Portable and wearable self-powered systems based on emerging energy harvesting technology

A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portabl...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 7; no. 1; pp. 25 - 14
Main Authors Xu, Chen, Song, Yu, Han, Mengdi, Zhang, Haixia
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.03.2021
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.
AbstractList A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.
Abstract A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.
A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.
ArticleNumber 25
Author Zhang, Haixia
Xu, Chen
Song, Yu
Han, Mengdi
Author_xml – sequence: 1
  givenname: Chen
  surname: Xu
  fullname: Xu, Chen
  organization: Academy for Advanced Interdisciplinary Studies, Peking University
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-4185-2256
  surname: Song
  fullname: Song, Yu
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University
– sequence: 3
  givenname: Mengdi
  surname: Han
  fullname: Han, Mengdi
  email: hmd@pku.edu.cn
  organization: Department of Biomedical Engineering, College of Future Technology, Peking University
– sequence: 4
  givenname: Haixia
  surname: Zhang
  fullname: Zhang, Haixia
  email: zhang-alice@pku.edu.cn
  organization: Academy for Advanced Interdisciplinary Studies, Peking University, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34567739$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLYPwR27kgoYqPSpXgAAdOlu1Mslkl9mJnW21_Pd5NKW0PPXlm_N6b8fi9LI588FgUrwm8J8DUh8QJk6oCSioAylV186w4oVDXleSMH92Lj4uzlNYAQCSTDdQvimPGayEla06K3z9CnI0dsTS-La_RxEOScOyqTbjGiG2ZdmnGKZXWpJwFX-KEsR98X6LPwa5cmXiFad5XZnQrH8bQ714VzzszJjy7PU-LX18-_zz_Vl1-_3px_umycjWHueosGiCqtUp1DRPCKikN7YzllllOhOOs7jKiVTXrUGLHRU1NY8AKI1rTsNPiYtFtg1nrTRwmE3c6mEEfCiH22sR5cCNqCiAg6yqwhDtmFVeudVblXkowKbLWx0Vrs7UTtg79HM34QPThjR9Wug9XWnHGWEOzwLtbgRj-bPNO9DQkh-NoPIZt0rSWogEpYQ99-wi6Dtvo86oyCihw0iiVUW_uT3Q3yr8fzAC6AFwMKUXs7iAE9N4penGKzk7RB6fom0xSj0humM08hP2rhvFpKluoKffxPcb_Yz_B-guMJNQZ
CitedBy_id crossref_primary_10_1142_S2010135X22420085
crossref_primary_10_3390_nano13081381
crossref_primary_10_1002_adsr_202200025
crossref_primary_10_1063_5_0195325
crossref_primary_10_1016_j_rser_2023_113999
crossref_primary_10_1002_slct_202302376
crossref_primary_10_1063_5_0067930
crossref_primary_10_1038_s41378_024_00676_7
crossref_primary_10_1016_j_nanoen_2023_108715
crossref_primary_10_1016_j_nanoen_2022_107902
crossref_primary_10_3390_app13074351
crossref_primary_10_1016_j_nanoen_2023_108712
crossref_primary_10_3788_LOP231025
crossref_primary_10_1002_adma_202211012
crossref_primary_10_1016_j_jiec_2025_02_027
crossref_primary_10_1155_2023_6614658
crossref_primary_10_1016_j_mser_2023_100763
crossref_primary_10_1002_smtd_202200653
crossref_primary_10_1016_j_mattod_2023_09_006
crossref_primary_10_1088_1361_665X_ad649c
crossref_primary_10_1016_j_nanoen_2024_110180
crossref_primary_10_1016_j_carbon_2024_119541
crossref_primary_10_1016_j_cej_2025_161640
crossref_primary_10_1126_science_ade2038
crossref_primary_10_1016_j_nanoen_2023_108841
crossref_primary_10_20517_ss_2024_09
crossref_primary_10_1002_adma_202203849
crossref_primary_10_1002_idm2_12033
crossref_primary_10_1088_1361_665X_ad2f6f
crossref_primary_10_1016_j_susmat_2023_e00596
crossref_primary_10_1002_smll_202300847
crossref_primary_10_1109_JSEN_2023_3320356
crossref_primary_10_1038_s41563_021_01104_1
crossref_primary_10_1016_j_microc_2024_111491
crossref_primary_10_3390_s23156938
crossref_primary_10_1002_marc_202100204
crossref_primary_10_3390_s23010063
crossref_primary_10_1039_D4SD00032C
crossref_primary_10_1039_D1MA00377A
crossref_primary_10_1016_j_electacta_2024_145119
crossref_primary_10_1088_2631_8695_ac34c3
crossref_primary_10_1016_j_compositesb_2021_109384
crossref_primary_10_3390_polym16172477
crossref_primary_10_1002_aenm_202102835
crossref_primary_10_1016_j_mtcomm_2024_109616
crossref_primary_10_1016_j_nexus_2022_100124
crossref_primary_10_1002_adfm_202110535
crossref_primary_10_3390_s22145137
crossref_primary_10_1007_s10854_022_09536_4
crossref_primary_10_61767_mjte_001_3_0410
crossref_primary_10_1021_acsbiomaterials_3c01633
crossref_primary_10_1002_adma_202404492
crossref_primary_10_1002_smsc_202400149
crossref_primary_10_1007_s10854_023_09870_1
crossref_primary_10_1002_smll_202403899
crossref_primary_10_1541_ieejsmas_143_225
crossref_primary_10_1039_D3YA00638G
crossref_primary_10_1088_1361_665X_ac8c0b
crossref_primary_10_1002_adfm_202404329
crossref_primary_10_1016_j_isci_2022_104569
crossref_primary_10_1016_j_molstruc_2024_138391
crossref_primary_10_1016_j_jics_2022_100501
crossref_primary_10_1109_JSEN_2023_3241947
crossref_primary_10_1016_j_nanoen_2022_107422
crossref_primary_10_1088_1361_665X_acae4d
crossref_primary_10_1016_j_molstruc_2023_136136
crossref_primary_10_1021_acsomega_4c06006
crossref_primary_10_1002_ece2_78
crossref_primary_10_1007_s11664_025_11790_1
crossref_primary_10_1088_1361_6463_ad632f
crossref_primary_10_1155_2021_6074657
crossref_primary_10_1002_advs_202103842
crossref_primary_10_1088_1361_665X_ad9e5a
crossref_primary_10_1039_D3TA04807A
crossref_primary_10_1155_2023_6919663
crossref_primary_10_1002_smll_202402452
crossref_primary_10_3390_s22176625
crossref_primary_10_1007_s10853_023_08349_y
crossref_primary_10_1021_acsami_4c02093
crossref_primary_10_26599_JAC_2023_9220691
crossref_primary_10_1016_j_apenergy_2024_124993
crossref_primary_10_1021_acsnano_3c09766
crossref_primary_10_1016_j_nanoen_2021_106869
crossref_primary_10_1039_D4NR05246C
crossref_primary_10_3390_app142311452
crossref_primary_10_1016_j_apsb_2023_05_009
crossref_primary_10_1021_acsami_1c21394
crossref_primary_10_1121_10_0034600
crossref_primary_10_1016_j_nanoen_2021_106740
crossref_primary_10_1039_D0RA10783B
crossref_primary_10_20517_ss_2023_13
crossref_primary_10_3390_s22103950
crossref_primary_10_1002_adfm_202404348
crossref_primary_10_1016_j_esr_2023_101124
crossref_primary_10_1002_aenm_202300260
crossref_primary_10_1039_D3MH00485F
crossref_primary_10_1002_admt_202100787
crossref_primary_10_1016_j_diamond_2024_111171
crossref_primary_10_1016_j_nanoen_2024_110096
crossref_primary_10_1016_j_bios_2023_115218
crossref_primary_10_1016_j_solmat_2022_111936
crossref_primary_10_1088_2631_7990_ad4f32
crossref_primary_10_3390_en15217959
crossref_primary_10_1016_j_snb_2021_130778
crossref_primary_10_1016_j_nanoen_2023_108819
crossref_primary_10_3390_mi12080955
crossref_primary_10_1038_s41378_023_00563_7
crossref_primary_10_1016_j_nanoen_2023_109110
crossref_primary_10_1016_j_nanoen_2024_110524
crossref_primary_10_1016_j_nxener_2024_100141
crossref_primary_10_1016_j_susmat_2025_e01272
crossref_primary_10_1007_s10853_022_06875_9
crossref_primary_10_1016_j_apmt_2024_102270
crossref_primary_10_1002_admt_202200079
crossref_primary_10_1002_smsc_202300148
crossref_primary_10_1038_s41428_022_00727_8
crossref_primary_10_1016_j_ymssp_2023_110593
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_3390_coatings13122018
crossref_primary_10_1016_j_egyr_2023_04_351
crossref_primary_10_1016_j_matlet_2023_134430
crossref_primary_10_3390_mi12060695
crossref_primary_10_1016_j_jcis_2023_05_162
crossref_primary_10_1016_j_nanoen_2023_109087
crossref_primary_10_1002_smll_202310023
crossref_primary_10_1109_TCSI_2024_3457541
crossref_primary_10_1038_s41378_024_00660_1
crossref_primary_10_1016_j_nanoen_2024_110353
crossref_primary_10_1039_D3MA00657C
crossref_primary_10_1016_j_enconman_2022_116119
crossref_primary_10_3390_polym16081071
crossref_primary_10_1021_acs_chemmater_2c03739
crossref_primary_10_3390_mi15020261
crossref_primary_10_3390_mi15070884
crossref_primary_10_1016_j_enconman_2021_114571
crossref_primary_10_1021_acssuschemeng_3c05198
crossref_primary_10_1039_D1TA08431C
crossref_primary_10_1063_5_0057715
crossref_primary_10_1016_j_apmt_2023_101955
crossref_primary_10_1016_j_nanoen_2022_108143
crossref_primary_10_1016_j_device_2023_100007
crossref_primary_10_1016_j_sna_2024_115728
crossref_primary_10_1021_acsami_2c08101
crossref_primary_10_1016_j_nanoen_2023_109092
crossref_primary_10_1016_j_jmat_2023_08_013
crossref_primary_10_4139_sfj_74_2
crossref_primary_10_3390_mi15101213
crossref_primary_10_1088_1361_6528_ace724
crossref_primary_10_1016_j_cej_2024_156711
crossref_primary_10_3390_mi13081227
crossref_primary_10_1016_j_nanoen_2022_107176
crossref_primary_10_1155_2023_2777750
crossref_primary_10_1016_j_sbsr_2022_100525
crossref_primary_10_1002_advs_202206397
crossref_primary_10_1039_D3SM00993A
crossref_primary_10_3390_s22155670
crossref_primary_10_1002_admt_202300873
crossref_primary_10_1002_smll_202406623
crossref_primary_10_1016_j_biomaterials_2023_122075
crossref_primary_10_1016_j_enconman_2022_116337
crossref_primary_10_1016_j_apenergy_2023_122285
crossref_primary_10_1016_j_heliyon_2024_e29025
crossref_primary_10_1016_j_jpowsour_2024_235204
crossref_primary_10_1088_1361_6528_ad0057
crossref_primary_10_3390_ma15124315
crossref_primary_10_1021_acs_chemrev_3c00290
crossref_primary_10_1109_ACCESS_2023_3276716
crossref_primary_10_1016_j_fmre_2022_01_021
crossref_primary_10_3762_bjnano_12_32
crossref_primary_10_1109_JSEN_2024_3442202
crossref_primary_10_1002_adfm_202303361
crossref_primary_10_1038_s41467_024_55790_x
crossref_primary_10_1007_s10853_024_09784_1
crossref_primary_10_1016_j_matpr_2022_05_151
crossref_primary_10_3390_en15186639
crossref_primary_10_1038_s44287_024_00017_w
crossref_primary_10_1007_s11227_022_04789_6
crossref_primary_10_1002_smll_202408929
crossref_primary_10_1002_smll_202307620
crossref_primary_10_1021_acsami_4c05946
crossref_primary_10_1016_j_ecmx_2024_100544
crossref_primary_10_1016_j_nanoen_2025_110676
crossref_primary_10_1016_j_jallcom_2024_177681
crossref_primary_10_1002_smll_202108091
crossref_primary_10_3390_lubricants10050079
crossref_primary_10_1016_j_cej_2024_157336
crossref_primary_10_1088_1361_6528_acd789
crossref_primary_10_1039_D2TA09975F
crossref_primary_10_3390_mi15050555
crossref_primary_10_1002_adfm_202313267
crossref_primary_10_1016_j_solmat_2023_112284
crossref_primary_10_1016_j_nanoen_2022_107264
crossref_primary_10_1038_s41598_023_36817_7
crossref_primary_10_1016_j_mtcomm_2021_102827
crossref_primary_10_1016_j_nanoen_2024_109278
crossref_primary_10_1021_acsphotonics_3c01889
crossref_primary_10_1016_j_jpowsour_2025_236254
crossref_primary_10_3390_bios12020060
crossref_primary_10_1016_j_est_2022_106360
crossref_primary_10_1177_15589250221125437
crossref_primary_10_1002_smll_202204603
crossref_primary_10_1002_adfm_202308353
crossref_primary_10_1002_aelm_202400884
crossref_primary_10_1007_s12274_024_6959_9
crossref_primary_10_1016_j_snr_2024_100258
crossref_primary_10_1007_s11431_021_1984_9
crossref_primary_10_1016_j_isci_2022_104174
crossref_primary_10_1016_j_nanoen_2022_107017
crossref_primary_10_1016_j_trac_2021_116476
crossref_primary_10_1016_j_sna_2022_113743
crossref_primary_10_3390_act12060225
crossref_primary_10_1088_2053_1591_ac3c72
crossref_primary_10_1007_s00542_022_05345_1
crossref_primary_10_1002_smtd_202201719
crossref_primary_10_1039_D2NR05962B
crossref_primary_10_1016_j_carbon_2024_119869
crossref_primary_10_1186_s40486_022_00150_x
crossref_primary_10_1021_jacsau_2c00189
crossref_primary_10_1016_j_enconman_2022_115568
crossref_primary_10_1002_admt_202200340
crossref_primary_10_1016_j_pmatsci_2024_101244
crossref_primary_10_1021_acsami_4c08686
crossref_primary_10_1002_adsu_202300312
crossref_primary_10_3390_electronics13193801
crossref_primary_10_1021_acsami_4c02467
crossref_primary_10_1016_j_nanoen_2023_108651
crossref_primary_10_1002_tee_24117
crossref_primary_10_1038_s41467_024_49352_4
crossref_primary_10_1038_s41378_022_00393_z
crossref_primary_10_1016_j_jece_2024_112144
crossref_primary_10_1016_j_jsamd_2022_100461
crossref_primary_10_3390_polym15102392
crossref_primary_10_1002_admt_202301895
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1016_j_jpowsour_2023_233712
crossref_primary_10_1038_s41560_022_01191_7
crossref_primary_10_1007_s12221_022_4702_2
crossref_primary_10_1016_j_cej_2021_131994
crossref_primary_10_1016_j_nanoen_2023_108787
Cites_doi 10.1007/s00339-018-1942-5
10.1016/j.bioelechem.2017.09.002
10.1109/ACCESS.2020.3023195
10.1002/admt.201800723
10.1016/j.measurement.2020.108102
10.1016/j.nanoen.2019.01.091
10.1002/mame.201800463
10.1016/j.nanoen.2018.11.089
10.1021/nl400738p
10.1002/inf2.12122
10.1016/j.bios.2020.112652
10.1016/j.apenergy.2019.113987
10.1063/1.5134526
10.1016/j.nanoen.2019.04.056
10.1002/smll.201704022
10.1016/j.nanoen.2020.104878
10.1016/j.nanoen.2020.104870
10.1002/advs.202000261
10.1021/acsnano.7b04898
10.1016/j.nanoen.2017.05.063
10.1002/admt.201900921
10.1504/IJTMKT.2016.075690
10.1021/acs.chemrev.7b00291
10.1021/acs.nanolett.9b02081
10.1016/j.nanoen.2020.105419
10.1021/acssensors.9b00891
10.1016/j.nanoen.2020.105414
10.1039/C8EE02792G
10.1145/2611567
10.1515/ehs-2016-0028
10.1002/adma.201705925
10.1126/scirobotics.aaz7946
10.1002/adma.201303570
10.1002/admt.201600190
10.1038/s41427-019-0187-x
10.1002/adma.201401184
10.1039/C9EE03046H
10.1038/s41378-019-0127-5
10.1002/pip.3229
10.1126/sciadv.aav9653
10.1021/acsnano.0c00107
10.1021/acsnano.8b07935
10.1016/j.nanoen.2020.105174
10.1002/adfm.202004326
10.1021/acsnano.8b04244
10.1016/j.nanoen.2018.12.054
10.1126/sciadv.abb9083
10.1016/j.nanoen.2019.03.071
10.1039/C7LC01259D
10.1002/adfm.201900098
10.1021/acsnano.9b08323
10.1021/nl303573d
10.1002/aelm.201800823
10.1016/j.nanoen.2019.104243
10.1021/acsami.0c03510
10.1002/adfm.201907893
10.1002/smll.201702571
10.3390/s140711957
10.1016/j.isci.2020.101360
10.1016/j.snb.2017.04.039
10.3390/s17010130
10.3390/polym9080303
10.1016/j.nanoen.2020.105303
10.1016/j.nanoen.2019.02.073
10.1021/acsnano.7b08014
10.1039/C7EE00865A
10.1021/acsami.8b21716
10.1088/0964-1726/23/3/033001
10.1016/j.nanoen.2020.104992
10.1021/acsami.0c05465
10.1002/aelm.201901174
10.1109/MCOM.2017.1600410CM
10.1016/j.apmt.2018.07.004
10.1039/C9CC05779J
10.1016/j.nanoen.2020.105325
10.1145/2629633
10.1016/j.nanoen.2019.04.096
10.1016/j.nanoen.2020.104773
10.1002/adma.201802898
10.1016/j.apenergy.2019.114069
10.1002/smll.201906352
10.1016/j.sna.2019.111789
10.1002/adfm.202003360
10.1021/acsnano.0c00675
10.1021/acsnano.0c03728
10.1002/adma.201305303
10.1016/j.nanoen.2018.11.052
10.1080/00150193.2016.1123061
10.1016/j.nanoen.2020.105071
10.1016/j.nanoen.2018.06.019
10.1016/j.isci.2020.101689
10.1002/adma.201805039
10.1002/adfm.201808974
10.1016/j.apenergy.2020.115250
10.1002/aenm.201800961
10.1002/adfm.201909886
10.1021/jacs.0c05749
10.1016/j.bios.2018.09.086
10.1016/j.nanoen.2020.105627
10.1016/j.nanoen.2019.06.006
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1038/s41378-021-00248-z
DatabaseName Springer Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Databases
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 14
ExternalDocumentID oai_doaj_org_article_200604b380b14c3b848cdcb8b4b86376
PMC8433392
34567739
10_1038_s41378_021_00248_z
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: Grant No. 61674004; Grant No. 61674004
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key R&D Project from Minister of Science and Technology, China (2016YFA0202701, 2018YFA0108100)
– fundername: ;
– fundername: ;
  grantid: Grant No. 61674004; Grant No. 61674004
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-fbea018db88f9366b877a2fab4b3b416c435fa01d853fe7ef4652a9a0b6a6da93
IEDL.DBID AAJSJ
ISSN 2055-7434
2096-1030
IngestDate Wed Aug 27 01:31:55 EDT 2025
Thu Aug 21 18:17:41 EDT 2025
Fri Jul 11 12:05:06 EDT 2025
Wed Aug 13 06:05:02 EDT 2025
Wed Feb 19 02:09:00 EST 2025
Thu Apr 24 23:11:30 EDT 2025
Tue Jul 01 03:27:10 EDT 2025
Fri Feb 21 02:38:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NEMS
Nanoscale devices
Language English
License The Author(s) 2021.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-fbea018db88f9366b877a2fab4b3b416c435fa01d853fe7ef4652a9a0b6a6da93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4185-2256
OpenAccessLink https://www.nature.com/articles/s41378-021-00248-z
PMID 34567739
PQID 2502041988
PQPubID 2041946
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_200604b380b14c3b848cdcb8b4b86376
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433392
proquest_miscellaneous_2576907702
proquest_journals_2502041988
pubmed_primary_34567739
crossref_primary_10_1038_s41378_021_00248_z
crossref_citationtrail_10_1038_s41378_021_00248_z
springer_journals_10_1038_s41378_021_00248_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-17
PublicationDateYYYYMMDD 2021-03-17
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Shi (CR8) 2020; 2
Nozariasbmarz (CR24) 2020; 258
Cheng (CR58) 2019; 57
Wang (CR75) 2020; 169
Hashemi, Ramakrishna, Aberle (CR25) 2020; 13
Wang (CR59) 2013; 13
Yun, Jayababu, Kim (CR102) 2020; 78
Guo (CR44) 2019; 29
Wen (CR101) 2020; 7
Chen, Ji, Yan, Gao, Zhang (CR33) 2019; 61
Chen (CR49) 2019; 60
Yang (CR37) 2020; 301
Yuan, Zhu (CR73) 2020; 271
Yu, Zhu, Wang, Zhai (CR55) 2019; 29
Wang (CR38) 2020; 73
Dong (CR51) 2021; 79
Kanik, Marcali, Yunusa, Elbuken, Bayindir (CR34) 2016; 1
Xiao, Yu, Han (CR14) 2020; 164
Wang, Wang, Yang (CR86) 2018; 8
Zhao (CR81) 2019; 4
Rauschnabel, Ro (CR4) 2016; 11
Majumder, Mondal, Deen (CR9) 2017; 17
Xia, Zhu, Zhang, Xu (CR83) 2018; 124
Zhao (CR23) 2019; 11
Wang (CR42) 2020; 14
Ramadan, Sameoto, Evoy (CR66) 2014; 23
Bandodkar (CR21) 2017; 10
Dong (CR96) 2021; 79
Xiao, Denis McGourty, Magner (CR93) 2020; 142
Dong (CR11) 2020; 14
Ji, Zhao, Zhao, Lu, Li (CR104) 2020; 5
Wang (CR60) 2018; 12
Xia (CR15) 2018; 50
Wan (CR80) 2020; 74
Rawassizadeh, Price, Petre (CR3) 2014; 58
Stoppa, Chiolerio (CR2) 2014; 14
Jiang (CR70) 2019; 56
Wang (CR35) 2020; 16
Lee (CR57) 2014; 26
Sun (CR36) 2020; 12
Chen, Ren, Guo, Cheng, Zhang (CR30) 2020; 116
Chen, Liu, Li, Dong, Jiang (CR43) 2018; 18
Song, Min, Gao (CR47) 2019; 13
Ryu, Yoon, Kim (CR27) 2019; 31
Yin (CR62) 2018; 13
Liu, He, Chen, Leow, Chen (CR5) 2017; 117
Wang, Han, Song, Zhang (CR52) 2021; 81
Chen (CR31) 2018; 14
An (CR1) 2017; 9
Liu, Pharr, Salvatore (CR10) 2017; 11
Anwar (CR18) 2021; 31
Zhang (CR48) 2020; 77
Jagadish (CR6) 2014; 57
Maharjan (CR19) 2019; 256
Wang, Xie, Niu, Lin, Wang (CR61) 2014; 26
Wang, Lin, Wang (CR54) 2012; 12
Digregorio, Pierre, Laurent, Redouté (CR20) 2020; 8
Nie (CR91) 2018; 12
Li (CR39) 2019; 19
Gamella, Koushanpour, Katz (CR76) 2018; 119
Tang (CR98) 2020; 30
Mishra, Unnikrishnan, Nayak, Mohanty (CR67) 2019; 304
Kim (CR32) 2020; 30
Zhao (CR89) 2019; 4
Khalid, Raouf, Khan, Kim, Kim (CR50) 2019; 6
Yang (CR85) 2020; 301
Kim, Lee, Kim, Jeong (CR56) 2020; 12
Lv (CR77) 2018; 11
Selloum, Tingry (CR74) 2018; 1
Wang, Jiang, Wu, Yang (CR95) 2019; 63
Huang (CR22) 2019; 124
Wang (CR29) 2020; 6
Maharjan (CR100) 2020; 76
Kim (CR88) 2020; 79
Liu (CR45) 2020; 30
Satharasinghe, Hughes‐Riley, Dias (CR26) 2020; 28
Lee (CR78) 2014; 26
Tian (CR92) 2019; 59
Mondal, Paul, Maiti, Das, Chattopadhyay (CR17) 2020; 74
Guo (CR97) 2020; 12
He (CR99) 2019; 58
Chen (CR7) 2017; 55
Wang, Yang (CR40) 2019; 56
Zou, Raveendran, Chen (CR16) 2020; 77
Sim (CR12) 2019; 5
Wu (CR41) 2018; 30
Yu (CR90) 2020; 5
Gunawardhana, Wanasekara, Dharmasena (CR53) 2020; 23
Xin (CR69) 2016; 493
Priya (CR65) 2019; 4
Su (CR82) 2017; 251
Cheng (CR63) 2017; 38
Liu (CR46) 2020; 14
Du, Xu, Paul, Eklund (CR72) 2018; 12
Kim (CR71) 2020; 75
Liu (CR84) 2020; 6
Cheng (CR64) 2019; 61
Sun (CR94) 2019; 55
Zhang, Yang, Zhang, Bowen, Yang (CR28) 2020; 23
Ren (CR79) 2020; 67
Liu (CR103) 2020; 6
Jeong, Baek, Kingon, Park, Kim (CR68) 2018; 14
Shen (CR87) 2018; 30
Zaia, Gordon, Yuan, Urban (CR13) 2019; 5
S Wang (248_CR59) 2013; 13
J Zhao (248_CR89) 2019; 4
B An (248_CR1) 2017; 9
Y Chen (248_CR33) 2019; 61
T Sun (248_CR36) 2020; 12
S Majumder (248_CR9) 2017; 17
X Chen (248_CR30) 2020; 116
L Jiang (248_CR70) 2019; 56
D Selloum (248_CR74) 2018; 1
S Mondal (248_CR17) 2020; 74
S Khalid (248_CR50) 2019; 6
R Rawassizadeh (248_CR3) 2014; 58
J Wan (248_CR80) 2020; 74
X Huang (248_CR22) 2019; 124
W Zhang (248_CR48) 2020; 77
K Xia (248_CR83) 2018; 124
D Shen (248_CR87) 2018; 30
N Xiao (248_CR14) 2020; 164
X Zhao (248_CR23) 2019; 11
X Xiao (248_CR93) 2020; 142
Y Yang (248_CR85) 2020; 301
Q Shi (248_CR8) 2020; 2
P Cheng (248_CR58) 2019; 57
J Kim (248_CR88) 2020; 79
H Wang (248_CR52) 2021; 81
F Wen (248_CR101) 2020; 7
X Zhao (248_CR81) 2019; 4
B Dong (248_CR11) 2020; 14
G Liu (248_CR45) 2020; 30
L Li (248_CR39) 2019; 19
JH Lee (248_CR78) 2014; 26
J Yuan (248_CR73) 2020; 271
CK Jeong (248_CR68) 2018; 14
HL Wang (248_CR35) 2020; 16
G Chen (248_CR43) 2018; 18
S Wang (248_CR54) 2012; 12
Y Wang (248_CR29) 2020; 6
X Cheng (248_CR64) 2019; 61
PA Rauschnabel (248_CR4) 2016; 11
Y Wang (248_CR86) 2018; 8
T He (248_CR99) 2019; 58
M Gamella (248_CR76) 2018; 119
S Mishra (248_CR67) 2019; 304
EW Zaia (248_CR13) 2019; 5
Y Xin (248_CR69) 2016; 493
P Maharjan (248_CR100) 2020; 76
X Ji (248_CR104) 2020; 5
J Lv (248_CR77) 2018; 11
Y Yu (248_CR90) 2020; 5
J Yun (248_CR102) 2020; 78
G Digregorio (248_CR20) 2020; 8
Y Liu (248_CR5) 2017; 117
X Wang (248_CR60) 2018; 12
HV Jagadish (248_CR6) 2014; 57
Y Liu (248_CR10) 2017; 11
KY Lee (248_CR57) 2014; 26
J Wu (248_CR41) 2018; 30
J Kim (248_CR71) 2020; 75
T Zhang (248_CR28) 2020; 23
X Cheng (248_CR63) 2017; 38
H Liu (248_CR103) 2020; 6
KS Ramadan (248_CR66) 2014; 23
H Guo (248_CR97) 2020; 12
A Yu (248_CR55) 2019; 29
B Dong (248_CR96) 2021; 79
J Nie (248_CR91) 2018; 12
B Dong (248_CR51) 2021; 79
Y Wang (248_CR40) 2019; 56
T Chen (248_CR49) 2019; 60
J Wang (248_CR42) 2020; 14
Z Liu (248_CR46) 2020; 14
SA Hashemi (248_CR25) 2020; 13
H Ryu (248_CR27) 2019; 31
Y Zou (248_CR16) 2020; 77
H Chen (248_CR31) 2018; 14
Y Du (248_CR72) 2018; 12
K Sim (248_CR12) 2019; 5
DW Kim (248_CR56) 2020; 12
A Satharasinghe (248_CR26) 2020; 28
X Yin (248_CR62) 2018; 13
Z Ren (248_CR79) 2020; 67
Y Wang (248_CR38) 2020; 73
Y Wang (248_CR95) 2019; 63
Y Kim (248_CR32) 2020; 30
Y Yang (248_CR37) 2020; 301
Y Su (248_CR82) 2017; 251
Y Tang (248_CR98) 2020; 30
A Nozariasbmarz (248_CR24) 2020; 258
S Priya (248_CR65) 2019; 4
P Maharjan (248_CR19) 2019; 256
M Chen (248_CR7) 2017; 55
KSD Gunawardhana (248_CR53) 2020; 23
S Anwar (248_CR18) 2021; 31
J Sun (248_CR94) 2019; 55
M Stoppa (248_CR2) 2014; 14
C Wang (248_CR75) 2020; 169
J Tian (248_CR92) 2019; 59
M Kanik (248_CR34) 2016; 1
ZH Guo (248_CR44) 2019; 29
A Bandodkar (248_CR21) 2017; 10
Y Song (248_CR47) 2019; 13
S Wang (248_CR61) 2014; 26
K Xia (248_CR15) 2018; 50
Y Liu (248_CR84) 2020; 6
References_xml – volume: 124
  year: 2018
  ident: CR83
  article-title: A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1942-5
– volume: 119
  start-page: 33
  year: 2018
  end-page: 42
  ident: CR76
  article-title: Biofuel cells–activation of micro-and macro-electronic devices
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2017.09.002
– volume: 8
  start-page: 175436
  year: 2020
  end-page: 175447
  ident: CR20
  article-title: Modeling and experimental characterization of an electromagnetic energy harvester for wearable and biomedical applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023195
– volume: 4
  start-page: 1800723
  year: 2019
  ident: CR81
  article-title: Polyimide/graphene nanocomposite foam‐based wind‐driven triboelectric nanogenerator for self‐powered pressure sensor
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800723
– volume: 164
  start-page: 108102
  year: 2020
  ident: CR14
  article-title: Wearable heart rate monitoring intelligent sports bracelet based on Internet of Things
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108102
– volume: 58
  start-page: 641
  year: 2019
  end-page: 651
  ident: CR99
  article-title: Self-powered glove-based intuitive interface for diversified control applications in real/cyber space
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.091
– volume: 304
  start-page: 1800463
  year: 2019
  ident: CR67
  article-title: Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201800463
– volume: 56
  start-page: 547
  year: 2019
  end-page: 554
  ident: CR40
  article-title: Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.089
– volume: 13
  start-page: 2226
  year: 2013
  end-page: 2233
  ident: CR59
  article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
  publication-title: Nano Lett.
  doi: 10.1021/nl400738p
– volume: 2
  start-page: 1131
  year: 2020
  end-page: 1162
  ident: CR8
  article-title: Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things
  publication-title: InfoMat
  doi: 10.1002/inf2.12122
– volume: 169
  start-page: 112652
  year: 2020
  ident: CR75
  article-title: Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112652
– volume: 256
  start-page: 113987
  year: 2019
  ident: CR19
  article-title: High-performance cycloid inspired wearable electromagnetic energy harvester for scavenging human motion energy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113987
– volume: 116
  start-page: 043902
  year: 2020
  ident: CR30
  article-title: Self-powered flexible and transparent smart patch for temperature sensing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5134526
– volume: 61
  start-page: 173
  year: 2019
  end-page: 193
  ident: CR33
  article-title: Fuel cell-based self-powered electrochemical sensors for biochemical detection
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.056
– volume: 14
  start-page: 1704022
  year: 2018
  ident: CR68
  article-title: Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester
  publication-title: Small
  doi: 10.1002/smll.201704022
– volume: 74
  start-page: 104878
  year: 2020
  ident: CR80
  article-title: A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104878
– volume: 74
  start-page: 104870
  year: 2020
  ident: CR17
  article-title: Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104870
– volume: 6
  start-page: 1
  year: 2019
  end-page: 31
  ident: CR50
  article-title: A review of human-powered energy harvesting for smart electronics: recent progress and challenges
  publication-title: Int. J. Precis. Eng. Man. GT.
– volume: 7
  start-page: 2000261
  year: 2020
  ident: CR101
  article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000261
– volume: 11
  start-page: 9614
  year: 2017
  end-page: 9635
  ident: CR10
  article-title: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04898
– volume: 38
  start-page: 438
  year: 2017
  end-page: 446
  ident: CR63
  article-title: High efficiency power management and charge boosting strategy for a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.063
– volume: 5
  start-page: 1900921
  year: 2020
  ident: CR104
  article-title: Triboelectric nanogenerator based smart electronics via machine learning
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900921
– volume: 11
  start-page: 123
  year: 2016
  end-page: 148
  ident: CR4
  article-title: Augmented reality smart glasses: an investigation of technology acceptance drivers
  publication-title: Int. J. Technol. Mark.
  doi: 10.1504/IJTMKT.2016.075690
– volume: 117
  start-page: 12893
  year: 2017
  end-page: 12941
  ident: CR5
  article-title: Nature-inspired structural materials for flexible electronic devices
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00291
– volume: 19
  start-page: 5544
  year: 2019
  end-page: 5552
  ident: CR39
  article-title: Moisture-driven power generation for multifunctional flexible sensing systems
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02081
– volume: 79
  start-page: 105419
  year: 2020
  ident: CR88
  article-title: Self-charging wearables for continuous health monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105419
– volume: 4
  start-page: 1925
  year: 2019
  end-page: 1933
  ident: CR89
  article-title: A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00891
– volume: 79
  start-page: 105414
  year: 2021
  ident: CR96
  article-title: Technology evolution from self-powered sensors to AIoT enabled smart homes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105414
– volume: 11
  start-page: 3431
  year: 2018
  end-page: 3442
  ident: CR77
  article-title: Sweat-based wearable energy harvesting-storage hybrid textile devices
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02792G
– volume: 57
  start-page: 86
  year: 2014
  end-page: 94
  ident: CR6
  article-title: Big data and its technical challenges
  publication-title: Commun. ACM
  doi: 10.1145/2611567
– volume: 4
  start-page: 3
  year: 2019
  end-page: 39
  ident: CR65
  article-title: A review on piezoelectric energy harvesting: materials, methods and circuit
  publication-title: Energy Harvesting Syst.
  doi: 10.1515/ehs-2016-0028
– volume: 30
  start-page: 1705925
  year: 2018
  ident: CR87
  article-title: Self‐powered wearable electronics based on moisture enabled electricity generation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705925
– volume: 5
  start-page: eaaz7946
  year: 2020
  ident: CR90
  article-title: Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaz7946
– volume: 26
  start-page: 765
  year: 2014
  end-page: 769
  ident: CR78
  article-title: Highly stretchable piezoelectric‐pyroelectric hybrid nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303570
– volume: 1
  start-page: 1600190
  year: 2016
  ident: CR34
  article-title: Continuous triboelectric power harvesting and biochemical sensing inside poly (vinylidene fluoride) hollow fibers using microfluidic droplet generation
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600190
– volume: 12
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR56
  article-title: Material aspects of triboelectric energy generation and sensors
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-019-0187-x
– volume: 26
  start-page: 5037
  year: 2014
  end-page: 5042
  ident: CR57
  article-title: Hydrophobic sponge structure‐based triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401184
– volume: 13
  start-page: 685
  year: 2020
  end-page: 743
  ident: CR25
  article-title: Recent progress in flexible-wearable solar cells for self-powered electronic devices
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03046H
– volume: 6
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR103
  article-title: An epidermal sEMG tattoo-like patch as a new human–machine interface for patients with loss of voice
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-019-0127-5
– volume: 28
  start-page: 578
  year: 2020
  end-page: 592
  ident: CR26
  article-title: An investigation of a wash‐durable solar energy harvesting textile
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.3229
– volume: 5
  start-page: eaav9653
  year: 2019
  ident: CR12
  article-title: Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9653
– volume: 14
  start-page: 3630
  year: 2020
  end-page: 3639
  ident: CR42
  article-title: Normally transparent tribo-induced smart window
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00107
– volume: 13
  start-page: 698
  year: 2018
  end-page: 705
  ident: CR62
  article-title: Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07935
– volume: 77
  start-page: 105174
  year: 2020
  ident: CR48
  article-title: Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105174
– volume: 31
  start-page: 2004326
  year: 2021
  ident: CR18
  article-title: Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004326
– volume: 12
  start-page: 8588
  year: 2018
  end-page: 8596
  ident: CR60
  article-title: Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator
  publication-title: Acs Nano
  doi: 10.1021/acsnano.8b04244
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  ident: CR58
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 6
  start-page: eabb9083
  year: 2020
  ident: CR29
  article-title: Hierarchically patterned self-powered sensors for multifunctional tactile sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb9083
– volume: 60
  start-page: 440
  year: 2019
  end-page: 448
  ident: CR49
  article-title: Intuitive-augmented human-machine multidimensional nano-manipulation terminal using triboelectric stretchable strip sensors based on minimalist design
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.071
– volume: 18
  start-page: 1026
  year: 2018
  end-page: 1034
  ident: CR43
  article-title: A droplet energy harvesting and actuation system for self-powered digital microfluidics
  publication-title: Lab Chip
  doi: 10.1039/C7LC01259D
– volume: 29
  start-page: 1900098
  year: 2019
  ident: CR55
  article-title: Progress in triboelectric materials: toward high performance and widespread applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900098
– volume: 13
  start-page: 12280
  year: 2019
  end-page: 12286
  ident: CR47
  article-title: Wearable and implantable electronics: moving toward precision therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08323
– volume: 12
  start-page: 6339
  year: 2012
  end-page: 6346
  ident: CR54
  article-title: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
  publication-title: Nano Lett.
  doi: 10.1021/nl303573d
– volume: 5
  start-page: 1800823
  year: 2019
  ident: CR13
  article-title: Progress and perspective: soft thermoelectric materials for wearable and Internet‐of‐Things applications
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800823
– volume: 79
  start-page: 105414
  year: 2021
  ident: CR51
  article-title: Technology evolution from self-powered sensors to AIoT enabled smart homes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105414
– volume: 67
  start-page: 104243
  year: 2020
  ident: CR79
  article-title: Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104243
– volume: 12
  start-page: 22357
  year: 2020
  end-page: 22364
  ident: CR97
  article-title: Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03510
– volume: 30
  start-page: 1907893
  year: 2020
  ident: CR98
  article-title: Triboelectric touch‐free screen sensor for noncontact gesture recognizing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907893
– volume: 14
  start-page: 1702571
  year: 2018
  ident: CR31
  article-title: Superior self‐powered room‐temperature chemical sensing with light‐activated inorganic halides perovskites
  publication-title: Small
  doi: 10.1002/smll.201702571
– volume: 14
  start-page: 11957
  year: 2014
  end-page: 11992
  ident: CR2
  article-title: Wearable electronics and smart textiles: a critical review
  publication-title: Sensors
  doi: 10.3390/s140711957
– volume: 23
  start-page: 101360
  year: 2020
  ident: CR53
  article-title: Towards truly wearable systems: optimising and scaling up wearable triboelectric nanogenerators
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101360
– volume: 251
  start-page: 144
  year: 2017
  end-page: 152
  ident: CR82
  article-title: Novel high-performance self-powered humidity detection enabled by triboelectric effect
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.04.039
– volume: 17
  start-page: 130
  year: 2017
  ident: CR9
  article-title: Wearable sensors for remote health monitoring
  publication-title: Sensors
  doi: 10.3390/s17010130
– volume: 9
  start-page: 303
  year: 2017
  ident: CR1
  article-title: Smart sensor systems for wearable electronic devices
  publication-title: Polymers
  doi: 10.3390/polym9080303
– volume: 77
  start-page: 105303
  year: 2020
  ident: CR16
  article-title: Wearable triboelectric nanogenerators for biomechanical energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105303
– volume: 59
  start-page: 705
  year: 2019
  end-page: 714
  ident: CR92
  article-title: Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.073
– volume: 12
  start-page: 1491
  year: 2018
  end-page: 1499
  ident: CR91
  article-title: Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique
  publication-title: Acs Nano
  doi: 10.1021/acsnano.7b08014
– volume: 10
  start-page: 1581
  year: 2017
  end-page: 1589
  ident: CR21
  article-title: Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00865A
– volume: 11
  start-page: 10301
  year: 2019
  end-page: 10309
  ident: CR23
  article-title: Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21716
– volume: 23
  start-page: 033001
  year: 2014
  ident: CR66
  article-title: A review of piezoelectric polymers as functional materials for electromechanical transducers
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/3/033001
– volume: 75
  start-page: 104992
  year: 2020
  ident: CR71
  article-title: Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104992
– volume: 12
  start-page: 21779
  year: 2020
  end-page: 21787
  ident: CR36
  article-title: Wearable textile supercapacitors for self-powered enzyme-free smartsensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05465
– volume: 6
  start-page: 1901174
  year: 2020
  ident: CR84
  article-title: Thin, skin‐integrated, stretchable triboelectric nanogenerators for tactile sensing
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201901174
– volume: 55
  start-page: 54
  year: 2017
  end-page: 61
  ident: CR7
  article-title: Wearable 2.0: enabling human-cloud integration in next generation healthcare systems
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1600410CM
– volume: 12
  start-page: 366
  year: 2018
  end-page: 388
  ident: CR72
  article-title: Flexible thermoelectric materials and devices
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.07.004
– volume: 55
  start-page: 12060
  year: 2019
  end-page: 12063
  ident: CR94
  article-title: Reversible self-powered fluorescent electrochromic windows driven by perovskite solar cells
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC05779J
– volume: 78
  start-page: 105325
  year: 2020
  ident: CR102
  article-title: Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105325
– volume: 58
  start-page: 45
  year: 2014
  end-page: 47
  ident: CR3
  article-title: Wearables: has the age of smartwatches finally arrived?
  publication-title: Commun. ACM
  doi: 10.1145/2629633
– volume: 61
  start-page: 517
  year: 2019
  end-page: 532
  ident: CR64
  article-title: Power management and effective energy storage of pulsed output from triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.096
– volume: 1
  start-page: 011
  year: 2018
  end-page: 015
  ident: CR74
  article-title: Ethanol/Oxygene microfluidic biofuel cells
  publication-title: Mater. Biomater. Sci.
– volume: 73
  start-page: 104773
  year: 2020
  ident: CR38
  article-title: Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104773
– volume: 31
  start-page: 1802898
  year: 2019
  ident: CR27
  article-title: Hybrid energy harvesters: toward sustainable energy harvesting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802898
– volume: 258
  start-page: 114069
  year: 2020
  ident: CR24
  article-title: Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114069
– volume: 16
  start-page: 1906352
  year: 2020
  ident: CR35
  article-title: Large‐area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping
  publication-title: Small
  doi: 10.1002/smll.201906352
– volume: 301
  start-page: 111789
  year: 2020
  ident: CR85
  article-title: Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111789
– volume: 30
  start-page: 2003360
  year: 2020
  ident: CR32
  article-title: 2D transition metal dichalcogenide heterostructures for p‐and n‐type photovoltaic self‐powered gas sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003360
– volume: 14
  start-page: 8074
  year: 2020
  end-page: 8083
  ident: CR46
  article-title: Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00675
– volume: 14
  start-page: 8915
  year: 2020
  end-page: 8930
  ident: CR11
  article-title: Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03728
– volume: 26
  start-page: 2818
  year: 2014
  end-page: 2824
  ident: CR61
  article-title: Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305303
– volume: 56
  start-page: 216
  year: 2019
  end-page: 224
  ident: CR70
  article-title: Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.052
– volume: 493
  start-page: 12
  year: 2016
  end-page: 24
  ident: CR69
  article-title: Shoes-equipped piezoelectric transducer for energy harvesting: a brief review
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2016.1123061
– volume: 301
  start-page: 111789
  year: 2020
  ident: CR37
  article-title: Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111789
– volume: 76
  start-page: 105071
  year: 2020
  ident: CR100
  article-title: A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105071
– volume: 50
  start-page: 571
  year: 2018
  end-page: 580
  ident: CR15
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.019
– volume: 23
  start-page: 101689
  year: 2020
  ident: CR28
  article-title: Recent progress in hybridized nanogenerators for energy scavenging
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101689
– volume: 30
  start-page: 1805039
  year: 2018
  ident: CR41
  article-title: A wheeled robot driven by a liquid‐metal droplet
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805039
– volume: 29
  start-page: 1808974
  year: 2019
  ident: CR44
  article-title: Self‐powered electrowetting valve for instantaneous and simultaneous actuation of paper‐based microfluidic assays
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808974
– volume: 271
  start-page: 115250
  year: 2020
  ident: CR73
  article-title: A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115250
– volume: 8
  start-page: 1800961
  year: 2018
  ident: CR86
  article-title: Graphene–polymer nanocomposite‐based redox‐induced electricity for flexible self‐powered strain sensors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800961
– volume: 30
  start-page: 1909886
  year: 2020
  ident: CR45
  article-title: Flexible drug release device powered by triboelectric nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909886
– volume: 142
  start-page: 11602
  year: 2020
  end-page: 11609
  ident: CR93
  article-title: Enzymatic biofuel cells for self-powered, controlled drug release
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05749
– volume: 124
  start-page: 40
  year: 2019
  end-page: 52
  ident: CR22
  article-title: Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.09.086
– volume: 81
  start-page: 105627
  year: 2021
  ident: CR52
  article-title: Design, manufacturing and applications of wearable triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105627
– volume: 63
  start-page: 103810
  year: 2019
  ident: CR95
  article-title: Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.006
– volume: 28
  start-page: 578
  year: 2020
  ident: 248_CR26
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.3229
– volume: 61
  start-page: 173
  year: 2019
  ident: 248_CR33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.056
– volume: 5
  start-page: eaaz7946
  year: 2020
  ident: 248_CR90
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaz7946
– volume: 19
  start-page: 5544
  year: 2019
  ident: 248_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02081
– volume: 73
  start-page: 104773
  year: 2020
  ident: 248_CR38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104773
– volume: 30
  start-page: 1805039
  year: 2018
  ident: 248_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805039
– volume: 6
  start-page: 1
  year: 2019
  ident: 248_CR50
  publication-title: Int. J. Precis. Eng. Man. GT.
– volume: 26
  start-page: 765
  year: 2014
  ident: 248_CR78
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303570
– volume: 256
  start-page: 113987
  year: 2019
  ident: 248_CR19
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113987
– volume: 11
  start-page: 10301
  year: 2019
  ident: 248_CR23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21716
– volume: 77
  start-page: 105303
  year: 2020
  ident: 248_CR16
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105303
– volume: 271
  start-page: 115250
  year: 2020
  ident: 248_CR73
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115250
– volume: 57
  start-page: 86
  year: 2014
  ident: 248_CR6
  publication-title: Commun. ACM
  doi: 10.1145/2611567
– volume: 251
  start-page: 144
  year: 2017
  ident: 248_CR82
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.04.039
– volume: 4
  start-page: 1925
  year: 2019
  ident: 248_CR89
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00891
– volume: 12
  start-page: 21779
  year: 2020
  ident: 248_CR36
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05465
– volume: 6
  start-page: 1901174
  year: 2020
  ident: 248_CR84
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201901174
– volume: 79
  start-page: 105414
  year: 2021
  ident: 248_CR96
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105414
– volume: 55
  start-page: 12060
  year: 2019
  ident: 248_CR94
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC05779J
– volume: 304
  start-page: 1800463
  year: 2019
  ident: 248_CR67
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201800463
– volume: 8
  start-page: 175436
  year: 2020
  ident: 248_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023195
– volume: 12
  start-page: 6339
  year: 2012
  ident: 248_CR54
  publication-title: Nano Lett.
  doi: 10.1021/nl303573d
– volume: 119
  start-page: 33
  year: 2018
  ident: 248_CR76
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2017.09.002
– volume: 5
  start-page: eaav9653
  year: 2019
  ident: 248_CR12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav9653
– volume: 30
  start-page: 1705925
  year: 2018
  ident: 248_CR87
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705925
– volume: 5
  start-page: 1900921
  year: 2020
  ident: 248_CR104
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900921
– volume: 63
  start-page: 103810
  year: 2019
  ident: 248_CR95
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.006
– volume: 142
  start-page: 11602
  year: 2020
  ident: 248_CR93
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05749
– volume: 60
  start-page: 440
  year: 2019
  ident: 248_CR49
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.071
– volume: 56
  start-page: 216
  year: 2019
  ident: 248_CR70
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.052
– volume: 58
  start-page: 641
  year: 2019
  ident: 248_CR99
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.091
– volume: 1
  start-page: 011
  year: 2018
  ident: 248_CR74
  publication-title: Mater. Biomater. Sci.
– volume: 23
  start-page: 101689
  year: 2020
  ident: 248_CR28
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101689
– volume: 59
  start-page: 705
  year: 2019
  ident: 248_CR92
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.073
– volume: 258
  start-page: 114069
  year: 2020
  ident: 248_CR24
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114069
– volume: 26
  start-page: 2818
  year: 2014
  ident: 248_CR61
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305303
– volume: 13
  start-page: 12280
  year: 2019
  ident: 248_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08323
– volume: 30
  start-page: 1907893
  year: 2020
  ident: 248_CR98
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907893
– volume: 23
  start-page: 101360
  year: 2020
  ident: 248_CR53
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101360
– volume: 12
  start-page: 366
  year: 2018
  ident: 248_CR72
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.07.004
– volume: 13
  start-page: 698
  year: 2018
  ident: 248_CR62
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07935
– volume: 58
  start-page: 45
  year: 2014
  ident: 248_CR3
  publication-title: Commun. ACM
  doi: 10.1145/2629633
– volume: 13
  start-page: 685
  year: 2020
  ident: 248_CR25
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03046H
– volume: 55
  start-page: 54
  year: 2017
  ident: 248_CR7
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1600410CM
– volume: 31
  start-page: 1802898
  year: 2019
  ident: 248_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802898
– volume: 76
  start-page: 105071
  year: 2020
  ident: 248_CR100
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105071
– volume: 9
  start-page: 303
  year: 2017
  ident: 248_CR1
  publication-title: Polymers
  doi: 10.3390/polym9080303
– volume: 8
  start-page: 1800961
  year: 2018
  ident: 248_CR86
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800961
– volume: 5
  start-page: 1800823
  year: 2019
  ident: 248_CR13
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800823
– volume: 12
  start-page: 22357
  year: 2020
  ident: 248_CR97
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03510
– volume: 16
  start-page: 1906352
  year: 2020
  ident: 248_CR35
  publication-title: Small
  doi: 10.1002/smll.201906352
– volume: 67
  start-page: 104243
  year: 2020
  ident: 248_CR79
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104243
– volume: 12
  start-page: 1491
  year: 2018
  ident: 248_CR91
  publication-title: Acs Nano
  doi: 10.1021/acsnano.7b08014
– volume: 11
  start-page: 9614
  year: 2017
  ident: 248_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04898
– volume: 74
  start-page: 104878
  year: 2020
  ident: 248_CR80
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104878
– volume: 26
  start-page: 5037
  year: 2014
  ident: 248_CR57
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401184
– volume: 116
  start-page: 043902
  year: 2020
  ident: 248_CR30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5134526
– volume: 74
  start-page: 104870
  year: 2020
  ident: 248_CR17
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104870
– volume: 11
  start-page: 123
  year: 2016
  ident: 248_CR4
  publication-title: Int. J. Technol. Mark.
  doi: 10.1504/IJTMKT.2016.075690
– volume: 14
  start-page: 8915
  year: 2020
  ident: 248_CR11
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03728
– volume: 124
  start-page: 40
  year: 2019
  ident: 248_CR22
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.09.086
– volume: 7
  start-page: 2000261
  year: 2020
  ident: 248_CR101
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000261
– volume: 12
  start-page: 1
  year: 2020
  ident: 248_CR56
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-019-0187-x
– volume: 117
  start-page: 12893
  year: 2017
  ident: 248_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00291
– volume: 14
  start-page: 3630
  year: 2020
  ident: 248_CR42
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00107
– volume: 29
  start-page: 1808974
  year: 2019
  ident: 248_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808974
– volume: 14
  start-page: 11957
  year: 2014
  ident: 248_CR2
  publication-title: Sensors
  doi: 10.3390/s140711957
– volume: 23
  start-page: 033001
  year: 2014
  ident: 248_CR66
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/3/033001
– volume: 29
  start-page: 1900098
  year: 2019
  ident: 248_CR55
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900098
– volume: 14
  start-page: 1704022
  year: 2018
  ident: 248_CR68
  publication-title: Small
  doi: 10.1002/smll.201704022
– volume: 14
  start-page: 1702571
  year: 2018
  ident: 248_CR31
  publication-title: Small
  doi: 10.1002/smll.201702571
– volume: 1
  start-page: 1600190
  year: 2016
  ident: 248_CR34
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600190
– volume: 50
  start-page: 571
  year: 2018
  ident: 248_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.019
– volume: 4
  start-page: 1800723
  year: 2019
  ident: 248_CR81
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800723
– volume: 2
  start-page: 1131
  year: 2020
  ident: 248_CR8
  publication-title: InfoMat
  doi: 10.1002/inf2.12122
– volume: 31
  start-page: 2004326
  year: 2021
  ident: 248_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004326
– volume: 79
  start-page: 105414
  year: 2021
  ident: 248_CR51
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105414
– volume: 81
  start-page: 105627
  year: 2021
  ident: 248_CR52
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105627
– volume: 124
  year: 2018
  ident: 248_CR83
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1942-5
– volume: 79
  start-page: 105419
  year: 2020
  ident: 248_CR88
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105419
– volume: 6
  start-page: 1
  year: 2020
  ident: 248_CR103
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-019-0127-5
– volume: 12
  start-page: 8588
  year: 2018
  ident: 248_CR60
  publication-title: Acs Nano
  doi: 10.1021/acsnano.8b04244
– volume: 11
  start-page: 3431
  year: 2018
  ident: 248_CR77
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02792G
– volume: 6
  start-page: eabb9083
  year: 2020
  ident: 248_CR29
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb9083
– volume: 18
  start-page: 1026
  year: 2018
  ident: 248_CR43
  publication-title: Lab Chip
  doi: 10.1039/C7LC01259D
– volume: 13
  start-page: 2226
  year: 2013
  ident: 248_CR59
  publication-title: Nano Lett.
  doi: 10.1021/nl400738p
– volume: 14
  start-page: 8074
  year: 2020
  ident: 248_CR46
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00675
– volume: 493
  start-page: 12
  year: 2016
  ident: 248_CR69
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2016.1123061
– volume: 57
  start-page: 432
  year: 2019
  ident: 248_CR58
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 10
  start-page: 1581
  year: 2017
  ident: 248_CR21
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00865A
– volume: 75
  start-page: 104992
  year: 2020
  ident: 248_CR71
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104992
– volume: 301
  start-page: 111789
  year: 2020
  ident: 248_CR37
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111789
– volume: 169
  start-page: 112652
  year: 2020
  ident: 248_CR75
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112652
– volume: 30
  start-page: 2003360
  year: 2020
  ident: 248_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003360
– volume: 78
  start-page: 105325
  year: 2020
  ident: 248_CR102
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105325
– volume: 164
  start-page: 108102
  year: 2020
  ident: 248_CR14
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108102
– volume: 38
  start-page: 438
  year: 2017
  ident: 248_CR63
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.063
– volume: 61
  start-page: 517
  year: 2019
  ident: 248_CR64
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.096
– volume: 17
  start-page: 130
  year: 2017
  ident: 248_CR9
  publication-title: Sensors
  doi: 10.3390/s17010130
– volume: 30
  start-page: 1909886
  year: 2020
  ident: 248_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909886
– volume: 77
  start-page: 105174
  year: 2020
  ident: 248_CR48
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105174
– volume: 4
  start-page: 3
  year: 2019
  ident: 248_CR65
  publication-title: Energy Harvesting Syst.
  doi: 10.1515/ehs-2016-0028
– volume: 301
  start-page: 111789
  year: 2020
  ident: 248_CR85
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2019.111789
– volume: 56
  start-page: 547
  year: 2019
  ident: 248_CR40
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.089
SSID ssj0001737905
ssib048324881
Score 2.5923934
SecondaryResourceType review_article
Snippet A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In...
Abstract A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms 639/925/927
639/925/927/359
Actuation
Artificial intelligence
Data processing
Designers
Electronic devices
Electronic equipment
Energy
Energy harvesting
Engineering
Information processing
Portable equipment
Review
Review Article
Wearable technology
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kT3oQ37auEsGbNpvppJP0UcVlEfTkwnoKqU7CCkPPsjOLsL_eqnRPO-Pz4rGTNIR6pL486iuAlw0BtrZFXUfOU9bK6pqCXlvL3AYpE8Uky4nCHz-Zk1P94aw92yn1xW_CRnrgUXBHvOWVGpWTuNC9QqddH3t0qNEZ8g5efSnm7WymyumKVcw8NWXJSOWO1rRaM5lsQ7tn5vGqr_ciUSHs_x3K_PWx5E83piUQHd-B2xOCFG_Gmd-FG2m4B7d2eAXvw5fyPhSXSYQhim9kzOVjnZa5vuCyaCmKkcJ5LTiMRbEaBGcKc8UikUo6oDgPl4WCg1o28_n7Azg9fv_53Uk91VCoe8JimzpjCnLhIjqXO2UMOmtDkwOJTyGBsZ7gUqYRkcJ2TjZlbdomdEGiCSaGTj2Eg2E1pMcgUk-bWWVaZaLSxjWIqcuYgzaG82lNBYutPH0_EYxznYulLxfdyvlRB5504IsO_HUFr-Z_LkZ6jb-OfstqmkcyNXZpIIPxk8H4fxlMBYdbJfvJX9eegGAj9aJzroIXczd5Gl-fhCGtrniM5aMEK5sKHo02Mc9EEQ61VnUV2D1r2Zvqfs_w9byweTutFIHUCl5v7erHtP4siif_QxRP4WZTHIJZag_hYHN5lZ4Rxtrg8-JO3wE0oSFL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB8U2gICNxA6ve2LGdEwJEVSHBiUrLKbJjmyKtkmWzFVJ_PTNONmX56HETr2Rnnj3PY88bgJclEraq8ooHylNW0iiOTq_iIlVOiIg-yVCi8KfP-uRUfVxWyyngNkzXKndrYl6oQ99SjPwIXXUpFG6R7Zv1D05Vo-h0dSqhcR1ukHQZodosZ3eqEK1qp5aeYy5Gkh4V1ZtD5s6pwtaURyOkPRpwPSe52RL316T0xS_2fFWW9P8XD_37OuUfZ6rZVR3fgdsTx2RvR1DchWuxuwe3flMevA9f8w1Sv4rMdYH9RLjnH0NcJb6mwmkxsFHkeWDk6ALrO0a5xFTTiMWcMMjO3CaLdOCT7RyhfwCnxx--vD_hU5UF3iJb2_LkoxMLG7y1qZZae2uMK5PzykuPdK1FQpWwRUDHnqKJSemqdLUTXjsdXC0fwkHXd_ExsNjidlfqSuoglbal97FOPjmlNWXc6gIWu-_ZtJMEOVXCWDX5KFzaZrRBgzZosg2aiwJezf9ZjwIcV7Z-R2aaW5J4dn7Qb74101ykypta4Ois8AvVSm-VbUPrLY7YalxwCzjcGbmZZvTQXOKvgBfza5yLdMDiutifUxtDwQYjygIejZiYeyKRqRoj6wLMHlr2urr_pvt-lvW-rZISaWwBr3e4uuzW_z_Fk6tH8RRulhnqpFB7CAfbzXl8hvxq65_nSfQLkbwe8w
  priority: 102
  providerName: ProQuest
Title Portable and wearable self-powered systems based on emerging energy harvesting technology
URI https://link.springer.com/article/10.1038/s41378-021-00248-z
https://www.ncbi.nlm.nih.gov/pubmed/34567739
https://www.proquest.com/docview/2502041988
https://www.proquest.com/docview/2576907702
https://pubmed.ncbi.nlm.nih.gov/PMC8433392
https://doaj.org/article/200604b380b14c3b848cdcb8b4b86376
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_t4wUeEN8ERmUk3iDCjR3beezKylSxCTEmlafITmyGVKVT2wlpfz13TppRGEi8JIp9kRzf2feL7fsdwOsMAVueO5nWFKcshZYpOr085SG3nHv0SZoChU9O1fG5nM7y2Q5km1iYeGg_UlrGaXpzOuzdCidb4oLN8OeXaLjS613YJ6p2tO390Wh6Nr1ZWdGCWKe6CBkuzC0vb3mhSNZ_G8L886Dkb7ul0QlN7sO9Dj2yUdveB7Djm4dw9xdOwUfwNZ4NdXPPbFOzH2jI8WHl5yG9pJRovmYtffOKkQur2aJhFCVM2YqYj6GA7MIuI_0Glqz7tffHcD45-jI-Trv8CWmFOGydBuctH5raGRMKoZQzWtssWCedcAjEKoRKASVqdNnBax-kyjNbWO6UVbUtxBPYaxaNfwbMV_gjK1QuVC2kMplzvgguWKkUxdKqBIab_iyrjlycclzMy7jJLUzZ6qBEHZRRB-V1Am_6dy5bao1_Sh-SmnpJosWOBYvlt7IzE8qpqTh-neFuKCvhjDRVXTmDX2wUTqUJHGyUXHZjdVUiCMy4HBbGJPCqr8ZRRlsntvGLK5LRtIygeZbA09Ym-pYIxKBaiyIBvWUtW03drmm-X0QmbyOFQICawNuNXd006-9d8fz_xF_AnSyaPnHRHsDeennlXyKSWrsB7OqZxquZfBh0w4ju708-nuH98Oj002esHavxIK5V_ARsSR_7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEO8GChgJThDVGzu294AQr2VLH6dWKqdgJw5FWiXLZquK_ih-IzPOoyyP3npM4ki25-3xfAPwLEGHLU2djAuqU5ZCyxiNXhrzMrWce7RJmgqF9_bV9FB-OkqP1uBnXwtD1yp7nRgUdVHndEa-haY64RJDZPN6_j2mrlGUXe1baLRsseN_nGLI1rzafo_0fZ4kkw8H76Zx11UgztE7Wcal85aPTOGMKcdCKWe0tklpnXTCoXuSowNR4ogCDVnptS-lShM7ttwpqwpL4Euo8q9IgZacKtMnH3v-lSgdskdnD2c8WhD-FfW3w0ghpo5eXd0OF2arQftB8LYJxvOELBafrdjG0ELgX37v39c3_8jhBtM4uQk3Op-WvWmZ8Bas-eo2XP8N6fAOfA43Vt3MM1sV7BT3MTw0flbGc2rU5gvWgko3jAxrweqKUe0y9VBiPhQosmO7CKAg-GY5ZATuwuGl7P89WK_qym8A8zmG10KlQhVCKpM458elK61Uiip8VQSjfj-zvIM8p84bsyyk3oXJWhpkSIMs0CA7i-DF8M-8Bfy4cPRbItMwksC6w4t68TXrZJ86fSqOqzPcjWQunJEmL3JncMVGoYKPYLMnctZpkCY75_cIng6fUfYpoWMrX5_QGE2HG5onEdxveWKYiUDPWGsxjkCvcMvKVFe_VN-OA764Qd5GtzmClz1fnU_r_1vx4OJVPIGr04O93Wx3e3_nIVxLAtsTOu4mrC8XJ_4R-nZL9zgIFIMvly3BvwCqUV0X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmpYCR4ATRZmPH9h4QorSrlsKqQlQqp2AnNq20SpbdrSr60_h1zDjJluXRW49JHMn2jOdhe74P4HmKAVuWWRGXVKcsuBIxOr0sTnxmksShT1JUKPxxLHcPxfuj7GgNfna1MHStsrOJwVCXdUF75H101WkiMEXWfd9eizjYHr2Zfo-JQYpOWjs6jUZF9t2PM0zf5q_3tlHWL9J0tPP53W7cMgzEBUYqi9hbZ5KBLq3WfsiltFopk3pjheUWQ5UCgwmPLUp0at4p54XMUjM0iZVGloaAmND8ryvKinqwvrUzPvjUabPAtSI6rPaw46M4oWER2x3mDTHxe7VVPAnX_Tl6EwK7TTG7J5yx-HzFUwZCgX9FwX9f5vzjRDc4ytEtuNlGuOxto5K3Yc1Vd-DGb7iHd-FLuL9qJ46ZqmRnOJPhYe4mPp4SbZsrWQMxPWfkZktWV4wqmYlRiblQrsiOzSxAhOCbxfJ84B4cXokE7kOvqiv3EJgrMNnmMuOy5ELq1Fo39NYbISXV-8oIBt185kULgE48HJM8HMRznTcyyFEGeZBBfh7By-U_0wb-49LWWySmZUuC7g4v6tm3vLUExPspExydTuxAFNxqoYuysBpHrCWa-wg2OyHnrT2Z5xfaH8Gz5We0BHS8YypXn1IbRVsdKkkjeNDoxLInHONkpfgwArWiLStdXf1SnRwHtHEtOMcgOoJXnV5ddOv_U7Fx-SiewjVcvfmHvfH-I7ieBq0nqNxN6C1mp-4xBnoL-6RdUQy-XvUi_gXy8mKp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portable+and+wearable+self-powered+systems+based+on+emerging+energy+harvesting+technology&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Xu%2C+Chen&rft.au=Song%2C+Yu&rft.au=Han%2C+Mengdi&rft.au=Zhang%2C+Haixia&rft.date=2021-03-17&rft.issn=2055-7434&rft.eissn=2055-7434&rft.volume=7&rft.spage=25&rft_id=info:doi/10.1038%2Fs41378-021-00248-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon