1016/j.actbio.2014.03.022
10.1002/adfm.201604619
10.1016/S1369-7021(11)70056-6
10.1038/s41565-017-0035-5
10.1039/tf9565200571
10.1038/nature10739
10.1039/9781849737555-00128
10.1002/anie.201105479
10.1007/s10570-009-9384-z
10.1126/sciadv.1600307
10.3139/146.017991
10.1016/j.jmbbm.2014.11.010
10.1021/acs.langmuir.6b01827
10.1021/acs.biomac.7b00527
10.1038/ncomms9643
10.1038/nature21001
10.1038/35753
10.1038/ncomms7892
10.1038/nmat4309
10.1017/CBO9780511601101
10.1016/j.jmb.2014.12.002
10.1007/s10570-010-9405-y
10.1016/S0926-6690(99)00059-X
10.1002/adfm.201600236
10.1002/adma.201304966
10.1126/science.aah4949
10.1002/adma.201603560
10.1002/anie.201412129
10.1038/s41467-017-00613-5
10.1093/jxb/erv535
10.1002/adma.201502403
10.1021/acsnano.7b02085
10.1021/nl101341w
10.1002/adfm.201703277
10.1016/j.mattod.2013.06.004
10.1038/natrevmats.2016.7
10.1038/nnano.2007.379
10.1529/biophysj.106.089144
10.1016/j.pmatsci.2017.04.013
10.1038/nmat4544
10.1002/adma.19970091408
10.1046/j.1365-2818.1998.00285.x
10.1021/acsnano.7b02305
10.1016/j.crvi.2010.01.010
10.1002/anie.201410139
10.1002/adma.201601783
10.1002/adfm.201302521
10.1039/C5SM00886G
10.1016/j.biomaterials.2017.01.041
10.1021/bm3014796
10.1126/sciadv.1601939
10.1007/s00425-004-1226-5
10.1021/acs.est.5b00888
10.1002/adma.201700538
10.1021/la501741r
10.1038/nmat2704
10.1126/science.1188936
10.1039/c3sm50183c
10.1038/nmat1019
10.1039/C6TC02629J
10.1126/science.1153307
10.1088/2040-8978/16/8/082001
10.1038/nature09540
10.1038/am.2013.69
10.1002/adfm.201505032
10.1007/s10570-012-9733-1
10.1038/ncomms8418
10.1002/anie.201402214
10.1039/C2TB00370H
10.1002/adom.201300015
10.1002/adma.201100580
10.1016/j.cocis.2017.01.003
10.1080/00206811003679521
10.1039/c0cs00108b
10.1146/annurev-biophys-083012-130345
10.1242/jeb.01831
10.1038/nnano.2017.4
10.1021/ja210355v
10.1021/ar400243m
10.1002/adma.201700981
10.1016/j.actamat.2005.05.027
10.1017/CBO9780511862397
10.1016/S1381-5148(00)00038-9
10.1021/bm101510r
10.1021/ja110369d
10.1021/jp048152u
10.1107/S0365110X51000751
10.1016/j.cobme.2017.06.002
10.1039/b911049f
10.1039/C4CC07596J
10.1002/adma.201400730
10.1021/acs.chemmater.7b00531
10.1021/la0475728
10.1038/35069000
10.1039/C3CS60204D
10.1126/science.1203874
10.1021/acs.nanolett.6b01195
10.1002/anie.201606283
10.1002/adma.200902019
10.1016/j.bprint.2016.08.003
ContentType Journal Article
Copyright Macmillan Publishers Limited 2018
Macmillan Publishers Limited 2018.
Copyright_xml – notice: Macmillan Publishers Limited 2018
– notice: Macmillan Publishers Limited 2018.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/natrevmats.2018.16
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Materials Science Database
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2058-8437
ExternalDocumentID PMC8221570
34168896
10_1038_natrevmats_2018_16
Genre Journal Article
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE016525
– fundername: NIBIB NIH HHS
  grantid: U01 EB014976
GroupedDBID 0R~
88I
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABJCF
ABJNI
ABLJU
ABUWG
ACGFS
ADBBV
AFKRA
AFSHS
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BGLVJ
BKKNO
CCPQU
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
KB.
M2P
NNMJJ
O9-
PDBOC
RNR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
8FE
8FG
AFBBN
D1I
NFIDA
NPM
ODYON
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-fe1a8439e57cc254d57a3bf5ffdaab979b4e98a4ba0a89f0140f5e3eac95173d3
IEDL.DBID BENPR
ISSN 2058-8437
IngestDate Thu Aug 21 14:05:14 EDT 2025
Fri Jul 11 07:17:35 EDT 2025
Sat Aug 23 13:32:54 EDT 2025
Thu Apr 03 06:57:46 EDT 2025
Tue Jul 01 03:55:38 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-fe1a8439e57cc254d57a3bf5ffdaab979b4e98a4ba0a89f0140f5e3eac95173d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
All authors contributed equally to the preparation of this manuscript.
Author contributions
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8221570
PMID 34168896
PQID 3078843988
PQPubID 2069615
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221570
proquest_miscellaneous_2545592026
proquest_journals_3078843988
pubmed_primary_34168896
crossref_primary_10_1038_natrevmats_2018_16
crossref_citationtrail_10_1038_natrevmats_2018_16
springer_journals_10_1038_natrevmats_2018_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Materials
PublicationTitleAbbrev Nat Rev Mater
PublicationTitleAlternate Nat Rev Mater
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References DasPTough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogelsBiomacromolecules2012134205421210.1021/bm30147961:CAS:528:DC%2BC38XhsFOlsbrI
SultanSSiqueiraGZimmermannTMathewAP3D printing of nano-cellulosic biomaterials for medical applicationsCurr. Opin. Biomed. Eng.20172293410.1016/j.cobme.2017.06.002
BelamieEDavidsonPGiraud-GuilleMMStructure and chirality of the nematic phase in αchitin suspensionsJ. Phys. Chem. B2004108149911500010.1021/jp048152u1:CAS:528:DC%2BD2cXntF2hsb4%3D
ShopsowitzKEKellyJAHamadWYMacLachlanMJBiopolymer templated glass with a twist: Controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystalsAdv. Funct. Mater.20142432733810.1002/adfm.2013017371:CAS:528:DC%2BC3sXht1Srsr7M
KokkinisDSchaffnerMStudartARMultimaterial magnetically assisted 3D printing of composite materialsNat. Commun.20156864310.1038/ncomms96431:CAS:528:DC%2BC2MXhslans7vM
BuehlerMJYungYCDeformation and failure of protein materials in physiologically extreme conditions and diseaseNat. Mater.2009817518810.1038/nmat23871:CAS:528:DC%2BD1MXit1ekurg%3D
GibsonLJThe hierarchical structure and mechanics of plant materialsJ. R. Soc. Interface201292749276610.1098/rsif.2012.03411:CAS:528:DC%2BC38XhslWrsr7K
ShahzadiKReduced graphene oxide/alumina, a good accelerant for cellulose-based artificial nacre with excellent mechanical, barrier, and conductive propertiesACS Nano2017115717572510.1021/acsnano.7b012211:CAS:528:DC%2BC2sXps1Krsr8%3D
LundahlMJKlarVWangLAgoMRojasOJSpinning of cellulose nanofibrils into filaments: a reviewInd. Eng. Chem. Res.20175681910.1021/acs.iecr.6b040101:CAS:528:DC%2BC28XhvF2hu7vL
GieseMBluschLKKhanMKMacLachlanMJFunctional materials from cellulose-derived liquid-crystal templatesAngew. Chem. Int. Ed.2015542888291010.1002/anie.2014071411:CAS:528:DC%2BC2cXitFaitbbM
EganPSinkoRLeDucPRKetenSThe role of mechanics in biological and bio-inspired systemsNat. Commun.20156741810.1038/ncomms8418
VignoliniSPointillist structural color in Pollia fruitProc. Natl Acad. Sci. USA2012109157121571510.1073/pnas.1210105109
LingSModulating materials by orthogonally oriented βstrands: Composites of amyloid and silk fibroin fibrilsAdv. Mater.2014264569457410.1002/adma.2014007301:CAS:528:DC%2BC2cXot1Sgsrg%3D
LingSPolymorphic regenerated silk fibers assembled through bioinspired spinningNat. Commun.20178138710.1038/s41467-017-00613-51:CAS:528:DC%2BC1cXptV2qt7w%3D
PatekSNKorffWLCaldwellRLBiomechanics: Deadly strike mechanism of a mantis shrimpNature200442881982010.1038/428819a1:CAS:528:DC%2BD2cXjt1Crtrk%3D
KellyJAYuMHamadWYMacLachlanLargeMJ. crack-free freestanding films with chiral nematic structuresAdv. Opt. Mater.2013129529910.1002/adom.201300015
BordelDPutauxJLHeuxLOrientation of native cellulose in an electric fieldLangmuir2006224899490110.1021/la06004021:CAS:528:DC%2BD28XjsFWmtLk%3D
DuanBHighly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriersAngew. Chem. Int. Ed.2015545152515610.1002/anie.2014121291:CAS:528:DC%2BC2MXkvVeqt7g%3D
JiSHigh dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructuresAdv. Mater.201729170053810.1002/adma.2017005381:CAS:528:DC%2BC2sXmtFGmtbc%3D
DufresneANanocellulose: a new ageless bionanomaterialMater. Today20131622022710.1016/j.mattod.2013.06.0041:CAS:528:DC%2BC3sXht1altrrM
LingSDesign and function of biomimetic multilayer water purification membranesSci. Adv.20173160193910.1126/sciadv.16019391:CAS:528:DC%2BC1cXkvVCqsLw%3D
NovaAKetenSPugnoNMRedaelliABuehlerMJMolecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrilsNano Lett.2010102626263410.1021/nl101341w1:CAS:528:DC%2BC3cXmvVSlsrw%3D
KimJKHierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteriesACS Nano2017116114612110.1021/acsnano.7b020851:CAS:528:DC%2BC2sXns1OgtbY%3D
ZhuYRomainCWilliamsCKSustainable polymers from renewable resourcesNature201654035436210.1038/nature210011:CAS:528:DC%2BC28XitVyru7%2FP
WangPXHamadWYMacLachlanMJPolymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystalsAngew. Chem. Int. Ed.201655124601246410.1002/anie.2016062831:CAS:528:DC%2BC28XhsVKjtrjM
KhanMKFlexible mesoporous photonic resins with tunable chiral nematic structuresAngew. Chem. Int. Ed.2013528921892410.1002/anie.2013038291:CAS:528:DC%2BC3sXhtFOiur3M
Ravi KumarMNVA review of chitin and chitosan applicationsReact. Funct. Polym.20004612710.1016/S1381-5148(00)00038-9
LiuZMeyersMAZhangZRitchieROFunctional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applicationsProg. Mater. Sci.20178846749810.1016/j.pmatsci.2017.04.0131:CAS:528:DC%2BC2sXntlWhsLo%3D
KhanMKBsoulAWalusKHamadWYMacLachlanMJPhotonic patterns printed in chiral nematic mesoporous resinsAngew. Chem. Int. Ed.2015544304430810.1002/anie.2014104111:CAS:528:DC%2BC2MXkvF2ntrk%3D
FratzlPWeinkamerRNature's hierarchical materialsProg. Mater. Sci.2007521263133410.1016/j.pmatsci.2007.06.0011:CAS:528:DC%2BD2sXhtVGisLnM
CapadonaJRA versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templatesNat. Nanotechnol.2007276576910.1038/nnano.2007.3791:CAS:528:DC%2BD2sXhtlyktL%2FK
KellyJAResponsive photonic hydrogels based on nanocrystalline celluloseAngew. Chem. Int. Ed.2013528912891610.1002/anie.2013026871:CAS:528:DC%2BC3sXhtFCktrjM
Sydney GladmanAMatsumotoEANuzzoRGMahadevanLLewisJABiomimetic 4D printingNat. Mater.20161541341810.1038/nmat45441:CAS:528:DC%2BC28XhsVSgt7Y%3D
López de la PazMDe novo designed peptide-based amyloid fibrilsProc. Natl Acad. Sci. USA200299160521605710.1073/pnas.2523401991:CAS:528:DC%2BD38Xps1ensrk%3D
RaabeDSachsCRomanoPThe crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite materialActa Mater.2005534281429210.1016/j.actamat.2005.05.0271:CAS:528:DC%2BD2MXntlSntbo%3D
HabibiYKey advances in the chemical modification of nanocellulosesChem. Soc. Rev.2014431519154210.1039/C3CS60204D1:CAS:528:DC%2BC2cXitFWhtro%3D
LiQMcGinnisSSydnorCWongARenneckarSNanocellulose life cycle assessment. ACS SustainChem. Eng.201319199281:CAS:528:DC%2BC3sXotVSmtbo%3D
GiesaTBuehlerMJNanoconfinement and the strength of biopolymersAnnu. Rev. Biophys.20134265167310.1146/annurev-biophys-083012-1303451:CAS:528:DC%2BC3sXhtFGrsL7J
MittalNUltrastrong and bioactive nanostructured bio-based compositesACS Nano2017115148515910.1021/acsnano.7b023051:CAS:528:DC%2BC2sXntFeitbY%3D
LingSIntegration of stiff graphene and tough silk for the design and fabrication of versatile electronic materialsAdv. Funct. Mater.201828170529110.1002/adfm.2017052911:CAS:528:DC%2BC2sXhvF2ltrfO
ForterreYDumaisJGenerating helices in natureScience20113331715171610.1126/science.12107341:CAS:528:DC%2BC3MXhtlyit7nE
ParkerRMHierarchical self-assembly of cellulose nanocrystals in a confined geometryACS Nano2016108443844910.1021/acsnano.6b033551:CAS:528:DC%2BC28XhsVWntLzI
GallardoRDe novo design of a biologically active amyloidScience2016354aah494910.1126/science.aah49491:CAS:528:DC%2BC28XhvVSnsLvE
Martínez ÁvilaHSchwarzSRotterNGatenholmP3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regenerationBioprinting20161223510.1016/j.bprint.2016.08.003
LingSLiCJinKKaplanDLBuehlerMJLiquid exfoliated natural silk nanofibrils: applications in optical and electrical devicesAdv. Mater.2016287783779010.1002/adma.2016017831:CAS:528:DC%2BC28XhtVKntb7J
HuangWDesign of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk–elastin-like proteinsAdv. Funct. Mater.2016264113412310.1002/adfm.2016002361:CAS:528:DC%2BC28XmtVKgsr8%3D
KimuraFMagnetic alignment of the chiral nematic phase of a cellulose microfibril suspensionLangmuir2005212034203710.1021/la04757281:CAS:528:DC%2BD2MXmtVWjsw%3D%3D
RobinsonCLiquid-crystalline structures in solutions of a polypeptideTrans. Faraday Soc.19565257159210.1039/tf95652005711:CAS:528:DyaG28XotVeksw%3D%3D
Palffy-MuhorayPLiquid crystals New designs in cholesteric colourNature199839174574610.1038/357531:CAS:528:DyaK1cXhtleqt78%3D
BlellRGenerating inplane orientational order in multilayer films prepared by spray-assisted layerbylayer assemblyACS Nano201711849410.1021/acsnano.6b041911:CAS:528:DC%2BC28XhvFSitLjM
ShopsowitzKEStahlAHamadWYMacLachlanMJHard templating of nanocrystalline titanium dioxide with chiral nematic orderingAngew. Chem. Int. Ed.2012516886689010.1002/anie.2012011131:CAS:528:DC%2BC38Xns1Sqt7s%3D
MuXGrayDGFormation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage processLangmuir2014309256926010.1021/la501741r1:CAS:528:DC%2BC2cXht1aht7bO
YaoKMengQBuloneVZhouQFlexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural colorAdv. Mater.201729170132310.1002/adma.2017013231:CAS:528:DC%2BC2sXos1ersL8%3D
LundahlMJStrength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogelsSci. Rep.201663069510.1038/srep306951:CAS:528:DC%2BC2sXksFeksrw%3D
StudartARBiologically inspired dynamic material systemsAngew. Chem. Int. Ed.2015543400341610.1002/anie.2014101391:CAS:528:DC%2BC2MXosFGjsg%3D%3D
MitovMCholesteric liquid crystals in living matterSoft Matter2017134176420910.1039/C7SM00384F1:CAS:528:DC%2BC2sXps1Glu78%3D
NikolovSRevealing the Design Principles of High-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticleAdv. Mater.20102251952610.1002/adma.2009020191:CAS:528:DC%2BC3cXhtFantrY%3D
Liu, Y., Yu, S.H. & Bergström, L. Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201703277 (2017).
TsengPDirected assembly of bio-inspired hierarchical materials with controlled nanofibrillar ar
C Robinson (BFnatrevmats201816_CR106) 1956; 52
P Palffy-Muhoray (BFnatrevmats201816_CR76) 1998; 391
AC Neville (BFnatrevmats201816_CR61) 1975
GR Meseck (BFnatrevmats201816_CR107) 2017; 29
LK Grunenfelder (BFnatrevmats201816_CR70) 2014; 10
MK Khan (BFnatrevmats201816_CR122) 2015; 54
Q Li (BFnatrevmats201816_CR153) 2013; 1
JC Weaver (BFnatrevmats201816_CR65) 2012; 336
AR Studart (BFnatrevmats201816_CR102) 2015; 54
MK Khan (BFnatrevmats201816_CR123) 2014; 26
KE Shopsowitz (BFnatrevmats201816_CR127) 2011; 50
DC Adler (BFnatrevmats201816_CR57) 2013; 9
F Jativa (BFnatrevmats201816_CR134) 2015; 11
SW Cranford (BFnatrevmats201816_CR12) 2012; 482
M Eder (BFnatrevmats201816_CR53) 2013; 47
S Sultan (BFnatrevmats201816_CR88) 2017; 2
S Ling (BFnatrevmats201816_CR148) 2014; 26
SE Naleway (BFnatrevmats201816_CR13) 2015; 27
SN Fernandes (BFnatrevmats201816_CR110) 2017; 29
J Keckes (BFnatrevmats201816_CR56) 2003; 2
M Giese (BFnatrevmats201816_CR120) 2014; 53
KE Shopsowitz (BFnatrevmats201816_CR125) 2010; 468
M Schlesinger (BFnatrevmats201816_CR129) 2015; 51
P Egan (BFnatrevmats201816_CR44) 2015; 6
Y Forterre (BFnatrevmats201816_CR97) 2011; 333
S Ling (BFnatrevmats201816_CR147) 2016; 28
M Giese (BFnatrevmats201816_CR22) 2015; 54
N Tamaoki (BFnatrevmats201816_CR77) 1997; 9
MJ Lundahl (BFnatrevmats201816_CR30) 2016; 6
T Giesa (BFnatrevmats201816_CR7) 2013; 42
J Majoinen (BFnatrevmats201816_CR104) 2012; 19
Y Li (BFnatrevmats201816_CR31) 2015; 7
Z Liu (BFnatrevmats201816_CR71) 2017; 88
S Kaltofen (BFnatrevmats201816_CR139) 2015; 427
A Walther (BFnatrevmats201816_CR28) 2011; 23
S Suzuki (BFnatrevmats201816_CR89) 2017; 18
HJ Jin (BFnatrevmats201816_CR85) 2003; 424
MJ Buehler (BFnatrevmats201816_CR137) 2009; 8
MJ Lundahl (BFnatrevmats201816_CR25) 2017; 56
I Burgert (BFnatrevmats201816_CR101) 2009; 367
E Belamie (BFnatrevmats201816_CR105) 2004; 108
X Mu (BFnatrevmats201816_CR114) 2014; 30
S Vignolini (BFnatrevmats201816_CR75) 2012; 109
M Mitov (BFnatrevmats201816_CR3) 2017; 13
KJ De France (BFnatrevmats201816_CR118) 2016; 32
JR Capadona (BFnatrevmats201816_CR18) 2007; 2
W Huang (BFnatrevmats201816_CR143) 2017; 50
MS Toivonen (BFnatrevmats201816_CR150) 2015; 25
P Fratzl (BFnatrevmats201816_CR10) 2007; 52
S Armon (BFnatrevmats201816_CR103) 2011; 333
T Giesa (BFnatrevmats201816_CR9) 2014; 26
JW Dunlop (BFnatrevmats201816_CR100) 2011; 14
SW Cranford (BFnatrevmats201816_CR136) 2012
KMO Håkansson (BFnatrevmats201816_CR35) 2014; 5
Y Li (BFnatrevmats201816_CR94) 2017; 29
TD Nguyen (BFnatrevmats201816_CR116) 2014; 24
KE Shopsowitz (BFnatrevmats201816_CR128) 2012; 51
CM Altaner (BFnatrevmats201816_CR50) 2008; 253
KMO Håkansson (BFnatrevmats201816_CR91) 2016; 1
RM Erb (BFnatrevmats201816_CR99) 2013; 4
HV Zhang (BFnatrevmats201816_CR141) 2016; 2
S Hooshmand (BFnatrevmats201816_CR33) 2015; 7
AC Neville (BFnatrevmats201816_CR1) 1993
PS Huang (BFnatrevmats201816_CR138) 2016; 537
A Déjardin (BFnatrevmats201816_CR49) 2010; 333
K Jin (BFnatrevmats201816_CR58) 2015; 42
M López de la Paz (BFnatrevmats201816_CR140) 2002; 99
Y Bouligand (BFnatrevmats201816_CR60) 1972; 4
KE Shopsowitz (BFnatrevmats201816_CR126) 2012; 134
BFnatrevmats201816_CR42
TD Nguyen (BFnatrevmats201816_CR111) 2016; 26
K Shahzadi (BFnatrevmats201816_CR43) 2017; 11
F Kimura (BFnatrevmats201816_CR81) 2005; 21
P Tseng (BFnatrevmats201816_CR87) 2017; 12
R Blell (BFnatrevmats201816_CR82) 2017; 11
BFnatrevmats201816_CR151
KJ De France (BFnatrevmats201816_CR19) 2017; 29
S Keten (BFnatrevmats201816_CR8) 2010; 9
MNV Ravi Kumar (BFnatrevmats201816_CR15) 2000; 46
P Das (BFnatrevmats201816_CR27) 2012; 13
R Arvidsson (BFnatrevmats201816_CR152) 2015; 49
C Stevens (BFnatrevmats201816_CR55) 2010
P Fratzl (BFnatrevmats201816_CR51) 2004; 95
S Lin (BFnatrevmats201816_CR144) 2015; 6
G Siqueira (BFnatrevmats201816_CR92) 2017; 27
R Elbaum (BFnatrevmats201816_CR98) 2007; 316
RM Parker (BFnatrevmats201816_CR132) 2016; 10
I Burgert (BFnatrevmats201816_CR59) 2013
JA Kelly (BFnatrevmats201816_CR20) 2014; 47
SN Patek (BFnatrevmats201816_CR67) 2005; 208
A Nova (BFnatrevmats201816_CR45) 2010; 10
H Martínez Ávila (BFnatrevmats201816_CR95) 2016; 1
Y Li (BFnatrevmats201816_CR133) 2016; 7
S Iwamoto (BFnatrevmats201816_CR29) 2011; 12
D Bordel (BFnatrevmats201816_CR80) 2006; 22
Y Zhu (BFnatrevmats201816_CR154) 2016; 540
BFnatrevmats201816_CR11
H Mertaniemi (BFnatrevmats201816_CR32) 2016; 82
R Gallardo (BFnatrevmats201816_CR142) 2016; 354
H Zhu (BFnatrevmats201816_CR38) 2016; 10
HO Fabritius (BFnatrevmats201816_CR62) 2016; 11
JR Capadona (BFnatrevmats201816_CR17) 2008; 319
I Siró (BFnatrevmats201816_CR86) 2010; 17
KE Shopsowitz (BFnatrevmats201816_CR115) 2014; 24
W Huang (BFnatrevmats201816_CR146) 2016; 26
S Ling (BFnatrevmats201816_CR39) 2017; 3
N Du (BFnatrevmats201816_CR48) 2006; 91
JP Joseleau (BFnatrevmats201816_CR52) 2004; 219
V Sharma (BFnatrevmats201816_CR73) 2009; 325
D Kokkinis (BFnatrevmats201816_CR93) 2015; 6
B Frka-Petesic (BFnatrevmats201816_CR117) 2017; 29
S Amini (BFnatrevmats201816_CR69) 2015; 14
FG Omenetto (BFnatrevmats201816_CR14) 2010; 329
G Pilate (BFnatrevmats201816_CR47) 2004; 327
MK Khan (BFnatrevmats201816_CR119) 2013; 52
BD Wilts (BFnatrevmats201816_CR74) 2014; 1S
SN Patek (BFnatrevmats201816_CR66) 2004; 428
E Libby (BFnatrevmats201816_CR72) 2014; 16
T Wu (BFnatrevmats201816_CR112) 2016; 4
LJ Gibson (BFnatrevmats201816_CR4) 2012; 9
S Wang (BFnatrevmats201816_CR16) 2016; 53
Y Habibi (BFnatrevmats201816_CR79) 2014; 43
H Qi (BFnatrevmats201816_CR130) 2011; 133
A Sydney Gladman (BFnatrevmats201816_CR90) 2016; 15
JG Torres-Rendon (BFnatrevmats201816_CR26) 2014; 15
F Barthelat (BFnatrevmats201816_CR156) 2016; 1
F Vollrath (BFnatrevmats201816_CR84) 2001; 410
S Ling (BFnatrevmats201816_CR34) 2017; 8
RJ Moon (BFnatrevmats201816_CR5) 2011; 40
P Fratzl (BFnatrevmats201816_CR54) 2009; 462
D Raabe (BFnatrevmats201816_CR63) 2005; 53
JA Kelly (BFnatrevmats201816_CR131) 2013; 52
B Duan (BFnatrevmats201816_CR23) 2015; 54
A Dufresne (BFnatrevmats201816_CR21) 2013; 16
S Frische (BFnatrevmats201816_CR46) 1998; 189
NA Yaraghi (BFnatrevmats201816_CR68) 2016; 28
JPF Lagerwall (BFnatrevmats201816_CR108) 2014; 6
PX Wang (BFnatrevmats201816_CR135) 2016; 55
TD Nguyen (BFnatrevmats201816_CR109) 2014; 2
JK Kim (BFnatrevmats201816_CR40) 2017; 11
S Nikolov (BFnatrevmats201816_CR64) 2010; 22
H de Vries (BFnatrevmats201816_CR78) 1951; 4
J Dumais (BFnatrevmats201816_CR96) 2012; 44
K Yao (BFnatrevmats201816_CR121) 2017; 29
AJ Bidhendi (BFnatrevmats201816_CR6) 2016; 67
H Jin (BFnatrevmats201816_CR41) 2013; 1
JA Kelly (BFnatrevmats201816_CR124) 2013; 1
S Ling (BFnatrevmats201816_CR24) 2018; 28
H Ehrlich (BFnatrevmats201816_CR155) 2010; 52
G Siqueira (BFnatrevmats201816_CR113) 2010; 17
S Ling (BFnatrevmats201816_CR149) 2016; 16
MA Meyers (BFnatrevmats201816_CR2) 2014
LG Angelini (BFnatrevmats201816_CR83) 2000; 11
A Tarakanova (BFnatrevmats201816_CR145) 2017; 127
S Ji (BFnatrevmats201816_CR37) 2017; 29
N Mittal (BFnatrevmats201816_CR36) 2017; 11
References_xml – reference: LingSPolymorphic regenerated silk fibers assembled through bioinspired spinningNat. Commun.20178138710.1038/s41467-017-00613-51:CAS:528:DC%2BC1cXptV2qt7w%3D
– reference: GieseMBluschLKKhanMKHamadWYMacLachlanMJResponsive mesoporous photonic cellulose films by supramolecular cotemplatingAngew. Chem. Int. Ed.2014538880888410.1002/anie.2014022141:CAS:528:DC%2BC2cXhtVOisL7M
– reference: AdlerDCBuehlerMJMesoscale mechanics of wood cell walls under axial strainSoft Matter201397138714410.1039/c3sm50183c1:CAS:528:DC%2BC3sXhtVKhsLfF
– reference: TamaokiNParfenovAVMasakiAMatsudaHRewritable full-color recording on a thin solid film of a cholesteric low-molecular-weight compoundAdv. Mater.199791102110410.1002/adma.199700914081:CAS:528:DyaK2sXnsF2qtrg%3D
– reference: HabibiYKey advances in the chemical modification of nanocellulosesChem. Soc. Rev.2014431519154210.1039/C3CS60204D1:CAS:528:DC%2BC2cXitFWhtro%3D
– reference: ZhuYRomainCWilliamsCKSustainable polymers from renewable resourcesNature201654035436210.1038/nature210011:CAS:528:DC%2BC28XitVyru7%2FP
– reference: DuanBHighly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriersAngew. Chem. Int. Ed.2015545152515610.1002/anie.2014121291:CAS:528:DC%2BC2MXkvVeqt7g%3D
– reference: MittalNUltrastrong and bioactive nanostructured bio-based compositesACS Nano2017115148515910.1021/acsnano.7b023051:CAS:528:DC%2BC2sXntFeitbY%3D
– reference: Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol.https://doi.org/10.1038/s41565-017-0035-5 (2018).
– reference: Ravi KumarMNVA review of chitin and chitosan applicationsReact. Funct. Polym.20004612710.1016/S1381-5148(00)00038-9
– reference: MajoinenJKontturiEIkkalaOGrayDGSEM imaging of chiral nematic films cast from cellulose nanocrystal suspensionsCellulose2012191599160510.1007/s10570-012-9733-11:CAS:528:DC%2BC38Xht1eksLzI
– reference: WaltherATimonenJVIDíezILaukkanenAIkkalaOMultifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrilsAdv. Mater.2011232924292810.1002/adma.2011005801:CAS:528:DC%2BC3MXosFemsrY%3D
– reference: KellyJAResponsive photonic hydrogels based on nanocrystalline celluloseAngew. Chem. Int. Ed.2013528912891610.1002/anie.2013026871:CAS:528:DC%2BC3sXhtFCktrjM
– reference: NovaAKetenSPugnoNMRedaelliABuehlerMJMolecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrilsNano Lett.2010102626263410.1021/nl101341w1:CAS:528:DC%2BC3cXmvVSlsrw%3D
– reference: LiY3Dprinted, allinone evaporator for high-efficiency solar steam generation under 1 sun illuminationAdv. Mater.201729170098110.1002/adma.2017009811:CAS:528:DC%2BC2sXntFWksbo%3D
– reference: BurgertIFratzlPActuation systems in plants as prototypes for bioinspired devicesPhil. Trans. A Math. Phys. Eng. Sci.20093671541155710.1098/rsta.2009.00031:CAS:528:DC%2BD1MXkvVWhtLk%3D
– reference: MitovMCholesteric liquid crystals in living matterSoft Matter2017134176420910.1039/C7SM00384F1:CAS:528:DC%2BC2sXps1Glu78%3D
– reference: JinHIonically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assemblyJ. Mater. Chem. B2013183584010.1039/C2TB00370H1:CAS:528:DC%2BC3sXhtVymsrg%3D
– reference: ShahzadiKReduced graphene oxide/alumina, a good accelerant for cellulose-based artificial nacre with excellent mechanical, barrier, and conductive propertiesACS Nano2017115717572510.1021/acsnano.7b012211:CAS:528:DC%2BC2sXps1Krsr8%3D
– reference: YaraghiNAA sinusoidally architected helicoidal biocompositeAdv. Mater.2016286835684410.1002/adma.2016007861:CAS:528:DC%2BC28XptVWjt7w%3D
– reference: BouligandYTwisted fibrous arrangements in biological materials and cholesteric mesophasesTissue Cell1972418921710.1016/S0040-8166(72)80042-91:CAS:528:DyaE38Xls1Whu7o%3D
– reference: SiqueiraGCellulose nanocrystal inks for 3D printing of textured cellular architecturesAdv. Funct. Mater.201727160461910.1002/adfm.2016046191:CAS:528:DC%2BC2sXit1WisbY%3D
– reference: DumaisJForterreY“Vegetable dynamicks”: the role of water in plant movementsAnnu. Rev. Fluid Mech.20124445347810.1146/annurev-fluid-120710-101200
– reference: FratzlPBarthFGBiomaterial systems for mechanosensing and actuationNature200946244244810.1038/nature086031:CAS:528:DC%2BD1MXhsVylsL%2FM
– reference: KimuraFMagnetic alignment of the chiral nematic phase of a cellulose microfibril suspensionLangmuir2005212034203710.1021/la04757281:CAS:528:DC%2BD2MXmtVWjsw%3D%3D
– reference: BuehlerMJYungYCDeformation and failure of protein materials in physiologically extreme conditions and diseaseNat. Mater.2009817518810.1038/nmat23871:CAS:528:DC%2BD1MXit1ekurg%3D
– reference: KeckesJCell-wall recovery after irreversible deformation of woodNat. Mater.2003281081310.1038/nmat10191:CAS:528:DC%2BD3sXptlemt70%3D
– reference: MoonRJMartiniANairnJSimonsenJYoungbloodJCellulose nanomaterials review: structure, properties and nanocompositesChem. Soc. Rev.2011403941399410.1039/c0cs00108b1:CAS:528:DC%2BC3MXns12ntLY%3D
– reference: Sydney GladmanAMatsumotoEANuzzoRGMahadevanLLewisJABiomimetic 4D printingNat. Mater.20161541341810.1038/nmat45441:CAS:528:DC%2BC28XhsVSgt7Y%3D
– reference: LingSJinKKaplanDLBuehlerMJUltrathin free-standing Bombyx mori silk nanofibril membranesNano Lett.2016163795380010.1021/acs.nanolett.6b011951:CAS:528:DC%2BC28XmtVahsLk%3D
– reference: LiYColloidal cholesteric liquid crystal in spherical confinementNat. Commun.201671252010.1038/ncomms125201:CAS:528:DC%2BC28XhsVCht7%2FL
– reference: SuzukiSTeramotoYSimple inkjet process to fabricate microstructures of chitinous nanocrystals for cell patterningBiomacromolecules2017181993199910.1021/acs.biomac.7b005271:CAS:528:DC%2BC2sXns1Ggu7o%3D
– reference: LingSDesign and function of biomimetic multilayer water purification membranesSci. Adv.20173160193910.1126/sciadv.16019391:CAS:528:DC%2BC1cXkvVCqsLw%3D
– reference: SchlesingerMGieseMBluschLKHamadWYMacLachlanMJChiral nematic cellulose-gold nanoparticle composites from mesoporous photonic celluloseChem. Commun.20155153053310.1039/C4CC07596J1:CAS:528:DC%2BC2cXhvF2jtLfN
– reference: GiesaTBuehlerMJNanoconfinement and the strength of biopolymersAnnu. Rev. Biophys.20134265167310.1146/annurev-biophys-083012-1303451:CAS:528:DC%2BC3sXhtFGrsL7J
– reference: JativaFSchutzCBergstromLZhangXWickleinBConfined self-assembly of cellulose nanocrystals in a shrinking dropletSoft Matter2015115374538010.1039/C5SM00886G1:CAS:528:DC%2BC2MXpsFegtL4%3D
– reference: SiqueiraGAbdillahiHBrasJDufresneAHigh reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado)Cellulose20101728929810.1007/s10570-009-9384-z1:CAS:528:DC%2BC3cXivFGlsrk%3D
– reference: TarakanovaAHuangWWeissASKaplanDLBuehlerMJComputational smart polymer design based on elastin protein mutabilityBiomaterials2017127496010.1016/j.biomaterials.2017.01.0411:CAS:528:DC%2BC2sXjvFagtrs%3D
– reference: PatekSNKorffWLCaldwellRLBiomechanics: Deadly strike mechanism of a mantis shrimpNature200442881982010.1038/428819a1:CAS:528:DC%2BD2cXjt1Crtrk%3D
– reference: EderMArnouldODunlopJWCHornatowskaJSalménLExperimental micromechanical characterisation of wood cell wallsWood Sci. Technol.20134716318210.1007/s00226-012-0515-61:CAS:528:DC%2BC3sXhtVarug%3D%3D
– reference: StudartARBiologically inspired dynamic material systemsAngew. Chem. Int. Ed.2015543400341610.1002/anie.2014101391:CAS:528:DC%2BC2MXosFGjsg%3D%3D
– reference: NikolovSRevealing the Design Principles of High-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticleAdv. Mater.20102251952610.1002/adma.2009020191:CAS:528:DC%2BC3cXhtFantrY%3D
– reference: NguyenTDHamadWYMacLachlanMJCdS quantum dots encapsulated in chiral nematic mesoporous silica: New iridescent and luminescent materialsAdv. Funct. Mater.20142477778310.1002/adfm.2013025211:CAS:528:DC%2BC3sXhs1KrtLjK
– reference: NevilleACBiology of Fibrous Composites: Development Beyond the Cell Membrane1993Cambridge Univ. Press, New York10.1017/CBO9780511601101
– reference: EhrlichHChitin and collagen as universal and alternative templates in biomineralizationInt. Geol. Rev.20105266169910.1080/00206811003679521
– reference: YaoKMengQBuloneVZhouQFlexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural colorAdv. Mater.201729170132310.1002/adma.2017013231:CAS:528:DC%2BC2sXos1ersL8%3D
– reference: HuangPSBoykenSEBakerDThe coming of age of de novo protein designNature201653732032710.1038/nature199461:CAS:528:DC%2BC28XhsFajsrzL
– reference: DuNDesign of superior spider silk: From nanostructure to mechanical propertiesBiophys. J.2006914528453510.1529/biophysj.106.0891441:CAS:528:DC%2BD28XhtlWgurfO
– reference: PatekSNCaldwellRLExtreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarusJ. Exp. Biol.20052083655366410.1242/jeb.018311:STN:280:DC%2BD2MvpslKqsg%3D%3D
– reference: WiltsBDWhitneyHMGloverBJSteinerUVignoliniSNatural helicoidal structures: morphology, self-assembly and optical propertiesMater. Today Proc.20141S17718510.1016/j.matpr.2014.09.021
– reference: HåkanssonKMOSolidification of 3D printed nanofibril hydrogels into functional 3D cellulose structuresAdv. Mater. Tech.20161160009610.1002/admt.2016000961:CAS:528:DC%2BC28XitV2msLzF
– reference: ParkerRMHierarchical self-assembly of cellulose nanocrystals in a confined geometryACS Nano2016108443844910.1021/acsnano.6b033551:CAS:528:DC%2BC28XhsVWntLzI
– reference: BordelDPutauxJLHeuxLOrientation of native cellulose in an electric fieldLangmuir2006224899490110.1021/la06004021:CAS:528:DC%2BD28XjsFWmtLk%3D
– reference: LiQMcGinnisSSydnorCWongARenneckarSNanocellulose life cycle assessment. ACS SustainChem. Eng.201319199281:CAS:528:DC%2BC3sXotVSmtbo%3D
– reference: GieseMBluschLKKhanMKMacLachlanMJFunctional materials from cellulose-derived liquid-crystal templatesAngew. Chem. Int. Ed.2015542888291010.1002/anie.2014071411:CAS:528:DC%2BC2cXitFaitbbM
– reference: DéjardinAWood formation in AngiospermsC. R. Biol.201033332533410.1016/j.crvi.2010.01.0101:CAS:528:DC%2BC3cXktlCqsLw%3D
– reference: De FranceKJYagerKGHoareTCranstonEDCooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic fieldLangmuir2016327564757110.1021/acs.langmuir.6b018271:CAS:528:DC%2BC28XhtFGmtbrE
– reference: ToivonenMSKaskelaARojasOJKauppinenEIIkkalaOAmbient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devicesAdv. Funct. Mater.2015256618662610.1002/adfm.2015025661:CAS:528:DC%2BC2MXhsFyqsrvL
– reference: Frka-PetesicBRadavidsonHJeanBHeuxLDynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fieldsAdv. Mater.201729160620810.1002/adma.2016062081:CAS:528:DC%2BC2sXhsVaqsrg%3D
– reference: ArvidssonRNguyenDSvanströmMLife cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processesEnviron. Sci. Technol.2015496881689010.1021/acs.est.5b008881:CAS:528:DC%2BC2MXns1Ohtrg%3D
– reference: LiuZMeyersMAZhangZRitchieROFunctional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applicationsProg. Mater. Sci.20178846749810.1016/j.pmatsci.2017.04.0131:CAS:528:DC%2BC2sXntlWhsLo%3D
– reference: LundahlMJStrength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogelsSci. Rep.201663069510.1038/srep306951:CAS:528:DC%2BC2sXksFeksrw%3D
– reference: LingSLiCJinKKaplanDLBuehlerMJLiquid exfoliated natural silk nanofibrils: applications in optical and electrical devicesAdv. Mater.2016287783779010.1002/adma.2016017831:CAS:528:DC%2BC28XhtVKntb7J
– reference: KhanMKBsoulAWalusKHamadWYMacLachlanMJPhotonic patterns printed in chiral nematic mesoporous resinsAngew. Chem. Int. Ed.2015544304430810.1002/anie.2014104111:CAS:528:DC%2BC2MXkvF2ntrk%3D
– reference: LiYHybridizing wood cellulose and graphene oxide toward high-performance fibersNPG Asia Mater.20157e15010.1038/am.2014.1111:CAS:528:DC%2BC2MXmtVOmtQ%3D%3D
– reference: ElbaumRZaltzmanLBurgertIFratzlPThe role of wheat awns in the seed dispersal unitScience200731688488610.1126/science.11400971:CAS:528:DC%2BD2sXltVentL8%3D
– reference: ArmonSEfratiEKupfermanRSharonEGeometry and mechanics in the opening of chiral seed podsScience20113331726173010.1126/science.12038741:CAS:528:DC%2BC3MXhtFyqurrP
– reference: NevilleACBiology of the Arthropod Cuticle1975Springer Science & Business Media, Berlin10.1007/978-3-642-80910-1
– reference: KimJKHierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteriesACS Nano2017116114612110.1021/acsnano.7b020851:CAS:528:DC%2BC2sXns1OgtbY%3D
– reference: ErbRMSanderJSGrischRStudartARSelf-shaping composites with programmable bioinspired microstructuresNat. Commun.20134171210.1038/ncomms26661:CAS:528:DC%2BC3sXpsFegsrw%3D
– reference: DasPTough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogelsBiomacromolecules2012134205421210.1021/bm30147961:CAS:528:DC%2BC38XhsFOlsbrI
– reference: HooshmandSAitomäkiYNorbergNMathewAPOksmanKDry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidueACS Appl. Mater. Interfaces20157130221302810.1021/acsami.5b030911:CAS:528:DC%2BC2MXovFKqurY%3D
– reference: WangSLuAZhangLRecent advances in regenerated cellulose materialsProg. Polym. Sci.20165316920610.1016/j.progpolymsci.2015.07.0031:CAS:528:DC%2BC2MXhtlSlt7vF
– reference: de VriesHRotatory power and other optical properties of certain liquid crystalsActa Cryst.1951421922610.1107/S0365110X510007511:CAS:528:DyaG3MXltFyquw%3D%3D
– reference: KellyJAGieseMShopsowitzKEHamadWYMacLachlanMJThe development of chiral nematic mesoporous materialsAcc. Chem. Res.2014471088109610.1021/ar400243m1:CAS:528:DC%2BC2cXlsFyku7g%3D
– reference: KhanMKHamadWYMacLachlanMJTunable mesoporous bilayer photonic resins with chiral nematic structures and actuator propertiesAdv. Mater.2014262323232810.1002/adma.2013049661:CAS:528:DC%2BC2cXhtVyksb4%3D
– reference: LinSPredictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibresNat. Commun.20156689210.1038/ncomms7892
– reference: KhanMKFlexible mesoporous photonic resins with tunable chiral nematic structuresAngew. Chem. Int. Ed.2013528921892410.1002/anie.2013038291:CAS:528:DC%2BC3sXhtFOiur3M
– reference: LingSModulating materials by orthogonally oriented βstrands: Composites of amyloid and silk fibroin fibrilsAdv. Mater.2014264569457410.1002/adma.2014007301:CAS:528:DC%2BC2cXot1Sgsrg%3D
– reference: ShopsowitzKEKellyJAHamadWYMacLachlanMJBiopolymer templated glass with a twist: Controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystalsAdv. Funct. Mater.20142432733810.1002/adfm.2013017371:CAS:528:DC%2BC3sXht1Srsr7M
– reference: Fu, C. J., Shao, Z. Z. & Fritz, V. Animal silks: their structures, properties and artificial production. Chem. Commun. 6515–6529 (2009).
– reference: StevensCIndustrial Applications of Natural Fibres: Structure, Properties and Technical Applications.2010John Wiley & Sons
– reference: FratzlPWeinkamerRNature's hierarchical materialsProg. Mater. Sci.2007521263133410.1016/j.pmatsci.2007.06.0011:CAS:528:DC%2BD2sXhtVGisLnM
– reference: HåkanssonKMOHydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filamentsNat. Commun.20145401810.1038/ncomms50181:CAS:528:DC%2BC2cXitVShsrbK
– reference: BurgertIFratzlPDunlopJWCWeinkamerRMaterials Design Inspired by Nature: Function Through Inner Architecture2013The Royal Society of Chemistry, Dorchester12815010.1039/9781849737555-00128
– reference: AminiSTadayonMIdapalapatiSMiserezAThe role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl clubNat. Mater.20151494395010.1038/nmat43091:CAS:528:DC%2BC2MXhtFeju7jJ
– reference: Palffy-MuhorayPLiquid crystals New designs in cholesteric colourNature199839174574610.1038/357531:CAS:528:DyaK1cXhtleqt78%3D
– reference: GibsonLJThe hierarchical structure and mechanics of plant materialsJ. R. Soc. Interface201292749276610.1098/rsif.2012.03411:CAS:528:DC%2BC38XhslWrsr7K
– reference: EganPSinkoRLeDucPRKetenSThe role of mechanics in biological and bio-inspired systemsNat. Commun.20156741810.1038/ncomms8418
– reference: WeaverJCThe stomatopod dactyl club: a formidable damage-tolerant biological hammerScience20123361275128010.1126/science.12187641:CAS:528:DC%2BC38XnvFekt7s%3D
– reference: BelamieEDavidsonPGiraud-GuilleMMStructure and chirality of the nematic phase in αchitin suspensionsJ. Phys. Chem. B2004108149911500010.1021/jp048152u1:CAS:528:DC%2BD2cXntF2hsb4%3D
– reference: NalewaySEPorterMMMcKittrickJMeyersMAStructural design elements in biological materials: application to bioinspirationAdv. Mater.2015275455547610.1002/adma.2015024031:CAS:528:DC%2BC2MXhsVSjtLrO
– reference: CapadonaJRA versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templatesNat. Nanotechnol.2007276576910.1038/nnano.2007.3791:CAS:528:DC%2BD2sXhtlyktL%2FK
– reference: ShopsowitzKEQiHHamadWYMacLachlanMJFree-standing mesoporous silica films with tunable chiral nematic structuresNature201046842242510.1038/nature095401:CAS:528:DC%2BC3cXhsVeis7nK
– reference: ZhangHVComputationally designed peptides for self-assembly of nanostructured latticesSci. Adv.20162160030710.1126/sciadv.16003071:CAS:528:DC%2BC1cXltVWjurg%3D
– reference: FrischeSMaunsbachABVollrathFElongate cavities and skin–core structure in Nephila spider silk observed by electron microscopyJ. Microsc.1998189647010.1046/j.1365-2818.1998.00285.x1:CAS:528:DyaK1cXhtlOmsLw%3D
– reference: VollrathFKnightDPLiquid crystalline spinning of spider silkNature200141054154810.1038/350690001:CAS:528:DC%2BD3MXis1Grtbc%3D
– reference: De FranceKJHoareTCranstonEDReview of hydrogels and aerogels containing nanocelluloseChem. Mater.2017294609463110.1021/acs.chemmater.7b005311:CAS:528:DC%2BC2sXmtFCmt7Y%3D
– reference: BidhendiAJGeitmannARelating the mechanics of the primary plant cell wall to morphogenesisJ. Exp. Bot.20166744946110.1093/jxb/erv5351:CAS:528:DC%2BC28Xht1Squ7fN
– reference: RaabeDSachsCRomanoPThe crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite materialActa Mater.2005534281429210.1016/j.actamat.2005.05.0271:CAS:528:DC%2BD2MXntlSntbo%3D
– reference: ZhuHExtreme light management in mesoporous wood cellulose paper for optoelectronicsACS Nano2016101369137710.1021/acsnano.5b067811:CAS:528:DC%2BC2MXitVejtbnE
– reference: Liu, Y., Yu, S.H. & Bergström, L. Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201703277 (2017).
– reference: AltanerCMJarvisMCModelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stressJ. Theor. Biol.200825343444510.1016/j.jtbi.2008.03.0101:CAS:528:DC%2BD1cXoslCiu7g%3D
– reference: SultanSSiqueiraGZimmermannTMathewAP3D printing of nano-cellulosic biomaterials for medical applicationsCurr. Opin. Biomed. Eng.20172293410.1016/j.cobme.2017.06.002
– reference: KetenSXuZPIhleBBuehlerMJNanoconfinement controls stiffness, strength and mechanical toughness of βsheet crystals in silkNat. Mater.2010935936710.1038/nmat27041:CAS:528:DC%2BC3cXjslSgtLY%3D
– reference: CranfordSWTarakanovaAPugnoNMBuehlerMJNonlinear material behaviour of spider silk yields robust websNature2012482727610.1038/nature107391:CAS:528:DC%2BC38Xhs1Gjsr8%3D
– reference: SharmaVCrneMParkJOSrinivasaraoMStructural origin of circularly polarized iridescence in Jeweled beetlesScience200932544945110.1126/science.11720511:CAS:528:DC%2BD1MXovVCgtr4%3D
– reference: LibbyELight reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized lightJ. Opt.20141608200110.1088/2040-8978/16/8/082001
– reference: GrunenfelderLKBio-inspired impact-resistant compositesActa Biomater.2014103997400810.1016/j.actbio.2014.03.0221:CAS:528:DC%2BC2cXmsVChtbw%3D
– reference: RobinsonCLiquid-crystalline structures in solutions of a polypeptideTrans. Faraday Soc.19565257159210.1039/tf95652005711:CAS:528:DyaG28XotVeksw%3D%3D
– reference: MuXGrayDGFormation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage processLangmuir2014309256926010.1021/la501741r1:CAS:528:DC%2BC2cXht1aht7bO
– reference: FernandesSNMind the microgap in iridescent cellulose nanocrystal filmsAdv. Mater.201729160356010.1002/adma.2016035601:CAS:528:DC%2BC28XhvVags7vF
– reference: WangPXHamadWYMacLachlanMJPolymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystalsAngew. Chem. Int. Ed.201655124601246410.1002/anie.2016062831:CAS:528:DC%2BC28XhsVKjtrjM
– reference: JoseleauJPImaiTKurodaKRuelKDetection in situ and characterization of lignin in the Glayer of tension wood fibres of Populus deltoidesPlanta200421933834510.1007/s00425-004-1226-51:CAS:528:DC%2BD2cXksVSgtr4%3D
– reference: MertaniemiHHuman stem cell decorated nanocellulose threads for biomedical applicationsBiomaterials20168220822010.1016/j.biomaterials.2015.12.0201:CAS:528:DC%2BC2MXitVynur3P
– reference: AngeliniLGLazzeriALevitaGFontanelliDBozziCRamie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical propertiesInd. Crops Prod.20001114516110.1016/S0926-6690(99)00059-X
– reference: TsengPDirected assembly of bio-inspired hierarchical materials with controlled nanofibrillar architecturesNat. Nanotechnol.20171247448010.1038/nnano.2017.41:CAS:528:DC%2BC2sXltVWnsbo%3D
– reference: NguyenTDPeresBUCarvalhoRMMacLachlanMJPhotonic hydrogels from chiral nematic mesoporous chitosan nanofibril assembliesAdv. Funct. Mater.2016262875288110.1002/adfm.2015050321:CAS:528:DC%2BC28XktlKmt7g%3D
– reference: NguyenTDMacLachlanMJBiomimetic chiral nematic mesoporous materials from crab cuticlesAdv. Opt. Mater.201421031103710.1002/adom.2014002791:CAS:528:DC%2BC2cXhvFagt7vJ
– reference: JinHJKaplanDLMechanism of silk processing in insects and spidersNature20034241057106110.1038/nature018091:CAS:528:DC%2BD3sXmslSjsbg%3D
– reference: DunlopJWWeinkamerRFratzlPArtful interfaces within biological materialsMater. Today201114707810.1016/S1369-7021(11)70056-6
– reference: MeyersMAChenPYBiological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials2014Cambridge Univ. Press, Cambridge539710.1017/CBO9780511862397
– reference: MeseckGRTerpstraASMacLachlanMJLiquid crystal templating of nanomaterials with nature's toolboxCurr. Opin. Colloid Interface Sci.20172992010.1016/j.cocis.2017.01.0031:CAS:528:DC%2BC2sXitFCqsbc%3D
– reference: VignoliniSPointillist structural color in Pollia fruitProc. Natl Acad. Sci. USA2012109157121571510.1073/pnas.1210105109
– reference: KellyJAYuMHamadWYMacLachlanLargeMJ. crack-free freestanding films with chiral nematic structuresAdv. Opt. Mater.2013129529910.1002/adom.201300015
– reference: Martínez ÁvilaHSchwarzSRotterNGatenholmP3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regenerationBioprinting20161223510.1016/j.bprint.2016.08.003
– reference: CranfordSWBuehlerMJBiomateriomics. Springer Series in Materials Science2012Springer Science & Business Media, Heidelberg
– reference: LagerwallJPFCellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin filmsNPG Asia Mater.20146e8010.1038/am.2013.691:CAS:528:DC%2BC2cXls1CltA%3D%3D
– reference: HuangWSynergistic integration of experimental and simulation approaches for the de novo design of silk-based materialsAcc. Chem. Res.20175086687610.1021/acs.accounts.6b006161:CAS:528:DC%2BC2sXisVGlt7g%3D
– reference: CapadonaJRShanmuganathanKTylerDJRowanSJWederCStimuli-responsive polymer nanocomposites inspired by the sea cucumber dermisScience20083191370137410.1126/science.11533071:CAS:528:DC%2BD1cXislSktr0%3D
– reference: ShopsowitzKEHamadWYMacLachlanMJFlexible and iridescent chiral nematic mesoporous organosilica filmsJ. Am. Chem. Soc.201213486787010.1021/ja210355v1:CAS:528:DC%2BC3MXhs1CrsLbN
– reference: WuTA bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator propertiesJ. Mater. Chem. C201649687969610.1039/C6TC02629J1:CAS:528:DC%2BC28XhsFCrsLvJ
– reference: SiróIPlackettDMicrofibrillated cellulose and new nanocomposite materials: a reviewCellulose20101745949410.1007/s10570-010-9405-y1:CAS:528:DC%2BC3cXlvFegs7g%3D
– reference: IwamotoSIsogaiAIwataTStructure and mechanical properties of wet-spun fibers made from natural cellulose nanofibersBiomacromolecules20111283183610.1021/bm101510r1:CAS:528:DC%2BC3MXhs1aitrg%3D
– reference: KaltofenSComputational de novo design of a self-assembling peptide with predefined structureJ. Mol. Biol.201542755056210.1016/j.jmb.2014.12.0021:CAS:528:DC%2BC2MXkslWquw%3D%3D
– reference: DufresneANanocellulose: a new ageless bionanomaterialMater. Today20131622022710.1016/j.mattod.2013.06.0041:CAS:528:DC%2BC3sXht1altrrM
– reference: JinKQinZBuehlerMJMolecular deformation mechanisms of the wood cell wall materialJ. Mech. Behav. Biomed. Mater.20154219820610.1016/j.jmbbm.2014.11.0101:CAS:528:DC%2BC2cXhvF2jtrbO
– reference: ShopsowitzKEStahlAHamadWYMacLachlanMJHard templating of nanocrystalline titanium dioxide with chiral nematic orderingAngew. Chem. Int. Ed.2012516886689010.1002/anie.2012011131:CAS:528:DC%2BC38Xns1Sqt7s%3D
– reference: GiesaTPugnoNMWongJYKaplanDLBuehlerMJWhat's inside the box? – length-scales that govern fracture processes of polymer fibersAdv. Mater.20142641241710.1002/adma.2013033231:CAS:528:DC%2BC3sXhslGjt7rF
– reference: LingSIntegration of stiff graphene and tough silk for the design and fabrication of versatile electronic materialsAdv. Funct. Mater.201828170529110.1002/adfm.2017052911:CAS:528:DC%2BC2sXhvF2ltrfO
– reference: BlellRGenerating inplane orientational order in multilayer films prepared by spray-assisted layerbylayer assemblyACS Nano201711849410.1021/acsnano.6b041911:CAS:528:DC%2BC28XhvFSitLjM
– reference: QiHShopsowitzKEHamadWYMacLachlanMJChiral nematic assemblies of silver nanoparticles in mesoporous silica thin filmsJ. Am. Chem. Soc.20111333728373110.1021/ja110369d1:CAS:528:DC%2BC3MXisFWltb0%3D
– reference: OmenettoFGKaplanDLNew opportunities for an ancient materialScience201032952853110.1126/science.11889361:CAS:528:DC%2BC3cXptlCltbg%3D
– reference: Torres-RendonJGSchacherFHIfukuSWaltherAMechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparisonBiomacromolecules2014152709271710.1021/bm500566m1:CAS:528:DC%2BC2cXhtVWksbzP
– reference: HuangWDesign of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk–elastin-like proteinsAdv. Funct. Mater.2016264113412310.1002/adfm.2016002361:CAS:528:DC%2BC28XmtVKgsr8%3D
– reference: KokkinisDSchaffnerMStudartARMultimaterial magnetically assisted 3D printing of composite materialsNat. Commun.20156864310.1038/ncomms96431:CAS:528:DC%2BC2MXhslans7vM
– reference: GallardoRDe novo design of a biologically active amyloidScience2016354aah494910.1126/science.aah49491:CAS:528:DC%2BC28XhvVSnsLvE
– reference: JiSHigh dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructuresAdv. Mater.201729170053810.1002/adma.2017005381:CAS:528:DC%2BC2sXmtFGmtbc%3D
– reference: PilateGLignification and tension woodC. R. Biol.200432788990110.1016/j.crvi.2004.07.0061:CAS:528:DC%2BD2cXptFOgt74%3D
– reference: FabritiusHOFunctional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical studyBioinspir. Biomim.20161105500610.1088/1748-3190/11/5/0550061:CAS:528:DC%2BC28XhvV2ntbjK
– reference: ForterreYDumaisJGenerating helices in natureScience20113331715171610.1126/science.12107341:CAS:528:DC%2BC3MXhtlyit7nE
– reference: BarthelatFYinZBuehlerMJStructure and mechanics of interfaces in biological materialsNat. Rev. Mater.201611600710.1038/natrevmats.2016.71:CAS:528:DC%2BC2sXhtVertL4%3D
– reference: FratzlPBurgertIKeckesJMechanical model for the deformation of the wood cell wallZ. Metallkd.20049557958410.3139/146.0179911:CAS:528:DC%2BD2cXnslKjtrc%3D
– reference: ShopsowitzKEHamadWYMacLachlanMJChiral nematic mesoporous carbon derived from nanocrystalline celluloseAngew. Chem. Int. Ed.201150109911099510.1002/anie.2011054791:CAS:528:DC%2BC3MXht1Slu7fK
– reference: López de la PazMDe novo designed peptide-based amyloid fibrilsProc. Natl Acad. Sci. USA200299160521605710.1073/pnas.2523401991:CAS:528:DC%2BD38Xps1ensrk%3D
– reference: LundahlMJKlarVWangLAgoMRojasOJSpinning of cellulose nanofibrils into filaments: a reviewInd. Eng. Chem. Res.20175681910.1021/acs.iecr.6b040101:CAS:528:DC%2BC28XhvF2hu7vL
– volume: 5
  start-page: 4018
  year: 2014
  ident: BFnatrevmats201816_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5018
– volume: 10
  start-page: 1369
  year: 2016
  ident: BFnatrevmats201816_CR38
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06781
– volume: 52
  start-page: 8921
  year: 2013
  ident: BFnatrevmats201816_CR119
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201303829
– volume: 54
  start-page: 4304
  year: 2015
  ident: BFnatrevmats201816_CR122
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410411
– volume: 7
  start-page: e150
  year: 2015
  ident: BFnatrevmats201816_CR31
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2014.111
– volume: 28
  start-page: 1705291
  year: 2018
  ident: BFnatrevmats201816_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705291
– volume: 15
  start-page: 2709
  year: 2014
  ident: BFnatrevmats201816_CR26
  publication-title: Biomacromolecules
  doi: 10.1021/bm500566m
– volume: 22
  start-page: 4899
  year: 2006
  ident: BFnatrevmats201816_CR80
  publication-title: Langmuir
  doi: 10.1021/la0600402
– volume: 52
  start-page: 1263
  year: 2007
  ident: BFnatrevmats201816_CR10
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2007.06.001
– volume: 325
  start-page: 449
  year: 2009
  ident: BFnatrevmats201816_CR73
  publication-title: Science
  doi: 10.1126/science.1172051
– volume: 52
  start-page: 8912
  year: 2013
  ident: BFnatrevmats201816_CR131
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201302687
– volume: 10
  start-page: 8443
  year: 2016
  ident: BFnatrevmats201816_CR132
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03355
– volume: 11
  start-page: 5717
  year: 2017
  ident: BFnatrevmats201816_CR43
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01221
– volume-title: Biology of the Arthropod Cuticle
  year: 1975
  ident: BFnatrevmats201816_CR61
  doi: 10.1007/978-3-642-80910-1
– volume: 1
  start-page: 1600096
  year: 2016
  ident: BFnatrevmats201816_CR91
  publication-title: Adv. Mater. Tech.
  doi: 10.1002/admt.201600096
– volume: 50
  start-page: 866
  year: 2017
  ident: BFnatrevmats201816_CR143
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00616
– volume-title: Biomateriomics. Springer Series in Materials Science
  year: 2012
  ident: BFnatrevmats201816_CR136
– volume: 1S
  start-page: 177
  year: 2014
  ident: BFnatrevmats201816_CR74
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2014.09.021
– volume: 47
  start-page: 163
  year: 2013
  ident: BFnatrevmats201816_CR53
  publication-title: Wood Sci. Technol.
  doi: 10.1007/s00226-012-0515-6
– volume: 7
  start-page: 13022
  year: 2015
  ident: BFnatrevmats201816_CR33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03091
– volume: 424
  start-page: 1057
  year: 2003
  ident: BFnatrevmats201816_CR85
  publication-title: Nature
  doi: 10.1038/nature01809
– volume: 4
  start-page: 189
  year: 1972
  ident: BFnatrevmats201816_CR60
  publication-title: Tissue Cell
  doi: 10.1016/S0040-8166(72)80042-9
– volume: 253
  start-page: 434
  year: 2008
  ident: BFnatrevmats201816_CR50
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.03.010
– volume: 99
  start-page: 16052
  year: 2002
  ident: BFnatrevmats201816_CR140
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.252340199
– volume: 462
  start-page: 442
  year: 2009
  ident: BFnatrevmats201816_CR54
  publication-title: Nature
  doi: 10.1038/nature08603
– volume: 7
  start-page: 12520
  year: 2016
  ident: BFnatrevmats201816_CR133
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12520
– volume: 109
  start-page: 15712
  year: 2012
  ident: BFnatrevmats201816_CR75
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1210105109
– volume: 26
  start-page: 412
  year: 2014
  ident: BFnatrevmats201816_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303323
– volume: 336
  start-page: 1275
  year: 2012
  ident: BFnatrevmats201816_CR65
  publication-title: Science
  doi: 10.1126/science.1218764
– volume: 29
  start-page: 1606208
  year: 2017
  ident: BFnatrevmats201816_CR117
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606208
– volume: 316
  start-page: 884
  year: 2007
  ident: BFnatrevmats201816_CR98
  publication-title: Science
  doi: 10.1126/science.1140097
– volume: 4
  start-page: 1712
  year: 2013
  ident: BFnatrevmats201816_CR99
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2666
– volume: 11
  start-page: 055006
  year: 2016
  ident: BFnatrevmats201816_CR62
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/11/5/055006
– volume: 537
  start-page: 320
  year: 2016
  ident: BFnatrevmats201816_CR138
  publication-title: Nature
  doi: 10.1038/nature19946
– volume: 13
  start-page: 4176
  year: 2017
  ident: BFnatrevmats201816_CR3
  publication-title: Soft Matter
  doi: 10.1039/C7SM00384F
– volume: 6
  start-page: 30695
  year: 2016
  ident: BFnatrevmats201816_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/srep30695
– volume: 82
  start-page: 208
  year: 2016
  ident: BFnatrevmats201816_CR32
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.12.020
– volume: 428
  start-page: 819
  year: 2004
  ident: BFnatrevmats201816_CR66
  publication-title: Nature
  doi: 10.1038/428819a
– volume: 367
  start-page: 1541
  year: 2009
  ident: BFnatrevmats201816_CR101
  publication-title: Phil. Trans. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2009.0003
– volume: 1
  start-page: 919
  year: 2013
  ident: BFnatrevmats201816_CR153
  publication-title: Chem. Eng.
– volume: 56
  start-page: 8
  year: 2017
  ident: BFnatrevmats201816_CR25
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04010
– volume: 11
  start-page: 84
  year: 2017
  ident: BFnatrevmats201816_CR82
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04191
– volume: 2
  start-page: 1031
  year: 2014
  ident: BFnatrevmats201816_CR109
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400279
– volume: 28
  start-page: 6835
  year: 2016
  ident: BFnatrevmats201816_CR68
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600786
– volume: 333
  start-page: 1715
  year: 2011
  ident: BFnatrevmats201816_CR97
  publication-title: Science
  doi: 10.1126/science.1210734
– volume: 44
  start-page: 453
  year: 2012
  ident: BFnatrevmats201816_CR96
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101200
– volume: 54
  start-page: 2888
  year: 2015
  ident: BFnatrevmats201816_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407141
– volume: 8
  start-page: 175
  year: 2009
  ident: BFnatrevmats201816_CR137
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2387
– volume: 327
  start-page: 889
  year: 2004
  ident: BFnatrevmats201816_CR47
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2004.07.006
– volume: 51
  start-page: 6886
  year: 2012
  ident: BFnatrevmats201816_CR128
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201113
– volume: 24
  start-page: 327
  year: 2014
  ident: BFnatrevmats201816_CR115
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301737
– volume: 9
  start-page: 2749
  year: 2012
  ident: BFnatrevmats201816_CR4
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0341
– volume: 29
  start-page: 1701323
  year: 2017
  ident: BFnatrevmats201816_CR121
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701323
– volume: 25
  start-page: 6618
  year: 2015
  ident: BFnatrevmats201816_CR150
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502566
– volume: 53
  start-page: 169
  year: 2016
  ident: BFnatrevmats201816_CR16
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.07.003
– volume: 10
  start-page: 3997
  year: 2014
  ident: BFnatrevmats201816_CR70
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.03.022
– volume: 27
  start-page: 1604619
  year: 2017
  ident: BFnatrevmats201816_CR92
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604619
– volume: 14
  start-page: 70
  year: 2011
  ident: BFnatrevmats201816_CR100
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70056-6
– ident: BFnatrevmats201816_CR151
  doi: 10.1038/s41565-017-0035-5
– volume: 52
  start-page: 571
  year: 1956
  ident: BFnatrevmats201816_CR106
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9565200571
– volume: 482
  start-page: 72
  year: 2012
  ident: BFnatrevmats201816_CR12
  publication-title: Nature
  doi: 10.1038/nature10739
– start-page: 128
  volume-title: Materials Design Inspired by Nature: Function Through Inner Architecture
  year: 2013
  ident: BFnatrevmats201816_CR59
  doi: 10.1039/9781849737555-00128
– volume: 50
  start-page: 10991
  year: 2011
  ident: BFnatrevmats201816_CR127
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201105479
– volume: 17
  start-page: 289
  year: 2010
  ident: BFnatrevmats201816_CR113
  publication-title: Cellulose
  doi: 10.1007/s10570-009-9384-z
– volume: 2
  start-page: 1600307
  year: 2016
  ident: BFnatrevmats201816_CR141
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600307
– volume: 95
  start-page: 579
  year: 2004
  ident: BFnatrevmats201816_CR51
  publication-title: Z. Metallkd.
  doi: 10.3139/146.017991
– volume: 42
  start-page: 198
  year: 2015
  ident: BFnatrevmats201816_CR58
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2014.11.010
– volume: 32
  start-page: 7564
  year: 2016
  ident: BFnatrevmats201816_CR118
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01827
– volume: 18
  start-page: 1993
  year: 2017
  ident: BFnatrevmats201816_CR89
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00527
– volume: 6
  start-page: 8643
  year: 2015
  ident: BFnatrevmats201816_CR93
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9643
– volume: 540
  start-page: 354
  year: 2016
  ident: BFnatrevmats201816_CR154
  publication-title: Nature
  doi: 10.1038/nature21001
– volume: 391
  start-page: 745
  year: 1998
  ident: BFnatrevmats201816_CR76
  publication-title: Nature
  doi: 10.1038/35753
– volume: 6
  start-page: 6892
  year: 2015
  ident: BFnatrevmats201816_CR144
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7892
– volume: 14
  start-page: 943
  year: 2015
  ident: BFnatrevmats201816_CR69
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4309
– volume-title: Biology of Fibrous Composites: Development Beyond the Cell Membrane
  year: 1993
  ident: BFnatrevmats201816_CR1
  doi: 10.1017/CBO9780511601101
– volume: 427
  start-page: 550
  year: 2015
  ident: BFnatrevmats201816_CR139
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2014.12.002
– volume: 17
  start-page: 459
  year: 2010
  ident: BFnatrevmats201816_CR86
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9405-y
– volume: 11
  start-page: 145
  year: 2000
  ident: BFnatrevmats201816_CR83
  publication-title: Ind. Crops Prod.
  doi: 10.1016/S0926-6690(99)00059-X
– volume: 26
  start-page: 4113
  year: 2016
  ident: BFnatrevmats201816_CR146
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600236
– volume: 26
  start-page: 2323
  year: 2014
  ident: BFnatrevmats201816_CR123
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304966
– volume: 354
  start-page: aah4949
  year: 2016
  ident: BFnatrevmats201816_CR142
  publication-title: Science
  doi: 10.1126/science.aah4949
– volume: 29
  start-page: 1603560
  year: 2017
  ident: BFnatrevmats201816_CR110
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603560
– volume: 54
  start-page: 5152
  year: 2015
  ident: BFnatrevmats201816_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201412129
– volume: 8
  start-page: 1387
  year: 2017
  ident: BFnatrevmats201816_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00613-5
– volume: 67
  start-page: 449
  year: 2016
  ident: BFnatrevmats201816_CR6
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv535
– volume: 27
  start-page: 5455
  year: 2015
  ident: BFnatrevmats201816_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502403
– volume: 11
  start-page: 6114
  year: 2017
  ident: BFnatrevmats201816_CR40
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02085
– volume: 10
  start-page: 2626
  year: 2010
  ident: BFnatrevmats201816_CR45
  publication-title: Nano Lett.
  doi: 10.1021/nl101341w
– ident: BFnatrevmats201816_CR42
  doi: 10.1002/adfm.201703277
– volume: 16
  start-page: 220
  year: 2013
  ident: BFnatrevmats201816_CR21
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.06.004
– volume: 1
  start-page: 16007
  year: 2016
  ident: BFnatrevmats201816_CR156
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.7
– volume: 2
  start-page: 765
  year: 2007
  ident: BFnatrevmats201816_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.379
– volume: 91
  start-page: 4528
  year: 2006
  ident: BFnatrevmats201816_CR48
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.089144
– volume: 88
  start-page: 467
  year: 2017
  ident: BFnatrevmats201816_CR71
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2017.04.013
– volume: 15
  start-page: 413
  year: 2016
  ident: BFnatrevmats201816_CR90
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4544
– volume: 9
  start-page: 1102
  year: 1997
  ident: BFnatrevmats201816_CR77
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19970091408
– volume: 189
  start-page: 64
  year: 1998
  ident: BFnatrevmats201816_CR46
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.1998.00285.x
– volume: 11
  start-page: 5148
  year: 2017
  ident: BFnatrevmats201816_CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02305
– volume: 333
  start-page: 325
  year: 2010
  ident: BFnatrevmats201816_CR49
  publication-title: C. R. Biol.
  doi: 10.1016/j.crvi.2010.01.010
– volume: 54
  start-page: 3400
  year: 2015
  ident: BFnatrevmats201816_CR102
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410139
– volume: 28
  start-page: 7783
  year: 2016
  ident: BFnatrevmats201816_CR147
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601783
– volume: 24
  start-page: 777
  year: 2014
  ident: BFnatrevmats201816_CR116
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302521
– volume: 11
  start-page: 5374
  year: 2015
  ident: BFnatrevmats201816_CR134
  publication-title: Soft Matter
  doi: 10.1039/C5SM00886G
– volume: 127
  start-page: 49
  year: 2017
  ident: BFnatrevmats201816_CR145
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.041
– volume: 13
  start-page: 4205
  year: 2012
  ident: BFnatrevmats201816_CR27
  publication-title: Biomacromolecules
  doi: 10.1021/bm3014796
– volume: 3
  start-page: 1601939
  year: 2017
  ident: BFnatrevmats201816_CR39
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601939
– volume: 219
  start-page: 338
  year: 2004
  ident: BFnatrevmats201816_CR52
  publication-title: Planta
  doi: 10.1007/s00425-004-1226-5
– volume: 49
  start-page: 6881
  year: 2015
  ident: BFnatrevmats201816_CR152
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00888
– volume: 29
  start-page: 1700538
  year: 2017
  ident: BFnatrevmats201816_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700538
– volume: 30
  start-page: 9256
  year: 2014
  ident: BFnatrevmats201816_CR114
  publication-title: Langmuir
  doi: 10.1021/la501741r
– volume: 9
  start-page: 359
  year: 2010
  ident: BFnatrevmats201816_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2704
– volume: 329
  start-page: 528
  year: 2010
  ident: BFnatrevmats201816_CR14
  publication-title: Science
  doi: 10.1126/science.1188936
– volume: 9
  start-page: 7138
  year: 2013
  ident: BFnatrevmats201816_CR57
  publication-title: Soft Matter
  doi: 10.1039/c3sm50183c
– volume: 2
  start-page: 810
  year: 2003
  ident: BFnatrevmats201816_CR56
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1019
– volume: 4
  start-page: 9687
  year: 2016
  ident: BFnatrevmats201816_CR112
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC02629J
– volume: 319
  start-page: 1370
  year: 2008
  ident: BFnatrevmats201816_CR17
  publication-title: Science
  doi: 10.1126/science.1153307
– volume: 16
  start-page: 082001
  year: 2014
  ident: BFnatrevmats201816_CR72
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/16/8/082001
– volume: 468
  start-page: 422
  year: 2010
  ident: BFnatrevmats201816_CR125
  publication-title: Nature
  doi: 10.1038/nature09540
– volume: 6
  start-page: e80
  year: 2014
  ident: BFnatrevmats201816_CR108
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2013.69
– volume: 26
  start-page: 2875
  year: 2016
  ident: BFnatrevmats201816_CR111
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505032
– volume: 19
  start-page: 1599
  year: 2012
  ident: BFnatrevmats201816_CR104
  publication-title: Cellulose
  doi: 10.1007/s10570-012-9733-1
– volume: 6
  start-page: 7418
  year: 2015
  ident: BFnatrevmats201816_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8418
– volume: 53
  start-page: 8880
  year: 2014
  ident: BFnatrevmats201816_CR120
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402214
– volume: 1
  start-page: 835
  year: 2013
  ident: BFnatrevmats201816_CR41
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00370H
– volume: 1
  start-page: 295
  year: 2013
  ident: BFnatrevmats201816_CR124
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300015
– volume: 23
  start-page: 2924
  year: 2011
  ident: BFnatrevmats201816_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100580
– volume: 29
  start-page: 9
  year: 2017
  ident: BFnatrevmats201816_CR107
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.01.003
– volume: 52
  start-page: 661
  year: 2010
  ident: BFnatrevmats201816_CR155
  publication-title: Int. Geol. Rev.
  doi: 10.1080/00206811003679521
– volume: 40
  start-page: 3941
  year: 2011
  ident: BFnatrevmats201816_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00108b
– volume: 42
  start-page: 651
  year: 2013
  ident: BFnatrevmats201816_CR7
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-083012-130345
– volume: 208
  start-page: 3655
  year: 2005
  ident: BFnatrevmats201816_CR67
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01831
– volume: 12
  start-page: 474
  year: 2017
  ident: BFnatrevmats201816_CR87
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.4
– volume: 134
  start-page: 867
  year: 2012
  ident: BFnatrevmats201816_CR126
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210355v
– volume: 47
  start-page: 1088
  year: 2014
  ident: BFnatrevmats201816_CR20
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400243m
– volume: 29
  start-page: 1700981
  year: 2017
  ident: BFnatrevmats201816_CR94
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700981
– volume: 53
  start-page: 4281
  year: 2005
  ident: BFnatrevmats201816_CR63
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.027
– start-page: 53
  volume-title: Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials
  year: 2014
  ident: BFnatrevmats201816_CR2
  doi: 10.1017/CBO9780511862397
– volume: 46
  start-page: 1
  year: 2000
  ident: BFnatrevmats201816_CR15
  publication-title: React. Funct. Polym.
  doi: 10.1016/S1381-5148(00)00038-9
– volume: 12
  start-page: 831
  year: 2011
  ident: BFnatrevmats201816_CR29
  publication-title: Biomacromolecules
  doi: 10.1021/bm101510r
– volume: 133
  start-page: 3728
  year: 2011
  ident: BFnatrevmats201816_CR130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110369d
– volume: 108
  start-page: 14991
  year: 2004
  ident: BFnatrevmats201816_CR105
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048152u
– volume: 4
  start-page: 219
  year: 1951
  ident: BFnatrevmats201816_CR78
  publication-title: Acta Cryst.
  doi: 10.1107/S0365110X51000751
– volume: 2
  start-page: 29
  year: 2017
  ident: BFnatrevmats201816_CR88
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.06.002
– ident: BFnatrevmats201816_CR11
  doi: 10.1039/b911049f
– volume: 51
  start-page: 530
  year: 2015
  ident: BFnatrevmats201816_CR129
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07596J
– volume: 26
  start-page: 4569
  year: 2014
  ident: BFnatrevmats201816_CR148
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400730
– volume: 29
  start-page: 4609
  year: 2017
  ident: BFnatrevmats201816_CR19
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00531
– volume: 21
  start-page: 2034
  year: 2005
  ident: BFnatrevmats201816_CR81
  publication-title: Langmuir
  doi: 10.1021/la0475728
– volume: 410
  start-page: 541
  year: 2001
  ident: BFnatrevmats201816_CR84
  publication-title: Nature
  doi: 10.1038/35069000
– volume-title: Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications.
  year: 2010
  ident: BFnatrevmats201816_CR55
– volume: 43
  start-page: 1519
  year: 2014
  ident: BFnatrevmats201816_CR79
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60204D
– volume: 333
  start-page: 1726
  year: 2011
  ident: BFnatrevmats201816_CR103
  publication-title: Science
  doi: 10.1126/science.1203874
– volume: 16
  start-page: 3795
  year: 2016
  ident: BFnatrevmats201816_CR149
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01195
– volume: 55
  start-page: 12460
  year: 2016
  ident: BFnatrevmats201816_CR135
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606283
– volume: 22
  start-page: 519
  year: 2010
  ident: BFnatrevmats201816_CR64
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200902019
– volume: 1
  start-page: 22
  year: 2016
  ident: BFnatrevmats201816_CR95
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2016.08.003
SSID ssj0001934982
Score 2.5742283
SecondaryResourceType review_article
Snippet Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18016
SubjectTerms 631/553/2695
639/301/1023
639/301/1023/303
639/301/54/989
639/301/930/1032
Anisotropy
Biocompatibility
Biological materials
Biological properties
Biomaterials
Biomedical engineering
Biomedical materials
Biopolymers
Cellulose
Chemistry and Materials Science
Chitin
Condensed Matter Physics
Materials engineering
Materials Science
Nanotechnology
Optical and Electronic Materials
Optical properties
review-article
Self-assembly
Silk
Sustainable materials
Title Nanofibrils in nature and materials engineering
URI https://link.springer.com/article/10.1038/natrevmats.2018.16
https://www.ncbi.nlm.nih.gov/pubmed/34168896
https://www.proquest.com/docview/3078843988
https://www.proquest.com/docview/2545592026
https://pubmed.ncbi.nlm.nih.gov/PMC8221570
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-O10SgXftK5Zmub6JCpOERQRBd9K2iQ4GJ1u07_fy5qtfqDPSWhyd737JZf8DuDQ5tIy41L_opOEMTNFiEzZMNIULbnjxpXucfLtXXL9FN88i2d_4Dby1yqnPnHiqPWgcGfkbbJFRIqeiKevb6GrGuWyq76ExjwskAtG2nwtnF_e3T_Upywpj1Ps-NcyEcd2qcZD80Fo0HF1Mzxxhc6_RqRfMPP3bckfKdNJJOquwLKHkMFZpfNVmDPlGix9IRZchzY5TbKafNjrj4JeGVT0nYEqdUBzqowuMPWIDXjqXj5eXIe-NEJYEMQah9Yw5aRhhCwK2uNpIRXPrbBWK5WnMs1jk6KKcxUpTK3bRllhOHlZQlSSa74JjXJQmm0IIm05wYiEcJyNsUjQKCFzqyJmYtQ6agKbiicrPG-4K1_Rzyb5a45ZLdLMiTRjSROOZmNeK9aMf3u3plLP_B80ymp9N-Fg1ky27xIaqjSDdxpP8E-kHdpGNmGrUtLscxSdE8SUWuQ39c06OF7t7y1l72XCr02YiQlJCz-eKrqe1t-r2Pl_Fbuw6DpWl35a0BgP380e4Zlxvg_z2L3a96b7CdJL-z8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VIW2dCmFILWnNmwcx7F9QKiiXZbyOIHELXViW6yEsrC7tOqf6m_sTB4bKCo3zn4kHs-MP3vsbwA--Fx65ij0L-I0TJgrQsWMDyOLqyUnblxJj5OPT9LhWfL9XJwvwJ_2LQxdq2x9YuWo7bigM_I-6qJSuHoqtXt1HVLWKIqutik0arU4dL9_4ZZtunPwFef3YxwPvp3uDcMmq0BYIDqZhd4xQx05IYsCt0dWSMNzL7y3xuRa6jxxWpkkN5FR2tMOxAvH0UEhGJHccuz3CSwlnGuyKDXY7850NE-0ipu3ORFX_dLMJu4nYk9iBmdqm9Kq317_7oHa-3cz_wnQVuve4CW8aABr8KXWsGVYcOUKPL9FY_gK-uiiUUfzyehyGozKoCYLDUxpA_ynWsUD17V4DWePIrI3sFiOS_cWgsh6jqAlRdToE1Wkyhkhc28i5hJlbdQD1oonKxqWckqWcZlV0XKusk6kGYk0Y2kPPs3bXNUcHQ_WXm-lnjX2Os067erB1rwYLY3CJ6Z04xtsj2BT6Bg3rT1YrSdp_jnEAqlSGkvknembVyAW77sl5eiiYvNGhMaExIF_bie6-63_j2Lt4VFswtPh6fFRdnRwcvgOnlGj-rrROizOJjfuPSKpWb5RqW8APx7bXv4C_4g3nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanofibrils+in+nature+and+materials+engineering&rft.jtitle=Nature+reviews.+Materials&rft.au=Ling%2C+Shengjie&rft.au=Kaplan%2C+David+L&rft.au=Buehler%2C+Markus+J&rft.date=2018-04-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-8437&rft.volume=3&rft.issue=4&rft.spage=18016&rft_id=info:doi/10.1038%2Fnatrevmats.2018.16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8437&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8437&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8437&client=summon