A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines
Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the hu...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 1283 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.04.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model. |
---|---|
AbstractList | Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model. Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model.Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model. Abstract Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model. |
ArticleNumber | 1283 |
Author | De Groot, Anne S. Nithichanon, Arnone Terahara, Kazutaka Ato, Manabu Martin, William D. Lertmemongkolchai, Ganjana Takeyama, Haruko Moise, Leonard Hagiwara, Haruhisa Odagiri, Takato Takahashi, Yoshimasa Nobusawa, Eri Wada, Yamato Yamamoto, Norio Tashiro, Masato |
Author_xml | – sequence: 1 givenname: Yamato surname: Wada fullname: Wada, Yamato organization: Department of Immunology, National Institute of Infectious Diseases, Department of Life Science and Medical Bioscience, Waseda University – sequence: 2 givenname: Arnone surname: Nithichanon fullname: Nithichanon, Arnone organization: Department of Immunology, National Institute of Infectious Diseases, Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University – sequence: 3 givenname: Eri surname: Nobusawa fullname: Nobusawa, Eri organization: Influenza Virus Research Center, National Institute of Infectious Diseases – sequence: 4 givenname: Leonard surname: Moise fullname: Moise, Leonard organization: Institute for Immunology and Informatics, University of Rhode Island, EpiVax Inc – sequence: 5 givenname: William D. surname: Martin fullname: Martin, William D. organization: EpiVax Inc – sequence: 6 givenname: Norio surname: Yamamoto fullname: Yamamoto, Norio organization: Influenza Virus Research Center, National Institute of Infectious Diseases, Department of Infection Control Science, Graduate School of Medicine, Juntendo University – sequence: 7 givenname: Kazutaka surname: Terahara fullname: Terahara, Kazutaka organization: Department of Immunology, National Institute of Infectious Diseases – sequence: 8 givenname: Haruhisa surname: Hagiwara fullname: Hagiwara, Haruhisa organization: Hagiwara Clinic – sequence: 9 givenname: Takato surname: Odagiri fullname: Odagiri, Takato organization: Influenza Virus Research Center, National Institute of Infectious Diseases – sequence: 10 givenname: Masato orcidid: 0000-0001-8133-1263 surname: Tashiro fullname: Tashiro, Masato organization: Influenza Virus Research Center, National Institute of Infectious Diseases – sequence: 11 givenname: Ganjana surname: Lertmemongkolchai fullname: Lertmemongkolchai, Ganjana organization: Center for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University – sequence: 12 givenname: Haruko surname: Takeyama fullname: Takeyama, Haruko organization: Department of Life Science and Medical Bioscience, Waseda University – sequence: 13 givenname: Anne S. surname: De Groot fullname: De Groot, Anne S. organization: Institute for Immunology and Informatics, University of Rhode Island, EpiVax Inc – sequence: 14 givenname: Manabu surname: Ato fullname: Ato, Manabu organization: Department of Immunology, National Institute of Infectious Diseases – sequence: 15 givenname: Yoshimasa surname: Takahashi fullname: Takahashi, Yoshimasa email: ytakahas@niid.go.jp organization: Department of Immunology, National Institute of Infectious Diseases |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28455520$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsFuFSEUnZgaW2t_wIUhceNmFBgYYGPSNNY2aXSjGzeEgcsrzxmoMFPz_PrSvta8NlESuATOOTm597xs9mKK0DSvCX5PcCc_FEa4ki0mou5O0JY_aw4oZrylHaV7O_f95qiUNa6LU8WIetHsU8k45xQfND-O0eUymRj-gENTWgrU08GIgoM4Bx-goJ-wQWYKMSFjgyvIp4zG9BuFaVpiWkEMNswblDw6E18UujbWhgjlVfPcm7HA0X09bL6ffvp2ctZefP18fnJ80VrO8Nx6orBX1gsQDqz3SlgCkhkHph-MZMJRZgYzUOo5F0IKTo3CtjcDEwNXojtszre6Lpm1vsphMnmjkwn67iHllTZ5DnYEzRV12IPlnZVMMjsoyqzxHKDnVPK-an3cal0twwTO1h5kMz4SffwTw6VepWvNWYdl31WBd_cCOf1aoMx6CsXCOJoItbuaSNVxpvpeVejbJ9B1WnKsrdJE9UQSghWpqDe7jv5aeRhhBcgtwOZUSgav6zTMHNKtwTBqgvVtYPQ2MLoGRt8FRvNKpU-oD-r_JXVbUqnguIK8Y_vfrBsdzdLc |
CitedBy_id | crossref_primary_10_1016_j_ymthe_2020_11_027 crossref_primary_10_3389_fimmu_2024_1474346 crossref_primary_10_1371_journal_ppat_1011554 crossref_primary_10_1038_s41467_019_11821_6 crossref_primary_10_1016_j_csbj_2020_12_039 crossref_primary_10_3389_fimmu_2019_02274 crossref_primary_10_3389_fimmu_2020_00442 crossref_primary_10_1016_j_biopha_2024_116983 crossref_primary_10_1038_s41467_020_14579_4 crossref_primary_10_1016_j_vaccine_2023_06_019 crossref_primary_10_1038_s41598_021_89016_7 crossref_primary_10_1080_14760584_2024_2303015 crossref_primary_10_1016_j_vaccine_2019_07_033 crossref_primary_10_1080_14760584_2022_2012456 crossref_primary_10_1208_s12248_023_00852_z crossref_primary_10_1080_21645515_2020_1793711 crossref_primary_10_3390_v11030252 crossref_primary_10_1080_22221751_2025_2467770 crossref_primary_10_1093_intimm_dxy069 crossref_primary_10_1093_bib_bbac190 crossref_primary_10_1080_21645515_2019_1703453 crossref_primary_10_18632_oncotarget_25399 crossref_primary_10_3389_fimmu_2023_1247876 crossref_primary_10_1080_21645515_2018_1495303 crossref_primary_10_1016_j_clim_2020_108661 crossref_primary_10_1111_imm_12816 crossref_primary_10_3389_fimmu_2021_690348 crossref_primary_10_1002_ame2_12449 crossref_primary_10_3390_v11030300 crossref_primary_10_1002_advs_201800494 crossref_primary_10_1016_j_celrep_2024_114259 crossref_primary_10_3389_fmicb_2017_01898 crossref_primary_10_3390_v13061011 |
Cites_doi | 10.1172/JCI32460 10.4049/jimmunol.181.8.5306 10.1038/44385 10.2807/1560-7917.ES2014.19.25.20838 10.1038/289373a0 10.1016/j.cimid.2010.02.006 10.1182/blood-2009-08-239145 10.1001/jama.2014.12854 10.1128/JVI.02226-09 10.1080/21645515.2015.1052197 10.1056/NEJMoa0908535 10.1016/s0140-6736(06)68656-x 10.1007/978-3-540-92165-3_3 10.1016/s0140-6736(09)62026-2 10.1186/1471-2105-15-s4-s1 10.4161/hv.24615 10.1084/jem.20142284 10.4049/jimmunol.1001395 10.1073/pnas.1115369109 10.1056/NEJMoa1006736 10.4049/jimmunol.1600046 10.1128/jcm.42.4.1782-1784.2004 10.1084/jem.164.4.1114 10.1586/14760584.2016.1123098 10.1126/scitranslmed.3008761 10.1111/j.1600-065X.2010.00939.x 10.4161/hv.25598 10.4161/hv.28135 10.1128/CVI.00272-14 10.1016/j.tim.2014.08.008 10.1086/598954 10.1146/annurev.biochem.69.1.531 10.1080/21645515.2015.1061159 10.1007/s12185-008-0215-z 10.1038/nm.2612 10.1056/NEJMoa0907413 10.1016/j.vaccine.2010.10.077 10.1016/s0140-6736(99)01241-6 10.1182/blood-2012-07-409755 10.1056/NEJMc1313186 10.1093/infdis/jis684 10.4049/jimmunol.180.3.1758 10.1093/infdis/jiu662 10.1056/NEJMoa055778 10.1016/s0140-6736(09)62003-1 10.1371/journal.pone.0049704 10.1016/j.jhep.2014.08.026 10.3201/eid2002.131094 10.1073/pnas.0911580106 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-017-01372-5 |
DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_592d0fec53c8484cb924caf5ee652856 PMC5430863 28455520 10_1038_s41598_017_01372_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-f190f9cf7e7decff97c1e84adea6ba847d24abab22f55778752a90c6ab47b5973 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:21:55 EDT 2025 Thu Aug 21 14:37:26 EDT 2025 Thu Jul 10 19:11:26 EDT 2025 Wed Aug 13 10:57:05 EDT 2025 Wed Feb 19 02:43:11 EST 2025 Tue Jul 01 01:32:51 EDT 2025 Thu Apr 24 23:03:36 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f190f9cf7e7decff97c1e84adea6ba847d24abab22f55778752a90c6ab47b5973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8133-1263 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-01372-5 |
PMID | 28455520 |
PQID | 1961811091 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_592d0fec53c8484cb924caf5ee652856 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5430863 proquest_miscellaneous_1893549669 proquest_journals_1961811091 pubmed_primary_28455520 crossref_citationtrail_10_1038_s41598_017_01372_5 crossref_primary_10_1038_s41598_017_01372_5 springer_journals_10_1038_s41598_017_01372_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-28 |
PublicationDateYYYYMMDD | 2017-04-28 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | LiuRH7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated toleranceHum Vaccin Immunother2015112241225210.1080/21645515.2015.1052197260905774635734 HeLIntegrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflageBMC bioinformatics201415Suppl 4S12014AIPC.1601....1H10.1186/1471-2105-15-s4-s1251042214094998 ScherlePAGerhardWFunctional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutininJ Exp Med1986164111411281:CAS:528:DyaL28XlvV2jtLw%3D10.1084/jem.164.4.11142944982 PlennevauxESheldonEBlatterMReeves-HocheMKDenisMImmune response after a single vaccination against 2009 influenza A H1N1 in USA: a preliminary report of two randomised controlled phase 2 trialsLancet201037541481:CAS:528:DC%2BC3cXotl2j10.1016/s0140-6736(09)62026-220018365 GreenbaumJAPre-existing immunity against swine-origin H1N1 influenza viruses in the general human populationProc Natl Acad Sci USA200910620365203702009PNAS..10620365G10.1073/pnas.0911580106199180652777968 WuJSafety and effectiveness of a 2009 H1N1 vaccine in BeijingN Engl J Med2010363241624231:CAS:528:DC%2BC3cXhsF2ltb7N10.1056/NEJMoa100673621158658 ChevalierMFWeissLThe split personality of regulatory T cells in HIV infectionBlood201312129371:CAS:528:DC%2BC3sXps1eruw%3D%3D10.1182/blood-2012-07-40975523043072 CoxNJSubbaraoKInfluenzaLancet1999354127712821:STN:280:DyaK1MvkvV2mug%3D%3D10.1016/s0140-6736(99)01241-610520648 GreenbergMEResponse to a monovalent 2009 influenza A (H1N1) vaccineN Engl J Med2009361240524131:CAS:528:DC%2BD1MXhsFKisr7P10.1056/NEJMoa090741319745216 RichardsKASeasonal influenza can poise hosts for CD4 T-cell immunity to H7N9 avian influenzaJ Infect Dis201521286941:CAS:528:DC%2BC1cXjs1Wr10.1093/infdis/jiu66225492919 OkadaSHaradaHItoTSaitoTSuzuSEarly development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34+ cellsInt J Hematol20088847648210.1007/s12185-008-0215-z19039627 BressonJ-LSafety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trialLancet2006367165716641:CAS:528:DC%2BD28XkvVCks74%3D10.1016/s0140-6736(06)68656-x16714186 MoiseLUniversal H1N1 influenza vaccine development: identification of consensus class II hemagglutinin and neuraminidase epitopes derived from strains circulating between 1980 and 2011Hum Vaccin Immunother20139159816071:CAS:528:DC%2BC2cXls1SgtQ%3D%3D10.4161/hv.2559823846304 KurosakiTAibaYKometaniKMoriyamaSTakahashiYUnique properties of memory B cells of different isotypesImmunol Rev20102371041161:CAS:528:DC%2BC3cXhtFKrtbzN10.1111/j.1600-065X.2010.00939.x20727032 TakahashiYProtective immunity afforded by inactivated H5N1 (NIBRG-14) vaccine requires antibodies against both hemagglutinin and neuraminidase in miceJ Infect Dis2009199162916371:CAS:528:DC%2BD1MXmvVOmur4%3D10.1086/59895419385735 LeeLYMemory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individualsJ Clin Invest20081183478349010.1172/JCI32460188024962542885 de SouzaVAUFUse of an immunoglobulin G avidity test to discriminate between primary and secondary dengue virus infectionsJ Clin Microbiol2004421782178410.1128/jcm.42.4.1782-1784.200415071049387572 HuJZhuYZhaoBLiJLiuLGuKZhangWSuHTengZTangSYuanZFengZWuFLimited human-to-human transmission of avian influenza A(H7N9) virus, Shanghai, China, March to April 2013Eurosurveillance201419252083810.2807/1560-7917.ES2014.19.25.2083824993556 KrammerFAn H7N1 influenza virus vaccine induces broadly reactive antibody responses against H7N9 in humansClin Vaccine Immunol201421115311631:CAS:528:DC%2BC2cXhs1emurjJ10.1128/CVI.00272-14249433834135918 MoiseLiVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccinesHum Vaccin Immunother2015112312232110.1080/21645515.2015.1061159261559594635942 TreanorJJCampbellJDZangwillKMRoweTWolffMSafety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccineN Engl J Med2006354134313511:CAS:528:DC%2BD28XjtVCju7k%3D10.1056/NEJMoa05577816571878 GuoLHuman antibody responses to avian influenza A(H7N9) virus, 2013Emerg Infect Dis20142019220010.3201/eid2002.131094244474233901473 MoiseLT cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunityExpert Rev Vaccines2016156076171:CAS:528:DC%2BC28XisFKgurY%3D10.1586/14760584.2016.112309826588466 OnoderaTMemory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfectionProc Natl Acad Sci USA2012109248524902012PNAS..109.2485O10.1073/pnas.1115369109223083863289300 SallustoFLenigDForsterRLippMLanzavecchiaATwo subsets of memory T lymphocytes with distinct homing potentials and effector functionsNature19994017087121999Natur.401..708S1:CAS:528:DyaK1MXntVWntrw%3D10.1038/4438510537110 WatanabeTWatanabeSMaherEANeumannGKawaokaYPandemic potential of avian influenza A (H7N9) virusesTrends Microbiol2014226236311:CAS:528:DC%2BC2cXhsV2ktrvO10.1016/j.tim.2014.08.008252643124252989 RichardsKATophamDChavesFASantAJCutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virusJ Immunol2010185499850021:CAS:528:DC%2BC3cXhtlWhsr7P10.4049/jimmunol.100139520889549 RotiMHealthy human subjects have CD4+ T cells directed against H5N1 influenza virusJ Immunol2008180175817681:CAS:528:DC%2BD1cXotlKhsw%3D%3D10.4049/jimmunol.180.3.175818209073 SubbramanianRABashaSShataMTBradyRCBernsteinDIPandemic and seasonal H1N1 influenza hemagglutinin-specific T cell responses elicited by seasonal influenza vaccinationVaccine201028825882671:CAS:528:DC%2BC3cXhsFWqtbfM10.1016/j.vaccine.2010.10.07721050903 MoiseLThe two-faced T cell epitope: examining the host-microbe interface with JanusMatrixHum Vaccin Immunother20139157715861:CAS:528:DC%2BC2cXls1SgsQ%3D%3D10.4161/hv.24615235842513974887 LosikoffPTHCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patientsJ Hepatol20156248551:CAS:528:DC%2BC2cXhslyksLbP10.1016/j.jhep.2014.08.02625157982 NayakJLCD4+ T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccineJ Infect Dis20132072973051:CAS:528:DC%2BC3sXktFCquw%3D%3D10.1093/infdis/jis68423148285 FioreAEBridgesCBCoxNJSeasonal influenza vaccinesCurr Top Microbiol Immunol200933343821:CAS:528:DC%2BC3cXitFCru7w%3D10.1007/978-3-540-92165-3_319768400 GeXAssessment of seasonal influenza A virus-specific CD4 T-cell responses to 2009 pandemic H1N1 swine-origin influenza A virusJ Virol201084331233191:CAS:528:DC%2BC3cXktFOgtr0%3D10.1128/JVI.02226-09200715642838145 CouchRBPatelSMWade-BowersCLNinoDA randomized clinical trial of an inactivated avian influenza A (H7N7) vaccinePLoS One20127e497042012PLoSO...749704C1:CAS:528:DC%2BC38XhvFSks7bF10.1371/journal.pone.0049704232399683519847 WileyDCWilsonIASkehelJJStructural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variationNature19812893733781981Natur.289..373W1:CAS:528:DyaL3MXhvFSjtbw%3D10.1038/289373a06162101 Bart, S. A. et al. A cell culture-derived MF59-adjuvanted pandemic A/H7N9 vaccine is immunogenic in adults. Sci Transl Med6, 234ra255, doi:10.1126/scitranslmed.3008761 (2014). AdachiYDistinct germinal center selection at local sites shapes memory B cell response to viral escapeJ Exp Med2015212170917231:CAS:528:DC%2BC28Xht12jurs%3D10.1084/jem.20142284263244444577849 LiangXFSafety and immunogenicity of 2009 pandemic influenza A H1N1 vaccines in China: a multicentre, double-blind, randomised, placebo-controlled trialLancet201037556661:CAS:528:DC%2BC3cXotl2h10.1016/s0140-6736(09)62003-120018364 ShawJWangYHItoTArimaKLiuYJPlasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70Blood2010115305130571:CAS:528:DC%2BC3cXltlWru7s%3D10.1182/blood-2009-08-239145201390962858470 ZhuFCA novel influenza A (H1N1) vaccine in various age groupsN Engl J Med2009361241424231:CAS:528:DC%2BD1MXhsFKisr7I10.1056/NEJMoa090853519846844 De GrootASCross-conservation of T-cell epitopes: now even more relevant to (H7N9) influenza vaccine designHum Vaccin Immunother2014102562621:CAS:528:DC%2BC2cXhsFCisrzK10.4161/hv.28135245256184185886 SkehelJJWileyDCReceptor binding and membrane fusion in virus entry: the influenza hemagglutininAnnu Rev Biochem2000695315691:CAS:528:DC%2BD3cXnt1ajtbY%3D10.1146/annurev.biochem.69.1.53110966468 MoensLWuytsMMeytsIDe BoeckKBossuytXHuman memory B lymphocyte subsets fulfill distinct roles in the anti-polysaccharide and anti-protein immune responseJ Immunol2008181530653121:CAS:528:DC%2BD1cXhtF2hs7bN10.4049/jimmunol.181.8.530618832686 SatohMEvaluation of a recombinant measles virus expressing hepatitis C virus envelope proteins by infection of human PBL-NOD/Scid/Jak3null mouseComp Immunol Microbiol Infect Dis201033e818810.1016/j.cimid.2010.02.006202990977112578 OnoderaTWhole-virion influenza vaccine recalls an early burst of high-affinity memory B cell response through TLR signalingJ Immunol2016196417241841:CAS:528:DC%2BC28XntlCnurw%3D10.4049/jimmunol.160004627053762 WilkinsonTMPreexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humansNat Med2012182742801:CAS:528:DC%2BC38XhtlOlt7c%3D10.1038/nm.261222286307 MulliganMJSerological responses to an avian influenza A/H7N9 vaccine mixed at the point-of-use with MF59 adjuvant: a randomized clinical trialJAMA2014312140914191:CAS:528:DC%2BC2cXhvFSltbnP10.1001/jama.2014.1285425291577 World Health Organization Influenza (Seasonal), http://w KA Richards (1372_CR13) 2010; 185 R Liu (1372_CR28) 2015; 11 J Hu (1372_CR43) 2014; 19 1372_CR33 JJ Treanor (1372_CR22) 2006; 354 J-L Bresson (1372_CR21) 2006; 367 LF Fries (1372_CR32) 2013; 369 JJ Skehel (1372_CR4) 2000; 69 FC Zhu (1372_CR10) 2009; 361 MF Chevalier (1372_CR39) 2013; 121 L Moens (1372_CR35) 2008; 181 DC Wiley (1372_CR3) 1981; 289 NJ Cox (1372_CR2) 1999; 354 X Ge (1372_CR14) 2010; 84 RA Subbramanian (1372_CR15) 2010; 28 MJ Mulligan (1372_CR23) 2014; 312 T Kurosaki (1372_CR36) 2010; 237 S Okada (1372_CR29) 2008; 88 L Moise (1372_CR46) 2013; 9 TM Wilkinson (1372_CR17) 2012; 18 KA Richards (1372_CR20) 2015; 212 RB Couch (1372_CR26) 2012; 7 L Moise (1372_CR47) 2013; 9 T Onodera (1372_CR6) 2016; 196 M Satoh (1372_CR30) 2010; 33 E Plennevaux (1372_CR9) 2010; 375 J Shaw (1372_CR38) 2010; 115 T Onodera (1372_CR50) 2012; 109 Y Adachi (1372_CR49) 2015; 212 M Roti (1372_CR19) 2008; 180 XF Liang (1372_CR8) 2010; 375 LY Lee (1372_CR18) 2008; 118 L Moise (1372_CR40) 2016; 15 AE Fiore (1372_CR5) 2009; 333 PA Scherle (1372_CR34) 1986; 164 F Krammer (1372_CR25) 2014; 21 L He (1372_CR41) 2014; 15 ME Greenberg (1372_CR7) 2009; 361 JA Greenbaum (1372_CR12) 2009; 106 1372_CR1 AS De Groot (1372_CR27) 2014; 10 L Guo (1372_CR24) 2014; 20 VAUF de Souza (1372_CR31) 2004; 42 F Sallusto (1372_CR37) 1999; 401 Y Takahashi (1372_CR48) 2009; 199 J Wu (1372_CR11) 2010; 363 JL Nayak (1372_CR16) 2013; 207 T Watanabe (1372_CR44) 2014; 22 L Moise (1372_CR45) 2015; 11 PT Losikoff (1372_CR42) 2015; 62 20018365 - Lancet. 2010 Jan 2;375(9708):41-8 18802496 - J Clin Invest. 2008 Oct;118(10 ):3478-90 24447423 - Emerg Infect Dis. 2014 Feb;20(2):192-200 2944982 - J Exp Med. 1986 Oct 1;164(4):1114-28 24943383 - Clin Vaccine Immunol. 2014 Aug;21(8):1153-63 20727032 - Immunol Rev. 2010 Sep;237(1):104-16 22308386 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2485-90 18209073 - J Immunol. 2008 Feb 1;180(3):1758-68 27053762 - J Immunol. 2016 May 15;196(10):4172-84 23148285 - J Infect Dis. 2013 Jan 15;207(2):297-305 10520648 - Lancet. 1999 Oct 9;354(9186):1277-82 20889549 - J Immunol. 2010 Nov 1;185(9):4998-5002 24786323 - Sci Transl Med. 2014 Apr 30;6(234):234ra55 16571878 - N Engl J Med. 2006 Mar 30;354(13):1343-51 16714186 - Lancet. 2006 May 20;367(9523):1657-64 20018364 - Lancet. 2010 Jan 2;375(9708):56-66 26588466 - Expert Rev Vaccines. 2016 May;15(5):607-17 23584251 - Hum Vaccin Immunother. 2013 Jul;9(7):1577-86 21158658 - N Engl J Med. 2010 Dec 16;363(25):2416-23 21050903 - Vaccine. 2010 Dec 6;28(52):8258-67 25104221 - BMC Bioinformatics. 2014;15 Suppl 4:S1 20139096 - Blood. 2010 Apr 15;115(15):3051-7 25264312 - Trends Microbiol. 2014 Nov;22(11):623-31 19768400 - Curr Top Microbiol Immunol. 2009;333:43-82 20071564 - J Virol. 2010 Apr;84(7):3312-9 23846304 - Hum Vaccin Immunother. 2013 Jul;9(7):1598-607 18832686 - J Immunol. 2008 Oct 15;181(8):5306-12 23239968 - PLoS One. 2012;7(12):e49704 15071049 - J Clin Microbiol. 2004 Apr;42(4):1782-4 19039627 - Int J Hematol. 2008 Dec;88(5):476-82 10537110 - Nature. 1999 Oct 14;401(6754):708-12 19745216 - N Engl J Med. 2009 Dec 17;361(25):2405-13 6162101 - Nature. 1981 Jan 29;289(5796):373-8 24993556 - Euro Surveill. 2014 Jun 26;19(25):null 25157982 - J Hepatol. 2015 Jan;62(1):48-55 19918065 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20365-70 10966468 - Annu Rev Biochem. 2000;69:531-69 23043072 - Blood. 2013 Jan 3;121(1):29-37 22286307 - Nat Med. 2012 Jan 29;18(2):274-80 20299097 - Comp Immunol Microbiol Infect Dis. 2010 Dec;33(6):e81-8 25492919 - J Infect Dis. 2015 Jul 1;212(1):86-94 19385735 - J Infect Dis. 2009 Jun 1;199(11):1629-37 26324444 - J Exp Med. 2015 Sep 21;212(10):1709-23 25291577 - JAMA. 2014 Oct 8;312(14):1409-19 19846844 - N Engl J Med. 2009 Dec 17;361(25):2414-23 26155959 - Hum Vaccin Immunother. 2015;11(9):2312-21 26090577 - Hum Vaccin Immunother. 2015;11(9):2241-52 24224560 - N Engl J Med. 2013 Dec 26;369(26):2564-6 24525618 - Hum Vaccin Immunother. 2014;10(2):256-62 |
References_xml | – reference: OnoderaTWhole-virion influenza vaccine recalls an early burst of high-affinity memory B cell response through TLR signalingJ Immunol2016196417241841:CAS:528:DC%2BC28XntlCnurw%3D10.4049/jimmunol.160004627053762 – reference: WileyDCWilsonIASkehelJJStructural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variationNature19812893733781981Natur.289..373W1:CAS:528:DyaL3MXhvFSjtbw%3D10.1038/289373a06162101 – reference: KurosakiTAibaYKometaniKMoriyamaSTakahashiYUnique properties of memory B cells of different isotypesImmunol Rev20102371041161:CAS:528:DC%2BC3cXhtFKrtbzN10.1111/j.1600-065X.2010.00939.x20727032 – reference: De GrootASCross-conservation of T-cell epitopes: now even more relevant to (H7N9) influenza vaccine designHum Vaccin Immunother2014102562621:CAS:528:DC%2BC2cXhsFCisrzK10.4161/hv.28135245256184185886 – reference: LosikoffPTHCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patientsJ Hepatol20156248551:CAS:528:DC%2BC2cXhslyksLbP10.1016/j.jhep.2014.08.02625157982 – reference: AdachiYDistinct germinal center selection at local sites shapes memory B cell response to viral escapeJ Exp Med2015212170917231:CAS:528:DC%2BC28Xht12jurs%3D10.1084/jem.20142284263244444577849 – reference: RichardsKATophamDChavesFASantAJCutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virusJ Immunol2010185499850021:CAS:528:DC%2BC3cXhtlWhsr7P10.4049/jimmunol.100139520889549 – reference: World Health Organization Influenza (Seasonal), http://www.who.int/mediacentre/factsheets/fs211/en/ (2014). – reference: SallustoFLenigDForsterRLippMLanzavecchiaATwo subsets of memory T lymphocytes with distinct homing potentials and effector functionsNature19994017087121999Natur.401..708S1:CAS:528:DyaK1MXntVWntrw%3D10.1038/4438510537110 – reference: WatanabeTWatanabeSMaherEANeumannGKawaokaYPandemic potential of avian influenza A (H7N9) virusesTrends Microbiol2014226236311:CAS:528:DC%2BC2cXhsV2ktrvO10.1016/j.tim.2014.08.008252643124252989 – reference: SatohMEvaluation of a recombinant measles virus expressing hepatitis C virus envelope proteins by infection of human PBL-NOD/Scid/Jak3null mouseComp Immunol Microbiol Infect Dis201033e818810.1016/j.cimid.2010.02.006202990977112578 – reference: CoxNJSubbaraoKInfluenzaLancet1999354127712821:STN:280:DyaK1MvkvV2mug%3D%3D10.1016/s0140-6736(99)01241-610520648 – reference: KrammerFAn H7N1 influenza virus vaccine induces broadly reactive antibody responses against H7N9 in humansClin Vaccine Immunol201421115311631:CAS:528:DC%2BC2cXhs1emurjJ10.1128/CVI.00272-14249433834135918 – reference: BressonJ-LSafety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trialLancet2006367165716641:CAS:528:DC%2BD28XkvVCks74%3D10.1016/s0140-6736(06)68656-x16714186 – reference: HeLIntegrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflageBMC bioinformatics201415Suppl 4S12014AIPC.1601....1H10.1186/1471-2105-15-s4-s1251042214094998 – reference: SkehelJJWileyDCReceptor binding and membrane fusion in virus entry: the influenza hemagglutininAnnu Rev Biochem2000695315691:CAS:528:DC%2BD3cXnt1ajtbY%3D10.1146/annurev.biochem.69.1.53110966468 – reference: GreenbaumJAPre-existing immunity against swine-origin H1N1 influenza viruses in the general human populationProc Natl Acad Sci USA200910620365203702009PNAS..10620365G10.1073/pnas.0911580106199180652777968 – reference: MoiseLThe two-faced T cell epitope: examining the host-microbe interface with JanusMatrixHum Vaccin Immunother20139157715861:CAS:528:DC%2BC2cXls1SgsQ%3D%3D10.4161/hv.24615235842513974887 – reference: GuoLHuman antibody responses to avian influenza A(H7N9) virus, 2013Emerg Infect Dis20142019220010.3201/eid2002.131094244474233901473 – reference: NayakJLCD4+ T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccineJ Infect Dis20132072973051:CAS:528:DC%2BC3sXktFCquw%3D%3D10.1093/infdis/jis68423148285 – reference: HuJZhuYZhaoBLiJLiuLGuKZhangWSuHTengZTangSYuanZFengZWuFLimited human-to-human transmission of avian influenza A(H7N9) virus, Shanghai, China, March to April 2013Eurosurveillance201419252083810.2807/1560-7917.ES2014.19.25.2083824993556 – reference: RotiMHealthy human subjects have CD4+ T cells directed against H5N1 influenza virusJ Immunol2008180175817681:CAS:528:DC%2BD1cXotlKhsw%3D%3D10.4049/jimmunol.180.3.175818209073 – reference: MoensLWuytsMMeytsIDe BoeckKBossuytXHuman memory B lymphocyte subsets fulfill distinct roles in the anti-polysaccharide and anti-protein immune responseJ Immunol2008181530653121:CAS:528:DC%2BD1cXhtF2hs7bN10.4049/jimmunol.181.8.530618832686 – reference: FriesLFSmithGEGlennGMA recombinant viruslike particle influenza A (H7N9) vaccineN Engl J Med2013369256425661:CAS:528:DC%2BC2cXhsl2gurk%3D10.1056/NEJMc131318624224560 – reference: ShawJWangYHItoTArimaKLiuYJPlasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70Blood2010115305130571:CAS:528:DC%2BC3cXltlWru7s%3D10.1182/blood-2009-08-239145201390962858470 – reference: OnoderaTMemory B cells in the lung participate in protective humoral immune responses to pulmonary influenza virus reinfectionProc Natl Acad Sci USA2012109248524902012PNAS..109.2485O10.1073/pnas.1115369109223083863289300 – reference: CouchRBPatelSMWade-BowersCLNinoDA randomized clinical trial of an inactivated avian influenza A (H7N7) vaccinePLoS One20127e497042012PLoSO...749704C1:CAS:528:DC%2BC38XhvFSks7bF10.1371/journal.pone.0049704232399683519847 – reference: PlennevauxESheldonEBlatterMReeves-HocheMKDenisMImmune response after a single vaccination against 2009 influenza A H1N1 in USA: a preliminary report of two randomised controlled phase 2 trialsLancet201037541481:CAS:528:DC%2BC3cXotl2j10.1016/s0140-6736(09)62026-220018365 – reference: TreanorJJCampbellJDZangwillKMRoweTWolffMSafety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccineN Engl J Med2006354134313511:CAS:528:DC%2BD28XjtVCju7k%3D10.1056/NEJMoa05577816571878 – reference: ZhuFCA novel influenza A (H1N1) vaccine in various age groupsN Engl J Med2009361241424231:CAS:528:DC%2BD1MXhsFKisr7I10.1056/NEJMoa090853519846844 – reference: LiuRH7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated toleranceHum Vaccin Immunother2015112241225210.1080/21645515.2015.1052197260905774635734 – reference: OkadaSHaradaHItoTSaitoTSuzuSEarly development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34+ cellsInt J Hematol20088847648210.1007/s12185-008-0215-z19039627 – reference: RichardsKASeasonal influenza can poise hosts for CD4 T-cell immunity to H7N9 avian influenzaJ Infect Dis201521286941:CAS:528:DC%2BC1cXjs1Wr10.1093/infdis/jiu66225492919 – reference: de SouzaVAUFUse of an immunoglobulin G avidity test to discriminate between primary and secondary dengue virus infectionsJ Clin Microbiol2004421782178410.1128/jcm.42.4.1782-1784.200415071049387572 – reference: ChevalierMFWeissLThe split personality of regulatory T cells in HIV infectionBlood201312129371:CAS:528:DC%2BC3sXps1eruw%3D%3D10.1182/blood-2012-07-40975523043072 – reference: LiangXFSafety and immunogenicity of 2009 pandemic influenza A H1N1 vaccines in China: a multicentre, double-blind, randomised, placebo-controlled trialLancet201037556661:CAS:528:DC%2BC3cXotl2h10.1016/s0140-6736(09)62003-120018364 – reference: WilkinsonTMPreexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humansNat Med2012182742801:CAS:528:DC%2BC38XhtlOlt7c%3D10.1038/nm.261222286307 – reference: SubbramanianRABashaSShataMTBradyRCBernsteinDIPandemic and seasonal H1N1 influenza hemagglutinin-specific T cell responses elicited by seasonal influenza vaccinationVaccine201028825882671:CAS:528:DC%2BC3cXhsFWqtbfM10.1016/j.vaccine.2010.10.07721050903 – reference: MoiseLiVAX: an integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccinesHum Vaccin Immunother2015112312232110.1080/21645515.2015.1061159261559594635942 – reference: GeXAssessment of seasonal influenza A virus-specific CD4 T-cell responses to 2009 pandemic H1N1 swine-origin influenza A virusJ Virol201084331233191:CAS:528:DC%2BC3cXktFOgtr0%3D10.1128/JVI.02226-09200715642838145 – reference: Bart, S. A. et al. A cell culture-derived MF59-adjuvanted pandemic A/H7N9 vaccine is immunogenic in adults. Sci Transl Med6, 234ra255, doi:10.1126/scitranslmed.3008761 (2014). – reference: FioreAEBridgesCBCoxNJSeasonal influenza vaccinesCurr Top Microbiol Immunol200933343821:CAS:528:DC%2BC3cXitFCru7w%3D10.1007/978-3-540-92165-3_319768400 – reference: MulliganMJSerological responses to an avian influenza A/H7N9 vaccine mixed at the point-of-use with MF59 adjuvant: a randomized clinical trialJAMA2014312140914191:CAS:528:DC%2BC2cXhvFSltbnP10.1001/jama.2014.1285425291577 – reference: MoiseLUniversal H1N1 influenza vaccine development: identification of consensus class II hemagglutinin and neuraminidase epitopes derived from strains circulating between 1980 and 2011Hum Vaccin Immunother20139159816071:CAS:528:DC%2BC2cXls1SgtQ%3D%3D10.4161/hv.2559823846304 – reference: LeeLYMemory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individualsJ Clin Invest20081183478349010.1172/JCI32460188024962542885 – reference: TakahashiYProtective immunity afforded by inactivated H5N1 (NIBRG-14) vaccine requires antibodies against both hemagglutinin and neuraminidase in miceJ Infect Dis2009199162916371:CAS:528:DC%2BD1MXmvVOmur4%3D10.1086/59895419385735 – reference: WuJSafety and effectiveness of a 2009 H1N1 vaccine in BeijingN Engl J Med2010363241624231:CAS:528:DC%2BC3cXhsF2ltb7N10.1056/NEJMoa100673621158658 – reference: GreenbergMEResponse to a monovalent 2009 influenza A (H1N1) vaccineN Engl J Med2009361240524131:CAS:528:DC%2BD1MXhsFKisr7P10.1056/NEJMoa090741319745216 – reference: ScherlePAGerhardWFunctional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutininJ Exp Med1986164111411281:CAS:528:DyaL28XlvV2jtLw%3D10.1084/jem.164.4.11142944982 – reference: MoiseLT cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunityExpert Rev Vaccines2016156076171:CAS:528:DC%2BC28XisFKgurY%3D10.1586/14760584.2016.112309826588466 – volume: 118 start-page: 3478 year: 2008 ident: 1372_CR18 publication-title: J Clin Invest doi: 10.1172/JCI32460 – volume: 181 start-page: 5306 year: 2008 ident: 1372_CR35 publication-title: J Immunol doi: 10.4049/jimmunol.181.8.5306 – volume: 401 start-page: 708 year: 1999 ident: 1372_CR37 publication-title: Nature doi: 10.1038/44385 – volume: 19 start-page: 20838 issue: 25 year: 2014 ident: 1372_CR43 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES2014.19.25.20838 – volume: 289 start-page: 373 year: 1981 ident: 1372_CR3 publication-title: Nature doi: 10.1038/289373a0 – volume: 33 start-page: e81 year: 2010 ident: 1372_CR30 publication-title: Comp Immunol Microbiol Infect Dis doi: 10.1016/j.cimid.2010.02.006 – volume: 115 start-page: 3051 year: 2010 ident: 1372_CR38 publication-title: Blood doi: 10.1182/blood-2009-08-239145 – volume: 312 start-page: 1409 year: 2014 ident: 1372_CR23 publication-title: JAMA doi: 10.1001/jama.2014.12854 – volume: 84 start-page: 3312 year: 2010 ident: 1372_CR14 publication-title: J Virol doi: 10.1128/JVI.02226-09 – volume: 11 start-page: 2241 year: 2015 ident: 1372_CR28 publication-title: Hum Vaccin Immunother doi: 10.1080/21645515.2015.1052197 – volume: 361 start-page: 2414 year: 2009 ident: 1372_CR10 publication-title: N Engl J Med doi: 10.1056/NEJMoa0908535 – volume: 367 start-page: 1657 year: 2006 ident: 1372_CR21 publication-title: Lancet doi: 10.1016/s0140-6736(06)68656-x – volume: 333 start-page: 43 year: 2009 ident: 1372_CR5 publication-title: Curr Top Microbiol Immunol doi: 10.1007/978-3-540-92165-3_3 – volume: 375 start-page: 41 year: 2010 ident: 1372_CR9 publication-title: Lancet doi: 10.1016/s0140-6736(09)62026-2 – volume: 15 start-page: S1 issue: Suppl 4 year: 2014 ident: 1372_CR41 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-15-s4-s1 – volume: 9 start-page: 1577 year: 2013 ident: 1372_CR47 publication-title: Hum Vaccin Immunother doi: 10.4161/hv.24615 – volume: 212 start-page: 1709 year: 2015 ident: 1372_CR49 publication-title: J Exp Med doi: 10.1084/jem.20142284 – volume: 185 start-page: 4998 year: 2010 ident: 1372_CR13 publication-title: J Immunol doi: 10.4049/jimmunol.1001395 – volume: 109 start-page: 2485 year: 2012 ident: 1372_CR50 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1115369109 – volume: 363 start-page: 2416 year: 2010 ident: 1372_CR11 publication-title: N Engl J Med doi: 10.1056/NEJMoa1006736 – volume: 196 start-page: 4172 year: 2016 ident: 1372_CR6 publication-title: J Immunol doi: 10.4049/jimmunol.1600046 – volume: 42 start-page: 1782 year: 2004 ident: 1372_CR31 publication-title: J Clin Microbiol doi: 10.1128/jcm.42.4.1782-1784.2004 – volume: 164 start-page: 1114 year: 1986 ident: 1372_CR34 publication-title: J Exp Med doi: 10.1084/jem.164.4.1114 – volume: 15 start-page: 607 year: 2016 ident: 1372_CR40 publication-title: Expert Rev Vaccines doi: 10.1586/14760584.2016.1123098 – ident: 1372_CR33 doi: 10.1126/scitranslmed.3008761 – volume: 237 start-page: 104 year: 2010 ident: 1372_CR36 publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2010.00939.x – volume: 9 start-page: 1598 year: 2013 ident: 1372_CR46 publication-title: Hum Vaccin Immunother doi: 10.4161/hv.25598 – volume: 10 start-page: 256 year: 2014 ident: 1372_CR27 publication-title: Hum Vaccin Immunother doi: 10.4161/hv.28135 – volume: 21 start-page: 1153 year: 2014 ident: 1372_CR25 publication-title: Clin Vaccine Immunol doi: 10.1128/CVI.00272-14 – volume: 22 start-page: 623 year: 2014 ident: 1372_CR44 publication-title: Trends Microbiol doi: 10.1016/j.tim.2014.08.008 – volume: 199 start-page: 1629 year: 2009 ident: 1372_CR48 publication-title: J Infect Dis doi: 10.1086/598954 – volume: 69 start-page: 531 year: 2000 ident: 1372_CR4 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.69.1.531 – volume: 11 start-page: 2312 year: 2015 ident: 1372_CR45 publication-title: Hum Vaccin Immunother doi: 10.1080/21645515.2015.1061159 – volume: 88 start-page: 476 year: 2008 ident: 1372_CR29 publication-title: Int J Hematol doi: 10.1007/s12185-008-0215-z – volume: 18 start-page: 274 year: 2012 ident: 1372_CR17 publication-title: Nat Med doi: 10.1038/nm.2612 – volume: 361 start-page: 2405 year: 2009 ident: 1372_CR7 publication-title: N Engl J Med doi: 10.1056/NEJMoa0907413 – volume: 28 start-page: 8258 year: 2010 ident: 1372_CR15 publication-title: Vaccine doi: 10.1016/j.vaccine.2010.10.077 – volume: 354 start-page: 1277 year: 1999 ident: 1372_CR2 publication-title: Lancet doi: 10.1016/s0140-6736(99)01241-6 – volume: 121 start-page: 29 year: 2013 ident: 1372_CR39 publication-title: Blood doi: 10.1182/blood-2012-07-409755 – volume: 369 start-page: 2564 year: 2013 ident: 1372_CR32 publication-title: N Engl J Med doi: 10.1056/NEJMc1313186 – volume: 207 start-page: 297 year: 2013 ident: 1372_CR16 publication-title: J Infect Dis doi: 10.1093/infdis/jis684 – volume: 180 start-page: 1758 year: 2008 ident: 1372_CR19 publication-title: J Immunol doi: 10.4049/jimmunol.180.3.1758 – volume: 212 start-page: 86 year: 2015 ident: 1372_CR20 publication-title: J Infect Dis doi: 10.1093/infdis/jiu662 – volume: 354 start-page: 1343 year: 2006 ident: 1372_CR22 publication-title: N Engl J Med doi: 10.1056/NEJMoa055778 – ident: 1372_CR1 – volume: 375 start-page: 56 year: 2010 ident: 1372_CR8 publication-title: Lancet doi: 10.1016/s0140-6736(09)62003-1 – volume: 7 start-page: e49704 year: 2012 ident: 1372_CR26 publication-title: PLoS One doi: 10.1371/journal.pone.0049704 – volume: 62 start-page: 48 year: 2015 ident: 1372_CR42 publication-title: J Hepatol doi: 10.1016/j.jhep.2014.08.026 – volume: 20 start-page: 192 year: 2014 ident: 1372_CR24 publication-title: Emerg Infect Dis doi: 10.3201/eid2002.131094 – volume: 106 start-page: 20365 year: 2009 ident: 1372_CR12 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0911580106 – reference: 10520648 - Lancet. 1999 Oct 9;354(9186):1277-82 – reference: 25104221 - BMC Bioinformatics. 2014;15 Suppl 4:S1 – reference: 23239968 - PLoS One. 2012;7(12):e49704 – reference: 2944982 - J Exp Med. 1986 Oct 1;164(4):1114-28 – reference: 25492919 - J Infect Dis. 2015 Jul 1;212(1):86-94 – reference: 26324444 - J Exp Med. 2015 Sep 21;212(10):1709-23 – reference: 19385735 - J Infect Dis. 2009 Jun 1;199(11):1629-37 – reference: 21050903 - Vaccine. 2010 Dec 6;28(52):8258-67 – reference: 25157982 - J Hepatol. 2015 Jan;62(1):48-55 – reference: 19846844 - N Engl J Med. 2009 Dec 17;361(25):2414-23 – reference: 16714186 - Lancet. 2006 May 20;367(9523):1657-64 – reference: 20299097 - Comp Immunol Microbiol Infect Dis. 2010 Dec;33(6):e81-8 – reference: 19745216 - N Engl J Med. 2009 Dec 17;361(25):2405-13 – reference: 10537110 - Nature. 1999 Oct 14;401(6754):708-12 – reference: 27053762 - J Immunol. 2016 May 15;196(10):4172-84 – reference: 18209073 - J Immunol. 2008 Feb 1;180(3):1758-68 – reference: 19039627 - Int J Hematol. 2008 Dec;88(5):476-82 – reference: 25264312 - Trends Microbiol. 2014 Nov;22(11):623-31 – reference: 26588466 - Expert Rev Vaccines. 2016 May;15(5):607-17 – reference: 10966468 - Annu Rev Biochem. 2000;69:531-69 – reference: 24525618 - Hum Vaccin Immunother. 2014;10(2):256-62 – reference: 24993556 - Euro Surveill. 2014 Jun 26;19(25):null – reference: 24943383 - Clin Vaccine Immunol. 2014 Aug;21(8):1153-63 – reference: 6162101 - Nature. 1981 Jan 29;289(5796):373-8 – reference: 22286307 - Nat Med. 2012 Jan 29;18(2):274-80 – reference: 18802496 - J Clin Invest. 2008 Oct;118(10 ):3478-90 – reference: 20889549 - J Immunol. 2010 Nov 1;185(9):4998-5002 – reference: 20018364 - Lancet. 2010 Jan 2;375(9708):56-66 – reference: 16571878 - N Engl J Med. 2006 Mar 30;354(13):1343-51 – reference: 15071049 - J Clin Microbiol. 2004 Apr;42(4):1782-4 – reference: 25291577 - JAMA. 2014 Oct 8;312(14):1409-19 – reference: 24447423 - Emerg Infect Dis. 2014 Feb;20(2):192-200 – reference: 20727032 - Immunol Rev. 2010 Sep;237(1):104-16 – reference: 24786323 - Sci Transl Med. 2014 Apr 30;6(234):234ra55 – reference: 26090577 - Hum Vaccin Immunother. 2015;11(9):2241-52 – reference: 21158658 - N Engl J Med. 2010 Dec 16;363(25):2416-23 – reference: 26155959 - Hum Vaccin Immunother. 2015;11(9):2312-21 – reference: 23148285 - J Infect Dis. 2013 Jan 15;207(2):297-305 – reference: 20071564 - J Virol. 2010 Apr;84(7):3312-9 – reference: 19918065 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20365-70 – reference: 20018365 - Lancet. 2010 Jan 2;375(9708):41-8 – reference: 18832686 - J Immunol. 2008 Oct 15;181(8):5306-12 – reference: 23043072 - Blood. 2013 Jan 3;121(1):29-37 – reference: 23846304 - Hum Vaccin Immunother. 2013 Jul;9(7):1598-607 – reference: 22308386 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2485-90 – reference: 24224560 - N Engl J Med. 2013 Dec 26;369(26):2564-6 – reference: 19768400 - Curr Top Microbiol Immunol. 2009;333:43-82 – reference: 20139096 - Blood. 2010 Apr 15;115(15):3051-7 – reference: 23584251 - Hum Vaccin Immunother. 2013 Jul;9(7):1577-86 |
SSID | ssj0000529419 |
Score | 2.3638062 |
Snippet | Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic... Abstract Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1283 |
SubjectTerms | 13/1 631/250/255/2514 631/250/590/2294 64/60 82/80 Amino acids Amino Acids - genetics Amino Acids - immunology Animal models Animals Antibodies, Viral - immunology Disease Models, Animal Epitopes Epitopes, T-Lymphocyte - genetics Epitopes, T-Lymphocyte - immunology Genomes Hemagglutinins Humanities and Social Sciences Humans Immunogenicity Immunogenicity, Vaccine Immunoglobulin G Influenza Influenza A Virus, H3N2 Subtype - immunology Influenza A Virus, H7N9 Subtype - immunology Influenza Vaccines - immunology Influenza, Human - immunology Lymphocytes T Mice, Inbred BALB C multidisciplinary Mutation Science Science (multidisciplinary) Vaccines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kQfAifltdJYI3Ldt8N8dVXB4e9uTC4iUkaYKFtZXtU9n9652kfY_3_Lx4bdIyZGY6v2EmvwF46WmSLPmmZom7WlDN0edMrJNChXuX8J9Y2D5P1epMvD-X5zujvnJP2EwPPB_ckTSsa1IMkodWtCJ4TBiCSzJGJVkrC9k2xrydZGpm9WZGULPckml4ezRhpMq3yWjutOQaM7C9SFQI-3-HMn9tlvypYloC0ckduL0gSHI8S34XbsThHtycZ0pe3YePx6TM3euvY0dyXh9JmXZD-m5uDIoTQccl7nM_jMSFvpsIAldyMX4nfb4sMqJJ9QHBORkTWelTQ765kMvv0wM4O3n34e2qXgYo1AGB2LpOGO2TCUlH3cWQktGBxla4LjrlHcaljgnnnWcsSanRdSVzpgnKeaE9Zhr8IRwM4xAfA1Gp9RThmneIYZRiJhqnBH6ONx2qO1ZAN4dpw8IunodcXNhS5eatnRVgUQG2KMDKCl5t3_kyc2v8dfebrKPtzsyLXR6gtdjFWuy_rKWCw42G7eKsk6V56k1mXqUVvNguo5vl2okbIqrKUsR1mEorZSp4NBvEVhKM8FJK1lSg90xlT9T9laH_VKi8peCYU_IKXm-MakesPx7Fk_9xFE_hFiveIGrWHsLB-vJrfIYAa-2fF1_6Ad1sIIk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYidQkJG4QdR4j0-oIKonDj1R6YmL5RUitUlpHiD49YydvMBj6TWbHH8znm884xmEnjuSBE2uqWlituZEMdA5HeskAXBnE6yJpdrnsVyd8HdrsZ433MY5rXK7JpaFOgw-75EfkNyaJJfHJK_OP9e5a1SOrs4tNK6ia7l0WU7pUmu17LHkKBYnej4r07D2YAR7lc-UkZxvyRT4YTv2qJTt_xfX_Dtl8o-4aTFHR7fQzZlH4sMJ-NvoSuzvoOtTZ8nvd9GHQ1y673U_YsDZu4-49LzBXZjSg-KIQX2xPev6AVvfhREDfcWnwzfc5SMjAwhW54Gi4yHhlTrW-Kv1OQg_3kMnR2_fv1nVcxuF2gMd29QJbH7SPqmoQvQpaeVJbLkN0UpnwToFyq2zjtIkhAIFFtTqxkvruHLgb7D7aK8f-vgQYZlaR4C0OQtMRkqqo7aSw-dYEwD0WCGynUzj5xrjudXFqSmxbtaaCQADAJgCgBEVerG8cz5V2Lj06dcZo-XJXB27XBguPppZ2YzQNDQpesF8y1vuHTiZ3sL4ohS0FbJC-1uEzayyo_klYBV6ttwGZcsRFNtHgMoQYHfgUEupK_RgEohlJGDnhRC0qZDaEZWdoe7e6btPpaC34Aw8S1ahl1uh-m1Y_52KR5f_xWN0gxY55zVt99He5uJLfAIEauOeFi35CTpcF8o priority: 102 providerName: ProQuest – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSLiZ-JjWVGtOPREpYqLZTs2RCpJ1V2oyq9n7DzEQkHimtjRKDOT-SYz_gbglaNRsuiqkkVuS0Frjj6nQxkVKtzZiN_EzPZ5rNYn4sOpPN0DNp-FyU37mdIyf6bn7rC3Gww06TAYTY2SvMYE6gbcTNTtyapXarX8V0mVK0H1dD6m4s01W3diUKbqvw5f_tkm-VutNIego7twZ8KO5HCU9h7shf4-3BqnSV49gE-HJE_c636ElqSMPpA854Z07dgSFDYEXZbYr10_EOu7dkMQspKz4ZJ06ZjIgMbUeYTlZIhkXR9r8t36VHjfPISTo_cfV-tyGp1QeoRg2zJinI_axzrUbfAx6trT0AjbBqucxYjUMmGddYxFKWt0WsmsrryyTtQOcwz-CPb7oQ9PgKjYOIpAzVlEL0oxHbRVAh_HqxYVHQqg88s0fuIVT-Mtzkyub_PGjAowqACTFWBkAa-XPecjq8Y_V79LOlpWJkbsfGG4-GwmCzFSs7aKwUvuG9EI7zCx9BblC0qyRqoCDmYNm8lNN4ameTeJc5UW8HK5jQ6Wqia2D6gqQxHRYRKtlC7g8WgQiyQY26WUrCqg3jGVHVF37_Tdl0ziLQXHbJIX8GY2ql_E-uurePp_y5_BbZbtXpSsOYD97cW38BxB1Na9yF7zE5PRFZ4 priority: 102 providerName: Springer Nature |
Title | A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines |
URI | https://link.springer.com/article/10.1038/s41598-017-01372-5 https://www.ncbi.nlm.nih.gov/pubmed/28455520 https://www.proquest.com/docview/1961811091 https://www.proquest.com/docview/1893549669 https://pubmed.ncbi.nlm.nih.gov/PMC5430863 https://doaj.org/article/592d0fec53c8484cb924caf5ee652856 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dq9MwFD_cDwRfxG-r1xHBN62uaT7aB5HdcS9j4BB1MHwpSZpcC7PVbX5c_3pP0nY4nYJPhaYNIeecnt9pkt8P4LFOHKdOD2PqUhWzRKYYc7mNnUCDa-XwmxjYPmdiMmfTBV8cQC931E3gem9p5_Wk5qvls--fL19iwL9oj4xnz9eYhPxBscRvokwlFleHcIyZSfpAfdXB_Zbrm-YsaH14EvYYwQTtztHs72YnVwVK_3049M_tlL-tqYZUdX4drnUYk4xap7gBB7a-CVda1cnLW_B-RIIyX_XDlsRX_pYEPRxSle3WIbsmGNpEfazqhihTlWuC0JYsm2-k8sdJGnS6yiB8J40jEznLyVdl_AL9-jbMz8_ejSdxJ7EQG4Rqm9ghHnC5cdLK0hrncmkSmzFVWiW0wsxVUqa00pQ6ziUGN6cqHxqhNJMaa5H0DhzVTW3vAREu0wkCOq0Q5QhBc5srwbC7dFiiQ9gIkn4yC9Pxj3sZjGUR1sHTrGgNUKABimCAgkfwZPvOp5Z9459Pn3obbZ_0zNnhRrO6KLpALHhOy6GzhqcmYxkzGgtQo3B8VnCacRHBSW_hovfGIvG6OJ6bNYng0bYZA9GvrqjaoqmKBJEfFttC5BHcbR1iOxLEAJxzOoxA7rjKzlB3W-rqQyD75izFqjON4GnvVL8M669Tcf-_Ju4BXKXB7VlMsxM42qy-2IeItTZ6AIdyIQdwPBpN307xeno2e_0G747FeBD-XwxCiP0EY_0mfQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia-JXkgFALrba0rBBqpYqLsR0bIpWkNIWq_Ch-I-M8FpZHb73GieV4vhl_47FnAB6b1AvqTRJTz3TM04yhzhUu9hIFbrRHm9hl-5zJ6R5_vS_2l-DHeBcmHKscbWJnqMvGhj3y1TSUJgnpMdMXh1_iUDUqRFfHEho9LLbd6Qm6bO3zrVco3yeUbm7svpzGQ1WB2CI7OY49LoG-sD5zWems90VmU5dzXTotjUZjXVKujTaUeiEyxLOgukis1IZnBuk3w34vwDJn6MpMYHl9Y_b23XxXJ8TNeFoMt3MSlq-2uEKGW2xpOOHJMvT8FlbArlDAv9jt34c0_4jUdgvg5lW4MjBXstZD7Rosufo6XOxrWZ7egPdrpKv3V313JQn7CY50VXZIVfYHklxL0GAQ_bmqG6JtVbYECTM5aE5IFS6pNAjlyqJTQBpPptmsIN-0DWH_9ibsncsU34JJ3dTuDhDpc5MiTTQauZOUtHCFlhy7Y0mJMHMRpONkKjtkNQ_FNQ5UF11nueoFoFAAqhOAEhE8nX9z2Of0OPPt9SCj-ZshH3f3oDn6qAb1VqKgZeKdFczmPOfWoFtrNY7PSUFzISNYGSWsBiPRql-QjuDRvBnVO8RsdO1QVCpFPokuvJRFBLd7QMxHgsxCCEGTCLIFqCwMdbGlrj51KcQFZ-jLsgiejaD6bVj_nYq7Z__FQ7g03X2zo3a2Ztv34DLtMM9jmq_A5Pjoq7uP9O3YPBh0hsCH81bTn5LkV90 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNHGdmwnB4QKZbWlaMWBSisuxnZsiFSS0ixU5afx6xg7ycLy6K3XvOR4vhl_4xnPIPTIEM-pN1lKPdNpTiQDnStd6gUI3GgPNjFW-5yL2X7-esEXG-jHeBYmpFWONjEa6qq1YY98QkJrklAek0z8kBbxdmf6_PBLGjpIhUjr2E6jh8ieOzkG9617trsDsn5M6fTVu5ezdOgwkFpgKsvUw3LoS-ulk5Wz3pfSElfkunJaGA2Gu6K5NtpQ6jmXgG1OdZlZoU0uDVBxBt89h85LxknQMbmQq_2dEEHLSTmc08lYMelgrQzn2UjI9WQSfMC1tTC2DPgXz_07XfOPmG1cCqdX0OWBw-LtHnRX0YZrrqELfVfLk-vo_TaOnf_q767CYWfB4dhvB9dVn5rkOgymA-vPddNibeuqw0Cd8UF7jOtwXKUFUNcW3APcejyT8xJ_0zYkAHQ30P6ZTPBNtNm0jbuNsPCFIUAYjQYWJQQtXalFDp9jWQWAcwki42QqO9Q3D202DlSMs7NC9QJQIAAVBaB4gp6s3jnsq3uc-vSLIKPVk6Eyd7zQHn1Ug6IrXtIq885yZou8yK0BB9dqGJ8TnBZcJGhrlLAazEWnfoE7QQ9Xt0HRQ_RGNw5EpQgwS3DmhSgTdKsHxGokwDE45zRLkFyDytpQ1-809adYTJznDLxalqCnI6h-G9Z_p-LO6X_xAF0E5VRvdud7d9ElGiGfp7TYQpvLo6_uHvC4pbkfFQajD2etoT8BvDtarQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+humanized+mouse+model+identifies+key+amino+acids+for+low+immunogenicity+of+H7N9+vaccines&rft.jtitle=Scientific+reports&rft.au=Wada%2C+Yamato&rft.au=Nithichanon%2C+Arnone&rft.au=Nobusawa%2C+Eri&rft.au=Moise%2C+Leonard&rft.date=2017-04-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-017-01372-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_017_01372_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |