A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing

The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled sign...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 22; no. 9; pp. 2227 - 2235
Main Authors Finn, Jonathan D., Smith, Amy Rhoden, Patel, Mihir C., Shaw, Lucinda, Youniss, Madeleine R., van Heteren, Jane, Dirstine, Tanner, Ciullo, Corey, Lescarbeau, Reynald, Seitzer, Jessica, Shah, Ruchi R., Shah, Aalok, Ling, Dandan, Growe, Jacqueline, Pink, Melissa, Rohde, Ellen, Wood, Kristy M., Salomon, William E., Harrington, William F., Dombrowski, Christian, Strapps, Walter R., Chang, Yong, Morrissey, David V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.02.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. [Display omitted] •LNP delivery achieves >97% target protein knockdown for at least 12 months•Editing level is cumulative following multiple LNP doses•A sgRNA chemical modification pattern was critical for high levels of in vivo activity•Biodegradable lipid and CRISPR/Cas9 components are transient and well tolerated Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components.
AbstractList The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. : Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components. Keywords: CRISPR, Cas9, genome editing, LNP, lipid nanoparticle, TTR, CRISPR/Cas9, liver delivery, gene therapy, sgRNA
The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.
The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform.
The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. [Display omitted] •LNP delivery achieves >97% target protein knockdown for at least 12 months•Editing level is cumulative following multiple LNP doses•A sgRNA chemical modification pattern was critical for high levels of in vivo activity•Biodegradable lipid and CRISPR/Cas9 components are transient and well tolerated Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components.
Author Smith, Amy Rhoden
Patel, Mihir C.
Shaw, Lucinda
Morrissey, David V.
van Heteren, Jane
Harrington, William F.
Pink, Melissa
Rohde, Ellen
Strapps, Walter R.
Shah, Aalok
Finn, Jonathan D.
Growe, Jacqueline
Seitzer, Jessica
Wood, Kristy M.
Shah, Ruchi R.
Dirstine, Tanner
Youniss, Madeleine R.
Salomon, William E.
Lescarbeau, Reynald
Ling, Dandan
Dombrowski, Christian
Chang, Yong
Ciullo, Corey
Author_xml – sequence: 1
  givenname: Jonathan D.
  surname: Finn
  fullname: Finn, Jonathan D.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Amy Rhoden
  surname: Smith
  fullname: Smith, Amy Rhoden
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Mihir C.
  surname: Patel
  fullname: Patel, Mihir C.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 4
  givenname: Lucinda
  surname: Shaw
  fullname: Shaw, Lucinda
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 5
  givenname: Madeleine R.
  surname: Youniss
  fullname: Youniss, Madeleine R.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 6
  givenname: Jane
  surname: van Heteren
  fullname: van Heteren, Jane
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 7
  givenname: Tanner
  surname: Dirstine
  fullname: Dirstine, Tanner
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 8
  givenname: Corey
  surname: Ciullo
  fullname: Ciullo, Corey
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 9
  givenname: Reynald
  surname: Lescarbeau
  fullname: Lescarbeau, Reynald
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 10
  givenname: Jessica
  surname: Seitzer
  fullname: Seitzer, Jessica
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 11
  givenname: Ruchi R.
  surname: Shah
  fullname: Shah, Ruchi R.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 12
  givenname: Aalok
  surname: Shah
  fullname: Shah, Aalok
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 13
  givenname: Dandan
  surname: Ling
  fullname: Ling, Dandan
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 14
  givenname: Jacqueline
  surname: Growe
  fullname: Growe, Jacqueline
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 15
  givenname: Melissa
  surname: Pink
  fullname: Pink, Melissa
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 16
  givenname: Ellen
  surname: Rohde
  fullname: Rohde, Ellen
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 17
  givenname: Kristy M.
  surname: Wood
  fullname: Wood, Kristy M.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 18
  givenname: William E.
  surname: Salomon
  fullname: Salomon, William E.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 19
  givenname: William F.
  surname: Harrington
  fullname: Harrington, William F.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 20
  givenname: Christian
  surname: Dombrowski
  fullname: Dombrowski, Christian
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 21
  givenname: Walter R.
  surname: Strapps
  fullname: Strapps, Walter R.
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 22
  givenname: Yong
  surname: Chang
  fullname: Chang, Yong
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
– sequence: 23
  givenname: David V.
  surname: Morrissey
  fullname: Morrissey, David V.
  email: davidm@intelliatx.com
  organization: Intellia Therapeutics, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29490262$$D View this record in MEDLINE/PubMed
BookMark eNqFkdFuFCEYhSemxtbaNzCGS292CwzMDF6YbDa13WSjzVa9JQz8U9nMwBTYTfo2PotPVtpZG-OFcgMh55wfzve6OHLeQVG8JXhOMKnOt3MNfYBxTjFp5pjOMWEvihNKCZkRyuqjP87HxVmMW5xXhQkR7FVxTAUTmFb0pLhboBvrbntACzNYZ2MKKlnvkO_QcrO6ud6cL1UUaG1Ha9Bn5fyoQrK6h4gW-oeFfT5sfLuLCSln0DWEmEPAJbRyv35-t3uPLsH5AdCFsSmPelO87FQf4eywnxbfPl18XV7N1l8uV8vFeqY5w2nW8Q5XQBolSCMMV0xwilsORHdYU0ENGFO2gJuW14IRSruqrYTimEENoi3L02I15RqvtnIMdlDhXnpl5dOFD7fy8BPZcV6rUpGmYZgx0TYCV7nY0uQHdCXonPV-yhqDv9tBTHKwMRPolQO_i5JiLHidUfAsfXeQ7toBzPPg35VnAZsEOvgYA3TPEoLlI1y5lRNc-QhXYioz3Gz78JdN2_SEKhOz_f_MHycz5ML3FoKM2oLTYGwAnXIj9t8BDw8fwMY
CitedBy_id crossref_primary_10_1002_adma_202404053
crossref_primary_10_1088_1361_6528_ac357a
crossref_primary_10_1002_EXP_20210081
crossref_primary_10_1016_j_heares_2020_107958
crossref_primary_10_1016_j_jbc_2024_105685
crossref_primary_10_1038_s41565_024_01747_6
crossref_primary_10_1007_s11886_024_02172_w
crossref_primary_10_1016_j_jconrel_2022_08_042
crossref_primary_10_1016_j_jconrel_2021_06_036
crossref_primary_10_1002_smtd_201800365
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1021_acsnano_2c10501
crossref_primary_10_1021_acs_accounts_9b00368
crossref_primary_10_12688_f1000research_23185_1
crossref_primary_10_3390_nano12050783
crossref_primary_10_37349_eemd_2024_00011
crossref_primary_10_3389_fcell_2022_870088
crossref_primary_10_1007_s11886_024_02096_5
crossref_primary_10_1016_j_biomaterials_2021_120826
crossref_primary_10_1016_j_celrep_2021_110196
crossref_primary_10_1038_s41587_021_00933_4
crossref_primary_10_1002_1873_3468_14989
crossref_primary_10_1016_j_copbio_2018_03_007
crossref_primary_10_1016_j_omtm_2023_04_004
crossref_primary_10_1186_s13059_020_02118_9
crossref_primary_10_1360_SSV_2021_0376
crossref_primary_10_1016_j_medj_2022_02_001
crossref_primary_10_1172_JCI148555
crossref_primary_10_1007_s11940_023_00754_7
crossref_primary_10_1016_j_cpcardiol_2023_101741
crossref_primary_10_1016_j_jconrel_2024_04_037
crossref_primary_10_1016_j_tibtech_2018_09_010
crossref_primary_10_1038_s41591_018_0184_6
crossref_primary_10_1016_j_dmpk_2022_100450
crossref_primary_10_1016_j_ymthe_2024_11_020
crossref_primary_10_1016_j_ymthe_2021_05_010
crossref_primary_10_1002_adtp_201800085
crossref_primary_10_1016_j_actbio_2022_09_046
crossref_primary_10_1208_s12248_018_0267_9
crossref_primary_10_1021_acs_biomac_0c00211
crossref_primary_10_1038_s41586_021_03191_1
crossref_primary_10_1073_pnas_2020401118
crossref_primary_10_1016_j_addr_2019_11_005
crossref_primary_10_1016_j_praneu_2023_08_002
crossref_primary_10_3389_fchem_2023_1259435
crossref_primary_10_3390_diseases7030047
crossref_primary_10_1016_j_semcancer_2018_04_001
crossref_primary_10_1089_nat_2018_0721
crossref_primary_10_3390_pharmaceutics15020622
crossref_primary_10_1002_ijch_202400005
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_1016_j_colsurfb_2025_114598
crossref_primary_10_1007_s40291_019_00391_4
crossref_primary_10_3390_ijms23010573
crossref_primary_10_1038_s12276_023_01057_2
crossref_primary_10_1002_cmdc_202100777
crossref_primary_10_2174_1381612825666190619150221
crossref_primary_10_29328_journal_apps_1001047
crossref_primary_10_1248_bpb_b20_00534
crossref_primary_10_3390_biologics3040014
crossref_primary_10_1016_j_jconrel_2021_06_029
crossref_primary_10_1002_adfm_202402630
crossref_primary_10_1056_NEJMoa2309149
crossref_primary_10_1002_adma_201906783
crossref_primary_10_1021_acsnano_4c14041
crossref_primary_10_3389_fgeed_2022_785698
crossref_primary_10_1016_j_tips_2020_08_004
crossref_primary_10_1073_pnas_2404555121
crossref_primary_10_1039_D1BM01658J
crossref_primary_10_1016_j_jgg_2019_11_003
crossref_primary_10_1016_j_jconrel_2023_02_008
crossref_primary_10_1021_acs_bioconjchem_8b00760
crossref_primary_10_1002_adfm_201910575
crossref_primary_10_1021_acs_biochem_1c00768
crossref_primary_10_1021_acsnano_3c09028
crossref_primary_10_1002_cplu_202000785
crossref_primary_10_1016_j_ymthe_2020_04_017
crossref_primary_10_1016_j_copbio_2024_103182
crossref_primary_10_1016_j_jaci_2024_03_016
crossref_primary_10_1016_j_mtadv_2022_100240
crossref_primary_10_1016_j_omtm_2022_03_006
crossref_primary_10_1016_j_envres_2023_116933
crossref_primary_10_1016_j_omtm_2022_03_008
crossref_primary_10_1038_s41392_024_01750_2
crossref_primary_10_1016_j_omtm_2020_05_024
crossref_primary_10_1134_S1068162019060025
crossref_primary_10_3390_ijms22168537
crossref_primary_10_1089_crispr_2020_0025
crossref_primary_10_1002_advs_202102072
crossref_primary_10_1002_jimd_12709
crossref_primary_10_20514_2226_6704_2022_12_5_363_369
crossref_primary_10_3389_fgeed_2024_1458037
crossref_primary_10_1021_acs_molpharmaceut_0c00618
crossref_primary_10_1016_j_addr_2020_05_010
crossref_primary_10_1016_j_ymthe_2021_06_003
crossref_primary_10_1038_s41586_020_1978_5
crossref_primary_10_3389_fimmu_2019_00705
crossref_primary_10_1016_j_jddst_2021_102728
crossref_primary_10_1172_JCI171356
crossref_primary_10_1038_s41551_022_00847_9
crossref_primary_10_1038_s41578_022_00529_7
crossref_primary_10_4155_bio_2020_0215
crossref_primary_10_1080_17425247_2025_2452295
crossref_primary_10_3389_fgeed_2022_1030285
crossref_primary_10_1038_s41573_024_00943_2
crossref_primary_10_1007_s11883_022_00986_z
crossref_primary_10_1186_s12943_022_01518_8
crossref_primary_10_34133_bmr_0017
crossref_primary_10_1208_s12248_021_00651_4
crossref_primary_10_3390_pharmaceutics13091365
crossref_primary_10_1038_s41434_021_00232_2
crossref_primary_10_1002_ange_201903618
crossref_primary_10_1021_acs_accounts_9b00106
crossref_primary_10_1016_j_addr_2020_06_026
crossref_primary_10_3727_105221618X15350366478989
crossref_primary_10_1002_jgm_3721
crossref_primary_10_1016_j_biomaterials_2021_120966
crossref_primary_10_1038_s41598_023_33092_4
crossref_primary_10_1172_JCI158287
crossref_primary_10_1021_acschembio_9b01005
crossref_primary_10_3390_metabo11120857
crossref_primary_10_1038_s41591_018_0326_x
crossref_primary_10_1080_17425247_2019_1656196
crossref_primary_10_1016_j_ccr_2023_215172
crossref_primary_10_3389_fimmu_2022_967505
crossref_primary_10_1021_acsnano_3c02669
crossref_primary_10_1038_s41587_023_01900_x
crossref_primary_10_3390_pharmaceutics13122035
crossref_primary_10_1074_jbc_RA118_004554
crossref_primary_10_1136_jnnp_2021_327909
crossref_primary_10_1038_s41563_019_0385_5
crossref_primary_10_1039_D2BM00859A
crossref_primary_10_3389_fchem_2022_957572
crossref_primary_10_3390_ijms23010025
crossref_primary_10_1089_ten_tea_2017_0445
crossref_primary_10_1016_j_cell_2020_03_023
crossref_primary_10_3390_jfb15110324
crossref_primary_10_1038_s41587_022_01491_z
crossref_primary_10_1002_cpt_3000
crossref_primary_10_1016_j_biomaterials_2018_04_031
crossref_primary_10_1038_s41551_024_01267_7
crossref_primary_10_3390_pharmaceutics13030352
crossref_primary_10_1007_s12274_018_2146_1
crossref_primary_10_1016_j_envres_2023_116333
crossref_primary_10_1016_j_addr_2020_04_002
crossref_primary_10_1038_s41598_024_57286_6
crossref_primary_10_1021_jacs_8b08976
crossref_primary_10_1001_jamaneurol_2023_4983
crossref_primary_10_1016_j_jconrel_2019_02_009
crossref_primary_10_1186_s43556_023_00115_5
crossref_primary_10_1186_s12951_022_01717_x
crossref_primary_10_1038_s41565_020_0669_6
crossref_primary_10_1126_scitranslmed_adk3920
crossref_primary_10_1038_s41392_019_0089_y
crossref_primary_10_1089_crispr_2022_0065
crossref_primary_10_1038_s41565_019_0591_y
crossref_primary_10_1039_D1BM00537E
crossref_primary_10_3389_fphar_2024_1454785
crossref_primary_10_1111_acel_13671
crossref_primary_10_1038_s41467_020_17029_3
crossref_primary_10_1038_s41578_021_00358_0
crossref_primary_10_1073_pnas_2307798120
crossref_primary_10_5713_ab_23_0111
crossref_primary_10_1038_s41551_024_01296_2
crossref_primary_10_1177_15330338211045206
crossref_primary_10_1002_smll_202103025
crossref_primary_10_1016_j_ymthe_2019_02_012
crossref_primary_10_1038_s41573_020_0083_7
crossref_primary_10_1016_j_jconrel_2024_09_019
crossref_primary_10_1021_acsnano_0c04707
crossref_primary_10_1016_j_nano_2023_102711
crossref_primary_10_1007_s13205_024_04186_1
crossref_primary_10_1002_cac2_12366
crossref_primary_10_1089_hum_2019_111
crossref_primary_10_1007_s00432_023_04747_6
crossref_primary_10_2174_0118715273283786240408034408
crossref_primary_10_1007_s40123_023_00729_6
crossref_primary_10_1089_genbio_2023_0045
crossref_primary_10_1097_HEP_0000000000000873
crossref_primary_10_15366_tarbiya2021_49_004
crossref_primary_10_12677_ACM_2024_141068
crossref_primary_10_1002_bies_202000185
crossref_primary_10_3390_vaccines12060636
crossref_primary_10_1007_s11427_024_2697_3
crossref_primary_10_3390_vaccines9020097
crossref_primary_10_1016_j_jacbts_2018_11_004
crossref_primary_10_1038_s41588_021_00838_7
crossref_primary_10_1089_crispr_2022_0084
crossref_primary_10_1016_j_ymthe_2019_09_002
crossref_primary_10_1016_j_addr_2021_114041
crossref_primary_10_1186_s40824_023_00425_3
crossref_primary_10_31083_j_rcm2303108
crossref_primary_10_1016_j_drudis_2023_103793
crossref_primary_10_1080_17425247_2023_2185220
crossref_primary_10_3724_zdxbyxb_2023_0130
crossref_primary_10_1007_s11912_023_01397_2
crossref_primary_10_1016_j_mattod_2023_04_011
crossref_primary_10_1038_s41578_024_00725_7
crossref_primary_10_1080_17425247_2018_1517746
crossref_primary_10_32604_oncologie_2022_019415
crossref_primary_10_1021_acsabm_0c01463
crossref_primary_10_1021_acsnano_8b03640
crossref_primary_10_1038_s41467_021_26714_w
crossref_primary_10_1016_j_tips_2019_11_006
crossref_primary_10_1002_adfm_202203669
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1002_mco2_155
crossref_primary_10_1056_NEJMoa2107454
crossref_primary_10_1088_1361_6528_ac842d
crossref_primary_10_1021_acsnano_4c08490
crossref_primary_10_1016_j_tibtech_2019_01_009
crossref_primary_10_1038_s41565_022_01265_3
crossref_primary_10_1016_j_matdes_2022_111415
crossref_primary_10_1016_j_jhepr_2019_100065
crossref_primary_10_1016_j_jaccao_2021_06_006
crossref_primary_10_1038_s41587_024_02394_x
crossref_primary_10_1016_j_jddst_2022_103948
crossref_primary_10_1038_s41576_021_00439_4
crossref_primary_10_1016_j_jchromb_2022_123149
crossref_primary_10_1038_s41586_024_07259_6
crossref_primary_10_1016_j_ymthe_2019_01_014
crossref_primary_10_1007_s12195_019_00573_4
crossref_primary_10_3390_ijms241814299
crossref_primary_10_1038_s41580_019_0131_5
crossref_primary_10_1039_D0NR05452F
crossref_primary_10_1016_j_jmgm_2024_108702
crossref_primary_10_1016_j_ijpharm_2021_121020
crossref_primary_10_1016_j_arr_2024_102322
crossref_primary_10_1038_s41467_024_45537_z
crossref_primary_10_1002_smll_202105832
crossref_primary_10_1007_s13346_023_01320_z
crossref_primary_10_1016_j_addr_2023_114990
crossref_primary_10_1038_s41467_019_09600_4
crossref_primary_10_1016_j_bioactmat_2021_05_038
crossref_primary_10_1016_j_addr_2020_10_014
crossref_primary_10_1016_j_clinre_2018_05_001
crossref_primary_10_1016_j_tibtech_2018_08_010
crossref_primary_10_1016_j_biotechadv_2020_107534
crossref_primary_10_3390_pharmaceutics13101649
crossref_primary_10_3390_pharmaceutics16091197
crossref_primary_10_1073_pnas_1811276115
crossref_primary_10_2174_1570159X21666221121095618
crossref_primary_10_1016_j_addr_2023_114962
crossref_primary_10_3390_pharmaceutics16081037
crossref_primary_10_1002_anie_202014162
crossref_primary_10_1038_s41587_024_02437_3
crossref_primary_10_2174_1389202924666230823094608
crossref_primary_10_1186_s12929_023_00977_5
crossref_primary_10_2217_nnm_2021_0038
crossref_primary_10_1017_S0033583519000052
crossref_primary_10_1089_hum_2019_140
crossref_primary_10_1016_j_heliyon_2024_e24606
crossref_primary_10_1021_acsmacrolett_1c00538
crossref_primary_10_3390_biomedicines10102394
crossref_primary_10_1002_adhm_202102145
crossref_primary_10_1097_FJC_0000000000001478
crossref_primary_10_1134_S0026893322060218
crossref_primary_10_12688_f1000research_23185_2
crossref_primary_10_1016_j_gde_2019_04_001
crossref_primary_10_37349_etat_2022_00093
crossref_primary_10_1016_j_apsb_2024_04_015
crossref_primary_10_1038_s41551_020_00671_z
crossref_primary_10_1016_j_cobme_2018_08_002
crossref_primary_10_1038_s41586_021_03534_y
crossref_primary_10_3389_fbioe_2022_973326
crossref_primary_10_23736_S1120_4826_20_02618_X
crossref_primary_10_3389_fbioe_2023_1138596
crossref_primary_10_1038_s41467_018_05073_z
crossref_primary_10_1093_nar_gkad1125
crossref_primary_10_1016_j_gendis_2023_02_027
crossref_primary_10_1093_nar_gkad676
crossref_primary_10_1016_j_biotechadv_2024_108350
crossref_primary_10_3389_fbioe_2023_1339189
crossref_primary_10_1016_j_omtn_2025_102457
crossref_primary_10_2174_1566523219666190701100556
crossref_primary_10_1021_acs_chemrev_1c00244
crossref_primary_10_1016_j_ejpb_2024_114203
crossref_primary_10_1021_acsnano_3c08644
crossref_primary_10_1016_j_biomaterials_2022_121876
crossref_primary_10_1053_j_semperi_2018_09_008
crossref_primary_10_1126_sciadv_abf4398
crossref_primary_10_1038_s41571_023_00811_9
crossref_primary_10_1073_pnas_1904697116
crossref_primary_10_1186_s13578_019_0350_7
crossref_primary_10_1016_j_ymthe_2021_09_027
crossref_primary_10_1038_s41467_024_55137_6
crossref_primary_10_3390_molecules25215006
crossref_primary_10_1038_s41467_021_27493_0
crossref_primary_10_2174_1570159X21666221108094736
crossref_primary_10_3389_fgeed_2020_617910
crossref_primary_10_1038_s41587_020_0565_5
crossref_primary_10_1126_sciadv_abj6901
crossref_primary_10_1038_s41434_021_00297_z
crossref_primary_10_1038_s41467_018_06522_5
crossref_primary_10_3390_cimb44100341
crossref_primary_10_1002_mco2_339
crossref_primary_10_1093_cvr_cvac048
crossref_primary_10_1038_s41591_019_0467_6
crossref_primary_10_1002_jgm_3377
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_1016_j_ymthe_2019_03_003
crossref_primary_10_1038_s41467_023_39246_2
crossref_primary_10_3390_ijms222011300
crossref_primary_10_1002_smsc_202200071
crossref_primary_10_1016_j_addr_2024_115461
crossref_primary_10_1039_C8TB01642A
crossref_primary_10_1016_j_bioactmat_2023_07_025
crossref_primary_10_1016_j_ijpharm_2022_122171
crossref_primary_10_1039_D1NR06858J
crossref_primary_10_3390_biomedicines13010079
crossref_primary_10_1016_j_apsb_2023_03_001
crossref_primary_10_1016_j_addr_2020_09_004
crossref_primary_10_1038_s41596_021_00677_0
crossref_primary_10_1042_BSR20200127
crossref_primary_10_1038_s41578_020_0209_x
crossref_primary_10_1038_s41565_020_0666_9
crossref_primary_10_1161_CIRCRESAHA_121_318187
crossref_primary_10_1038_s41557_024_01557_2
crossref_primary_10_1039_D3NR02175K
crossref_primary_10_1021_acs_molpharmaceut_1c00916
crossref_primary_10_1021_acsnano_8b07858
crossref_primary_10_1080_10715762_2024_2446337
crossref_primary_10_1016_j_addr_2020_02_003
crossref_primary_10_1002_smll_202400815
crossref_primary_10_3389_fcvm_2023_1202381
crossref_primary_10_3390_pharmaceutics14020460
crossref_primary_10_1073_pnas_2400783121
crossref_primary_10_1002_adhm_202100847
crossref_primary_10_1016_j_atherosclerosis_2023_01_010
crossref_primary_10_1007_s10741_023_10380_9
crossref_primary_10_3390_genes11101113
crossref_primary_10_1021_acsnano_1c05099
crossref_primary_10_1126_sciadv_abc2315
crossref_primary_10_1002_advs_202207512
crossref_primary_10_1016_j_ymeth_2021_06_004
crossref_primary_10_1089_crispr_2021_29131_mus
crossref_primary_10_1016_j_bioactmat_2021_05_051
crossref_primary_10_1016_j_omtm_2020_10_007
crossref_primary_10_3390_pharmaceutics14091842
crossref_primary_10_1007_s40259_023_00577_7
crossref_primary_10_1016_j_omtn_2025_102486
crossref_primary_10_1038_s41467_024_53418_8
crossref_primary_10_1042_ETLS20180147
crossref_primary_10_1016_j_jconrel_2019_05_019
crossref_primary_10_1097_HEP_0000000000000578
crossref_primary_10_1002_btm2_10713
crossref_primary_10_1021_acs_molpharmaceut_3c00276
crossref_primary_10_1038_s41467_023_42189_3
crossref_primary_10_1016_j_biopha_2022_114189
crossref_primary_10_1080_17425247_2020_1747429
crossref_primary_10_1146_annurev_bioeng_122019_121602
crossref_primary_10_3389_fonc_2022_809754
crossref_primary_10_1007_s10741_021_10180_z
crossref_primary_10_1039_D2TB02610D
crossref_primary_10_2337_dbi20_0036
crossref_primary_10_1016_j_lssr_2022_08_006
crossref_primary_10_1093_lifemedi_lnac036
crossref_primary_10_1016_j_nantod_2024_102291
crossref_primary_10_1097_HCO_0000000000001198
crossref_primary_10_1039_C8BM01310A
crossref_primary_10_1016_j_addr_2022_114616
crossref_primary_10_1002_advs_202400493
crossref_primary_10_1038_s41467_019_12922_y
crossref_primary_10_1016_j_addr_2020_11_002
crossref_primary_10_1002_anie_201903618
crossref_primary_10_3390_brainsci9010017
crossref_primary_10_3390_pharmaceutics14091940
crossref_primary_10_1021_acs_molpharmaceut_4c00925
crossref_primary_10_1021_acsami_0c16380
crossref_primary_10_1016_j_jconrel_2022_05_033
crossref_primary_10_1021_acs_accounts_1c00601
crossref_primary_10_1016_j_ymthe_2021_02_020
crossref_primary_10_1038_s41551_023_01030_4
crossref_primary_10_1161_CIRCRESAHA_123_321999
crossref_primary_10_1016_j_imlet_2020_07_003
crossref_primary_10_1021_acs_molpharmaceut_2c00365
crossref_primary_10_1016_j_jhepr_2019_09_002
crossref_primary_10_1021_acs_biochem_9b00046
crossref_primary_10_1016_j_cell_2023_08_031
crossref_primary_10_1111_trf_15126
crossref_primary_10_1016_j_visres_2023_108192
crossref_primary_10_1038_s41591_022_02061_1
crossref_primary_10_1016_j_canlet_2019_04_040
crossref_primary_10_1016_j_hfc_2024_03_005
crossref_primary_10_4142_jvs_2020_21_e26
crossref_primary_10_1016_j_jconrel_2024_08_030
crossref_primary_10_1007_s11940_024_00780_z
crossref_primary_10_1016_j_jconrel_2023_07_058
crossref_primary_10_1038_s41467_022_29550_8
crossref_primary_10_1002_adtp_202100040
crossref_primary_10_1016_j_crbiot_2023_100150
crossref_primary_10_3389_fmed_2021_649896
crossref_primary_10_1126_sciadv_abo0522
crossref_primary_10_1016_j_medntd_2023_100217
crossref_primary_10_1038_s41587_024_02470_2
crossref_primary_10_1016_j_ymthe_2020_05_007
crossref_primary_10_1002_wnan_1530
crossref_primary_10_1080_14712598_2020_1817375
crossref_primary_10_1016_j_lfs_2021_119289
crossref_primary_10_1016_j_jrras_2024_101199
crossref_primary_10_1002_jcb_30329
crossref_primary_10_1039_D1CS00343G
crossref_primary_10_1038_s41467_020_19505_2
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_1002_adma_202209624
crossref_primary_10_1039_D1BM01452H
crossref_primary_10_1021_acsnano_1c10631
crossref_primary_10_1021_acs_accounts_1c00500
crossref_primary_10_1021_acs_molpharmaceut_2c00010
crossref_primary_10_1161_CIRCRESAHA_122_320496
crossref_primary_10_1165_rcmb_2022_0424MA
crossref_primary_10_3390_biotech12020037
crossref_primary_10_3389_fmolb_2023_1214489
crossref_primary_10_3390_pharmaceutics14112463
crossref_primary_10_2174_2210303109666190807104437
crossref_primary_10_3390_pharmaceutics13060878
crossref_primary_10_1016_j_jconrel_2020_06_038
crossref_primary_10_1039_D1TB01368H
crossref_primary_10_1016_j_omtn_2023_102050
crossref_primary_10_1093_cvr_cvz250
crossref_primary_10_1002_ange_202014162
crossref_primary_10_3390_antibiotics8010018
crossref_primary_10_1016_j_addr_2023_115116
crossref_primary_10_1016_j_jconrel_2025_01_068
crossref_primary_10_1089_hum_2021_152
crossref_primary_10_1016_j_jconrel_2022_02_017
crossref_primary_10_3390_pharmaceutics14020398
crossref_primary_10_3389_fbioe_2023_1143157
crossref_primary_10_1016_j_omtm_2024_101365
crossref_primary_10_1021_acschembio_2c00116
crossref_primary_10_3390_biology10060530
crossref_primary_10_1016_j_oor_2024_100224
crossref_primary_10_1080_17425247_2024_2331216
crossref_primary_10_1016_j_cell_2022_03_045
crossref_primary_10_3390_v10060291
crossref_primary_10_1093_bjd_ljad528
crossref_primary_10_3389_fphar_2021_623674
crossref_primary_10_3390_pharmaceutics14010213
crossref_primary_10_1016_j_biomaterials_2018_05_043
crossref_primary_10_1016_j_jconrel_2024_06_023
crossref_primary_10_1038_s41401_023_01115_5
crossref_primary_10_1016_j_cej_2022_135116
crossref_primary_10_1021_acs_analchem_4c02399
crossref_primary_10_1039_D3TB02766J
crossref_primary_10_3389_fddsv_2022_1015545
crossref_primary_10_1002_smll_202100546
crossref_primary_10_1007_s00018_020_03725_2
crossref_primary_10_2174_1574892818666230607093231
crossref_primary_10_3390_cimb46050255
crossref_primary_10_1039_D3LC00622K
crossref_primary_10_1126_sciadv_adl0731
crossref_primary_10_1002_asia_202200451
crossref_primary_10_1016_j_jlr_2024_100626
crossref_primary_10_1186_s12951_024_02427_2
crossref_primary_10_1007_s40097_022_00472_7
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1016_j_biomaterials_2019_119291
crossref_primary_10_1021_acscentsci_3c00289
crossref_primary_10_1021_acs_molpharmaceut_8b01290
crossref_primary_10_1016_j_isci_2019_100789
crossref_primary_10_1016_j_lfs_2022_121204
crossref_primary_10_1089_crispr_2021_0134
crossref_primary_10_1007_s12274_018_2099_4
crossref_primary_10_1002_wnan_1856
crossref_primary_10_1248_bpb_b18_00625
crossref_primary_10_1002_wnan_1609
crossref_primary_10_1186_s12951_019_0564_1
crossref_primary_10_1007_s13311_018_00702_3
crossref_primary_10_1007_s11095_023_03471_7
crossref_primary_10_1016_j_addr_2022_114197
crossref_primary_10_1242_dmm_050088
crossref_primary_10_1016_j_ymthe_2024_10_003
crossref_primary_10_3390_ijms25042243
crossref_primary_10_1007_s11356_024_32101_x
crossref_primary_10_3390_ijms222011227
crossref_primary_10_2147_BTT_S310312
crossref_primary_10_1002_adtp_201900061
crossref_primary_10_3389_fgene_2021_673286
crossref_primary_10_1002_adma_202003537
crossref_primary_10_3390_pharmaceutics12080759
crossref_primary_10_3389_fmicb_2022_953218
crossref_primary_10_1016_j_nantod_2020_100895
crossref_primary_10_1073_pnas_2022562118
crossref_primary_10_1016_j_semcdb_2019_04_007
crossref_primary_10_1021_acs_bioconjchem_0c00060
crossref_primary_10_1016_j_jconrel_2020_07_033
crossref_primary_10_1039_C9NR01786K
crossref_primary_10_1039_D2BM00806H
crossref_primary_10_1021_acs_bioconjchem_2c00106
crossref_primary_10_1002_adhm_202400225
crossref_primary_10_1021_acs_molpharmaceut_3c00547
crossref_primary_10_1111_jcmm_14916
crossref_primary_10_3390_pharmaceutics14051087
crossref_primary_10_1038_s41421_023_00552_0
crossref_primary_10_4155_fmc_2021_0248
crossref_primary_10_1016_j_addr_2020_07_004
crossref_primary_10_3390_cells11111843
crossref_primary_10_3390_ijms24021563
crossref_primary_10_1016_j_tibtech_2018_03_004
crossref_primary_10_1002_smll_202409353
crossref_primary_10_1016_j_lfs_2023_121409
crossref_primary_10_1089_hum_2020_137
crossref_primary_10_1186_s12943_021_01335_5
crossref_primary_10_1039_D2MA00797E
crossref_primary_10_1016_j_ijbiomac_2025_139532
crossref_primary_10_1038_s41573_023_00762_x
crossref_primary_10_1002_sctm_19_0338
crossref_primary_10_1021_acsnano_3c04116
crossref_primary_10_1016_j_hlc_2023_01_017
crossref_primary_10_3390_cancers13051025
crossref_primary_10_1016_j_omtn_2023_07_032
crossref_primary_10_1016_j_apsb_2022_12_013
crossref_primary_10_1016_j_jconrel_2022_01_013
crossref_primary_10_1093_eurheartjsupp_suad082
crossref_primary_10_1126_sciadv_abc9450
crossref_primary_10_1016_j_jddst_2020_101533
crossref_primary_10_3390_ijms23031685
crossref_primary_10_1177_09636897211003022
crossref_primary_10_1007_s10072_020_04889_2
crossref_primary_10_1208_s12249_024_02834_6
crossref_primary_10_3390_ijms20235926
crossref_primary_10_1016_j_ijpharm_2020_119652
crossref_primary_10_3390_vaccines11020241
crossref_primary_10_1016_j_omtm_2021_09_012
crossref_primary_10_1039_D2BM01001A
crossref_primary_10_1002_mco2_70035
crossref_primary_10_1038_s41580_023_00697_6
crossref_primary_10_1089_crispr_2018_0037
crossref_primary_10_1248_bpb_b18_00811
crossref_primary_10_1016_j_ejpb_2024_114222
crossref_primary_10_2174_0929867329666221006112615
crossref_primary_10_1038_s41573_024_01086_0
crossref_primary_10_1089_hum_2021_013
crossref_primary_10_1038_s41586_024_07087_8
crossref_primary_10_3390_cells13070568
crossref_primary_10_1016_j_omtn_2023_102112
crossref_primary_10_1016_j_ymthe_2021_09_002
crossref_primary_10_1021_acschembio_3c00140
crossref_primary_10_3390_nano10020364
crossref_primary_10_1038_s41584_023_01067_4
crossref_primary_10_1016_j_ejpb_2023_10_006
crossref_primary_10_14218_JERP_2020_00033
crossref_primary_10_1016_j_neuron_2019_01_035
crossref_primary_10_1038_s41569_022_00683_z
crossref_primary_10_1016_j_biomaterials_2020_120282
crossref_primary_10_1016_j_tibtech_2020_07_012
crossref_primary_10_3389_fgeed_2019_00001
crossref_primary_10_3390_biom12010013
crossref_primary_10_1007_s00439_019_02028_2
crossref_primary_10_1002_mco2_639
crossref_primary_10_1016_j_addr_2024_115446
crossref_primary_10_1002_wnan_1809
crossref_primary_10_1016_j_addr_2023_115026
crossref_primary_10_1007_s40291_023_00642_5
crossref_primary_10_5334_gh_1262
crossref_primary_10_3390_pharmaceutics17030387
crossref_primary_10_1016_j_jddst_2023_104567
Cites_doi 10.1038/mtna.2013.66
10.1016/j.stem.2014.06.003
10.1038/mt.2010.85
10.1007/s00418-009-0577-1
10.1021/jp303267y
10.1074/jbc.M117.782029
10.1002/biot.201400529
10.1038/nature11826
10.1038/nbt.3298
10.1038/nbt.3471
10.1172/JCI59261
10.1182/blood-2013-01-306647
10.1038/nature14299
10.1038/nbt.2614
10.1038/nnano.2014.84
10.1002/anie.201610209
10.1038/nbt.3290
10.1371/journal.pone.0161193
10.1126/scitranslmed.3009706
10.1038/nature14863
10.1038/cr.2017.16
10.1038/nmeth.4368
10.1016/j.cell.2017.03.016
10.1038/nm1358
10.1126/science.1225829
10.1016/j.nano.2013.05.007
10.1002/anie.201203263
10.1038/mtna.2016.68
10.1038/nbt.2612
ContentType Journal Article
Copyright 2018 Intellia Therapeutics, Inc.
Copyright © 2018 Intellia Therapeutics, Inc. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Intellia Therapeutics, Inc.
– notice: Copyright © 2018 Intellia Therapeutics, Inc. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2018.02.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 2235
ExternalDocumentID oai_doaj_org_article_f557a3a18840449b89062013d6e1f3ec
29490262
10_1016_j_celrep_2018_02_014
S2211124718301827
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-f5f06e18a9189d5a49520b5e1cf0c292dedd3be08b5794122f6b69a504e7e9b33
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:29:48 EDT 2025
Fri Jul 11 08:21:39 EDT 2025
Mon Jul 21 05:33:54 EDT 2025
Tue Jul 01 02:58:54 EDT 2025
Thu Apr 24 23:13:30 EDT 2025
Wed May 17 02:14:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords CRISPR
genome editing
lipid nanoparticle
TTR
CRISPR/Cas9
sgRNA
gene therapy
Cas9
liver delivery
LNP
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 Intellia Therapeutics, Inc. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f5f06e18a9189d5a49520b5e1cf0c292dedd3be08b5794122f6b69a504e7e9b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124718301827
PMID 29490262
PQID 2009570185
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_f557a3a18840449b89062013d6e1f3ec
proquest_miscellaneous_2009570185
pubmed_primary_29490262
crossref_primary_10_1016_j_celrep_2018_02_014
crossref_citationtrail_10_1016_j_celrep_2018_02_014
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_02_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-27
PublicationDateYYYYMMDD 2018-02-27
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Malato, Naqvi, Schürmann, Ng, Wang, Zape, Kay, Grimm, Willenbring (bib16) 2011; 121
Thi, Mire, Ursic-Bedoya, Geisbert, Lee, Agans, Robbins, Deer, Fenton, MacLachlan, Geisbert (bib26) 2014; 6
Wang, Zhao, Fish, Logan, Nusse (bib27) 2015; 524
Basha, Ordobadi, Scott, Cottle, Liu, Wang, Cullis (bib4) 2016; 5
Hendel, Bak, Clark, Kennedy, Ryan, Roy, Steinfeld, Lunstad, Kaiser, Wilkens (bib8) 2015; 33
Wittrup, Ai, Liu, Hamar, Trifonova, Charisse, Manoharan, Kirchhausen, Lieberman (bib29) 2015; 33
Gilleron, Querbes, Zeigerer, Borodovsky, Marsico, Schubert, Manygoats, Seifert, Andree, Stöter (bib7) 2013; 31
Wang, Huang, He, Pu, Li, Liu, Li, Zhang, Yu, Zhao (bib28) 2017; 292
Jiang, Mei, Li, Zhu, Zu, Tian, Wang, Guo, Dong, Tan (bib12) 2017; 27
Brinkman, Chen, de Haas, Holland, Waseem, van Steensel (bib5) 2017
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib13) 2012; 337
Mui, Tam, Jayaraman, Ansell, Du, Tam, Lin, Chen, Narayanannair, Rajeev (bib20) 2013; 2
Yin, Song, Dorkin, Zhu, Li, Wu, Park, Yang, Suresh, Bizhanova (bib31) 2016; 34
Leung, Hafez, Baoukina, Belliveau, Zhigaltsev, Afshinmanesh, Tieleman, Hansen, Hope, Cullis (bib14) 2012; 116
Dahlman, Barnes, Khan, Thiriot, Jhunjunwala, Shaw, Xing, Sager, Sahay, Speciner (bib6) 2014; 9
Akinc, Querbes, De, Qin, Frank-Kamenetsky, Jayaprakash, Jayaraman, Rajeev, Cantley, Dorkin (bib1) 2010; 18
Rose, Stephany, Valente, Trevillian, Dang, Bielas, Maly, Fowler (bib23) 2017; 14
Hsu, Yu, Wang, Lu, Schmidt, Lee, Lee, Jacob, Ghoshal (bib9) 2013; 9
Miller, Zhang, Kos, Xiong, Zhou, Perelman, Zhu, Siegwart (bib18) 2017; 56
Baratta, Ngo, Lopez, Kasabwalla, Longmuir, Robertson (bib3) 2009; 131
Magini, Giovani, Mangiavacchi, Maccari, Cecchi, Ulmer, De Gregorio, Geall, Brazzoli, Bertholet (bib15) 2016; 11
Richner, Himansu, Dowd, Butler, Salazar, Fox, Julander, Tang, Shresta, Pierson (bib22) 2017; 169
Sahay, Querbes, Alabi, Eltoukhy, Sarkar, Zurenko, Karagiannis, Love, Chen, Zoncu (bib24) 2013; 31
.
Mingozzi, High (bib19) 2013; 122
Yanger, Knigin, Zong, Maggs, Gu, Akiyama, Pikarsky, Stanger (bib30) 2014; 15
Manno, Pierce, Arruda, Glader, Ragni, Rasko, Ozelo, Hoots, Blatt, Konkle (bib17) 2006; 12
Schmidt, Grimm (bib25) 2015; 10
Huch, Dorrell, Boj, van Es, Li, van de Wetering, Sato, Hamer, Sasaki, Finegold (bib10) 2013; 494
Ran, Cong, Yan, Scott, Gootenberg, Kriz, Zetsche, Shalem, Wu, Makarova (bib21) 2015; 520
ClinicalTrials.gov (2017). APOLLO: the study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis.
Jayaraman, Ansell, Mui, Tam, Chen, Du, Butler, Eltepu, Matsuda, Narayanannair (bib11) 2012; 51
Malato (10.1016/j.celrep.2018.02.014_bib16) 2011; 121
Akinc (10.1016/j.celrep.2018.02.014_bib1) 2010; 18
Miller (10.1016/j.celrep.2018.02.014_bib18) 2017; 56
Wittrup (10.1016/j.celrep.2018.02.014_bib29) 2015; 33
Richner (10.1016/j.celrep.2018.02.014_bib22) 2017; 169
Manno (10.1016/j.celrep.2018.02.014_bib17) 2006; 12
Wang (10.1016/j.celrep.2018.02.014_bib28) 2017; 292
Dahlman (10.1016/j.celrep.2018.02.014_bib6) 2014; 9
Gilleron (10.1016/j.celrep.2018.02.014_bib7) 2013; 31
Huch (10.1016/j.celrep.2018.02.014_bib10) 2013; 494
Jayaraman (10.1016/j.celrep.2018.02.014_bib11) 2012; 51
Schmidt (10.1016/j.celrep.2018.02.014_bib25) 2015; 10
Hsu (10.1016/j.celrep.2018.02.014_bib9) 2013; 9
Brinkman (10.1016/j.celrep.2018.02.014_bib5) 2017
Ran (10.1016/j.celrep.2018.02.014_bib21) 2015; 520
Yanger (10.1016/j.celrep.2018.02.014_bib30) 2014; 15
Baratta (10.1016/j.celrep.2018.02.014_bib3) 2009; 131
Mingozzi (10.1016/j.celrep.2018.02.014_bib19) 2013; 122
Thi (10.1016/j.celrep.2018.02.014_bib26) 2014; 6
Wang (10.1016/j.celrep.2018.02.014_bib27) 2015; 524
10.1016/j.celrep.2018.02.014_bib2
Jinek (10.1016/j.celrep.2018.02.014_bib13) 2012; 337
Leung (10.1016/j.celrep.2018.02.014_bib14) 2012; 116
Yin (10.1016/j.celrep.2018.02.014_bib31) 2016; 34
Basha (10.1016/j.celrep.2018.02.014_bib4) 2016; 5
Magini (10.1016/j.celrep.2018.02.014_bib15) 2016; 11
Sahay (10.1016/j.celrep.2018.02.014_bib24) 2013; 31
Mui (10.1016/j.celrep.2018.02.014_bib20) 2013; 2
Hendel (10.1016/j.celrep.2018.02.014_bib8) 2015; 33
Rose (10.1016/j.celrep.2018.02.014_bib23) 2017; 14
Jiang (10.1016/j.celrep.2018.02.014_bib12) 2017; 27
References_xml – volume: 5
  start-page: e363
  year: 2016
  ident: bib4
  article-title: Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo
  publication-title: Mol. Ther. Nucleic Acids
– volume: 6
  start-page: 250ra116
  year: 2014
  ident: bib26
  article-title: Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA
  publication-title: Sci. Transl. Med.
– volume: 51
  start-page: 8529
  year: 2012
  end-page: 8533
  ident: bib11
  article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 27
  start-page: 440
  year: 2017
  end-page: 443
  ident: bib12
  article-title: A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo
  publication-title: Cell Res.
– volume: 56
  start-page: 1059
  year: 2017
  end-page: 1063
  ident: bib18
  article-title: Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 494
  start-page: 247
  year: 2013
  end-page: 250
  ident: bib10
  article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration
  publication-title: Nature
– volume: 33
  start-page: 870
  year: 2015
  end-page: 876
  ident: bib29
  article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown
  publication-title: Nat. Biotechnol.
– year: 2017
  ident: bib5
  article-title: Quantitative analysis shows that repair of Cas9-induced double-strand DNA breaks is slow and error-prone
  publication-title: bioRxiv
– volume: 2
  start-page: e139
  year: 2013
  ident: bib20
  article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles
  publication-title: Mol. Ther. Nucleic Acids
– volume: 31
  start-page: 653
  year: 2013
  end-page: 658
  ident: bib24
  article-title: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling
  publication-title: Nat. Biotechnol.
– volume: 10
  start-page: 258
  year: 2015
  end-page: 272
  ident: bib25
  article-title: CRISPR genome engineering and viral gene delivery: a case of mutual attraction
  publication-title: Biotechnol. J.
– volume: 131
  start-page: 713
  year: 2009
  end-page: 726
  ident: bib3
  article-title: Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis
  publication-title: Histochem. Cell Biol.
– volume: 18
  start-page: 1357
  year: 2010
  end-page: 1364
  ident: bib1
  article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms
  publication-title: Mol. Ther.
– volume: 9
  start-page: 1169
  year: 2013
  end-page: 1180
  ident: bib9
  article-title: Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor
  publication-title: Nanomedicine (Lond.)
– volume: 122
  start-page: 23
  year: 2013
  end-page: 36
  ident: bib19
  article-title: Immune responses to AAV vectors: overcoming barriers to successful gene therapy
  publication-title: Blood
– volume: 15
  start-page: 340
  year: 2014
  end-page: 349
  ident: bib30
  article-title: Adult hepatocytes are generated by self-duplication rather than stem cell differentiation
  publication-title: Cell Stem Cell
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib13
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 121
  start-page: 4850
  year: 2011
  end-page: 4860
  ident: bib16
  article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration
  publication-title: J. Clin. Invest.
– volume: 33
  start-page: 985
  year: 2015
  end-page: 989
  ident: bib8
  article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
  publication-title: Nat. Biotechnol.
– volume: 292
  start-page: 8594
  year: 2017
  end-page: 8604
  ident: bib28
  article-title: Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 638
  year: 2013
  end-page: 646
  ident: bib7
  article-title: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape
  publication-title: Nat. Biotechnol.
– volume: 169
  start-page: 176
  year: 2017
  ident: bib22
  article-title: Modified mRNA vaccines protect against Zika virus infection
  publication-title: Cell
– volume: 116
  start-page: 18440
  year: 2012
  end-page: 18450
  ident: bib14
  article-title: Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core
  publication-title: J. Phys. Chem. C. Nanomater Interfaces
– volume: 9
  start-page: 648
  year: 2014
  end-page: 655
  ident: bib6
  article-title: In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 891
  year: 2017
  end-page: 896
  ident: bib23
  article-title: Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics
  publication-title: Nat. Methods
– volume: 524
  start-page: 180
  year: 2015
  end-page: 185
  ident: bib27
  article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver
  publication-title: Nature
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  ident: bib21
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
– reference: .
– volume: 11
  start-page: e0161193
  year: 2016
  ident: bib15
  article-title: Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge
  publication-title: PLoS ONE
– volume: 34
  start-page: 328
  year: 2016
  end-page: 333
  ident: bib31
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 342
  year: 2006
  end-page: 347
  ident: bib17
  article-title: Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response
  publication-title: Nat. Med.
– reference: ClinicalTrials.gov (2017). APOLLO: the study of an investigational drug, Patisiran (ALN-TTR02), for the treatment of transthyretin (TTR)-mediated amyloidosis.
– ident: 10.1016/j.celrep.2018.02.014_bib2
– volume: 2
  start-page: e139
  year: 2013
  ident: 10.1016/j.celrep.2018.02.014_bib20
  article-title: Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2013.66
– volume: 15
  start-page: 340
  year: 2014
  ident: 10.1016/j.celrep.2018.02.014_bib30
  article-title: Adult hepatocytes are generated by self-duplication rather than stem cell differentiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.06.003
– volume: 18
  start-page: 1357
  year: 2010
  ident: 10.1016/j.celrep.2018.02.014_bib1
  article-title: Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.85
– volume: 131
  start-page: 713
  year: 2009
  ident: 10.1016/j.celrep.2018.02.014_bib3
  article-title: Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-009-0577-1
– volume: 116
  start-page: 18440
  year: 2012
  ident: 10.1016/j.celrep.2018.02.014_bib14
  article-title: Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core
  publication-title: J. Phys. Chem. C. Nanomater Interfaces
  doi: 10.1021/jp303267y
– volume: 292
  start-page: 8594
  year: 2017
  ident: 10.1016/j.celrep.2018.02.014_bib28
  article-title: Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.782029
– volume: 10
  start-page: 258
  year: 2015
  ident: 10.1016/j.celrep.2018.02.014_bib25
  article-title: CRISPR genome engineering and viral gene delivery: a case of mutual attraction
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400529
– volume: 494
  start-page: 247
  year: 2013
  ident: 10.1016/j.celrep.2018.02.014_bib10
  article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration
  publication-title: Nature
  doi: 10.1038/nature11826
– volume: 33
  start-page: 870
  year: 2015
  ident: 10.1016/j.celrep.2018.02.014_bib29
  article-title: Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3298
– volume: 34
  start-page: 328
  year: 2016
  ident: 10.1016/j.celrep.2018.02.014_bib31
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3471
– volume: 121
  start-page: 4850
  year: 2011
  ident: 10.1016/j.celrep.2018.02.014_bib16
  article-title: Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI59261
– volume: 122
  start-page: 23
  year: 2013
  ident: 10.1016/j.celrep.2018.02.014_bib19
  article-title: Immune responses to AAV vectors: overcoming barriers to successful gene therapy
  publication-title: Blood
  doi: 10.1182/blood-2013-01-306647
– volume: 520
  start-page: 186
  year: 2015
  ident: 10.1016/j.celrep.2018.02.014_bib21
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 31
  start-page: 653
  year: 2013
  ident: 10.1016/j.celrep.2018.02.014_bib24
  article-title: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2614
– volume: 9
  start-page: 648
  year: 2014
  ident: 10.1016/j.celrep.2018.02.014_bib6
  article-title: In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.84
– volume: 56
  start-page: 1059
  year: 2017
  ident: 10.1016/j.celrep.2018.02.014_bib18
  article-title: Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201610209
– volume: 33
  start-page: 985
  year: 2015
  ident: 10.1016/j.celrep.2018.02.014_bib8
  article-title: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3290
– volume: 11
  start-page: e0161193
  year: 2016
  ident: 10.1016/j.celrep.2018.02.014_bib15
  article-title: Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0161193
– volume: 6
  start-page: 250ra116
  year: 2014
  ident: 10.1016/j.celrep.2018.02.014_bib26
  article-title: Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3009706
– volume: 524
  start-page: 180
  year: 2015
  ident: 10.1016/j.celrep.2018.02.014_bib27
  article-title: Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver
  publication-title: Nature
  doi: 10.1038/nature14863
– volume: 27
  start-page: 440
  year: 2017
  ident: 10.1016/j.celrep.2018.02.014_bib12
  article-title: A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.16
– volume: 14
  start-page: 891
  year: 2017
  ident: 10.1016/j.celrep.2018.02.014_bib23
  article-title: Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4368
– volume: 169
  start-page: 176
  year: 2017
  ident: 10.1016/j.celrep.2018.02.014_bib22
  article-title: Modified mRNA vaccines protect against Zika virus infection
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.016
– volume: 12
  start-page: 342
  year: 2006
  ident: 10.1016/j.celrep.2018.02.014_bib17
  article-title: Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response
  publication-title: Nat. Med.
  doi: 10.1038/nm1358
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.celrep.2018.02.014_bib13
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 9
  start-page: 1169
  year: 2013
  ident: 10.1016/j.celrep.2018.02.014_bib9
  article-title: Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor
  publication-title: Nanomedicine (Lond.)
  doi: 10.1016/j.nano.2013.05.007
– volume: 51
  start-page: 8529
  year: 2012
  ident: 10.1016/j.celrep.2018.02.014_bib11
  article-title: Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201203263
– volume: 5
  start-page: e363
  year: 2016
  ident: 10.1016/j.celrep.2018.02.014_bib4
  article-title: Lipid nanoparticle delivery of siRNA to osteocytes leads to effective silencing of SOST and inhibition of sclerostin in vivo
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2016.68
– year: 2017
  ident: 10.1016/j.celrep.2018.02.014_bib5
  article-title: Quantitative analysis shows that repair of Cas9-induced double-strand DNA breaks is slow and error-prone
  publication-title: bioRxiv
– volume: 31
  start-page: 638
  year: 2013
  ident: 10.1016/j.celrep.2018.02.014_bib7
  article-title: Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2612
SSID ssj0000601194
Score 2.6573045
Snippet The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2227
SubjectTerms Animals
Base Sequence
Cas9
CRISPR
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems - genetics
CRISPR/Cas9
Gene Editing
gene therapy
Gene Transfer Techniques
genome editing
lipid nanoparticle
Lipids - chemistry
Liver - metabolism
liver delivery
LNP
Mice
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Rats
RNA, Guide, CRISPR-Cas Systems - chemistry
RNA, Guide, CRISPR-Cas Systems - genetics
sgRNA
TTR
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6kUPBFrPWyVssIvoZmJplM5nFdehMU2Vrp2zBXXFkT7WYL_ht_i7_MczLJ0n2QffEthEkynOt3yJnvEPLWMWsKHqsMdO-y0siYmQhVqwDnEsznro54GvnDx-riunx_I27ujfrCnrBED5wEdxKFkKYwrIZKpCyVrZFYF3CLrwKLRXAYfSHn3SumUgxGLjP8pcw59mzxUo7n5vrmLheWtwHpKlndU3aycisv9fT9W-npX_CzT0Nnj8mjAT_Sadr3AXkQmidkP02U_HVIfk7pFSSjZaDbrLi0jXQ2v7z6ND-ZmZWiOLLaUwitUDMPrXF06r4uwh1czFu7XnXUNJ5igzwaQtPRy-bP7y-Lu5aeh6b9HuipX2DL9FNyfXb6eXaRDVMVMgforMuiiDnIrjaK1coLAxUSz60IzMXcccV98L6wIa-tAF9lHBRpK2VEXgYZlC2KZ2SvaZvwglAmvWeVFVAlVmXlpbUK8AKvLASBmhs3IcUoU-0GynGcfLHUY2_ZN500oVETOucaNDEh2eapH4lyY8f6d6iuzVokzO5vgBnpQYZ6lxlNiByVrQfskTAFvGqx4_NvRtvQ4Jr4v8U0oV2vcMKnEhJWigl5noxms0muSgXlL3_5PzZ_RB7ihvqT9vIV2etu1-E1YKXOHvdu8Rdpdg0D
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWqIiReULlvuchIvAZiJ47jB4SWVUuLVIS2LOqb5SssWhK6m63o3_AtfBkzuSxaiaoSb0nk2JHH4zmjjM8h5IVj1mQ8FgnY3iW5kTExEbJWAc4lmE9dGfE08smH4miWvz8TZztk0GztJ3D1z9QO9aRmy8XLn-eXb8DhX_-t1XJhsQzIPsnKloETla1vQGySqGlw0gP-bm9GjjP81cw51nLxXA7n6a7oaCtetbT-W2HrKljahqfDPXK7x5V03C2EO2QnVHfJzU5p8vIeOR_TUwhSi0C32XJpHelkenz6cfpqYlaKopS1p7DlQi7dl8zRsfs6DxdwMa3tetVQU3mKhfO4QKqGHle_f32eX9T0Xajq74Ee-DmWUt8ns8ODT5OjpFdbSBygtiaJIqZFYKVRrFReGMiceGpFYC6mjivug_eZDWlpBfgw42BgWygj0jzIoGyWPSC7VV2FR4Qy6T0rrIDsscgLL61VgCN4YWFzKLlxI5INc6pdT0WOihgLPdScfdOdJTRaQqdcgyVGJNm89aOj4rim_Vs016YtEmm3D-rlF93PoY5CSJMZVkKim-fKlsjbDLDYw1TELMCnysHYusckHdaArubXDP98WBsaXBb_w5gq1OsVKn8qIaGlGJGH3aLZfCRXuYK0mO__97iPyS28a4_dyydkt1muw1MATo191vrCH0CBE8E
  priority: 102
  providerName: Scholars Portal
Title A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing
URI https://dx.doi.org/10.1016/j.celrep.2018.02.014
https://www.ncbi.nlm.nih.gov/pubmed/29490262
https://www.proquest.com/docview/2009570185
https://doaj.org/article/f557a3a18840449b89062013d6e1f3ec
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nfTx6JCryaWLNnSMRt2u1vYUpJuyU3o2bqk9jZxFvpv-lv6yzqS7UAOZaEXYwvZEprRPOSZbxB6Z4nRBQ1lBrS3GdNVyHQAr5XD5uLE5VaEmI189bG8uGYfVnx1hOZjLkwMqxxkfy_Tk7QeWqbDak5v6nq6pOC7gHYC4QpMKmjMKC-YSEl8q9P9OUvEGyGpHmLsn8UXxgy6FOZl_XrjI3AlEQm8k7ADDZWA_A8U1b8M0aSQzh-iB4MliWf9ZB-hI988Rvf62pK_nqCfM7wEtbT2-BAfF7cBzxeXy0-L6VxvJY7Fqx0GIQve8xAkh2f2W-1v4WbRmt22w7pxOIbKR5ZoOnzZ_Pn9pb5t8XvftD88PnN1DJ5-iq7Pzz7PL7KhvkJmwU7rssBDXnoitCRCOq7BV6K54Z7YkFsqqfPOFcbnwnDYtYQCSU0pNc-Zr7w0RfEMHTdt418gTCrnSGk4-IslK11ljATLgZYGxIGg2k5QMa6psgP4eKyBsVZjlNl31VNCRUqonCqgxARl-7duevCNO_qfRnLt-0bo7NTQbr6qYQ1V4LzShSYCXFvGpBERqRkMYQdLEQoPU61GYqsDToRP1XcM_3bkDQWbNP550Y1vd9tY61PyCnryCXreM81-klQyCY4wffnf475C9-NTSrSvXqPjbrPzb8BU6sxJOmI4STsCrldM_AU6JhEJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEIIXNO7laiReo8ZOHMePXbWthW1C7Yb6ZvnKMpVktOkk_g2_hV_GcS6V-oAm8RY5dmKd-0mOv4PQJ0O0SqjPIuC9iVLFfaQ8ZK0MlIsRG5vch9PIZ-fZ5DL9vGCLPTTuz8KEssrO9rc2vbHW3ciwo-bwpiiGcwq5C3gnMK4gpDnl99B9iAZ40M7p4nD7oSUAjpCmIWJYEIUV_RG6ps7LuOXKBeRKkjfonSTdcVENkv-Op_pXJNp4pOMD9LgLJfGo3e0TtOfKp-hB21zy1zP0c4Tn4JeWDu8C5OLK4_FsOv86G47VWuDQvdpisLKQPndVcnhkrgp3CxezSm_WNValxaFWPshEWeNp-ef3t-K2wieurH44fGSLUD39HF0eH12MJ1HXYCEyEKjVkWc-zhzJlSC5sExBskRjzRwxPjZUUOusTbSLc81AbQkFnupMKBanjjuhk-QF2i-r0r1CmHBrSaYZJIxZmlmutYDQgWYa7EFOlRmgpKepNB36eGiCsZR9mdm1bDkhAydkTCVwYoCi7aqbFn3jjvmHgV3buQE7uxmoVt9lR0PpGeMqUSSH3DZNhc4DVDNEwhZI4RMHW-U9s-WOKMKjijte_7GXDQlaGn69qNJVm3Vo9ikYh5lsgF62QrPdJBWpgEyYvv7v935ADycXZ6fydHr-5Q16FO40p-75W7RfrzbuHcRNtX7f6MVfHQkSWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single+Administration+of+CRISPR%2FCas9+Lipid+Nanoparticles+Achieves+Robust+and+Persistent+In%C2%A0Vivo+Genome+Editing&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Finn%2C+Jonathan+D.&rft.au=Smith%2C+Amy+Rhoden&rft.au=Patel%2C+Mihir+C.&rft.au=Shaw%2C+Lucinda&rft.date=2018-02-27&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=22&rft.issue=9&rft.spage=2227&rft.epage=2235&rft_id=info:doi/10.1016%2Fj.celrep.2018.02.014&rft.externalDocID=S2211124718301827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon