Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy

Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 11; no. 1; pp. 47 - 16
Main Authors Lin, Liyun, Pang, Wen, Jiang, Xinyan, Ding, Shihui, Wei, Xunbin, Gu, Bobo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2047-7538
2095-5545
2047-7538
DOI10.1038/s41377-021-00704-5

Cover

Loading…
Abstract Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
AbstractList Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
ArticleNumber 47
Author Wei, Xunbin
Gu, Bobo
Pang, Wen
Jiang, Xinyan
Ding, Shihui
Lin, Liyun
Author_xml – sequence: 1
  givenname: Liyun
  surname: Lin
  fullname: Lin, Liyun
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University
– sequence: 2
  givenname: Wen
  surname: Pang
  fullname: Pang, Wen
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University
– sequence: 3
  givenname: Xinyan
  surname: Jiang
  fullname: Jiang, Xinyan
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Shihui
  surname: Ding
  fullname: Ding, Shihui
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University
– sequence: 5
  givenname: Xunbin
  surname: Wei
  fullname: Wei, Xunbin
  email: xwei@bjmu.edu.cn
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Biomedical Engineering Department, Peking University, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute
– sequence: 6
  givenname: Bobo
  orcidid: 0000-0001-6092-8001
  surname: Gu
  fullname: Gu, Bobo
  email: bobogu@sjtu.edu.cn
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35228527$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFCEYxiemxtbaL-DBkHjxMvryb2AuJqax2mQTL3omDMPsspmBEdhN12_gty7dXWvbQ7lA4Pc8vLw8r6sTH7ytqrcYPmKg8lNimApRA8E1gABW8xfVGQEmasGpPHmwPq0uUlpDGS3DIMWr6pRyQiQn4qz6u3DLVUZ6mkc3ONujcON6nd3WopSjTQk5j_JmChFNzsRg_dbF4CfrM-p2yOjYBe_-FOHKTgX12odZx-zMaBMaiqwLIWXnl2hehRz6ndfFCGlfEO2NjSivbNTz7k31ctBjshfH-bz6dfX15-X3evHj2_Xll0VtOINcD8xaarHQMEjRd203aG6YaZggBppOMGIwEaSFRja8hZ5x2cgWY2GwMWAael5dH3z7oNdqjm7ScaeCdmq_EeJSHetXhAMzbU8FSMx6wFp2sm0b6LCBbpCmeH0-eM2bbrK9KV2Jenxk-vjEu5Vahq2SUnJJ22Lw4WgQw--NTVlNLhk7jtrbsEmKNJRJjluAgr5_gq7DJvrSqj1FJIiWFurdw4ruS_n34wUgB6B8ZkrRDvcIBnWXLHVIlirJUvtkKV5E8onIuFxSEu5e5cbnpfQgTeUev7Txf9nPqG4BncjlCA
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215588
crossref_primary_10_1021_acs_chemrev_3c00401
crossref_primary_10_1016_j_ccr_2024_215943
crossref_primary_10_1002_lpor_202400753
crossref_primary_10_1002_adma_202302705
crossref_primary_10_1038_s41377_022_00804_w
crossref_primary_10_1002_smll_202304968
crossref_primary_10_1360_SSC_2024_0233
crossref_primary_10_1039_D4BM00316K
crossref_primary_10_1021_acsami_3c12479
crossref_primary_10_1016_j_apsb_2023_11_007
crossref_primary_10_1016_j_mtnano_2023_100326
crossref_primary_10_1039_D4NA00032C
crossref_primary_10_1016_j_jallcom_2025_178734
crossref_primary_10_1021_acsami_4c04985
crossref_primary_10_1016_j_ijhydene_2023_05_320
crossref_primary_10_1039_D2BM02139K
crossref_primary_10_1080_10717544_2022_2144541
crossref_primary_10_1364_OL_497596
crossref_primary_10_1002_cbic_202400838
crossref_primary_10_1021_acsami_3c00056
crossref_primary_10_1186_s12951_024_02901_x
crossref_primary_10_1002_adhm_202401616
crossref_primary_10_1016_j_envres_2023_116287
crossref_primary_10_1021_acsnano_4c16389
crossref_primary_10_3389_fbioe_2023_1254861
crossref_primary_10_1016_j_jallcom_2023_169206
crossref_primary_10_1002_adfm_202301256
crossref_primary_10_1002_med_22072
crossref_primary_10_1016_j_ejmech_2022_115084
crossref_primary_10_1016_j_mtsust_2024_100759
crossref_primary_10_1002_smll_202407674
crossref_primary_10_1038_s41598_023_43625_6
crossref_primary_10_1016_j_ajps_2023_100852
crossref_primary_10_1016_j_nantod_2022_101751
crossref_primary_10_1038_s41377_025_01757_6
crossref_primary_10_1002_tbio_202200016
crossref_primary_10_1038_s41377_022_00762_3
crossref_primary_10_1039_D3NR01735D
crossref_primary_10_1002_advs_202301365
crossref_primary_10_1016_j_jconrel_2022_05_035
Cites_doi 10.1038/ncomms5596
10.1002/jbio.201600055
10.1002/adma.201701076
10.1002/adfm.201700626
10.1002/ange.201108400
10.1021/jacs.7b11114
10.1021/ja211433h
10.1021/jacs.0c02497
10.1021/acsnano.9b07898
10.1016/j.biomaterials.2012.06.060
10.1016/j.biomaterials.2020.120093
10.1038/nrc1071
10.1002/anie.201605509
10.1002/anie.201805664
10.1021/acs.chemrev.6b00021
10.1038/s41377-018-0090-1
10.1002/adhm.201900192
10.1002/adma.202001862
10.1002/smtd.201700392
10.1002/chem.200702010
10.1007/s12274-014-0644-3
10.1039/C7QI00590C
10.1039/C7BM00798A
10.1021/jz5005335
10.1039/D0NA00985G
10.1016/1010-6030(93)80035-8
10.1038/s41377-020-00388-3
10.1002/advs.201901992
10.1038/s41571-020-0410-2
10.1016/j.ccr.2017.06.024
10.1002/smll.201402648
10.1002/adfm.202004680
10.1021/acsnano.8b01893
10.1021/acsnano.0c05235
10.1016/j.biomaterials.2016.05.019
10.1002/adhm.202000607
10.1021/acsami.5b01706
10.1039/C6CS00616G
10.1093/jnci/90.12.889
10.1021/jacs.7b05559
10.1002/adfm.201905758
10.1111/j.1751-1097.1999.tb08240.x
10.1016/S0301-0104(02)00969-2
10.1021/nn502325j
10.1111/php.13264
10.1021/acs.chemrev.9b00099
10.1016/j.matt.2019.03.007
10.3322/caac.20114
10.1002/anie.202006649
10.1016/j.nantod.2014.09.004
10.1038/s41467-020-15591-4
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-021-00704-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 16
ExternalDocumentID oai_doaj_org_article_2504c9d370814d01a8b89960b1c0bf8c
PMC8885839
35228527
10_1038_s41377_021_00704_5
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University (SJTU)
  grantid: ZH2018QNA43
  funderid: https://doi.org/10.13039/501100004921
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61805135
  funderid: https://doi.org/10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
  grantid: 19DZ2280300
  funderid: https://doi.org/10.13039/501100003399
– fundername: Shanghai Municipal Education Commission
  grantid: ZXWF082101
  funderid: https://doi.org/10.13039/501100003395
– fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2019YFC1604604
  funderid: https://doi.org/10.13039/501100002855
– fundername: Shanghai Jiao Tong University (SJTU)
  grantid: ZH2018QNA43
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
  grantid: 19DZ2280300
– fundername: Shanghai Municipal Education Commission
  grantid: ZXWF082101
– fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2019YFC1604604
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61805135
– fundername: ;
  grantid: 2019YFC1604604
– fundername: ;
  grantid: 61805135
– fundername: ;
  grantid: ZXWF082101
– fundername: ;
  grantid: ZH2018QNA43
– fundername: ;
  grantid: 19DZ2280300
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-f4ee3e17a0f87db9bfa5c4c6472c06b742c127290686590d458689117c1cc0c63
IEDL.DBID DOA
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Aug 21 17:48:54 EDT 2025
Fri Jul 11 09:04:05 EDT 2025
Wed Aug 13 11:00:22 EDT 2025
Mon Jul 21 06:06:19 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Tue Jul 01 03:45:16 EDT 2025
Fri Feb 21 02:38:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f4ee3e17a0f87db9bfa5c4c6472c06b742c127290686590d458689117c1cc0c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6092-8001
OpenAccessLink https://doaj.org/article/2504c9d370814d01a8b89960b1c0bf8c
PMID 35228527
PQID 2634280793
PQPubID 2041947
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2504c9d370814d01a8b89960b1c0bf8c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8885839
proquest_miscellaneous_2634851900
proquest_journals_2634280793
pubmed_primary_35228527
crossref_primary_10_1038_s41377_021_00704_5
crossref_citationtrail_10_1038_s41377_021_00704_5
springer_journals_10_1038_s41377_021_00704_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References YinFFunctionalized 2D nanomaterials for gene delivery applicationsCoord. Chem. Rev.2017347779710.1016/j.ccr.2017.06.024
ZhengXTAnanthanarayananALuoKQChenPGlowing graphene quantum dots and carbon dots: properties, syntheses, and biological applicationsSmall2015111620163610.1002/smll.201402648
XueTGraphene-supported hemin as a highly active biomimetic oxidation catalystAngew. Chem. Int. Ed.2012124388838912012AngCh.124.3888X10.1002/ange.201108400
FengLLMultifunctional UCNPs@MnSiO3@g-C3N4 nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapyBiomater. Sci.201752456246710.1039/C7BM00798A
DrösslerPFluoresence quenching of riboflavin in aqueous solution by methionin and cysteinChem. Phys.200328640942010.1016/S0301-0104(02)00969-2
RuppertGBauerRHeislerGThe photo-Fenton reaction-an effective photochemical wastewater treatment processJ. Photochem. Photobiol. A: Chem.199373757810.1016/1010-6030(93)80035-8
LiWJSmart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapyBiomaterials2016101101910.1016/j.biomaterials.2016.05.019
GuBBYongKTLiuBStrategies to overcome the limitations of AIEgens in biomedical applicationsSmall Methods20182170039210.1002/smtd.201700392
Wild, C. P., Weiderpass, E. & Stewart, B. W.World Cancer Report: Cancer Research for Cancer Prevention (International Agency for Research on Cancer, 2020).
WangJPA porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapyAdv. Mater.202032200186210.1002/adma.202001862
LiuCHAn open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapyNat. Commun.2020112020NatCo..11.1735L10.1038/s41467-020-15591-4
DingYBZhuWHXieYSDevelopment of ion chemosensors based on porphyrin analoguesChem. Rev.20171172203225610.1021/acs.chemrev.6b00021
DingSHNear-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocompositeNanoscale Adv.20213232523332021NanoA...3.2325D10.1039/D0NA00985G
LinLSSinglet oxygen luminescence image in blood vessels during vascular-targeted photodynamic therapyPhotochem. Photobiol.20209664665110.1111/php.13264
ZhuSJThe photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspectiveNano Res.2015835538110.1007/s12274-014-0644-3
AgostinisPPhotodynamic therapy of cancer: an updateCancer J. Clin.20116125028110.3322/caac.20114
LiTLPhoto-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agentAdv. Healthc. Mater.20198190019210.1002/adhm.201900192
BaoXIn vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administrationLight Sci. Appl.20187912018LSA.....7...91B10.1038/s41377-018-0090-1
HeLCSolvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapyJ. Am. Chem. Soc.2020146822683210.1021/jacs.0c02497
RedmondRWGamlinJNA compilation of singlet oxygen yields from biologically relevant moleculesPhotochem. Photobiol.19997039147510.1111/j.1751-1097.1999.tb08240.x
MarkovicZMGraphene quantum dots as autophagy-inducing photodynamic agentsBiomaterials2012337084709210.1016/j.biomaterials.2012.06.060
LiBHPhotosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapyJ. Biophotonics201691314132510.1002/jbio.201600055
LiZNIR/ROS-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapyAdv. Funct. Mater.202030190575810.1002/adfm.201905758
JuEGCopper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapyAngew. Chem. Int. Ed.201655114671147110.1002/anie.201605509
KimJContinuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancerJ. Am. Chem. Soc.2017139109921099510.1021/jacs.7b05559
GeJCA graphene quantum dot photodynamic therapy agent with high singlet oxygen generationNat. Commun.201452014NatCo...5.4596G10.1038/ncomms5596
BaiSUltrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapyACS Nano202014151191513010.1021/acsnano.0c05235
JiangSSynergistic anticancer therapy by ovalbumin encapsulation-enabled tandem reactive oxygen species generationAngew. Chem. Int. Ed.202059200082001610.1002/anie.202006649
PanwarNNanocarbons for biology and medicine: sensing, imaging, and drug deliveryChem. Rev.20191199559965610.1021/acs.chemrev.9b00099
XieZJBlack phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapyLight Sci. Appl.202091612020LSA.....9..161X10.1038/s41377-020-00388-3
LiuYAll-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradicationACS Nano2018124886489310.1021/acsnano.8b01893
LiangJHA tailored multifunctional anticancer nanodelivery system for ruthenium-based photosensitizers: tumor microenvironment adaption and remodelingAdv. Sci.20207190199210.1002/advs.201901992
GongTFull-process radiosensitization based on nanoscale metal-organic frameworksACS Nano2020143032304010.1021/acsnano.9b07898
PangWNucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dotsAdv. Healthc. Mater.20209200060710.1002/adhm.202000607
DoughertyTJPhotodynamic therapyJ. Natl Cancer Inst.19989088990510.1093/jnci/90.12.889
LiXSClinical development and potential of photothermal and photodynamic therapies for cancerNat. Rev. Clin. Oncol.20201765767410.1038/s41571-020-0410-2
WangQGHigh catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme modelsChemistry2008145073507810.1002/chem.200702010
BaiJA facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranosticsJ. Am. Chem. Soc.201814010610910.1021/jacs.7b11114
DolmansDEJGJFukumuraDJainRKPhotodynamic therapy for cancerNat. Rev. Cancer2003338038710.1038/nrc1071
GuBBPrecise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristicsAdv. Mater.201729170107610.1002/adma.201701076
TangZMChemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactionsAngew. Chem. Int. Ed.20195894695610.1002/anie.201805664
HolaKCarbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronicsNano Today2014959060310.1016/j.nantod.2014.09.004
WangYThickness-dependent full-color emission tunability in a flexible carbon dot ionogelJ. Phys. Chem. Lett.201451412142010.1021/jz5005335
DeviLGNithyaPMPhotocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processesInorg. Chem. Front.2018512713810.1039/C7QI00590C
GaoLPlasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitroACS Nano201487260727110.1021/nn502325j
ChenSCarbon dots based nanoscale covalent organic frameworks for photodynamic therapyAdv. Funct. Mater.202030200468010.1002/adfm.202004680
WuQMnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapyMatter2019149651210.1016/j.matt.2019.03.007
LuoFQEncapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral conditionACS Appl. Mater. Interfaces20157113221132910.1021/acsami.5b01706
ZhangCAn O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapyAdv. Funct. Mater.201727170062610.1002/adfm.201700626
WangMAu2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapyBiomaterials202025212009310.1016/j.biomaterials.2020.120093
JahanMBaoQLLohKPElectrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reactionJ. Am. Chem. Soc.20121346707671310.1021/ja211433h
FanWPHuangPChenXYOvercoming the Achilles’ heel of photodynamic therapyChem. Soc. Rev.2016456488651910.1039/C6CS00616G
Q Wu (704_CR32) 2019; 1
F Yin (704_CR2) 2017; 347
BB Gu (704_CR14) 2017; 29
EG Ju (704_CR29) 2016; 55
SJ Zhu (704_CR37) 2015; 8
Y Liu (704_CR23) 2018; 12
T Gong (704_CR40) 2020; 14
FQ Luo (704_CR34) 2015; 7
BB Gu (704_CR13) 2018; 2
RW Redmond (704_CR48) 1999; 70
SH Ding (704_CR3) 2021; 3
S Chen (704_CR17) 2020; 30
W Pang (704_CR4) 2020; 9
LL Feng (704_CR28) 2017; 5
Z Li (704_CR16) 2020; 30
J Bai (704_CR39) 2018; 140
Y Wang (704_CR44) 2014; 5
N Panwar (704_CR31) 2019; 119
704_CR1
ZM Tang (704_CR24) 2019; 58
WJ Li (704_CR52) 2016; 101
YB Ding (704_CR33) 2017; 117
T Xue (704_CR35) 2012; 124
WP Fan (704_CR19) 2016; 45
ZJ Xie (704_CR7) 2020; 9
XT Zheng (704_CR42) 2015; 11
BH Li (704_CR10) 2016; 9
JH Liang (704_CR20) 2020; 7
QG Wang (704_CR36) 2008; 14
G Ruppert (704_CR51) 1993; 73
JP Wang (704_CR50) 2020; 32
K Hola (704_CR43) 2014; 9
XS Li (704_CR6) 2020; 17
M Jahan (704_CR47) 2012; 134
CH Liu (704_CR22) 2020; 11
LG Devi (704_CR46) 2018; 5
JC Ge (704_CR18) 2014; 5
M Wang (704_CR27) 2020; 252
J Kim (704_CR30) 2017; 139
S Bai (704_CR41) 2020; 14
TJ Dougherty (704_CR5) 1998; 90
DEJGJ Dolmans (704_CR12) 2003; 3
X Bao (704_CR8) 2018; 7
L Gao (704_CR49) 2014; 8
LS Lin (704_CR11) 2020; 96
S Jiang (704_CR21) 2020; 59
ZM Markovic (704_CR15) 2012; 33
TL Li (704_CR25) 2019; 8
P Drössler (704_CR45) 2003; 286
P Agostinis (704_CR9) 2011; 61
LC He (704_CR38) 2020; 14
C Zhang (704_CR26) 2017; 27
References_xml – reference: LinLSSinglet oxygen luminescence image in blood vessels during vascular-targeted photodynamic therapyPhotochem. Photobiol.20209664665110.1111/php.13264
– reference: JuEGCopper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapyAngew. Chem. Int. Ed.201655114671147110.1002/anie.201605509
– reference: LiangJHA tailored multifunctional anticancer nanodelivery system for ruthenium-based photosensitizers: tumor microenvironment adaption and remodelingAdv. Sci.20207190199210.1002/advs.201901992
– reference: DingYBZhuWHXieYSDevelopment of ion chemosensors based on porphyrin analoguesChem. Rev.20171172203225610.1021/acs.chemrev.6b00021
– reference: RedmondRWGamlinJNA compilation of singlet oxygen yields from biologically relevant moleculesPhotochem. Photobiol.19997039147510.1111/j.1751-1097.1999.tb08240.x
– reference: LiXSClinical development and potential of photothermal and photodynamic therapies for cancerNat. Rev. Clin. Oncol.20201765767410.1038/s41571-020-0410-2
– reference: DeviLGNithyaPMPhotocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processesInorg. Chem. Front.2018512713810.1039/C7QI00590C
– reference: HeLCSolvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapyJ. Am. Chem. Soc.2020146822683210.1021/jacs.0c02497
– reference: RuppertGBauerRHeislerGThe photo-Fenton reaction-an effective photochemical wastewater treatment processJ. Photochem. Photobiol. A: Chem.199373757810.1016/1010-6030(93)80035-8
– reference: WangYThickness-dependent full-color emission tunability in a flexible carbon dot ionogelJ. Phys. Chem. Lett.201451412142010.1021/jz5005335
– reference: LiuCHAn open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapyNat. Commun.2020112020NatCo..11.1735L10.1038/s41467-020-15591-4
– reference: WuQMnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapyMatter2019149651210.1016/j.matt.2019.03.007
– reference: ZhuSJThe photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspectiveNano Res.2015835538110.1007/s12274-014-0644-3
– reference: ZhangCAn O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapyAdv. Funct. Mater.201727170062610.1002/adfm.201700626
– reference: KimJContinuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancerJ. Am. Chem. Soc.2017139109921099510.1021/jacs.7b05559
– reference: DolmansDEJGJFukumuraDJainRKPhotodynamic therapy for cancerNat. Rev. Cancer2003338038710.1038/nrc1071
– reference: PanwarNNanocarbons for biology and medicine: sensing, imaging, and drug deliveryChem. Rev.20191199559965610.1021/acs.chemrev.9b00099
– reference: HolaKCarbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronicsNano Today2014959060310.1016/j.nantod.2014.09.004
– reference: LiuYAll-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradicationACS Nano2018124886489310.1021/acsnano.8b01893
– reference: LiWJSmart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapyBiomaterials2016101101910.1016/j.biomaterials.2016.05.019
– reference: AgostinisPPhotodynamic therapy of cancer: an updateCancer J. Clin.20116125028110.3322/caac.20114
– reference: GuBBPrecise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristicsAdv. Mater.201729170107610.1002/adma.201701076
– reference: GongTFull-process radiosensitization based on nanoscale metal-organic frameworksACS Nano2020143032304010.1021/acsnano.9b07898
– reference: WangQGHigh catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme modelsChemistry2008145073507810.1002/chem.200702010
– reference: WangMAu2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapyBiomaterials202025212009310.1016/j.biomaterials.2020.120093
– reference: PangWNucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dotsAdv. Healthc. Mater.20209200060710.1002/adhm.202000607
– reference: FanWPHuangPChenXYOvercoming the Achilles’ heel of photodynamic therapyChem. Soc. Rev.2016456488651910.1039/C6CS00616G
– reference: FengLLMultifunctional UCNPs@MnSiO3@g-C3N4 nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapyBiomater. Sci.201752456246710.1039/C7BM00798A
– reference: XueTGraphene-supported hemin as a highly active biomimetic oxidation catalystAngew. Chem. Int. Ed.2012124388838912012AngCh.124.3888X10.1002/ange.201108400
– reference: XieZJBlack phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapyLight Sci. Appl.202091612020LSA.....9..161X10.1038/s41377-020-00388-3
– reference: BaiSUltrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapyACS Nano202014151191513010.1021/acsnano.0c05235
– reference: JahanMBaoQLLohKPElectrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reactionJ. Am. Chem. Soc.20121346707671310.1021/ja211433h
– reference: YinFFunctionalized 2D nanomaterials for gene delivery applicationsCoord. Chem. Rev.2017347779710.1016/j.ccr.2017.06.024
– reference: TangZMChemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactionsAngew. Chem. Int. Ed.20195894695610.1002/anie.201805664
– reference: GaoLPlasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitroACS Nano201487260727110.1021/nn502325j
– reference: DoughertyTJPhotodynamic therapyJ. Natl Cancer Inst.19989088990510.1093/jnci/90.12.889
– reference: LiBHPhotosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapyJ. Biophotonics201691314132510.1002/jbio.201600055
– reference: LuoFQEncapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral conditionACS Appl. Mater. Interfaces20157113221132910.1021/acsami.5b01706
– reference: LiTLPhoto-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agentAdv. Healthc. Mater.20198190019210.1002/adhm.201900192
– reference: BaoXIn vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administrationLight Sci. Appl.20187912018LSA.....7...91B10.1038/s41377-018-0090-1
– reference: DrösslerPFluoresence quenching of riboflavin in aqueous solution by methionin and cysteinChem. Phys.200328640942010.1016/S0301-0104(02)00969-2
– reference: ZhengXTAnanthanarayananALuoKQChenPGlowing graphene quantum dots and carbon dots: properties, syntheses, and biological applicationsSmall2015111620163610.1002/smll.201402648
– reference: DingSHNear-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocompositeNanoscale Adv.20213232523332021NanoA...3.2325D10.1039/D0NA00985G
– reference: GuBBYongKTLiuBStrategies to overcome the limitations of AIEgens in biomedical applicationsSmall Methods20182170039210.1002/smtd.201700392
– reference: LiZNIR/ROS-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapyAdv. Funct. Mater.202030190575810.1002/adfm.201905758
– reference: ChenSCarbon dots based nanoscale covalent organic frameworks for photodynamic therapyAdv. Funct. Mater.202030200468010.1002/adfm.202004680
– reference: BaiJA facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranosticsJ. Am. Chem. Soc.201814010610910.1021/jacs.7b11114
– reference: Wild, C. P., Weiderpass, E. & Stewart, B. W.World Cancer Report: Cancer Research for Cancer Prevention (International Agency for Research on Cancer, 2020).
– reference: GeJCA graphene quantum dot photodynamic therapy agent with high singlet oxygen generationNat. Commun.201452014NatCo...5.4596G10.1038/ncomms5596
– reference: JiangSSynergistic anticancer therapy by ovalbumin encapsulation-enabled tandem reactive oxygen species generationAngew. Chem. Int. Ed.202059200082001610.1002/anie.202006649
– reference: MarkovicZMGraphene quantum dots as autophagy-inducing photodynamic agentsBiomaterials2012337084709210.1016/j.biomaterials.2012.06.060
– reference: WangJPA porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapyAdv. Mater.202032200186210.1002/adma.202001862
– volume: 5
  year: 2014
  ident: 704_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5596
– volume: 9
  start-page: 1314
  year: 2016
  ident: 704_CR10
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201600055
– volume: 29
  start-page: 1701076
  year: 2017
  ident: 704_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701076
– volume: 27
  start-page: 1700626
  year: 2017
  ident: 704_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700626
– volume: 124
  start-page: 3888
  year: 2012
  ident: 704_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201108400
– volume: 140
  start-page: 106
  year: 2018
  ident: 704_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11114
– volume: 134
  start-page: 6707
  year: 2012
  ident: 704_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211433h
– volume: 14
  start-page: 6822
  year: 2020
  ident: 704_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02497
– volume: 14
  start-page: 3032
  year: 2020
  ident: 704_CR40
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07898
– volume: 33
  start-page: 7084
  year: 2012
  ident: 704_CR15
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.060
– volume: 252
  start-page: 120093
  year: 2020
  ident: 704_CR27
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120093
– volume: 3
  start-page: 380
  year: 2003
  ident: 704_CR12
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1071
– volume: 55
  start-page: 11467
  year: 2016
  ident: 704_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605509
– volume: 58
  start-page: 946
  year: 2019
  ident: 704_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805664
– volume: 117
  start-page: 2203
  year: 2017
  ident: 704_CR33
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00021
– volume: 7
  start-page: 91
  year: 2018
  ident: 704_CR8
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0090-1
– volume: 8
  start-page: 1900192
  year: 2019
  ident: 704_CR25
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900192
– volume: 32
  start-page: 2001862
  year: 2020
  ident: 704_CR50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001862
– volume: 2
  start-page: 1700392
  year: 2018
  ident: 704_CR13
  publication-title: Small Methods
  doi: 10.1002/smtd.201700392
– volume: 14
  start-page: 5073
  year: 2008
  ident: 704_CR36
  publication-title: Chemistry
  doi: 10.1002/chem.200702010
– volume: 8
  start-page: 355
  year: 2015
  ident: 704_CR37
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0644-3
– volume: 5
  start-page: 127
  year: 2018
  ident: 704_CR46
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00590C
– volume: 5
  start-page: 2456
  year: 2017
  ident: 704_CR28
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00798A
– volume: 5
  start-page: 1412
  year: 2014
  ident: 704_CR44
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5005335
– volume: 3
  start-page: 2325
  year: 2021
  ident: 704_CR3
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00985G
– volume: 73
  start-page: 75
  year: 1993
  ident: 704_CR51
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/1010-6030(93)80035-8
– volume: 9
  start-page: 161
  year: 2020
  ident: 704_CR7
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-00388-3
– volume: 7
  start-page: 1901992
  year: 2020
  ident: 704_CR20
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901992
– volume: 17
  start-page: 657
  year: 2020
  ident: 704_CR6
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-0410-2
– volume: 347
  start-page: 77
  year: 2017
  ident: 704_CR2
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.06.024
– volume: 11
  start-page: 1620
  year: 2015
  ident: 704_CR42
  publication-title: Small
  doi: 10.1002/smll.201402648
– volume: 30
  start-page: 2004680
  year: 2020
  ident: 704_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004680
– volume: 12
  start-page: 4886
  year: 2018
  ident: 704_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01893
– volume: 14
  start-page: 15119
  year: 2020
  ident: 704_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05235
– ident: 704_CR1
– volume: 101
  start-page: 10
  year: 2016
  ident: 704_CR52
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.05.019
– volume: 9
  start-page: 2000607
  year: 2020
  ident: 704_CR4
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202000607
– volume: 7
  start-page: 11322
  year: 2015
  ident: 704_CR34
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01706
– volume: 45
  start-page: 6488
  year: 2016
  ident: 704_CR19
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00616G
– volume: 90
  start-page: 889
  year: 1998
  ident: 704_CR5
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/90.12.889
– volume: 139
  start-page: 10992
  year: 2017
  ident: 704_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05559
– volume: 30
  start-page: 1905758
  year: 2020
  ident: 704_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905758
– volume: 70
  start-page: 391
  year: 1999
  ident: 704_CR48
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1999.tb08240.x
– volume: 286
  start-page: 409
  year: 2003
  ident: 704_CR45
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(02)00969-2
– volume: 8
  start-page: 7260
  year: 2014
  ident: 704_CR49
  publication-title: ACS Nano
  doi: 10.1021/nn502325j
– volume: 96
  start-page: 646
  year: 2020
  ident: 704_CR11
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.13264
– volume: 119
  start-page: 9559
  year: 2019
  ident: 704_CR31
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00099
– volume: 1
  start-page: 496
  year: 2019
  ident: 704_CR32
  publication-title: Matter
  doi: 10.1016/j.matt.2019.03.007
– volume: 61
  start-page: 250
  year: 2011
  ident: 704_CR9
  publication-title: Cancer J. Clin.
  doi: 10.3322/caac.20114
– volume: 59
  start-page: 20008
  year: 2020
  ident: 704_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006649
– volume: 9
  start-page: 590
  year: 2014
  ident: 704_CR43
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2014.09.004
– volume: 11
  year: 2020
  ident: 704_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15591-4
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.4670813
Snippet Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells...
We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms 639/624/1111/55
639/624/399/54/990
Applied and Technical Physics
Atomic
Biocompatibility
Cancer
Cancer therapies
Classical and Continuum Physics
Free radicals
Glutathione
Hemin
Hydroxyl radicals
Hypoxia
Lasers
Molecular
Nanoparticles
Optical and Plasma Physics
Optical Devices
Optics
Oxidative stress
Photodynamic therapy
Photonics
Physics
Physics and Astronomy
Polymers
Radiation
Reactive oxygen species
Translation
Tumor microenvironment
Tumors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlGdxI6dEwJEVSHgRKW9WX6FrkSTZZOVWv4B_5oZx5uyPHpNbMnxjJ1v7G--IeRFC37CgrWA3BqTc25kbltjcuFEqL1ibYhJYZ8-18cn_MNCLNKB25Bolds9MW7Uvnd4Rn5Y1hVH5Zamer36nmPVKLxdTSU0rpMbKF2GlC65kPMZC4QuBVMy5cqwSh0OHBX2cuQloNANz8XO_yjK9v8La_5Nmfzj3jT-jo7ukNsJR9I3k-Hvkmuhu0duRj6nG-6Tnx8x6KYG-eItoEzany991PimU3YIXXZ03Jz1a3qGlLzf8t2ovaDOrC0s9h_QEQUFOtqZDqLrRKKjAHQpoPMBKdN0ddqPvZ8K21OwE-6rLqzplNl18YCcHL3_8u44T1UXcgfobcxbHkIVCmlYq6S3DZhOOO5QZt6x2kIo7YpSokq8qkXDPBeqVrBlSlc4x1xdPSR7Xd-Fx4QGFSAi8Z5XRvEmNCZwzktuvWgBJ1YhI8V27rVLkuRYGeObjlfjldKTvTTYS0d7aZGRl3Of1STIcWXrt2jSuSWKaccH_fqrTrOmUcXNNb6SAI-4Z4VRVqFojS0cs61yGTnYOoROK3zQl_6Ykefza1ibeOFiutBvpjaAaBvGMvJo8p95JAh8lShlRuSOZ-0MdfdNtzyN-t9KKQG4NiOvtj54Oaz_T8X-1V_xhNwqMbMj0usOyN643oSngLdG-ywuql-Omiro
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8b7VVSL4psW0Tdr0UQ8ui6hPLuxbyK3uAbddenrA9R_4r51JL3p0FXxtEhgyk-Sb5psvAM8bjBMerEXkVptUCFOltjEmlU6G0ivehFgU9uFjeXwi3p3K0z3I51qYSNqPkpZxm57ZYa82gqTxUiIUkEKNSOU1uE7S7RTVq3K1_FfBdCXjqprqY3ihrhi6cwZFqf6r8OWfNMnf7krjEXR0G25N2JG9Hq29A3uhvQs3IofTbe7B9_eUaDNDHPEGkSXrvq591PVmY0UIW7ds2J53PTsnGt4vNW7MXjJneosL_BsOJBGBlrWmxYx6mhqG4JYhIt8QTZpdnHVD58fH7Bn6hvZSF3o2VnNd3oeTo7efVsfp9NJC6hCxDWkjQihCVhneqMrbGt0lnXAkLe94aTF9dllekTK8KmXNvZCqVLhNVi5zjruyeAD7bdeGA2BBBcxCvBeFUaIOtQlCiFxYLxvEhkVIIJvnXrtJhpxew_ii43V4ofToL43-0tFfWibwYhlzMYpw_LP3G3Lp0pMEtOOHrv-sp1nTpNzmal9UCImE55lRVpFQjc0ct41yCRzOAaGnVb3ReVkIUg-qiwSeLc24HumSxbSh2459EMXWnCfwcIyfxRICu0rmVQLVTmTtmLrb0q7Poua3Ukoilk3g5RyDP836-1Q8-r_uj-FmTtUdkWJ3CPtDvw1PEHMN9mlcZD8Anu8olg
  priority: 102
  providerName: Springer Nature
Title Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy
URI https://link.springer.com/article/10.1038/s41377-021-00704-5
https://www.ncbi.nlm.nih.gov/pubmed/35228527
https://www.proquest.com/docview/2634280793
https://www.proquest.com/docview/2634851900
https://pubmed.ncbi.nlm.nih.gov/PMC8885839
https://doaj.org/article/2504c9d370814d01a8b89960b1c0bf8c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA26Ivgifltdhwi-adm0TZr0cXbYZRl0EXVh3kKSpuwsbrvMdMD1H_ivvTfpjDN-vvhUSBMI994k55JzTwh51UCcMG8tILfKpJwbmdrGmFQ44ctascaHorB3p-XJGZ_OxGzrqS_khEV54Gi4A5TYclVdSDi7eM0yo6xCRRGbOWYb5XD3hTNvK5m6iHy5jCk5VMmwQh0sOWrrpchIQIkbnoqdkygI9v8OZf5KlvzpxjQcRMf3yN0BQdJxnPl9csO3D8jtwOR0y4fk21tMt6lBpngD-JJ2X-Z1UPemsS6Ezlvary67Bb1EMt5WpRu119SZhYVl_hUGopRAS1vTQl490OcoQFwKuHyJZGl6dd71XR2ftKfgIdxRnV_QWNN1_YicHR99mpykw3sLqQPc1qcN977wmTSsUbK2FThNOO5QYN6x0kIS7bJcoj68KkXFai5UqWCzlC5zjrmyeEz22q71Twn1ykMuUte8MIpXvjKec55zW4sGEGLhE5Ktba_dIEaOb2J81uFSvFA6-kuDv3TwlxYJeb0ZcxWlOP7a-xBduumJMtqhAYJLD1bT_wquhOyvA0IPa3up87LgqCFUFQl5ufkNqxKvWkzru1XsA1i2YiwhT2L8bGaCkFeJXCZE7kTWzlR3_7Tz86D8rZQSgGgT8mYdgz-m9WdTPPsfpnhO7uRY-RHod_tkr1-s_AvAY70dkZtyJkfk1ng8_TiF7-HR6fsP0DopJ6OwLL8DE3Y3lQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VrRB9QdwJFDASPEFUJ3ES5wEhCq22dLtCqJX6FmzHoSu1ybIXwfIH_AzfyIyTbFkufevrxom8nvHkTHzmDMCzEv2EW60RuWXKF0Klvi6V8mMT26SQvLSuKOxgmPSPxPvj-HgNfna1MESr7GKiC9RFbegb-VaYRIKUW7Lo9fiLT12j6HS1a6HRuMW-XXzFlG36au8d2vd5GO7uHL7t-21XAd8gOpn5pbA2skGqeCnTQmc4tdgIQzLqhicaU0UThCmpoMskznghYplIDAmpCYzhJonwuVdgXUSYyvRgfXtn-OHj8qsOJksBl2lbncMjuTUVpOnnExOCpHWEH6-8AV2jgH-h279Jmn-c1LoX4O4NuN4iV_amcbWbsGarW3DVMUjN9Db8GFCazxQx1EvEtaz-Niqcqjhr6lHYqGKz-Vk9YWdEAvytwo7pBTNqojG8fMcbScKgYpWqMJ9vaXsMoTXDfGBKJG02PqlndbGoFD6IoWdQJDd2wppassUdOLoUi9yFXlVX9j4wKy3mQEUhIiVFZjNlhRCh0EVcIjKNrAdBt_a5aUXQqRfHae4O4yOZN_bK0V65s1cee_Biec-4kQC5cPQ2mXQ5kuS73Q_15HPerlpOunEmK6IUAZkoeKCkliSTowPDdSmNB5udQ-RtTJnm5zvAg6fLyxgN6IhHVbaeN2MQQ2ece3Cv8Z_lTAhqyzhMPUhXPGtlqqtXqtGJUxyXUsaIpD142fng-bT-vxQPLv4XT-Ba__BgkA_2hvsPYSOkuhJH7tuE3mwyt48Q7c3043aLMfh02bv6F3I_Z9k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4jWSezYOSAElFVLS8WBSnsLfoWuRJNlH4LlH_CX-HXMOMmW5dFbrxsn8nrGk2_ib74h5HEFfsK8MYDcCh1zrmVsKq1jYYXPnWKVD0Vh7w7z3SP-diRGG-RnXwuDtMo-JoZA7RqL38gHaZ5xVG4pskHV0SLe7wxfTL7E2EEKT1r7dhqti-z75VdI32bP93bA1k_SdPjmw-vduOswEFtAKvO44t5nPpGaVUo6U8A0heUWJdUtyw2kjTZJJSqiq1wUzHGhcgXhQdrEWmbzDJ57gVyUmUhwj8mRXH3fgbQpYUp2dTosU4MZR3W_GDkRKLLDY7H2LgwtA_6Fc_-ma_5xZhtehcNr5GqHYenL1umukw1f3yCXApfUzm6SHweY8FONXPUKEC5tvo1d0BenbWUKHdd0vjhppvQE6YC_1dpRs6RWTw0Emu9wI4oZ1LTWNWT2HYGPAsimkBnMkK5NJ8fNvHHLWsODKPgIxnTrp7StKlveIkfnYo_bZLNuan-HUK88ZEPO8UwrXvhCe855yo0TFWDUzEck6de-tJ0cOnbl-FyGY_lMla29SrBXGexViog8Xd0zacVAzhz9Ck26GolC3uGHZvqp7FatRAU5W7hMAjTjjiVaGYWCOSaxzFTKRmS7d4iyiy6z8nQvROTR6jLEBTzs0bVvFu0YQNMFYxHZav1nNRME3UqkMiJyzbPWprp-pR4fB-1xpZQATB2RZ70Pnk7r_0tx9-x_8ZBchr1cHuwd7t8jV1IsMAksv22yOZ8u_H2AfXPzIOwvSj6e94b-BShfaqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+amplified+oxidative+stress+in+tumor+microenvironment+by+carbonized+hemin+nanoparticles+for+boosting+photodynamic+anticancer+therapy&rft.jtitle=Light%2C+science+%26+applications&rft.au=Lin%2C+Liyun&rft.au=Pang%2C+Wen&rft.au=Jiang%2C+Xinyan&rft.au=Ding%2C+Shihui&rft.date=2022-03-01&rft.issn=2047-7538&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-021-00704-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41377_021_00704_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon