Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis
Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H 2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 827 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.02.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H
2
and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO–ZrO
2
, modified zeolite mordenite and Pt–Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K
+
–ZnO–ZrO
2
catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt–Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor.
Direct synthesis of ethanol from non-petroleum carbon resources via syngas (CO/H
2
) is a highly attractive but challenging target. Here, the authors report a triple tandem catalytic system for single-pass conversion of syngas into ethanol with selectivity as high as 90%. |
---|---|
AbstractList | Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO–ZrO2, modified zeolite mordenite and Pt–Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K+–ZnO–ZrO2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt–Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor.Direct synthesis of ethanol from non-petroleum carbon resources via syngas (CO/H2) is a highly attractive but challenging target. Here, the authors report a triple tandem catalytic system for single-pass conversion of syngas into ethanol with selectivity as high as 90%. Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H 2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO–ZrO 2 , modified zeolite mordenite and Pt–Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K + –ZnO–ZrO 2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt–Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor. Direct synthesis of ethanol from non-petroleum carbon resources via syngas (CO/H 2 ) is a highly attractive but challenging target. Here, the authors report a triple tandem catalytic system for single-pass conversion of syngas into ethanol with selectivity as high as 90%. Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO-ZrO2, modified zeolite mordenite and Pt-Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K+-ZnO-ZrO2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt-Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor.Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO-ZrO2, modified zeolite mordenite and Pt-Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K+-ZnO-ZrO2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt-Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor. Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H 2 and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO–ZrO 2 , modified zeolite mordenite and Pt–Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K + –ZnO–ZrO 2 catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt–Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor. Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H and CO) is an important but challenging research target. The current conversion of syngas to ethanol suffers from low selectivity or multiple processes with high energy consumption. Here, we report a high-selective conversion of syngas into ethanol by a triple tandem catalysis. An efficient trifunctional tandem system composed of potassium-modified ZnO-ZrO , modified zeolite mordenite and Pt-Sn/SiC working compatibly in syngas stream in one reactor can afford ethanol with a selectivity of 90%. We demonstrate that the K -ZnO-ZrO catalyses syngas conversion to methanol and the mordenite with eight-membered ring channels functions for methanol carbonylation to acetic acid, which is then hydrogenated to ethanol over the Pt-Sn/SiC catalyst. The present work offers an effective methodology leading to high selective conversion by decoupling a single-catalyst-based complicated and uncontrollable reaction into well-controlled multi-steps in tandem in one reactor. Direct synthesis of ethanol from non-petroleum carbon resources via syngas (CO/H2) is a highly attractive but challenging target. Here, the authors report a triple tandem catalytic system for single-pass conversion of syngas into ethanol with selectivity as high as 90%. |
ArticleNumber | 827 |
Author | Shen, Zheng Kang, Jincan Wang, Ye He, Shun Li, Yangyang Zhang, Qinghong Chen, Mingshu Zhou, Wei |
Author_xml | – sequence: 1 givenname: Jincan surname: Kang fullname: Kang, Jincan organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 2 givenname: Shun surname: He fullname: He, Shun organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 3 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 4 givenname: Zheng surname: Shen fullname: Shen, Zheng organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 5 givenname: Yangyang surname: Li fullname: Li, Yangyang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 6 givenname: Mingshu orcidid: 0000-0002-4923-9632 surname: Chen fullname: Chen, Mingshu organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 7 givenname: Qinghong surname: Zhang fullname: Zhang, Qinghong email: zhangqh@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 8 givenname: Ye orcidid: 0000-0003-0764-2279 surname: Wang fullname: Wang, Ye email: wangye@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32047150$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIVLwF-JnQsSqvioVIkDcLb8lcQrx15sb9H-e7ybFtoe6ovHnvfePM3My-YkxGCb5jWC7xEk_EOmiPashRi2hwC3_FlzhiFFLWKYnNyLT5uLnDewHjIgTumL5pTUJEMdPGvUDxcmb9utzBmUJEMeY1pkcTGAOIK8D5PMwIUSgS2zDNGDP67MYHbTDLL1Vhd348oeqH2lu623oMhg7AK0LNLvs8uvmuej9Nle3N7nza8vn39efmuvv3-9uvx03eqOwtKOlCg6GEaZHRWhjDMJDUZQ85EbyAdcH6pXhlCpKOqsMWwcMBoI6ykzVpHz5mrVNVFuxDa5Raa9iNKJ40dMk5CpOO2t4NAOzJBeMjTUPmKlazXFOkpIV4sOVevjqrXdqcUabUPtjX8g-jAT3CymeCMYRJizg8C7W4EUf-9sLmJxWVvvZbBxlwUmHUU9QRBX6NtH0E3cpVBbdUCRjiFKYUW9ue_on5W7UVYAXwE6xZyTHYV25TjIatB5gaA4LI5YF0fUxRHHxRG8UvEj6p36kySyknIFh8mm_7afYP0F993VXw |
CitedBy_id | crossref_primary_10_1021_acscatal_2c01000 crossref_primary_10_1021_acscatal_3c01577 crossref_primary_10_1021_acs_energyfuels_4c01419 crossref_primary_10_1021_jacsau_2c00608 crossref_primary_10_1021_jacs_2c09168 crossref_primary_10_1016_j_ijhydene_2022_05_155 crossref_primary_10_1016_j_fuel_2022_126093 crossref_primary_10_1002_anie_202106243 crossref_primary_10_1002_adma_202002927 crossref_primary_10_1016_j_jcis_2021_10_189 crossref_primary_10_1016_j_fuel_2022_126770 crossref_primary_10_1016_j_enchem_2022_100086 crossref_primary_10_1016_j_jclepro_2020_123023 crossref_primary_10_1021_acscatal_1c00339 crossref_primary_10_1038_s41467_022_29936_8 crossref_primary_10_1002_anie_202009191 crossref_primary_10_1016_j_jcat_2021_01_036 crossref_primary_10_1002_anie_202210745 crossref_primary_10_1016_j_cej_2025_161111 crossref_primary_10_1016_j_apcatb_2023_123477 crossref_primary_10_1016_j_carbon_2020_10_044 crossref_primary_10_1039_D0CY01421D crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1021_acscatal_2c01078 crossref_primary_10_1021_acscatal_3c03488 crossref_primary_10_1016_j_ijhydene_2025_01_309 crossref_primary_10_1016_j_cclet_2021_07_019 crossref_primary_10_1016_j_enconman_2023_117159 crossref_primary_10_1002_ange_202401168 crossref_primary_10_1039_D1CY00289A crossref_primary_10_1021_acssuschemeng_1c00217 crossref_primary_10_1002_anie_202201004 crossref_primary_10_1002_cctc_202401731 crossref_primary_10_1007_s10311_020_00996_w crossref_primary_10_1021_acscentsci_2c00434 crossref_primary_10_1007_s11144_020_01885_7 crossref_primary_10_1134_S0965544122010078 crossref_primary_10_1016_j_checat_2025_101264 crossref_primary_10_1021_acscatal_4c05085 crossref_primary_10_1016_j_fuproc_2025_108184 crossref_primary_10_1016_j_jcat_2024_115466 crossref_primary_10_1021_acsnano_3c07307 crossref_primary_10_1002_smll_202007527 crossref_primary_10_1021_acscatal_0c01579 crossref_primary_10_1016_j_fuel_2023_127858 crossref_primary_10_1039_D0CS01003K crossref_primary_10_1002_aic_18664 crossref_primary_10_1021_acscatal_3c00586 crossref_primary_10_1177_1747519820984728 crossref_primary_10_1021_acscatal_1c04442 crossref_primary_10_3390_catal13040647 crossref_primary_10_1021_acscatal_1c05013 crossref_primary_10_1021_acscatal_2c03404 crossref_primary_10_1016_j_mcat_2021_111982 crossref_primary_10_1002_ange_202009191 crossref_primary_10_1016_j_checat_2023_100584 crossref_primary_10_1002_ange_202201004 crossref_primary_10_1002_gch2_202300004 crossref_primary_10_1039_D0CY00579G crossref_primary_10_1021_acscatal_1c01610 crossref_primary_10_2139_ssrn_3953149 crossref_primary_10_3390_catal12080922 crossref_primary_10_1016_j_apcatb_2022_121155 crossref_primary_10_1016_j_scitotenv_2023_163920 crossref_primary_10_1039_D4CS00731J crossref_primary_10_1016_S1872_5813_22_60035_5 crossref_primary_10_1109_JSEN_2023_3348807 crossref_primary_10_1360_TB_2024_0606 crossref_primary_10_1021_acs_iecr_1c04663 crossref_primary_10_1039_D3CC04383E crossref_primary_10_1016_j_cattod_2023_114302 crossref_primary_10_1002_cctc_202001412 crossref_primary_10_1016_j_mcat_2025_115030 crossref_primary_10_1016_j_ces_2022_117828 crossref_primary_10_1021_acs_est_1c05363 crossref_primary_10_1021_acs_chemrev_3c00058 crossref_primary_10_1038_s41557_024_01614_w crossref_primary_10_1021_acsanm_3c00109 crossref_primary_10_3390_su15043765 crossref_primary_10_1039_D4GC04180A crossref_primary_10_1016_j_cej_2024_154874 crossref_primary_10_1021_acssuschemeng_4c04769 crossref_primary_10_3390_catal12050450 crossref_primary_10_1016_j_apcatb_2025_125204 crossref_primary_10_1039_D1CY02196F crossref_primary_10_1016_j_apcatb_2021_120556 crossref_primary_10_1016_j_seppur_2022_121528 crossref_primary_10_1021_acscatal_2c01725 crossref_primary_10_1016_j_chempr_2020_10_019 crossref_primary_10_1002_ange_202210745 crossref_primary_10_1016_j_apcatb_2024_124212 crossref_primary_10_1002_smll_202309114 crossref_primary_10_1021_acs_chemmater_1c04093 crossref_primary_10_1021_acsomega_2c05486 crossref_primary_10_1016_j_jechem_2024_08_069 crossref_primary_10_1002_slct_202102689 crossref_primary_10_1016_j_apcatb_2020_119840 crossref_primary_10_1021_acscatal_2c03183 crossref_primary_10_1038_s41929_021_00649_3 crossref_primary_10_1039_D0GC02770G crossref_primary_10_3389_frsus_2022_1057491 crossref_primary_10_1002_anie_202401168 crossref_primary_10_1016_j_ces_2023_119226 crossref_primary_10_1039_D4GC01584C crossref_primary_10_1007_s12045_023_1725_y crossref_primary_10_3390_catal13071093 crossref_primary_10_1016_j_checat_2025_101291 crossref_primary_10_1016_j_jcat_2024_115679 crossref_primary_10_1007_s10562_021_03533_8 crossref_primary_10_1016_j_apsusc_2023_156746 crossref_primary_10_1016_j_jcou_2022_102324 crossref_primary_10_1002_smll_202309068 crossref_primary_10_1016_j_apcata_2022_118925 crossref_primary_10_1021_acssuschemeng_1c01066 crossref_primary_10_1021_acscatal_2c05358 crossref_primary_10_1016_j_cej_2023_142343 crossref_primary_10_1021_jacs_4c00981 crossref_primary_10_3390_catal15030212 crossref_primary_10_1021_acscatal_2c02125 crossref_primary_10_1016_j_energy_2020_118498 crossref_primary_10_1039_D1CS00260K crossref_primary_10_1021_acscatal_3c04494 crossref_primary_10_1098_rsta_2023_0264 crossref_primary_10_1088_2058_6272_ab9eae crossref_primary_10_1016_j_ccst_2024_100251 crossref_primary_10_1002_asia_202200556 crossref_primary_10_1016_j_ces_2024_120500 crossref_primary_10_1021_acs_accounts_3c00734 crossref_primary_10_1016_j_fuel_2022_123234 crossref_primary_10_1039_D1CY01179K crossref_primary_10_1021_acscatal_4c02212 crossref_primary_10_1016_j_jcat_2024_115669 crossref_primary_10_1039_D0EE01860K crossref_primary_10_1021_acs_chemrev_1c00269 crossref_primary_10_1021_jacsau_3c00463 crossref_primary_10_1002_advs_202410280 crossref_primary_10_1002_smm2_1202 crossref_primary_10_1007_s40820_021_00746_9 crossref_primary_10_1038_s44160_023_00458_5 crossref_primary_10_1016_j_checat_2023_100825 crossref_primary_10_3390_molecules29112666 crossref_primary_10_1021_acs_iecr_3c03882 crossref_primary_10_1002_ppap_202300148 crossref_primary_10_1021_acscentsci_0c00976 crossref_primary_10_1016_j_fuel_2021_121533 crossref_primary_10_1039_D3CY01166F crossref_primary_10_2139_ssrn_4128825 crossref_primary_10_1016_j_fuel_2021_122981 crossref_primary_10_1016_j_mcat_2021_111548 crossref_primary_10_1002_ese3_1107 crossref_primary_10_1016_j_apcatb_2023_122840 crossref_primary_10_1002_ange_202106243 crossref_primary_10_1016_j_cej_2023_146250 crossref_primary_10_1016_j_cjche_2021_05_013 crossref_primary_10_1016_j_apcatb_2023_123131 crossref_primary_10_1002_cssc_202400865 crossref_primary_10_1016_j_fuel_2020_118760 crossref_primary_10_1016_j_fuel_2024_132485 crossref_primary_10_1016_S1872_2067_20_63734_2 crossref_primary_10_1016_j_cjche_2021_07_022 crossref_primary_10_1021_acs_iecr_4c03226 crossref_primary_10_1021_acs_energyfuels_3c02828 crossref_primary_10_1021_acs_jpclett_1c00596 crossref_primary_10_1021_acscatal_1c02111 crossref_primary_10_1021_acs_iecr_3c01856 crossref_primary_10_1016_j_rser_2021_111169 crossref_primary_10_1021_acs_chemmater_1c00779 crossref_primary_10_1007_s13203_021_00277_9 crossref_primary_10_1039_D3TA03150K crossref_primary_10_1016_j_cattod_2022_06_015 crossref_primary_10_1016_j_jcat_2021_04_029 crossref_primary_10_1007_s10163_023_01759_9 crossref_primary_10_1007_s10562_021_03617_5 crossref_primary_10_1007_s10562_022_04112_1 crossref_primary_10_1016_j_ccr_2022_214737 crossref_primary_10_1016_j_fuel_2024_131954 crossref_primary_10_1021_acs_iecr_0c03676 crossref_primary_10_1021_acssuschemeng_4c09852 crossref_primary_10_1039_D0NJ02179B crossref_primary_10_1016_j_fuproc_2022_107333 crossref_primary_10_1016_j_cjche_2021_05_028 crossref_primary_10_1021_acscatal_0c03292 crossref_primary_10_1016_j_jcou_2021_101444 crossref_primary_10_1021_acscatal_4c02672 crossref_primary_10_1016_j_apcatb_2023_123663 crossref_primary_10_1016_j_jcat_2024_115928 crossref_primary_10_1039_D3NJ01258A |
Cites_doi | 10.1126/sciadv.1701290 10.1016/j.vibspec.2016.02.002 10.1038/nchem.1018 10.1021/ef800531e 10.1038/s41929-018-0144-z 10.1007/s11426-016-0464-1 10.1016/j.jcat.2019.03.016 10.1038/nature16173 10.1039/C8CY02593B 10.1016/j.cattod.2010.10.027 10.1002/anie.201103657 10.1002/anie.200503898 10.1002/jctb.4842 10.1002/anie.201814611 10.1126/science.1121416 10.1016/j.catcom.2013.03.033 10.1021/cs2001048 10.1002/cctc.201701768 10.1016/0021-9517(89)90327-8 10.1021/cm0204775 10.1021/acscatal.7b01469 10.1021/ie101845j 10.1038/ncomms13058 10.1039/C7SC03427J 10.1016/S0926-2040(97)00051-9 10.1021/acscatal.8b01391 10.1021/cs401052k 10.1038/nchem.2794 10.1038/nmat1916 10.1002/anie.201601208 10.1006/jcat.1999.2457 10.1039/C7CY01621B 10.1016/j.chempr.2017.05.007 10.1016/j.memsci.2017.09.021 10.1039/C6CS00324A 10.1021/acs.iecr.7b03500 10.1002/anie.201801397 10.1002/anie.201807113 10.1038/nchem.2262 10.1016/S0926-2040(97)00028-3 10.1039/b414039g 10.1039/C8CY00010G 10.1002/cssc.201000109 10.1016/j.micromeso.2009.11.006 10.1039/C8CS00502H 10.1002/anie.201402680 10.1021/acscatal.5b00007 10.1021/ja208760j 10.1021/ja805607m 10.1016/j.jcat.2011.10.012 10.1006/jcat.2000.2863 10.1039/C7CC08642C 10.1126/science.aaf1835 10.1016/j.carbon.2018.04.077 10.1021/acscatal.8b02235 10.1007/s10562-010-0411-3 10.1039/C8SC01597J 10.1021/cs500696z 10.1021/acscatal.9b04309 10.1021/jp5086334 10.1016/bs.acat.2017.09.003 10.1016/S0360-0564(10)53001-3 10.1016/S0360-0564(08)60287-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-14672-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database (ProQuest) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_80e97d36a7194142bc87ab7543350d29 PMC7012879 32047150 10_1038_s41467_020_14672_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 91545203; 21433008; 91945301 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 91545203 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 91945301 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21433008 – fundername: ; grantid: 91545203; 21433008; 91945301 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-f43b49d747efb34787a0d210c8f8d0892d21b6bd34ab415edd7f921937647deb3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:46:27 EDT 2025 Thu Aug 21 14:06:33 EDT 2025 Thu Jul 10 19:12:42 EDT 2025 Wed Aug 13 04:53:46 EDT 2025 Mon Jul 21 06:01:45 EDT 2025 Thu Apr 24 22:51:37 EDT 2025 Tue Jul 01 04:08:50 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f43b49d747efb34787a0d210c8f8d0892d21b6bd34ab415edd7f921937647deb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0764-2279 0000-0002-4923-9632 |
OpenAccessLink | https://www.nature.com/articles/s41467-020-14672-8 |
PMID | 32047150 |
PQID | 2353571440 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80e97d36a7194142bc87ab7543350d29 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7012879 proquest_miscellaneous_2354163102 proquest_journals_2353571440 pubmed_primary_32047150 crossref_citationtrail_10_1038_s41467_020_14672_8 crossref_primary_10_1038_s41467_020_14672_8 springer_journals_10_1038_s41467_020_14672_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-11 |
PublicationDateYYYYMMDD | 2020-02-11 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ao, Pham, Sunarso, Tade, Liu (CR11) 2018; 8 Zhou (CR46) 2020; 10 Olsbye (CR40) 2012; 51 Luk, Mondelli, Ferré, Stewart, Pérez-Ramírez (CR8) 2017; 46 Lu (CR17) 2017; 7 Liu (CR30) 2018; 9 Bera (CR53) 2003; 15 Jiao (CR26) 2016; 351 Lukyanov, Vazhnova, Cherkasov, Casci, Birtill (CR51) 2014; 118 Deng, Yue, Ye (CR49) 1998; 10 Wang (CR44) 2017; 3 Boronat, Martínez-Sánchez, Law, Corma (CR41) 2008; 130 Xiang, Kruse (CR16) 2016; 7 Ni (CR36) 2017; 7 Cheng (CR55) 2017; 56 García-Herreros, Gómez, Gil, Rodríguez (CR59) 2011; 50 Farrell (CR4) 2006; 311 Lin (CR19) 2019; 58 Wang, Chernavskii, Khodakov, Wang (CR13) 2012; 286 Li (CR60) 2017; 544 Zhang, Tan, Yang, Tsubaki (CR63) 2017; 8 Huff, Sanford (CR25) 2011; 133 Gao (CR35) 2018; 8 Hunger, Sarv, Samoson (CR48) 1997; 9 Weisz (CR56) 1962; 13 Liu (CR62) 2018; 54 Gao (CR58) 2017; 9 Xue, Huang, Zhan, Ma, Shen (CR43) 2013; 37 Carrillo, Shi, Teeluck, Senanayake, White (CR18) 2018; 8 Rachmady, Vannice (CR37) 2000; 192 Climent, Corma, Iborra, Sabater (CR22) 2014; 4 Yamada (CR24) 2011; 3 Cheng (CR27) 2016; 55 Li (CR33) 2010; 3 Silver, Hou, Ekerdt (CR45) 1989; 118 Hayashi, Kojima (CR50) 2011; 141 Xiang, Barbosa, Kruse (CR15) 2014; 4 Cheung, Bhan, Sunley, Iglesia (CR21) 2006; 45 Zhou (CR31) 2018; 57 Zhang (CR32) 2019; 9 Lohr, Marks (CR23) 2015; 7 de Miguel (CR54) 1999; 184 Prieto (CR14) 2014; 53 Tian, Wei, Ye, Liu (CR39) 2015; 5 Cheng (CR28) 2017; 3 Liu, Xue, Huang, Li, Shen (CR42) 2010; 139 Cheng (CR1) 2017; 60 Yang (CR34) 2011; 164 Zhou (CR2) 2019; 48 Jiao (CR29) 2018; 57 Spivey, Egbebi (CR5) 2007; 36 Fang, Wu, Lee, Mahajan, Qiao (CR61) 2018; 136 Gupta, Smith, Spivey (CR9) 2011; 1 Shen, Liu (CR7) 2009; 23 Cherkasov, Vazhnova, Lukyanov (CR52) 2016; 83 An (CR10) 2017; 60 Sun (CR38) 2018; 10 Li (CR3) 2018; 1 Kennes, Abubackar, Diaz, Veiga, Kennes (CR6) 2016; 91 Haynes (CR20) 2010; 53 Razdan, Kumar, Bhan (CR47) 2019; 372 Zečević, Vanbutsele, de Jong, Martens (CR57) 2015; 528 Pan (CR12) 2007; 6 P Bera (14672_CR53) 2003; 15 K Cheng (14672_CR27) 2016; 55 K Cheng (14672_CR28) 2017; 3 H Xue (14672_CR43) 2013; 37 AE Farrell (14672_CR4) 2006; 311 Y Xiang (14672_CR16) 2016; 7 MJ Climent (14672_CR22) 2014; 4 X Liu (14672_CR30) 2018; 9 RG Silver (14672_CR45) 1989; 118 Y An (14672_CR10) 2017; 60 M Boronat (14672_CR41) 2008; 130 Z Cheng (14672_CR55) 2017; 56 X Li (14672_CR33) 2010; 3 W Zhou (14672_CR2) 2019; 48 M Hunger (14672_CR48) 1997; 9 X Liu (14672_CR62) 2018; 54 J Zečević (14672_CR57) 2015; 528 W Zhou (14672_CR31) 2018; 57 A Haynes (14672_CR20) 2010; 53 D Kennes (14672_CR6) 2016; 91 CA Huff (14672_CR25) 2011; 133 NK Razdan (14672_CR47) 2019; 372 Y Xiang (14672_CR15) 2014; 4 P Cheung (14672_CR21) 2006; 45 J Sun (14672_CR38) 2018; 10 G Yang (14672_CR34) 2011; 164 C Zhou (14672_CR46) 2020; 10 PB Weisz (14672_CR56) 1962; 13 W Rachmady (14672_CR37) 2000; 192 T Lin (14672_CR19) 2019; 58 M Gupta (14672_CR9) 2011; 1 X Gao (14672_CR35) 2018; 8 Q Li (14672_CR60) 2017; 544 J Wang (14672_CR13) 2012; 286 F Shen (14672_CR7) 2009; 23 F Jiao (14672_CR26) 2016; 351 TL Lohr (14672_CR23) 2015; 7 S Hayashi (14672_CR50) 2011; 141 DB Lukyanov (14672_CR51) 2014; 118 P Zhang (14672_CR63) 2017; 8 F Jiao (14672_CR29) 2018; 57 X Pan (14672_CR12) 2007; 6 J Li (14672_CR3) 2018; 1 M Ao (14672_CR11) 2018; 8 Y Ni (14672_CR36) 2017; 7 J Wang (14672_CR44) 2017; 3 U Olsbye (14672_CR40) 2012; 51 G Prieto (14672_CR14) 2014; 53 P García-Herreros (14672_CR59) 2011; 50 Y Yamada (14672_CR24) 2011; 3 JJ Spivey (14672_CR5) 2007; 36 P Carrillo (14672_CR18) 2018; 8 P Tian (14672_CR39) 2015; 5 SR de Miguel (14672_CR54) 1999; 184 C Fang (14672_CR61) 2018; 136 Y Zhang (14672_CR32) 2019; 9 P Gao (14672_CR58) 2017; 9 Y Lu (14672_CR17) 2017; 7 HT Luk (14672_CR8) 2017; 46 J Liu (14672_CR42) 2010; 139 N Cherkasov (14672_CR52) 2016; 83 K Cheng (14672_CR1) 2017; 60 F Deng (14672_CR49) 1998; 10 |
References_xml | – volume: 3 start-page: e1701290 year: 2017 ident: CR44 article-title: A highly selective and stable ZnO-ZrO solid solution catalyst for CO hydrogenation to methanol publication-title: Sci. Adv. doi: 10.1126/sciadv.1701290 – volume: 83 start-page: 170 year: 2016 end-page: 179 ident: CR52 article-title: Quantitative infra-red studies of Brønsted acid sites in zeolites: case study of the zeolite mordenite publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2016.02.002 – volume: 3 start-page: 372 year: 2011 end-page: 376 ident: CR24 article-title: Nanocrystal bilayer for tandem catalysis publication-title: Nat. Chem. doi: 10.1038/nchem.1018 – volume: 23 start-page: 519 year: 2009 end-page: 525 ident: CR7 article-title: Research on solid-state ethanol fermentation using dry sweet sorghum stalk particles with active dry yeast publication-title: Energy Fuels doi: 10.1021/ef800531e – volume: 53 start-page: 1 year: 2010 end-page: 45 ident: CR20 article-title: Catalytic methanol carbonylation publication-title: Adv. Catal. – volume: 1 start-page: 787 year: 2018 end-page: 793 ident: CR3 article-title: Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology publication-title: Nat. Catal. doi: 10.1038/s41929-018-0144-z – volume: 60 start-page: 887 year: 2017 end-page: 903 ident: CR10 article-title: Advances in direct production of value-added chemicals via syngas conversion publication-title: Sci. China Chem. doi: 10.1007/s11426-016-0464-1 – volume: 372 start-page: 370 year: 2019 end-page: 381 ident: CR47 article-title: Controlling kinetic and diffusive length-scales during absorptive hydrogen removal in methane dehydroaromatization on MoC /H-ZSM-5 catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2019.03.016 – volume: 528 start-page: 245 year: 2015 end-page: 248 ident: CR57 article-title: Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons publication-title: Nature doi: 10.1038/nature16173 – volume: 9 start-page: 1581 year: 2019 end-page: 1594 ident: CR32 article-title: Intermediate product regulation over tandem catalysts for one-pass conversion of syngas to ethanol publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02593B – volume: 164 start-page: 425 year: 2011 end-page: 428 ident: CR34 article-title: A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2010.10.027 – volume: 51 start-page: 5810 year: 2012 end-page: 5831 ident: CR40 article-title: Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103657 – volume: 45 start-page: 1617 year: 2006 end-page: 1620 ident: CR21 article-title: Selective carbonylation of dimethyl ether to methyl acetate catalysed by acidic zeolites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503898 – volume: 91 start-page: 304 year: 2016 end-page: 317 ident: CR6 article-title: Bioethanol production from biomass: carbohydrate vs syngas fermentation publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4842 – volume: 58 start-page: 4627 year: 2019 end-page: 4631 ident: CR19 article-title: Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814611 – volume: 311 start-page: 506 year: 2006 end-page: 508 ident: CR4 article-title: Ethanol can contribute to energy and environmental goals publication-title: Science doi: 10.1126/science.1121416 – volume: 37 start-page: 75 year: 2013 end-page: 79 ident: CR43 article-title: Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.03.033 – volume: 1 start-page: 641 year: 2011 end-page: 656 ident: CR9 article-title: Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts publication-title: ACS Catal. doi: 10.1021/cs2001048 – volume: 10 start-page: 1536 year: 2018 end-page: 1541 ident: CR38 article-title: Direct conversion of syngas into light olefins over zirconium-doped indium (II) oxide and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction network publication-title: ChemCatChem doi: 10.1002/cctc.201701768 – volume: 118 start-page: 400 year: 1989 end-page: 416 ident: CR45 article-title: The role of lattice anion vacancies in the activation of CO and as the catalytic site for methanol synthesis over zirconium dioxide and yttria-doped zirconium dioxide publication-title: J. Catal. doi: 10.1016/0021-9517(89)90327-8 – volume: 15 start-page: 2049 year: 2003 end-page: 2060 ident: CR53 article-title: Ionic dispersion of Pt over CeO by the combustion method: structural investigation by XRD, TEM, XPS, and EXAFS publication-title: Chem. Mater. doi: 10.1021/cm0204775 – volume: 7 start-page: 5500 year: 2017 end-page: 5512 ident: CR17 article-title: Elucidating the copper-Hägg iron carbide synergistic interactions for selective CO hydrogenation to higher alcohols publication-title: ACS Catal. doi: 10.1021/acscatal.7b01469 – volume: 50 start-page: 3977 year: 2011 end-page: 3985 ident: CR59 article-title: Optimization of the design and operation of an extractive distillation system for the production of fuel grade ethanol using glycerol as entrainer publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101845j – volume: 7 year: 2016 ident: CR16 article-title: Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins publication-title: Nat. Commun. doi: 10.1038/ncomms13058 – volume: 8 start-page: 7941 year: 2017 end-page: 7946 ident: CR63 article-title: One-pass selective conversion of syngas to para-xylene publication-title: Chem. Sci. doi: 10.1039/C7SC03427J – volume: 9 start-page: 115 year: 1997 end-page: 120 ident: CR48 article-title: Two-dimensional triple-quantum Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/S0926-2040(97)00051-9 – volume: 8 start-page: 7025 year: 2018 end-page: 7050 ident: CR11 article-title: Active centers of catalysts for higher alcohol synthesis from syngas: a review publication-title: ACS Catal. doi: 10.1021/acscatal.8b01391 – volume: 4 start-page: 870 year: 2014 end-page: 891 ident: CR22 article-title: Heterogeneous catalysis for tandem reactions publication-title: ACS Catal. doi: 10.1021/cs401052k – volume: 9 start-page: 1019 year: 2017 end-page: 1024 ident: CR58 article-title: Direct conversion of CO into liquid fuels with high selectivity over a bifunctional catalyst publication-title: Nat. Chem. doi: 10.1038/nchem.2794 – volume: 6 start-page: 507 year: 2007 end-page: 511 ident: CR12 article-title: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles publication-title: Nat. Mater. doi: 10.1038/nmat1916 – volume: 55 start-page: 4725 year: 2016 end-page: 4728 ident: CR27 article-title: Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601208 – volume: 184 start-page: 514 year: 1999 end-page: 525 ident: CR54 article-title: Characterization of bimetallic PtSn catalysts supported on purified and H O -functionalized carbons used for hydrogenation reactions publication-title: J. Catal. doi: 10.1006/jcat.1999.2457 – volume: 7 start-page: 4818 year: 2017 end-page: 4822 ident: CR36 article-title: A green route for methanol carbonylation publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01621B – volume: 3 start-page: 334 year: 2017 end-page: 347 ident: CR28 article-title: Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability publication-title: Chem doi: 10.1016/j.chempr.2017.05.007 – volume: 544 start-page: 68 year: 2017 end-page: 78 ident: CR60 article-title: High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.09.021 – volume: 13 start-page: 137 year: 1962 end-page: 190 ident: CR56 article-title: Polyfunctional heterogeneous catalysis publication-title: Adv. Catal. – volume: 46 start-page: 1358 year: 2017 end-page: 1426 ident: CR8 article-title: Status and prospects in higher alcohols synthesis from syngas publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00324A – volume: 56 start-page: 13618 year: 2017 end-page: 13627 ident: CR55 article-title: Deactivation kinetics for the carbonylation of dimethyl ether to methyl acetate on H-MOR publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03500 – volume: 57 start-page: 4692 year: 2018 end-page: 4696 ident: CR29 article-title: Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801397 – volume: 57 start-page: 12012 year: 2018 end-page: 12016 ident: CR31 article-title: Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807113 – volume: 7 start-page: 477 year: 2015 end-page: 482 ident: CR23 article-title: Orthogonal tandem catalysis publication-title: Nat. Chem. doi: 10.1038/nchem.2262 – volume: 10 start-page: 151 year: 1998 end-page: 160 ident: CR49 article-title: H/ Al TRAPDOR NMR studies on aluminum species in dealuminated zeolites publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/S0926-2040(97)00028-3 – volume: 60 start-page: 125 year: 2017 end-page: 208 ident: CR1 article-title: Advances in catalysis for syngas conversion to hydrocarbons publication-title: Adv. Catal. – volume: 36 start-page: 1514 year: 2007 end-page: 1528 ident: CR5 article-title: Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas publication-title: Chem. Soc. Rev. doi: 10.1039/b414039g – volume: 8 start-page: 2087 year: 2018 end-page: 2097 ident: CR35 article-title: Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00010G – volume: 3 start-page: 1192 year: 2010 end-page: 1199 ident: CR33 article-title: Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts publication-title: ChemSusChem doi: 10.1002/cssc.201000109 – volume: 141 start-page: 49 year: 2011 end-page: 55 ident: CR50 article-title: Acid properties of H-type mordenite studied by solid-state NMR publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2009.11.006 – volume: 48 start-page: 3193 year: 2019 end-page: 3228 ident: CR2 article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemicals and fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H – volume: 53 start-page: 6397 year: 2014 end-page: 6401 ident: CR14 article-title: Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402680 – volume: 5 start-page: 1922 year: 2015 end-page: 1938 ident: CR39 article-title: Methanol to olefins (MTO): from fundamentals to commercialization publication-title: ACS Catal. doi: 10.1021/acscatal.5b00007 – volume: 133 start-page: 18122 year: 2011 end-page: 18125 ident: CR25 article-title: Cascade catalysis for the homogeneous hydrogenation of CO to methanol publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208760j – volume: 130 start-page: 16316 year: 2008 end-page: 16323 ident: CR41 article-title: Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805607m – volume: 286 start-page: 51 year: 2012 end-page: 61 ident: CR13 article-title: Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation publication-title: J. Catal. doi: 10.1016/j.jcat.2011.10.012 – volume: 192 start-page: 322 year: 2000 end-page: 334 ident: CR37 article-title: Acetic acid hydrogenation over supported platinum catalysts publication-title: J. Catal. doi: 10.1006/jcat.2000.2863 – volume: 54 start-page: 140 year: 2018 end-page: 143 ident: CR62 article-title: Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa O and SAPO-34 publication-title: Chem. Commun. doi: 10.1039/C7CC08642C – volume: 351 start-page: 1065 year: 2016 end-page: 1068 ident: CR26 article-title: Selective conversion of syngas to light olefins publication-title: Science doi: 10.1126/science.aaf1835 – volume: 136 start-page: 262 year: 2018 end-page: 269 ident: CR61 article-title: The ionized graphene oxide membranes for water-ethanol separation publication-title: Carbon doi: 10.1016/j.carbon.2018.04.077 – volume: 8 start-page: 7279 year: 2018 end-page: 7286 ident: CR18 article-title: In situ formation of FeRh nanoalloys for oxygenate synthesis publication-title: ACS Catal. doi: 10.1021/acscatal.8b02235 – volume: 139 start-page: 33 year: 2010 end-page: 37 ident: CR42 article-title: Dimethyl ether carbonylation to methyl acetate over HZSM-35 publication-title: Catal. Lett. doi: 10.1007/s10562-010-0411-3 – volume: 9 start-page: 4708 year: 2018 end-page: 4718 ident: CR30 article-title: Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates publication-title: Chem. Sci. doi: 10.1039/C8SC01597J – volume: 4 start-page: 2792 year: 2014 end-page: 2800 ident: CR15 article-title: Higher alcohols through CO hydrogenation over CoCu catalysts: influence of precursor activation publication-title: ACS Catal. doi: 10.1021/cs500696z – volume: 10 start-page: 302 year: 2020 end-page: 310 ident: CR46 article-title: Highly active ZnO-ZrO aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide publication-title: ACS Catal. doi: 10.1021/acscatal.9b04309 – volume: 118 start-page: 23918 year: 2014 end-page: 23929 ident: CR51 article-title: Insights into Brønsted acid sites in the zeolite mordenite publication-title: J. Phys. Chem. C. doi: 10.1021/jp5086334 – volume: 23 start-page: 519 year: 2009 ident: 14672_CR7 publication-title: Energy Fuels doi: 10.1021/ef800531e – volume: 55 start-page: 4725 year: 2016 ident: 14672_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601208 – volume: 141 start-page: 49 year: 2011 ident: 14672_CR50 publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2009.11.006 – volume: 7 year: 2016 ident: 14672_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms13058 – volume: 48 start-page: 3193 year: 2019 ident: 14672_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H – volume: 10 start-page: 1536 year: 2018 ident: 14672_CR38 publication-title: ChemCatChem doi: 10.1002/cctc.201701768 – volume: 372 start-page: 370 year: 2019 ident: 14672_CR47 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.03.016 – volume: 57 start-page: 12012 year: 2018 ident: 14672_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807113 – volume: 164 start-page: 425 year: 2011 ident: 14672_CR34 publication-title: Catal. Today doi: 10.1016/j.cattod.2010.10.027 – volume: 10 start-page: 302 year: 2020 ident: 14672_CR46 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04309 – volume: 544 start-page: 68 year: 2017 ident: 14672_CR60 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.09.021 – volume: 60 start-page: 125 year: 2017 ident: 14672_CR1 publication-title: Adv. Catal. doi: 10.1016/bs.acat.2017.09.003 – volume: 136 start-page: 262 year: 2018 ident: 14672_CR61 publication-title: Carbon doi: 10.1016/j.carbon.2018.04.077 – volume: 192 start-page: 322 year: 2000 ident: 14672_CR37 publication-title: J. Catal. doi: 10.1006/jcat.2000.2863 – volume: 118 start-page: 400 year: 1989 ident: 14672_CR45 publication-title: J. Catal. doi: 10.1016/0021-9517(89)90327-8 – volume: 130 start-page: 16316 year: 2008 ident: 14672_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805607m – volume: 1 start-page: 787 year: 2018 ident: 14672_CR3 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0144-z – volume: 9 start-page: 115 year: 1997 ident: 14672_CR48 publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/S0926-2040(97)00051-9 – volume: 54 start-page: 140 year: 2018 ident: 14672_CR62 publication-title: Chem. Commun. doi: 10.1039/C7CC08642C – volume: 60 start-page: 887 year: 2017 ident: 14672_CR10 publication-title: Sci. China Chem. doi: 10.1007/s11426-016-0464-1 – volume: 15 start-page: 2049 year: 2003 ident: 14672_CR53 publication-title: Chem. Mater. doi: 10.1021/cm0204775 – volume: 8 start-page: 7941 year: 2017 ident: 14672_CR63 publication-title: Chem. Sci. doi: 10.1039/C7SC03427J – volume: 6 start-page: 507 year: 2007 ident: 14672_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat1916 – volume: 8 start-page: 7279 year: 2018 ident: 14672_CR18 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02235 – volume: 37 start-page: 75 year: 2013 ident: 14672_CR43 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.03.033 – volume: 118 start-page: 23918 year: 2014 ident: 14672_CR51 publication-title: J. Phys. Chem. C. doi: 10.1021/jp5086334 – volume: 311 start-page: 506 year: 2006 ident: 14672_CR4 publication-title: Science doi: 10.1126/science.1121416 – volume: 45 start-page: 1617 year: 2006 ident: 14672_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503898 – volume: 91 start-page: 304 year: 2016 ident: 14672_CR6 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4842 – volume: 1 start-page: 641 year: 2011 ident: 14672_CR9 publication-title: ACS Catal. doi: 10.1021/cs2001048 – volume: 58 start-page: 4627 year: 2019 ident: 14672_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814611 – volume: 8 start-page: 7025 year: 2018 ident: 14672_CR11 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01391 – volume: 57 start-page: 4692 year: 2018 ident: 14672_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801397 – volume: 9 start-page: 1581 year: 2019 ident: 14672_CR32 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02593B – volume: 53 start-page: 1 year: 2010 ident: 14672_CR20 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(10)53001-3 – volume: 351 start-page: 1065 year: 2016 ident: 14672_CR26 publication-title: Science doi: 10.1126/science.aaf1835 – volume: 50 start-page: 3977 year: 2011 ident: 14672_CR59 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101845j – volume: 46 start-page: 1358 year: 2017 ident: 14672_CR8 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00324A – volume: 4 start-page: 870 year: 2014 ident: 14672_CR22 publication-title: ACS Catal. doi: 10.1021/cs401052k – volume: 3 start-page: 1192 year: 2010 ident: 14672_CR33 publication-title: ChemSusChem doi: 10.1002/cssc.201000109 – volume: 51 start-page: 5810 year: 2012 ident: 14672_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103657 – volume: 9 start-page: 1019 year: 2017 ident: 14672_CR58 publication-title: Nat. Chem. doi: 10.1038/nchem.2794 – volume: 5 start-page: 1922 year: 2015 ident: 14672_CR39 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00007 – volume: 53 start-page: 6397 year: 2014 ident: 14672_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402680 – volume: 7 start-page: 4818 year: 2017 ident: 14672_CR36 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01621B – volume: 3 start-page: 372 year: 2011 ident: 14672_CR24 publication-title: Nat. Chem. doi: 10.1038/nchem.1018 – volume: 36 start-page: 1514 year: 2007 ident: 14672_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/b414039g – volume: 528 start-page: 245 year: 2015 ident: 14672_CR57 publication-title: Nature doi: 10.1038/nature16173 – volume: 139 start-page: 33 year: 2010 ident: 14672_CR42 publication-title: Catal. Lett. doi: 10.1007/s10562-010-0411-3 – volume: 3 start-page: e1701290 year: 2017 ident: 14672_CR44 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701290 – volume: 83 start-page: 170 year: 2016 ident: 14672_CR52 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2016.02.002 – volume: 7 start-page: 477 year: 2015 ident: 14672_CR23 publication-title: Nat. Chem. doi: 10.1038/nchem.2262 – volume: 133 start-page: 18122 year: 2011 ident: 14672_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208760j – volume: 13 start-page: 137 year: 1962 ident: 14672_CR56 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60287-4 – volume: 9 start-page: 4708 year: 2018 ident: 14672_CR30 publication-title: Chem. Sci. doi: 10.1039/C8SC01597J – volume: 3 start-page: 334 year: 2017 ident: 14672_CR28 publication-title: Chem doi: 10.1016/j.chempr.2017.05.007 – volume: 56 start-page: 13618 year: 2017 ident: 14672_CR55 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03500 – volume: 4 start-page: 2792 year: 2014 ident: 14672_CR15 publication-title: ACS Catal. doi: 10.1021/cs500696z – volume: 7 start-page: 5500 year: 2017 ident: 14672_CR17 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01469 – volume: 8 start-page: 2087 year: 2018 ident: 14672_CR35 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00010G – volume: 286 start-page: 51 year: 2012 ident: 14672_CR13 publication-title: J. Catal. doi: 10.1016/j.jcat.2011.10.012 – volume: 10 start-page: 151 year: 1998 ident: 14672_CR49 publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/S0926-2040(97)00028-3 – volume: 184 start-page: 514 year: 1999 ident: 14672_CR54 publication-title: J. Catal. doi: 10.1006/jcat.1999.2457 |
SSID | ssj0000391844 |
Score | 2.6531427 |
Snippet | Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H
2
and CO) is an important but challenging research target. The current... Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H and CO) is an important but challenging research target. The current... Synthesis of ethanol from non-petroleum carbon resources via syngas (a mixture of H2 and CO) is an important but challenging research target. The current... Direct synthesis of ethanol from non-petroleum carbon resources via syngas (CO/H2) is a highly attractive but challenging target. Here, the authors report a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 827 |
SubjectTerms | 140/131 140/146 147/143 639/638/224/685 639/638/77/887 Acetic acid Carbon Carbonyls Catalysis Catalysts Catalytic converters Conversion Decoupling Energy consumption Ethanol Humanities and Social Sciences Methanol multidisciplinary Petroleum Reactors Science Science (multidisciplinary) Selectivity Silicon carbide Synthesis gas Zeolites Zinc oxide Zirconium dioxide |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQEhKXqrxKClSu1BtEOLET20dAIITUXgoSN8uOnRZpSVATDvvvmXGy212gcOltd-PRjmbG83L8DSHfMMgUtrQpY45BgVI7hLzlKddZZfPSikzjReHvP8rLG3F1W9wujPrCd8IGeOBBcMeKBS09L62EcjsTuauUtE4WgvOC-Txe3YOYt1BMRR8M_6WEGG_JMK6OOxF9AlZL-AHcwFIkioD9r2WZL1-WfHZiGgPRxUfyYcwg6cnA-QZZCc0mWRtmSk63iPsJVJOQPkBWTPuFtLRtaFvTbtr8sh29a_qWBmybtxOKvViKuMW0i1Nx4jwJ6qZAjm14it2GcE9jpwcBTLbJzcX59dllOg5SSCtIyPq0FtwJ7aFyCLXjCMdjQXQZq1StPFM6hy-udJ4L6yCgB-9lrcGVgfMR0kO5vUNWm7YJu4R6Jz3zTAegEt56rXQWgrIlL0MOixOSzYRqqhFlHIddTEw87ebKDIowoAgTFWFUQg7nNA8Dxsabq09RV_OViI8dfwCrMaPVmPesJiH7M02bcdN2JucFLySedifk6_wxbDc8Q7FNaB_jGkxhIS1LyKfBMOac8JxBqC-AWi6ZzBKry0-au98R0ltiniCBraOZcf1l69-i-Pw_RLFH1nPcFTjkJtsnq_2fx3AAiVbvvsQ99QQBkSF8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxZu0BRmJG0R1Yie2T6hFVBUSXKDS3iw7dkqlbbI06WH_fWccb8ry6G2z8UR2ZjxP5xtC3qGRqWxtc8YcgwCldQh5y3Oui8aWtRWFxg-Fv36rT8_El0W1SAm3IR2r3OjEqKh932CO_LDkFa8kliI_rn7l2DUKq6uphcZ98gChy_BIl1zIOceC6OdKiPStDOPqcBBRM2DMhD9AGWzZowjb_y9f8-8jk3_UTaM5OnlMdpMfSY8mxj8h90L3lDycOkuunxH3HaiWIV-Bb0zH35zTvqN9S4d1d24HetGNPQ2YPO-XFDOyFNGL6RB748SuEtStgRyT8RRzDuGSxnwPwpg8J2cnn398Os1TO4W8AbdszFvBndAe4ofQOo6gPJZ5iPga1SrPlC7hwtXOc2EdmPXgvWw1KDRQQUJ6CLpfkJ2u78IrQr2TnnmmA1AJb71WughB2ZrXoYTBGSk2L9U0CWscW14sTax5c2UmRhhghImMMCoj72ea1YS0cefoY-TVPBJRsuMf_dW5SZvOKBa09Ly2stDwhNI1sGYnK8F5BUvXGTnYcNqkrTuYW0HLyNv5Nmw6rKTYLvTXcQw6suCcZeTlJBjzTHjJwOBXQC23RGZrqtt3uoufEdhborcgYVofNsJ1O63_v4q9u1exTx6VKO_YxKY4IDvj1XV4DY7U6N7E3XID8XEaSw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGEBIviG8KAwWJNyi0TdokDwgBYpqQxguctLcoadJt0tGOaydx_z122h4cHEi8Xa9x5cZ2_LPT2ADPyMmUtrJplrkMA5TGUclbnnKd17aorMg1HRQ-_lQdLcTHk_JkD-Z2R9ME9jtDO-ontVgtX37_tn6DBv96PDKuXvUimjsFQvQDLfwKXEXPJMlQjye4H1dm5EAJMZ2d2U265Z9iGf9d2PPPTyh_20eN7unwJtyYcCV7OyrCLdgL7W24NnaaXN8B9xmpliG9QKzMhl_AateyrmH9uj21PTtvh44FSqZ3S0YZWkbVjFkfe-XELhPMrZGckvOMchDhK4v5HyprchcWhx--vD9Kp_YKaY0wbUgbwZ3QHuOJ0DhORXps5jECrFWjfKZ0gReucp4L69DNB-9lo3GBwyVJSI9B-D3Yb7s2PADmnfSZz3RAKuGt10rnIShb8SoUODiBfJ5UU0-1x6kFxtLEPXCuzCgIg4IwURBGJfB8Q3MxVt745-h3JKvNSKqaHf_oVqdmMkKjsqCl55WVucYnFK7Gd3ayFJyX-Oo6gYNZ0mbWRFPwkpeS9sATeLq5jUZIOyu2Dd1lHEPAFsFaAvdHxdhwwosMAUCJ1HJLZbZY3b7Tnp_FQt-S0INEtl7MyvWTrb9PxcP_G_4Irhek_9TkJj-A_WF1GR4j0Brck2g9PwAKDyHB priority: 102 providerName: Scholars Portal |
Title | Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis |
URI | https://link.springer.com/article/10.1038/s41467-020-14672-8 https://www.ncbi.nlm.nih.gov/pubmed/32047150 https://www.proquest.com/docview/2353571440 https://www.proquest.com/docview/2354163102 https://pubmed.ncbi.nlm.nih.gov/PMC7012879 https://doaj.org/article/80e97d36a7194142bc87ab7543350d29 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEN-EjcpIvEFEEjux_dhVK1OlTYgxqW-WHTvbpJJMa_bQ_353zgcUBhIvSdrcRU7uznc-278j5AM6mdwUJk4Sm8AApbIIectiptLSZIXhqcKNwqdnxckFXyzz5Q7Jhr0wYdF-gLQM3fSwOuzzmgeTxsEOXoAV75J9hG5HrZ4VszGvgojnkvN-f0zC5AOsWz4oQPU_FF_-uUzyt7nS4ILmT8mTPnak0661z8iOr5-TR101yc0LYs-Ba-XjG4iHaftLQNrUtKnoelNfmjW9rtuGekyYNyuKWViKiMV0HerhhEoS1G6AHRPwFPMM_gcNOR6ELnlJLubH32cncV9CIS4hFGvjijPLlYMxg68sQyAekzgY5ZWyki6RKoMftrCOcWPBlXvnRKWgE4NuhwsHA-1XZK9uav-GUGeFS1yiPHBxZ5ySKvVemoIVPgPiiKTDR9Vljy-OZS5WOsxzM6k7QWgQhA6C0DIiH0eemw5d45_URyirkRKRscMfze2l7jVFy8Qr4VhhRKrgCZkt4Z2tyDljOby6isjhIGndm-taZyxnucB57oi8H2-DoeHsial9cxdoMHiFgCwirzvFGFvCsgScfA7cYktltpq6fae-vgpg3gIjBAHN-jQo189m_f1TvP0_8gPyOEP9x0I26SHZa2_v_DsIplo7IbtiKeAo518mZH86XZwv4Hx0fPb12yRY1iSkKeB4yuU9m1ge5Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4jqxE4cHxDiVW3p40Ir7c3YsVMqLcnSpEL7p_iNzDjJluXRW295eCLbM2N_MxPPEPIcN5nM5CZmzDIwUCqLKW95zFVSmjQ3IlF4UHj_IJ8ciU_TbLpGfo5nYfC3ynFNDAu1a0r0kW-lPOOZxFDkm_n3GKtGYXR1LKHRi8WuX_wAk619vfMB-PsiTbc_Hr6fxENVgbgEdNLFleBWKAcw2leWY24awxwYPmVRFY4VKoUbm1vHhbGwu3nnZKVAr0EThXRge8J3r5CrsPEy1Cg5lUufDmZbL4QYzuYwXmy1IqxEaKPhBSw-K_tfKBPwL2z79y-af8Rpw_a3fYvcHHArfdsL2m2y5us75FpfyXJxl9jPQDXz8RywOO1-A8NNTZuKtov62LT0pO4a6tFZ38woeoApZkumbajFE6pYULsAcnT-U_Rx-G80-Jcwbco9cnQpE32frNdN7R8Q6qx0zDHlgUo441ShEu8Lk_Pcp9A4Isk4qboccptjiY2ZDjF2XuieERoYoQMjdBGRl0uaeZ_Z48LW75BXy5aYlTs8aE6P9aDkumBeScdzIxMFX0htCWO2MhOcZzB0FZHNkdN6WCpafS7YEXm2fA1KjpEbU_vmLLRB4AxgMCIbvWAse8JTBgAjA2q5IjIrXV19U598DYnEJaITCd16NQrXebf-PxUPLx7FU3J9cri_p_d2DnYfkRspyj4W0Ek2yXp3euYfA4jr7JOgOZR8uWxV_QVMplb- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNEmsRPbB4SAsmopVEhQaW_Gjp1SaUmWJhXav8avY8ZJtiyP3nrbbDyR7Zmxv5mxZwh5gptMbgoTJ4lNwECpLKa8ZTFTaWmywvBU4UXhD_vFzgF_N8tnG-TneBcGj1WOa2JYqF1Too98krGc5QJDkZNqOBbxcXv6cvE9xgpSGGkdy2n0IrLnlz_AfGtf7G4Dr59m2fTt5zc78VBhIC4BqXRxxZnlygGk9pVlmKfGJA6MoFJW0iVSZfBgC-sYNxZ2Ou-cqBToOGglFw7sUPjuBXJRsDxFHRMzsfLvYOZ1yflwTydhctLysCqhvYY_YCFa2wtDyYB_4dy_j2v-EbMNW-H0Grk6YFj6qhe662TD1zfIpb6q5fImsZ-Aau7jBeBy2v0GjJuaNhVtl_WhaelR3TXUo-O-mVP0BlPMnEzbUJcnVLSgdgnkGAig6O_w32jwNWEKlVvk4Fwm-jbZrJva3yXUWeESlygPVNwZp6RKvZemYIXPoHFE0nFSdTnkOcdyG3Md4u1M6p4RGhihAyO0jMizFc2iz_JxZuvXyKtVS8zQHf5ojg_1oPBaJl4JxwojUgVfyGwJY7Yi54zlMHQVka2R03pYNlp9KuQRebx6DQqPURxT--YktEEQDcAwInd6wVj1hGUJgI0cqMWayKx1df1NffQ1JBUXiFQEdOv5KFyn3fr_VNw7exSPyGVQUv1-d3_vPrmSoehjLZ10i2x2xyf-AeC5zj4MikPJl_PW1F9gcVs0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-pass+transformation+of+syngas+into+ethanol+with+high+selectivity+by+triple+tandem+catalysis&rft.jtitle=Nature+communications&rft.au=Kang%2C+Jincan&rft.au=He%2C+Shun&rft.au=Zhou%2C+Wei&rft.au=Shen%2C+Zheng&rft.date=2020-02-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-14672-8&rft.externalDocID=10_1038_s41467_020_14672_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |