Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants

Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-pot...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 17640 - 12
Main Authors Phuan, Puay-Wah, Tan, Joseph-Anthony, Rivera, Amber A., Zlock, Lorna, Nielson, Dennis W., Finkbeiner, Walter E., Haggie, Peter M., Verkman, Alan S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.11.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC 50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.
AbstractList Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC 50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.
Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.
ArticleNumber 17640
Author Tan, Joseph-Anthony
Rivera, Amber A.
Zlock, Lorna
Haggie, Peter M.
Phuan, Puay-Wah
Finkbeiner, Walter E.
Verkman, Alan S.
Nielson, Dennis W.
Author_xml – sequence: 1
  givenname: Puay-Wah
  surname: Phuan
  fullname: Phuan, Puay-Wah
  email: puay-wah.phuan@ucsf.edu
  organization: Department of Medicine, University of California, San Francisco
– sequence: 2
  givenname: Joseph-Anthony
  surname: Tan
  fullname: Tan, Joseph-Anthony
  organization: Department of Medicine, University of California, San Francisco
– sequence: 3
  givenname: Amber A.
  surname: Rivera
  fullname: Rivera, Amber A.
  organization: Department of Medicine, University of California, San Francisco
– sequence: 4
  givenname: Lorna
  surname: Zlock
  fullname: Zlock, Lorna
  organization: Department of Pathology, University of California, San Francisco
– sequence: 5
  givenname: Dennis W.
  surname: Nielson
  fullname: Nielson, Dennis W.
  organization: Department of Pediatrics, University of California, San Francisco
– sequence: 6
  givenname: Walter E.
  surname: Finkbeiner
  fullname: Finkbeiner, Walter E.
  organization: Department of Pathology, University of California, San Francisco
– sequence: 7
  givenname: Peter M.
  surname: Haggie
  fullname: Haggie, Peter M.
  organization: Department of Medicine, University of California, San Francisco
– sequence: 8
  givenname: Alan S.
  surname: Verkman
  fullname: Verkman, Alan S.
  organization: Department of Medicine, University of California, San Francisco, Department of Physiology, University of California, San Francisco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31776420$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFuFSEUJabGts_-gAtD4sbNKDDwgI2JebHVpNHE1DVhGGhpZuAJjMlsTD9Df69fIq_Tau2ibLg3nHvuuZdzCPZCDBaAFxi9wagVbzPFTIoGYdmwGoqGPAEHBFHWkJaQvXvxPjjK-RLVw4ikWD4D-y3mfE0JOgA_P-sQxzjo1GxjscHM8Prql4lLVrwuMV1f_Yblwia9naGLCZo5F2-g812K2Wdo9JRtD7sZathb50NN8tRlW2B0cPTBj3qAbgqm-Bjg5vjsKxynokPJz8FTp4dsj27vFfh2_OFs87E5_XLyafP-tDGMotI4LDWxLWYaOW6o7LFAcq07KSln2HYcMSr5WmIrOk5bZLjkouWOdVTQrqftCrxbeLdTN9re1NGSHtQ2VWlpVlF79f9L8BfqPP5QayEwkW0leH1LkOL3yeaiRp-NHQYdbJyyIi2WVDJEdr1ePYBeximFOt4NCgtJGK6ol_cV_ZVy9zUVIBaAqVvOyTplfNG7DVaBflAYqZ0R1GIEVY2gboxQm6wAeVB6x_5oUbsU5QoO5zb9k_1I1R_V9cg3
CitedBy_id crossref_primary_10_1152_ajpcell_00334_2021
crossref_primary_10_1183_23120541_00716_2021
crossref_primary_10_3389_fcell_2021_618135
crossref_primary_10_1016_j_jcf_2023_06_001
crossref_primary_10_1073_pnas_2114886119
crossref_primary_10_1016_j_bcp_2024_116468
crossref_primary_10_1016_j_isci_2021_103710
crossref_primary_10_3389_fphar_2024_1370676
crossref_primary_10_1038_s41598_021_99184_1
crossref_primary_10_1016_j_jcf_2023_06_005
crossref_primary_10_1016_j_pupt_2021_102098
crossref_primary_10_3390_jpm12040632
crossref_primary_10_1016_j_jcf_2024_07_001
crossref_primary_10_1016_j_jcf_2020_07_003
crossref_primary_10_1111_bph_15709
crossref_primary_10_1113_JP285727
crossref_primary_10_1080_17460441_2021_1912732
crossref_primary_10_2147_JEP_S255377
crossref_primary_10_3390_jor2020005
crossref_primary_10_1080_14656566_2023_2230129
crossref_primary_10_1016_j_jcf_2019_12_009
crossref_primary_10_1172_jci_insight_139983
crossref_primary_10_3390_ijms241411457
crossref_primary_10_1183_13993003_02380_2021
crossref_primary_10_1016_j_jcf_2021_03_011
crossref_primary_10_1016_j_ejmech_2023_116120
crossref_primary_10_1016_j_ejphar_2024_176390
crossref_primary_10_3389_fmolb_2023_1155705
crossref_primary_10_3390_jpm13010102
crossref_primary_10_1016_j_jmb_2022_167929
crossref_primary_10_3390_ph13120445
crossref_primary_10_1183_13993003_01341_2022
crossref_primary_10_3389_fped_2022_1062766
crossref_primary_10_1016_j_ejmech_2020_112116
crossref_primary_10_3390_biomedicines13010082
crossref_primary_10_1016_j_ejmech_2020_112631
crossref_primary_10_1093_narmme_ugae017
crossref_primary_10_3389_fphar_2024_1389586
crossref_primary_10_1183_13993003_02774_2020
crossref_primary_10_1183_13993003_00671_2021
crossref_primary_10_26508_lsa_202201857
crossref_primary_10_3390_cells11121868
crossref_primary_10_3390_ph17121602
crossref_primary_10_3389_fcell_2023_1221306
crossref_primary_10_1038_s41598_022_08661_8
crossref_primary_10_1042_BSR20212006
crossref_primary_10_1080_17460441_2020_1750592
crossref_primary_10_1016_j_ab_2020_113829
crossref_primary_10_1016_j_ejmech_2020_112888
Cites_doi 10.1056/NEJMoa1807120
10.1016/S2213-2600(14)70100-6
10.1016/0968-0896(95)00039-J
10.1016/j.jcf.2011.12.005
10.1007/s00018-004-4422-3
10.1093/hmg/ddx196
10.1007/s40291-018-0372-6
10.1038/gim.2014.4
10.1093/nar/gkv762
10.1016/j.jcf.2013.06.008
10.1016/bs.pmch.2018.01.001
10.1016/j.jcf.2018.05.010
10.1124/mol.105.010959
10.1172/JCI28523
10.1016/j.ijpam.2015.05.006
10.1093/hmg/ddy188
10.1097/MOP.0000000000000627
10.1002/ppul.24157
10.1007/978-1-62703-125-7_8
10.1242/jcs.028951
10.1074/jbc.M303098200
10.1146/annurev-genet-111212-133424
10.3109/14756366.2012.716056
10.1091/mbc.e08-09-0950
10.1085/jgp.201711886
10.1111/resp.13437
10.1091/mbc.e14-04-0935
10.1016/j.jmb.2006.10.086
10.3389/fphar.2019.00121
10.1085/jgp.201711946
10.1038/nrm3454
10.1126/science.aaw7611
10.1073/pnas.1605336113
10.1172/jci.insight.121159
10.1152/ajpcell.1993.265.3.C688
10.1016/j.jcf.2018.12.001
10.1016/S0140-6736(16)00576-6
10.1074/jbc.M116.764720
10.1056/NEJMoa1807119
10.1016/j.jcf.2015.07.007
10.1164/rccm.201601-0154OC
10.1085/jgp.201912360
10.1016/j.jcf.2019.02.009
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-54158-2
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID PMC6881293
31776420
10_1038_s41598_019_54158_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Cystic Fibrosis Foundation
  funderid: http://dx.doi.org/10.13039/100000897
– fundername: Emily's Entourage
– fundername: National Institutes of Health, United States
  grantid: DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517
– fundername: NIDDK NIH HHS
  grantid: P30 DK072517
– fundername: National Institutes of Health, United States
  grantid: DK072517
– fundername: NIDDK NIH HHS
  grantid: P30 DK065988
– fundername: ;
– fundername: ;
  grantid: DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517; DK072517
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-f19a2e315a0f7c49d18096ab994751eb705497691e8b7430c797837f5b484bd43
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:24:41 EDT 2025
Thu Jul 10 18:51:14 EDT 2025
Wed Aug 13 04:10:54 EDT 2025
Mon Jul 21 05:46:11 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Tue Jul 01 00:56:14 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f19a2e315a0f7c49d18096ab994751eb705497691e8b7430c797837f5b484bd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-54158-2
PMID 31776420
PQID 2319189251
PQPubID 2041939
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6881293
proquest_miscellaneous_2319495024
proquest_journals_2319189251
pubmed_primary_31776420
crossref_citationtrail_10_1038_s41598_019_54158_2
crossref_primary_10_1038_s41598_019_54158_2
springer_journals_10_1038_s41598_019_54158_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-27
PublicationDateYYYYMMDD 2019-11-27
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mutyam (CR16) 2016; 194
Yang (CR44) 2003; 278
Liu (CR25) 2019; 364
Pranke, Golec, Hinzpeter, Edelman, Semet-Gaudelus (CR8) 2019; 10
Elborn (CR1) 2016; 388
Al-Sadeq (CR32) 2019; 24
Clancy (CR3) 2018; 53
Yeh (CR24) 2019; 151
Lapa (CR39) 2013; 28
Veit (CR9) 2016; 27
Molinski (CR12) 2014; 16
Keating (CR5) 2018; 379
Phuan (CR11) 2018; 17
Kerem (CR18) 2014; 2
CR38
Morris, Cunningham, Benos, Frizzell (CR29) 1993; 265
Han (CR27) 2018; 3
Davies (CR6) 2018; 379
Chang (CR30) 2008; 121
Van Goor (CR28) 2014; 13
Strug, Stephenson, Panjwani, Harris (CR22) 2018; 27
Fulcher, Randell (CR46) 2013; 945
Pop, Maquat (CR35) 2013; 47
Moran, Galietta, Zegarra-Moran (CR26) 2005; 62
Cabrini (CR7) 2019; 23
Xue (CR19) 2017; 26
Du, Lukacs (CR14) 2009; 20
Kym, Wang, Pizzonero, Van der Plas (CR4) 2018; 57
Yu (CR33) 2012; 11
Roy (CR17) 2016; 113
Banjar, Angyalosi (CR31) 2015; 2
Linde (CR36) 2007; 117
Mokrosz, Duszynska, Bojarski, Mokrosz (CR41) 1995; 3
Zomer-van Ommen (CR15) 2016; 15
Gilleron (CR40) 2015; 18
Cil (CR45) 2016; 2
Burgener, Moss (CR2) 2018; 30
Pedemonte (CR43) 2005; 67
Bartyzel, Misztal, Tatarczynska, Chojnacka-Wojcik (CR42) 1989; 41
Yeh, Sohma, Conrath, Hwang (CR20) 2017; 149
Kervestin, Jacobson (CR34) 2012; 13
Clarke (CR37) 2019; 40
Hwang (CR23) 2018; 150
Haggie (CR10) 2017; 292
Valley (CR21) 2018; 18
Cui (CR13) 2007; 365
B Roy (54158_CR17) 2016; 113
D Al-Sadeq (54158_CR32) 2019; 24
DD Zomer-van Ommen (54158_CR15) 2016; 15
O Moran (54158_CR26) 2005; 62
L Cui (54158_CR13) 2007; 365
H-I Yeh (54158_CR20) 2017; 149
GB Lapa (54158_CR39) 2013; 28
MJ Mokrosz (54158_CR41) 1995; 3
O Cil (54158_CR45) 2016; 2
D Keating (54158_CR5) 2018; 379
K Du (54158_CR14) 2009; 20
LA Clarke (54158_CR37) 2019; 40
HC Valley (54158_CR21) 2018; 18
LJ Strug (54158_CR22) 2018; 27
T-C Hwang (54158_CR23) 2018; 150
AP Morris (54158_CR29) 1993; 265
MW-L Pop (54158_CR35) 2013; 47
G Cabrini (54158_CR7) 2019; 23
JP Clancy (54158_CR3) 2018; 53
X Xue (54158_CR19) 2017; 26
HI Yeh (54158_CR24) 2019; 151
SV Molinski (54158_CR12) 2014; 16
P-W Phuan (54158_CR11) 2018; 17
EB Burgener (54158_CR2) 2018; 30
F Liu (54158_CR25) 2019; 364
H Yu (54158_CR33) 2012; 11
XB Chang (54158_CR30) 2008; 121
N Pedemonte (54158_CR43) 2005; 67
L Linde (54158_CR36) 2007; 117
S Kervestin (54158_CR34) 2012; 13
E Kerem (54158_CR18) 2014; 2
I Pranke (54158_CR8) 2019; 10
ST Han (54158_CR27) 2018; 3
PR Kym (54158_CR4) 2018; 57
JC Davies (54158_CR6) 2018; 379
J Gilleron (54158_CR40) 2015; 18
V Mutyam (54158_CR16) 2016; 194
JS Elborn (54158_CR1) 2016; 388
G Veit (54158_CR9) 2016; 27
P Bartyzel (54158_CR42) 1989; 41
H Banjar (54158_CR31) 2015; 2
H Yang (54158_CR44) 2003; 278
54158_CR38
F Van Goor (54158_CR28) 2014; 13
ML Fulcher (54158_CR46) 2013; 945
PM Haggie (54158_CR10) 2017; 292
References_xml – volume: 379
  start-page: 1612
  year: 2018
  end-page: 1620
  ident: CR5
  article-title: VX16-445-001 Study Group: VX-445-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1807120
– volume: 2
  start-page: 539
  year: 2014
  end-page: 547
  ident: CR18
  article-title: Cystic Fibrosis Ataluren Study Group: Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomized, double-blind, placebo-controlled phase 3 trial
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(14)70100-6
– volume: 3
  start-page: 533
  year: 1995
  end-page: 538
  ident: CR41
  article-title: Structure-activity relationship studies of CNS agents–XVII. Spiro[piperidine-4′,1-(1,2,3,4-tetrahydro-beta-carboline)] as a probe defining the extended topographic model of 5-HT1A receptors
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/0968-0896(95)00039-J
– volume: 11
  start-page: 237
  issue: 3
  year: 2012
  end-page: 45
  ident: CR33
  article-title: Ivacaftor potentiation of multiple CFTR channels with gating mutations
  publication-title: J Cyst. Fibros.
  doi: 10.1016/j.jcf.2011.12.005
– volume: 62
  start-page: 446
  issue: 4
  year: 2005
  end-page: 60
  ident: CR26
  article-title: Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-004-4422-3
– volume: 26
  start-page: 3116
  year: 2017
  end-page: 3129
  ident: CR19
  article-title: Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx196
– volume: 23
  start-page: 263
  year: 2019
  end-page: 279
  ident: CR7
  article-title: Innovative therapies for cystic fibrosis: the road from treatment to cure
  publication-title: Mol. Diagn. Ther.
  doi: 10.1007/s40291-018-0372-6
– volume: 16
  start-page: 625
  year: 2014
  end-page: 632
  ident: CR12
  article-title: Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A >G (p.Ile1234V) inform strategies for future medical intervention
  publication-title: Genetics Med.
  doi: 10.1038/gim.2014.4
– volume: 18
  start-page: 7984
  year: 2015
  end-page: 8001
  ident: CR40
  article-title: Identification of siRNA delivery enhancers by a chemical library screen
  publication-title: Nuc. Acids Res.
  doi: 10.1093/nar/gkv762
– volume: 13
  start-page: 29
  issue: 1
  year: 2014
  end-page: 36
  ident: CR28
  article-title: Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function
  publication-title: J Cyst. Fibros.
  doi: 10.1016/j.jcf.2013.06.008
– volume: 57
  start-page: 235
  year: 2018
  end-page: 276
  ident: CR4
  article-title: Recent progress in the discovery and development of small-molecule modulators of CFTR
  publication-title: Prog. Med. Chem.
  doi: 10.1016/bs.pmch.2018.01.001
– volume: 17
  start-page: 595
  year: 2018
  end-page: 606
  ident: CR11
  article-title: Combination potentiator (‘co-potentiator’) therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2018.05.010
– volume: 41
  start-page: 495
  year: 1989
  end-page: 504
  ident: CR42
  article-title: N-aminoalkylderivatives of 1,2,3,4-tetraahydro-beta-carboline-1-spiro-4′-N’-benzylpiperidine–a putative way to novel anxiolytic agents
  publication-title: Pol. J. Pharmacol. Pharm.
– volume: 67
  start-page: 1979
  year: 2005
  end-page: 1807
  ident: CR43
  article-title: Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.105.010959
– volume: 117
  start-page: 683
  year: 2007
  end-page: 692
  ident: CR36
  article-title: Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI28523
– volume: 2
  start-page: 47
  year: 2015
  end-page: 58
  ident: CR31
  article-title: The road for survival improvement of cystic fibrosis patients in Arab countries
  publication-title: Int. J. Pediatr. Adolesc. Med.
  doi: 10.1016/j.ijpam.2015.05.006
– volume: 27
  start-page: R173
  year: 2018
  end-page: R186
  ident: CR22
  article-title: Recent advances in developing therapeutics for cystic fibrosis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy188
– volume: 30
  start-page: 372
  year: 2018
  end-page: 377
  ident: CR2
  article-title: Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis
  publication-title: Curr. Opin. Pediatr. Curr. Opin. Pediatr.
  doi: 10.1097/MOP.0000000000000627
– volume: 53
  start-page: S4
  year: 2018
  end-page: S11
  ident: CR3
  article-title: Rapid therapeutic advances in CFTR modulator science
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.24157
– volume: 945
  start-page: 109
  year: 2013
  end-page: 121
  ident: CR46
  article-title: Human nasal and treacho-bronchial repiratory epithelial cell culture
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-125-7_8
– volume: 151
  start-page: 912
  issue: 7
  year: 2019
  end-page: 928
  ident: CR24
  article-title: Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770
  publication-title: J. Gen. Physiol.
– volume: 2
  start-page: 317
  year: 2016
  end-page: 327
  ident: CR45
  article-title: CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation
  publication-title: Cell. Mol. Gastroentrol.
– volume: 121
  start-page: 2814
  issue: Pt 17
  year: 2008
  end-page: 23
  ident: CR30
  article-title: Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.028951
– volume: 278
  start-page: 35079
  year: 2003
  end-page: 35085
  ident: CR44
  article-title: Nanomolar-affinity small-molecular potentiators of ΔF508-CFTR chloride channel gating
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303098200
– volume: 47
  start-page: 139
  year: 2013
  end-page: 165
  ident: CR35
  article-title: Organizing principles of mammalian nonsense-mediated mRNA decay
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-111212-133424
– ident: CR38
– volume: 28
  start-page: 1088
  year: 2013
  end-page: 1093
  ident: CR39
  article-title: Regioselective acylation of congeners of 3-amino-1H-pyrazolo[3,4-b]quinolines, their activity on bacterial serine/threonine protein kinases and antibacterial (including antimycobacterial) activity
  publication-title: J. Enzyme. Inhib. Med. Chem.
  doi: 10.3109/14756366.2012.716056
– volume: 20
  start-page: 1903
  year: 2009
  end-page: 1915
  ident: CR14
  article-title: Cooperative assembly and misfolding of CFTR domains
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-09-0950
– volume: 149
  start-page: 1105
  year: 2017
  end-page: 1118
  ident: CR20
  article-title: A common mechanism for CFTR potentiators
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201711886
– volume: 24
  start-page: 127
  year: 2019
  end-page: 136
  ident: CR32
  article-title: Spectrum of mutations of cystic fibrosis in the 22 Arab countries: A sytematic review
  publication-title: Respirology
  doi: 10.1111/resp.13437
– volume: 27
  start-page: 424
  year: 2016
  end-page: 433
  ident: CR9
  article-title: From CFTR biology towatds combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e14-04-0935
– volume: 365
  start-page: 981
  year: 2007
  end-page: 994
  ident: CR13
  article-title: Domain interdependence in the biosynthetic assembly of CFTR
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.10.086
– volume: 10
  start-page: 121
  year: 2019
  ident: CR8
  article-title: Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00121
– volume: 150
  start-page: 539
  year: 2018
  end-page: 570
  ident: CR23
  article-title: Structural mechanism of CFTR function and dysfunction
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201711946
– volume: 13
  start-page: 700
  year: 2012
  end-page: 712
  ident: CR34
  article-title: NMD: a multifacted response to premature translation termination
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3454
– volume: 364
  start-page: 1184
  year: 2019
  end-page: 1188
  ident: CR25
  article-title: Structural identification of a hotspot on CFTR for potentiation
  publication-title: Science
  doi: 10.1126/science.aaw7611
– volume: 113
  start-page: 12508
  year: 2016
  end-page: 12513
  ident: CR17
  article-title: Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1605336113
– volume: 3
  start-page: e121159
  issue: 14
  year: 2018
  ident: CR27
  article-title: Residual function of cystic fibrosis mutants predictes response to small molecule CFTR modulators
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.121159
– volume: 265
  start-page: C688
  issue: 3 Pt 1
  year: 1993
  end-page: 94
  ident: CR29
  article-title: Glycosylation status of endogenous CFTR does not affect cAMP-stimulated Cl- secretion in epithelial cells
  publication-title: Am J Physiol.
  doi: 10.1152/ajpcell.1993.265.3.C688
– volume: 18
  start-page: 476
  year: 2018
  end-page: 483
  ident: CR21
  article-title: Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2018.12.001
– volume: 40
  start-page: 326
  year: 2019
  end-page: 334
  ident: CR37
  article-title: The effect of premature termination codon mutations on CFTR mRNA abundance in human nasal epithelium and intestinal organoids: a basis for read-through therapies in cystic fibrosis
  publication-title: Hum. Mut.
– volume: 388
  start-page: 2519
  year: 2016
  end-page: 2531
  ident: CR1
  article-title: Cystic Fibrosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00576-6
– volume: 292
  start-page: 771
  year: 2017
  end-page: 785
  ident: CR10
  article-title: Correctors and potentiators rescue function of the truncated W1282X-cystic fibrosis transmembrane regulator (CFTR) translation product
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.764720
– volume: 379
  start-page: 1599
  year: 2018
  end-page: 1611
  ident: CR6
  article-title: VX16-659-101 Study Group: VX-659-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1807119
– volume: 15
  start-page: 158
  year: 2016
  end-page: 162
  ident: CR15
  article-title: Limited premature termination codon supression by read-through agents in cystic fibrosis intestinal organoids
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2015.07.007
– volume: 194
  start-page: 1092
  year: 2016
  end-page: 1103
  ident: CR16
  article-title: Discovery of clinically approved agents that promote suppression of cystic fibrosis transmembrane conductance regulator nonsense mutations
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201601-0154OC
– volume: 379
  start-page: 1612
  year: 2018
  ident: 54158_CR5
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1807120
– volume: 10
  start-page: 121
  year: 2019
  ident: 54158_CR8
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00121
– volume: 15
  start-page: 158
  year: 2016
  ident: 54158_CR15
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2015.07.007
– volume: 117
  start-page: 683
  year: 2007
  ident: 54158_CR36
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI28523
– volume: 40
  start-page: 326
  year: 2019
  ident: 54158_CR37
  publication-title: Hum. Mut.
– volume: 2
  start-page: 317
  year: 2016
  ident: 54158_CR45
  publication-title: Cell. Mol. Gastroentrol.
– volume: 62
  start-page: 446
  issue: 4
  year: 2005
  ident: 54158_CR26
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-004-4422-3
– volume: 151
  start-page: 912
  issue: 7
  year: 2019
  ident: 54158_CR24
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201912360
– volume: 3
  start-page: e121159
  issue: 14
  year: 2018
  ident: 54158_CR27
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.121159
– volume: 2
  start-page: 47
  year: 2015
  ident: 54158_CR31
  publication-title: Int. J. Pediatr. Adolesc. Med.
  doi: 10.1016/j.ijpam.2015.05.006
– volume: 18
  start-page: 476
  year: 2018
  ident: 54158_CR21
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2018.12.001
– volume: 11
  start-page: 237
  issue: 3
  year: 2012
  ident: 54158_CR33
  publication-title: J Cyst. Fibros.
  doi: 10.1016/j.jcf.2011.12.005
– volume: 47
  start-page: 139
  year: 2013
  ident: 54158_CR35
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-111212-133424
– volume: 292
  start-page: 771
  year: 2017
  ident: 54158_CR10
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.764720
– volume: 365
  start-page: 981
  year: 2007
  ident: 54158_CR13
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.10.086
– volume: 30
  start-page: 372
  year: 2018
  ident: 54158_CR2
  publication-title: Curr. Opin. Pediatr. Curr. Opin. Pediatr.
  doi: 10.1097/MOP.0000000000000627
– volume: 150
  start-page: 539
  year: 2018
  ident: 54158_CR23
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201711946
– volume: 278
  start-page: 35079
  year: 2003
  ident: 54158_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303098200
– volume: 23
  start-page: 263
  year: 2019
  ident: 54158_CR7
  publication-title: Mol. Diagn. Ther.
  doi: 10.1007/s40291-018-0372-6
– volume: 379
  start-page: 1599
  year: 2018
  ident: 54158_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1807119
– volume: 945
  start-page: 109
  year: 2013
  ident: 54158_CR46
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-125-7_8
– volume: 53
  start-page: S4
  year: 2018
  ident: 54158_CR3
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.24157
– volume: 113
  start-page: 12508
  year: 2016
  ident: 54158_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1605336113
– volume: 3
  start-page: 533
  year: 1995
  ident: 54158_CR41
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/0968-0896(95)00039-J
– volume: 16
  start-page: 625
  year: 2014
  ident: 54158_CR12
  publication-title: Genetics Med.
  doi: 10.1038/gim.2014.4
– volume: 57
  start-page: 235
  year: 2018
  ident: 54158_CR4
  publication-title: Prog. Med. Chem.
  doi: 10.1016/bs.pmch.2018.01.001
– volume: 27
  start-page: 424
  year: 2016
  ident: 54158_CR9
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e14-04-0935
– volume: 26
  start-page: 3116
  year: 2017
  ident: 54158_CR19
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx196
– volume: 149
  start-page: 1105
  year: 2017
  ident: 54158_CR20
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201711886
– volume: 18
  start-page: 7984
  year: 2015
  ident: 54158_CR40
  publication-title: Nuc. Acids Res.
  doi: 10.1093/nar/gkv762
– volume: 67
  start-page: 1979
  year: 2005
  ident: 54158_CR43
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.105.010959
– volume: 388
  start-page: 2519
  year: 2016
  ident: 54158_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00576-6
– volume: 24
  start-page: 127
  year: 2019
  ident: 54158_CR32
  publication-title: Respirology
  doi: 10.1111/resp.13437
– ident: 54158_CR38
  doi: 10.1016/j.jcf.2019.02.009
– volume: 265
  start-page: C688
  issue: 3 Pt 1
  year: 1993
  ident: 54158_CR29
  publication-title: Am J Physiol.
  doi: 10.1152/ajpcell.1993.265.3.C688
– volume: 194
  start-page: 1092
  year: 2016
  ident: 54158_CR16
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201601-0154OC
– volume: 41
  start-page: 495
  year: 1989
  ident: 54158_CR42
  publication-title: Pol. J. Pharmacol. Pharm.
– volume: 27
  start-page: R173
  year: 2018
  ident: 54158_CR22
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy188
– volume: 13
  start-page: 29
  issue: 1
  year: 2014
  ident: 54158_CR28
  publication-title: J Cyst. Fibros.
  doi: 10.1016/j.jcf.2013.06.008
– volume: 2
  start-page: 539
  year: 2014
  ident: 54158_CR18
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(14)70100-6
– volume: 121
  start-page: 2814
  issue: Pt 17
  year: 2008
  ident: 54158_CR30
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.028951
– volume: 20
  start-page: 1903
  year: 2009
  ident: 54158_CR14
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-09-0950
– volume: 364
  start-page: 1184
  year: 2019
  ident: 54158_CR25
  publication-title: Science
  doi: 10.1126/science.aaw7611
– volume: 28
  start-page: 1088
  year: 2013
  ident: 54158_CR39
  publication-title: J. Enzyme. Inhib. Med. Chem.
  doi: 10.3109/14756366.2012.716056
– volume: 17
  start-page: 595
  year: 2018
  ident: 54158_CR11
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2018.05.010
– volume: 13
  start-page: 700
  year: 2012
  ident: 54158_CR34
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3454
SSID ssj0000529419
Score 2.4734466
Snippet Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17640
SubjectTerms 631/154
631/45/269/1147
Cell culture
Chloride conductance
Clonal deletion
Cystic fibrosis
Cystic Fibrosis - drug therapy
Cystic Fibrosis - genetics
Cystic Fibrosis - metabolism
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Drug Discovery
Drug Synergism
Epithelial cells
Gene deletion
High-Throughput Screening Assays
Humanities and Social Sciences
Humans
multidisciplinary
Mutation
Piperidine
Piperidines - therapeutic use
Pyrazoles - therapeutic use
Science
Science (multidisciplinary)
Structure-Activity Relationship
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9RAEB-0Ivgi_je1ygq-6dLs3iabfRIpHkXQB2nh3kL2Hxa85GruHvIi_Rj16_WTOJPkUs5i3xJmQ7KZ2Z3fzOzMALyrMhGlcYGnUeeUkpNxq_PArUf8G3JTZJJyh79-y49P1ZdFthgdbu14rHK7J_YbtW8c-cgPEYcYURhUxx9X55y6RlF0dWyhcRfuUekyOtKlF3rysVAUSwkz5sqks-KwRX1FOWXC8AwvUUh29dENkHnzrOQ_AdNeD80fwcMRQLJPA8cfw51QP4H7Q0vJ7in8xu2yWZK9ylcN4eGOXV1cuma4w-WMNvbVxR825F11DDErcx0Va2YRLeemPWuZqzZt8Mx2rGI-RMShnrW4wYQ1ayKjYiRL_ALSiMRVdjQ_-c6WG2pH3D6D0_nnk6NjPvZY4A6x2ppHYSoZZiKrkFlOGU_1vPLKGqN0JoLVCOkQsRgRCotgI3WafEU6ZlYVyno1ew57dVOHl8BECEhQqZfRqpg6pKZKSeu9RKskrRIQ2z9durEAOfXB-Fn2gfBZUQ7cKZE7Zc-dUibwfnpmNZTfuHX0wZaB5bgU2_JacBJ4O5FxEVFkpKpDsxnGoKWIeCWBFwO_p9chwNJopKUJ6B1JmAZQge5dSn32oy_UnRcFwakEPmxl5vqz_j-L_dtn8QoeSJJfIbjUB7C3_rUJrxEYre2bXvr_AijXDdM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDcpBRmJG1jEXieOj2jFqkKCA2ql3qL4JSqxSdXsHnJB_Rn07_WXMJMXWgpI3BKNoziZGc83tuczwOsqE1EaF3gadU4lORm3Og_cesS_ITdFJql2-NPn_OhEfTzNTvdATrUw_ab9ntKyH6an3WHvWgw0VAwmDM_wErV7C24TdTtZ9TJfzvMqtHKlhBnrY9JF8YdHd2PQDWB5c3_kb4ukfexZ3Yd7I2hk74duPoC9UD-EO8Mxkt0j-I5DZLOmHJWfN4SBO3Z9-cM1wx26MObV15dXbKi16hjiVOY6ImhmEbPlpj1rmau2bfDMdqxiPkTEnp61OKiEDWsiIwKSNfaAoiBpki1Xx1_YektHELeP4WT14Xh5xMdzFbhDfLbhUZhKhoXIKlSQU8YTh1deWWOUzkSwGmEcohQjQmERYKRO0_yQjplVhbJeLZ7Aft3U4RkwEQIKVOpltCqmDqWpUtJ6LzETSasExPSnSzeSjtPZF9_KfvF7UZSDdkrUTtlrp5QJvJmfOR8oN_7Z-nBSYDm6X1siaDWiMIjdEng1i9FxaDWkqkOzHdpgdogYJYGng77n1yGo0piYpQnoHUuYGxAp966kPvvak3PnRUEQKoG3k8386tbfv-Lg_5o_h7uS7FkILvUh7G8utuEFgqONfdl7w0_x2gux
  priority: 102
  providerName: Springer Nature
Title Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants
URI https://link.springer.com/article/10.1038/s41598-019-54158-2
https://www.ncbi.nlm.nih.gov/pubmed/31776420
https://www.proquest.com/docview/2319189251
https://www.proquest.com/docview/2319495024
https://pubmed.ncbi.nlm.nih.gov/PMC6881293
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1fi9NAEMCH-4Pgi_jf6FlW8E2j2e0mm30QqeXKUbhDziv0LWSTDXdwTc5LC-ZF7mPo17tP4kw2qdQ7BZ-adjc0ycxkfpPNzAC8TkNeCJ1ZPyhURCk5oW9UZH2TI__aSMehoNzhw6PoYCan83C-BX27o-4C1reGdtRPanZ5_u7b1-YjGvwHlzIev6_RCVGiGNd-iJso-W3YRc-kyFAPO9x3tb6Fllx3uTO377rpn25A5813J_9YQG390uQ-3OuAko2cBjyALVs-hDuuxWTzCL7j7bNa0En6FxXxccOur35klfuG5o0x9_XVT-bysBqGDMuyhoo3swIj6ao-q1mWrmqbM9OwlOW2QC7NWY03HLtkVcGoOMkCj4A8JEmZjScnx2yxovbE9WOYTfZPxgd-13PBz5Ddln7BdSrskIcpCi-TOqf6XlFqtJYq5NYoRDwkGM1tbBA-gkzRsyNVhEbG0uRy-AR2yqq0z4Bxa3FABrkojCyCDEcDKYXJc4FRSpB6wPsrnWRdQXLqi3GetAvjwzhx0klQOkkrnUR48Ga9z4Urx_HP2Xu9AJNesxIEWs1jjVznwav1MBoVrZSkpa1Wbg5GjsgvHjx18l7_HQKXwqAt8EBtaMJ6AhXs3hwpz07bwt1RHBNeefC215nfh_X3s3j-f9NfwF1B-sy5L9Qe7CwvV_YlgtPSDGBbzdUAdkej6Zcpfn7aP_p8jL-Oo_GgfRgxaO3lFyudGy4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgJThA1dpwfHxCC0tWWtitUbaXe0jh2RCU2WciuUC6ojwEvwUP1SZjZ_FRLRW-9JbKT2JnxzDcezwzAyzTguVCZdb08CikkJ3B1FFpXG8S_NlRxICh2eH8cjg7lp6PgaA3-dLEwdKyyk4lLQW3KjPbINxGHKB4rVMfvZt9cqhpF3tWuhEbDFru2_oEmW_V25yPS95UQw-3J1shtqwq4GaKTuZtzlQrr8yDF4WVSGcpgFaZaKRkF3OoIQQzqaMVtrFG9ellEuyNRHmgZS22kj--9BuvSR1NmAOsftsefD_pdHfKbSa7a6BzPjzcr1JAUxcaVG-AlsuWqBrwAay-ezvzHRbvUfMPbcKuFrOx9w2N3YM0Wd-F6U8Syvgc_UUCXU7KQ3VlJCLxmZ6e_srK5QwGCVv3Z6W_WRHrVDFEyy2pKD81ytNXL6qRiWbqorGG6ZikzNkfka1iFIs3OWZkzSn8yxRGQDiY-YlvDyQGbLqgAcnUfDq_k_z-AQVEW9hEwbi02SM-IXMvcy7DVk1JoYwTaQV7qAO_-dJK1Kc-p8sbXZOl69-OkoU6C1EmW1EmEA6_7Z2ZNwo9Le290BEzaxV8l56zqwIu-GZct-WLSwpaLpg_apoiQHHjY0Lv_HEK6CM1Cz4FohRP6DpQSfLWlOPmyTA0exjEBOAfedDxzPqz_z-Lx5bN4DjdGk_29ZG9nvPsEbgriZc5dEW3AYP59YZ8iLJvrZ-1aYHB81cvvLxJYSdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIhAXxD-BAkaCE1gbe504PiCEWlYthQqhVtpbiBNHVOomW7IrlAvqY8Cr8Dh9EmbyVy0VvfW2kZ2sk_n7xuOZAXiRBCKXJnXcz3VIKTkBtzp03GaIf11ookBS7vCnvXD7QH2YBtM1-NPnwtCxyl4nNoo6K1PaIx8hDjEiMmiOR3l3LOLz1uTt_JhTBymKtPbtNFoW2XX1D3Tfqjc7W0jrl1JO3u9vbvOuwwBPEakseC5MIt1YBAkuNVUmo2pWYWKNUToQzmoENGivjXCRRVPrp5p2SnQeWBUpm6kxPvcKXNXjQJCM6ake9ncogqaE6fJ0_HE0qtBWUj6bMDzAn8igq7bwHMA9f07zn2BtYwMnt-BmB17Zu5bbbsOaK-7AtbadZX0XfqKqLmfkK_N5SVi8Zqcnv9KyvUJVgv796clv1uZ81QzxMktrKhTNcvTay-qwYmmyrFzGbM0SlrkcMXDGKlRubsHKnFEhlBmugKwxcRTbnOx_YbMltUKu7sHBpXz9-7BelIV7CEw4hwPKz2RuVe6nOOorJW2WSfSI_MQD0X_pOO2Kn1MPjqO4CcKPo7ilTozUiRvqxNKDV8M987b0x4WzN3oCxp0aqOIzpvXg-TCMAkxRmaRw5bKdg14qYiUPHrT0Hv4OwZ1GB9H3QK9wwjCBioOvjhSH35oi4WEUEZTz4HXPM2fL-v9bPLr4LZ7BdRS6-OPO3u5juCGJlYXgUm_A-uL70j1BfLawTxtBYPD1siXvL8m1TKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomolar-potency+%E2%80%98co-potentiator%E2%80%99+therapy+for+cystic+fibrosis+caused+by+a+defined+subset+of+minimal+function+CFTR+mutants&rft.jtitle=Scientific+reports&rft.au=Phuan%2C+Puay-Wah&rft.au=Tan%2C+Joseph-Anthony&rft.au=Rivera%2C+Amber+A.&rft.au=Zlock%2C+Lorna&rft.date=2019-11-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-54158-2&rft.externalDocID=10_1038_s41598_019_54158_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon