A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing
The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled sign...
Saved in:
Published in | Cell reports (Cambridge) Vol. 22; no. 9; pp. 2227 - 2235 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.
[Display omitted]
•LNP delivery achieves >97% target protein knockdown for at least 12 months•Editing level is cumulative following multiple LNP doses•A sgRNA chemical modification pattern was critical for high levels of in vivo activity•Biodegradable lipid and CRISPR/Cas9 components are transient and well tolerated
Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components. |
---|---|
AbstractList | The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. : Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components. Keywords: CRISPR, Cas9, genome editing, LNP, lipid nanoparticle, TTR, CRISPR/Cas9, liver delivery, gene therapy, sgRNA The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. [Display omitted] •LNP delivery achieves >97% target protein knockdown for at least 12 months•Editing level is cumulative following multiple LNP doses•A sgRNA chemical modification pattern was critical for high levels of in vivo activity•Biodegradable lipid and CRISPR/Cas9 components are transient and well tolerated Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components. |
Author | Smith, Amy Rhoden Patel, Mihir C. Shaw, Lucinda Morrissey, David V. van Heteren, Jane Harrington, William F. Pink, Melissa Rohde, Ellen Strapps, Walter R. Shah, Aalok Finn, Jonathan D. Growe, Jacqueline Seitzer, Jessica Wood, Kristy M. Shah, Ruchi R. Dirstine, Tanner Youniss, Madeleine R. Salomon, William E. Lescarbeau, Reynald Ling, Dandan Dombrowski, Christian Chang, Yong Ciullo, Corey |
Author_xml | – sequence: 1 givenname: Jonathan D. surname: Finn fullname: Finn, Jonathan D. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 2 givenname: Amy Rhoden surname: Smith fullname: Smith, Amy Rhoden organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 3 givenname: Mihir C. surname: Patel fullname: Patel, Mihir C. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 4 givenname: Lucinda surname: Shaw fullname: Shaw, Lucinda organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 5 givenname: Madeleine R. surname: Youniss fullname: Youniss, Madeleine R. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 6 givenname: Jane surname: van Heteren fullname: van Heteren, Jane organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 7 givenname: Tanner surname: Dirstine fullname: Dirstine, Tanner organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 8 givenname: Corey surname: Ciullo fullname: Ciullo, Corey organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 9 givenname: Reynald surname: Lescarbeau fullname: Lescarbeau, Reynald organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 10 givenname: Jessica surname: Seitzer fullname: Seitzer, Jessica organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 11 givenname: Ruchi R. surname: Shah fullname: Shah, Ruchi R. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 12 givenname: Aalok surname: Shah fullname: Shah, Aalok organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 13 givenname: Dandan surname: Ling fullname: Ling, Dandan organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 14 givenname: Jacqueline surname: Growe fullname: Growe, Jacqueline organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 15 givenname: Melissa surname: Pink fullname: Pink, Melissa organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 16 givenname: Ellen surname: Rohde fullname: Rohde, Ellen organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 17 givenname: Kristy M. surname: Wood fullname: Wood, Kristy M. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 18 givenname: William E. surname: Salomon fullname: Salomon, William E. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 19 givenname: William F. surname: Harrington fullname: Harrington, William F. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 20 givenname: Christian surname: Dombrowski fullname: Dombrowski, Christian organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 21 givenname: Walter R. surname: Strapps fullname: Strapps, Walter R. organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 22 givenname: Yong surname: Chang fullname: Chang, Yong organization: Intellia Therapeutics, Cambridge, MA 02139, USA – sequence: 23 givenname: David V. surname: Morrissey fullname: Morrissey, David V. email: davidm@intelliatx.com organization: Intellia Therapeutics, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29490262$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdFuFCEYhSemxtbaNzCGS292CwzMDF6YbDa13WSjzVa9JQz8U9nMwBTYTfo2PotPVtpZG-OFcgMh55wfzve6OHLeQVG8JXhOMKnOt3MNfYBxTjFp5pjOMWEvihNKCZkRyuqjP87HxVmMW5xXhQkR7FVxTAUTmFb0pLhboBvrbntACzNYZ2MKKlnvkO_QcrO6ud6cL1UUaG1Ha9Bn5fyoQrK6h4gW-oeFfT5sfLuLCSln0DWEmEPAJbRyv35-t3uPLsH5AdCFsSmPelO87FQf4eywnxbfPl18XV7N1l8uV8vFeqY5w2nW8Q5XQBolSCMMV0xwilsORHdYU0ENGFO2gJuW14IRSruqrYTimEENoi3L02I15RqvtnIMdlDhXnpl5dOFD7fy8BPZcV6rUpGmYZgx0TYCV7nY0uQHdCXonPV-yhqDv9tBTHKwMRPolQO_i5JiLHidUfAsfXeQ7toBzPPg35VnAZsEOvgYA3TPEoLlI1y5lRNc-QhXYioz3Gz78JdN2_SEKhOz_f_MHycz5ML3FoKM2oLTYGwAnXIj9t8BDw8fwMY |
CitedBy_id | crossref_primary_10_1002_adma_202404053 crossref_primary_10_1088_1361_6528_ac357a crossref_primary_10_1002_EXP_20210081 crossref_primary_10_1016_j_heares_2020_107958 crossref_primary_10_1016_j_jbc_2024_105685 crossref_primary_10_1038_s41565_024_01747_6 crossref_primary_10_1007_s11886_024_02172_w crossref_primary_10_1016_j_jconrel_2022_08_042 crossref_primary_10_1016_j_jconrel_2021_06_036 crossref_primary_10_1002_smtd_201800365 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1021_acsnano_2c10501 crossref_primary_10_1021_acs_accounts_9b00368 crossref_primary_10_12688_f1000research_23185_1 crossref_primary_10_3390_nano12050783 crossref_primary_10_37349_eemd_2024_00011 crossref_primary_10_3389_fcell_2022_870088 crossref_primary_10_1007_s11886_024_02096_5 crossref_primary_10_1016_j_biomaterials_2021_120826 crossref_primary_10_1016_j_celrep_2021_110196 crossref_primary_10_1038_s41587_021_00933_4 crossref_primary_10_1002_1873_3468_14989 crossref_primary_10_1016_j_copbio_2018_03_007 crossref_primary_10_1016_j_omtm_2023_04_004 crossref_primary_10_1186_s13059_020_02118_9 crossref_primary_10_1360_SSV_2021_0376 crossref_primary_10_1016_j_medj_2022_02_001 crossref_primary_10_1172_JCI148555 crossref_primary_10_1007_s11940_023_00754_7 crossref_primary_10_1016_j_cpcardiol_2023_101741 crossref_primary_10_1016_j_jconrel_2024_04_037 crossref_primary_10_1016_j_tibtech_2018_09_010 crossref_primary_10_1038_s41591_018_0184_6 crossref_primary_10_1016_j_dmpk_2022_100450 crossref_primary_10_1016_j_ymthe_2024_11_020 crossref_primary_10_1016_j_ymthe_2021_05_010 crossref_primary_10_1002_adtp_201800085 crossref_primary_10_1016_j_actbio_2022_09_046 crossref_primary_10_1208_s12248_018_0267_9 crossref_primary_10_1021_acs_biomac_0c00211 crossref_primary_10_1038_s41586_021_03191_1 crossref_primary_10_1073_pnas_2020401118 crossref_primary_10_1016_j_addr_2019_11_005 crossref_primary_10_1016_j_praneu_2023_08_002 crossref_primary_10_3389_fchem_2023_1259435 crossref_primary_10_3390_diseases7030047 crossref_primary_10_1016_j_semcancer_2018_04_001 crossref_primary_10_1089_nat_2018_0721 crossref_primary_10_3390_pharmaceutics15020622 crossref_primary_10_1002_ijch_202400005 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_1016_j_colsurfb_2025_114598 crossref_primary_10_1007_s40291_019_00391_4 crossref_primary_10_3390_ijms23010573 crossref_primary_10_1038_s12276_023_01057_2 crossref_primary_10_1002_cmdc_202100777 crossref_primary_10_2174_1381612825666190619150221 crossref_primary_10_29328_journal_apps_1001047 crossref_primary_10_1248_bpb_b20_00534 crossref_primary_10_3390_biologics3040014 crossref_primary_10_1016_j_jconrel_2021_06_029 crossref_primary_10_1002_adfm_202402630 crossref_primary_10_1056_NEJMoa2309149 crossref_primary_10_1002_adma_201906783 crossref_primary_10_1021_acsnano_4c14041 crossref_primary_10_3389_fgeed_2022_785698 crossref_primary_10_1016_j_tips_2020_08_004 crossref_primary_10_1073_pnas_2404555121 crossref_primary_10_1039_D1BM01658J crossref_primary_10_1016_j_jgg_2019_11_003 crossref_primary_10_1016_j_jconrel_2023_02_008 crossref_primary_10_1021_acs_bioconjchem_8b00760 crossref_primary_10_1002_adfm_201910575 crossref_primary_10_1021_acs_biochem_1c00768 crossref_primary_10_1021_acsnano_3c09028 crossref_primary_10_1002_cplu_202000785 crossref_primary_10_1016_j_ymthe_2020_04_017 crossref_primary_10_1016_j_copbio_2024_103182 crossref_primary_10_1016_j_jaci_2024_03_016 crossref_primary_10_1016_j_mtadv_2022_100240 crossref_primary_10_1016_j_omtm_2022_03_006 crossref_primary_10_1016_j_envres_2023_116933 crossref_primary_10_1016_j_omtm_2022_03_008 crossref_primary_10_1038_s41392_024_01750_2 crossref_primary_10_1016_j_omtm_2020_05_024 crossref_primary_10_1134_S1068162019060025 crossref_primary_10_3390_ijms22168537 crossref_primary_10_1089_crispr_2020_0025 crossref_primary_10_1002_advs_202102072 crossref_primary_10_1002_jimd_12709 crossref_primary_10_20514_2226_6704_2022_12_5_363_369 crossref_primary_10_3389_fgeed_2024_1458037 crossref_primary_10_1021_acs_molpharmaceut_0c00618 crossref_primary_10_1016_j_addr_2020_05_010 crossref_primary_10_1016_j_ymthe_2021_06_003 crossref_primary_10_1038_s41586_020_1978_5 crossref_primary_10_3389_fimmu_2019_00705 crossref_primary_10_1016_j_jddst_2021_102728 crossref_primary_10_1172_JCI171356 crossref_primary_10_1038_s41551_022_00847_9 crossref_primary_10_1038_s41578_022_00529_7 crossref_primary_10_4155_bio_2020_0215 crossref_primary_10_1080_17425247_2025_2452295 crossref_primary_10_3389_fgeed_2022_1030285 crossref_primary_10_1038_s41573_024_00943_2 crossref_primary_10_1007_s11883_022_00986_z crossref_primary_10_1186_s12943_022_01518_8 crossref_primary_10_34133_bmr_0017 crossref_primary_10_1208_s12248_021_00651_4 crossref_primary_10_3390_pharmaceutics13091365 crossref_primary_10_1038_s41434_021_00232_2 crossref_primary_10_1002_ange_201903618 crossref_primary_10_1021_acs_accounts_9b00106 crossref_primary_10_1016_j_addr_2020_06_026 crossref_primary_10_3727_105221618X15350366478989 crossref_primary_10_1002_jgm_3721 crossref_primary_10_1016_j_biomaterials_2021_120966 crossref_primary_10_1038_s41598_023_33092_4 crossref_primary_10_1172_JCI158287 crossref_primary_10_1021_acschembio_9b01005 crossref_primary_10_3390_metabo11120857 crossref_primary_10_1038_s41591_018_0326_x crossref_primary_10_1080_17425247_2019_1656196 crossref_primary_10_1016_j_ccr_2023_215172 crossref_primary_10_3389_fimmu_2022_967505 crossref_primary_10_1021_acsnano_3c02669 crossref_primary_10_1038_s41587_023_01900_x crossref_primary_10_3390_pharmaceutics13122035 crossref_primary_10_1074_jbc_RA118_004554 crossref_primary_10_1136_jnnp_2021_327909 crossref_primary_10_1038_s41563_019_0385_5 crossref_primary_10_1039_D2BM00859A crossref_primary_10_3389_fchem_2022_957572 crossref_primary_10_3390_ijms23010025 crossref_primary_10_1089_ten_tea_2017_0445 crossref_primary_10_1016_j_cell_2020_03_023 crossref_primary_10_3390_jfb15110324 crossref_primary_10_1038_s41587_022_01491_z crossref_primary_10_1002_cpt_3000 crossref_primary_10_1016_j_biomaterials_2018_04_031 crossref_primary_10_1038_s41551_024_01267_7 crossref_primary_10_3390_pharmaceutics13030352 crossref_primary_10_1007_s12274_018_2146_1 crossref_primary_10_1016_j_envres_2023_116333 crossref_primary_10_1016_j_addr_2020_04_002 crossref_primary_10_1038_s41598_024_57286_6 crossref_primary_10_1021_jacs_8b08976 crossref_primary_10_1001_jamaneurol_2023_4983 crossref_primary_10_1016_j_jconrel_2019_02_009 crossref_primary_10_1186_s43556_023_00115_5 crossref_primary_10_1186_s12951_022_01717_x crossref_primary_10_1038_s41565_020_0669_6 crossref_primary_10_1126_scitranslmed_adk3920 crossref_primary_10_1038_s41392_019_0089_y crossref_primary_10_1089_crispr_2022_0065 crossref_primary_10_1038_s41565_019_0591_y crossref_primary_10_1039_D1BM00537E crossref_primary_10_3389_fphar_2024_1454785 crossref_primary_10_1111_acel_13671 crossref_primary_10_1038_s41467_020_17029_3 crossref_primary_10_1038_s41578_021_00358_0 crossref_primary_10_1073_pnas_2307798120 crossref_primary_10_5713_ab_23_0111 crossref_primary_10_1038_s41551_024_01296_2 crossref_primary_10_1177_15330338211045206 crossref_primary_10_1002_smll_202103025 crossref_primary_10_1016_j_ymthe_2019_02_012 crossref_primary_10_1038_s41573_020_0083_7 crossref_primary_10_1016_j_jconrel_2024_09_019 crossref_primary_10_1021_acsnano_0c04707 crossref_primary_10_1016_j_nano_2023_102711 crossref_primary_10_1007_s13205_024_04186_1 crossref_primary_10_1002_cac2_12366 crossref_primary_10_1089_hum_2019_111 crossref_primary_10_1007_s00432_023_04747_6 crossref_primary_10_2174_0118715273283786240408034408 crossref_primary_10_1007_s40123_023_00729_6 crossref_primary_10_1089_genbio_2023_0045 crossref_primary_10_1097_HEP_0000000000000873 crossref_primary_10_15366_tarbiya2021_49_004 crossref_primary_10_12677_ACM_2024_141068 crossref_primary_10_1002_bies_202000185 crossref_primary_10_3390_vaccines12060636 crossref_primary_10_1007_s11427_024_2697_3 crossref_primary_10_3390_vaccines9020097 crossref_primary_10_1016_j_jacbts_2018_11_004 crossref_primary_10_1038_s41588_021_00838_7 crossref_primary_10_1089_crispr_2022_0084 crossref_primary_10_1016_j_ymthe_2019_09_002 crossref_primary_10_1016_j_addr_2021_114041 crossref_primary_10_1186_s40824_023_00425_3 crossref_primary_10_31083_j_rcm2303108 crossref_primary_10_1016_j_drudis_2023_103793 crossref_primary_10_1080_17425247_2023_2185220 crossref_primary_10_3724_zdxbyxb_2023_0130 crossref_primary_10_1007_s11912_023_01397_2 crossref_primary_10_1016_j_mattod_2023_04_011 crossref_primary_10_1038_s41578_024_00725_7 crossref_primary_10_1080_17425247_2018_1517746 crossref_primary_10_32604_oncologie_2022_019415 crossref_primary_10_1021_acsabm_0c01463 crossref_primary_10_1021_acsnano_8b03640 crossref_primary_10_1038_s41467_021_26714_w crossref_primary_10_1016_j_tips_2019_11_006 crossref_primary_10_1002_adfm_202203669 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1002_mco2_155 crossref_primary_10_1056_NEJMoa2107454 crossref_primary_10_1088_1361_6528_ac842d crossref_primary_10_1021_acsnano_4c08490 crossref_primary_10_1016_j_tibtech_2019_01_009 crossref_primary_10_1038_s41565_022_01265_3 crossref_primary_10_1016_j_matdes_2022_111415 crossref_primary_10_1016_j_jhepr_2019_100065 crossref_primary_10_1016_j_jaccao_2021_06_006 crossref_primary_10_1038_s41587_024_02394_x crossref_primary_10_1016_j_jddst_2022_103948 crossref_primary_10_1038_s41576_021_00439_4 crossref_primary_10_1016_j_jchromb_2022_123149 crossref_primary_10_1038_s41586_024_07259_6 crossref_primary_10_1016_j_ymthe_2019_01_014 crossref_primary_10_1007_s12195_019_00573_4 crossref_primary_10_3390_ijms241814299 crossref_primary_10_1038_s41580_019_0131_5 crossref_primary_10_1039_D0NR05452F crossref_primary_10_1016_j_jmgm_2024_108702 crossref_primary_10_1016_j_ijpharm_2021_121020 crossref_primary_10_1016_j_arr_2024_102322 crossref_primary_10_1038_s41467_024_45537_z crossref_primary_10_1002_smll_202105832 crossref_primary_10_1007_s13346_023_01320_z crossref_primary_10_1016_j_addr_2023_114990 crossref_primary_10_1038_s41467_019_09600_4 crossref_primary_10_1016_j_bioactmat_2021_05_038 crossref_primary_10_1016_j_addr_2020_10_014 crossref_primary_10_1016_j_clinre_2018_05_001 crossref_primary_10_1016_j_tibtech_2018_08_010 crossref_primary_10_1016_j_biotechadv_2020_107534 crossref_primary_10_3390_pharmaceutics13101649 crossref_primary_10_3390_pharmaceutics16091197 crossref_primary_10_1073_pnas_1811276115 crossref_primary_10_2174_1570159X21666221121095618 crossref_primary_10_1016_j_addr_2023_114962 crossref_primary_10_3390_pharmaceutics16081037 crossref_primary_10_1002_anie_202014162 crossref_primary_10_1038_s41587_024_02437_3 crossref_primary_10_2174_1389202924666230823094608 crossref_primary_10_1186_s12929_023_00977_5 crossref_primary_10_2217_nnm_2021_0038 crossref_primary_10_1017_S0033583519000052 crossref_primary_10_1089_hum_2019_140 crossref_primary_10_1016_j_heliyon_2024_e24606 crossref_primary_10_1021_acsmacrolett_1c00538 crossref_primary_10_3390_biomedicines10102394 crossref_primary_10_1002_adhm_202102145 crossref_primary_10_1097_FJC_0000000000001478 crossref_primary_10_1134_S0026893322060218 crossref_primary_10_12688_f1000research_23185_2 crossref_primary_10_1016_j_gde_2019_04_001 crossref_primary_10_37349_etat_2022_00093 crossref_primary_10_1016_j_apsb_2024_04_015 crossref_primary_10_1038_s41551_020_00671_z crossref_primary_10_1016_j_cobme_2018_08_002 crossref_primary_10_1038_s41586_021_03534_y crossref_primary_10_3389_fbioe_2022_973326 crossref_primary_10_23736_S1120_4826_20_02618_X crossref_primary_10_3389_fbioe_2023_1138596 crossref_primary_10_1038_s41467_018_05073_z crossref_primary_10_1093_nar_gkad1125 crossref_primary_10_1016_j_gendis_2023_02_027 crossref_primary_10_1093_nar_gkad676 crossref_primary_10_1016_j_biotechadv_2024_108350 crossref_primary_10_3389_fbioe_2023_1339189 crossref_primary_10_1016_j_omtn_2025_102457 crossref_primary_10_2174_1566523219666190701100556 crossref_primary_10_1021_acs_chemrev_1c00244 crossref_primary_10_1016_j_ejpb_2024_114203 crossref_primary_10_1021_acsnano_3c08644 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_1053_j_semperi_2018_09_008 crossref_primary_10_1126_sciadv_abf4398 crossref_primary_10_1038_s41571_023_00811_9 crossref_primary_10_1073_pnas_1904697116 crossref_primary_10_1186_s13578_019_0350_7 crossref_primary_10_1016_j_ymthe_2021_09_027 crossref_primary_10_1038_s41467_024_55137_6 crossref_primary_10_3390_molecules25215006 crossref_primary_10_1038_s41467_021_27493_0 crossref_primary_10_2174_1570159X21666221108094736 crossref_primary_10_3389_fgeed_2020_617910 crossref_primary_10_1038_s41587_020_0565_5 crossref_primary_10_1126_sciadv_abj6901 crossref_primary_10_1038_s41434_021_00297_z crossref_primary_10_1038_s41467_018_06522_5 crossref_primary_10_3390_cimb44100341 crossref_primary_10_1002_mco2_339 crossref_primary_10_1093_cvr_cvac048 crossref_primary_10_1038_s41591_019_0467_6 crossref_primary_10_1002_jgm_3377 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_1016_j_ymthe_2019_03_003 crossref_primary_10_1038_s41467_023_39246_2 crossref_primary_10_3390_ijms222011300 crossref_primary_10_1002_smsc_202200071 crossref_primary_10_1016_j_addr_2024_115461 crossref_primary_10_1039_C8TB01642A crossref_primary_10_1016_j_bioactmat_2023_07_025 crossref_primary_10_1016_j_ijpharm_2022_122171 crossref_primary_10_1039_D1NR06858J crossref_primary_10_3390_biomedicines13010079 crossref_primary_10_1016_j_apsb_2023_03_001 crossref_primary_10_1016_j_addr_2020_09_004 crossref_primary_10_1038_s41596_021_00677_0 crossref_primary_10_1042_BSR20200127 crossref_primary_10_1038_s41578_020_0209_x crossref_primary_10_1038_s41565_020_0666_9 crossref_primary_10_1161_CIRCRESAHA_121_318187 crossref_primary_10_1038_s41557_024_01557_2 crossref_primary_10_1039_D3NR02175K crossref_primary_10_1021_acs_molpharmaceut_1c00916 crossref_primary_10_1021_acsnano_8b07858 crossref_primary_10_1080_10715762_2024_2446337 crossref_primary_10_1016_j_addr_2020_02_003 crossref_primary_10_1002_smll_202400815 crossref_primary_10_3389_fcvm_2023_1202381 crossref_primary_10_3390_pharmaceutics14020460 crossref_primary_10_1073_pnas_2400783121 crossref_primary_10_1002_adhm_202100847 crossref_primary_10_1016_j_atherosclerosis_2023_01_010 crossref_primary_10_1007_s10741_023_10380_9 crossref_primary_10_3390_genes11101113 crossref_primary_10_1021_acsnano_1c05099 crossref_primary_10_1126_sciadv_abc2315 crossref_primary_10_1002_advs_202207512 crossref_primary_10_1016_j_ymeth_2021_06_004 crossref_primary_10_1089_crispr_2021_29131_mus crossref_primary_10_1016_j_bioactmat_2021_05_051 crossref_primary_10_1016_j_omtm_2020_10_007 crossref_primary_10_3390_pharmaceutics14091842 crossref_primary_10_1007_s40259_023_00577_7 crossref_primary_10_1016_j_omtn_2025_102486 crossref_primary_10_1038_s41467_024_53418_8 crossref_primary_10_1042_ETLS20180147 crossref_primary_10_1016_j_jconrel_2019_05_019 crossref_primary_10_1097_HEP_0000000000000578 crossref_primary_10_1002_btm2_10713 crossref_primary_10_1021_acs_molpharmaceut_3c00276 crossref_primary_10_1038_s41467_023_42189_3 crossref_primary_10_1016_j_biopha_2022_114189 crossref_primary_10_1080_17425247_2020_1747429 crossref_primary_10_1146_annurev_bioeng_122019_121602 crossref_primary_10_3389_fonc_2022_809754 crossref_primary_10_1007_s10741_021_10180_z crossref_primary_10_1039_D2TB02610D crossref_primary_10_2337_dbi20_0036 crossref_primary_10_1016_j_lssr_2022_08_006 crossref_primary_10_1093_lifemedi_lnac036 crossref_primary_10_1016_j_nantod_2024_102291 crossref_primary_10_1097_HCO_0000000000001198 crossref_primary_10_1039_C8BM01310A crossref_primary_10_1016_j_addr_2022_114616 crossref_primary_10_1002_advs_202400493 crossref_primary_10_1038_s41467_019_12922_y crossref_primary_10_1016_j_addr_2020_11_002 crossref_primary_10_1002_anie_201903618 crossref_primary_10_3390_brainsci9010017 crossref_primary_10_3390_pharmaceutics14091940 crossref_primary_10_1021_acs_molpharmaceut_4c00925 crossref_primary_10_1021_acsami_0c16380 crossref_primary_10_1016_j_jconrel_2022_05_033 crossref_primary_10_1021_acs_accounts_1c00601 crossref_primary_10_1016_j_ymthe_2021_02_020 crossref_primary_10_1038_s41551_023_01030_4 crossref_primary_10_1161_CIRCRESAHA_123_321999 crossref_primary_10_1016_j_imlet_2020_07_003 crossref_primary_10_1021_acs_molpharmaceut_2c00365 crossref_primary_10_1016_j_jhepr_2019_09_002 crossref_primary_10_1021_acs_biochem_9b00046 crossref_primary_10_1016_j_cell_2023_08_031 crossref_primary_10_1111_trf_15126 crossref_primary_10_1016_j_visres_2023_108192 crossref_primary_10_1038_s41591_022_02061_1 crossref_primary_10_1016_j_canlet_2019_04_040 crossref_primary_10_1016_j_hfc_2024_03_005 crossref_primary_10_4142_jvs_2020_21_e26 crossref_primary_10_1016_j_jconrel_2024_08_030 crossref_primary_10_1007_s11940_024_00780_z crossref_primary_10_1016_j_jconrel_2023_07_058 crossref_primary_10_1038_s41467_022_29550_8 crossref_primary_10_1002_adtp_202100040 crossref_primary_10_1016_j_crbiot_2023_100150 crossref_primary_10_3389_fmed_2021_649896 crossref_primary_10_1126_sciadv_abo0522 crossref_primary_10_1016_j_medntd_2023_100217 crossref_primary_10_1038_s41587_024_02470_2 crossref_primary_10_1016_j_ymthe_2020_05_007 crossref_primary_10_1002_wnan_1530 crossref_primary_10_1080_14712598_2020_1817375 crossref_primary_10_1016_j_lfs_2021_119289 crossref_primary_10_1016_j_jrras_2024_101199 crossref_primary_10_1002_jcb_30329 crossref_primary_10_1039_D1CS00343G crossref_primary_10_1038_s41467_020_19505_2 crossref_primary_10_1039_D3BM00788J crossref_primary_10_1002_adma_202209624 crossref_primary_10_1039_D1BM01452H crossref_primary_10_1021_acsnano_1c10631 crossref_primary_10_1021_acs_accounts_1c00500 crossref_primary_10_1021_acs_molpharmaceut_2c00010 crossref_primary_10_1161_CIRCRESAHA_122_320496 crossref_primary_10_1165_rcmb_2022_0424MA crossref_primary_10_3390_biotech12020037 crossref_primary_10_3389_fmolb_2023_1214489 crossref_primary_10_3390_pharmaceutics14112463 crossref_primary_10_2174_2210303109666190807104437 crossref_primary_10_3390_pharmaceutics13060878 crossref_primary_10_1016_j_jconrel_2020_06_038 crossref_primary_10_1039_D1TB01368H crossref_primary_10_1016_j_omtn_2023_102050 crossref_primary_10_1093_cvr_cvz250 crossref_primary_10_1002_ange_202014162 crossref_primary_10_3390_antibiotics8010018 crossref_primary_10_1016_j_addr_2023_115116 crossref_primary_10_1016_j_jconrel_2025_01_068 crossref_primary_10_1089_hum_2021_152 crossref_primary_10_1016_j_jconrel_2022_02_017 crossref_primary_10_3390_pharmaceutics14020398 crossref_primary_10_3389_fbioe_2023_1143157 crossref_primary_10_1016_j_omtm_2024_101365 crossref_primary_10_1021_acschembio_2c00116 crossref_primary_10_3390_biology10060530 crossref_primary_10_1016_j_oor_2024_100224 crossref_primary_10_1080_17425247_2024_2331216 crossref_primary_10_1016_j_cell_2022_03_045 crossref_primary_10_3390_v10060291 crossref_primary_10_1093_bjd_ljad528 crossref_primary_10_3389_fphar_2021_623674 crossref_primary_10_3390_pharmaceutics14010213 crossref_primary_10_1016_j_biomaterials_2018_05_043 crossref_primary_10_1016_j_jconrel_2024_06_023 crossref_primary_10_1038_s41401_023_01115_5 crossref_primary_10_1016_j_cej_2022_135116 crossref_primary_10_1021_acs_analchem_4c02399 crossref_primary_10_1039_D3TB02766J crossref_primary_10_3389_fddsv_2022_1015545 crossref_primary_10_1002_smll_202100546 crossref_primary_10_1007_s00018_020_03725_2 crossref_primary_10_2174_1574892818666230607093231 crossref_primary_10_3390_cimb46050255 crossref_primary_10_1039_D3LC00622K crossref_primary_10_1126_sciadv_adl0731 crossref_primary_10_1002_asia_202200451 crossref_primary_10_1016_j_jlr_2024_100626 crossref_primary_10_1186_s12951_024_02427_2 crossref_primary_10_1007_s40097_022_00472_7 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1016_j_biomaterials_2019_119291 crossref_primary_10_1021_acscentsci_3c00289 crossref_primary_10_1021_acs_molpharmaceut_8b01290 crossref_primary_10_1016_j_isci_2019_100789 crossref_primary_10_1016_j_lfs_2022_121204 crossref_primary_10_1089_crispr_2021_0134 crossref_primary_10_1007_s12274_018_2099_4 crossref_primary_10_1002_wnan_1856 crossref_primary_10_1248_bpb_b18_00625 crossref_primary_10_1002_wnan_1609 crossref_primary_10_1186_s12951_019_0564_1 crossref_primary_10_1007_s13311_018_00702_3 crossref_primary_10_1007_s11095_023_03471_7 crossref_primary_10_1016_j_addr_2022_114197 crossref_primary_10_1242_dmm_050088 crossref_primary_10_1016_j_ymthe_2024_10_003 crossref_primary_10_3390_ijms25042243 crossref_primary_10_1007_s11356_024_32101_x crossref_primary_10_3390_ijms222011227 crossref_primary_10_2147_BTT_S310312 crossref_primary_10_1002_adtp_201900061 crossref_primary_10_3389_fgene_2021_673286 crossref_primary_10_1002_adma_202003537 crossref_primary_10_3390_pharmaceutics12080759 crossref_primary_10_3389_fmicb_2022_953218 crossref_primary_10_1016_j_nantod_2020_100895 crossref_primary_10_1073_pnas_2022562118 crossref_primary_10_1016_j_semcdb_2019_04_007 crossref_primary_10_1021_acs_bioconjchem_0c00060 crossref_primary_10_1016_j_jconrel_2020_07_033 crossref_primary_10_1039_C9NR01786K crossref_primary_10_1039_D2BM00806H crossref_primary_10_1021_acs_bioconjchem_2c00106 crossref_primary_10_1002_adhm_202400225 crossref_primary_10_1021_acs_molpharmaceut_3c00547 crossref_primary_10_1111_jcmm_14916 crossref_primary_10_3390_pharmaceutics14051087 crossref_primary_10_1038_s41421_023_00552_0 crossref_primary_10_4155_fmc_2021_0248 crossref_primary_10_1016_j_addr_2020_07_004 crossref_primary_10_3390_cells11111843 crossref_primary_10_3390_ijms24021563 crossref_primary_10_1016_j_tibtech_2018_03_004 crossref_primary_10_1002_smll_202409353 crossref_primary_10_1016_j_lfs_2023_121409 crossref_primary_10_1089_hum_2020_137 crossref_primary_10_1186_s12943_021_01335_5 crossref_primary_10_1039_D2MA00797E crossref_primary_10_1016_j_ijbiomac_2025_139532 crossref_primary_10_1038_s41573_023_00762_x crossref_primary_10_1002_sctm_19_0338 crossref_primary_10_1021_acsnano_3c04116 crossref_primary_10_1016_j_hlc_2023_01_017 crossref_primary_10_3390_cancers13051025 crossref_primary_10_1016_j_omtn_2023_07_032 crossref_primary_10_1016_j_apsb_2022_12_013 crossref_primary_10_1016_j_jconrel_2022_01_013 crossref_primary_10_1093_eurheartjsupp_suad082 crossref_primary_10_1126_sciadv_abc9450 crossref_primary_10_1016_j_jddst_2020_101533 crossref_primary_10_3390_ijms23031685 crossref_primary_10_1177_09636897211003022 crossref_primary_10_1007_s10072_020_04889_2 crossref_primary_10_1208_s12249_024_02834_6 crossref_primary_10_3390_ijms20235926 crossref_primary_10_1016_j_ijpharm_2020_119652 crossref_primary_10_3390_vaccines11020241 crossref_primary_10_1016_j_omtm_2021_09_012 crossref_primary_10_1039_D2BM01001A crossref_primary_10_1002_mco2_70035 crossref_primary_10_1038_s41580_023_00697_6 crossref_primary_10_1089_crispr_2018_0037 crossref_primary_10_1248_bpb_b18_00811 crossref_primary_10_1016_j_ejpb_2024_114222 crossref_primary_10_2174_0929867329666221006112615 crossref_primary_10_1038_s41573_024_01086_0 crossref_primary_10_1089_hum_2021_013 crossref_primary_10_1038_s41586_024_07087_8 crossref_primary_10_3390_cells13070568 crossref_primary_10_1016_j_omtn_2023_102112 crossref_primary_10_1016_j_ymthe_2021_09_002 crossref_primary_10_1021_acschembio_3c00140 crossref_primary_10_3390_nano10020364 crossref_primary_10_1038_s41584_023_01067_4 crossref_primary_10_1016_j_ejpb_2023_10_006 crossref_primary_10_14218_JERP_2020_00033 crossref_primary_10_1016_j_neuron_2019_01_035 crossref_primary_10_1038_s41569_022_00683_z crossref_primary_10_1016_j_biomaterials_2020_120282 crossref_primary_10_1016_j_tibtech_2020_07_012 crossref_primary_10_3389_fgeed_2019_00001 crossref_primary_10_3390_biom12010013 crossref_primary_10_1007_s00439_019_02028_2 crossref_primary_10_1002_mco2_639 crossref_primary_10_1016_j_addr_2024_115446 crossref_primary_10_1002_wnan_1809 crossref_primary_10_1016_j_addr_2023_115026 crossref_primary_10_1007_s40291_023_00642_5 crossref_primary_10_5334_gh_1262 crossref_primary_10_3390_pharmaceutics17030387 crossref_primary_10_1016_j_jddst_2023_104567 |
Cites_doi | 10.1038/mtna.2013.66 10.1016/j.stem.2014.06.003 10.1038/mt.2010.85 10.1007/s00418-009-0577-1 10.1021/jp303267y 10.1074/jbc.M117.782029 10.1002/biot.201400529 10.1038/nature11826 10.1038/nbt.3298 10.1038/nbt.3471 10.1172/JCI59261 10.1182/blood-2013-01-306647 10.1038/nature14299 10.1038/nbt.2614 10.1038/nnano.2014.84 10.1002/anie.201610209 10.1038/nbt.3290 10.1371/journal.pone.0161193 10.1126/scitranslmed.3009706 10.1038/nature14863 10.1038/cr.2017.16 10.1038/nmeth.4368 10.1016/j.cell.2017.03.016 10.1038/nm1358 10.1126/science.1225829 10.1016/j.nano.2013.05.007 10.1002/anie.201203263 10.1038/mtna.2016.68 10.1038/nbt.2612 |
ContentType | Journal Article |
Copyright | 2018 Intellia Therapeutics, Inc. Copyright © 2018 Intellia Therapeutics, Inc. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Intellia Therapeutics, Inc. – notice: Copyright © 2018 Intellia Therapeutics, Inc. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2018.02.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 2235 |
ExternalDocumentID | oai_doaj_org_article_f557a3a18840449b89062013d6e1f3ec 29490262 10_1016_j_celrep_2018_02_014 S2211124718301827 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c540t-f5f06e18a9189d5a49520b5e1cf0c292dedd3be08b5794122f6b69a504e7e9b33 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:29:48 EDT 2025 Fri Jul 11 08:21:39 EDT 2025 Mon Jul 21 05:33:54 EDT 2025 Tue Jul 01 02:58:54 EDT 2025 Thu Apr 24 23:13:30 EDT 2025 Wed May 17 02:14:14 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | CRISPR genome editing lipid nanoparticle TTR CRISPR/Cas9 sgRNA gene therapy Cas9 liver delivery LNP |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 Intellia Therapeutics, Inc. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f5f06e18a9189d5a49520b5e1cf0c292dedd3be08b5794122f6b69a504e7e9b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124718301827 |
PMID | 29490262 |
PQID | 2009570185 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f557a3a18840449b89062013d6e1f3ec proquest_miscellaneous_2009570185 pubmed_primary_29490262 crossref_primary_10_1016_j_celrep_2018_02_014 crossref_citationtrail_10_1016_j_celrep_2018_02_014 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_02_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-27 |
PublicationDateYYYYMMDD | 2018-02-27 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Malato, Naqvi, Schürmann, Ng, Wang, Zape, Kay, Grimm, Willenbring (bib16) 2011; 121 Thi, Mire, Ursic-Bedoya, Geisbert, Lee, Agans, Robbins, Deer, Fenton, MacLachlan, Geisbert (bib26) 2014; 6 Wang, Zhao, Fish, Logan, Nusse (bib27) 2015; 524 Basha, Ordobadi, Scott, Cottle, Liu, Wang, Cullis (bib4) 2016; 5 Hendel, Bak, Clark, Kennedy, Ryan, Roy, Steinfeld, Lunstad, Kaiser, Wilkens (bib8) 2015; 33 Wittrup, Ai, Liu, Hamar, Trifonova, Charisse, Manoharan, Kirchhausen, Lieberman (bib29) 2015; 33 Gilleron, Querbes, Zeigerer, Borodovsky, Marsico, Schubert, Manygoats, Seifert, Andree, Stöter (bib7) 2013; 31 Wang, Huang, He, Pu, Li, Liu, Li, Zhang, Yu, Zhao (bib28) 2017; 292 Jiang, Mei, Li, Zhu, Zu, Tian, Wang, Guo, Dong, Tan (bib12) 2017; 27 Brinkman, Chen, de Haas, Holland, Waseem, van Steensel (bib5) 2017 Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib13) 2012; 337 Mui, Tam, Jayaraman, Ansell, Du, Tam, Lin, Chen, Narayanannair, Rajeev (bib20) 2013; 2 Yin, Song, Dorkin, Zhu, Li, Wu, Park, Yang, Suresh, Bizhanova (bib31) 2016; 34 Leung, Hafez, Baoukina, Belliveau, Zhigaltsev, Afshinmanesh, Tieleman, Hansen, Hope, Cullis (bib14) 2012; 116 Dahlman, Barnes, Khan, Thiriot, Jhunjunwala, Shaw, Xing, Sager, Sahay, Speciner (bib6) 2014; 9 Akinc, Querbes, De, Qin, Frank-Kamenetsky, Jayaprakash, Jayaraman, Rajeev, Cantley, Dorkin (bib1) 2010; 18 Rose, Stephany, Valente, Trevillian, Dang, Bielas, Maly, Fowler (bib23) 2017; 14 Hsu, Yu, Wang, Lu, Schmidt, Lee, Lee, Jacob, Ghoshal (bib9) 2013; 9 Miller, Zhang, Kos, Xiong, Zhou, Perelman, Zhu, Siegwart (bib18) 2017; 56 Baratta, Ngo, Lopez, Kasabwalla, Longmuir, Robertson (bib3) 2009; 131 Magini, Giovani, Mangiavacchi, Maccari, Cecchi, Ulmer, De Gregorio, Geall, Brazzoli, Bertholet (bib15) 2016; 11 Richner, Himansu, Dowd, Butler, Salazar, Fox, Julander, Tang, Shresta, Pierson (bib22) 2017; 169 Sahay, Querbes, Alabi, Eltoukhy, Sarkar, Zurenko, Karagiannis, Love, Chen, Zoncu (bib24) 2013; 31 . Mingozzi, High (bib19) 2013; 122 Yanger, Knigin, Zong, Maggs, Gu, Akiyama, Pikarsky, Stanger (bib30) 2014; 15 Manno, Pierce, Arruda, Glader, Ragni, Rasko, Ozelo, Hoots, Blatt, Konkle (bib17) 2006; 12 Schmidt, Grimm (bib25) 2015; 10 Huch, Dorrell, Boj, van Es, Li, van de Wetering, Sato, Hamer, Sasaki, Finegold (bib10) 2013; 494 Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova (bib21) 2015; 520 ClinicalTrials.gov (2017). APOLLO: the study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis. Jayaraman, Ansell, Mui, Tam, Chen, Du, Butler, Eltepu, Matsuda, Narayanannair (bib11) 2012; 51 Malato (10.1016/j.celrep.2018.02.014_bib16) 2011; 121 Akinc (10.1016/j.celrep.2018.02.014_bib1) 2010; 18 Miller (10.1016/j.celrep.2018.02.014_bib18) 2017; 56 Wittrup (10.1016/j.celrep.2018.02.014_bib29) 2015; 33 Richner (10.1016/j.celrep.2018.02.014_bib22) 2017; 169 Manno (10.1016/j.celrep.2018.02.014_bib17) 2006; 12 Wang (10.1016/j.celrep.2018.02.014_bib28) 2017; 292 Dahlman (10.1016/j.celrep.2018.02.014_bib6) 2014; 9 Gilleron (10.1016/j.celrep.2018.02.014_bib7) 2013; 31 Huch (10.1016/j.celrep.2018.02.014_bib10) 2013; 494 Jayaraman (10.1016/j.celrep.2018.02.014_bib11) 2012; 51 Schmidt (10.1016/j.celrep.2018.02.014_bib25) 2015; 10 Hsu (10.1016/j.celrep.2018.02.014_bib9) 2013; 9 Brinkman (10.1016/j.celrep.2018.02.014_bib5) 2017 Ran (10.1016/j.celrep.2018.02.014_bib21) 2015; 520 Yanger (10.1016/j.celrep.2018.02.014_bib30) 2014; 15 Baratta (10.1016/j.celrep.2018.02.014_bib3) 2009; 131 Mingozzi (10.1016/j.celrep.2018.02.014_bib19) 2013; 122 Thi (10.1016/j.celrep.2018.02.014_bib26) 2014; 6 Wang (10.1016/j.celrep.2018.02.014_bib27) 2015; 524 10.1016/j.celrep.2018.02.014_bib2 Jinek (10.1016/j.celrep.2018.02.014_bib13) 2012; 337 Leung (10.1016/j.celrep.2018.02.014_bib14) 2012; 116 Yin (10.1016/j.celrep.2018.02.014_bib31) 2016; 34 Basha (10.1016/j.celrep.2018.02.014_bib4) 2016; 5 Magini (10.1016/j.celrep.2018.02.014_bib15) 2016; 11 Sahay (10.1016/j.celrep.2018.02.014_bib24) 2013; 31 Mui (10.1016/j.celrep.2018.02.014_bib20) 2013; 2 Hendel (10.1016/j.celrep.2018.02.014_bib8) 2015; 33 Rose (10.1016/j.celrep.2018.02.014_bib23) 2017; 14 Jiang (10.1016/j.celrep.2018.02.014_bib12) 2017; 27 |
References_xml | – volume: 5 start-page: e363 year: 2016 ident: bib4 article-title: Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo publication-title: Mol. Ther. Nucleic Acids – volume: 6 start-page: 250ra116 year: 2014 ident: bib26 article-title: Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA publication-title: Sci. Transl. Med. – volume: 51 start-page: 8529 year: 2012 end-page: 8533 ident: bib11 article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo publication-title: Angew. Chem. Int. Ed. Engl. – volume: 27 start-page: 440 year: 2017 end-page: 443 ident: bib12 article-title: A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo publication-title: Cell Res. – volume: 56 start-page: 1059 year: 2017 end-page: 1063 ident: bib18 article-title: Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA publication-title: Angew. Chem. Int. Ed. Engl. – volume: 494 start-page: 247 year: 2013 end-page: 250 ident: bib10 article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration publication-title: Nature – volume: 33 start-page: 870 year: 2015 end-page: 876 ident: bib29 article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown publication-title: Nat. Biotechnol. – year: 2017 ident: bib5 article-title: Quantitative analysis shows that repair of Cas9-induced double-strand DNA breaks is slow and error-prone publication-title: bioRxiv – volume: 2 start-page: e139 year: 2013 ident: bib20 article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles publication-title: Mol. Ther. Nucleic Acids – volume: 31 start-page: 653 year: 2013 end-page: 658 ident: bib24 article-title: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling publication-title: Nat. Biotechnol. – volume: 10 start-page: 258 year: 2015 end-page: 272 ident: bib25 article-title: CRISPR genome engineering and viral gene delivery: a case of mutual attraction publication-title: Biotechnol. J. – volume: 131 start-page: 713 year: 2009 end-page: 726 ident: bib3 article-title: Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis publication-title: Histochem. Cell Biol. – volume: 18 start-page: 1357 year: 2010 end-page: 1364 ident: bib1 article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms publication-title: Mol. Ther. – volume: 9 start-page: 1169 year: 2013 end-page: 1180 ident: bib9 article-title: Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor publication-title: Nanomedicine (Lond.) – volume: 122 start-page: 23 year: 2013 end-page: 36 ident: bib19 article-title: Immune responses to AAV vectors: overcoming barriers to successful gene therapy publication-title: Blood – volume: 15 start-page: 340 year: 2014 end-page: 349 ident: bib30 article-title: Adult hepatocytes are generated by self-duplication rather than stem cell differentiation publication-title: Cell Stem Cell – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bib13 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 121 start-page: 4850 year: 2011 end-page: 4860 ident: bib16 article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration publication-title: J. Clin. Invest. – volume: 33 start-page: 985 year: 2015 end-page: 989 ident: bib8 article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells publication-title: Nat. Biotechnol. – volume: 292 start-page: 8594 year: 2017 end-page: 8604 ident: bib28 article-title: Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration publication-title: J. Biol. Chem. – volume: 31 start-page: 638 year: 2013 end-page: 646 ident: bib7 article-title: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape publication-title: Nat. Biotechnol. – volume: 169 start-page: 176 year: 2017 ident: bib22 article-title: Modified mRNA vaccines protect against Zika virus infection publication-title: Cell – volume: 116 start-page: 18440 year: 2012 end-page: 18450 ident: bib14 article-title: Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core publication-title: J. Phys. Chem. C. Nanomater Interfaces – volume: 9 start-page: 648 year: 2014 end-page: 655 ident: bib6 article-title: In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight publication-title: Nat. Nanotechnol. – volume: 14 start-page: 891 year: 2017 end-page: 896 ident: bib23 article-title: Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics publication-title: Nat. Methods – volume: 524 start-page: 180 year: 2015 end-page: 185 ident: bib27 article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver publication-title: Nature – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: bib21 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature – reference: . – volume: 11 start-page: e0161193 year: 2016 ident: bib15 article-title: Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge publication-title: PLoS ONE – volume: 34 start-page: 328 year: 2016 end-page: 333 ident: bib31 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. – volume: 12 start-page: 342 year: 2006 end-page: 347 ident: bib17 article-title: Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response publication-title: Nat. Med. – reference: ClinicalTrials.gov (2017). APOLLO: the study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis. – ident: 10.1016/j.celrep.2018.02.014_bib2 – volume: 2 start-page: e139 year: 2013 ident: 10.1016/j.celrep.2018.02.014_bib20 article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2013.66 – volume: 15 start-page: 340 year: 2014 ident: 10.1016/j.celrep.2018.02.014_bib30 article-title: Adult hepatocytes are generated by self-duplication rather than stem cell differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.06.003 – volume: 18 start-page: 1357 year: 2010 ident: 10.1016/j.celrep.2018.02.014_bib1 article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms publication-title: Mol. Ther. doi: 10.1038/mt.2010.85 – volume: 131 start-page: 713 year: 2009 ident: 10.1016/j.celrep.2018.02.014_bib3 article-title: Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-009-0577-1 – volume: 116 start-page: 18440 year: 2012 ident: 10.1016/j.celrep.2018.02.014_bib14 article-title: Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core publication-title: J. Phys. Chem. C. Nanomater Interfaces doi: 10.1021/jp303267y – volume: 292 start-page: 8594 year: 2017 ident: 10.1016/j.celrep.2018.02.014_bib28 article-title: Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.782029 – volume: 10 start-page: 258 year: 2015 ident: 10.1016/j.celrep.2018.02.014_bib25 article-title: CRISPR genome engineering and viral gene delivery: a case of mutual attraction publication-title: Biotechnol. J. doi: 10.1002/biot.201400529 – volume: 494 start-page: 247 year: 2013 ident: 10.1016/j.celrep.2018.02.014_bib10 article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration publication-title: Nature doi: 10.1038/nature11826 – volume: 33 start-page: 870 year: 2015 ident: 10.1016/j.celrep.2018.02.014_bib29 article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3298 – volume: 34 start-page: 328 year: 2016 ident: 10.1016/j.celrep.2018.02.014_bib31 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3471 – volume: 121 start-page: 4850 year: 2011 ident: 10.1016/j.celrep.2018.02.014_bib16 article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration publication-title: J. Clin. Invest. doi: 10.1172/JCI59261 – volume: 122 start-page: 23 year: 2013 ident: 10.1016/j.celrep.2018.02.014_bib19 article-title: Immune responses to AAV vectors: overcoming barriers to successful gene therapy publication-title: Blood doi: 10.1182/blood-2013-01-306647 – volume: 520 start-page: 186 year: 2015 ident: 10.1016/j.celrep.2018.02.014_bib21 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 31 start-page: 653 year: 2013 ident: 10.1016/j.celrep.2018.02.014_bib24 article-title: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2614 – volume: 9 start-page: 648 year: 2014 ident: 10.1016/j.celrep.2018.02.014_bib6 article-title: In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.84 – volume: 56 start-page: 1059 year: 2017 ident: 10.1016/j.celrep.2018.02.014_bib18 article-title: Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201610209 – volume: 33 start-page: 985 year: 2015 ident: 10.1016/j.celrep.2018.02.014_bib8 article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3290 – volume: 11 start-page: e0161193 year: 2016 ident: 10.1016/j.celrep.2018.02.014_bib15 article-title: Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge publication-title: PLoS ONE doi: 10.1371/journal.pone.0161193 – volume: 6 start-page: 250ra116 year: 2014 ident: 10.1016/j.celrep.2018.02.014_bib26 article-title: Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3009706 – volume: 524 start-page: 180 year: 2015 ident: 10.1016/j.celrep.2018.02.014_bib27 article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver publication-title: Nature doi: 10.1038/nature14863 – volume: 27 start-page: 440 year: 2017 ident: 10.1016/j.celrep.2018.02.014_bib12 article-title: A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo publication-title: Cell Res. doi: 10.1038/cr.2017.16 – volume: 14 start-page: 891 year: 2017 ident: 10.1016/j.celrep.2018.02.014_bib23 article-title: Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics publication-title: Nat. Methods doi: 10.1038/nmeth.4368 – volume: 169 start-page: 176 year: 2017 ident: 10.1016/j.celrep.2018.02.014_bib22 article-title: Modified mRNA vaccines protect against Zika virus infection publication-title: Cell doi: 10.1016/j.cell.2017.03.016 – volume: 12 start-page: 342 year: 2006 ident: 10.1016/j.celrep.2018.02.014_bib17 article-title: Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response publication-title: Nat. Med. doi: 10.1038/nm1358 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.celrep.2018.02.014_bib13 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 9 start-page: 1169 year: 2013 ident: 10.1016/j.celrep.2018.02.014_bib9 article-title: Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor publication-title: Nanomedicine (Lond.) doi: 10.1016/j.nano.2013.05.007 – volume: 51 start-page: 8529 year: 2012 ident: 10.1016/j.celrep.2018.02.014_bib11 article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201203263 – volume: 5 start-page: e363 year: 2016 ident: 10.1016/j.celrep.2018.02.014_bib4 article-title: Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2016.68 – year: 2017 ident: 10.1016/j.celrep.2018.02.014_bib5 article-title: Quantitative analysis shows that repair of Cas9-induced double-strand DNA breaks is slow and error-prone publication-title: bioRxiv – volume: 31 start-page: 638 year: 2013 ident: 10.1016/j.celrep.2018.02.014_bib7 article-title: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2612 |
SSID | ssj0000601194 |
Score | 2.6573045 |
Snippet | The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2227 |
SubjectTerms | Animals Base Sequence Cas9 CRISPR CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems - genetics CRISPR/Cas9 Gene Editing gene therapy Gene Transfer Techniques genome editing lipid nanoparticle Lipids - chemistry Liver - metabolism liver delivery LNP Mice Nanoparticles - administration & dosage Nanoparticles - chemistry Rats RNA, Guide, CRISPR-Cas Systems - chemistry RNA, Guide, CRISPR-Cas Systems - genetics sgRNA TTR |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6kUPBFrPWyVssIvoZmJplM5nFdehMU2Vrp2zBXXFkT7WYL_ht_i7_MczLJ0n2QffEthEkynOt3yJnvEPLWMWsKHqsMdO-y0siYmQhVqwDnEsznro54GvnDx-riunx_I27ujfrCnrBED5wEdxKFkKYwrIZKpCyVrZFYF3CLrwKLRXAYfSHn3SumUgxGLjP8pcw59mzxUo7n5vrmLheWtwHpKlndU3aycisv9fT9W-npX_CzT0Nnj8mjAT_Sadr3AXkQmidkP02U_HVIfk7pFSSjZaDbrLi0jXQ2v7z6ND-ZmZWiOLLaUwitUDMPrXF06r4uwh1czFu7XnXUNJ5igzwaQtPRy-bP7y-Lu5aeh6b9HuipX2DL9FNyfXb6eXaRDVMVMgforMuiiDnIrjaK1coLAxUSz60IzMXcccV98L6wIa-tAF9lHBRpK2VEXgYZlC2KZ2SvaZvwglAmvWeVFVAlVmXlpbUK8AKvLASBmhs3IcUoU-0GynGcfLHUY2_ZN500oVETOucaNDEh2eapH4lyY8f6d6iuzVokzO5vgBnpQYZ6lxlNiByVrQfskTAFvGqx4_NvRtvQ4Jr4v8U0oV2vcMKnEhJWigl5noxms0muSgXlL3_5PzZ_RB7ihvqT9vIV2etu1-E1YKXOHvdu8Rdpdg0D priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqIiReULlvuchIvAZiJ47jB4SWVUuLVIS2LOqb5SssWhK6m63o3_AtfBkzuSxaiaoSb0nk2JHH4zmjjM8h5IVj1mQ8FgnY3iW5kTExEbJWAc4lmE9dGfE08smH4miWvz8TZztk0GztJ3D1z9QO9aRmy8XLn-eXb8DhX_-t1XJhsQzIPsnKloETla1vQGySqGlw0gP-bm9GjjP81cw51nLxXA7n6a7oaCtetbT-W2HrKljahqfDPXK7x5V03C2EO2QnVHfJzU5p8vIeOR_TUwhSi0C32XJpHelkenz6cfpqYlaKopS1p7DlQi7dl8zRsfs6DxdwMa3tetVQU3mKhfO4QKqGHle_f32eX9T0Xajq74Ee-DmWUt8ns8ODT5OjpFdbSBygtiaJIqZFYKVRrFReGMiceGpFYC6mjivug_eZDWlpBfgw42BgWygj0jzIoGyWPSC7VV2FR4Qy6T0rrIDsscgLL61VgCN4YWFzKLlxI5INc6pdT0WOihgLPdScfdOdJTRaQqdcgyVGJNm89aOj4rim_Vs016YtEmm3D-rlF93PoY5CSJMZVkKim-fKlsjbDLDYw1TELMCnysHYusckHdaArubXDP98WBsaXBb_w5gq1OsVKn8qIaGlGJGH3aLZfCRXuYK0mO__97iPyS28a4_dyydkt1muw1MATo191vrCH0CBE8E priority: 102 providerName: Scholars Portal |
Title | A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing |
URI | https://dx.doi.org/10.1016/j.celrep.2018.02.014 https://www.ncbi.nlm.nih.gov/pubmed/29490262 https://www.proquest.com/docview/2009570185 https://doaj.org/article/f557a3a18840449b89062013d6e1f3ec |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nfTx6JCryaWLNnSMRt2u1vYUpJuyU3o2bqk9jZxFvpv-lv6yzqS7UAOZaEXYwvZEprRPOSZbxB6Z4nRBQ1lBrS3GdNVyHQAr5XD5uLE5VaEmI189bG8uGYfVnx1hOZjLkwMqxxkfy_Tk7QeWqbDak5v6nq6pOC7gHYC4QpMKmjMKC-YSEl8q9P9OUvEGyGpHmLsn8UXxgy6FOZl_XrjI3AlEQm8k7ADDZWA_A8U1b8M0aSQzh-iB4MliWf9ZB-hI988Rvf62pK_nqCfM7wEtbT2-BAfF7cBzxeXy0-L6VxvJY7Fqx0GIQve8xAkh2f2W-1v4WbRmt22w7pxOIbKR5ZoOnzZ_Pn9pb5t8XvftD88PnN1DJ5-iq7Pzz7PL7KhvkJmwU7rssBDXnoitCRCOq7BV6K54Z7YkFsqqfPOFcbnwnDYtYQCSU0pNc-Zr7w0RfEMHTdt418gTCrnSGk4-IslK11ljATLgZYGxIGg2k5QMa6psgP4eKyBsVZjlNl31VNCRUqonCqgxARl-7duevCNO_qfRnLt-0bo7NTQbr6qYQ1V4LzShSYCXFvGpBERqRkMYQdLEQoPU61GYqsDToRP1XcM_3bkDQWbNP550Y1vd9tY61PyCnryCXreM81-klQyCY4wffnf475C9-NTSrSvXqPjbrPzb8BU6sxJOmI4STsCrldM_AU6JhEJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEIIXNO7laiReo8ZOHMePXbWthW1C7Yb6ZvnKMpVktOkk_g2_hV_GcS6V-oAm8RY5dmKd-0mOv4PQJ0O0SqjPIuC9iVLFfaQ8ZK0MlIsRG5vch9PIZ-fZ5DL9vGCLPTTuz8KEssrO9rc2vbHW3ciwo-bwpiiGcwq5C3gnMK4gpDnl99B9iAZ40M7p4nD7oSUAjpCmIWJYEIUV_RG6ps7LuOXKBeRKkjfonSTdcVENkv-Op_pXJNp4pOMD9LgLJfGo3e0TtOfKp-hB21zy1zP0c4Tn4JeWDu8C5OLK4_FsOv86G47VWuDQvdpisLKQPndVcnhkrgp3CxezSm_WNValxaFWPshEWeNp-ef3t-K2wieurH44fGSLUD39HF0eH12MJ1HXYCEyEKjVkWc-zhzJlSC5sExBskRjzRwxPjZUUOusTbSLc81AbQkFnupMKBanjjuhk-QF2i-r0r1CmHBrSaYZJIxZmlmutYDQgWYa7EFOlRmgpKepNB36eGiCsZR9mdm1bDkhAydkTCVwYoCi7aqbFn3jjvmHgV3buQE7uxmoVt9lR0PpGeMqUSSH3DZNhc4DVDNEwhZI4RMHW-U9s-WOKMKjijte_7GXDQlaGn69qNJVm3Vo9ikYh5lsgF62QrPdJBWpgEyYvv7v935ADycXZ6fydHr-5Q16FO40p-75W7RfrzbuHcRNtX7f6MVfHQkSWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single+Administration+of+CRISPR%2FCas9+Lipid+Nanoparticles+Achieves+Robust+and+Persistent+In%C2%A0Vivo+Genome+Editing&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Finn%2C+Jonathan+D.&rft.au=Smith%2C+Amy+Rhoden&rft.au=Patel%2C+Mihir+C.&rft.au=Shaw%2C+Lucinda&rft.date=2018-02-27&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=22&rft.issue=9&rft.spage=2227&rft.epage=2235&rft_id=info:doi/10.1016%2Fj.celrep.2018.02.014&rft.externalDocID=S2211124718301827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |