Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-pot...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; pp. 17640 - 12 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.11.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC
50
down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR. |
---|---|
AbstractList | Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC
50
down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR. Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR. Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR. Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR. |
ArticleNumber | 17640 |
Author | Tan, Joseph-Anthony Rivera, Amber A. Zlock, Lorna Haggie, Peter M. Phuan, Puay-Wah Finkbeiner, Walter E. Verkman, Alan S. Nielson, Dennis W. |
Author_xml | – sequence: 1 givenname: Puay-Wah surname: Phuan fullname: Phuan, Puay-Wah email: puay-wah.phuan@ucsf.edu organization: Department of Medicine, University of California, San Francisco – sequence: 2 givenname: Joseph-Anthony surname: Tan fullname: Tan, Joseph-Anthony organization: Department of Medicine, University of California, San Francisco – sequence: 3 givenname: Amber A. surname: Rivera fullname: Rivera, Amber A. organization: Department of Medicine, University of California, San Francisco – sequence: 4 givenname: Lorna surname: Zlock fullname: Zlock, Lorna organization: Department of Pathology, University of California, San Francisco – sequence: 5 givenname: Dennis W. surname: Nielson fullname: Nielson, Dennis W. organization: Department of Pediatrics, University of California, San Francisco – sequence: 6 givenname: Walter E. surname: Finkbeiner fullname: Finkbeiner, Walter E. organization: Department of Pathology, University of California, San Francisco – sequence: 7 givenname: Peter M. surname: Haggie fullname: Haggie, Peter M. organization: Department of Medicine, University of California, San Francisco – sequence: 8 givenname: Alan S. surname: Verkman fullname: Verkman, Alan S. organization: Department of Medicine, University of California, San Francisco, Department of Physiology, University of California, San Francisco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31776420$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsFuFSEUJabGts_-gAtD4sbNKDDwgI2JebHVpNHE1DVhGGhpZuAJjMlsTD9Df69fIq_Tau2ibLg3nHvuuZdzCPZCDBaAFxi9wagVbzPFTIoGYdmwGoqGPAEHBFHWkJaQvXvxPjjK-RLVw4ikWD4D-y3mfE0JOgA_P-sQxzjo1GxjscHM8Prql4lLVrwuMV1f_Yblwia9naGLCZo5F2-g812K2Wdo9JRtD7sZathb50NN8tRlW2B0cPTBj3qAbgqm-Bjg5vjsKxynokPJz8FTp4dsj27vFfh2_OFs87E5_XLyafP-tDGMotI4LDWxLWYaOW6o7LFAcq07KSln2HYcMSr5WmIrOk5bZLjkouWOdVTQrqftCrxbeLdTN9re1NGSHtQ2VWlpVlF79f9L8BfqPP5QayEwkW0leH1LkOL3yeaiRp-NHQYdbJyyIi2WVDJEdr1ePYBeximFOt4NCgtJGK6ol_cV_ZVy9zUVIBaAqVvOyTplfNG7DVaBflAYqZ0R1GIEVY2gboxQm6wAeVB6x_5oUbsU5QoO5zb9k_1I1R_V9cg3 |
CitedBy_id | crossref_primary_10_1152_ajpcell_00334_2021 crossref_primary_10_1183_23120541_00716_2021 crossref_primary_10_3389_fcell_2021_618135 crossref_primary_10_1016_j_jcf_2023_06_001 crossref_primary_10_1073_pnas_2114886119 crossref_primary_10_1016_j_bcp_2024_116468 crossref_primary_10_1016_j_isci_2021_103710 crossref_primary_10_3389_fphar_2024_1370676 crossref_primary_10_1038_s41598_021_99184_1 crossref_primary_10_1016_j_jcf_2023_06_005 crossref_primary_10_1016_j_pupt_2021_102098 crossref_primary_10_3390_jpm12040632 crossref_primary_10_1016_j_jcf_2024_07_001 crossref_primary_10_1016_j_jcf_2020_07_003 crossref_primary_10_1111_bph_15709 crossref_primary_10_1113_JP285727 crossref_primary_10_1080_17460441_2021_1912732 crossref_primary_10_2147_JEP_S255377 crossref_primary_10_3390_jor2020005 crossref_primary_10_1080_14656566_2023_2230129 crossref_primary_10_1016_j_jcf_2019_12_009 crossref_primary_10_1172_jci_insight_139983 crossref_primary_10_3390_ijms241411457 crossref_primary_10_1183_13993003_02380_2021 crossref_primary_10_1016_j_jcf_2021_03_011 crossref_primary_10_1016_j_ejmech_2023_116120 crossref_primary_10_1016_j_ejphar_2024_176390 crossref_primary_10_3389_fmolb_2023_1155705 crossref_primary_10_3390_jpm13010102 crossref_primary_10_1016_j_jmb_2022_167929 crossref_primary_10_3390_ph13120445 crossref_primary_10_1183_13993003_01341_2022 crossref_primary_10_3389_fped_2022_1062766 crossref_primary_10_1016_j_ejmech_2020_112116 crossref_primary_10_3390_biomedicines13010082 crossref_primary_10_1016_j_ejmech_2020_112631 crossref_primary_10_1093_narmme_ugae017 crossref_primary_10_3389_fphar_2024_1389586 crossref_primary_10_1183_13993003_02774_2020 crossref_primary_10_1183_13993003_00671_2021 crossref_primary_10_26508_lsa_202201857 crossref_primary_10_3390_cells11121868 crossref_primary_10_3390_ph17121602 crossref_primary_10_3389_fcell_2023_1221306 crossref_primary_10_1038_s41598_022_08661_8 crossref_primary_10_1042_BSR20212006 crossref_primary_10_1080_17460441_2020_1750592 crossref_primary_10_1016_j_ab_2020_113829 crossref_primary_10_1016_j_ejmech_2020_112888 |
Cites_doi | 10.1056/NEJMoa1807120 10.1016/S2213-2600(14)70100-6 10.1016/0968-0896(95)00039-J 10.1016/j.jcf.2011.12.005 10.1007/s00018-004-4422-3 10.1093/hmg/ddx196 10.1007/s40291-018-0372-6 10.1038/gim.2014.4 10.1093/nar/gkv762 10.1016/j.jcf.2013.06.008 10.1016/bs.pmch.2018.01.001 10.1016/j.jcf.2018.05.010 10.1124/mol.105.010959 10.1172/JCI28523 10.1016/j.ijpam.2015.05.006 10.1093/hmg/ddy188 10.1097/MOP.0000000000000627 10.1002/ppul.24157 10.1007/978-1-62703-125-7_8 10.1242/jcs.028951 10.1074/jbc.M303098200 10.1146/annurev-genet-111212-133424 10.3109/14756366.2012.716056 10.1091/mbc.e08-09-0950 10.1085/jgp.201711886 10.1111/resp.13437 10.1091/mbc.e14-04-0935 10.1016/j.jmb.2006.10.086 10.3389/fphar.2019.00121 10.1085/jgp.201711946 10.1038/nrm3454 10.1126/science.aaw7611 10.1073/pnas.1605336113 10.1172/jci.insight.121159 10.1152/ajpcell.1993.265.3.C688 10.1016/j.jcf.2018.12.001 10.1016/S0140-6736(16)00576-6 10.1074/jbc.M116.764720 10.1056/NEJMoa1807119 10.1016/j.jcf.2015.07.007 10.1164/rccm.201601-0154OC 10.1085/jgp.201912360 10.1016/j.jcf.2019.02.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-54158-2 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | PMC6881293 31776420 10_1038_s41598_019_54158_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cystic Fibrosis Foundation funderid: http://dx.doi.org/10.13039/100000897 – fundername: Emily's Entourage – fundername: National Institutes of Health, United States grantid: DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517 – fundername: NIDDK NIH HHS grantid: P30 DK072517 – fundername: National Institutes of Health, United States grantid: DK072517 – fundername: NIDDK NIH HHS grantid: P30 DK065988 – fundername: ; – fundername: ; grantid: DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-f19a2e315a0f7c49d18096ab994751eb705497691e8b7430c797837f5b484bd43 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:24:41 EDT 2025 Thu Jul 10 18:51:14 EDT 2025 Wed Aug 13 04:10:54 EDT 2025 Mon Jul 21 05:46:11 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Tue Jul 01 00:56:14 EDT 2025 Fri Feb 21 02:39:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f19a2e315a0f7c49d18096ab994751eb705497691e8b7430c797837f5b484bd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-54158-2 |
PMID | 31776420 |
PQID | 2319189251 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6881293 proquest_miscellaneous_2319495024 proquest_journals_2319189251 pubmed_primary_31776420 crossref_citationtrail_10_1038_s41598_019_54158_2 crossref_primary_10_1038_s41598_019_54158_2 springer_journals_10_1038_s41598_019_54158_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-27 |
PublicationDateYYYYMMDD | 2019-11-27 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mutyam (CR16) 2016; 194 Yang (CR44) 2003; 278 Liu (CR25) 2019; 364 Pranke, Golec, Hinzpeter, Edelman, Semet-Gaudelus (CR8) 2019; 10 Elborn (CR1) 2016; 388 Al-Sadeq (CR32) 2019; 24 Clancy (CR3) 2018; 53 Yeh (CR24) 2019; 151 Lapa (CR39) 2013; 28 Veit (CR9) 2016; 27 Molinski (CR12) 2014; 16 Keating (CR5) 2018; 379 Phuan (CR11) 2018; 17 Kerem (CR18) 2014; 2 CR38 Morris, Cunningham, Benos, Frizzell (CR29) 1993; 265 Han (CR27) 2018; 3 Davies (CR6) 2018; 379 Chang (CR30) 2008; 121 Van Goor (CR28) 2014; 13 Strug, Stephenson, Panjwani, Harris (CR22) 2018; 27 Fulcher, Randell (CR46) 2013; 945 Pop, Maquat (CR35) 2013; 47 Moran, Galietta, Zegarra-Moran (CR26) 2005; 62 Cabrini (CR7) 2019; 23 Xue (CR19) 2017; 26 Du, Lukacs (CR14) 2009; 20 Kym, Wang, Pizzonero, Van der Plas (CR4) 2018; 57 Yu (CR33) 2012; 11 Roy (CR17) 2016; 113 Banjar, Angyalosi (CR31) 2015; 2 Linde (CR36) 2007; 117 Mokrosz, Duszynska, Bojarski, Mokrosz (CR41) 1995; 3 Zomer-van Ommen (CR15) 2016; 15 Gilleron (CR40) 2015; 18 Cil (CR45) 2016; 2 Burgener, Moss (CR2) 2018; 30 Pedemonte (CR43) 2005; 67 Bartyzel, Misztal, Tatarczynska, Chojnacka-Wojcik (CR42) 1989; 41 Yeh, Sohma, Conrath, Hwang (CR20) 2017; 149 Kervestin, Jacobson (CR34) 2012; 13 Clarke (CR37) 2019; 40 Hwang (CR23) 2018; 150 Haggie (CR10) 2017; 292 Valley (CR21) 2018; 18 Cui (CR13) 2007; 365 B Roy (54158_CR17) 2016; 113 D Al-Sadeq (54158_CR32) 2019; 24 DD Zomer-van Ommen (54158_CR15) 2016; 15 O Moran (54158_CR26) 2005; 62 L Cui (54158_CR13) 2007; 365 H-I Yeh (54158_CR20) 2017; 149 GB Lapa (54158_CR39) 2013; 28 MJ Mokrosz (54158_CR41) 1995; 3 O Cil (54158_CR45) 2016; 2 D Keating (54158_CR5) 2018; 379 K Du (54158_CR14) 2009; 20 LA Clarke (54158_CR37) 2019; 40 HC Valley (54158_CR21) 2018; 18 LJ Strug (54158_CR22) 2018; 27 T-C Hwang (54158_CR23) 2018; 150 AP Morris (54158_CR29) 1993; 265 MW-L Pop (54158_CR35) 2013; 47 G Cabrini (54158_CR7) 2019; 23 JP Clancy (54158_CR3) 2018; 53 X Xue (54158_CR19) 2017; 26 HI Yeh (54158_CR24) 2019; 151 SV Molinski (54158_CR12) 2014; 16 P-W Phuan (54158_CR11) 2018; 17 EB Burgener (54158_CR2) 2018; 30 F Liu (54158_CR25) 2019; 364 H Yu (54158_CR33) 2012; 11 XB Chang (54158_CR30) 2008; 121 N Pedemonte (54158_CR43) 2005; 67 L Linde (54158_CR36) 2007; 117 S Kervestin (54158_CR34) 2012; 13 E Kerem (54158_CR18) 2014; 2 I Pranke (54158_CR8) 2019; 10 ST Han (54158_CR27) 2018; 3 PR Kym (54158_CR4) 2018; 57 JC Davies (54158_CR6) 2018; 379 J Gilleron (54158_CR40) 2015; 18 V Mutyam (54158_CR16) 2016; 194 JS Elborn (54158_CR1) 2016; 388 G Veit (54158_CR9) 2016; 27 P Bartyzel (54158_CR42) 1989; 41 H Banjar (54158_CR31) 2015; 2 H Yang (54158_CR44) 2003; 278 54158_CR38 F Van Goor (54158_CR28) 2014; 13 ML Fulcher (54158_CR46) 2013; 945 PM Haggie (54158_CR10) 2017; 292 |
References_xml | – volume: 379 start-page: 1612 year: 2018 end-page: 1620 ident: CR5 article-title: VX16-445-001 Study Group: VX-445-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1807120 – volume: 2 start-page: 539 year: 2014 end-page: 547 ident: CR18 article-title: Cystic Fibrosis Ataluren Study Group: Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomized, double-blind, placebo-controlled phase 3 trial publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(14)70100-6 – volume: 3 start-page: 533 year: 1995 end-page: 538 ident: CR41 article-title: Structure-activity relationship studies of CNS agents–XVII. Spiro[piperidine-4′,1-(1,2,3,4-tetrahydro-beta-carboline)] as a probe defining the extended topographic model of 5-HT1A receptors publication-title: Bioorg. Med. Chem. doi: 10.1016/0968-0896(95)00039-J – volume: 11 start-page: 237 issue: 3 year: 2012 end-page: 45 ident: CR33 article-title: Ivacaftor potentiation of multiple CFTR channels with gating mutations publication-title: J Cyst. Fibros. doi: 10.1016/j.jcf.2011.12.005 – volume: 62 start-page: 446 issue: 4 year: 2005 end-page: 60 ident: CR26 article-title: Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-004-4422-3 – volume: 26 start-page: 3116 year: 2017 end-page: 3129 ident: CR19 article-title: Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx196 – volume: 23 start-page: 263 year: 2019 end-page: 279 ident: CR7 article-title: Innovative therapies for cystic fibrosis: the road from treatment to cure publication-title: Mol. Diagn. Ther. doi: 10.1007/s40291-018-0372-6 – volume: 16 start-page: 625 year: 2014 end-page: 632 ident: CR12 article-title: Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A >G (p.Ile1234V) inform strategies for future medical intervention publication-title: Genetics Med. doi: 10.1038/gim.2014.4 – volume: 18 start-page: 7984 year: 2015 end-page: 8001 ident: CR40 article-title: Identification of siRNA delivery enhancers by a chemical library screen publication-title: Nuc. Acids Res. doi: 10.1093/nar/gkv762 – volume: 13 start-page: 29 issue: 1 year: 2014 end-page: 36 ident: CR28 article-title: Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function publication-title: J Cyst. Fibros. doi: 10.1016/j.jcf.2013.06.008 – volume: 57 start-page: 235 year: 2018 end-page: 276 ident: CR4 article-title: Recent progress in the discovery and development of small-molecule modulators of CFTR publication-title: Prog. Med. Chem. doi: 10.1016/bs.pmch.2018.01.001 – volume: 17 start-page: 595 year: 2018 end-page: 606 ident: CR11 article-title: Combination potentiator (‘co-potentiator’) therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2018.05.010 – volume: 41 start-page: 495 year: 1989 end-page: 504 ident: CR42 article-title: N-aminoalkylderivatives of 1,2,3,4-tetraahydro-beta-carboline-1-spiro-4′-N’-benzylpiperidine–a putative way to novel anxiolytic agents publication-title: Pol. J. Pharmacol. Pharm. – volume: 67 start-page: 1979 year: 2005 end-page: 1807 ident: CR43 article-title: Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating publication-title: Mol. Pharmacol. doi: 10.1124/mol.105.010959 – volume: 117 start-page: 683 year: 2007 end-page: 692 ident: CR36 article-title: Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin publication-title: J. Clin. Invest. doi: 10.1172/JCI28523 – volume: 2 start-page: 47 year: 2015 end-page: 58 ident: CR31 article-title: The road for survival improvement of cystic fibrosis patients in Arab countries publication-title: Int. J. Pediatr. Adolesc. Med. doi: 10.1016/j.ijpam.2015.05.006 – volume: 27 start-page: R173 year: 2018 end-page: R186 ident: CR22 article-title: Recent advances in developing therapeutics for cystic fibrosis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy188 – volume: 30 start-page: 372 year: 2018 end-page: 377 ident: CR2 article-title: Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis publication-title: Curr. Opin. Pediatr. Curr. Opin. Pediatr. doi: 10.1097/MOP.0000000000000627 – volume: 53 start-page: S4 year: 2018 end-page: S11 ident: CR3 article-title: Rapid therapeutic advances in CFTR modulator science publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.24157 – volume: 945 start-page: 109 year: 2013 end-page: 121 ident: CR46 article-title: Human nasal and treacho-bronchial repiratory epithelial cell culture publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-125-7_8 – volume: 151 start-page: 912 issue: 7 year: 2019 end-page: 928 ident: CR24 article-title: Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770 publication-title: J. Gen. Physiol. – volume: 2 start-page: 317 year: 2016 end-page: 327 ident: CR45 article-title: CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation publication-title: Cell. Mol. Gastroentrol. – volume: 121 start-page: 2814 issue: Pt 17 year: 2008 end-page: 23 ident: CR30 article-title: Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator publication-title: J Cell Sci. doi: 10.1242/jcs.028951 – volume: 278 start-page: 35079 year: 2003 end-page: 35085 ident: CR44 article-title: Nanomolar-affinity small-molecular potentiators of ΔF508-CFTR chloride channel gating publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303098200 – volume: 47 start-page: 139 year: 2013 end-page: 165 ident: CR35 article-title: Organizing principles of mammalian nonsense-mediated mRNA decay publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-111212-133424 – ident: CR38 – volume: 28 start-page: 1088 year: 2013 end-page: 1093 ident: CR39 article-title: Regioselective acylation of congeners of 3-amino-1H-pyrazolo[3,4-b]quinolines, their activity on bacterial serine/threonine protein kinases and antibacterial (including antimycobacterial) activity publication-title: J. Enzyme. Inhib. Med. Chem. doi: 10.3109/14756366.2012.716056 – volume: 20 start-page: 1903 year: 2009 end-page: 1915 ident: CR14 article-title: Cooperative assembly and misfolding of CFTR domains publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-09-0950 – volume: 149 start-page: 1105 year: 2017 end-page: 1118 ident: CR20 article-title: A common mechanism for CFTR potentiators publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201711886 – volume: 24 start-page: 127 year: 2019 end-page: 136 ident: CR32 article-title: Spectrum of mutations of cystic fibrosis in the 22 Arab countries: A sytematic review publication-title: Respirology doi: 10.1111/resp.13437 – volume: 27 start-page: 424 year: 2016 end-page: 433 ident: CR9 article-title: From CFTR biology towatds combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e14-04-0935 – volume: 365 start-page: 981 year: 2007 end-page: 994 ident: CR13 article-title: Domain interdependence in the biosynthetic assembly of CFTR publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.10.086 – volume: 10 start-page: 121 year: 2019 ident: CR8 article-title: Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00121 – volume: 150 start-page: 539 year: 2018 end-page: 570 ident: CR23 article-title: Structural mechanism of CFTR function and dysfunction publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201711946 – volume: 13 start-page: 700 year: 2012 end-page: 712 ident: CR34 article-title: NMD: a multifacted response to premature translation termination publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3454 – volume: 364 start-page: 1184 year: 2019 end-page: 1188 ident: CR25 article-title: Structural identification of a hotspot on CFTR for potentiation publication-title: Science doi: 10.1126/science.aaw7611 – volume: 113 start-page: 12508 year: 2016 end-page: 12513 ident: CR17 article-title: Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1605336113 – volume: 3 start-page: e121159 issue: 14 year: 2018 ident: CR27 article-title: Residual function of cystic fibrosis mutants predictes response to small molecule CFTR modulators publication-title: JCI Insight doi: 10.1172/jci.insight.121159 – volume: 265 start-page: C688 issue: 3 Pt 1 year: 1993 end-page: 94 ident: CR29 article-title: Glycosylation status of endogenous CFTR does not affect cAMP-stimulated Cl- secretion in epithelial cells publication-title: Am J Physiol. doi: 10.1152/ajpcell.1993.265.3.C688 – volume: 18 start-page: 476 year: 2018 end-page: 483 ident: CR21 article-title: Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2018.12.001 – volume: 40 start-page: 326 year: 2019 end-page: 334 ident: CR37 article-title: The effect of premature termination codon mutations on CFTR mRNA abundance in human nasal epithelium and intestinal organoids: a basis for read-through therapies in cystic fibrosis publication-title: Hum. Mut. – volume: 388 start-page: 2519 year: 2016 end-page: 2531 ident: CR1 article-title: Cystic Fibrosis publication-title: Lancet doi: 10.1016/S0140-6736(16)00576-6 – volume: 292 start-page: 771 year: 2017 end-page: 785 ident: CR10 article-title: Correctors and potentiators rescue function of the truncated W1282X-cystic fibrosis transmembrane regulator (CFTR) translation product publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.764720 – volume: 379 start-page: 1599 year: 2018 end-page: 1611 ident: CR6 article-title: VX16-659-101 Study Group: VX-659-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1807119 – volume: 15 start-page: 158 year: 2016 end-page: 162 ident: CR15 article-title: Limited premature termination codon supression by read-through agents in cystic fibrosis intestinal organoids publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2015.07.007 – volume: 194 start-page: 1092 year: 2016 end-page: 1103 ident: CR16 article-title: Discovery of clinically approved agents that promote suppression of cystic fibrosis transmembrane conductance regulator nonsense mutations publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201601-0154OC – volume: 379 start-page: 1612 year: 2018 ident: 54158_CR5 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1807120 – volume: 10 start-page: 121 year: 2019 ident: 54158_CR8 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00121 – volume: 15 start-page: 158 year: 2016 ident: 54158_CR15 publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2015.07.007 – volume: 117 start-page: 683 year: 2007 ident: 54158_CR36 publication-title: J. Clin. Invest. doi: 10.1172/JCI28523 – volume: 40 start-page: 326 year: 2019 ident: 54158_CR37 publication-title: Hum. Mut. – volume: 2 start-page: 317 year: 2016 ident: 54158_CR45 publication-title: Cell. Mol. Gastroentrol. – volume: 62 start-page: 446 issue: 4 year: 2005 ident: 54158_CR26 publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-004-4422-3 – volume: 151 start-page: 912 issue: 7 year: 2019 ident: 54158_CR24 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201912360 – volume: 3 start-page: e121159 issue: 14 year: 2018 ident: 54158_CR27 publication-title: JCI Insight doi: 10.1172/jci.insight.121159 – volume: 2 start-page: 47 year: 2015 ident: 54158_CR31 publication-title: Int. J. Pediatr. Adolesc. Med. doi: 10.1016/j.ijpam.2015.05.006 – volume: 18 start-page: 476 year: 2018 ident: 54158_CR21 publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2018.12.001 – volume: 11 start-page: 237 issue: 3 year: 2012 ident: 54158_CR33 publication-title: J Cyst. Fibros. doi: 10.1016/j.jcf.2011.12.005 – volume: 47 start-page: 139 year: 2013 ident: 54158_CR35 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-111212-133424 – volume: 292 start-page: 771 year: 2017 ident: 54158_CR10 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.764720 – volume: 365 start-page: 981 year: 2007 ident: 54158_CR13 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.10.086 – volume: 30 start-page: 372 year: 2018 ident: 54158_CR2 publication-title: Curr. Opin. Pediatr. Curr. Opin. Pediatr. doi: 10.1097/MOP.0000000000000627 – volume: 150 start-page: 539 year: 2018 ident: 54158_CR23 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201711946 – volume: 278 start-page: 35079 year: 2003 ident: 54158_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303098200 – volume: 23 start-page: 263 year: 2019 ident: 54158_CR7 publication-title: Mol. Diagn. Ther. doi: 10.1007/s40291-018-0372-6 – volume: 379 start-page: 1599 year: 2018 ident: 54158_CR6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1807119 – volume: 945 start-page: 109 year: 2013 ident: 54158_CR46 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-125-7_8 – volume: 53 start-page: S4 year: 2018 ident: 54158_CR3 publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.24157 – volume: 113 start-page: 12508 year: 2016 ident: 54158_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1605336113 – volume: 3 start-page: 533 year: 1995 ident: 54158_CR41 publication-title: Bioorg. Med. Chem. doi: 10.1016/0968-0896(95)00039-J – volume: 16 start-page: 625 year: 2014 ident: 54158_CR12 publication-title: Genetics Med. doi: 10.1038/gim.2014.4 – volume: 57 start-page: 235 year: 2018 ident: 54158_CR4 publication-title: Prog. Med. Chem. doi: 10.1016/bs.pmch.2018.01.001 – volume: 27 start-page: 424 year: 2016 ident: 54158_CR9 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e14-04-0935 – volume: 26 start-page: 3116 year: 2017 ident: 54158_CR19 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx196 – volume: 149 start-page: 1105 year: 2017 ident: 54158_CR20 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201711886 – volume: 18 start-page: 7984 year: 2015 ident: 54158_CR40 publication-title: Nuc. Acids Res. doi: 10.1093/nar/gkv762 – volume: 67 start-page: 1979 year: 2005 ident: 54158_CR43 publication-title: Mol. Pharmacol. doi: 10.1124/mol.105.010959 – volume: 388 start-page: 2519 year: 2016 ident: 54158_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(16)00576-6 – volume: 24 start-page: 127 year: 2019 ident: 54158_CR32 publication-title: Respirology doi: 10.1111/resp.13437 – ident: 54158_CR38 doi: 10.1016/j.jcf.2019.02.009 – volume: 265 start-page: C688 issue: 3 Pt 1 year: 1993 ident: 54158_CR29 publication-title: Am J Physiol. doi: 10.1152/ajpcell.1993.265.3.C688 – volume: 194 start-page: 1092 year: 2016 ident: 54158_CR16 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201601-0154OC – volume: 41 start-page: 495 year: 1989 ident: 54158_CR42 publication-title: Pol. J. Pharmacol. Pharm. – volume: 27 start-page: R173 year: 2018 ident: 54158_CR22 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy188 – volume: 13 start-page: 29 issue: 1 year: 2014 ident: 54158_CR28 publication-title: J Cyst. Fibros. doi: 10.1016/j.jcf.2013.06.008 – volume: 2 start-page: 539 year: 2014 ident: 54158_CR18 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(14)70100-6 – volume: 121 start-page: 2814 issue: Pt 17 year: 2008 ident: 54158_CR30 publication-title: J Cell Sci. doi: 10.1242/jcs.028951 – volume: 20 start-page: 1903 year: 2009 ident: 54158_CR14 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-09-0950 – volume: 364 start-page: 1184 year: 2019 ident: 54158_CR25 publication-title: Science doi: 10.1126/science.aaw7611 – volume: 28 start-page: 1088 year: 2013 ident: 54158_CR39 publication-title: J. Enzyme. Inhib. Med. Chem. doi: 10.3109/14756366.2012.716056 – volume: 17 start-page: 595 year: 2018 ident: 54158_CR11 publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2018.05.010 – volume: 13 start-page: 700 year: 2012 ident: 54158_CR34 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3454 |
SSID | ssj0000529419 |
Score | 2.4734466 |
Snippet | Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17640 |
SubjectTerms | 631/154 631/45/269/1147 Cell culture Chloride conductance Clonal deletion Cystic fibrosis Cystic Fibrosis - drug therapy Cystic Fibrosis - genetics Cystic Fibrosis - metabolism Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - metabolism Drug Discovery Drug Synergism Epithelial cells Gene deletion High-Throughput Screening Assays Humanities and Social Sciences Humans multidisciplinary Mutation Piperidine Piperidines - therapeutic use Pyrazoles - therapeutic use Science Science (multidisciplinary) Structure-Activity Relationship |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9RAEB-0Ivgi_je1ygq-6dLs3iabfRIpHkXQB2nh3kL2Hxa85GruHvIi_Rj16_WTOJPkUs5i3xJmQ7KZ2Z3fzOzMALyrMhGlcYGnUeeUkpNxq_PArUf8G3JTZJJyh79-y49P1ZdFthgdbu14rHK7J_YbtW8c-cgPEYcYURhUxx9X55y6RlF0dWyhcRfuUekyOtKlF3rysVAUSwkz5sqks-KwRX1FOWXC8AwvUUh29dENkHnzrOQ_AdNeD80fwcMRQLJPA8cfw51QP4H7Q0vJ7in8xu2yWZK9ylcN4eGOXV1cuma4w-WMNvbVxR825F11DDErcx0Va2YRLeemPWuZqzZt8Mx2rGI-RMShnrW4wYQ1ayKjYiRL_ALSiMRVdjQ_-c6WG2pH3D6D0_nnk6NjPvZY4A6x2ppHYSoZZiKrkFlOGU_1vPLKGqN0JoLVCOkQsRgRCotgI3WafEU6ZlYVyno1ew57dVOHl8BECEhQqZfRqpg6pKZKSeu9RKskrRIQ2z9durEAOfXB-Fn2gfBZUQ7cKZE7Zc-dUibwfnpmNZTfuHX0wZaB5bgU2_JacBJ4O5FxEVFkpKpDsxnGoKWIeCWBFwO_p9chwNJopKUJ6B1JmAZQge5dSn32oy_UnRcFwakEPmxl5vqz_j-L_dtn8QoeSJJfIbjUB7C3_rUJrxEYre2bXvr_AijXDdM priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDcpBRmJG1jEXieOj2jFqkKCA2ql3qL4JSqxSdXsHnJB_Rn07_WXMJMXWgpI3BKNoziZGc83tuczwOsqE1EaF3gadU4lORm3Og_cesS_ITdFJql2-NPn_OhEfTzNTvdATrUw_ab9ntKyH6an3WHvWgw0VAwmDM_wErV7C24TdTtZ9TJfzvMqtHKlhBnrY9JF8YdHd2PQDWB5c3_kb4ukfexZ3Yd7I2hk74duPoC9UD-EO8Mxkt0j-I5DZLOmHJWfN4SBO3Z9-cM1wx26MObV15dXbKi16hjiVOY6ImhmEbPlpj1rmau2bfDMdqxiPkTEnp61OKiEDWsiIwKSNfaAoiBpki1Xx1_YektHELeP4WT14Xh5xMdzFbhDfLbhUZhKhoXIKlSQU8YTh1deWWOUzkSwGmEcohQjQmERYKRO0_yQjplVhbJeLZ7Aft3U4RkwEQIKVOpltCqmDqWpUtJ6LzETSasExPSnSzeSjtPZF9_KfvF7UZSDdkrUTtlrp5QJvJmfOR8oN_7Z-nBSYDm6X1siaDWiMIjdEng1i9FxaDWkqkOzHdpgdogYJYGng77n1yGo0piYpQnoHUuYGxAp966kPvvak3PnRUEQKoG3k8386tbfv-Lg_5o_h7uS7FkILvUh7G8utuEFgqONfdl7w0_x2gux priority: 102 providerName: Springer Nature |
Title | Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants |
URI | https://link.springer.com/article/10.1038/s41598-019-54158-2 https://www.ncbi.nlm.nih.gov/pubmed/31776420 https://www.proquest.com/docview/2319189251 https://www.proquest.com/docview/2319495024 https://pubmed.ncbi.nlm.nih.gov/PMC6881293 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1fi9NAEMCH-4Pgi_jf6FlW8E2j2e0mm30QqeXKUbhDziv0LWSTDXdwTc5LC-ZF7mPo17tP4kw2qdQ7BZ-adjc0ycxkfpPNzAC8TkNeCJ1ZPyhURCk5oW9UZH2TI__aSMehoNzhw6PoYCan83C-BX27o-4C1reGdtRPanZ5_u7b1-YjGvwHlzIev6_RCVGiGNd-iJso-W3YRc-kyFAPO9x3tb6Fllx3uTO377rpn25A5813J_9YQG390uQ-3OuAko2cBjyALVs-hDuuxWTzCL7j7bNa0En6FxXxccOur35klfuG5o0x9_XVT-bysBqGDMuyhoo3swIj6ao-q1mWrmqbM9OwlOW2QC7NWY03HLtkVcGoOMkCj4A8JEmZjScnx2yxovbE9WOYTfZPxgd-13PBz5Ddln7BdSrskIcpCi-TOqf6XlFqtJYq5NYoRDwkGM1tbBA-gkzRsyNVhEbG0uRy-AR2yqq0z4Bxa3FABrkojCyCDEcDKYXJc4FRSpB6wPsrnWRdQXLqi3GetAvjwzhx0klQOkkrnUR48Ga9z4Urx_HP2Xu9AJNesxIEWs1jjVznwav1MBoVrZSkpa1Wbg5GjsgvHjx18l7_HQKXwqAt8EBtaMJ6AhXs3hwpz07bwt1RHBNeefC215nfh_X3s3j-f9NfwF1B-sy5L9Qe7CwvV_YlgtPSDGBbzdUAdkej6Zcpfn7aP_p8jL-Oo_GgfRgxaO3lFyudGy4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgJThA1dpwfHxCC0tWWtitUbaXe0jh2RCU2WciuUC6ojwEvwUP1SZjZ_FRLRW-9JbKT2JnxzDcezwzAyzTguVCZdb08CikkJ3B1FFpXG8S_NlRxICh2eH8cjg7lp6PgaA3-dLEwdKyyk4lLQW3KjPbINxGHKB4rVMfvZt9cqhpF3tWuhEbDFru2_oEmW_V25yPS95UQw-3J1shtqwq4GaKTuZtzlQrr8yDF4WVSGcpgFaZaKRkF3OoIQQzqaMVtrFG9ellEuyNRHmgZS22kj--9BuvSR1NmAOsftsefD_pdHfKbSa7a6BzPjzcr1JAUxcaVG-AlsuWqBrwAay-ezvzHRbvUfMPbcKuFrOx9w2N3YM0Wd-F6U8Syvgc_UUCXU7KQ3VlJCLxmZ6e_srK5QwGCVv3Z6W_WRHrVDFEyy2pKD81ytNXL6qRiWbqorGG6ZikzNkfka1iFIs3OWZkzSn8yxRGQDiY-YlvDyQGbLqgAcnUfDq_k_z-AQVEW9hEwbi02SM-IXMvcy7DVk1JoYwTaQV7qAO_-dJK1Kc-p8sbXZOl69-OkoU6C1EmW1EmEA6_7Z2ZNwo9Le290BEzaxV8l56zqwIu-GZct-WLSwpaLpg_apoiQHHjY0Lv_HEK6CM1Cz4FohRP6DpQSfLWlOPmyTA0exjEBOAfedDxzPqz_z-Lx5bN4DjdGk_29ZG9nvPsEbgriZc5dEW3AYP59YZ8iLJvrZ-1aYHB81cvvLxJYSdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxD-BAkaCE1gbe504PiCEWlYthQqhVtpbiBNHVOomW7IrlAvqY8Cr8Dh9EmbyVy0VvfW2kZ2sk_n7xuOZAXiRBCKXJnXcz3VIKTkBtzp03GaIf11ookBS7vCnvXD7QH2YBtM1-NPnwtCxyl4nNoo6K1PaIx8hDjEiMmiOR3l3LOLz1uTt_JhTBymKtPbtNFoW2XX1D3Tfqjc7W0jrl1JO3u9vbvOuwwBPEakseC5MIt1YBAkuNVUmo2pWYWKNUToQzmoENGivjXCRRVPrp5p2SnQeWBUpm6kxPvcKXNXjQJCM6ake9ncogqaE6fJ0_HE0qtBWUj6bMDzAn8igq7bwHMA9f07zn2BtYwMnt-BmB17Zu5bbbsOaK-7AtbadZX0XfqKqLmfkK_N5SVi8Zqcnv9KyvUJVgv796clv1uZ81QzxMktrKhTNcvTay-qwYmmyrFzGbM0SlrkcMXDGKlRubsHKnFEhlBmugKwxcRTbnOx_YbMltUKu7sHBpXz9-7BelIV7CEw4hwPKz2RuVe6nOOorJW2WSfSI_MQD0X_pOO2Kn1MPjqO4CcKPo7ilTozUiRvqxNKDV8M987b0x4WzN3oCxp0aqOIzpvXg-TCMAkxRmaRw5bKdg14qYiUPHrT0Hv4OwZ1GB9H3QK9wwjCBioOvjhSH35oi4WEUEZTz4HXPM2fL-v9bPLr4LZ7BdRS6-OPO3u5juCGJlYXgUm_A-uL70j1BfLawTxtBYPD1siXvL8m1TKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomolar-potency+%E2%80%98co-potentiator%E2%80%99+therapy+for+cystic+fibrosis+caused+by+a+defined+subset+of+minimal+function+CFTR+mutants&rft.jtitle=Scientific+reports&rft.au=Phuan%2C+Puay-Wah&rft.au=Tan%2C+Joseph-Anthony&rft.au=Rivera%2C+Amber+A.&rft.au=Zlock%2C+Lorna&rft.date=2019-11-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-54158-2&rft.externalDocID=10_1038_s41598_019_54158_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |