Nanofibrils in nature and materials engineering
Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological m...
Saved in:
Published in | Nature reviews. Materials Vol. 3; no. 4; p. 18016 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.
Nanofibrils are abundant and critical structural components in nature that can be exploited for novel and sustainable materials. In this Review, hierarchical design strategies for cellulose, silk and chitin nanofibrils in nature and in materials engineering are discussed. |
---|---|
AbstractList | Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm. Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm. Nanofibrils are abundant and critical structural components in nature that can be exploited for novel and sustainable materials. In this Review, hierarchical design strategies for cellulose, silk and chitin nanofibrils in nature and in materials engineering are discussed. Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm. Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks into higher-order structures, which are stabilized by non-covalent interactions. This hierarchical building principle endows many biological materials with remarkable mechanical strength, anisotropy, flexibility and optical properties, such as structural colour. These features make nanofibrillar biopolymers interesting candidates for the development of strong, sustainable and biocompatible materials for environmental, energy, optical and biomedical applications. However, recreating their architecture is challenging from an engineering perspective. Rational design approaches, applying a combination of theoretical and experimental protocols, have enabled the design of biopolymer-based materials through mimicking nature's multiscale assembly approach. In this Review, we summarize hierarchical design strategies of cellulose, silk and chitin, focusing on nanoconfinement, fibrillar orientation and alignment in 2D and 3D structures. These multiscale architectures are discussed in the context of mechanical and optical properties, and different fabrication strategies for the manufacturing of biopolymer nanofibril-based materials are investigated. We highlight the contribution of rational material design strategies to the development of mechanically anisotropic and responsive materials and examine the future of the material-by-design paradigm.Nanofibrils are abundant and critical structural components in nature that can be exploited for novel and sustainable materials. In this Review, hierarchical design strategies for cellulose, silk and chitin nanofibrils in nature and in materials engineering are discussed. |
ArticleNumber | 18016 |
Author | Kaplan, David L. Buehler, Markus J. Ling, Shengjie |
AuthorAffiliation | 5 Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 4 Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai, China 3 Department of Biomedical Engineering, Tufts University, Medford, MA, USA |
AuthorAffiliation_xml | – name: 1 School of Physical Science and Technology, ShanghaiTech University, Shanghai, China – name: 2 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 4 Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 5 Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA – name: 3 Department of Biomedical Engineering, Tufts University, Medford, MA, USA |
Author_xml | – sequence: 1 givenname: Shengjie surname: Ling fullname: Ling, Shengjie organization: School of Physical Science and Technology, ShanghaiTech University, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Department of Biomedical Engineering, Tufts University – sequence: 2 givenname: David L. surname: Kaplan fullname: Kaplan, David L. email: David.Kaplan@Tufts.edu organization: Department of Biomedical Engineering, Tufts University – sequence: 3 givenname: Markus J. surname: Buehler fullname: Buehler, Markus J. email: mbuehler@mit.edu organization: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Center for Materials Science and Engineering, Massachusetts Institute of Technology, Center for Computational Engineering, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34168896$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtPAyEYJEbjo_oHPJgmXry08li6cDExxldi9KJn8u3uR8VsocKuif9eNq3PgyfgY2aYYfbIpg8eCTlkdMqoUKceuohvC-jSlFOmpmy2QXY5lWqiClFu_tjvkIOUXiilTItCK75NdkTBZkrp2S45vQcfrKuia9PY-XGW7SOOwTfjrI3RQZ6jnzuP-eDn-2TL5hEerNcRebq6fLy4mdw9XN9enN9NalnQbmKRQX5boyzrmsuikSWIykprG4BKl7oqUCsoKqCgtKWsoFaiQKi1ZKVoxIicrXSXfbXApkbfRWjNMroFxHcTwJnfN949m3l4M4pzJkuaBU7WAjG89pg6s3CpxrYFj6FPJpuSUnPKZxl6_Af6EvroczwjaKmGHEpl1NFPR19WPv8yA_gKUMeQUkT7BWHUDJ2Z787M0JlhA0n9IdWug86FIZVr_6eKFTUth2Ywftv-h_UB3Jaybg |
CitedBy_id | crossref_primary_10_1002_adfm_202501380 crossref_primary_10_1038_s41893_024_01268_z crossref_primary_10_1039_D1MH01965A crossref_primary_10_1016_j_polymer_2021_123534 crossref_primary_10_1016_j_actbio_2023_11_030 crossref_primary_10_1002_smtd_202300136 crossref_primary_10_1021_acssuschemeng_0c06736 crossref_primary_10_1016_j_jobab_2025_03_001 crossref_primary_10_1002_adom_202000012 crossref_primary_10_1021_acs_biomac_8b01766 crossref_primary_10_1021_acsmaterialslett_3c00273 crossref_primary_10_1088_1748_3190_abe27b crossref_primary_10_1021_acsapm_4c02085 crossref_primary_10_1016_j_actbio_2019_01_010 crossref_primary_10_1002_aisy_202100136 crossref_primary_10_1007_s10570_023_05360_z crossref_primary_10_34133_2022_9854063 crossref_primary_10_1016_j_progpolymsci_2018_06_004 crossref_primary_10_1002_adfm_202104991 crossref_primary_10_1021_acs_biomac_9b01198 crossref_primary_10_1021_acsnano_3c00105 crossref_primary_10_1016_j_pmatsci_2025_101430 crossref_primary_10_1002_smll_202205219 crossref_primary_10_1002_anie_201903264 crossref_primary_10_1039_D2GC04271A crossref_primary_10_1021_acs_biomac_8b01659 crossref_primary_10_1016_j_ijbiomac_2025_140832 crossref_primary_10_1038_s41893_024_01267_0 crossref_primary_10_1016_j_carbpol_2023_121090 crossref_primary_10_1016_j_mechmat_2024_104986 crossref_primary_10_1021_acsabm_9b00034 crossref_primary_10_1021_acsomega_4c06558 crossref_primary_10_1021_acssensors_4c00852 crossref_primary_10_1088_1758_5090_ab06ea crossref_primary_10_1002_adfm_201806380 crossref_primary_10_1002_adsu_202400965 crossref_primary_10_1002_advs_202410702 crossref_primary_10_1021_acs_macromol_3c01695 crossref_primary_10_1002_advs_202203720 crossref_primary_10_1002_admt_202100107 crossref_primary_10_1002_adfm_202311704 crossref_primary_10_1002_adhm_202001211 crossref_primary_10_3390_pharmaceutics13091440 crossref_primary_10_1021_acsanm_2c00354 crossref_primary_10_1016_j_jcis_2024_07_235 crossref_primary_10_3390_ijms241411818 crossref_primary_10_1039_C8NR00717A crossref_primary_10_1002_mame_202200538 crossref_primary_10_1016_j_matt_2019_07_016 crossref_primary_10_1021_acs_biomac_0c01653 crossref_primary_10_1007_s00226_022_01385_y crossref_primary_10_1021_acsami_0c17857 crossref_primary_10_1039_C8NR02159G crossref_primary_10_1002_smll_202304196 crossref_primary_10_1016_j_polymertesting_2022_107599 crossref_primary_10_1002_smll_202311966 crossref_primary_10_1038_s41467_021_25360_6 crossref_primary_10_1155_2021_7141550 crossref_primary_10_1002_adfm_202214148 crossref_primary_10_1021_acssuschemeng_4c00560 crossref_primary_10_1016_j_ijbiomac_2025_139945 crossref_primary_10_1557_mrs_2018_320 crossref_primary_10_1126_sciadv_adl4000 crossref_primary_10_1002_admt_202000928 crossref_primary_10_1002_adma_202001085 crossref_primary_10_1016_j_jsb_2020_107532 crossref_primary_10_1016_j_cossms_2020_100883 crossref_primary_10_1021_acssuschemeng_2c01668 crossref_primary_10_1021_acssuschemeng_9b05261 crossref_primary_10_1021_acssuschemeng_0c04235 crossref_primary_10_1021_acs_chemmater_2c00021 crossref_primary_10_1021_acsnano_3c03428 crossref_primary_10_1002_smll_202102660 crossref_primary_10_1038_s41467_019_10157_5 crossref_primary_10_1007_s10570_019_02642_3 crossref_primary_10_1002_marc_202300024 crossref_primary_10_1002_adma_201901924 crossref_primary_10_1002_adfm_202207532 crossref_primary_10_1002_adma_202211175 crossref_primary_10_1021_acs_chemrev_2c00125 crossref_primary_10_1016_j_cej_2024_151518 crossref_primary_10_1016_j_cis_2018_10_002 crossref_primary_10_1038_s41598_021_04001_4 crossref_primary_10_1016_j_ijadhadh_2025_103948 crossref_primary_10_1016_j_jcrysgro_2022_126977 crossref_primary_10_1016_j_bioactmat_2020_06_013 crossref_primary_10_1007_s40883_024_00374_w crossref_primary_10_1016_j_mattod_2025_01_008 crossref_primary_10_1021_acs_biomac_8b01333 crossref_primary_10_1021_acsnano_3c01241 crossref_primary_10_1016_j_carbpol_2020_117058 crossref_primary_10_1021_acsnano_8b03943 crossref_primary_10_1080_02678292_2023_2168776 crossref_primary_10_1021_acsnano_1c11148 crossref_primary_10_1038_s41467_024_55166_1 crossref_primary_10_1016_j_progpolymsci_2021_101469 crossref_primary_10_1021_acs_biomac_1c00183 crossref_primary_10_1021_acs_biomac_1c00065 crossref_primary_10_1016_j_carbon_2024_119227 crossref_primary_10_1002_smll_202411184 crossref_primary_10_1002_adma_202308748 crossref_primary_10_1038_s41467_024_50793_0 crossref_primary_10_3390_ma11101834 crossref_primary_10_1021_acsanm_0c02192 crossref_primary_10_1038_s43246_024_00597_y crossref_primary_10_1039_D1SM01120K crossref_primary_10_1002_adom_202200951 crossref_primary_10_1016_j_carbpol_2021_118359 crossref_primary_10_1016_j_carbpol_2021_118118 crossref_primary_10_3389_fmats_2025_1533330 crossref_primary_10_1002_lpor_202400621 crossref_primary_10_1002_adma_202305126 crossref_primary_10_1016_j_compositesb_2022_110213 crossref_primary_10_1039_D2MH00296E crossref_primary_10_1002_admt_202100773 crossref_primary_10_3389_fbioe_2022_1026876 crossref_primary_10_1002_adfm_202102677 crossref_primary_10_1039_D2CS00813K crossref_primary_10_1021_acsami_4c13523 crossref_primary_10_3390_biomimetics8020153 crossref_primary_10_3389_frsfm_2024_1341129 crossref_primary_10_1016_S1872_2067_22_64110_X crossref_primary_10_1007_s10570_022_04674_8 crossref_primary_10_1016_j_mtbio_2021_100179 crossref_primary_10_1038_s41598_023_50967_8 crossref_primary_10_1002_adma_201904311 crossref_primary_10_1002_adma_201804826 crossref_primary_10_1002_adfm_202301404 crossref_primary_10_1080_17480272_2024_2322108 crossref_primary_10_1021_acsnano_0c02302 crossref_primary_10_1038_s41467_024_55097_x crossref_primary_10_1021_acsanm_1c03708 crossref_primary_10_1039_D2NR00372D crossref_primary_10_1002_adma_202102658 crossref_primary_10_1039_D0TC05381C crossref_primary_10_1186_s10086_023_02082_5 crossref_primary_10_1002_adma_202101682 crossref_primary_10_1016_j_euromechsol_2022_104718 crossref_primary_10_1002_adfm_202200267 crossref_primary_10_1016_j_matdes_2022_110486 crossref_primary_10_1016_j_compositesb_2020_108377 crossref_primary_10_1039_D1AN00290B crossref_primary_10_1021_acsnano_1c00346 crossref_primary_10_1021_acs_biomac_0c00160 crossref_primary_10_1126_sciadv_adn3289 crossref_primary_10_1002_EXP_20220050 crossref_primary_10_1016_j_jconrel_2020_10_026 crossref_primary_10_1021_acsami_4c17701 crossref_primary_10_1007_s42765_022_00171_6 crossref_primary_10_1021_jacs_0c12326 crossref_primary_10_1021_acsami_4c02579 crossref_primary_10_1021_acs_biomac_1c00263 crossref_primary_10_1002_adts_202401461 crossref_primary_10_1360_TB_2024_0577 crossref_primary_10_1002_adma_201802306 crossref_primary_10_1021_acs_langmuir_8b04013 crossref_primary_10_3389_fbioe_2023_1252499 crossref_primary_10_1016_j_est_2023_110037 crossref_primary_10_1103_PhysRevE_101_032610 crossref_primary_10_1098_rsta_2020_0331 crossref_primary_10_1007_s40820_019_0348_z crossref_primary_10_1021_acssuschemeng_9b07668 crossref_primary_10_1016_j_foodchem_2021_130329 crossref_primary_10_1016_j_matt_2023_11_013 crossref_primary_10_1038_s41467_021_23388_2 crossref_primary_10_1002_adma_202007596 crossref_primary_10_1021_acssuschemeng_4c01260 crossref_primary_10_1021_acs_chemrev_2c00621 crossref_primary_10_1021_acsmaterialslett_1c00378 crossref_primary_10_1038_s41467_023_37036_4 crossref_primary_10_1016_j_coco_2019_11_017 crossref_primary_10_1016_j_jmps_2019_07_001 crossref_primary_10_1016_j_carbpol_2019_115188 crossref_primary_10_1063_5_0226300 crossref_primary_10_1039_C8TC04549F crossref_primary_10_1080_15440478_2022_2092252 crossref_primary_10_1016_j_isci_2022_103940 crossref_primary_10_1021_acsnano_8b02430 crossref_primary_10_1002_admt_202001180 crossref_primary_10_1002_adfm_202006227 crossref_primary_10_1093_nsr_nwac195 crossref_primary_10_1016_j_cossms_2019_07_003 crossref_primary_10_1002_advs_201801540 crossref_primary_10_14233_ajchem_2022_23730 crossref_primary_10_1557_s43577_024_00664_2 crossref_primary_10_1016_j_actbio_2020_11_037 crossref_primary_10_1021_acsomega_9b04109 crossref_primary_10_3389_fenrg_2023_1212719 crossref_primary_10_1002_ange_201906191 crossref_primary_10_3390_polym15081855 crossref_primary_10_1016_j_matt_2023_12_002 crossref_primary_10_1021_acs_chemrev_1c00683 crossref_primary_10_3390_pharmaceutics15030763 crossref_primary_10_1016_j_ceramint_2021_04_176 crossref_primary_10_1016_j_eml_2023_102111 crossref_primary_10_1002_adfm_202102923 crossref_primary_10_1016_j_cej_2021_130088 crossref_primary_10_1021_acs_biomac_1c01539 crossref_primary_10_1021_acsnano_4c00883 crossref_primary_10_1007_s42765_019_00021_y crossref_primary_10_1007_s40820_019_0303_z crossref_primary_10_1021_acssuschemeng_4c01205 crossref_primary_10_1038_s43246_020_00069_z crossref_primary_10_1039_D4RA05068A crossref_primary_10_2174_1389201024666221223095315 crossref_primary_10_1016_j_cis_2025_103398 crossref_primary_10_1007_s10570_022_04621_7 crossref_primary_10_1016_j_jma_2021_06_023 crossref_primary_10_1021_acsami_0c07846 crossref_primary_10_1021_acs_biomac_0c00223 crossref_primary_10_1002_pc_25799 crossref_primary_10_1007_s40843_022_2238_6 crossref_primary_10_1016_j_matt_2019_08_018 crossref_primary_10_1016_j_ijbiomac_2023_126730 crossref_primary_10_1039_D4ME00122B crossref_primary_10_1007_s10570_024_06224_w crossref_primary_10_1007_s40820_022_01008_y crossref_primary_10_1021_acssusresmgt_3c00030 crossref_primary_10_1088_2515_7639_ac4ee5 crossref_primary_10_1126_sciadv_abo0946 crossref_primary_10_1021_jacs_3c00636 crossref_primary_10_1021_acs_chemrev_0c01333 crossref_primary_10_1016_j_cis_2019_02_003 crossref_primary_10_1002_adfm_202214245 crossref_primary_10_1016_j_cej_2021_130091 crossref_primary_10_1021_acsnano_2c12855 crossref_primary_10_1021_acs_biomac_2c00372 crossref_primary_10_1002_adma_202310642 crossref_primary_10_1016_j_nantod_2023_101873 crossref_primary_10_1016_j_indcrop_2023_117562 crossref_primary_10_1002_adma_202312707 crossref_primary_10_1016_j_carbpol_2020_117214 crossref_primary_10_1016_j_seppur_2022_121823 crossref_primary_10_1016_j_matt_2021_03_023 crossref_primary_10_1016_j_ijbiomac_2023_124121 crossref_primary_10_1016_j_progpolymsci_2024_101874 crossref_primary_10_1021_acsbiomaterials_1c00181 crossref_primary_10_1080_02678292_2023_2188617 crossref_primary_10_1038_s41467_021_23813_6 crossref_primary_10_14504_ajr_8_S2_11 crossref_primary_10_1016_j_ijbiomac_2023_125778 crossref_primary_10_1021_acsnano_2c01616 crossref_primary_10_1016_j_actbio_2020_10_043 crossref_primary_10_1002_smll_202100066 crossref_primary_10_1016_j_carbpol_2020_116253 crossref_primary_10_1002_adma_202102877 crossref_primary_10_3390_polysaccharides2020018 crossref_primary_10_1021_acsbiomaterials_4c00254 crossref_primary_10_1016_j_nanoen_2022_107963 crossref_primary_10_1016_j_seppur_2024_128607 crossref_primary_10_1021_acs_biomac_0c01596 crossref_primary_10_1016_j_compositesa_2024_108639 crossref_primary_10_1016_j_mtnano_2020_100103 crossref_primary_10_1021_jacs_2c07296 crossref_primary_10_1007_s40032_022_00891_z crossref_primary_10_1016_j_nanoen_2022_107709 crossref_primary_10_1016_j_dibe_2024_100380 crossref_primary_10_1002_adsu_202100017 crossref_primary_10_1088_1367_2630_ad5759 crossref_primary_10_1002_advs_202413293 crossref_primary_10_1021_acsnano_0c10001 crossref_primary_10_1080_23746149_2024_2358196 crossref_primary_10_1002_adma_202413112 crossref_primary_10_1021_prechem_4c00053 crossref_primary_10_1002_adma_202102500 crossref_primary_10_1016_j_ijbiomac_2023_124223 crossref_primary_10_1016_j_carbpol_2021_118624 crossref_primary_10_1016_j_jmapro_2024_11_031 crossref_primary_10_1002_pi_6699 crossref_primary_10_1007_s40820_021_00591_w crossref_primary_10_1038_s41893_023_01264_9 crossref_primary_10_1016_j_ijbiomac_2024_132129 crossref_primary_10_1039_C9SM00566H crossref_primary_10_1016_j_eml_2023_102035 crossref_primary_10_1002_admt_201800557 crossref_primary_10_1007_s10853_020_05086_4 crossref_primary_10_1177_09544119241259071 crossref_primary_10_1007_s42765_023_00265_9 crossref_primary_10_1016_j_ijbiomac_2022_10_228 crossref_primary_10_1021_acs_macromol_0c02492 crossref_primary_10_1021_acsnano_0c04686 crossref_primary_10_1039_D3MH02032K crossref_primary_10_1016_j_jmps_2021_104560 crossref_primary_10_1016_j_carbpol_2023_120669 crossref_primary_10_1002_smll_202406561 crossref_primary_10_1126_sciadv_adl1884 crossref_primary_10_1016_j_apmt_2020_100623 crossref_primary_10_3390_nano13172399 crossref_primary_10_1016_j_foodhyd_2023_108947 crossref_primary_10_1016_j_carbpol_2023_120791 crossref_primary_10_1021_acs_biomac_1c01625 crossref_primary_10_1021_acsami_9b23378 crossref_primary_10_1016_j_eehl_2023_09_003 crossref_primary_10_1002_adfm_202105045 crossref_primary_10_1021_acsestengg_1c00007 crossref_primary_10_1002_chem_202402624 crossref_primary_10_1002_app_51872 crossref_primary_10_1016_j_ijbiomac_2021_01_159 crossref_primary_10_1021_acsnano_2c04883 crossref_primary_10_1021_acsabm_2c00013 crossref_primary_10_1016_j_nanoen_2023_108723 crossref_primary_10_2174_2210681212666220217121830 crossref_primary_10_1016_j_ijbiomac_2023_127513 crossref_primary_10_1021_acsnano_0c07613 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1038_s43246_024_00722_x crossref_primary_10_1002_advs_201902743 crossref_primary_10_1016_j_cofs_2024_101134 crossref_primary_10_1016_j_nantod_2024_102228 crossref_primary_10_1016_j_compscitech_2023_110295 crossref_primary_10_1021_acsomega_2c04729 crossref_primary_10_1021_acsnano_1c00746 crossref_primary_10_1016_j_pmatsci_2021_100915 crossref_primary_10_1016_j_jconrel_2023_05_025 crossref_primary_10_1021_acs_iecr_4c02979 crossref_primary_10_1016_j_nanoen_2020_104837 crossref_primary_10_1016_j_engfracmech_2024_110697 crossref_primary_10_1016_j_polymer_2019_122014 crossref_primary_10_1002_anie_201906191 crossref_primary_10_1016_j_carbpol_2022_119133 crossref_primary_10_1016_j_eng_2021_06_030 crossref_primary_10_1002_smll_202301362 crossref_primary_10_1016_j_indcrop_2024_118136 crossref_primary_10_1016_j_seppur_2024_127149 crossref_primary_10_1007_s00339_020_03564_9 crossref_primary_10_1039_D1QM00499A crossref_primary_10_1016_j_compscitech_2021_108970 crossref_primary_10_1021_acsami_1c02351 crossref_primary_10_1126_sciadv_aax2805 crossref_primary_10_1021_acsnano_0c01372 crossref_primary_10_1039_C8NR04507K crossref_primary_10_1002_adfm_202316301 crossref_primary_10_1016_j_mtsust_2020_100041 crossref_primary_10_1016_j_sbi_2020_04_007 crossref_primary_10_1038_s41467_024_49076_5 crossref_primary_10_1016_j_scib_2023_09_032 crossref_primary_10_1002_advs_202201287 crossref_primary_10_1016_j_actbio_2023_06_044 crossref_primary_10_1016_j_cofs_2024_101232 crossref_primary_10_3390_polym15071645 crossref_primary_10_1002_ange_201910603 crossref_primary_10_1016_j_actbio_2022_12_040 crossref_primary_10_1002_advs_202103965 crossref_primary_10_1016_j_pmatsci_2019_05_004 crossref_primary_10_1039_D2TB02611B crossref_primary_10_1002_ijch_201900083 crossref_primary_10_1021_acsengineeringau_3c00058 crossref_primary_10_1002_biot_201700753 crossref_primary_10_1021_acsnano_4c02677 crossref_primary_10_1002_biot_201700754 crossref_primary_10_1016_j_colsurfa_2024_134673 crossref_primary_10_1007_s42765_019_00013_y crossref_primary_10_3390_coatings11111297 crossref_primary_10_1016_j_cej_2022_134901 crossref_primary_10_1016_j_actbio_2021_02_018 crossref_primary_10_3389_fchem_2020_564014 crossref_primary_10_1002_idm2_12234 crossref_primary_10_1016_j_indcrop_2023_117076 crossref_primary_10_1021_acs_biomac_0c00097 crossref_primary_10_3389_fbioe_2022_1059097 crossref_primary_10_1016_j_jinsphys_2024_104630 crossref_primary_10_1016_j_apmt_2022_101497 crossref_primary_10_1016_j_mtcomm_2019_100776 crossref_primary_10_1021_acssuschemeng_3c07156 crossref_primary_10_1038_s41563_020_0799_0 crossref_primary_10_1016_j_carbpol_2019_01_063 crossref_primary_10_1016_j_chemosphere_2022_134635 crossref_primary_10_1016_j_carbpol_2021_118916 crossref_primary_10_1021_acsami_4c21924 crossref_primary_10_1098_rsos_210399 crossref_primary_10_1039_D1TA06468A crossref_primary_10_1002_admi_202201962 crossref_primary_10_1016_j_compscitech_2020_108640 crossref_primary_10_1002_adma_201904603 crossref_primary_10_1016_j_compscitech_2024_110668 crossref_primary_10_1021_acssuschemeng_1c02051 crossref_primary_10_1002_adhm_202303153 crossref_primary_10_1016_j_ijbiomac_2024_130353 crossref_primary_10_1002_adma_202416901 crossref_primary_10_1021_acsami_9b07846 crossref_primary_10_1021_acssuschemeng_0c03838 crossref_primary_10_1039_D0TB00896F crossref_primary_10_1021_acs_jpclett_0c00235 crossref_primary_10_1016_j_esci_2025_100395 crossref_primary_10_1021_acs_biomac_4c00169 crossref_primary_10_1016_j_expthermflusci_2024_111323 crossref_primary_10_1002_marc_202000435 crossref_primary_10_1021_acsnano_8b04379 crossref_primary_10_1016_j_carbpol_2020_116668 crossref_primary_10_1021_acs_accounts_2c00052 crossref_primary_10_1016_j_actbio_2022_05_044 crossref_primary_10_1038_s41467_025_56422_8 crossref_primary_10_1016_j_jmrt_2021_11_021 crossref_primary_10_1002_adfm_201903055 crossref_primary_10_1038_s41563_022_01384_1 crossref_primary_10_1021_acsnano_9b02081 crossref_primary_10_1016_j_jhazmat_2021_126475 crossref_primary_10_1007_s12221_024_00660_y crossref_primary_10_1016_j_carbpol_2022_119670 crossref_primary_10_1016_j_coco_2019_03_004 crossref_primary_10_1002_admt_202000430 crossref_primary_10_1002_aisy_202200269 crossref_primary_10_1021_acsbiomaterials_8b01560 crossref_primary_10_1016_j_giant_2020_100029 crossref_primary_10_1002_adma_201907143 crossref_primary_10_1039_D2CS00756H crossref_primary_10_1016_j_carbpol_2019_115609 crossref_primary_10_1021_acssuschemeng_9b01302 crossref_primary_10_1002_adfm_201805305 crossref_primary_10_1360_SSC_2024_0212 crossref_primary_10_1021_acs_langmuir_3c02244 crossref_primary_10_1021_acsmacrolett_8b00678 crossref_primary_10_1002_adma_202401742 crossref_primary_10_1515_hf_2021_0132 crossref_primary_10_1016_j_cej_2021_130837 crossref_primary_10_1080_10408398_2023_2199069 crossref_primary_10_1002_adfm_202210764 crossref_primary_10_1002_adfm_202104596 crossref_primary_10_1038_s41578_020_0195_z crossref_primary_10_1073_pnas_2000639117 crossref_primary_10_1557_mrs_2020_302 crossref_primary_10_1016_j_coco_2020_100414 crossref_primary_10_1016_j_jmst_2021_04_022 crossref_primary_10_1021_acscatal_1c03465 crossref_primary_10_2174_1876402912666200319152508 crossref_primary_10_1002_adma_202305828 crossref_primary_10_1002_adma_202408385 crossref_primary_10_1021_acsnano_0c08510 crossref_primary_10_1002_adma_202003206 crossref_primary_10_1007_s42765_021_00130_7 crossref_primary_10_1002_adhm_201901287 crossref_primary_10_1007_s44258_024_00038_y crossref_primary_10_1021_acsnano_9b08747 crossref_primary_10_1002_macp_202000066 crossref_primary_10_1016_j_nanoen_2019_104106 crossref_primary_10_1021_acssuschemeng_2c01978 crossref_primary_10_1016_j_optlastec_2023_110170 crossref_primary_10_1021_acsabm_0c00807 crossref_primary_10_1021_acsnano_9b09610 crossref_primary_10_1002_anie_201910603 crossref_primary_10_1002_ange_201903264 crossref_primary_10_1021_acsnano_0c07570 crossref_primary_10_3390_ma14154239 crossref_primary_10_1002_aenm_202202357 crossref_primary_10_1039_D3CP01175E crossref_primary_10_1002_sstr_202300080 crossref_primary_10_1039_C8CS01007B crossref_primary_10_1080_15421406_2023_2176048 crossref_primary_10_3389_fbioe_2021_652384 crossref_primary_10_1016_j_ceja_2021_100114 crossref_primary_10_1002_smll_202406188 crossref_primary_10_1021_acsanm_2c03469 crossref_primary_10_1038_s41551_019_0462_8 crossref_primary_10_1002_adfm_202411631 crossref_primary_10_1016_j_ijbiomac_2023_123627 crossref_primary_10_1016_j_giant_2020_100044 crossref_primary_10_1007_s12221_019_1046_7 crossref_primary_10_1016_j_polymdegradstab_2024_111080 crossref_primary_10_1039_D4TA07560A crossref_primary_10_1021_acsnano_0c04298 crossref_primary_10_1002_adma_202200865 crossref_primary_10_1126_sciadv_adp3654 crossref_primary_10_1002_adma_202002695 crossref_primary_10_1002_admt_202100296 crossref_primary_10_1039_D4NR02697G crossref_primary_10_1021_acsanm_1c03488 crossref_primary_10_3390_molecules27072148 crossref_primary_10_1038_s41467_022_31883_3 crossref_primary_10_1007_s11837_019_03340_y crossref_primary_10_1007_s10570_018_2121_8 crossref_primary_10_1016_j_chempr_2024_06_016 crossref_primary_10_1021_acsbiomaterials_9b00305 crossref_primary_10_1021_acs_chemrev_9b00416 crossref_primary_10_1039_D3NR05533G crossref_primary_10_1002_smll_202200180 crossref_primary_10_1007_s11468_025_02874_z crossref_primary_10_1002_adom_202102754 crossref_primary_10_1016_j_jece_2025_115487 crossref_primary_10_1002_marc_201900537 crossref_primary_10_15446_dyna_v87n214_82163 crossref_primary_10_1002_adma_202001238 crossref_primary_10_1073_pnas_1900161116 crossref_primary_10_3390_cosmetics8020040 crossref_primary_10_1021_acssuschemeng_9b02713 crossref_primary_10_1186_s40494_024_01327_w crossref_primary_10_1016_j_envres_2022_114998 crossref_primary_10_1002_adfm_202314231 crossref_primary_10_1016_j_mtchem_2022_100886 crossref_primary_10_1007_s40843_024_3264_7 crossref_primary_10_1007_s10570_019_02335_x crossref_primary_10_1002_smll_202403947 crossref_primary_10_1016_j_matdes_2021_109742 crossref_primary_10_1038_s41467_024_47796_2 crossref_primary_10_1021_acsbiomaterials_0c00892 crossref_primary_10_1039_C9SM01975H crossref_primary_10_1016_j_biomaterials_2020_120299 crossref_primary_10_1021_acs_nanolett_2c01303 crossref_primary_10_1002_adfm_201908121 crossref_primary_10_1073_pnas_1903019116 crossref_primary_10_1021_acsnano_0c06688 crossref_primary_10_1016_j_fbio_2024_104248 crossref_primary_10_1016_j_ijbiomac_2024_138370 crossref_primary_10_1002_pro_4832 crossref_primary_10_1016_j_chempr_2023_03_020 crossref_primary_10_1093_nsr_nwz077 crossref_primary_10_1016_j_mser_2024_100852 crossref_primary_10_1002_adma_202209479 crossref_primary_10_1021_acsnano_4c07701 crossref_primary_10_3389_fbioe_2021_653033 crossref_primary_10_1002_adma_202312299 crossref_primary_10_1016_j_ijbiomac_2025_140966 crossref_primary_10_1002_adfm_202409881 crossref_primary_10_1002_admt_201800141 crossref_primary_10_1002_pc_28044 crossref_primary_10_1093_rb_rbac098 crossref_primary_10_1021_acsmaterialslett_9b00461 crossref_primary_10_34133_2021_1843061 crossref_primary_10_1002_advs_202303058 crossref_primary_10_1016_j_cej_2019_123527 crossref_primary_10_1016_j_jfoodeng_2024_112316 crossref_primary_10_1021_acs_macromol_3c01526 crossref_primary_10_1039_D1CS00896J crossref_primary_10_1063_5_0157367 crossref_primary_10_1016_j_carbpol_2023_121708 crossref_primary_10_1021_acs_jpcc_1c09077 crossref_primary_10_1038_s41467_024_47665_y crossref_primary_10_1039_D0TA09701B crossref_primary_10_1038_s41467_024_47312_6 crossref_primary_10_1007_s42114_022_00440_3 crossref_primary_10_1039_D3GC01098H crossref_primary_10_1063_5_0083099 crossref_primary_10_1016_j_carbpol_2020_116943 crossref_primary_10_1016_j_indcrop_2024_119388 |
Cites_doi | 10.1038/ncomms5018 10.1021/acsnano.5b06781 10.1002/anie.201303829 10.1002/anie.201410411 10.1038/am.2014.111 10.1002/adfm.201705291 10.1021/bm500566m 10.1021/la0600402 10.1016/j.pmatsci.2007.06.001 10.1126/science.1172051 10.1002/anie.201302687 10.1021/acsnano.6b03355 10.1021/acsnano.7b01221 10.1007/978-3-642-80910-1 10.1002/admt.201600096 10.1021/acs.accounts.6b00616 10.1016/j.matpr.2014.09.021 10.1007/s00226-012-0515-6 10.1021/acsami.5b03091 10.1038/nature01809 10.1016/S0040-8166(72)80042-9 10.1016/j.jtbi.2008.03.010 10.1073/pnas.252340199 10.1038/nature08603 10.1038/ncomms12520 10.1073/pnas.1210105109 10.1002/adma.201303323 10.1126/science.1218764 10.1002/adma.201606208 10.1126/science.1140097 10.1038/ncomms2666 10.1088/1748-3190/11/5/055006 10.1038/nature19946 10.1039/C7SM00384F 10.1038/srep30695 10.1016/j.biomaterials.2015.12.020 10.1038/428819a 10.1098/rsta.2009.0003 10.1021/acs.iecr.6b04010 10.1021/acsnano.6b04191 10.1002/adom.201400279 10.1002/adma.201600786 10.1126/science.1210734 10.1146/annurev-fluid-120710-101200 10.1002/anie.201407141 10.1038/nmat2387 10.1016/j.crvi.2004.07.006 10.1002/anie.201201113 10.1002/adfm.201301737 10.1098/rsif.2012.0341 10.1002/adma.201701323 10.1002/adfm.201502566 10.1016/j.progpolymsci.2015.07.003 10.1016/j.actbio.2014.03.022 10.1002/adfm.201604619 10.1016/S1369-7021(11)70056-6 10.1038/s41565-017-0035-5 10.1039/tf9565200571 10.1038/nature10739 10.1039/9781849737555-00128 10.1002/anie.201105479 10.1007/s10570-009-9384-z 10.1126/sciadv.1600307 10.3139/146.017991 10.1016/j.jmbbm.2014.11.010 10.1021/acs.langmuir.6b01827 10.1021/acs.biomac.7b00527 10.1038/ncomms9643 10.1038/nature21001 10.1038/35753 10.1038/ncomms7892 10.1038/nmat4309 10.1017/CBO9780511601101 10.1016/j.jmb.2014.12.002 10.1007/s10570-010-9405-y 10.1016/S0926-6690(99)00059-X 10.1002/adfm.201600236 10.1002/adma.201304966 10.1126/science.aah4949 10.1002/adma.201603560 10.1002/anie.201412129 10.1038/s41467-017-00613-5 10.1093/jxb/erv535 10.1002/adma.201502403 10.1021/acsnano.7b02085 10.1021/nl101341w 10.1002/adfm.201703277 10.1016/j.mattod.2013.06.004 10.1038/natrevmats.2016.7 10.1038/nnano.2007.379 10.1529/biophysj.106.089144 10.1016/j.pmatsci.2017.04.013 10.1038/nmat4544 10.1002/adma.19970091408 10.1046/j.1365-2818.1998.00285.x 10.1021/acsnano.7b02305 10.1016/j.crvi.2010.01.010 10.1002/anie.201410139 10.1002/adma.201601783 10.1002/adfm.201302521 10.1039/C5SM00886G 10.1016/j.biomaterials.2017.01.041 10.1021/bm3014796 10.1126/sciadv.1601939 10.1007/s00425-004-1226-5 10.1021/acs.est.5b00888 10.1002/adma.201700538 10.1021/la501741r 10.1038/nmat2704 10.1126/science.1188936 10.1039/c3sm50183c 10.1038/nmat1019 10.1039/C6TC02629J 10.1126/science.1153307 10.1088/2040-8978/16/8/082001 10.1038/nature09540 10.1038/am.2013.69 10.1002/adfm.201505032 10.1007/s10570-012-9733-1 10.1038/ncomms8418 10.1002/anie.201402214 10.1039/C2TB00370H 10.1002/adom.201300015 10.1002/adma.201100580 10.1016/j.cocis.2017.01.003 10.1080/00206811003679521 10.1039/c0cs00108b 10.1146/annurev-biophys-083012-130345 10.1242/jeb.01831 10.1038/nnano.2017.4 10.1021/ja210355v 10.1021/ar400243m 10.1002/adma.201700981 10.1016/j.actamat.2005.05.027 10.1017/CBO9780511862397 10.1016/S1381-5148(00)00038-9 10.1021/bm101510r 10.1021/ja110369d 10.1021/jp048152u 10.1107/S0365110X51000751 10.1016/j.cobme.2017.06.002 10.1039/b911049f 10.1039/C4CC07596J 10.1002/adma.201400730 10.1021/acs.chemmater.7b00531 10.1021/la0475728 10.1038/35069000 10.1039/C3CS60204D 10.1126/science.1203874 10.1021/acs.nanolett.6b01195 10.1002/anie.201606283 10.1002/adma.200902019 10.1016/j.bprint.2016.08.003 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited 2018 Macmillan Publishers Limited 2018. |
Copyright_xml | – notice: Macmillan Publishers Limited 2018 – notice: Macmillan Publishers Limited 2018. |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/natrevmats.2018.16 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Materials Science Database Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2058-8437 |
ExternalDocumentID | PMC8221570 34168896 10_1038_natrevmats_2018_16 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE016525 – fundername: NIBIB NIH HHS grantid: U01 EB014976 |
GroupedDBID | 0R~ 88I AAEEF AARCD AAWYQ AAYZH AAZLF ABJCF ABJNI ABLJU ABUWG ACGFS ADBBV AFKRA AFSHS AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BGLVJ BKKNO CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ KB. M2P NNMJJ O9- PDBOC RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT 8FE 8FG AFBBN D1I NFIDA NPM ODYON 3V. 7XB 8FK PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-fe1a8439e57cc254d57a3bf5ffdaab979b4e98a4ba0a89f0140f5e3eac95173d3 |
IEDL.DBID | BENPR |
ISSN | 2058-8437 |
IngestDate | Thu Aug 21 14:05:14 EDT 2025 Fri Jul 11 07:17:35 EDT 2025 Sat Aug 23 13:32:54 EDT 2025 Thu Apr 03 06:57:46 EDT 2025 Tue Jul 01 03:55:38 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-fe1a8439e57cc254d57a3bf5ffdaab979b4e98a4ba0a89f0140f5e3eac95173d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 All authors contributed equally to the preparation of this manuscript. Author contributions |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8221570 |
PMID | 34168896 |
PQID | 3078843988 |
PQPubID | 2069615 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221570 proquest_miscellaneous_2545592026 proquest_journals_3078843988 pubmed_primary_34168896 crossref_primary_10_1038_natrevmats_2018_16 crossref_citationtrail_10_1038_natrevmats_2018_16 springer_journals_10_1038_natrevmats_2018_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Materials |
PublicationTitleAbbrev | Nat Rev Mater |
PublicationTitleAlternate | Nat Rev Mater |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | DasPTough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogelsBiomacromolecules2012134205421210.1021/bm30147961:CAS:528:DC%2BC38XhsFOlsbrI SultanSSiqueiraGZimmermannTMathewAP3D printing of nano-cellulosic biomaterials for medical applicationsCurr. Opin. Biomed. Eng.20172293410.1016/j.cobme.2017.06.002 BelamieEDavidsonPGiraud-GuilleMMStructure and chirality of the nematic phase in αchitin suspensionsJ. Phys. Chem. B2004108149911500010.1021/jp048152u1:CAS:528:DC%2BD2cXntF2hsb4%3D ShopsowitzKEKellyJAHamadWYMacLachlanMJBiopolymer templated glass with a twist: Controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystalsAdv. Funct. Mater.20142432733810.1002/adfm.2013017371:CAS:528:DC%2BC3sXht1Srsr7M KokkinisDSchaffnerMStudartARMultimaterial magnetically assisted 3D printing of composite materialsNat. Commun.20156864310.1038/ncomms96431:CAS:528:DC%2BC2MXhslans7vM BuehlerMJYungYCDeformation and failure of protein materials in physiologically extreme conditions and diseaseNat. Mater.2009817518810.1038/nmat23871:CAS:528:DC%2BD1MXit1ekurg%3D GibsonLJThe hierarchical structure and mechanics of plant materialsJ. R. Soc. Interface201292749276610.1098/rsif.2012.03411:CAS:528:DC%2BC38XhslWrsr7K ShahzadiKReduced graphene oxide/alumina, a good accelerant for cellulose-based artificial nacre with excellent mechanical, barrier, and conductive propertiesACS Nano2017115717572510.1021/acsnano.7b012211:CAS:528:DC%2BC2sXps1Krsr8%3D LundahlMJKlarVWangLAgoMRojasOJSpinning of cellulose nanofibrils into filaments: a reviewInd. Eng. Chem. Res.20175681910.1021/acs.iecr.6b040101:CAS:528:DC%2BC28XhvF2hu7vL GieseMBluschLKKhanMKMacLachlanMJFunctional materials from cellulose-derived liquid-crystal templatesAngew. Chem. Int. Ed.2015542888291010.1002/anie.2014071411:CAS:528:DC%2BC2cXitFaitbbM EganPSinkoRLeDucPRKetenSThe role of mechanics in biological and bio-inspired systemsNat. Commun.20156741810.1038/ncomms8418 VignoliniSPointillist structural color in Pollia fruitProc. Natl Acad. Sci. USA2012109157121571510.1073/pnas.1210105109 LingSModulating materials by orthogonally oriented βstrands: Composites of amyloid and silk fibroin fibrilsAdv. Mater.2014264569457410.1002/adma.2014007301:CAS:528:DC%2BC2cXot1Sgsrg%3D LingSPolymorphic regenerated silk fibers assembled through bioinspired spinningNat. Commun.20178138710.1038/s41467-017-00613-51:CAS:528:DC%2BC1cXptV2qt7w%3D PatekSNKorffWLCaldwellRLBiomechanics: Deadly strike mechanism of a mantis shrimpNature200442881982010.1038/428819a1:CAS:528:DC%2BD2cXjt1Crtrk%3D KellyJAYuMHamadWYMacLachlanLargeMJ. crack-free freestanding films with chiral nematic structuresAdv. Opt. Mater.2013129529910.1002/adom.201300015 BordelDPutauxJLHeuxLOrientation of native cellulose in an electric fieldLangmuir2006224899490110.1021/la06004021:CAS:528:DC%2BD28XjsFWmtLk%3D DuanBHighly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriersAngew. Chem. Int. Ed.2015545152515610.1002/anie.2014121291:CAS:528:DC%2BC2MXkvVeqt7g%3D JiSHigh dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructuresAdv. Mater.201729170053810.1002/adma.2017005381:CAS:528:DC%2BC2sXmtFGmtbc%3D DufresneANanocellulose: a new ageless bionanomaterialMater. Today20131622022710.1016/j.mattod.2013.06.0041:CAS:528:DC%2BC3sXht1altrrM LingSDesign and function of biomimetic multilayer water purification membranesSci. Adv.20173160193910.1126/sciadv.16019391:CAS:528:DC%2BC1cXkvVCqsLw%3D NovaAKetenSPugnoNMRedaelliABuehlerMJMolecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrilsNano Lett.2010102626263410.1021/nl101341w1:CAS:528:DC%2BC3cXmvVSlsrw%3D KimJKHierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteriesACS Nano2017116114612110.1021/acsnano.7b020851:CAS:528:DC%2BC2sXns1OgtbY%3D ZhuYRomainCWilliamsCKSustainable polymers from renewable resourcesNature201654035436210.1038/nature210011:CAS:528:DC%2BC28XitVyru7%2FP WangPXHamadWYMacLachlanMJPolymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystalsAngew. Chem. Int. Ed.201655124601246410.1002/anie.2016062831:CAS:528:DC%2BC28XhsVKjtrjM KhanMKFlexible mesoporous photonic resins with tunable chiral nematic structuresAngew. Chem. Int. Ed.2013528921892410.1002/anie.2013038291:CAS:528:DC%2BC3sXhtFOiur3M Ravi KumarMNVA review of chitin and chitosan applicationsReact. Funct. Polym.20004612710.1016/S1381-5148(00)00038-9 LiuZMeyersMAZhangZRitchieROFunctional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applicationsProg. Mater. Sci.20178846749810.1016/j.pmatsci.2017.04.0131:CAS:528:DC%2BC2sXntlWhsLo%3D KhanMKBsoulAWalusKHamadWYMacLachlanMJPhotonic patterns printed in chiral nematic mesoporous resinsAngew. Chem. Int. Ed.2015544304430810.1002/anie.2014104111:CAS:528:DC%2BC2MXkvF2ntrk%3D FratzlPWeinkamerRNature's hierarchical materialsProg. Mater. Sci.2007521263133410.1016/j.pmatsci.2007.06.0011:CAS:528:DC%2BD2sXhtVGisLnM CapadonaJRA versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templatesNat. Nanotechnol.2007276576910.1038/nnano.2007.3791:CAS:528:DC%2BD2sXhtlyktL%2FK KellyJAResponsive photonic hydrogels based on nanocrystalline celluloseAngew. Chem. Int. Ed.2013528912891610.1002/anie.2013026871:CAS:528:DC%2BC3sXhtFCktrjM Sydney GladmanAMatsumotoEANuzzoRGMahadevanLLewisJABiomimetic 4D printingNat. Mater.20161541341810.1038/nmat45441:CAS:528:DC%2BC28XhsVSgt7Y%3D López de la PazMDe novo designed peptide-based amyloid fibrilsProc. Natl Acad. Sci. USA200299160521605710.1073/pnas.2523401991:CAS:528:DC%2BD38Xps1ensrk%3D RaabeDSachsCRomanoPThe crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite materialActa Mater.2005534281429210.1016/j.actamat.2005.05.0271:CAS:528:DC%2BD2MXntlSntbo%3D HabibiYKey advances in the chemical modification of nanocellulosesChem. Soc. Rev.2014431519154210.1039/C3CS60204D1:CAS:528:DC%2BC2cXitFWhtro%3D LiQMcGinnisSSydnorCWongARenneckarSNanocellulose life cycle assessment. ACS SustainChem. Eng.201319199281:CAS:528:DC%2BC3sXotVSmtbo%3D GiesaTBuehlerMJNanoconfinement and the strength of biopolymersAnnu. Rev. Biophys.20134265167310.1146/annurev-biophys-083012-1303451:CAS:528:DC%2BC3sXhtFGrsL7J MittalNUltrastrong and bioactive nanostructured bio-based compositesACS Nano2017115148515910.1021/acsnano.7b023051:CAS:528:DC%2BC2sXntFeitbY%3D LingSIntegration of stiff graphene and tough silk for the design and fabrication of versatile electronic materialsAdv. Funct. Mater.201828170529110.1002/adfm.2017052911:CAS:528:DC%2BC2sXhvF2ltrfO ForterreYDumaisJGenerating helices in natureScience20113331715171610.1126/science.12107341:CAS:528:DC%2BC3MXhtlyit7nE ParkerRMHierarchical self-assembly of cellulose nanocrystals in a confined geometryACS Nano2016108443844910.1021/acsnano.6b033551:CAS:528:DC%2BC28XhsVWntLzI GallardoRDe novo design of a biologically active amyloidScience2016354aah494910.1126/science.aah49491:CAS:528:DC%2BC28XhvVSnsLvE Martínez ÁvilaHSchwarzSRotterNGatenholmP3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regenerationBioprinting20161223510.1016/j.bprint.2016.08.003 LingSLiCJinKKaplanDLBuehlerMJLiquid exfoliated natural silk nanofibrils: applications in optical and electrical devicesAdv. Mater.2016287783779010.1002/adma.2016017831:CAS:528:DC%2BC28XhtVKntb7J HuangWDesign of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk–elastin-like proteinsAdv. Funct. Mater.2016264113412310.1002/adfm.2016002361:CAS:528:DC%2BC28XmtVKgsr8%3D KimuraFMagnetic alignment of the chiral nematic phase of a cellulose microfibril suspensionLangmuir2005212034203710.1021/la04757281:CAS:528:DC%2BD2MXmtVWjsw%3D%3D RobinsonCLiquid-crystalline structures in solutions of a polypeptideTrans. Faraday Soc.19565257159210.1039/tf95652005711:CAS:528:DyaG28XotVeksw%3D%3D Palffy-MuhorayPLiquid crystals New designs in cholesteric colourNature199839174574610.1038/357531:CAS:528:DyaK1cXhtleqt78%3D BlellRGenerating inplane orientational order in multilayer films prepared by spray-assisted layerbylayer assemblyACS Nano201711849410.1021/acsnano.6b041911:CAS:528:DC%2BC28XhvFSitLjM ShopsowitzKEStahlAHamadWYMacLachlanMJHard templating of nanocrystalline titanium dioxide with chiral nematic orderingAngew. Chem. Int. Ed.2012516886689010.1002/anie.2012011131:CAS:528:DC%2BC38Xns1Sqt7s%3D MuXGrayDGFormation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage processLangmuir2014309256926010.1021/la501741r1:CAS:528:DC%2BC2cXht1aht7bO YaoKMengQBuloneVZhouQFlexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural colorAdv. Mater.201729170132310.1002/adma.2017013231:CAS:528:DC%2BC2sXos1ersL8%3D LundahlMJStrength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogelsSci. Rep.201663069510.1038/srep306951:CAS:528:DC%2BC2sXksFeksrw%3D StudartARBiologically inspired dynamic material systemsAngew. Chem. Int. Ed.2015543400341610.1002/anie.2014101391:CAS:528:DC%2BC2MXosFGjsg%3D%3D MitovMCholesteric liquid crystals in living matterSoft Matter2017134176420910.1039/C7SM00384F1:CAS:528:DC%2BC2sXps1Glu78%3D NikolovSRevealing the Design Principles of High-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticleAdv. Mater.20102251952610.1002/adma.2009020191:CAS:528:DC%2BC3cXhtFantrY%3D Liu, Y., Yu, S.H. & Bergström, L. Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201703277 (2017). TsengPDirected assembly of bio-inspired hierarchical materials with controlled nanofibrillar ar C Robinson (BFnatrevmats201816_CR106) 1956; 52 P Palffy-Muhoray (BFnatrevmats201816_CR76) 1998; 391 AC Neville (BFnatrevmats201816_CR61) 1975 GR Meseck (BFnatrevmats201816_CR107) 2017; 29 LK Grunenfelder (BFnatrevmats201816_CR70) 2014; 10 MK Khan (BFnatrevmats201816_CR122) 2015; 54 Q Li (BFnatrevmats201816_CR153) 2013; 1 JC Weaver (BFnatrevmats201816_CR65) 2012; 336 AR Studart (BFnatrevmats201816_CR102) 2015; 54 MK Khan (BFnatrevmats201816_CR123) 2014; 26 KE Shopsowitz (BFnatrevmats201816_CR127) 2011; 50 DC Adler (BFnatrevmats201816_CR57) 2013; 9 F Jativa (BFnatrevmats201816_CR134) 2015; 11 SW Cranford (BFnatrevmats201816_CR12) 2012; 482 M Eder (BFnatrevmats201816_CR53) 2013; 47 S Sultan (BFnatrevmats201816_CR88) 2017; 2 S Ling (BFnatrevmats201816_CR148) 2014; 26 SE Naleway (BFnatrevmats201816_CR13) 2015; 27 SN Fernandes (BFnatrevmats201816_CR110) 2017; 29 J Keckes (BFnatrevmats201816_CR56) 2003; 2 M Giese (BFnatrevmats201816_CR120) 2014; 53 KE Shopsowitz (BFnatrevmats201816_CR125) 2010; 468 M Schlesinger (BFnatrevmats201816_CR129) 2015; 51 P Egan (BFnatrevmats201816_CR44) 2015; 6 Y Forterre (BFnatrevmats201816_CR97) 2011; 333 S Ling (BFnatrevmats201816_CR147) 2016; 28 M Giese (BFnatrevmats201816_CR22) 2015; 54 N Tamaoki (BFnatrevmats201816_CR77) 1997; 9 MJ Lundahl (BFnatrevmats201816_CR30) 2016; 6 T Giesa (BFnatrevmats201816_CR7) 2013; 42 J Majoinen (BFnatrevmats201816_CR104) 2012; 19 Y Li (BFnatrevmats201816_CR31) 2015; 7 Z Liu (BFnatrevmats201816_CR71) 2017; 88 S Kaltofen (BFnatrevmats201816_CR139) 2015; 427 A Walther (BFnatrevmats201816_CR28) 2011; 23 S Suzuki (BFnatrevmats201816_CR89) 2017; 18 HJ Jin (BFnatrevmats201816_CR85) 2003; 424 MJ Buehler (BFnatrevmats201816_CR137) 2009; 8 MJ Lundahl (BFnatrevmats201816_CR25) 2017; 56 I Burgert (BFnatrevmats201816_CR101) 2009; 367 E Belamie (BFnatrevmats201816_CR105) 2004; 108 X Mu (BFnatrevmats201816_CR114) 2014; 30 S Vignolini (BFnatrevmats201816_CR75) 2012; 109 M Mitov (BFnatrevmats201816_CR3) 2017; 13 KJ De France (BFnatrevmats201816_CR118) 2016; 32 JR Capadona (BFnatrevmats201816_CR18) 2007; 2 W Huang (BFnatrevmats201816_CR143) 2017; 50 MS Toivonen (BFnatrevmats201816_CR150) 2015; 25 P Fratzl (BFnatrevmats201816_CR10) 2007; 52 S Armon (BFnatrevmats201816_CR103) 2011; 333 T Giesa (BFnatrevmats201816_CR9) 2014; 26 JW Dunlop (BFnatrevmats201816_CR100) 2011; 14 SW Cranford (BFnatrevmats201816_CR136) 2012 KMO Håkansson (BFnatrevmats201816_CR35) 2014; 5 Y Li (BFnatrevmats201816_CR94) 2017; 29 TD Nguyen (BFnatrevmats201816_CR116) 2014; 24 KE Shopsowitz (BFnatrevmats201816_CR128) 2012; 51 CM Altaner (BFnatrevmats201816_CR50) 2008; 253 KMO Håkansson (BFnatrevmats201816_CR91) 2016; 1 RM Erb (BFnatrevmats201816_CR99) 2013; 4 HV Zhang (BFnatrevmats201816_CR141) 2016; 2 S Hooshmand (BFnatrevmats201816_CR33) 2015; 7 AC Neville (BFnatrevmats201816_CR1) 1993 PS Huang (BFnatrevmats201816_CR138) 2016; 537 A Déjardin (BFnatrevmats201816_CR49) 2010; 333 K Jin (BFnatrevmats201816_CR58) 2015; 42 M López de la Paz (BFnatrevmats201816_CR140) 2002; 99 Y Bouligand (BFnatrevmats201816_CR60) 1972; 4 KE Shopsowitz (BFnatrevmats201816_CR126) 2012; 134 BFnatrevmats201816_CR42 TD Nguyen (BFnatrevmats201816_CR111) 2016; 26 K Shahzadi (BFnatrevmats201816_CR43) 2017; 11 F Kimura (BFnatrevmats201816_CR81) 2005; 21 P Tseng (BFnatrevmats201816_CR87) 2017; 12 R Blell (BFnatrevmats201816_CR82) 2017; 11 BFnatrevmats201816_CR151 KJ De France (BFnatrevmats201816_CR19) 2017; 29 S Keten (BFnatrevmats201816_CR8) 2010; 9 MNV Ravi Kumar (BFnatrevmats201816_CR15) 2000; 46 P Das (BFnatrevmats201816_CR27) 2012; 13 R Arvidsson (BFnatrevmats201816_CR152) 2015; 49 C Stevens (BFnatrevmats201816_CR55) 2010 P Fratzl (BFnatrevmats201816_CR51) 2004; 95 S Lin (BFnatrevmats201816_CR144) 2015; 6 G Siqueira (BFnatrevmats201816_CR92) 2017; 27 R Elbaum (BFnatrevmats201816_CR98) 2007; 316 RM Parker (BFnatrevmats201816_CR132) 2016; 10 I Burgert (BFnatrevmats201816_CR59) 2013 JA Kelly (BFnatrevmats201816_CR20) 2014; 47 SN Patek (BFnatrevmats201816_CR67) 2005; 208 A Nova (BFnatrevmats201816_CR45) 2010; 10 H Martínez Ávila (BFnatrevmats201816_CR95) 2016; 1 Y Li (BFnatrevmats201816_CR133) 2016; 7 S Iwamoto (BFnatrevmats201816_CR29) 2011; 12 D Bordel (BFnatrevmats201816_CR80) 2006; 22 Y Zhu (BFnatrevmats201816_CR154) 2016; 540 BFnatrevmats201816_CR11 H Mertaniemi (BFnatrevmats201816_CR32) 2016; 82 R Gallardo (BFnatrevmats201816_CR142) 2016; 354 H Zhu (BFnatrevmats201816_CR38) 2016; 10 HO Fabritius (BFnatrevmats201816_CR62) 2016; 11 JR Capadona (BFnatrevmats201816_CR17) 2008; 319 I Siró (BFnatrevmats201816_CR86) 2010; 17 KE Shopsowitz (BFnatrevmats201816_CR115) 2014; 24 W Huang (BFnatrevmats201816_CR146) 2016; 26 S Ling (BFnatrevmats201816_CR39) 2017; 3 N Du (BFnatrevmats201816_CR48) 2006; 91 JP Joseleau (BFnatrevmats201816_CR52) 2004; 219 V Sharma (BFnatrevmats201816_CR73) 2009; 325 D Kokkinis (BFnatrevmats201816_CR93) 2015; 6 B Frka-Petesic (BFnatrevmats201816_CR117) 2017; 29 S Amini (BFnatrevmats201816_CR69) 2015; 14 FG Omenetto (BFnatrevmats201816_CR14) 2010; 329 G Pilate (BFnatrevmats201816_CR47) 2004; 327 MK Khan (BFnatrevmats201816_CR119) 2013; 52 BD Wilts (BFnatrevmats201816_CR74) 2014; 1S SN Patek (BFnatrevmats201816_CR66) 2004; 428 E Libby (BFnatrevmats201816_CR72) 2014; 16 T Wu (BFnatrevmats201816_CR112) 2016; 4 LJ Gibson (BFnatrevmats201816_CR4) 2012; 9 S Wang (BFnatrevmats201816_CR16) 2016; 53 Y Habibi (BFnatrevmats201816_CR79) 2014; 43 H Qi (BFnatrevmats201816_CR130) 2011; 133 A Sydney Gladman (BFnatrevmats201816_CR90) 2016; 15 JG Torres-Rendon (BFnatrevmats201816_CR26) 2014; 15 F Barthelat (BFnatrevmats201816_CR156) 2016; 1 F Vollrath (BFnatrevmats201816_CR84) 2001; 410 S Ling (BFnatrevmats201816_CR34) 2017; 8 RJ Moon (BFnatrevmats201816_CR5) 2011; 40 P Fratzl (BFnatrevmats201816_CR54) 2009; 462 D Raabe (BFnatrevmats201816_CR63) 2005; 53 JA Kelly (BFnatrevmats201816_CR131) 2013; 52 B Duan (BFnatrevmats201816_CR23) 2015; 54 A Dufresne (BFnatrevmats201816_CR21) 2013; 16 S Frische (BFnatrevmats201816_CR46) 1998; 189 NA Yaraghi (BFnatrevmats201816_CR68) 2016; 28 JPF Lagerwall (BFnatrevmats201816_CR108) 2014; 6 PX Wang (BFnatrevmats201816_CR135) 2016; 55 TD Nguyen (BFnatrevmats201816_CR109) 2014; 2 JK Kim (BFnatrevmats201816_CR40) 2017; 11 S Nikolov (BFnatrevmats201816_CR64) 2010; 22 H de Vries (BFnatrevmats201816_CR78) 1951; 4 J Dumais (BFnatrevmats201816_CR96) 2012; 44 K Yao (BFnatrevmats201816_CR121) 2017; 29 AJ Bidhendi (BFnatrevmats201816_CR6) 2016; 67 H Jin (BFnatrevmats201816_CR41) 2013; 1 JA Kelly (BFnatrevmats201816_CR124) 2013; 1 S Ling (BFnatrevmats201816_CR24) 2018; 28 H Ehrlich (BFnatrevmats201816_CR155) 2010; 52 G Siqueira (BFnatrevmats201816_CR113) 2010; 17 S Ling (BFnatrevmats201816_CR149) 2016; 16 MA Meyers (BFnatrevmats201816_CR2) 2014 LG Angelini (BFnatrevmats201816_CR83) 2000; 11 A Tarakanova (BFnatrevmats201816_CR145) 2017; 127 S Ji (BFnatrevmats201816_CR37) 2017; 29 N Mittal (BFnatrevmats201816_CR36) 2017; 11 |
References_xml | – reference: LingSPolymorphic regenerated silk fibers assembled through bioinspired spinningNat. Commun.20178138710.1038/s41467-017-00613-51:CAS:528:DC%2BC1cXptV2qt7w%3D – reference: GieseMBluschLKKhanMKHamadWYMacLachlanMJResponsive mesoporous photonic cellulose films by supramolecular cotemplatingAngew. Chem. Int. Ed.2014538880888410.1002/anie.2014022141:CAS:528:DC%2BC2cXhtVOisL7M – reference: AdlerDCBuehlerMJMesoscale mechanics of wood cell walls under axial strainSoft Matter201397138714410.1039/c3sm50183c1:CAS:528:DC%2BC3sXhtVKhsLfF – reference: TamaokiNParfenovAVMasakiAMatsudaHRewritable full-color recording on a thin solid film of a cholesteric low-molecular-weight compoundAdv. Mater.199791102110410.1002/adma.199700914081:CAS:528:DyaK2sXnsF2qtrg%3D – reference: HabibiYKey advances in the chemical modification of nanocellulosesChem. Soc. Rev.2014431519154210.1039/C3CS60204D1:CAS:528:DC%2BC2cXitFWhtro%3D – reference: ZhuYRomainCWilliamsCKSustainable polymers from renewable resourcesNature201654035436210.1038/nature210011:CAS:528:DC%2BC28XitVyru7%2FP – reference: DuanBHighly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriersAngew. Chem. Int. Ed.2015545152515610.1002/anie.2014121291:CAS:528:DC%2BC2MXkvVeqt7g%3D – reference: MittalNUltrastrong and bioactive nanostructured bio-based compositesACS Nano2017115148515910.1021/acsnano.7b023051:CAS:528:DC%2BC2sXntFeitbY%3D – reference: Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol.https://doi.org/10.1038/s41565-017-0035-5 (2018). – reference: Ravi KumarMNVA review of chitin and chitosan applicationsReact. Funct. Polym.20004612710.1016/S1381-5148(00)00038-9 – reference: MajoinenJKontturiEIkkalaOGrayDGSEM imaging of chiral nematic films cast from cellulose nanocrystal suspensionsCellulose2012191599160510.1007/s10570-012-9733-11:CAS:528:DC%2BC38Xht1eksLzI – reference: WaltherATimonenJVIDíezILaukkanenAIkkalaOMultifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrilsAdv. Mater.2011232924292810.1002/adma.2011005801:CAS:528:DC%2BC3MXosFemsrY%3D – reference: KellyJAResponsive photonic hydrogels based on nanocrystalline celluloseAngew. Chem. Int. Ed.2013528912891610.1002/anie.2013026871:CAS:528:DC%2BC3sXhtFCktrjM – reference: NovaAKetenSPugnoNMRedaelliABuehlerMJMolecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrilsNano Lett.2010102626263410.1021/nl101341w1:CAS:528:DC%2BC3cXmvVSlsrw%3D – reference: LiY3Dprinted, allinone evaporator for high-efficiency solar steam generation under 1 sun illuminationAdv. Mater.201729170098110.1002/adma.2017009811:CAS:528:DC%2BC2sXntFWksbo%3D – reference: BurgertIFratzlPActuation systems in plants as prototypes for bioinspired devicesPhil. Trans. A Math. Phys. Eng. Sci.20093671541155710.1098/rsta.2009.00031:CAS:528:DC%2BD1MXkvVWhtLk%3D – reference: MitovMCholesteric liquid crystals in living matterSoft Matter2017134176420910.1039/C7SM00384F1:CAS:528:DC%2BC2sXps1Glu78%3D – reference: JinHIonically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assemblyJ. Mater. Chem. B2013183584010.1039/C2TB00370H1:CAS:528:DC%2BC3sXhtVymsrg%3D – reference: ShahzadiKReduced graphene oxide/alumina, a good accelerant for cellulose-based artificial nacre with excellent mechanical, barrier, and conductive propertiesACS Nano2017115717572510.1021/acsnano.7b012211:CAS:528:DC%2BC2sXps1Krsr8%3D – reference: YaraghiNAA sinusoidally architected helicoidal biocompositeAdv. Mater.2016286835684410.1002/adma.2016007861:CAS:528:DC%2BC28XptVWjt7w%3D – reference: BouligandYTwisted fibrous arrangements in biological materials and cholesteric mesophasesTissue Cell1972418921710.1016/S0040-8166(72)80042-91:CAS:528:DyaE38Xls1Whu7o%3D – reference: SiqueiraGCellulose nanocrystal inks for 3D printing of textured cellular architecturesAdv. Funct. Mater.201727160461910.1002/adfm.2016046191:CAS:528:DC%2BC2sXit1WisbY%3D – reference: DumaisJForterreY“Vegetable dynamicks”: the role of water in plant movementsAnnu. Rev. Fluid Mech.20124445347810.1146/annurev-fluid-120710-101200 – reference: FratzlPBarthFGBiomaterial systems for mechanosensing and actuationNature200946244244810.1038/nature086031:CAS:528:DC%2BD1MXhsVylsL%2FM – reference: KimuraFMagnetic alignment of the chiral nematic phase of a cellulose microfibril suspensionLangmuir2005212034203710.1021/la04757281:CAS:528:DC%2BD2MXmtVWjsw%3D%3D – reference: BuehlerMJYungYCDeformation and failure of protein materials in physiologically extreme conditions and diseaseNat. Mater.2009817518810.1038/nmat23871:CAS:528:DC%2BD1MXit1ekurg%3D – reference: KeckesJCell-wall recovery after irreversible deformation of woodNat. Mater.2003281081310.1038/nmat10191:CAS:528:DC%2BD3sXptlemt70%3D – reference: MoonRJMartiniANairnJSimonsenJYoungbloodJCellulose nanomaterials review: structure, properties and nanocompositesChem. Soc. Rev.2011403941399410.1039/c0cs00108b1:CAS:528:DC%2BC3MXns12ntLY%3D – reference: Sydney GladmanAMatsumotoEANuzzoRGMahadevanLLewisJABiomimetic 4D printingNat. Mater.20161541341810.1038/nmat45441:CAS:528:DC%2BC28XhsVSgt7Y%3D – reference: LingSJinKKaplanDLBuehlerMJUltrathin free-standing Bombyx mori silk nanofibril membranesNano Lett.2016163795380010.1021/acs.nanolett.6b011951:CAS:528:DC%2BC28XmtVahsLk%3D – reference: LiYColloidal cholesteric liquid crystal in spherical confinementNat. Commun.201671252010.1038/ncomms125201:CAS:528:DC%2BC28XhsVCht7%2FL – reference: SuzukiSTeramotoYSimple inkjet process to fabricate microstructures of chitinous nanocrystals for cell patterningBiomacromolecules2017181993199910.1021/acs.biomac.7b005271:CAS:528:DC%2BC2sXns1Ggu7o%3D – reference: LingSDesign and function of biomimetic multilayer water purification membranesSci. Adv.20173160193910.1126/sciadv.16019391:CAS:528:DC%2BC1cXkvVCqsLw%3D – reference: SchlesingerMGieseMBluschLKHamadWYMacLachlanMJChiral nematic cellulose-gold nanoparticle composites from mesoporous photonic celluloseChem. Commun.20155153053310.1039/C4CC07596J1:CAS:528:DC%2BC2cXhvF2jtLfN – reference: GiesaTBuehlerMJNanoconfinement and the strength of biopolymersAnnu. Rev. Biophys.20134265167310.1146/annurev-biophys-083012-1303451:CAS:528:DC%2BC3sXhtFGrsL7J – reference: JativaFSchutzCBergstromLZhangXWickleinBConfined self-assembly of cellulose nanocrystals in a shrinking dropletSoft Matter2015115374538010.1039/C5SM00886G1:CAS:528:DC%2BC2MXpsFegtL4%3D – reference: SiqueiraGAbdillahiHBrasJDufresneAHigh reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado)Cellulose20101728929810.1007/s10570-009-9384-z1:CAS:528:DC%2BC3cXivFGlsrk%3D – reference: TarakanovaAHuangWWeissASKaplanDLBuehlerMJComputational smart polymer design based on elastin protein mutabilityBiomaterials2017127496010.1016/j.biomaterials.2017.01.0411:CAS:528:DC%2BC2sXjvFagtrs%3D – reference: PatekSNKorffWLCaldwellRLBiomechanics: Deadly strike mechanism of a mantis shrimpNature200442881982010.1038/428819a1:CAS:528:DC%2BD2cXjt1Crtrk%3D – reference: EderMArnouldODunlopJWCHornatowskaJSalménLExperimental micromechanical characterisation of wood cell wallsWood Sci. Technol.20134716318210.1007/s00226-012-0515-61:CAS:528:DC%2BC3sXhtVarug%3D%3D – reference: StudartARBiologically inspired dynamic material systemsAngew. Chem. Int. Ed.2015543400341610.1002/anie.2014101391:CAS:528:DC%2BC2MXosFGjsg%3D%3D – reference: NikolovSRevealing the Design Principles of High-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticleAdv. Mater.20102251952610.1002/adma.2009020191:CAS:528:DC%2BC3cXhtFantrY%3D – reference: NguyenTDHamadWYMacLachlanMJCdS quantum dots encapsulated in chiral nematic mesoporous silica: New iridescent and luminescent materialsAdv. Funct. Mater.20142477778310.1002/adfm.2013025211:CAS:528:DC%2BC3sXhs1KrtLjK – reference: NevilleACBiology of Fibrous Composites: Development Beyond the Cell Membrane1993Cambridge Univ. Press, New York10.1017/CBO9780511601101 – reference: EhrlichHChitin and collagen as universal and alternative templates in biomineralizationInt. Geol. Rev.20105266169910.1080/00206811003679521 – reference: YaoKMengQBuloneVZhouQFlexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural colorAdv. Mater.201729170132310.1002/adma.2017013231:CAS:528:DC%2BC2sXos1ersL8%3D – reference: HuangPSBoykenSEBakerDThe coming of age of de novo protein designNature201653732032710.1038/nature199461:CAS:528:DC%2BC28XhsFajsrzL – reference: DuNDesign of superior spider silk: From nanostructure to mechanical propertiesBiophys. J.2006914528453510.1529/biophysj.106.0891441:CAS:528:DC%2BD28XhtlWgurfO – reference: PatekSNCaldwellRLExtreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarusJ. Exp. Biol.20052083655366410.1242/jeb.018311:STN:280:DC%2BD2MvpslKqsg%3D%3D – reference: WiltsBDWhitneyHMGloverBJSteinerUVignoliniSNatural helicoidal structures: morphology, self-assembly and optical propertiesMater. Today Proc.20141S17718510.1016/j.matpr.2014.09.021 – reference: HåkanssonKMOSolidification of 3D printed nanofibril hydrogels into functional 3D cellulose structuresAdv. Mater. Tech.20161160009610.1002/admt.2016000961:CAS:528:DC%2BC28XitV2msLzF – reference: ParkerRMHierarchical self-assembly of cellulose nanocrystals in a confined geometryACS Nano2016108443844910.1021/acsnano.6b033551:CAS:528:DC%2BC28XhsVWntLzI – reference: BordelDPutauxJLHeuxLOrientation of native cellulose in an electric fieldLangmuir2006224899490110.1021/la06004021:CAS:528:DC%2BD28XjsFWmtLk%3D – reference: LiQMcGinnisSSydnorCWongARenneckarSNanocellulose life cycle assessment. ACS SustainChem. Eng.201319199281:CAS:528:DC%2BC3sXotVSmtbo%3D – reference: GieseMBluschLKKhanMKMacLachlanMJFunctional materials from cellulose-derived liquid-crystal templatesAngew. Chem. Int. Ed.2015542888291010.1002/anie.2014071411:CAS:528:DC%2BC2cXitFaitbbM – reference: DéjardinAWood formation in AngiospermsC. R. Biol.201033332533410.1016/j.crvi.2010.01.0101:CAS:528:DC%2BC3cXktlCqsLw%3D – reference: De FranceKJYagerKGHoareTCranstonEDCooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic fieldLangmuir2016327564757110.1021/acs.langmuir.6b018271:CAS:528:DC%2BC28XhtFGmtbrE – reference: ToivonenMSKaskelaARojasOJKauppinenEIIkkalaOAmbient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devicesAdv. Funct. Mater.2015256618662610.1002/adfm.2015025661:CAS:528:DC%2BC2MXhsFyqsrvL – reference: Frka-PetesicBRadavidsonHJeanBHeuxLDynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fieldsAdv. Mater.201729160620810.1002/adma.2016062081:CAS:528:DC%2BC2sXhsVaqsrg%3D – reference: ArvidssonRNguyenDSvanströmMLife cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processesEnviron. Sci. Technol.2015496881689010.1021/acs.est.5b008881:CAS:528:DC%2BC2MXns1Ohtrg%3D – reference: LiuZMeyersMAZhangZRitchieROFunctional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applicationsProg. Mater. Sci.20178846749810.1016/j.pmatsci.2017.04.0131:CAS:528:DC%2BC2sXntlWhsLo%3D – reference: LundahlMJStrength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogelsSci. Rep.201663069510.1038/srep306951:CAS:528:DC%2BC2sXksFeksrw%3D – reference: LingSLiCJinKKaplanDLBuehlerMJLiquid exfoliated natural silk nanofibrils: applications in optical and electrical devicesAdv. Mater.2016287783779010.1002/adma.2016017831:CAS:528:DC%2BC28XhtVKntb7J – reference: KhanMKBsoulAWalusKHamadWYMacLachlanMJPhotonic patterns printed in chiral nematic mesoporous resinsAngew. Chem. Int. Ed.2015544304430810.1002/anie.2014104111:CAS:528:DC%2BC2MXkvF2ntrk%3D – reference: LiYHybridizing wood cellulose and graphene oxide toward high-performance fibersNPG Asia Mater.20157e15010.1038/am.2014.1111:CAS:528:DC%2BC2MXmtVOmtQ%3D%3D – reference: ElbaumRZaltzmanLBurgertIFratzlPThe role of wheat awns in the seed dispersal unitScience200731688488610.1126/science.11400971:CAS:528:DC%2BD2sXltVentL8%3D – reference: ArmonSEfratiEKupfermanRSharonEGeometry and mechanics in the opening of chiral seed podsScience20113331726173010.1126/science.12038741:CAS:528:DC%2BC3MXhtFyqurrP – reference: NevilleACBiology of the Arthropod Cuticle1975Springer Science & Business Media, Berlin10.1007/978-3-642-80910-1 – reference: KimJKHierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteriesACS Nano2017116114612110.1021/acsnano.7b020851:CAS:528:DC%2BC2sXns1OgtbY%3D – reference: ErbRMSanderJSGrischRStudartARSelf-shaping composites with programmable bioinspired microstructuresNat. Commun.20134171210.1038/ncomms26661:CAS:528:DC%2BC3sXpsFegsrw%3D – reference: DasPTough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogelsBiomacromolecules2012134205421210.1021/bm30147961:CAS:528:DC%2BC38XhsFOlsbrI – reference: HooshmandSAitomäkiYNorbergNMathewAPOksmanKDry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidueACS Appl. Mater. Interfaces20157130221302810.1021/acsami.5b030911:CAS:528:DC%2BC2MXovFKqurY%3D – reference: WangSLuAZhangLRecent advances in regenerated cellulose materialsProg. Polym. Sci.20165316920610.1016/j.progpolymsci.2015.07.0031:CAS:528:DC%2BC2MXhtlSlt7vF – reference: de VriesHRotatory power and other optical properties of certain liquid crystalsActa Cryst.1951421922610.1107/S0365110X510007511:CAS:528:DyaG3MXltFyquw%3D%3D – reference: KellyJAGieseMShopsowitzKEHamadWYMacLachlanMJThe development of chiral nematic mesoporous materialsAcc. Chem. Res.2014471088109610.1021/ar400243m1:CAS:528:DC%2BC2cXlsFyku7g%3D – reference: KhanMKHamadWYMacLachlanMJTunable mesoporous bilayer photonic resins with chiral nematic structures and actuator propertiesAdv. Mater.2014262323232810.1002/adma.2013049661:CAS:528:DC%2BC2cXhtVyksb4%3D – reference: LinSPredictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibresNat. Commun.20156689210.1038/ncomms7892 – reference: KhanMKFlexible mesoporous photonic resins with tunable chiral nematic structuresAngew. Chem. Int. Ed.2013528921892410.1002/anie.2013038291:CAS:528:DC%2BC3sXhtFOiur3M – reference: LingSModulating materials by orthogonally oriented βstrands: Composites of amyloid and silk fibroin fibrilsAdv. Mater.2014264569457410.1002/adma.2014007301:CAS:528:DC%2BC2cXot1Sgsrg%3D – reference: ShopsowitzKEKellyJAHamadWYMacLachlanMJBiopolymer templated glass with a twist: Controlling the chirality, porosity, and photonic properties of silica with cellulose nanocrystalsAdv. Funct. Mater.20142432733810.1002/adfm.2013017371:CAS:528:DC%2BC3sXht1Srsr7M – reference: Fu, C. J., Shao, Z. Z. & Fritz, V. Animal silks: their structures, properties and artificial production. Chem. Commun. 6515–6529 (2009). – reference: StevensCIndustrial Applications of Natural Fibres: Structure, Properties and Technical Applications.2010John Wiley & Sons – reference: FratzlPWeinkamerRNature's hierarchical materialsProg. Mater. Sci.2007521263133410.1016/j.pmatsci.2007.06.0011:CAS:528:DC%2BD2sXhtVGisLnM – reference: HåkanssonKMOHydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filamentsNat. Commun.20145401810.1038/ncomms50181:CAS:528:DC%2BC2cXitVShsrbK – reference: BurgertIFratzlPDunlopJWCWeinkamerRMaterials Design Inspired by Nature: Function Through Inner Architecture2013The Royal Society of Chemistry, Dorchester12815010.1039/9781849737555-00128 – reference: AminiSTadayonMIdapalapatiSMiserezAThe role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl clubNat. Mater.20151494395010.1038/nmat43091:CAS:528:DC%2BC2MXhtFeju7jJ – reference: Palffy-MuhorayPLiquid crystals New designs in cholesteric colourNature199839174574610.1038/357531:CAS:528:DyaK1cXhtleqt78%3D – reference: GibsonLJThe hierarchical structure and mechanics of plant materialsJ. R. Soc. Interface201292749276610.1098/rsif.2012.03411:CAS:528:DC%2BC38XhslWrsr7K – reference: EganPSinkoRLeDucPRKetenSThe role of mechanics in biological and bio-inspired systemsNat. Commun.20156741810.1038/ncomms8418 – reference: WeaverJCThe stomatopod dactyl club: a formidable damage-tolerant biological hammerScience20123361275128010.1126/science.12187641:CAS:528:DC%2BC38XnvFekt7s%3D – reference: BelamieEDavidsonPGiraud-GuilleMMStructure and chirality of the nematic phase in αchitin suspensionsJ. Phys. Chem. B2004108149911500010.1021/jp048152u1:CAS:528:DC%2BD2cXntF2hsb4%3D – reference: NalewaySEPorterMMMcKittrickJMeyersMAStructural design elements in biological materials: application to bioinspirationAdv. Mater.2015275455547610.1002/adma.2015024031:CAS:528:DC%2BC2MXhsVSjtLrO – reference: CapadonaJRA versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templatesNat. Nanotechnol.2007276576910.1038/nnano.2007.3791:CAS:528:DC%2BD2sXhtlyktL%2FK – reference: ShopsowitzKEQiHHamadWYMacLachlanMJFree-standing mesoporous silica films with tunable chiral nematic structuresNature201046842242510.1038/nature095401:CAS:528:DC%2BC3cXhsVeis7nK – reference: ZhangHVComputationally designed peptides for self-assembly of nanostructured latticesSci. Adv.20162160030710.1126/sciadv.16003071:CAS:528:DC%2BC1cXltVWjurg%3D – reference: FrischeSMaunsbachABVollrathFElongate cavities and skin–core structure in Nephila spider silk observed by electron microscopyJ. Microsc.1998189647010.1046/j.1365-2818.1998.00285.x1:CAS:528:DyaK1cXhtlOmsLw%3D – reference: VollrathFKnightDPLiquid crystalline spinning of spider silkNature200141054154810.1038/350690001:CAS:528:DC%2BD3MXis1Grtbc%3D – reference: De FranceKJHoareTCranstonEDReview of hydrogels and aerogels containing nanocelluloseChem. Mater.2017294609463110.1021/acs.chemmater.7b005311:CAS:528:DC%2BC2sXmtFCmt7Y%3D – reference: BidhendiAJGeitmannARelating the mechanics of the primary plant cell wall to morphogenesisJ. Exp. Bot.20166744946110.1093/jxb/erv5351:CAS:528:DC%2BC28Xht1Squ7fN – reference: RaabeDSachsCRomanoPThe crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite materialActa Mater.2005534281429210.1016/j.actamat.2005.05.0271:CAS:528:DC%2BD2MXntlSntbo%3D – reference: ZhuHExtreme light management in mesoporous wood cellulose paper for optoelectronicsACS Nano2016101369137710.1021/acsnano.5b067811:CAS:528:DC%2BC2MXitVejtbnE – reference: Liu, Y., Yu, S.H. & Bergström, L. Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201703277 (2017). – reference: AltanerCMJarvisMCModelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stressJ. Theor. Biol.200825343444510.1016/j.jtbi.2008.03.0101:CAS:528:DC%2BD1cXoslCiu7g%3D – reference: SultanSSiqueiraGZimmermannTMathewAP3D printing of nano-cellulosic biomaterials for medical applicationsCurr. Opin. Biomed. Eng.20172293410.1016/j.cobme.2017.06.002 – reference: KetenSXuZPIhleBBuehlerMJNanoconfinement controls stiffness, strength and mechanical toughness of βsheet crystals in silkNat. Mater.2010935936710.1038/nmat27041:CAS:528:DC%2BC3cXjslSgtLY%3D – reference: CranfordSWTarakanovaAPugnoNMBuehlerMJNonlinear material behaviour of spider silk yields robust websNature2012482727610.1038/nature107391:CAS:528:DC%2BC38Xhs1Gjsr8%3D – reference: SharmaVCrneMParkJOSrinivasaraoMStructural origin of circularly polarized iridescence in Jeweled beetlesScience200932544945110.1126/science.11720511:CAS:528:DC%2BD1MXovVCgtr4%3D – reference: LibbyELight reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized lightJ. Opt.20141608200110.1088/2040-8978/16/8/082001 – reference: GrunenfelderLKBio-inspired impact-resistant compositesActa Biomater.2014103997400810.1016/j.actbio.2014.03.0221:CAS:528:DC%2BC2cXmsVChtbw%3D – reference: RobinsonCLiquid-crystalline structures in solutions of a polypeptideTrans. Faraday Soc.19565257159210.1039/tf95652005711:CAS:528:DyaG28XotVeksw%3D%3D – reference: MuXGrayDGFormation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage processLangmuir2014309256926010.1021/la501741r1:CAS:528:DC%2BC2cXht1aht7bO – reference: FernandesSNMind the microgap in iridescent cellulose nanocrystal filmsAdv. Mater.201729160356010.1002/adma.2016035601:CAS:528:DC%2BC28XhvVags7vF – reference: WangPXHamadWYMacLachlanMJPolymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystalsAngew. Chem. Int. Ed.201655124601246410.1002/anie.2016062831:CAS:528:DC%2BC28XhsVKjtrjM – reference: JoseleauJPImaiTKurodaKRuelKDetection in situ and characterization of lignin in the Glayer of tension wood fibres of Populus deltoidesPlanta200421933834510.1007/s00425-004-1226-51:CAS:528:DC%2BD2cXksVSgtr4%3D – reference: MertaniemiHHuman stem cell decorated nanocellulose threads for biomedical applicationsBiomaterials20168220822010.1016/j.biomaterials.2015.12.0201:CAS:528:DC%2BC2MXitVynur3P – reference: AngeliniLGLazzeriALevitaGFontanelliDBozziCRamie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical propertiesInd. Crops Prod.20001114516110.1016/S0926-6690(99)00059-X – reference: TsengPDirected assembly of bio-inspired hierarchical materials with controlled nanofibrillar architecturesNat. Nanotechnol.20171247448010.1038/nnano.2017.41:CAS:528:DC%2BC2sXltVWnsbo%3D – reference: NguyenTDPeresBUCarvalhoRMMacLachlanMJPhotonic hydrogels from chiral nematic mesoporous chitosan nanofibril assembliesAdv. Funct. Mater.2016262875288110.1002/adfm.2015050321:CAS:528:DC%2BC28XktlKmt7g%3D – reference: NguyenTDMacLachlanMJBiomimetic chiral nematic mesoporous materials from crab cuticlesAdv. Opt. Mater.201421031103710.1002/adom.2014002791:CAS:528:DC%2BC2cXhvFagt7vJ – reference: JinHJKaplanDLMechanism of silk processing in insects and spidersNature20034241057106110.1038/nature018091:CAS:528:DC%2BD3sXmslSjsbg%3D – reference: DunlopJWWeinkamerRFratzlPArtful interfaces within biological materialsMater. Today201114707810.1016/S1369-7021(11)70056-6 – reference: MeyersMAChenPYBiological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials2014Cambridge Univ. Press, Cambridge539710.1017/CBO9780511862397 – reference: MeseckGRTerpstraASMacLachlanMJLiquid crystal templating of nanomaterials with nature's toolboxCurr. Opin. Colloid Interface Sci.20172992010.1016/j.cocis.2017.01.0031:CAS:528:DC%2BC2sXitFCqsbc%3D – reference: VignoliniSPointillist structural color in Pollia fruitProc. Natl Acad. Sci. USA2012109157121571510.1073/pnas.1210105109 – reference: KellyJAYuMHamadWYMacLachlanLargeMJ. crack-free freestanding films with chiral nematic structuresAdv. Opt. Mater.2013129529910.1002/adom.201300015 – reference: Martínez ÁvilaHSchwarzSRotterNGatenholmP3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regenerationBioprinting20161223510.1016/j.bprint.2016.08.003 – reference: CranfordSWBuehlerMJBiomateriomics. Springer Series in Materials Science2012Springer Science & Business Media, Heidelberg – reference: LagerwallJPFCellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin filmsNPG Asia Mater.20146e8010.1038/am.2013.691:CAS:528:DC%2BC2cXls1CltA%3D%3D – reference: HuangWSynergistic integration of experimental and simulation approaches for the de novo design of silk-based materialsAcc. Chem. Res.20175086687610.1021/acs.accounts.6b006161:CAS:528:DC%2BC2sXisVGlt7g%3D – reference: CapadonaJRShanmuganathanKTylerDJRowanSJWederCStimuli-responsive polymer nanocomposites inspired by the sea cucumber dermisScience20083191370137410.1126/science.11533071:CAS:528:DC%2BD1cXislSktr0%3D – reference: ShopsowitzKEHamadWYMacLachlanMJFlexible and iridescent chiral nematic mesoporous organosilica filmsJ. Am. Chem. Soc.201213486787010.1021/ja210355v1:CAS:528:DC%2BC3MXhs1CrsLbN – reference: WuTA bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator propertiesJ. Mater. Chem. C201649687969610.1039/C6TC02629J1:CAS:528:DC%2BC28XhsFCrsLvJ – reference: SiróIPlackettDMicrofibrillated cellulose and new nanocomposite materials: a reviewCellulose20101745949410.1007/s10570-010-9405-y1:CAS:528:DC%2BC3cXlvFegs7g%3D – reference: IwamotoSIsogaiAIwataTStructure and mechanical properties of wet-spun fibers made from natural cellulose nanofibersBiomacromolecules20111283183610.1021/bm101510r1:CAS:528:DC%2BC3MXhs1aitrg%3D – reference: KaltofenSComputational de novo design of a self-assembling peptide with predefined structureJ. Mol. Biol.201542755056210.1016/j.jmb.2014.12.0021:CAS:528:DC%2BC2MXkslWquw%3D%3D – reference: DufresneANanocellulose: a new ageless bionanomaterialMater. Today20131622022710.1016/j.mattod.2013.06.0041:CAS:528:DC%2BC3sXht1altrrM – reference: JinKQinZBuehlerMJMolecular deformation mechanisms of the wood cell wall materialJ. Mech. Behav. Biomed. Mater.20154219820610.1016/j.jmbbm.2014.11.0101:CAS:528:DC%2BC2cXhvF2jtrbO – reference: ShopsowitzKEStahlAHamadWYMacLachlanMJHard templating of nanocrystalline titanium dioxide with chiral nematic orderingAngew. Chem. Int. Ed.2012516886689010.1002/anie.2012011131:CAS:528:DC%2BC38Xns1Sqt7s%3D – reference: GiesaTPugnoNMWongJYKaplanDLBuehlerMJWhat's inside the box? – length-scales that govern fracture processes of polymer fibersAdv. Mater.20142641241710.1002/adma.2013033231:CAS:528:DC%2BC3sXhslGjt7rF – reference: LingSIntegration of stiff graphene and tough silk for the design and fabrication of versatile electronic materialsAdv. Funct. Mater.201828170529110.1002/adfm.2017052911:CAS:528:DC%2BC2sXhvF2ltrfO – reference: BlellRGenerating inplane orientational order in multilayer films prepared by spray-assisted layerbylayer assemblyACS Nano201711849410.1021/acsnano.6b041911:CAS:528:DC%2BC28XhvFSitLjM – reference: QiHShopsowitzKEHamadWYMacLachlanMJChiral nematic assemblies of silver nanoparticles in mesoporous silica thin filmsJ. Am. Chem. Soc.20111333728373110.1021/ja110369d1:CAS:528:DC%2BC3MXisFWltb0%3D – reference: OmenettoFGKaplanDLNew opportunities for an ancient materialScience201032952853110.1126/science.11889361:CAS:528:DC%2BC3cXptlCltbg%3D – reference: Torres-RendonJGSchacherFHIfukuSWaltherAMechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparisonBiomacromolecules2014152709271710.1021/bm500566m1:CAS:528:DC%2BC2cXhtVWksbzP – reference: HuangWDesign of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk–elastin-like proteinsAdv. Funct. Mater.2016264113412310.1002/adfm.2016002361:CAS:528:DC%2BC28XmtVKgsr8%3D – reference: KokkinisDSchaffnerMStudartARMultimaterial magnetically assisted 3D printing of composite materialsNat. Commun.20156864310.1038/ncomms96431:CAS:528:DC%2BC2MXhslans7vM – reference: GallardoRDe novo design of a biologically active amyloidScience2016354aah494910.1126/science.aah49491:CAS:528:DC%2BC28XhvVSnsLvE – reference: JiSHigh dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructuresAdv. Mater.201729170053810.1002/adma.2017005381:CAS:528:DC%2BC2sXmtFGmtbc%3D – reference: PilateGLignification and tension woodC. R. Biol.200432788990110.1016/j.crvi.2004.07.0061:CAS:528:DC%2BD2cXptFOgt74%3D – reference: FabritiusHOFunctional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical studyBioinspir. Biomim.20161105500610.1088/1748-3190/11/5/0550061:CAS:528:DC%2BC28XhvV2ntbjK – reference: ForterreYDumaisJGenerating helices in natureScience20113331715171610.1126/science.12107341:CAS:528:DC%2BC3MXhtlyit7nE – reference: BarthelatFYinZBuehlerMJStructure and mechanics of interfaces in biological materialsNat. Rev. Mater.201611600710.1038/natrevmats.2016.71:CAS:528:DC%2BC2sXhtVertL4%3D – reference: FratzlPBurgertIKeckesJMechanical model for the deformation of the wood cell wallZ. Metallkd.20049557958410.3139/146.0179911:CAS:528:DC%2BD2cXnslKjtrc%3D – reference: ShopsowitzKEHamadWYMacLachlanMJChiral nematic mesoporous carbon derived from nanocrystalline celluloseAngew. Chem. Int. Ed.201150109911099510.1002/anie.2011054791:CAS:528:DC%2BC3MXht1Slu7fK – reference: López de la PazMDe novo designed peptide-based amyloid fibrilsProc. Natl Acad. Sci. USA200299160521605710.1073/pnas.2523401991:CAS:528:DC%2BD38Xps1ensrk%3D – reference: LundahlMJKlarVWangLAgoMRojasOJSpinning of cellulose nanofibrils into filaments: a reviewInd. Eng. Chem. Res.20175681910.1021/acs.iecr.6b040101:CAS:528:DC%2BC28XhvF2hu7vL – volume: 5 start-page: 4018 year: 2014 ident: BFnatrevmats201816_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms5018 – volume: 10 start-page: 1369 year: 2016 ident: BFnatrevmats201816_CR38 publication-title: ACS Nano doi: 10.1021/acsnano.5b06781 – volume: 52 start-page: 8921 year: 2013 ident: BFnatrevmats201816_CR119 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303829 – volume: 54 start-page: 4304 year: 2015 ident: BFnatrevmats201816_CR122 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410411 – volume: 7 start-page: e150 year: 2015 ident: BFnatrevmats201816_CR31 publication-title: NPG Asia Mater. doi: 10.1038/am.2014.111 – volume: 28 start-page: 1705291 year: 2018 ident: BFnatrevmats201816_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705291 – volume: 15 start-page: 2709 year: 2014 ident: BFnatrevmats201816_CR26 publication-title: Biomacromolecules doi: 10.1021/bm500566m – volume: 22 start-page: 4899 year: 2006 ident: BFnatrevmats201816_CR80 publication-title: Langmuir doi: 10.1021/la0600402 – volume: 52 start-page: 1263 year: 2007 ident: BFnatrevmats201816_CR10 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2007.06.001 – volume: 325 start-page: 449 year: 2009 ident: BFnatrevmats201816_CR73 publication-title: Science doi: 10.1126/science.1172051 – volume: 52 start-page: 8912 year: 2013 ident: BFnatrevmats201816_CR131 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201302687 – volume: 10 start-page: 8443 year: 2016 ident: BFnatrevmats201816_CR132 publication-title: ACS Nano doi: 10.1021/acsnano.6b03355 – volume: 11 start-page: 5717 year: 2017 ident: BFnatrevmats201816_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.7b01221 – volume-title: Biology of the Arthropod Cuticle year: 1975 ident: BFnatrevmats201816_CR61 doi: 10.1007/978-3-642-80910-1 – volume: 1 start-page: 1600096 year: 2016 ident: BFnatrevmats201816_CR91 publication-title: Adv. Mater. Tech. doi: 10.1002/admt.201600096 – volume: 50 start-page: 866 year: 2017 ident: BFnatrevmats201816_CR143 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00616 – volume-title: Biomateriomics. Springer Series in Materials Science year: 2012 ident: BFnatrevmats201816_CR136 – volume: 1S start-page: 177 year: 2014 ident: BFnatrevmats201816_CR74 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2014.09.021 – volume: 47 start-page: 163 year: 2013 ident: BFnatrevmats201816_CR53 publication-title: Wood Sci. Technol. doi: 10.1007/s00226-012-0515-6 – volume: 7 start-page: 13022 year: 2015 ident: BFnatrevmats201816_CR33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03091 – volume: 424 start-page: 1057 year: 2003 ident: BFnatrevmats201816_CR85 publication-title: Nature doi: 10.1038/nature01809 – volume: 4 start-page: 189 year: 1972 ident: BFnatrevmats201816_CR60 publication-title: Tissue Cell doi: 10.1016/S0040-8166(72)80042-9 – volume: 253 start-page: 434 year: 2008 ident: BFnatrevmats201816_CR50 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.03.010 – volume: 99 start-page: 16052 year: 2002 ident: BFnatrevmats201816_CR140 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.252340199 – volume: 462 start-page: 442 year: 2009 ident: BFnatrevmats201816_CR54 publication-title: Nature doi: 10.1038/nature08603 – volume: 7 start-page: 12520 year: 2016 ident: BFnatrevmats201816_CR133 publication-title: Nat. Commun. doi: 10.1038/ncomms12520 – volume: 109 start-page: 15712 year: 2012 ident: BFnatrevmats201816_CR75 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1210105109 – volume: 26 start-page: 412 year: 2014 ident: BFnatrevmats201816_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201303323 – volume: 336 start-page: 1275 year: 2012 ident: BFnatrevmats201816_CR65 publication-title: Science doi: 10.1126/science.1218764 – volume: 29 start-page: 1606208 year: 2017 ident: BFnatrevmats201816_CR117 publication-title: Adv. Mater. doi: 10.1002/adma.201606208 – volume: 316 start-page: 884 year: 2007 ident: BFnatrevmats201816_CR98 publication-title: Science doi: 10.1126/science.1140097 – volume: 4 start-page: 1712 year: 2013 ident: BFnatrevmats201816_CR99 publication-title: Nat. Commun. doi: 10.1038/ncomms2666 – volume: 11 start-page: 055006 year: 2016 ident: BFnatrevmats201816_CR62 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/11/5/055006 – volume: 537 start-page: 320 year: 2016 ident: BFnatrevmats201816_CR138 publication-title: Nature doi: 10.1038/nature19946 – volume: 13 start-page: 4176 year: 2017 ident: BFnatrevmats201816_CR3 publication-title: Soft Matter doi: 10.1039/C7SM00384F – volume: 6 start-page: 30695 year: 2016 ident: BFnatrevmats201816_CR30 publication-title: Sci. Rep. doi: 10.1038/srep30695 – volume: 82 start-page: 208 year: 2016 ident: BFnatrevmats201816_CR32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.12.020 – volume: 428 start-page: 819 year: 2004 ident: BFnatrevmats201816_CR66 publication-title: Nature doi: 10.1038/428819a – volume: 367 start-page: 1541 year: 2009 ident: BFnatrevmats201816_CR101 publication-title: Phil. Trans. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2009.0003 – volume: 1 start-page: 919 year: 2013 ident: BFnatrevmats201816_CR153 publication-title: Chem. Eng. – volume: 56 start-page: 8 year: 2017 ident: BFnatrevmats201816_CR25 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04010 – volume: 11 start-page: 84 year: 2017 ident: BFnatrevmats201816_CR82 publication-title: ACS Nano doi: 10.1021/acsnano.6b04191 – volume: 2 start-page: 1031 year: 2014 ident: BFnatrevmats201816_CR109 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400279 – volume: 28 start-page: 6835 year: 2016 ident: BFnatrevmats201816_CR68 publication-title: Adv. Mater. doi: 10.1002/adma.201600786 – volume: 333 start-page: 1715 year: 2011 ident: BFnatrevmats201816_CR97 publication-title: Science doi: 10.1126/science.1210734 – volume: 44 start-page: 453 year: 2012 ident: BFnatrevmats201816_CR96 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101200 – volume: 54 start-page: 2888 year: 2015 ident: BFnatrevmats201816_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407141 – volume: 8 start-page: 175 year: 2009 ident: BFnatrevmats201816_CR137 publication-title: Nat. Mater. doi: 10.1038/nmat2387 – volume: 327 start-page: 889 year: 2004 ident: BFnatrevmats201816_CR47 publication-title: C. R. Biol. doi: 10.1016/j.crvi.2004.07.006 – volume: 51 start-page: 6886 year: 2012 ident: BFnatrevmats201816_CR128 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201113 – volume: 24 start-page: 327 year: 2014 ident: BFnatrevmats201816_CR115 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301737 – volume: 9 start-page: 2749 year: 2012 ident: BFnatrevmats201816_CR4 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0341 – volume: 29 start-page: 1701323 year: 2017 ident: BFnatrevmats201816_CR121 publication-title: Adv. Mater. doi: 10.1002/adma.201701323 – volume: 25 start-page: 6618 year: 2015 ident: BFnatrevmats201816_CR150 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502566 – volume: 53 start-page: 169 year: 2016 ident: BFnatrevmats201816_CR16 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.07.003 – volume: 10 start-page: 3997 year: 2014 ident: BFnatrevmats201816_CR70 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.03.022 – volume: 27 start-page: 1604619 year: 2017 ident: BFnatrevmats201816_CR92 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604619 – volume: 14 start-page: 70 year: 2011 ident: BFnatrevmats201816_CR100 publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70056-6 – ident: BFnatrevmats201816_CR151 doi: 10.1038/s41565-017-0035-5 – volume: 52 start-page: 571 year: 1956 ident: BFnatrevmats201816_CR106 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9565200571 – volume: 482 start-page: 72 year: 2012 ident: BFnatrevmats201816_CR12 publication-title: Nature doi: 10.1038/nature10739 – start-page: 128 volume-title: Materials Design Inspired by Nature: Function Through Inner Architecture year: 2013 ident: BFnatrevmats201816_CR59 doi: 10.1039/9781849737555-00128 – volume: 50 start-page: 10991 year: 2011 ident: BFnatrevmats201816_CR127 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201105479 – volume: 17 start-page: 289 year: 2010 ident: BFnatrevmats201816_CR113 publication-title: Cellulose doi: 10.1007/s10570-009-9384-z – volume: 2 start-page: 1600307 year: 2016 ident: BFnatrevmats201816_CR141 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600307 – volume: 95 start-page: 579 year: 2004 ident: BFnatrevmats201816_CR51 publication-title: Z. Metallkd. doi: 10.3139/146.017991 – volume: 42 start-page: 198 year: 2015 ident: BFnatrevmats201816_CR58 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2014.11.010 – volume: 32 start-page: 7564 year: 2016 ident: BFnatrevmats201816_CR118 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01827 – volume: 18 start-page: 1993 year: 2017 ident: BFnatrevmats201816_CR89 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00527 – volume: 6 start-page: 8643 year: 2015 ident: BFnatrevmats201816_CR93 publication-title: Nat. Commun. doi: 10.1038/ncomms9643 – volume: 540 start-page: 354 year: 2016 ident: BFnatrevmats201816_CR154 publication-title: Nature doi: 10.1038/nature21001 – volume: 391 start-page: 745 year: 1998 ident: BFnatrevmats201816_CR76 publication-title: Nature doi: 10.1038/35753 – volume: 6 start-page: 6892 year: 2015 ident: BFnatrevmats201816_CR144 publication-title: Nat. Commun. doi: 10.1038/ncomms7892 – volume: 14 start-page: 943 year: 2015 ident: BFnatrevmats201816_CR69 publication-title: Nat. Mater. doi: 10.1038/nmat4309 – volume-title: Biology of Fibrous Composites: Development Beyond the Cell Membrane year: 1993 ident: BFnatrevmats201816_CR1 doi: 10.1017/CBO9780511601101 – volume: 427 start-page: 550 year: 2015 ident: BFnatrevmats201816_CR139 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2014.12.002 – volume: 17 start-page: 459 year: 2010 ident: BFnatrevmats201816_CR86 publication-title: Cellulose doi: 10.1007/s10570-010-9405-y – volume: 11 start-page: 145 year: 2000 ident: BFnatrevmats201816_CR83 publication-title: Ind. Crops Prod. doi: 10.1016/S0926-6690(99)00059-X – volume: 26 start-page: 4113 year: 2016 ident: BFnatrevmats201816_CR146 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600236 – volume: 26 start-page: 2323 year: 2014 ident: BFnatrevmats201816_CR123 publication-title: Adv. Mater. doi: 10.1002/adma.201304966 – volume: 354 start-page: aah4949 year: 2016 ident: BFnatrevmats201816_CR142 publication-title: Science doi: 10.1126/science.aah4949 – volume: 29 start-page: 1603560 year: 2017 ident: BFnatrevmats201816_CR110 publication-title: Adv. Mater. doi: 10.1002/adma.201603560 – volume: 54 start-page: 5152 year: 2015 ident: BFnatrevmats201816_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201412129 – volume: 8 start-page: 1387 year: 2017 ident: BFnatrevmats201816_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00613-5 – volume: 67 start-page: 449 year: 2016 ident: BFnatrevmats201816_CR6 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv535 – volume: 27 start-page: 5455 year: 2015 ident: BFnatrevmats201816_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201502403 – volume: 11 start-page: 6114 year: 2017 ident: BFnatrevmats201816_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.7b02085 – volume: 10 start-page: 2626 year: 2010 ident: BFnatrevmats201816_CR45 publication-title: Nano Lett. doi: 10.1021/nl101341w – ident: BFnatrevmats201816_CR42 doi: 10.1002/adfm.201703277 – volume: 16 start-page: 220 year: 2013 ident: BFnatrevmats201816_CR21 publication-title: Mater. Today doi: 10.1016/j.mattod.2013.06.004 – volume: 1 start-page: 16007 year: 2016 ident: BFnatrevmats201816_CR156 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.7 – volume: 2 start-page: 765 year: 2007 ident: BFnatrevmats201816_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.379 – volume: 91 start-page: 4528 year: 2006 ident: BFnatrevmats201816_CR48 publication-title: Biophys. J. doi: 10.1529/biophysj.106.089144 – volume: 88 start-page: 467 year: 2017 ident: BFnatrevmats201816_CR71 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2017.04.013 – volume: 15 start-page: 413 year: 2016 ident: BFnatrevmats201816_CR90 publication-title: Nat. Mater. doi: 10.1038/nmat4544 – volume: 9 start-page: 1102 year: 1997 ident: BFnatrevmats201816_CR77 publication-title: Adv. Mater. doi: 10.1002/adma.19970091408 – volume: 189 start-page: 64 year: 1998 ident: BFnatrevmats201816_CR46 publication-title: J. Microsc. doi: 10.1046/j.1365-2818.1998.00285.x – volume: 11 start-page: 5148 year: 2017 ident: BFnatrevmats201816_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.7b02305 – volume: 333 start-page: 325 year: 2010 ident: BFnatrevmats201816_CR49 publication-title: C. R. Biol. doi: 10.1016/j.crvi.2010.01.010 – volume: 54 start-page: 3400 year: 2015 ident: BFnatrevmats201816_CR102 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410139 – volume: 28 start-page: 7783 year: 2016 ident: BFnatrevmats201816_CR147 publication-title: Adv. Mater. doi: 10.1002/adma.201601783 – volume: 24 start-page: 777 year: 2014 ident: BFnatrevmats201816_CR116 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302521 – volume: 11 start-page: 5374 year: 2015 ident: BFnatrevmats201816_CR134 publication-title: Soft Matter doi: 10.1039/C5SM00886G – volume: 127 start-page: 49 year: 2017 ident: BFnatrevmats201816_CR145 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.041 – volume: 13 start-page: 4205 year: 2012 ident: BFnatrevmats201816_CR27 publication-title: Biomacromolecules doi: 10.1021/bm3014796 – volume: 3 start-page: 1601939 year: 2017 ident: BFnatrevmats201816_CR39 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601939 – volume: 219 start-page: 338 year: 2004 ident: BFnatrevmats201816_CR52 publication-title: Planta doi: 10.1007/s00425-004-1226-5 – volume: 49 start-page: 6881 year: 2015 ident: BFnatrevmats201816_CR152 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00888 – volume: 29 start-page: 1700538 year: 2017 ident: BFnatrevmats201816_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201700538 – volume: 30 start-page: 9256 year: 2014 ident: BFnatrevmats201816_CR114 publication-title: Langmuir doi: 10.1021/la501741r – volume: 9 start-page: 359 year: 2010 ident: BFnatrevmats201816_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat2704 – volume: 329 start-page: 528 year: 2010 ident: BFnatrevmats201816_CR14 publication-title: Science doi: 10.1126/science.1188936 – volume: 9 start-page: 7138 year: 2013 ident: BFnatrevmats201816_CR57 publication-title: Soft Matter doi: 10.1039/c3sm50183c – volume: 2 start-page: 810 year: 2003 ident: BFnatrevmats201816_CR56 publication-title: Nat. Mater. doi: 10.1038/nmat1019 – volume: 4 start-page: 9687 year: 2016 ident: BFnatrevmats201816_CR112 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC02629J – volume: 319 start-page: 1370 year: 2008 ident: BFnatrevmats201816_CR17 publication-title: Science doi: 10.1126/science.1153307 – volume: 16 start-page: 082001 year: 2014 ident: BFnatrevmats201816_CR72 publication-title: J. Opt. doi: 10.1088/2040-8978/16/8/082001 – volume: 468 start-page: 422 year: 2010 ident: BFnatrevmats201816_CR125 publication-title: Nature doi: 10.1038/nature09540 – volume: 6 start-page: e80 year: 2014 ident: BFnatrevmats201816_CR108 publication-title: NPG Asia Mater. doi: 10.1038/am.2013.69 – volume: 26 start-page: 2875 year: 2016 ident: BFnatrevmats201816_CR111 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505032 – volume: 19 start-page: 1599 year: 2012 ident: BFnatrevmats201816_CR104 publication-title: Cellulose doi: 10.1007/s10570-012-9733-1 – volume: 6 start-page: 7418 year: 2015 ident: BFnatrevmats201816_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms8418 – volume: 53 start-page: 8880 year: 2014 ident: BFnatrevmats201816_CR120 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402214 – volume: 1 start-page: 835 year: 2013 ident: BFnatrevmats201816_CR41 publication-title: J. Mater. Chem. B doi: 10.1039/C2TB00370H – volume: 1 start-page: 295 year: 2013 ident: BFnatrevmats201816_CR124 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300015 – volume: 23 start-page: 2924 year: 2011 ident: BFnatrevmats201816_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201100580 – volume: 29 start-page: 9 year: 2017 ident: BFnatrevmats201816_CR107 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.01.003 – volume: 52 start-page: 661 year: 2010 ident: BFnatrevmats201816_CR155 publication-title: Int. Geol. Rev. doi: 10.1080/00206811003679521 – volume: 40 start-page: 3941 year: 2011 ident: BFnatrevmats201816_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00108b – volume: 42 start-page: 651 year: 2013 ident: BFnatrevmats201816_CR7 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-083012-130345 – volume: 208 start-page: 3655 year: 2005 ident: BFnatrevmats201816_CR67 publication-title: J. Exp. Biol. doi: 10.1242/jeb.01831 – volume: 12 start-page: 474 year: 2017 ident: BFnatrevmats201816_CR87 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.4 – volume: 134 start-page: 867 year: 2012 ident: BFnatrevmats201816_CR126 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210355v – volume: 47 start-page: 1088 year: 2014 ident: BFnatrevmats201816_CR20 publication-title: Acc. Chem. Res. doi: 10.1021/ar400243m – volume: 29 start-page: 1700981 year: 2017 ident: BFnatrevmats201816_CR94 publication-title: Adv. Mater. doi: 10.1002/adma.201700981 – volume: 53 start-page: 4281 year: 2005 ident: BFnatrevmats201816_CR63 publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.05.027 – start-page: 53 volume-title: Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials year: 2014 ident: BFnatrevmats201816_CR2 doi: 10.1017/CBO9780511862397 – volume: 46 start-page: 1 year: 2000 ident: BFnatrevmats201816_CR15 publication-title: React. Funct. Polym. doi: 10.1016/S1381-5148(00)00038-9 – volume: 12 start-page: 831 year: 2011 ident: BFnatrevmats201816_CR29 publication-title: Biomacromolecules doi: 10.1021/bm101510r – volume: 133 start-page: 3728 year: 2011 ident: BFnatrevmats201816_CR130 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110369d – volume: 108 start-page: 14991 year: 2004 ident: BFnatrevmats201816_CR105 publication-title: J. Phys. Chem. B doi: 10.1021/jp048152u – volume: 4 start-page: 219 year: 1951 ident: BFnatrevmats201816_CR78 publication-title: Acta Cryst. doi: 10.1107/S0365110X51000751 – volume: 2 start-page: 29 year: 2017 ident: BFnatrevmats201816_CR88 publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.06.002 – ident: BFnatrevmats201816_CR11 doi: 10.1039/b911049f – volume: 51 start-page: 530 year: 2015 ident: BFnatrevmats201816_CR129 publication-title: Chem. Commun. doi: 10.1039/C4CC07596J – volume: 26 start-page: 4569 year: 2014 ident: BFnatrevmats201816_CR148 publication-title: Adv. Mater. doi: 10.1002/adma.201400730 – volume: 29 start-page: 4609 year: 2017 ident: BFnatrevmats201816_CR19 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00531 – volume: 21 start-page: 2034 year: 2005 ident: BFnatrevmats201816_CR81 publication-title: Langmuir doi: 10.1021/la0475728 – volume: 410 start-page: 541 year: 2001 ident: BFnatrevmats201816_CR84 publication-title: Nature doi: 10.1038/35069000 – volume-title: Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. year: 2010 ident: BFnatrevmats201816_CR55 – volume: 43 start-page: 1519 year: 2014 ident: BFnatrevmats201816_CR79 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60204D – volume: 333 start-page: 1726 year: 2011 ident: BFnatrevmats201816_CR103 publication-title: Science doi: 10.1126/science.1203874 – volume: 16 start-page: 3795 year: 2016 ident: BFnatrevmats201816_CR149 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01195 – volume: 55 start-page: 12460 year: 2016 ident: BFnatrevmats201816_CR135 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606283 – volume: 22 start-page: 519 year: 2010 ident: BFnatrevmats201816_CR64 publication-title: Adv. Mater. doi: 10.1002/adma.200902019 – volume: 1 start-page: 22 year: 2016 ident: BFnatrevmats201816_CR95 publication-title: Bioprinting doi: 10.1016/j.bprint.2016.08.003 |
SSID | ssj0001934982 |
Score | 2.5742283 |
SecondaryResourceType | review_article |
Snippet | Nanofibrillar materials, such as cellulose, chitin and silk, are highly ordered architectures, formed through the self-assembly of repetitive building blocks... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18016 |
SubjectTerms | 631/553/2695 639/301/1023 639/301/1023/303 639/301/54/989 639/301/930/1032 Anisotropy Biocompatibility Biological materials Biological properties Biomaterials Biomedical engineering Biomedical materials Biopolymers Cellulose Chemistry and Materials Science Chitin Condensed Matter Physics Materials engineering Materials Science Nanotechnology Optical and Electronic Materials Optical properties review-article Self-assembly Silk Sustainable materials |
Title | Nanofibrils in nature and materials engineering |
URI | https://link.springer.com/article/10.1038/natrevmats.2018.16 https://www.ncbi.nlm.nih.gov/pubmed/34168896 https://www.proquest.com/docview/3078843988 https://www.proquest.com/docview/2545592026 https://pubmed.ncbi.nlm.nih.gov/PMC8221570 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-O10SgXftK5Zmub6JCpOERQRBd9K2iQ4GJ1u07_fy5qtfqDPSWhyd737JZf8DuDQ5tIy41L_opOEMTNFiEzZMNIULbnjxpXucfLtXXL9FN88i2d_4Dby1yqnPnHiqPWgcGfkbbJFRIqeiKevb6GrGuWyq76ExjwskAtG2nwtnF_e3T_Upywpj1Ps-NcyEcd2qcZD80Fo0HF1Mzxxhc6_RqRfMPP3bckfKdNJJOquwLKHkMFZpfNVmDPlGix9IRZchzY5TbKafNjrj4JeGVT0nYEqdUBzqowuMPWIDXjqXj5eXIe-NEJYEMQah9Yw5aRhhCwK2uNpIRXPrbBWK5WnMs1jk6KKcxUpTK3bRllhOHlZQlSSa74JjXJQmm0IIm05wYiEcJyNsUjQKCFzqyJmYtQ6agKbiicrPG-4K1_Rzyb5a45ZLdLMiTRjSROOZmNeK9aMf3u3plLP_B80ymp9N-Fg1ky27xIaqjSDdxpP8E-kHdpGNmGrUtLscxSdE8SUWuQ39c06OF7t7y1l72XCr02YiQlJCz-eKrqe1t-r2Pl_Fbuw6DpWl35a0BgP380e4Zlxvg_z2L3a96b7CdJL-z8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQ9VIW2dCmFILWnNmwcx7F9QKiiXZbyOIHELXViW6yEsrC7tOqf6m_sTB4bKCo3zn4kHs-MP3vsbwA--Fx65ij0L-I0TJgrQsWMDyOLqyUnblxJj5OPT9LhWfL9XJwvwJ_2LQxdq2x9YuWo7bigM_I-6qJSuHoqtXt1HVLWKIqutik0arU4dL9_4ZZtunPwFef3YxwPvp3uDcMmq0BYIDqZhd4xQx05IYsCt0dWSMNzL7y3xuRa6jxxWpkkN5FR2tMOxAvH0UEhGJHccuz3CSwlnGuyKDXY7850NE-0ipu3ORFX_dLMJu4nYk9iBmdqm9Kq317_7oHa-3cz_wnQVuve4CW8aABr8KXWsGVYcOUKPL9FY_gK-uiiUUfzyehyGozKoCYLDUxpA_ynWsUD17V4DWePIrI3sFiOS_cWgsh6jqAlRdToE1Wkyhkhc28i5hJlbdQD1oonKxqWckqWcZlV0XKusk6kGYk0Y2kPPs3bXNUcHQ_WXm-lnjX2Os067erB1rwYLY3CJ6Z04xtsj2BT6Bg3rT1YrSdp_jnEAqlSGkvknembVyAW77sl5eiiYvNGhMaExIF_bie6-63_j2Lt4VFswtPh6fFRdnRwcvgOnlGj-rrROizOJjfuPSKpWb5RqW8APx7bXv4C_4g3nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanofibrils+in+nature+and+materials+engineering&rft.jtitle=Nature+reviews.+Materials&rft.au=Ling%2C+Shengjie&rft.au=Kaplan%2C+David+L&rft.au=Buehler%2C+Markus+J&rft.date=2018-04-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-8437&rft.volume=3&rft.issue=4&rft.spage=18016&rft_id=info:doi/10.1038%2Fnatrevmats.2018.16 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-8437&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-8437&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-8437&client=summon |