Portable and wearable self-powered systems based on emerging energy harvesting technology
A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portabl...
Saved in:
Published in | Microsystems & nanoengineering Vol. 7; no. 1; pp. 25 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.03.2021
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies. |
---|---|
AbstractList | A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies. Abstract A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies. A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies.A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In this review, we focus on portable and wearable self-powered systems, starting with typical energy harvesting technology, and introduce portable and wearable self-powered systems with sensing functions. In addition, we demonstrate the potential of self-powered systems in actuation functions and the development of self-powered systems toward intelligent functions under the support of information processing and artificial intelligence technologies. |
ArticleNumber | 25 |
Author | Zhang, Haixia Xu, Chen Song, Yu Han, Mengdi |
Author_xml | – sequence: 1 givenname: Chen surname: Xu fullname: Xu, Chen organization: Academy for Advanced Interdisciplinary Studies, Peking University – sequence: 2 givenname: Yu orcidid: 0000-0002-4185-2256 surname: Song fullname: Song, Yu organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University – sequence: 3 givenname: Mengdi surname: Han fullname: Han, Mengdi email: hmd@pku.edu.cn organization: Department of Biomedical Engineering, College of Future Technology, Peking University – sequence: 4 givenname: Haixia surname: Zhang fullname: Zhang, Haixia email: zhang-alice@pku.edu.cn organization: Academy for Advanced Interdisciplinary Studies, Peking University, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34567739$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxIVLYPwR27kgoYqPSpXgAAdOlu1Mslkl9mJnW21_Pd5NKW0PPXlm_N6b8fi9LI588FgUrwm8J8DUh8QJk6oCSioAylV186w4oVDXleSMH92Lj4uzlNYAQCSTDdQvimPGayEla06K3z9CnI0dsTS-La_RxEOScOyqTbjGiG2ZdmnGKZXWpJwFX-KEsR98X6LPwa5cmXiFad5XZnQrH8bQ714VzzszJjy7PU-LX18-_zz_Vl1-_3px_umycjWHueosGiCqtUp1DRPCKikN7YzllllOhOOs7jKiVTXrUGLHRU1NY8AKI1rTsNPiYtFtg1nrTRwmE3c6mEEfCiH22sR5cCNqCiAg6yqwhDtmFVeudVblXkowKbLWx0Vrs7UTtg79HM34QPThjR9Wug9XWnHGWEOzwLtbgRj-bPNO9DQkh-NoPIZt0rSWogEpYQ99-wi6Dtvo86oyCihw0iiVUW_uT3Q3yr8fzAC6AFwMKUXs7iAE9N4penGKzk7RB6fom0xSj0humM08hP2rhvFpKluoKffxPcb_Yz_B-guMJNQZ |
CitedBy_id | crossref_primary_10_1142_S2010135X22420085 crossref_primary_10_3390_nano13081381 crossref_primary_10_1002_adsr_202200025 crossref_primary_10_1063_5_0195325 crossref_primary_10_1016_j_rser_2023_113999 crossref_primary_10_1002_slct_202302376 crossref_primary_10_1063_5_0067930 crossref_primary_10_1038_s41378_024_00676_7 crossref_primary_10_1016_j_nanoen_2023_108715 crossref_primary_10_1016_j_nanoen_2022_107902 crossref_primary_10_3390_app13074351 crossref_primary_10_1016_j_nanoen_2023_108712 crossref_primary_10_3788_LOP231025 crossref_primary_10_1002_adma_202211012 crossref_primary_10_1016_j_jiec_2025_02_027 crossref_primary_10_1155_2023_6614658 crossref_primary_10_1016_j_mser_2023_100763 crossref_primary_10_1002_smtd_202200653 crossref_primary_10_1016_j_mattod_2023_09_006 crossref_primary_10_1088_1361_665X_ad649c crossref_primary_10_1016_j_nanoen_2024_110180 crossref_primary_10_1016_j_carbon_2024_119541 crossref_primary_10_1016_j_cej_2025_161640 crossref_primary_10_1126_science_ade2038 crossref_primary_10_1016_j_nanoen_2023_108841 crossref_primary_10_20517_ss_2024_09 crossref_primary_10_1002_adma_202203849 crossref_primary_10_1002_idm2_12033 crossref_primary_10_1088_1361_665X_ad2f6f crossref_primary_10_1016_j_susmat_2023_e00596 crossref_primary_10_1002_smll_202300847 crossref_primary_10_1109_JSEN_2023_3320356 crossref_primary_10_1038_s41563_021_01104_1 crossref_primary_10_1016_j_microc_2024_111491 crossref_primary_10_3390_s23156938 crossref_primary_10_1002_marc_202100204 crossref_primary_10_3390_s23010063 crossref_primary_10_1039_D4SD00032C crossref_primary_10_1039_D1MA00377A crossref_primary_10_1016_j_electacta_2024_145119 crossref_primary_10_1088_2631_8695_ac34c3 crossref_primary_10_1016_j_compositesb_2021_109384 crossref_primary_10_3390_polym16172477 crossref_primary_10_1002_aenm_202102835 crossref_primary_10_1016_j_mtcomm_2024_109616 crossref_primary_10_1016_j_nexus_2022_100124 crossref_primary_10_1002_adfm_202110535 crossref_primary_10_3390_s22145137 crossref_primary_10_1007_s10854_022_09536_4 crossref_primary_10_61767_mjte_001_3_0410 crossref_primary_10_1021_acsbiomaterials_3c01633 crossref_primary_10_1002_adma_202404492 crossref_primary_10_1002_smsc_202400149 crossref_primary_10_1007_s10854_023_09870_1 crossref_primary_10_1002_smll_202403899 crossref_primary_10_1541_ieejsmas_143_225 crossref_primary_10_1039_D3YA00638G crossref_primary_10_1088_1361_665X_ac8c0b crossref_primary_10_1002_adfm_202404329 crossref_primary_10_1016_j_isci_2022_104569 crossref_primary_10_1016_j_molstruc_2024_138391 crossref_primary_10_1016_j_jics_2022_100501 crossref_primary_10_1109_JSEN_2023_3241947 crossref_primary_10_1016_j_nanoen_2022_107422 crossref_primary_10_1088_1361_665X_acae4d crossref_primary_10_1016_j_molstruc_2023_136136 crossref_primary_10_1021_acsomega_4c06006 crossref_primary_10_1002_ece2_78 crossref_primary_10_1007_s11664_025_11790_1 crossref_primary_10_1088_1361_6463_ad632f crossref_primary_10_1155_2021_6074657 crossref_primary_10_1002_advs_202103842 crossref_primary_10_1088_1361_665X_ad9e5a crossref_primary_10_1039_D3TA04807A crossref_primary_10_1155_2023_6919663 crossref_primary_10_1002_smll_202402452 crossref_primary_10_3390_s22176625 crossref_primary_10_1007_s10853_023_08349_y crossref_primary_10_1021_acsami_4c02093 crossref_primary_10_26599_JAC_2023_9220691 crossref_primary_10_1016_j_apenergy_2024_124993 crossref_primary_10_1021_acsnano_3c09766 crossref_primary_10_1016_j_nanoen_2021_106869 crossref_primary_10_1039_D4NR05246C crossref_primary_10_3390_app142311452 crossref_primary_10_1016_j_apsb_2023_05_009 crossref_primary_10_1021_acsami_1c21394 crossref_primary_10_1121_10_0034600 crossref_primary_10_1016_j_nanoen_2021_106740 crossref_primary_10_1039_D0RA10783B crossref_primary_10_20517_ss_2023_13 crossref_primary_10_3390_s22103950 crossref_primary_10_1002_adfm_202404348 crossref_primary_10_1016_j_esr_2023_101124 crossref_primary_10_1002_aenm_202300260 crossref_primary_10_1039_D3MH00485F crossref_primary_10_1002_admt_202100787 crossref_primary_10_1016_j_diamond_2024_111171 crossref_primary_10_1016_j_nanoen_2024_110096 crossref_primary_10_1016_j_bios_2023_115218 crossref_primary_10_1016_j_solmat_2022_111936 crossref_primary_10_1088_2631_7990_ad4f32 crossref_primary_10_3390_en15217959 crossref_primary_10_1016_j_snb_2021_130778 crossref_primary_10_1016_j_nanoen_2023_108819 crossref_primary_10_3390_mi12080955 crossref_primary_10_1038_s41378_023_00563_7 crossref_primary_10_1016_j_nanoen_2023_109110 crossref_primary_10_1016_j_nanoen_2024_110524 crossref_primary_10_1016_j_nxener_2024_100141 crossref_primary_10_1016_j_susmat_2025_e01272 crossref_primary_10_1007_s10853_022_06875_9 crossref_primary_10_1016_j_apmt_2024_102270 crossref_primary_10_1002_admt_202200079 crossref_primary_10_1002_smsc_202300148 crossref_primary_10_1038_s41428_022_00727_8 crossref_primary_10_1016_j_ymssp_2023_110593 crossref_primary_10_1039_D3CC02652C crossref_primary_10_3390_coatings13122018 crossref_primary_10_1016_j_egyr_2023_04_351 crossref_primary_10_1016_j_matlet_2023_134430 crossref_primary_10_3390_mi12060695 crossref_primary_10_1016_j_jcis_2023_05_162 crossref_primary_10_1016_j_nanoen_2023_109087 crossref_primary_10_1002_smll_202310023 crossref_primary_10_1109_TCSI_2024_3457541 crossref_primary_10_1038_s41378_024_00660_1 crossref_primary_10_1016_j_nanoen_2024_110353 crossref_primary_10_1039_D3MA00657C crossref_primary_10_1016_j_enconman_2022_116119 crossref_primary_10_3390_polym16081071 crossref_primary_10_1021_acs_chemmater_2c03739 crossref_primary_10_3390_mi15020261 crossref_primary_10_3390_mi15070884 crossref_primary_10_1016_j_enconman_2021_114571 crossref_primary_10_1021_acssuschemeng_3c05198 crossref_primary_10_1039_D1TA08431C crossref_primary_10_1063_5_0057715 crossref_primary_10_1016_j_apmt_2023_101955 crossref_primary_10_1016_j_nanoen_2022_108143 crossref_primary_10_1016_j_device_2023_100007 crossref_primary_10_1016_j_sna_2024_115728 crossref_primary_10_1021_acsami_2c08101 crossref_primary_10_1016_j_nanoen_2023_109092 crossref_primary_10_1016_j_jmat_2023_08_013 crossref_primary_10_4139_sfj_74_2 crossref_primary_10_3390_mi15101213 crossref_primary_10_1088_1361_6528_ace724 crossref_primary_10_1016_j_cej_2024_156711 crossref_primary_10_3390_mi13081227 crossref_primary_10_1016_j_nanoen_2022_107176 crossref_primary_10_1155_2023_2777750 crossref_primary_10_1016_j_sbsr_2022_100525 crossref_primary_10_1002_advs_202206397 crossref_primary_10_1039_D3SM00993A crossref_primary_10_3390_s22155670 crossref_primary_10_1002_admt_202300873 crossref_primary_10_1002_smll_202406623 crossref_primary_10_1016_j_biomaterials_2023_122075 crossref_primary_10_1016_j_enconman_2022_116337 crossref_primary_10_1016_j_apenergy_2023_122285 crossref_primary_10_1016_j_heliyon_2024_e29025 crossref_primary_10_1016_j_jpowsour_2024_235204 crossref_primary_10_1088_1361_6528_ad0057 crossref_primary_10_3390_ma15124315 crossref_primary_10_1021_acs_chemrev_3c00290 crossref_primary_10_1109_ACCESS_2023_3276716 crossref_primary_10_1016_j_fmre_2022_01_021 crossref_primary_10_3762_bjnano_12_32 crossref_primary_10_1109_JSEN_2024_3442202 crossref_primary_10_1002_adfm_202303361 crossref_primary_10_1038_s41467_024_55790_x crossref_primary_10_1007_s10853_024_09784_1 crossref_primary_10_1016_j_matpr_2022_05_151 crossref_primary_10_3390_en15186639 crossref_primary_10_1038_s44287_024_00017_w crossref_primary_10_1007_s11227_022_04789_6 crossref_primary_10_1002_smll_202408929 crossref_primary_10_1002_smll_202307620 crossref_primary_10_1021_acsami_4c05946 crossref_primary_10_1016_j_ecmx_2024_100544 crossref_primary_10_1016_j_nanoen_2025_110676 crossref_primary_10_1016_j_jallcom_2024_177681 crossref_primary_10_1002_smll_202108091 crossref_primary_10_3390_lubricants10050079 crossref_primary_10_1016_j_cej_2024_157336 crossref_primary_10_1088_1361_6528_acd789 crossref_primary_10_1039_D2TA09975F crossref_primary_10_3390_mi15050555 crossref_primary_10_1002_adfm_202313267 crossref_primary_10_1016_j_solmat_2023_112284 crossref_primary_10_1016_j_nanoen_2022_107264 crossref_primary_10_1038_s41598_023_36817_7 crossref_primary_10_1016_j_mtcomm_2021_102827 crossref_primary_10_1016_j_nanoen_2024_109278 crossref_primary_10_1021_acsphotonics_3c01889 crossref_primary_10_1016_j_jpowsour_2025_236254 crossref_primary_10_3390_bios12020060 crossref_primary_10_1016_j_est_2022_106360 crossref_primary_10_1177_15589250221125437 crossref_primary_10_1002_smll_202204603 crossref_primary_10_1002_adfm_202308353 crossref_primary_10_1002_aelm_202400884 crossref_primary_10_1007_s12274_024_6959_9 crossref_primary_10_1016_j_snr_2024_100258 crossref_primary_10_1007_s11431_021_1984_9 crossref_primary_10_1016_j_isci_2022_104174 crossref_primary_10_1016_j_nanoen_2022_107017 crossref_primary_10_1016_j_trac_2021_116476 crossref_primary_10_1016_j_sna_2022_113743 crossref_primary_10_3390_act12060225 crossref_primary_10_1088_2053_1591_ac3c72 crossref_primary_10_1007_s00542_022_05345_1 crossref_primary_10_1002_smtd_202201719 crossref_primary_10_1039_D2NR05962B crossref_primary_10_1016_j_carbon_2024_119869 crossref_primary_10_1186_s40486_022_00150_x crossref_primary_10_1021_jacsau_2c00189 crossref_primary_10_1016_j_enconman_2022_115568 crossref_primary_10_1002_admt_202200340 crossref_primary_10_1016_j_pmatsci_2024_101244 crossref_primary_10_1021_acsami_4c08686 crossref_primary_10_1002_adsu_202300312 crossref_primary_10_3390_electronics13193801 crossref_primary_10_1021_acsami_4c02467 crossref_primary_10_1016_j_nanoen_2023_108651 crossref_primary_10_1002_tee_24117 crossref_primary_10_1038_s41467_024_49352_4 crossref_primary_10_1038_s41378_022_00393_z crossref_primary_10_1016_j_jece_2024_112144 crossref_primary_10_1016_j_jsamd_2022_100461 crossref_primary_10_3390_polym15102392 crossref_primary_10_1002_admt_202301895 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1016_j_jpowsour_2023_233712 crossref_primary_10_1038_s41560_022_01191_7 crossref_primary_10_1007_s12221_022_4702_2 crossref_primary_10_1016_j_cej_2021_131994 crossref_primary_10_1016_j_nanoen_2023_108787 |
Cites_doi | 10.1007/s00339-018-1942-5 10.1016/j.bioelechem.2017.09.002 10.1109/ACCESS.2020.3023195 10.1002/admt.201800723 10.1016/j.measurement.2020.108102 10.1016/j.nanoen.2019.01.091 10.1002/mame.201800463 10.1016/j.nanoen.2018.11.089 10.1021/nl400738p 10.1002/inf2.12122 10.1016/j.bios.2020.112652 10.1016/j.apenergy.2019.113987 10.1063/1.5134526 10.1016/j.nanoen.2019.04.056 10.1002/smll.201704022 10.1016/j.nanoen.2020.104878 10.1016/j.nanoen.2020.104870 10.1002/advs.202000261 10.1021/acsnano.7b04898 10.1016/j.nanoen.2017.05.063 10.1002/admt.201900921 10.1504/IJTMKT.2016.075690 10.1021/acs.chemrev.7b00291 10.1021/acs.nanolett.9b02081 10.1016/j.nanoen.2020.105419 10.1021/acssensors.9b00891 10.1016/j.nanoen.2020.105414 10.1039/C8EE02792G 10.1145/2611567 10.1515/ehs-2016-0028 10.1002/adma.201705925 10.1126/scirobotics.aaz7946 10.1002/adma.201303570 10.1002/admt.201600190 10.1038/s41427-019-0187-x 10.1002/adma.201401184 10.1039/C9EE03046H 10.1038/s41378-019-0127-5 10.1002/pip.3229 10.1126/sciadv.aav9653 10.1021/acsnano.0c00107 10.1021/acsnano.8b07935 10.1016/j.nanoen.2020.105174 10.1002/adfm.202004326 10.1021/acsnano.8b04244 10.1016/j.nanoen.2018.12.054 10.1126/sciadv.abb9083 10.1016/j.nanoen.2019.03.071 10.1039/C7LC01259D 10.1002/adfm.201900098 10.1021/acsnano.9b08323 10.1021/nl303573d 10.1002/aelm.201800823 10.1016/j.nanoen.2019.104243 10.1021/acsami.0c03510 10.1002/adfm.201907893 10.1002/smll.201702571 10.3390/s140711957 10.1016/j.isci.2020.101360 10.1016/j.snb.2017.04.039 10.3390/s17010130 10.3390/polym9080303 10.1016/j.nanoen.2020.105303 10.1016/j.nanoen.2019.02.073 10.1021/acsnano.7b08014 10.1039/C7EE00865A 10.1021/acsami.8b21716 10.1088/0964-1726/23/3/033001 10.1016/j.nanoen.2020.104992 10.1021/acsami.0c05465 10.1002/aelm.201901174 10.1109/MCOM.2017.1600410CM 10.1016/j.apmt.2018.07.004 10.1039/C9CC05779J 10.1016/j.nanoen.2020.105325 10.1145/2629633 10.1016/j.nanoen.2019.04.096 10.1016/j.nanoen.2020.104773 10.1002/adma.201802898 10.1016/j.apenergy.2019.114069 10.1002/smll.201906352 10.1016/j.sna.2019.111789 10.1002/adfm.202003360 10.1021/acsnano.0c00675 10.1021/acsnano.0c03728 10.1002/adma.201305303 10.1016/j.nanoen.2018.11.052 10.1080/00150193.2016.1123061 10.1016/j.nanoen.2020.105071 10.1016/j.nanoen.2018.06.019 10.1016/j.isci.2020.101689 10.1002/adma.201805039 10.1002/adfm.201808974 10.1016/j.apenergy.2020.115250 10.1002/aenm.201800961 10.1002/adfm.201909886 10.1021/jacs.0c05749 10.1016/j.bios.2018.09.086 10.1016/j.nanoen.2020.105627 10.1016/j.nanoen.2019.06.006 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1038/s41378-021-00248-z |
DatabaseName | Springer Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Databases Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7434 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_200604b380b14c3b848cdcb8b4b86376 PMC8433392 34567739 10_1038_s41378_021_00248_z |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: Grant No. 61674004; Grant No. 61674004 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key R&D Project from Minister of Science and Technology, China (2016YFA0202701, 2018YFA0108100) – fundername: ; – fundername: ; grantid: Grant No. 61674004; Grant No. 61674004 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-fbea018db88f9366b877a2fab4b3b416c435fa01d853fe7ef4652a9a0b6a6da93 |
IEDL.DBID | AAJSJ |
ISSN | 2055-7434 2096-1030 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 18:17:41 EDT 2025 Fri Jul 11 12:05:06 EDT 2025 Wed Aug 13 06:05:02 EDT 2025 Wed Feb 19 02:09:00 EST 2025 Thu Apr 24 23:11:30 EDT 2025 Tue Jul 01 03:27:10 EDT 2025 Fri Feb 21 02:38:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | NEMS Nanoscale devices |
Language | English |
License | The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-fbea018db88f9366b877a2fab4b3b416c435fa01d853fe7ef4652a9a0b6a6da93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4185-2256 |
OpenAccessLink | https://www.nature.com/articles/s41378-021-00248-z |
PMID | 34567739 |
PQID | 2502041988 |
PQPubID | 2041946 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_200604b380b14c3b848cdcb8b4b86376 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433392 proquest_miscellaneous_2576907702 proquest_journals_2502041988 pubmed_primary_34567739 crossref_primary_10_1038_s41378_021_00248_z crossref_citationtrail_10_1038_s41378_021_00248_z springer_journals_10_1038_s41378_021_00248_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-17 |
PublicationDateYYYYMMDD | 2021-03-17 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Shi (CR8) 2020; 2 Nozariasbmarz (CR24) 2020; 258 Cheng (CR58) 2019; 57 Wang (CR75) 2020; 169 Hashemi, Ramakrishna, Aberle (CR25) 2020; 13 Wang (CR59) 2013; 13 Yun, Jayababu, Kim (CR102) 2020; 78 Guo (CR44) 2019; 29 Wen (CR101) 2020; 7 Chen, Ji, Yan, Gao, Zhang (CR33) 2019; 61 Chen (CR49) 2019; 60 Yang (CR37) 2020; 301 Yuan, Zhu (CR73) 2020; 271 Yu, Zhu, Wang, Zhai (CR55) 2019; 29 Wang (CR38) 2020; 73 Dong (CR51) 2021; 79 Kanik, Marcali, Yunusa, Elbuken, Bayindir (CR34) 2016; 1 Xiao, Yu, Han (CR14) 2020; 164 Wang, Wang, Yang (CR86) 2018; 8 Zhao (CR81) 2019; 4 Rauschnabel, Ro (CR4) 2016; 11 Majumder, Mondal, Deen (CR9) 2017; 17 Xia, Zhu, Zhang, Xu (CR83) 2018; 124 Zhao (CR23) 2019; 11 Wang (CR42) 2020; 14 Ramadan, Sameoto, Evoy (CR66) 2014; 23 Bandodkar (CR21) 2017; 10 Dong (CR96) 2021; 79 Xiao, Denis McGourty, Magner (CR93) 2020; 142 Dong (CR11) 2020; 14 Ji, Zhao, Zhao, Lu, Li (CR104) 2020; 5 Wang (CR60) 2018; 12 Xia (CR15) 2018; 50 Wan (CR80) 2020; 74 Rawassizadeh, Price, Petre (CR3) 2014; 58 Stoppa, Chiolerio (CR2) 2014; 14 Jiang (CR70) 2019; 56 Wang (CR35) 2020; 16 Lee (CR57) 2014; 26 Sun (CR36) 2020; 12 Chen, Ren, Guo, Cheng, Zhang (CR30) 2020; 116 Chen, Liu, Li, Dong, Jiang (CR43) 2018; 18 Song, Min, Gao (CR47) 2019; 13 Ryu, Yoon, Kim (CR27) 2019; 31 Yin (CR62) 2018; 13 Liu, He, Chen, Leow, Chen (CR5) 2017; 117 Wang, Han, Song, Zhang (CR52) 2021; 81 Chen (CR31) 2018; 14 An (CR1) 2017; 9 Liu, Pharr, Salvatore (CR10) 2017; 11 Anwar (CR18) 2021; 31 Zhang (CR48) 2020; 77 Jagadish (CR6) 2014; 57 Maharjan (CR19) 2019; 256 Wang, Xie, Niu, Lin, Wang (CR61) 2014; 26 Wang, Lin, Wang (CR54) 2012; 12 Digregorio, Pierre, Laurent, Redouté (CR20) 2020; 8 Nie (CR91) 2018; 12 Li (CR39) 2019; 19 Gamella, Koushanpour, Katz (CR76) 2018; 119 Tang (CR98) 2020; 30 Mishra, Unnikrishnan, Nayak, Mohanty (CR67) 2019; 304 Kim (CR32) 2020; 30 Zhao (CR89) 2019; 4 Khalid, Raouf, Khan, Kim, Kim (CR50) 2019; 6 Yang (CR85) 2020; 301 Kim, Lee, Kim, Jeong (CR56) 2020; 12 Lv (CR77) 2018; 11 Selloum, Tingry (CR74) 2018; 1 Wang, Jiang, Wu, Yang (CR95) 2019; 63 Huang (CR22) 2019; 124 Wang (CR29) 2020; 6 Maharjan (CR100) 2020; 76 Kim (CR88) 2020; 79 Liu (CR45) 2020; 30 Satharasinghe, Hughes‐Riley, Dias (CR26) 2020; 28 Lee (CR78) 2014; 26 Tian (CR92) 2019; 59 Mondal, Paul, Maiti, Das, Chattopadhyay (CR17) 2020; 74 Guo (CR97) 2020; 12 He (CR99) 2019; 58 Chen (CR7) 2017; 55 Wang, Yang (CR40) 2019; 56 Zou, Raveendran, Chen (CR16) 2020; 77 Sim (CR12) 2019; 5 Wu (CR41) 2018; 30 Yu (CR90) 2020; 5 Gunawardhana, Wanasekara, Dharmasena (CR53) 2020; 23 Xin (CR69) 2016; 493 Priya (CR65) 2019; 4 Su (CR82) 2017; 251 Cheng (CR63) 2017; 38 Liu (CR46) 2020; 14 Du, Xu, Paul, Eklund (CR72) 2018; 12 Kim (CR71) 2020; 75 Liu (CR84) 2020; 6 Cheng (CR64) 2019; 61 Sun (CR94) 2019; 55 Zhang, Yang, Zhang, Bowen, Yang (CR28) 2020; 23 Ren (CR79) 2020; 67 Liu (CR103) 2020; 6 Jeong, Baek, Kingon, Park, Kim (CR68) 2018; 14 Shen (CR87) 2018; 30 Zaia, Gordon, Yuan, Urban (CR13) 2019; 5 S Wang (248_CR59) 2013; 13 J Zhao (248_CR89) 2019; 4 B An (248_CR1) 2017; 9 Y Chen (248_CR33) 2019; 61 T Sun (248_CR36) 2020; 12 S Majumder (248_CR9) 2017; 17 X Chen (248_CR30) 2020; 116 L Jiang (248_CR70) 2019; 56 D Selloum (248_CR74) 2018; 1 S Mondal (248_CR17) 2020; 74 S Khalid (248_CR50) 2019; 6 R Rawassizadeh (248_CR3) 2014; 58 J Wan (248_CR80) 2020; 74 X Huang (248_CR22) 2019; 124 W Zhang (248_CR48) 2020; 77 K Xia (248_CR83) 2018; 124 D Shen (248_CR87) 2018; 30 N Xiao (248_CR14) 2020; 164 X Zhao (248_CR23) 2019; 11 X Xiao (248_CR93) 2020; 142 Y Yang (248_CR85) 2020; 301 Q Shi (248_CR8) 2020; 2 P Cheng (248_CR58) 2019; 57 J Kim (248_CR88) 2020; 79 H Wang (248_CR52) 2021; 81 F Wen (248_CR101) 2020; 7 X Zhao (248_CR81) 2019; 4 B Dong (248_CR11) 2020; 14 G Liu (248_CR45) 2020; 30 L Li (248_CR39) 2019; 19 JH Lee (248_CR78) 2014; 26 J Yuan (248_CR73) 2020; 271 CK Jeong (248_CR68) 2018; 14 HL Wang (248_CR35) 2020; 16 G Chen (248_CR43) 2018; 18 S Wang (248_CR54) 2012; 12 Y Wang (248_CR29) 2020; 6 X Cheng (248_CR64) 2019; 61 PA Rauschnabel (248_CR4) 2016; 11 Y Wang (248_CR86) 2018; 8 T He (248_CR99) 2019; 58 M Gamella (248_CR76) 2018; 119 S Mishra (248_CR67) 2019; 304 EW Zaia (248_CR13) 2019; 5 Y Xin (248_CR69) 2016; 493 P Maharjan (248_CR100) 2020; 76 X Ji (248_CR104) 2020; 5 J Lv (248_CR77) 2018; 11 Y Yu (248_CR90) 2020; 5 J Yun (248_CR102) 2020; 78 G Digregorio (248_CR20) 2020; 8 Y Liu (248_CR5) 2017; 117 X Wang (248_CR60) 2018; 12 HV Jagadish (248_CR6) 2014; 57 Y Liu (248_CR10) 2017; 11 KY Lee (248_CR57) 2014; 26 J Wu (248_CR41) 2018; 30 J Kim (248_CR71) 2020; 75 T Zhang (248_CR28) 2020; 23 X Cheng (248_CR63) 2017; 38 H Liu (248_CR103) 2020; 6 KS Ramadan (248_CR66) 2014; 23 H Guo (248_CR97) 2020; 12 A Yu (248_CR55) 2019; 29 B Dong (248_CR96) 2021; 79 J Nie (248_CR91) 2018; 12 B Dong (248_CR51) 2021; 79 Y Wang (248_CR40) 2019; 56 T Chen (248_CR49) 2019; 60 J Wang (248_CR42) 2020; 14 Z Liu (248_CR46) 2020; 14 SA Hashemi (248_CR25) 2020; 13 H Ryu (248_CR27) 2019; 31 Y Zou (248_CR16) 2020; 77 H Chen (248_CR31) 2018; 14 Y Du (248_CR72) 2018; 12 K Sim (248_CR12) 2019; 5 DW Kim (248_CR56) 2020; 12 A Satharasinghe (248_CR26) 2020; 28 X Yin (248_CR62) 2018; 13 Z Ren (248_CR79) 2020; 67 Y Wang (248_CR38) 2020; 73 Y Wang (248_CR95) 2019; 63 Y Kim (248_CR32) 2020; 30 Y Yang (248_CR37) 2020; 301 Y Su (248_CR82) 2017; 251 Y Tang (248_CR98) 2020; 30 A Nozariasbmarz (248_CR24) 2020; 258 S Priya (248_CR65) 2019; 4 P Maharjan (248_CR19) 2019; 256 M Chen (248_CR7) 2017; 55 KSD Gunawardhana (248_CR53) 2020; 23 S Anwar (248_CR18) 2021; 31 J Sun (248_CR94) 2019; 55 M Stoppa (248_CR2) 2014; 14 C Wang (248_CR75) 2020; 169 J Tian (248_CR92) 2019; 59 M Kanik (248_CR34) 2016; 1 ZH Guo (248_CR44) 2019; 29 A Bandodkar (248_CR21) 2017; 10 Y Song (248_CR47) 2019; 13 S Wang (248_CR61) 2014; 26 K Xia (248_CR15) 2018; 50 Y Liu (248_CR84) 2020; 6 |
References_xml | – volume: 124 year: 2018 ident: CR83 article-title: A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1942-5 – volume: 119 start-page: 33 year: 2018 end-page: 42 ident: CR76 article-title: Biofuel cells–activation of micro-and macro-electronic devices publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2017.09.002 – volume: 8 start-page: 175436 year: 2020 end-page: 175447 ident: CR20 article-title: Modeling and experimental characterization of an electromagnetic energy harvester for wearable and biomedical applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023195 – volume: 4 start-page: 1800723 year: 2019 ident: CR81 article-title: Polyimide/graphene nanocomposite foam‐based wind‐driven triboelectric nanogenerator for self‐powered pressure sensor publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800723 – volume: 164 start-page: 108102 year: 2020 ident: CR14 article-title: Wearable heart rate monitoring intelligent sports bracelet based on Internet of Things publication-title: Measurement doi: 10.1016/j.measurement.2020.108102 – volume: 58 start-page: 641 year: 2019 end-page: 651 ident: CR99 article-title: Self-powered glove-based intuitive interface for diversified control applications in real/cyber space publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.091 – volume: 304 start-page: 1800463 year: 2019 ident: CR67 article-title: Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201800463 – volume: 56 start-page: 547 year: 2019 end-page: 554 ident: CR40 article-title: Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.089 – volume: 13 start-page: 2226 year: 2013 end-page: 2233 ident: CR59 article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism publication-title: Nano Lett. doi: 10.1021/nl400738p – volume: 2 start-page: 1131 year: 2020 end-page: 1162 ident: CR8 article-title: Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 169 start-page: 112652 year: 2020 ident: CR75 article-title: Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112652 – volume: 256 start-page: 113987 year: 2019 ident: CR19 article-title: High-performance cycloid inspired wearable electromagnetic energy harvester for scavenging human motion energy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113987 – volume: 116 start-page: 043902 year: 2020 ident: CR30 article-title: Self-powered flexible and transparent smart patch for temperature sensing publication-title: Appl. Phys. Lett. doi: 10.1063/1.5134526 – volume: 61 start-page: 173 year: 2019 end-page: 193 ident: CR33 article-title: Fuel cell-based self-powered electrochemical sensors for biochemical detection publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.056 – volume: 14 start-page: 1704022 year: 2018 ident: CR68 article-title: Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester publication-title: Small doi: 10.1002/smll.201704022 – volume: 74 start-page: 104878 year: 2020 ident: CR80 article-title: A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104878 – volume: 74 start-page: 104870 year: 2020 ident: CR17 article-title: Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104870 – volume: 6 start-page: 1 year: 2019 end-page: 31 ident: CR50 article-title: A review of human-powered energy harvesting for smart electronics: recent progress and challenges publication-title: Int. J. Precis. Eng. Man. GT. – volume: 7 start-page: 2000261 year: 2020 ident: CR101 article-title: Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications publication-title: Adv. Sci. doi: 10.1002/advs.202000261 – volume: 11 start-page: 9614 year: 2017 end-page: 9635 ident: CR10 article-title: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring publication-title: ACS Nano doi: 10.1021/acsnano.7b04898 – volume: 38 start-page: 438 year: 2017 end-page: 446 ident: CR63 article-title: High efficiency power management and charge boosting strategy for a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.063 – volume: 5 start-page: 1900921 year: 2020 ident: CR104 article-title: Triboelectric nanogenerator based smart electronics via machine learning publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900921 – volume: 11 start-page: 123 year: 2016 end-page: 148 ident: CR4 article-title: Augmented reality smart glasses: an investigation of technology acceptance drivers publication-title: Int. J. Technol. Mark. doi: 10.1504/IJTMKT.2016.075690 – volume: 117 start-page: 12893 year: 2017 end-page: 12941 ident: CR5 article-title: Nature-inspired structural materials for flexible electronic devices publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00291 – volume: 19 start-page: 5544 year: 2019 end-page: 5552 ident: CR39 article-title: Moisture-driven power generation for multifunctional flexible sensing systems publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02081 – volume: 79 start-page: 105419 year: 2020 ident: CR88 article-title: Self-charging wearables for continuous health monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105419 – volume: 4 start-page: 1925 year: 2019 end-page: 1933 ident: CR89 article-title: A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring publication-title: ACS Sens. doi: 10.1021/acssensors.9b00891 – volume: 79 start-page: 105414 year: 2021 ident: CR96 article-title: Technology evolution from self-powered sensors to AIoT enabled smart homes publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105414 – volume: 11 start-page: 3431 year: 2018 end-page: 3442 ident: CR77 article-title: Sweat-based wearable energy harvesting-storage hybrid textile devices publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02792G – volume: 57 start-page: 86 year: 2014 end-page: 94 ident: CR6 article-title: Big data and its technical challenges publication-title: Commun. ACM doi: 10.1145/2611567 – volume: 4 start-page: 3 year: 2019 end-page: 39 ident: CR65 article-title: A review on piezoelectric energy harvesting: materials, methods and circuit publication-title: Energy Harvesting Syst. doi: 10.1515/ehs-2016-0028 – volume: 30 start-page: 1705925 year: 2018 ident: CR87 article-title: Self‐powered wearable electronics based on moisture enabled electricity generation publication-title: Adv. Mater. doi: 10.1002/adma.201705925 – volume: 5 start-page: eaaz7946 year: 2020 ident: CR90 article-title: Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces publication-title: Sci. Robot. doi: 10.1126/scirobotics.aaz7946 – volume: 26 start-page: 765 year: 2014 end-page: 769 ident: CR78 article-title: Highly stretchable piezoelectric‐pyroelectric hybrid nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201303570 – volume: 1 start-page: 1600190 year: 2016 ident: CR34 article-title: Continuous triboelectric power harvesting and biochemical sensing inside poly (vinylidene fluoride) hollow fibers using microfluidic droplet generation publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600190 – volume: 12 start-page: 1 year: 2020 end-page: 17 ident: CR56 article-title: Material aspects of triboelectric energy generation and sensors publication-title: NPG Asia Mater. doi: 10.1038/s41427-019-0187-x – volume: 26 start-page: 5037 year: 2014 end-page: 5042 ident: CR57 article-title: Hydrophobic sponge structure‐based triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201401184 – volume: 13 start-page: 685 year: 2020 end-page: 743 ident: CR25 article-title: Recent progress in flexible-wearable solar cells for self-powered electronic devices publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03046H – volume: 6 start-page: 1 year: 2020 end-page: 13 ident: CR103 article-title: An epidermal sEMG tattoo-like patch as a new human–machine interface for patients with loss of voice publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0127-5 – volume: 28 start-page: 578 year: 2020 end-page: 592 ident: CR26 article-title: An investigation of a wash‐durable solar energy harvesting textile publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.3229 – volume: 5 start-page: eaav9653 year: 2019 ident: CR12 article-title: Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9653 – volume: 14 start-page: 3630 year: 2020 end-page: 3639 ident: CR42 article-title: Normally transparent tribo-induced smart window publication-title: ACS Nano doi: 10.1021/acsnano.0c00107 – volume: 13 start-page: 698 year: 2018 end-page: 705 ident: CR62 article-title: Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode publication-title: ACS Nano doi: 10.1021/acsnano.8b07935 – volume: 77 start-page: 105174 year: 2020 ident: CR48 article-title: Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105174 – volume: 31 start-page: 2004326 year: 2021 ident: CR18 article-title: Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004326 – volume: 12 start-page: 8588 year: 2018 end-page: 8596 ident: CR60 article-title: Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator publication-title: Acs Nano doi: 10.1021/acsnano.8b04244 – volume: 57 start-page: 432 year: 2019 end-page: 439 ident: CR58 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 6 start-page: eabb9083 year: 2020 ident: CR29 article-title: Hierarchically patterned self-powered sensors for multifunctional tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9083 – volume: 60 start-page: 440 year: 2019 end-page: 448 ident: CR49 article-title: Intuitive-augmented human-machine multidimensional nano-manipulation terminal using triboelectric stretchable strip sensors based on minimalist design publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.071 – volume: 18 start-page: 1026 year: 2018 end-page: 1034 ident: CR43 article-title: A droplet energy harvesting and actuation system for self-powered digital microfluidics publication-title: Lab Chip doi: 10.1039/C7LC01259D – volume: 29 start-page: 1900098 year: 2019 ident: CR55 article-title: Progress in triboelectric materials: toward high performance and widespread applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900098 – volume: 13 start-page: 12280 year: 2019 end-page: 12286 ident: CR47 article-title: Wearable and implantable electronics: moving toward precision therapy publication-title: ACS Nano doi: 10.1021/acsnano.9b08323 – volume: 12 start-page: 6339 year: 2012 end-page: 6346 ident: CR54 article-title: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics publication-title: Nano Lett. doi: 10.1021/nl303573d – volume: 5 start-page: 1800823 year: 2019 ident: CR13 article-title: Progress and perspective: soft thermoelectric materials for wearable and Internet‐of‐Things applications publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800823 – volume: 79 start-page: 105414 year: 2021 ident: CR51 article-title: Technology evolution from self-powered sensors to AIoT enabled smart homes publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105414 – volume: 67 start-page: 104243 year: 2020 ident: CR79 article-title: Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104243 – volume: 12 start-page: 22357 year: 2020 end-page: 22364 ident: CR97 article-title: Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03510 – volume: 30 start-page: 1907893 year: 2020 ident: CR98 article-title: Triboelectric touch‐free screen sensor for noncontact gesture recognizing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907893 – volume: 14 start-page: 1702571 year: 2018 ident: CR31 article-title: Superior self‐powered room‐temperature chemical sensing with light‐activated inorganic halides perovskites publication-title: Small doi: 10.1002/smll.201702571 – volume: 14 start-page: 11957 year: 2014 end-page: 11992 ident: CR2 article-title: Wearable electronics and smart textiles: a critical review publication-title: Sensors doi: 10.3390/s140711957 – volume: 23 start-page: 101360 year: 2020 ident: CR53 article-title: Towards truly wearable systems: optimising and scaling up wearable triboelectric nanogenerators publication-title: Iscience doi: 10.1016/j.isci.2020.101360 – volume: 251 start-page: 144 year: 2017 end-page: 152 ident: CR82 article-title: Novel high-performance self-powered humidity detection enabled by triboelectric effect publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.039 – volume: 17 start-page: 130 year: 2017 ident: CR9 article-title: Wearable sensors for remote health monitoring publication-title: Sensors doi: 10.3390/s17010130 – volume: 9 start-page: 303 year: 2017 ident: CR1 article-title: Smart sensor systems for wearable electronic devices publication-title: Polymers doi: 10.3390/polym9080303 – volume: 77 start-page: 105303 year: 2020 ident: CR16 article-title: Wearable triboelectric nanogenerators for biomechanical energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105303 – volume: 59 start-page: 705 year: 2019 end-page: 714 ident: CR92 article-title: Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.073 – volume: 12 start-page: 1491 year: 2018 end-page: 1499 ident: CR91 article-title: Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique publication-title: Acs Nano doi: 10.1021/acsnano.7b08014 – volume: 10 start-page: 1581 year: 2017 end-page: 1589 ident: CR21 article-title: Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00865A – volume: 11 start-page: 10301 year: 2019 end-page: 10309 ident: CR23 article-title: Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21716 – volume: 23 start-page: 033001 year: 2014 ident: CR66 article-title: A review of piezoelectric polymers as functional materials for electromechanical transducers publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/3/033001 – volume: 75 start-page: 104992 year: 2020 ident: CR71 article-title: Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104992 – volume: 12 start-page: 21779 year: 2020 end-page: 21787 ident: CR36 article-title: Wearable textile supercapacitors for self-powered enzyme-free smartsensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05465 – volume: 6 start-page: 1901174 year: 2020 ident: CR84 article-title: Thin, skin‐integrated, stretchable triboelectric nanogenerators for tactile sensing publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201901174 – volume: 55 start-page: 54 year: 2017 end-page: 61 ident: CR7 article-title: Wearable 2.0: enabling human-cloud integration in next generation healthcare systems publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600410CM – volume: 12 start-page: 366 year: 2018 end-page: 388 ident: CR72 article-title: Flexible thermoelectric materials and devices publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.07.004 – volume: 55 start-page: 12060 year: 2019 end-page: 12063 ident: CR94 article-title: Reversible self-powered fluorescent electrochromic windows driven by perovskite solar cells publication-title: Chem. Commun. doi: 10.1039/C9CC05779J – volume: 78 start-page: 105325 year: 2020 ident: CR102 article-title: Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105325 – volume: 58 start-page: 45 year: 2014 end-page: 47 ident: CR3 article-title: Wearables: has the age of smartwatches finally arrived? publication-title: Commun. ACM doi: 10.1145/2629633 – volume: 61 start-page: 517 year: 2019 end-page: 532 ident: CR64 article-title: Power management and effective energy storage of pulsed output from triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.096 – volume: 1 start-page: 011 year: 2018 end-page: 015 ident: CR74 article-title: Ethanol/Oxygene microfluidic biofuel cells publication-title: Mater. Biomater. Sci. – volume: 73 start-page: 104773 year: 2020 ident: CR38 article-title: Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104773 – volume: 31 start-page: 1802898 year: 2019 ident: CR27 article-title: Hybrid energy harvesters: toward sustainable energy harvesting publication-title: Adv. Mater. doi: 10.1002/adma.201802898 – volume: 258 start-page: 114069 year: 2020 ident: CR24 article-title: Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114069 – volume: 16 start-page: 1906352 year: 2020 ident: CR35 article-title: Large‐area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping publication-title: Small doi: 10.1002/smll.201906352 – volume: 301 start-page: 111789 year: 2020 ident: CR85 article-title: Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111789 – volume: 30 start-page: 2003360 year: 2020 ident: CR32 article-title: 2D transition metal dichalcogenide heterostructures for p‐and n‐type photovoltaic self‐powered gas sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003360 – volume: 14 start-page: 8074 year: 2020 end-page: 8083 ident: CR46 article-title: Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c00675 – volume: 14 start-page: 8915 year: 2020 end-page: 8930 ident: CR11 article-title: Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout publication-title: ACS Nano doi: 10.1021/acsnano.0c03728 – volume: 26 start-page: 2818 year: 2014 end-page: 2824 ident: CR61 article-title: Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – volume: 56 start-page: 216 year: 2019 end-page: 224 ident: CR70 article-title: Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.052 – volume: 493 start-page: 12 year: 2016 end-page: 24 ident: CR69 article-title: Shoes-equipped piezoelectric transducer for energy harvesting: a brief review publication-title: Ferroelectrics doi: 10.1080/00150193.2016.1123061 – volume: 301 start-page: 111789 year: 2020 ident: CR37 article-title: Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111789 – volume: 76 start-page: 105071 year: 2020 ident: CR100 article-title: A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105071 – volume: 50 start-page: 571 year: 2018 end-page: 580 ident: CR15 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.019 – volume: 23 start-page: 101689 year: 2020 ident: CR28 article-title: Recent progress in hybridized nanogenerators for energy scavenging publication-title: iScience doi: 10.1016/j.isci.2020.101689 – volume: 30 start-page: 1805039 year: 2018 ident: CR41 article-title: A wheeled robot driven by a liquid‐metal droplet publication-title: Adv. Mater. doi: 10.1002/adma.201805039 – volume: 29 start-page: 1808974 year: 2019 ident: CR44 article-title: Self‐powered electrowetting valve for instantaneous and simultaneous actuation of paper‐based microfluidic assays publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808974 – volume: 271 start-page: 115250 year: 2020 ident: CR73 article-title: A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115250 – volume: 8 start-page: 1800961 year: 2018 ident: CR86 article-title: Graphene–polymer nanocomposite‐based redox‐induced electricity for flexible self‐powered strain sensors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800961 – volume: 30 start-page: 1909886 year: 2020 ident: CR45 article-title: Flexible drug release device powered by triboelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909886 – volume: 142 start-page: 11602 year: 2020 end-page: 11609 ident: CR93 article-title: Enzymatic biofuel cells for self-powered, controlled drug release publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05749 – volume: 124 start-page: 40 year: 2019 end-page: 52 ident: CR22 article-title: Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.09.086 – volume: 81 start-page: 105627 year: 2021 ident: CR52 article-title: Design, manufacturing and applications of wearable triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105627 – volume: 63 start-page: 103810 year: 2019 ident: CR95 article-title: Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.006 – volume: 28 start-page: 578 year: 2020 ident: 248_CR26 publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.3229 – volume: 61 start-page: 173 year: 2019 ident: 248_CR33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.056 – volume: 5 start-page: eaaz7946 year: 2020 ident: 248_CR90 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aaz7946 – volume: 19 start-page: 5544 year: 2019 ident: 248_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02081 – volume: 73 start-page: 104773 year: 2020 ident: 248_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104773 – volume: 30 start-page: 1805039 year: 2018 ident: 248_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201805039 – volume: 6 start-page: 1 year: 2019 ident: 248_CR50 publication-title: Int. J. Precis. Eng. Man. GT. – volume: 26 start-page: 765 year: 2014 ident: 248_CR78 publication-title: Adv. Mater. doi: 10.1002/adma.201303570 – volume: 256 start-page: 113987 year: 2019 ident: 248_CR19 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113987 – volume: 11 start-page: 10301 year: 2019 ident: 248_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21716 – volume: 77 start-page: 105303 year: 2020 ident: 248_CR16 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105303 – volume: 271 start-page: 115250 year: 2020 ident: 248_CR73 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115250 – volume: 57 start-page: 86 year: 2014 ident: 248_CR6 publication-title: Commun. ACM doi: 10.1145/2611567 – volume: 251 start-page: 144 year: 2017 ident: 248_CR82 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.039 – volume: 4 start-page: 1925 year: 2019 ident: 248_CR89 publication-title: ACS Sens. doi: 10.1021/acssensors.9b00891 – volume: 12 start-page: 21779 year: 2020 ident: 248_CR36 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05465 – volume: 6 start-page: 1901174 year: 2020 ident: 248_CR84 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201901174 – volume: 79 start-page: 105414 year: 2021 ident: 248_CR96 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105414 – volume: 55 start-page: 12060 year: 2019 ident: 248_CR94 publication-title: Chem. Commun. doi: 10.1039/C9CC05779J – volume: 304 start-page: 1800463 year: 2019 ident: 248_CR67 publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201800463 – volume: 8 start-page: 175436 year: 2020 ident: 248_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023195 – volume: 12 start-page: 6339 year: 2012 ident: 248_CR54 publication-title: Nano Lett. doi: 10.1021/nl303573d – volume: 119 start-page: 33 year: 2018 ident: 248_CR76 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2017.09.002 – volume: 5 start-page: eaav9653 year: 2019 ident: 248_CR12 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav9653 – volume: 30 start-page: 1705925 year: 2018 ident: 248_CR87 publication-title: Adv. Mater. doi: 10.1002/adma.201705925 – volume: 5 start-page: 1900921 year: 2020 ident: 248_CR104 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900921 – volume: 63 start-page: 103810 year: 2019 ident: 248_CR95 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.006 – volume: 142 start-page: 11602 year: 2020 ident: 248_CR93 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05749 – volume: 60 start-page: 440 year: 2019 ident: 248_CR49 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.071 – volume: 56 start-page: 216 year: 2019 ident: 248_CR70 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.052 – volume: 58 start-page: 641 year: 2019 ident: 248_CR99 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.091 – volume: 1 start-page: 011 year: 2018 ident: 248_CR74 publication-title: Mater. Biomater. Sci. – volume: 23 start-page: 101689 year: 2020 ident: 248_CR28 publication-title: iScience doi: 10.1016/j.isci.2020.101689 – volume: 59 start-page: 705 year: 2019 ident: 248_CR92 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.073 – volume: 258 start-page: 114069 year: 2020 ident: 248_CR24 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114069 – volume: 26 start-page: 2818 year: 2014 ident: 248_CR61 publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – volume: 13 start-page: 12280 year: 2019 ident: 248_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.9b08323 – volume: 30 start-page: 1907893 year: 2020 ident: 248_CR98 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907893 – volume: 23 start-page: 101360 year: 2020 ident: 248_CR53 publication-title: Iscience doi: 10.1016/j.isci.2020.101360 – volume: 12 start-page: 366 year: 2018 ident: 248_CR72 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.07.004 – volume: 13 start-page: 698 year: 2018 ident: 248_CR62 publication-title: ACS Nano doi: 10.1021/acsnano.8b07935 – volume: 58 start-page: 45 year: 2014 ident: 248_CR3 publication-title: Commun. ACM doi: 10.1145/2629633 – volume: 13 start-page: 685 year: 2020 ident: 248_CR25 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03046H – volume: 55 start-page: 54 year: 2017 ident: 248_CR7 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600410CM – volume: 31 start-page: 1802898 year: 2019 ident: 248_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201802898 – volume: 76 start-page: 105071 year: 2020 ident: 248_CR100 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105071 – volume: 9 start-page: 303 year: 2017 ident: 248_CR1 publication-title: Polymers doi: 10.3390/polym9080303 – volume: 8 start-page: 1800961 year: 2018 ident: 248_CR86 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800961 – volume: 5 start-page: 1800823 year: 2019 ident: 248_CR13 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800823 – volume: 12 start-page: 22357 year: 2020 ident: 248_CR97 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03510 – volume: 16 start-page: 1906352 year: 2020 ident: 248_CR35 publication-title: Small doi: 10.1002/smll.201906352 – volume: 67 start-page: 104243 year: 2020 ident: 248_CR79 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104243 – volume: 12 start-page: 1491 year: 2018 ident: 248_CR91 publication-title: Acs Nano doi: 10.1021/acsnano.7b08014 – volume: 11 start-page: 9614 year: 2017 ident: 248_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.7b04898 – volume: 74 start-page: 104878 year: 2020 ident: 248_CR80 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104878 – volume: 26 start-page: 5037 year: 2014 ident: 248_CR57 publication-title: Adv. Mater. doi: 10.1002/adma.201401184 – volume: 116 start-page: 043902 year: 2020 ident: 248_CR30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5134526 – volume: 74 start-page: 104870 year: 2020 ident: 248_CR17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104870 – volume: 11 start-page: 123 year: 2016 ident: 248_CR4 publication-title: Int. J. Technol. Mark. doi: 10.1504/IJTMKT.2016.075690 – volume: 14 start-page: 8915 year: 2020 ident: 248_CR11 publication-title: ACS Nano doi: 10.1021/acsnano.0c03728 – volume: 124 start-page: 40 year: 2019 ident: 248_CR22 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.09.086 – volume: 7 start-page: 2000261 year: 2020 ident: 248_CR101 publication-title: Adv. Sci. doi: 10.1002/advs.202000261 – volume: 12 start-page: 1 year: 2020 ident: 248_CR56 publication-title: NPG Asia Mater. doi: 10.1038/s41427-019-0187-x – volume: 117 start-page: 12893 year: 2017 ident: 248_CR5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00291 – volume: 14 start-page: 3630 year: 2020 ident: 248_CR42 publication-title: ACS Nano doi: 10.1021/acsnano.0c00107 – volume: 29 start-page: 1808974 year: 2019 ident: 248_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808974 – volume: 14 start-page: 11957 year: 2014 ident: 248_CR2 publication-title: Sensors doi: 10.3390/s140711957 – volume: 23 start-page: 033001 year: 2014 ident: 248_CR66 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/23/3/033001 – volume: 29 start-page: 1900098 year: 2019 ident: 248_CR55 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900098 – volume: 14 start-page: 1704022 year: 2018 ident: 248_CR68 publication-title: Small doi: 10.1002/smll.201704022 – volume: 14 start-page: 1702571 year: 2018 ident: 248_CR31 publication-title: Small doi: 10.1002/smll.201702571 – volume: 1 start-page: 1600190 year: 2016 ident: 248_CR34 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600190 – volume: 50 start-page: 571 year: 2018 ident: 248_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.019 – volume: 4 start-page: 1800723 year: 2019 ident: 248_CR81 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800723 – volume: 2 start-page: 1131 year: 2020 ident: 248_CR8 publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 31 start-page: 2004326 year: 2021 ident: 248_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004326 – volume: 79 start-page: 105414 year: 2021 ident: 248_CR51 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105414 – volume: 81 start-page: 105627 year: 2021 ident: 248_CR52 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105627 – volume: 124 year: 2018 ident: 248_CR83 publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1942-5 – volume: 79 start-page: 105419 year: 2020 ident: 248_CR88 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105419 – volume: 6 start-page: 1 year: 2020 ident: 248_CR103 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0127-5 – volume: 12 start-page: 8588 year: 2018 ident: 248_CR60 publication-title: Acs Nano doi: 10.1021/acsnano.8b04244 – volume: 11 start-page: 3431 year: 2018 ident: 248_CR77 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02792G – volume: 6 start-page: eabb9083 year: 2020 ident: 248_CR29 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9083 – volume: 18 start-page: 1026 year: 2018 ident: 248_CR43 publication-title: Lab Chip doi: 10.1039/C7LC01259D – volume: 13 start-page: 2226 year: 2013 ident: 248_CR59 publication-title: Nano Lett. doi: 10.1021/nl400738p – volume: 14 start-page: 8074 year: 2020 ident: 248_CR46 publication-title: ACS Nano doi: 10.1021/acsnano.0c00675 – volume: 493 start-page: 12 year: 2016 ident: 248_CR69 publication-title: Ferroelectrics doi: 10.1080/00150193.2016.1123061 – volume: 57 start-page: 432 year: 2019 ident: 248_CR58 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 10 start-page: 1581 year: 2017 ident: 248_CR21 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00865A – volume: 75 start-page: 104992 year: 2020 ident: 248_CR71 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104992 – volume: 301 start-page: 111789 year: 2020 ident: 248_CR37 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111789 – volume: 169 start-page: 112652 year: 2020 ident: 248_CR75 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112652 – volume: 30 start-page: 2003360 year: 2020 ident: 248_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003360 – volume: 78 start-page: 105325 year: 2020 ident: 248_CR102 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105325 – volume: 164 start-page: 108102 year: 2020 ident: 248_CR14 publication-title: Measurement doi: 10.1016/j.measurement.2020.108102 – volume: 38 start-page: 438 year: 2017 ident: 248_CR63 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.063 – volume: 61 start-page: 517 year: 2019 ident: 248_CR64 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.096 – volume: 17 start-page: 130 year: 2017 ident: 248_CR9 publication-title: Sensors doi: 10.3390/s17010130 – volume: 30 start-page: 1909886 year: 2020 ident: 248_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909886 – volume: 77 start-page: 105174 year: 2020 ident: 248_CR48 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105174 – volume: 4 start-page: 3 year: 2019 ident: 248_CR65 publication-title: Energy Harvesting Syst. doi: 10.1515/ehs-2016-0028 – volume: 301 start-page: 111789 year: 2020 ident: 248_CR85 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2019.111789 – volume: 56 start-page: 547 year: 2019 ident: 248_CR40 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.089 |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5923934 |
SecondaryResourceType | review_article |
Snippet | A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic devices. In... Abstract A self-powered system based on energy harvesting technology can be a potential candidate for solving the problem of supplying power to electronic... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 25 |
SubjectTerms | 639/925/927 639/925/927/359 Actuation Artificial intelligence Data processing Designers Electronic devices Electronic equipment Energy Energy harvesting Engineering Information processing Portable equipment Review Review Article Wearable technology |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kT3oQ37auEsGbNpvppJP0UcVlEfTkwnoKqU7CCkPPsjOLsL_eqnRPO-Pz4rGTNIR6pL486iuAlw0BtrZFXUfOU9bK6pqCXlvL3AYpE8Uky4nCHz-Zk1P94aw92yn1xW_CRnrgUXBHvOWVGpWTuNC9QqddH3t0qNEZ8g5efSnm7WymyumKVcw8NWXJSOWO1rRaM5lsQ7tn5vGqr_ciUSHs_x3K_PWx5E83piUQHd-B2xOCFG_Gmd-FG2m4B7d2eAXvw5fyPhSXSYQhim9kzOVjnZa5vuCyaCmKkcJ5LTiMRbEaBGcKc8UikUo6oDgPl4WCg1o28_n7Azg9fv_53Uk91VCoe8JimzpjCnLhIjqXO2UMOmtDkwOJTyGBsZ7gUqYRkcJ2TjZlbdomdEGiCSaGTj2Eg2E1pMcgUk-bWWVaZaLSxjWIqcuYgzaG82lNBYutPH0_EYxznYulLxfdyvlRB5504IsO_HUFr-Z_LkZ6jb-OfstqmkcyNXZpIIPxk8H4fxlMBYdbJfvJX9eegGAj9aJzroIXczd5Gl-fhCGtrniM5aMEK5sKHo02Mc9EEQ61VnUV2D1r2Zvqfs_w9byweTutFIHUCl5v7erHtP4siif_QxRP4WZTHIJZag_hYHN5lZ4Rxtrg8-JO3wE0oSFL priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB8U2gICNxA6ve2LGdEwJEVSHBiUrLKbJjmyKtkmWzFVJ_PTNONmX56HETr2Rnnj3PY88bgJclEraq8ooHylNW0iiOTq_iIlVOiIg-yVCi8KfP-uRUfVxWyyngNkzXKndrYl6oQ99SjPwIXXUpFG6R7Zv1D05Vo-h0dSqhcR1ukHQZodosZ3eqEK1qp5aeYy5Gkh4V1ZtD5s6pwtaURyOkPRpwPSe52RL316T0xS_2fFWW9P8XD_37OuUfZ6rZVR3fgdsTx2RvR1DchWuxuwe3flMevA9f8w1Sv4rMdYH9RLjnH0NcJb6mwmkxsFHkeWDk6ALrO0a5xFTTiMWcMMjO3CaLdOCT7RyhfwCnxx--vD_hU5UF3iJb2_LkoxMLG7y1qZZae2uMK5PzykuPdK1FQpWwRUDHnqKJSemqdLUTXjsdXC0fwkHXd_ExsNjidlfqSuoglbal97FOPjmlNWXc6gIWu-_ZtJMEOVXCWDX5KFzaZrRBgzZosg2aiwJezf9ZjwIcV7Z-R2aaW5J4dn7Qb74101ykypta4Ois8AvVSm-VbUPrLY7YalxwCzjcGbmZZvTQXOKvgBfza5yLdMDiutifUxtDwQYjygIejZiYeyKRqRoj6wLMHlr2urr_pvt-lvW-rZISaWwBr3e4uuzW_z_Fk6tH8RRulhnqpFB7CAfbzXl8hvxq65_nSfQLkbwe8w priority: 102 providerName: ProQuest |
Title | Portable and wearable self-powered systems based on emerging energy harvesting technology |
URI | https://link.springer.com/article/10.1038/s41378-021-00248-z https://www.ncbi.nlm.nih.gov/pubmed/34567739 https://www.proquest.com/docview/2502041988 https://www.proquest.com/docview/2576907702 https://pubmed.ncbi.nlm.nih.gov/PMC8433392 https://doaj.org/article/200604b380b14c3b848cdcb8b4b86376 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_t4wUeEN8ERmUk3iDCjR3beezKylSxCTEmlafITmyGVKVT2wlpfz13TppRGEi8JIp9kRzf2feL7fsdwOsMAVueO5nWFKcshZYpOr085SG3nHv0SZoChU9O1fG5nM7y2Q5km1iYeGg_UlrGaXpzOuzdCidb4oLN8OeXaLjS613YJ6p2tO390Wh6Nr1ZWdGCWKe6CBkuzC0vb3mhSNZ_G8L886Dkb7ul0QlN7sO9Dj2yUdveB7Djm4dw9xdOwUfwNZ4NdXPPbFOzH2jI8WHl5yG9pJRovmYtffOKkQur2aJhFCVM2YqYj6GA7MIuI_0Glqz7tffHcD45-jI-Trv8CWmFOGydBuctH5raGRMKoZQzWtssWCedcAjEKoRKASVqdNnBax-kyjNbWO6UVbUtxBPYaxaNfwbMV_gjK1QuVC2kMplzvgguWKkUxdKqBIab_iyrjlycclzMy7jJLUzZ6qBEHZRRB-V1Am_6dy5bao1_Sh-SmnpJosWOBYvlt7IzE8qpqTh-neFuKCvhjDRVXTmDX2wUTqUJHGyUXHZjdVUiCMy4HBbGJPCqr8ZRRlsntvGLK5LRtIygeZbA09Ym-pYIxKBaiyIBvWUtW03drmm-X0QmbyOFQICawNuNXd006-9d8fz_xF_AnSyaPnHRHsDeennlXyKSWrsB7OqZxquZfBh0w4ju708-nuH98Oj002esHavxIK5V_ARsSR_7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEO8GChgJThDVGzu294AQr2VLH6dWKqdgJw5FWiXLZquK_ih-IzPOoyyP3npM4ki25-3xfAPwLEGHLU2djAuqU5ZCyxiNXhrzMrWce7RJmgqF9_bV9FB-OkqP1uBnXwtD1yp7nRgUdVHndEa-haY64RJDZPN6_j2mrlGUXe1baLRsseN_nGLI1rzafo_0fZ4kkw8H76Zx11UgztE7Wcal85aPTOGMKcdCKWe0tklpnXTCoXuSowNR4ogCDVnptS-lShM7ttwpqwpL4Euo8q9IgZacKtMnH3v-lSgdskdnD2c8WhD-FfW3w0ghpo5eXd0OF2arQftB8LYJxvOELBafrdjG0ELgX37v39c3_8jhBtM4uQk3Op-WvWmZ8Bas-eo2XP8N6fAOfA43Vt3MM1sV7BT3MTw0flbGc2rU5gvWgko3jAxrweqKUe0y9VBiPhQosmO7CKAg-GY5ZATuwuGl7P89WK_qym8A8zmG10KlQhVCKpM458elK61Uiip8VQSjfj-zvIM8p84bsyyk3oXJWhpkSIMs0CA7i-DF8M-8Bfy4cPRbItMwksC6w4t68TXrZJ86fSqOqzPcjWQunJEmL3JncMVGoYKPYLMnctZpkCY75_cIng6fUfYpoWMrX5_QGE2HG5onEdxveWKYiUDPWGsxjkCvcMvKVFe_VN-OA764Qd5GtzmClz1fnU_r_1vx4OJVPIGr04O93Wx3e3_nIVxLAtsTOu4mrC8XJ_4R-nZL9zgIFIMvly3BvwCqUV0X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmpYCR4ATRZmPH9h4QorSrlsKqQlQqp2AnNq20SpbdrSr60_h1zDjJluXRW49JHMn2jOdhe74P4HmKAVuWWRGXVKcsuBIxOr0sTnxmksShT1JUKPxxLHcPxfuj7GgNfna1MHStsrOJwVCXdUF75H101WkiMEXWfd9eizjYHr2Zfo-JQYpOWjs6jUZF9t2PM0zf5q_3tlHWL9J0tPP53W7cMgzEBUYqi9hbZ5KBLq3WfsiltFopk3pjheUWQ5UCgwmPLUp0at4p54XMUjM0iZVGloaAmND8ryvKinqwvrUzPvjUabPAtSI6rPaw46M4oWER2x3mDTHxe7VVPAnX_Tl6EwK7TTG7J5yx-HzFUwZCgX9FwX9f5vzjRDc4ytEtuNlGuOxto5K3Yc1Vd-DGb7iHd-FLuL9qJ46ZqmRnOJPhYe4mPp4SbZsrWQMxPWfkZktWV4wqmYlRiblQrsiOzSxAhOCbxfJ84B4cXokE7kOvqiv3EJgrMNnmMuOy5ELq1Fo39NYbISXV-8oIBt185kULgE48HJM8HMRznTcyyFEGeZBBfh7By-U_0wb-49LWWySmZUuC7g4v6tm3vLUExPspExydTuxAFNxqoYuysBpHrCWa-wg2OyHnrT2Z5xfaH8Gz5We0BHS8YypXn1IbRVsdKkkjeNDoxLInHONkpfgwArWiLStdXf1SnRwHtHEtOMcgOoJXnV5ddOv_U7Fx-SiewjVcvfmHvfH-I7ieBq0nqNxN6C1mp-4xBnoL-6RdUQy-XvUi_gXy8mKp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portable+and+wearable+self-powered+systems+based+on+emerging+energy+harvesting+technology&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Xu%2C+Chen&rft.au=Song%2C+Yu&rft.au=Han%2C+Mengdi&rft.au=Zhang%2C+Haixia&rft.date=2021-03-17&rft.issn=2055-7434&rft.eissn=2055-7434&rft.volume=7&rft.spage=25&rft_id=info:doi/10.1038%2Fs41378-021-00248-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |