Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT...
Saved in:
Published in | Light, science & applications Vol. 11; no. 1; pp. 47 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2022
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2047-7538 2095-5545 2047-7538 |
DOI | 10.1038/s41377-021-00704-5 |
Cover
Loading…
Abstract | Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. |
---|---|
AbstractList | Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic therapy (PDT). The synthesized P-CHNPs achieved enhanced oxidative stress in tumor microenvironment, which could be further amplified under light irradiation, enabling excellent in vitro and in vivo PDT effects. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research. |
ArticleNumber | 47 |
Author | Wei, Xunbin Gu, Bobo Pang, Wen Jiang, Xinyan Ding, Shihui Lin, Liyun |
Author_xml | – sequence: 1 givenname: Liyun surname: Lin fullname: Lin, Liyun organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University – sequence: 2 givenname: Wen surname: Pang fullname: Pang, Wen organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Xinyan surname: Jiang fullname: Jiang, Xinyan organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Shihui surname: Ding fullname: Ding, Shihui organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University – sequence: 5 givenname: Xunbin surname: Wei fullname: Wei, Xunbin email: xwei@bjmu.edu.cn organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Biomedical Engineering Department, Peking University, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute – sequence: 6 givenname: Bobo orcidid: 0000-0001-6092-8001 surname: Gu fullname: Gu, Bobo email: bobogu@sjtu.edu.cn organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35228527$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vFCEYxiemxtbaL-DBkHjxMvryb2AuJqax2mQTL3omDMPsspmBEdhN12_gty7dXWvbQ7lA4Pc8vLw8r6sTH7ytqrcYPmKg8lNimApRA8E1gABW8xfVGQEmasGpPHmwPq0uUlpDGS3DIMWr6pRyQiQn4qz6u3DLVUZ6mkc3ONujcON6nd3WopSjTQk5j_JmChFNzsRg_dbF4CfrM-p2yOjYBe_-FOHKTgX12odZx-zMaBMaiqwLIWXnl2hehRz6ndfFCGlfEO2NjSivbNTz7k31ctBjshfH-bz6dfX15-X3evHj2_Xll0VtOINcD8xaarHQMEjRd203aG6YaZggBppOMGIwEaSFRja8hZ5x2cgWY2GwMWAael5dH3z7oNdqjm7ScaeCdmq_EeJSHetXhAMzbU8FSMx6wFp2sm0b6LCBbpCmeH0-eM2bbrK9KV2Jenxk-vjEu5Vahq2SUnJJ22Lw4WgQw--NTVlNLhk7jtrbsEmKNJRJjluAgr5_gq7DJvrSqj1FJIiWFurdw4ruS_n34wUgB6B8ZkrRDvcIBnWXLHVIlirJUvtkKV5E8onIuFxSEu5e5cbnpfQgTeUev7Txf9nPqG4BncjlCA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215588 crossref_primary_10_1021_acs_chemrev_3c00401 crossref_primary_10_1016_j_ccr_2024_215943 crossref_primary_10_1002_lpor_202400753 crossref_primary_10_1002_adma_202302705 crossref_primary_10_1038_s41377_022_00804_w crossref_primary_10_1002_smll_202304968 crossref_primary_10_1360_SSC_2024_0233 crossref_primary_10_1039_D4BM00316K crossref_primary_10_1021_acsami_3c12479 crossref_primary_10_1016_j_apsb_2023_11_007 crossref_primary_10_1016_j_mtnano_2023_100326 crossref_primary_10_1039_D4NA00032C crossref_primary_10_1016_j_jallcom_2025_178734 crossref_primary_10_1021_acsami_4c04985 crossref_primary_10_1016_j_ijhydene_2023_05_320 crossref_primary_10_1039_D2BM02139K crossref_primary_10_1080_10717544_2022_2144541 crossref_primary_10_1364_OL_497596 crossref_primary_10_1002_cbic_202400838 crossref_primary_10_1021_acsami_3c00056 crossref_primary_10_1186_s12951_024_02901_x crossref_primary_10_1002_adhm_202401616 crossref_primary_10_1016_j_envres_2023_116287 crossref_primary_10_1021_acsnano_4c16389 crossref_primary_10_3389_fbioe_2023_1254861 crossref_primary_10_1016_j_jallcom_2023_169206 crossref_primary_10_1002_adfm_202301256 crossref_primary_10_1002_med_22072 crossref_primary_10_1016_j_ejmech_2022_115084 crossref_primary_10_1016_j_mtsust_2024_100759 crossref_primary_10_1002_smll_202407674 crossref_primary_10_1038_s41598_023_43625_6 crossref_primary_10_1016_j_ajps_2023_100852 crossref_primary_10_1016_j_nantod_2022_101751 crossref_primary_10_1038_s41377_025_01757_6 crossref_primary_10_1002_tbio_202200016 crossref_primary_10_1038_s41377_022_00762_3 crossref_primary_10_1039_D3NR01735D crossref_primary_10_1002_advs_202301365 crossref_primary_10_1016_j_jconrel_2022_05_035 |
Cites_doi | 10.1038/ncomms5596 10.1002/jbio.201600055 10.1002/adma.201701076 10.1002/adfm.201700626 10.1002/ange.201108400 10.1021/jacs.7b11114 10.1021/ja211433h 10.1021/jacs.0c02497 10.1021/acsnano.9b07898 10.1016/j.biomaterials.2012.06.060 10.1016/j.biomaterials.2020.120093 10.1038/nrc1071 10.1002/anie.201605509 10.1002/anie.201805664 10.1021/acs.chemrev.6b00021 10.1038/s41377-018-0090-1 10.1002/adhm.201900192 10.1002/adma.202001862 10.1002/smtd.201700392 10.1002/chem.200702010 10.1007/s12274-014-0644-3 10.1039/C7QI00590C 10.1039/C7BM00798A 10.1021/jz5005335 10.1039/D0NA00985G 10.1016/1010-6030(93)80035-8 10.1038/s41377-020-00388-3 10.1002/advs.201901992 10.1038/s41571-020-0410-2 10.1016/j.ccr.2017.06.024 10.1002/smll.201402648 10.1002/adfm.202004680 10.1021/acsnano.8b01893 10.1021/acsnano.0c05235 10.1016/j.biomaterials.2016.05.019 10.1002/adhm.202000607 10.1021/acsami.5b01706 10.1039/C6CS00616G 10.1093/jnci/90.12.889 10.1021/jacs.7b05559 10.1002/adfm.201905758 10.1111/j.1751-1097.1999.tb08240.x 10.1016/S0301-0104(02)00969-2 10.1021/nn502325j 10.1111/php.13264 10.1021/acs.chemrev.9b00099 10.1016/j.matt.2019.03.007 10.3322/caac.20114 10.1002/anie.202006649 10.1016/j.nantod.2014.09.004 10.1038/s41467-020-15591-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-021-00704-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_2504c9d370814d01a8b89960b1c0bf8c PMC8885839 35228527 10_1038_s41377_021_00704_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University (SJTU) grantid: ZH2018QNA43 funderid: https://doi.org/10.13039/501100004921 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61805135 funderid: https://doi.org/10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission) grantid: 19DZ2280300 funderid: https://doi.org/10.13039/501100003399 – fundername: Shanghai Municipal Education Commission grantid: ZXWF082101 funderid: https://doi.org/10.13039/501100003395 – fundername: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology) grantid: 2019YFC1604604 funderid: https://doi.org/10.13039/501100002855 – fundername: Shanghai Jiao Tong University (SJTU) grantid: ZH2018QNA43 – fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission) grantid: 19DZ2280300 – fundername: Shanghai Municipal Education Commission grantid: ZXWF082101 – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: 2019YFC1604604 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61805135 – fundername: ; grantid: 2019YFC1604604 – fundername: ; grantid: 61805135 – fundername: ; grantid: ZXWF082101 – fundername: ; grantid: ZH2018QNA43 – fundername: ; grantid: 19DZ2280300 |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-f4ee3e17a0f87db9bfa5c4c6472c06b742c127290686590d458689117c1cc0c63 |
IEDL.DBID | DOA |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 17:48:54 EDT 2025 Fri Jul 11 09:04:05 EDT 2025 Wed Aug 13 11:00:22 EDT 2025 Mon Jul 21 06:06:19 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 03:45:16 EDT 2025 Fri Feb 21 02:38:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f4ee3e17a0f87db9bfa5c4c6472c06b742c127290686590d458689117c1cc0c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6092-8001 |
OpenAccessLink | https://doaj.org/article/2504c9d370814d01a8b89960b1c0bf8c |
PMID | 35228527 |
PQID | 2634280793 |
PQPubID | 2041947 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2504c9d370814d01a8b89960b1c0bf8c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8885839 proquest_miscellaneous_2634851900 proquest_journals_2634280793 pubmed_primary_35228527 crossref_primary_10_1038_s41377_021_00704_5 crossref_citationtrail_10_1038_s41377_021_00704_5 springer_journals_10_1038_s41377_021_00704_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | YinFFunctionalized 2D nanomaterials for gene delivery applicationsCoord. Chem. Rev.2017347779710.1016/j.ccr.2017.06.024 ZhengXTAnanthanarayananALuoKQChenPGlowing graphene quantum dots and carbon dots: properties, syntheses, and biological applicationsSmall2015111620163610.1002/smll.201402648 XueTGraphene-supported hemin as a highly active biomimetic oxidation catalystAngew. Chem. Int. Ed.2012124388838912012AngCh.124.3888X10.1002/ange.201108400 FengLLMultifunctional UCNPs@MnSiO3@g-C3N4 nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapyBiomater. Sci.201752456246710.1039/C7BM00798A DrösslerPFluoresence quenching of riboflavin in aqueous solution by methionin and cysteinChem. Phys.200328640942010.1016/S0301-0104(02)00969-2 RuppertGBauerRHeislerGThe photo-Fenton reaction-an effective photochemical wastewater treatment processJ. Photochem. Photobiol. A: Chem.199373757810.1016/1010-6030(93)80035-8 LiWJSmart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapyBiomaterials2016101101910.1016/j.biomaterials.2016.05.019 GuBBYongKTLiuBStrategies to overcome the limitations of AIEgens in biomedical applicationsSmall Methods20182170039210.1002/smtd.201700392 Wild, C. P., Weiderpass, E. & Stewart, B. W.World Cancer Report: Cancer Research for Cancer Prevention (International Agency for Research on Cancer, 2020). WangJPA porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapyAdv. Mater.202032200186210.1002/adma.202001862 LiuCHAn open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapyNat. Commun.2020112020NatCo..11.1735L10.1038/s41467-020-15591-4 DingYBZhuWHXieYSDevelopment of ion chemosensors based on porphyrin analoguesChem. Rev.20171172203225610.1021/acs.chemrev.6b00021 DingSHNear-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocompositeNanoscale Adv.20213232523332021NanoA...3.2325D10.1039/D0NA00985G LinLSSinglet oxygen luminescence image in blood vessels during vascular-targeted photodynamic therapyPhotochem. Photobiol.20209664665110.1111/php.13264 ZhuSJThe photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspectiveNano Res.2015835538110.1007/s12274-014-0644-3 AgostinisPPhotodynamic therapy of cancer: an updateCancer J. Clin.20116125028110.3322/caac.20114 LiTLPhoto-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agentAdv. Healthc. Mater.20198190019210.1002/adhm.201900192 BaoXIn vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administrationLight Sci. Appl.20187912018LSA.....7...91B10.1038/s41377-018-0090-1 HeLCSolvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapyJ. Am. Chem. Soc.2020146822683210.1021/jacs.0c02497 RedmondRWGamlinJNA compilation of singlet oxygen yields from biologically relevant moleculesPhotochem. Photobiol.19997039147510.1111/j.1751-1097.1999.tb08240.x MarkovicZMGraphene quantum dots as autophagy-inducing photodynamic agentsBiomaterials2012337084709210.1016/j.biomaterials.2012.06.060 LiBHPhotosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapyJ. Biophotonics201691314132510.1002/jbio.201600055 LiZNIR/ROS-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapyAdv. Funct. Mater.202030190575810.1002/adfm.201905758 JuEGCopper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapyAngew. Chem. Int. Ed.201655114671147110.1002/anie.201605509 KimJContinuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancerJ. Am. Chem. Soc.2017139109921099510.1021/jacs.7b05559 GeJCA graphene quantum dot photodynamic therapy agent with high singlet oxygen generationNat. Commun.201452014NatCo...5.4596G10.1038/ncomms5596 BaiSUltrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapyACS Nano202014151191513010.1021/acsnano.0c05235 JiangSSynergistic anticancer therapy by ovalbumin encapsulation-enabled tandem reactive oxygen species generationAngew. Chem. Int. Ed.202059200082001610.1002/anie.202006649 PanwarNNanocarbons for biology and medicine: sensing, imaging, and drug deliveryChem. Rev.20191199559965610.1021/acs.chemrev.9b00099 XieZJBlack phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapyLight Sci. Appl.202091612020LSA.....9..161X10.1038/s41377-020-00388-3 LiuYAll-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradicationACS Nano2018124886489310.1021/acsnano.8b01893 LiangJHA tailored multifunctional anticancer nanodelivery system for ruthenium-based photosensitizers: tumor microenvironment adaption and remodelingAdv. Sci.20207190199210.1002/advs.201901992 GongTFull-process radiosensitization based on nanoscale metal-organic frameworksACS Nano2020143032304010.1021/acsnano.9b07898 PangWNucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dotsAdv. Healthc. Mater.20209200060710.1002/adhm.202000607 DoughertyTJPhotodynamic therapyJ. Natl Cancer Inst.19989088990510.1093/jnci/90.12.889 LiXSClinical development and potential of photothermal and photodynamic therapies for cancerNat. Rev. Clin. Oncol.20201765767410.1038/s41571-020-0410-2 WangQGHigh catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme modelsChemistry2008145073507810.1002/chem.200702010 BaiJA facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranosticsJ. Am. Chem. Soc.201814010610910.1021/jacs.7b11114 DolmansDEJGJFukumuraDJainRKPhotodynamic therapy for cancerNat. Rev. Cancer2003338038710.1038/nrc1071 GuBBPrecise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristicsAdv. Mater.201729170107610.1002/adma.201701076 TangZMChemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactionsAngew. Chem. Int. Ed.20195894695610.1002/anie.201805664 HolaKCarbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronicsNano Today2014959060310.1016/j.nantod.2014.09.004 WangYThickness-dependent full-color emission tunability in a flexible carbon dot ionogelJ. Phys. Chem. Lett.201451412142010.1021/jz5005335 DeviLGNithyaPMPhotocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processesInorg. Chem. Front.2018512713810.1039/C7QI00590C GaoLPlasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitroACS Nano201487260727110.1021/nn502325j ChenSCarbon dots based nanoscale covalent organic frameworks for photodynamic therapyAdv. Funct. Mater.202030200468010.1002/adfm.202004680 WuQMnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapyMatter2019149651210.1016/j.matt.2019.03.007 LuoFQEncapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral conditionACS Appl. Mater. Interfaces20157113221132910.1021/acsami.5b01706 ZhangCAn O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapyAdv. Funct. Mater.201727170062610.1002/adfm.201700626 WangMAu2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapyBiomaterials202025212009310.1016/j.biomaterials.2020.120093 JahanMBaoQLLohKPElectrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reactionJ. Am. Chem. Soc.20121346707671310.1021/ja211433h FanWPHuangPChenXYOvercoming the Achilles’ heel of photodynamic therapyChem. Soc. Rev.2016456488651910.1039/C6CS00616G Q Wu (704_CR32) 2019; 1 F Yin (704_CR2) 2017; 347 BB Gu (704_CR14) 2017; 29 EG Ju (704_CR29) 2016; 55 SJ Zhu (704_CR37) 2015; 8 Y Liu (704_CR23) 2018; 12 T Gong (704_CR40) 2020; 14 FQ Luo (704_CR34) 2015; 7 BB Gu (704_CR13) 2018; 2 RW Redmond (704_CR48) 1999; 70 SH Ding (704_CR3) 2021; 3 S Chen (704_CR17) 2020; 30 W Pang (704_CR4) 2020; 9 LL Feng (704_CR28) 2017; 5 Z Li (704_CR16) 2020; 30 J Bai (704_CR39) 2018; 140 Y Wang (704_CR44) 2014; 5 N Panwar (704_CR31) 2019; 119 704_CR1 ZM Tang (704_CR24) 2019; 58 WJ Li (704_CR52) 2016; 101 YB Ding (704_CR33) 2017; 117 T Xue (704_CR35) 2012; 124 WP Fan (704_CR19) 2016; 45 ZJ Xie (704_CR7) 2020; 9 XT Zheng (704_CR42) 2015; 11 BH Li (704_CR10) 2016; 9 JH Liang (704_CR20) 2020; 7 QG Wang (704_CR36) 2008; 14 G Ruppert (704_CR51) 1993; 73 JP Wang (704_CR50) 2020; 32 K Hola (704_CR43) 2014; 9 XS Li (704_CR6) 2020; 17 M Jahan (704_CR47) 2012; 134 CH Liu (704_CR22) 2020; 11 LG Devi (704_CR46) 2018; 5 JC Ge (704_CR18) 2014; 5 M Wang (704_CR27) 2020; 252 J Kim (704_CR30) 2017; 139 S Bai (704_CR41) 2020; 14 TJ Dougherty (704_CR5) 1998; 90 DEJGJ Dolmans (704_CR12) 2003; 3 X Bao (704_CR8) 2018; 7 L Gao (704_CR49) 2014; 8 LS Lin (704_CR11) 2020; 96 S Jiang (704_CR21) 2020; 59 ZM Markovic (704_CR15) 2012; 33 TL Li (704_CR25) 2019; 8 P Drössler (704_CR45) 2003; 286 P Agostinis (704_CR9) 2011; 61 LC He (704_CR38) 2020; 14 C Zhang (704_CR26) 2017; 27 |
References_xml | – reference: LinLSSinglet oxygen luminescence image in blood vessels during vascular-targeted photodynamic therapyPhotochem. Photobiol.20209664665110.1111/php.13264 – reference: JuEGCopper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapyAngew. Chem. Int. Ed.201655114671147110.1002/anie.201605509 – reference: LiangJHA tailored multifunctional anticancer nanodelivery system for ruthenium-based photosensitizers: tumor microenvironment adaption and remodelingAdv. Sci.20207190199210.1002/advs.201901992 – reference: DingYBZhuWHXieYSDevelopment of ion chemosensors based on porphyrin analoguesChem. Rev.20171172203225610.1021/acs.chemrev.6b00021 – reference: RedmondRWGamlinJNA compilation of singlet oxygen yields from biologically relevant moleculesPhotochem. Photobiol.19997039147510.1111/j.1751-1097.1999.tb08240.x – reference: LiXSClinical development and potential of photothermal and photodynamic therapies for cancerNat. Rev. Clin. Oncol.20201765767410.1038/s41571-020-0410-2 – reference: DeviLGNithyaPMPhotocatalytic activity of Hemin (Fe(III) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processesInorg. Chem. Front.2018512713810.1039/C7QI00590C – reference: HeLCSolvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapyJ. Am. Chem. Soc.2020146822683210.1021/jacs.0c02497 – reference: RuppertGBauerRHeislerGThe photo-Fenton reaction-an effective photochemical wastewater treatment processJ. Photochem. Photobiol. A: Chem.199373757810.1016/1010-6030(93)80035-8 – reference: WangYThickness-dependent full-color emission tunability in a flexible carbon dot ionogelJ. Phys. Chem. Lett.201451412142010.1021/jz5005335 – reference: LiuCHAn open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapyNat. Commun.2020112020NatCo..11.1735L10.1038/s41467-020-15591-4 – reference: WuQMnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapyMatter2019149651210.1016/j.matt.2019.03.007 – reference: ZhuSJThe photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspectiveNano Res.2015835538110.1007/s12274-014-0644-3 – reference: ZhangCAn O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapyAdv. Funct. Mater.201727170062610.1002/adfm.201700626 – reference: KimJContinuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancerJ. Am. Chem. Soc.2017139109921099510.1021/jacs.7b05559 – reference: DolmansDEJGJFukumuraDJainRKPhotodynamic therapy for cancerNat. Rev. Cancer2003338038710.1038/nrc1071 – reference: PanwarNNanocarbons for biology and medicine: sensing, imaging, and drug deliveryChem. Rev.20191199559965610.1021/acs.chemrev.9b00099 – reference: HolaKCarbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronicsNano Today2014959060310.1016/j.nantod.2014.09.004 – reference: LiuYAll-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradicationACS Nano2018124886489310.1021/acsnano.8b01893 – reference: LiWJSmart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapyBiomaterials2016101101910.1016/j.biomaterials.2016.05.019 – reference: AgostinisPPhotodynamic therapy of cancer: an updateCancer J. Clin.20116125028110.3322/caac.20114 – reference: GuBBPrecise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristicsAdv. Mater.201729170107610.1002/adma.201701076 – reference: GongTFull-process radiosensitization based on nanoscale metal-organic frameworksACS Nano2020143032304010.1021/acsnano.9b07898 – reference: WangQGHigh catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme modelsChemistry2008145073507810.1002/chem.200702010 – reference: WangMAu2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapyBiomaterials202025212009310.1016/j.biomaterials.2020.120093 – reference: PangWNucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dotsAdv. Healthc. Mater.20209200060710.1002/adhm.202000607 – reference: FanWPHuangPChenXYOvercoming the Achilles’ heel of photodynamic therapyChem. Soc. Rev.2016456488651910.1039/C6CS00616G – reference: FengLLMultifunctional UCNPs@MnSiO3@g-C3N4 nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapyBiomater. Sci.201752456246710.1039/C7BM00798A – reference: XueTGraphene-supported hemin as a highly active biomimetic oxidation catalystAngew. Chem. Int. Ed.2012124388838912012AngCh.124.3888X10.1002/ange.201108400 – reference: XieZJBlack phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapyLight Sci. Appl.202091612020LSA.....9..161X10.1038/s41377-020-00388-3 – reference: BaiSUltrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapyACS Nano202014151191513010.1021/acsnano.0c05235 – reference: JahanMBaoQLLohKPElectrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reactionJ. Am. Chem. Soc.20121346707671310.1021/ja211433h – reference: YinFFunctionalized 2D nanomaterials for gene delivery applicationsCoord. Chem. Rev.2017347779710.1016/j.ccr.2017.06.024 – reference: TangZMChemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactionsAngew. Chem. Int. Ed.20195894695610.1002/anie.201805664 – reference: GaoLPlasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitroACS Nano201487260727110.1021/nn502325j – reference: DoughertyTJPhotodynamic therapyJ. Natl Cancer Inst.19989088990510.1093/jnci/90.12.889 – reference: LiBHPhotosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapyJ. Biophotonics201691314132510.1002/jbio.201600055 – reference: LuoFQEncapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral conditionACS Appl. Mater. Interfaces20157113221132910.1021/acsami.5b01706 – reference: LiTLPhoto-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agentAdv. Healthc. Mater.20198190019210.1002/adhm.201900192 – reference: BaoXIn vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administrationLight Sci. Appl.20187912018LSA.....7...91B10.1038/s41377-018-0090-1 – reference: DrösslerPFluoresence quenching of riboflavin in aqueous solution by methionin and cysteinChem. Phys.200328640942010.1016/S0301-0104(02)00969-2 – reference: ZhengXTAnanthanarayananALuoKQChenPGlowing graphene quantum dots and carbon dots: properties, syntheses, and biological applicationsSmall2015111620163610.1002/smll.201402648 – reference: DingSHNear-infrared light excited photodynamic anticancer therapy based on UCNP@AIEgen nanocompositeNanoscale Adv.20213232523332021NanoA...3.2325D10.1039/D0NA00985G – reference: GuBBYongKTLiuBStrategies to overcome the limitations of AIEgens in biomedical applicationsSmall Methods20182170039210.1002/smtd.201700392 – reference: LiZNIR/ROS-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapyAdv. Funct. Mater.202030190575810.1002/adfm.201905758 – reference: ChenSCarbon dots based nanoscale covalent organic frameworks for photodynamic therapyAdv. Funct. Mater.202030200468010.1002/adfm.202004680 – reference: BaiJA facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranosticsJ. Am. Chem. Soc.201814010610910.1021/jacs.7b11114 – reference: Wild, C. P., Weiderpass, E. & Stewart, B. W.World Cancer Report: Cancer Research for Cancer Prevention (International Agency for Research on Cancer, 2020). – reference: GeJCA graphene quantum dot photodynamic therapy agent with high singlet oxygen generationNat. Commun.201452014NatCo...5.4596G10.1038/ncomms5596 – reference: JiangSSynergistic anticancer therapy by ovalbumin encapsulation-enabled tandem reactive oxygen species generationAngew. Chem. Int. Ed.202059200082001610.1002/anie.202006649 – reference: MarkovicZMGraphene quantum dots as autophagy-inducing photodynamic agentsBiomaterials2012337084709210.1016/j.biomaterials.2012.06.060 – reference: WangJPA porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapyAdv. Mater.202032200186210.1002/adma.202001862 – volume: 5 year: 2014 ident: 704_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms5596 – volume: 9 start-page: 1314 year: 2016 ident: 704_CR10 publication-title: J. Biophotonics doi: 10.1002/jbio.201600055 – volume: 29 start-page: 1701076 year: 2017 ident: 704_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201701076 – volume: 27 start-page: 1700626 year: 2017 ident: 704_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700626 – volume: 124 start-page: 3888 year: 2012 ident: 704_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201108400 – volume: 140 start-page: 106 year: 2018 ident: 704_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11114 – volume: 134 start-page: 6707 year: 2012 ident: 704_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211433h – volume: 14 start-page: 6822 year: 2020 ident: 704_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02497 – volume: 14 start-page: 3032 year: 2020 ident: 704_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.9b07898 – volume: 33 start-page: 7084 year: 2012 ident: 704_CR15 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.060 – volume: 252 start-page: 120093 year: 2020 ident: 704_CR27 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120093 – volume: 3 start-page: 380 year: 2003 ident: 704_CR12 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1071 – volume: 55 start-page: 11467 year: 2016 ident: 704_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605509 – volume: 58 start-page: 946 year: 2019 ident: 704_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805664 – volume: 117 start-page: 2203 year: 2017 ident: 704_CR33 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00021 – volume: 7 start-page: 91 year: 2018 ident: 704_CR8 publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0090-1 – volume: 8 start-page: 1900192 year: 2019 ident: 704_CR25 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900192 – volume: 32 start-page: 2001862 year: 2020 ident: 704_CR50 publication-title: Adv. Mater. doi: 10.1002/adma.202001862 – volume: 2 start-page: 1700392 year: 2018 ident: 704_CR13 publication-title: Small Methods doi: 10.1002/smtd.201700392 – volume: 14 start-page: 5073 year: 2008 ident: 704_CR36 publication-title: Chemistry doi: 10.1002/chem.200702010 – volume: 8 start-page: 355 year: 2015 ident: 704_CR37 publication-title: Nano Res. doi: 10.1007/s12274-014-0644-3 – volume: 5 start-page: 127 year: 2018 ident: 704_CR46 publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00590C – volume: 5 start-page: 2456 year: 2017 ident: 704_CR28 publication-title: Biomater. Sci. doi: 10.1039/C7BM00798A – volume: 5 start-page: 1412 year: 2014 ident: 704_CR44 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5005335 – volume: 3 start-page: 2325 year: 2021 ident: 704_CR3 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00985G – volume: 73 start-page: 75 year: 1993 ident: 704_CR51 publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/1010-6030(93)80035-8 – volume: 9 start-page: 161 year: 2020 ident: 704_CR7 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-00388-3 – volume: 7 start-page: 1901992 year: 2020 ident: 704_CR20 publication-title: Adv. Sci. doi: 10.1002/advs.201901992 – volume: 17 start-page: 657 year: 2020 ident: 704_CR6 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-0410-2 – volume: 347 start-page: 77 year: 2017 ident: 704_CR2 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.06.024 – volume: 11 start-page: 1620 year: 2015 ident: 704_CR42 publication-title: Small doi: 10.1002/smll.201402648 – volume: 30 start-page: 2004680 year: 2020 ident: 704_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004680 – volume: 12 start-page: 4886 year: 2018 ident: 704_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.8b01893 – volume: 14 start-page: 15119 year: 2020 ident: 704_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.0c05235 – ident: 704_CR1 – volume: 101 start-page: 10 year: 2016 ident: 704_CR52 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.05.019 – volume: 9 start-page: 2000607 year: 2020 ident: 704_CR4 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202000607 – volume: 7 start-page: 11322 year: 2015 ident: 704_CR34 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01706 – volume: 45 start-page: 6488 year: 2016 ident: 704_CR19 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00616G – volume: 90 start-page: 889 year: 1998 ident: 704_CR5 publication-title: J. Natl Cancer Inst. doi: 10.1093/jnci/90.12.889 – volume: 139 start-page: 10992 year: 2017 ident: 704_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05559 – volume: 30 start-page: 1905758 year: 2020 ident: 704_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905758 – volume: 70 start-page: 391 year: 1999 ident: 704_CR48 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1999.tb08240.x – volume: 286 start-page: 409 year: 2003 ident: 704_CR45 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(02)00969-2 – volume: 8 start-page: 7260 year: 2014 ident: 704_CR49 publication-title: ACS Nano doi: 10.1021/nn502325j – volume: 96 start-page: 646 year: 2020 ident: 704_CR11 publication-title: Photochem. Photobiol. doi: 10.1111/php.13264 – volume: 119 start-page: 9559 year: 2019 ident: 704_CR31 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00099 – volume: 1 start-page: 496 year: 2019 ident: 704_CR32 publication-title: Matter doi: 10.1016/j.matt.2019.03.007 – volume: 61 start-page: 250 year: 2011 ident: 704_CR9 publication-title: Cancer J. Clin. doi: 10.3322/caac.20114 – volume: 59 start-page: 20008 year: 2020 ident: 704_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006649 – volume: 9 start-page: 590 year: 2014 ident: 704_CR43 publication-title: Nano Today doi: 10.1016/j.nantod.2014.09.004 – volume: 11 year: 2020 ident: 704_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15591-4 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.4670813 |
Snippet | Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells... We reported a newly engineered photosensitizer of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 47 |
SubjectTerms | 639/624/1111/55 639/624/399/54/990 Applied and Technical Physics Atomic Biocompatibility Cancer Cancer therapies Classical and Continuum Physics Free radicals Glutathione Hemin Hydroxyl radicals Hypoxia Lasers Molecular Nanoparticles Optical and Plasma Physics Optical Devices Optics Oxidative stress Photodynamic therapy Photonics Physics Physics and Astronomy Polymers Radiation Reactive oxygen species Translation Tumor microenvironment Tumors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlGdxI6dEwJEVSHgRKW9WX6FrkSTZZOVWv4B_5oZx5uyPHpNbMnxjJ1v7G--IeRFC37CgrWA3BqTc25kbltjcuFEqL1ibYhJYZ8-18cn_MNCLNKB25Bolds9MW7Uvnd4Rn5Y1hVH5Zamer36nmPVKLxdTSU0rpMbKF2GlC65kPMZC4QuBVMy5cqwSh0OHBX2cuQloNANz8XO_yjK9v8La_5Nmfzj3jT-jo7ukNsJR9I3k-Hvkmuhu0duRj6nG-6Tnx8x6KYG-eItoEzany991PimU3YIXXZ03Jz1a3qGlLzf8t2ovaDOrC0s9h_QEQUFOtqZDqLrRKKjAHQpoPMBKdN0ddqPvZ8K21OwE-6rLqzplNl18YCcHL3_8u44T1UXcgfobcxbHkIVCmlYq6S3DZhOOO5QZt6x2kIo7YpSokq8qkXDPBeqVrBlSlc4x1xdPSR7Xd-Fx4QGFSAi8Z5XRvEmNCZwzktuvWgBJ1YhI8V27rVLkuRYGeObjlfjldKTvTTYS0d7aZGRl3Of1STIcWXrt2jSuSWKaccH_fqrTrOmUcXNNb6SAI-4Z4VRVqFojS0cs61yGTnYOoROK3zQl_6Ykefza1ibeOFiutBvpjaAaBvGMvJo8p95JAh8lShlRuSOZ-0MdfdNtzyN-t9KKQG4NiOvtj54Oaz_T8X-1V_xhNwqMbMj0usOyN643oSngLdG-ywuql-Omiro priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8b7VVSL4psW0Tdr0UQ8ui6hPLuxbyK3uAbddenrA9R_4r51JL3p0FXxtEhgyk-Sb5psvAM8bjBMerEXkVptUCFOltjEmlU6G0ivehFgU9uFjeXwi3p3K0z3I51qYSNqPkpZxm57ZYa82gqTxUiIUkEKNSOU1uE7S7RTVq3K1_FfBdCXjqprqY3ihrhi6cwZFqf6r8OWfNMnf7krjEXR0G25N2JG9Hq29A3uhvQs3IofTbe7B9_eUaDNDHPEGkSXrvq591PVmY0UIW7ds2J53PTsnGt4vNW7MXjJneosL_BsOJBGBlrWmxYx6mhqG4JYhIt8QTZpdnHVD58fH7Bn6hvZSF3o2VnNd3oeTo7efVsfp9NJC6hCxDWkjQihCVhneqMrbGt0lnXAkLe94aTF9dllekTK8KmXNvZCqVLhNVi5zjruyeAD7bdeGA2BBBcxCvBeFUaIOtQlCiFxYLxvEhkVIIJvnXrtJhpxew_ii43V4ofToL43-0tFfWibwYhlzMYpw_LP3G3Lp0pMEtOOHrv-sp1nTpNzmal9UCImE55lRVpFQjc0ct41yCRzOAaGnVb3ReVkIUg-qiwSeLc24HumSxbSh2459EMXWnCfwcIyfxRICu0rmVQLVTmTtmLrb0q7Poua3Ukoilk3g5RyDP836-1Q8-r_uj-FmTtUdkWJ3CPtDvw1PEHMN9mlcZD8Anu8olg priority: 102 providerName: Springer Nature |
Title | Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy |
URI | https://link.springer.com/article/10.1038/s41377-021-00704-5 https://www.ncbi.nlm.nih.gov/pubmed/35228527 https://www.proquest.com/docview/2634280793 https://www.proquest.com/docview/2634851900 https://pubmed.ncbi.nlm.nih.gov/PMC8885839 https://doaj.org/article/2504c9d370814d01a8b89960b1c0bf8c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA26Ivgifltdhwi-adm0TZr0cXbYZRl0EXVh3kKSpuwsbrvMdMD1H_ivvTfpjDN-vvhUSBMI994k55JzTwh51UCcMG8tILfKpJwbmdrGmFQ44ctascaHorB3p-XJGZ_OxGzrqS_khEV54Gi4A5TYclVdSDi7eM0yo6xCRRGbOWYb5XD3hTNvK5m6iHy5jCk5VMmwQh0sOWrrpchIQIkbnoqdkygI9v8OZf5KlvzpxjQcRMf3yN0BQdJxnPl9csO3D8jtwOR0y4fk21tMt6lBpngD-JJ2X-Z1UPemsS6Ezlvary67Bb1EMt5WpRu119SZhYVl_hUGopRAS1vTQl490OcoQFwKuHyJZGl6dd71XR2ftKfgIdxRnV_QWNN1_YicHR99mpykw3sLqQPc1qcN977wmTSsUbK2FThNOO5QYN6x0kIS7bJcoj68KkXFai5UqWCzlC5zjrmyeEz22q71Twn1ykMuUte8MIpXvjKec55zW4sGEGLhE5Ktba_dIEaOb2J81uFSvFA6-kuDv3TwlxYJeb0ZcxWlOP7a-xBduumJMtqhAYJLD1bT_wquhOyvA0IPa3up87LgqCFUFQl5ufkNqxKvWkzru1XsA1i2YiwhT2L8bGaCkFeJXCZE7kTWzlR3_7Tz86D8rZQSgGgT8mYdgz-m9WdTPPsfpnhO7uRY-RHod_tkr1-s_AvAY70dkZtyJkfk1ng8_TiF7-HR6fsP0DopJ6OwLL8DE3Y3lQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB2VrRB9QdwJFDASPEFUJ3ES5wEhCq22dLtCqJX6FmzHoSu1ybIXwfIH_AzfyIyTbFkufevrxom8nvHkTHzmDMCzEv2EW60RuWXKF0Klvi6V8mMT26SQvLSuKOxgmPSPxPvj-HgNfna1MESr7GKiC9RFbegb-VaYRIKUW7Lo9fiLT12j6HS1a6HRuMW-XXzFlG36au8d2vd5GO7uHL7t-21XAd8gOpn5pbA2skGqeCnTQmc4tdgIQzLqhicaU0UThCmpoMskznghYplIDAmpCYzhJonwuVdgXUSYyvRgfXtn-OHj8qsOJksBl2lbncMjuTUVpOnnExOCpHWEH6-8AV2jgH-h279Jmn-c1LoX4O4NuN4iV_amcbWbsGarW3DVMUjN9Db8GFCazxQx1EvEtaz-Niqcqjhr6lHYqGKz-Vk9YWdEAvytwo7pBTNqojG8fMcbScKgYpWqMJ9vaXsMoTXDfGBKJG02PqlndbGoFD6IoWdQJDd2wppassUdOLoUi9yFXlVX9j4wKy3mQEUhIiVFZjNlhRCh0EVcIjKNrAdBt_a5aUXQqRfHae4O4yOZN_bK0V65s1cee_Biec-4kQC5cPQ2mXQ5kuS73Q_15HPerlpOunEmK6IUAZkoeKCkliSTowPDdSmNB5udQ-RtTJnm5zvAg6fLyxgN6IhHVbaeN2MQQ2ece3Cv8Z_lTAhqyzhMPUhXPGtlqqtXqtGJUxyXUsaIpD142fng-bT-vxQPLv4XT-Ba__BgkA_2hvsPYSOkuhJH7tuE3mwyt48Q7c3043aLMfh02bv6F3I_Z9k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4jWSezYOSAElFVLS8WBSnsLfoWuRJNlH4LlH_CX-HXMOMmW5dFbrxsn8nrGk2_ib74h5HEFfsK8MYDcCh1zrmVsKq1jYYXPnWKVD0Vh7w7z3SP-diRGG-RnXwuDtMo-JoZA7RqL38gHaZ5xVG4pskHV0SLe7wxfTL7E2EEKT1r7dhqti-z75VdI32bP93bA1k_SdPjmw-vduOswEFtAKvO44t5nPpGaVUo6U8A0heUWJdUtyw2kjTZJJSqiq1wUzHGhcgXhQdrEWmbzDJ57gVyUmUhwj8mRXH3fgbQpYUp2dTosU4MZR3W_GDkRKLLDY7H2LgwtA_6Fc_-ma_5xZhtehcNr5GqHYenL1umukw1f3yCXApfUzm6SHweY8FONXPUKEC5tvo1d0BenbWUKHdd0vjhppvQE6YC_1dpRs6RWTw0Emu9wI4oZ1LTWNWT2HYGPAsimkBnMkK5NJ8fNvHHLWsODKPgIxnTrp7StKlveIkfnYo_bZLNuan-HUK88ZEPO8UwrXvhCe855yo0TFWDUzEck6de-tJ0cOnbl-FyGY_lMla29SrBXGexViog8Xd0zacVAzhz9Ck26GolC3uGHZvqp7FatRAU5W7hMAjTjjiVaGYWCOSaxzFTKRmS7d4iyiy6z8nQvROTR6jLEBTzs0bVvFu0YQNMFYxHZav1nNRME3UqkMiJyzbPWprp-pR4fB-1xpZQATB2RZ70Pnk7r_0tx9-x_8ZBchr1cHuwd7t8jV1IsMAksv22yOZ8u_H2AfXPzIOwvSj6e94b-BShfaqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light+amplified+oxidative+stress+in+tumor+microenvironment+by+carbonized+hemin+nanoparticles+for+boosting+photodynamic+anticancer+therapy&rft.jtitle=Light%2C+science+%26+applications&rft.au=Lin%2C+Liyun&rft.au=Pang%2C+Wen&rft.au=Jiang%2C+Xinyan&rft.au=Ding%2C+Shihui&rft.date=2022-03-01&rft.issn=2047-7538&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-021-00704-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41377_021_00704_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |