A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements

Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 8189 - 23
Main Authors Ramadan, Rachid, Geyer, Hartmut, Jeka, John, Schöner, Gregor, Reimann, Hendrik
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
AbstractList Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
ArticleNumber 8189
Author Jeka, John
Schöner, Gregor
Geyer, Hartmut
Ramadan, Rachid
Reimann, Hendrik
Author_xml – sequence: 1
  givenname: Rachid
  surname: Ramadan
  fullname: Ramadan, Rachid
  organization: Institute for Neural Computation, Ruhr University Bochum
– sequence: 2
  givenname: Hartmut
  surname: Geyer
  fullname: Geyer, Hartmut
  organization: Robotics Institute, Carnegie Mellon University
– sequence: 3
  givenname: John
  surname: Jeka
  fullname: Jeka, John
  organization: Department of Kinesiology and Applied Physiology, University of Delaware
– sequence: 4
  givenname: Gregor
  surname: Schöner
  fullname: Schöner, Gregor
  organization: Institute for Neural Computation, Ruhr University Bochum
– sequence: 5
  givenname: Hendrik
  surname: Reimann
  fullname: Reimann, Hendrik
  email: jhrei@udel.edu
  organization: Department of Kinesiology and Applied Physiology, University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35581211$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBLLFhE_Azk2yQqopHpUpsYG05NzczHjn2YMcD_Hs8kxbaLuqFbdnnHH32vS-rEx88VtVrRt8zKtoPSTLVtTXlvGaM0TI_q844larmgvOTe_vT6iKlLS1D8U6y7kV1KpRqGWfsrOovicccw5QTZGcimcKAjoSRbPJkPHEBwhRmGzwpm956TCTtrDeORBwd_iZgI2Q7J_LLzhuyDy772cQ_JWiPE_o5vaqej8YlvLhdz6sfnz99v_pa33z7cn11eVODknSucYCOMwrYD4M0XImBA0fgTdcrKXqkRtK-gc6scKBgxNiYAVYgWrkCyQWK8-p6yR2C2epdtFPB0MFYfTwIca1NnC041LQbQPBmxdUoZcPbfmQd77GVLQcFHStZH5esXe6nQlbeEY17EPrwxtuNXoe97hiTTKoS8O42IIafGdOsJ5sAnTMeQ06aN02j5KqAF-nbR9JtyLH88FGlJBOFsKje3Cf6h3JXyiJoFwHEkFIpjgY7m0PlCqB1mlF9aBy9NI4ujaOPjaMPVv7Iepf-pEksplTEfo3xP_YTrr_0zNb0
CitedBy_id crossref_primary_10_3389_fbioe_2022_959357
crossref_primary_10_1126_scirobotics_adg0279
crossref_primary_10_1155_2024_2751643
crossref_primary_10_1109_TNSRE_2022_3183571
crossref_primary_10_1109_LRA_2024_3388842
crossref_primary_10_3390_bioengineering11040353
crossref_primary_10_1371_journal_pone_0292334
crossref_primary_10_1098_rsif_2024_0191
crossref_primary_10_1186_s12984_023_01235_3
crossref_primary_10_3390_biomimetics9100618
crossref_primary_10_1242_jeb_245784
crossref_primary_10_4103_ijciis_ijciis_74_23
Cites_doi 10.1177/0278364917743320
10.1098/rsif.2018.0197
10.1111/j.1469-7793.1998.293bu.x
10.1016/S0021-9290(01)00056-2
10.1038/s41593-019-0336-0
10.1007/s00221-012-3000-4
10.1109/5326.827459
10.1152/jn.00767.2005
10.1152/jn.00287.2007
10.1113/jphysiol.2003.057174
10.1113/jphysiol.2002.033845
10.1145/2185520.2185521
10.1109/TMRB.2019.2895891
10.1016/j.jbiomech.2010.03.030
10.1007/s004220050408
10.1038/nrn.2016.9
10.1007/s00422-003-0414-x
10.1007/s00422-017-0733-y
10.1016/0306-4522(91)90328-L
10.1007/s00422-012-0514-6
10.1007/s00221-019-05629-5
10.1007/s10827-010-0291-y
10.1007/BF00204049
10.1016/0301-0082(96)00028-7
10.1016/j.jbiomech.2012.01.029
10.1016/S0959-4388(00)00149-5
10.1037/0096-1523.17.3.603
10.1016/0141-5425(85)90055-X
10.1142/S0219635211002737
10.1016/j.humov.2017.11.009
10.1038/s41598-019-45397-4
10.1016/j.jbiomech.2009.03.009
10.1113/JP278986
10.1145/1276377.1276509
10.1098/rsbl.2014.0405
10.1098/rspb.2020.2432
10.1523/JNEUROSCI.04-11-02745.1984
10.1088/1748-3190/aaae8e
10.3389/fncom.2013.00048
10.1037/a0033101
10.1016/S0924-980X(98)00029-0
10.1007/s41745-017-0052-2
10.1016/0021-9290(87)90052-2
10.1016/S0028-3908(99)00259-2
10.1007/BF00204048
10.1007/BF00319981
10.1007/s00221-019-05538-7
10.1371/journal.pcbi.1006993
10.1016/j.bbr.2006.08.039
10.1016/j.neuron.2019.09.024
10.1098/rsif.2017.0816
10.1016/S0893-6080(98)00066-5
10.3389/fbioe.2020.00308
10.1152/jn.2002.88.3.1097
10.1016/S0301-0082(98)00081-1
10.7554/eLife.52507
10.1016/j.jbiomech.2003.06.002
10.1007/BF00232189
10.7717/peerj.4640
10.1098/rspb.2001.1761
10.1115/1.4029304
10.1123/kr.2017-0053
10.1007/s00221-017-5106-1
10.1016/j.cub.2004.12.051
10.1007/s00221-014-4148-x
10.1126/science.2675307
10.1007/s00422-003-0449-z
10.1016/j.neuron.2015.03.024
10.1007/BF00449593
10.1371/journal.pone.0172215
10.1016/j.humov.2017.10.023
10.1145/2508363.2508399
10.1016/0021-9290(85)90042-9
10.1007/BF00237277
10.1038/nn963
10.1109/TRO.2016.2636297
10.1016/j.gaitpost.2012.11.019
10.1109/TNSRE.2010.2047592
10.1016/j.neuron.2013.09.007
10.1088/1741-2560/11/5/056006
10.1152/physiol.00034.2015
10.1177/1073858403009003012
10.1111/j.1748-1716.1987.tb08045.x
10.1016/S0079-6123(06)65016-4
10.1080/00140136508930772
10.3389/fspor.2020.00094
10.1016/j.humov.2007.08.003
10.1016/j.jbiomech.2012.07.028
10.1186/s12984-015-0027-3
10.1152/japplphysiol.00767.2005
10.3389/fneur.2012.00183
10.1136/jnnp.2007.131045
10.1113/jphysiol.2005.095869
10.3389/fphys.2018.01271
10.1016/S0959-4388(97)80146-8
10.1152/jn.1994.72.1.299
10.1007/978-3-540-30301-5
10.1038/nrn1427
10.1152/jn.1998.79.3.1409
10.3389/fnhum.2015.00246
10.1002/dneu.22738
10.1145/2816795.2818124
10.1016/S0959-4388(99)00028-8
10.1016/S0021-9290(00)00101-9
10.1016/S0966-6362(00)00087-4
10.1007/s00422-006-0069-5
10.1152/jn.1999.82.5.2705
10.3389/fncom.2014.00144
10.1016/j.gaitpost.2003.09.006
10.1113/JP270228
10.1080/00222895.1986.10735369
10.1016/j.jbiomech.2017.03.004
10.1007/s004220050558
10.1038/nature11129
10.1002/lio2.252
10.1101/cshperspect.a009621
10.1371/journal.pcbi.1008594
10.1007/978-1-4939-3267-2_7
10.1016/j.jelekin.2007.06.004
10.1093/acprof:oso/9780195333169.003.0007
10.1145/1275808.1276509
10.1137/1.9781611971217
10.1007/3-540-32494-1_4
10.1016/S0166-4115(08)60736-0
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-11102-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_09dc326725f44628bf192be8482c5c91
PMC9114145
35581211
10_1038_s41598_022_11102_1
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CRCNS 1822568
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 01GQ1803
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: National Science Foundation
  grantid: CRCNS 1822568
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 01GQ1803
– fundername: ;
  grantid: 01GQ1803
– fundername: ;
  grantid: CRCNS 1822568
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-edc9210cebdd4a253d2c2ec269b543be0a40b6c9a7ed0ca3f6adc7c3847c423e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:43 EDT 2025
Thu Aug 21 14:11:40 EDT 2025
Fri Jul 11 02:20:00 EDT 2025
Wed Aug 13 08:09:49 EDT 2025
Mon Jul 21 06:01:01 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Tue Jul 01 04:16:27 EDT 2025
Fri Feb 21 02:36:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-edc9210cebdd4a253d2c2ec269b543be0a40b6c9a7ed0ca3f6adc7c3847c423e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-11102-1
PMID 35581211
PQID 2665413628
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_09dc326725f44628bf192be8482c5c91
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114145
proquest_miscellaneous_2666547423
proquest_journals_2665413628
pubmed_primary_35581211
crossref_citationtrail_10_1038_s41598_022_11102_1
crossref_primary_10_1038_s41598_022_11102_1
springer_journals_10_1038_s41598_022_11102_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nilsson, Thorstensson (CR73) 1987; 129
Stollenmaier, Ilg, Haeufle (CR108) 2020; 8
Reynolds, Day (CR48) 2005; 15
Chou, Kaufman, Brey, Draganich (CR83) 2001; 13
Buhrmann, Di Paolo (CR65) 2014; 8
Kistemaker, Van Soest, Bobbert (CR68) 2007; 98
Murray, Li, Sastry (CR63) 1994
Darling, Pizzimenti, Morecraft (CR79) 2011; 10
Jankovic (CR24) 2008; 79
Bruijn, van Dieën (CR16) 2018; 15
Smid, den Otter (CR50) 2013; 38
Neptune, Clark, Kautz (CR119) 2009; 42
Ralston (CR9) 1958; 17
Schwartz, Moran (CR103) 1999; 82
Mantziaris, Bockemühl, Büschges (CR114) 2020; 80
Woollacott, Bonnet, Yabe (CR5) 1984; 55
Hof, Duysens (CR126) 2018; 57
Carver, Kiemel, Jeka (CR120) 2006; 95
Taga (CR41) 1998; 78
Reimann, Fettrow, Thompson, Jeka (CR17) 2018; 9
Voloshina, Kuo, Daley, Ferris (CR32) 2013; 216
Tsianos, Goodner, Loeb (CR85) 2014; 11
Ivanenko, Poppele, Lacquaniti (CR134) 2004; 556
Gribble, Ostry, Sanguineti, Laboissière (CR67) 1998; 79
Dean (CR8) 1965; 8
Siciliano, Khatib (CR62) 2008
Hunter, Hendrix, Dean (CR27) 2010; 43
Inman, Ralston, Todd, Lieberman (CR4) 1981
(CR26) 2003; 9
Miller, Scott (CR116) 1977; 30
Reynolds, Day (CR49) 2005; 569
Kirtley, Whittle, Jefferson (CR28) 1985; 7
Pijnappels, Reeves, Maganaris, van Dieën (CR22) 2008; 18
CR53
Maxwell Donelan, Shipman, Kram, Kuo (CR14) 2004; 37
Ong, Geijtenbeek, Hicks, Delp (CR59) 2019; 15
Latash (CR130) 2012; 217
Mowbray, Gottwald, Zhao, Atkinson, Cowie (CR47) 2019; 237
Warabi, Furuyama, Sugai, Kato, Yanagisawa (CR88) 2018; 236
Zehr, Stein (CR54) 1999; 58
Kim, Collins (CR125) 2017; 33
Kim, Collins (CR124) 2015; 12
Ambike, Zatsiorsky, Latash (CR107) 2015; 233
Whishaw (CR80) 2000; 39
Dolan, Dayan (CR75) 2013; 80
Hof (CR123) 2008; 27
Peterka (CR19) 2002; 88
CR69
VandderNoot, Ijspeert, Ronsse (CR36) 2018; 37
Lee, Lee, Kwon, Jeong, O’Sullivan, Park, Lee (CR71) 2015; 34
Guertin (CR113) 2013; 3
Taga (CR35) 1995; 111
CR64
Levine, Richards, Whittle (CR3) 2012
Osoba, Rao, Agrawal, Lalwani (CR21) 2019; 4
CR60
Geijtenbeek, Van De Panne, Van Der Stappen (CR111) 2013; 32
Sarmadi, Schumacher, Seyfarth, Sharbafi (CR132) 2019; 1
Browning, Baker, Herron, Kram (CR10) 2006; 100
Lanciego, Luquin, Obeso (CR86) 2012; 2
Yakovenko, Gritsenko, Prochazka (CR78) 2004; 90
Wang, Srinivasan (CR18) 2014; 10
Sabes (CR45) 2000; 10
Loeb (CR98) 2012; 106
Hogan (CR61) 1984; 4
Fukuchi, Fukuchi, Duarte (CR56) 2018; 6
Bernstein (CR129) 1967
Sutherland, Davids (CR25) 1993; 288
Lim, Lin, Pandy (CR72) 2017; 57
Maxwell Donelan, Kram, Kuo (CR15) 2001; 268
Anatol (CR66) 1986; 18
Wolpert, Kawato (CR96) 1998; 11
Kalaska, Scott, Cisek, Sergio (CR44) 1997; 7
Hinder, Milner (CR109) 2003; 549
Todorov, Jordan (CR97) 2002; 5
Reimann, Fettrow, Thompson, Agada, McFadyen, Jeka (CR128) 2017; 12
Clark (CR76) 2015; 9
Matthis, Fajen (CR30) 2014; 40
De Groote, Falisse (CR34) 2021; 288
Hof (CR131) 2001; 34
Yin, Loken, Panne (CR58) 2007; 26
Gharbawie, Whishaw (CR81) 2006; 175
Weiler, Gribble, Pruszynski (CR93) 2019; 22
Geyer, Herr (CR37) 2010; 18
Günther, Ruder (CR38) 2003; 89
Llewellyn, Yang, Prochazka (CR92) 1990; 83
Bouisset, Zattara (CR7) 1987; 20
Reimann, Fettrow, Jeka (CR13) 2018; 7
Kawato (CR95) 1999; 9
CR89
(CR118) 1999; 81
Whelan (CR77) 1996; 49
Suzuki, Geyer (CR122) 2018; 13
Kung, Fink, Legg, Ali, Shultz (CR29) 2018; 57
Song, Geyer (CR39) 2015; 593
Scott (CR20) 2004; 5
Zhang, Jeroen, Brenner, Verschueren, Duysens (CR55) 2020; 598
Moissenet, Leboeuf, Armand (CR57) 2019; 9
Bauby, Kuo (CR12) 2000; 33
Ivanenko, Poppele, Lacquaniti (CR51) 2006; 95
Balleine (CR74) 2019; 104
Reimann, Schöner (CR90) 2017; 111
Ackermann, van den Bogert (CR1) 2012; 45
Prochazka, Gorassini (CR91) 1998; 507
Di Russo, Stanev, Armand, Ijspeert (CR42) 2021; 17
Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (CR100) 2012; 487
Patla, Prentice, Robinson, Neufeld (CR84) 1991; 17
Summerside, Kram, Ahmed (CR11) 2018; 15
Barton, Matthis, Fajen (CR46) 2019; 237
Albert, Hadjiosif, Jang, Zimnik, Soteropoulos, Baker, Churchland, Krakauer, Shadmehr (CR106) 2020; 9
van der Kooij, Peterka (CR121) 2011; 30
Lackner, Dizio (CR110) 1994; 72
Reimann, Ramadan, Fettrow, Hafer, Geyer, Jeka (CR23) 2020; 2
d’Avella, Lacquaniti (CR43) 2013; 7
Kiehn (CR104) 2016; 17
Hicks, Uchida, Seth, Rajagopal, Delp (CR70) 2015; 137
Sharbafi, Seyfarth (CR105) 2017
Mutha (CR52) 2017; 97
Steele, van der Krogt, Schwartz, Delp (CR2) 2012; 45
Prentice, Hasler, Groves, Frank (CR31) 2004; 20
Peterson, Horak (CR87) 2016; 31
Wang, Hamner, Delp, Koltun (CR112) 2012; 31
Allen, Ting, Prilutsky, Edwards (CR33) 2016
Aruin, Forrest, Latash (CR6) 1998; 109
Matsuoka (CR117) 1985; 52
Latash, Gottlieb (CR94) 1991; 43
Taga (CR40) 1995; 73
Georgopoulos, Grillner (CR101) 1989; 245
Kawahara, Mori (CR115) 1982; 43
Prochazka, Yakovenko (CR99) 2007; 165
Hodgson, Hogan (CR102) 2000; 30
Townsend (CR127) 1985; 18
Kawai, Markman, Poddar, Ko, Fantana, Dhawale, Kampff, Ölveczky (CR82) 2015; 86
Chvatal, Ting (CR133) 2013; 7
G Taga (11102_CR40) 1995; 73
ML Latash (11102_CR94) 1991; 43
A d’Avella (11102_CR43) 2013; 7
CF Ong (11102_CR59) 2019; 15
J Maxwell Donelan (11102_CR14) 2004; 37
J Jankovic (11102_CR24) 2008; 79
MA Sharbafi (11102_CR105) 2017
AP Georgopoulos (11102_CR101) 1989; 245
T Warabi (11102_CR88) 2018; 236
GA Tsianos (11102_CR85) 2014; 11
JM Wang (11102_CR112) 2012; 31
BW Balleine (11102_CR74) 2019; 104
DM Wolpert (11102_CR96) 1998; 11
RM Murray (11102_CR63) 1994
11102_CR53
LC Hunter (11102_CR27) 2010; 43
T Buhrmann (11102_CR65) 2014; 8
T Geijtenbeek (11102_CR111) 2013; 32
JL Allen (11102_CR33) 2016
AL Hof (11102_CR126) 2018; 57
SH Scott (11102_CR20) 2004; 5
F De Groote (11102_CR34) 2021; 288
RJ Dolan (11102_CR75) 2013; 80
J Weiler (11102_CR93) 2019; 22
C Kirtley (11102_CR28) 1985; 7
VT Inman (11102_CR4) 1981
H Reimann (11102_CR17) 2018; 9
ST Albert (11102_CR106) 2020; 9
F Moissenet (11102_CR57) 2019; 9
Jens Bo Nielsen (11102_CR26) 2003; 9
IQ Whishaw (11102_CR80) 2000; 39
HJ Ralston (11102_CR9) 1958; 17
ML Latash (11102_CR130) 2012; 217
11102_CR64
11102_CR69
Y Suzuki (11102_CR122) 2018; 13
A Sarmadi (11102_CR132) 2019; 1
KA Smid (11102_CR50) 2013; 38
A Prochazka (11102_CR91) 1998; 507
AL Hof (11102_CR123) 2008; 27
KM Steele (11102_CR2) 2012; 45
11102_CR60
OA Gharbawie (11102_CR81) 2006; 175
MA Townsend (11102_CR127) 1985; 18
G Taga (11102_CR41) 1998; 78
EP Zehr (11102_CR54) 1999; 58
YS Zhang (11102_CR55) 2020; 598
Richard Quint van der Linde (11102_CR118) 1999; 81
H Reimann (11102_CR90) 2017; 111
R Mowbray (11102_CR47) 2019; 237
Y Lee (11102_CR71) 2015; 34
RR Neptune (11102_CR119) 2009; 42
H Reimann (11102_CR13) 2018; 7
SM Bruijn (11102_CR16) 2018; 15
M Llewellyn (11102_CR92) 1990; 83
Y Wang (11102_CR18) 2014; 10
N Bernstein (11102_CR129) 1967
GA Dean (11102_CR8) 1965; 8
MH Woollacott (11102_CR5) 1984; 55
JL Lanciego (11102_CR86) 2012; 2
S Bouisset (11102_CR7) 1987; 20
G Taga (11102_CR35) 1995; 111
YP Lim (11102_CR72) 2017; 57
M Kawato (11102_CR95) 1999; 9
S Yakovenko (11102_CR78) 2004; 90
K Yin (11102_CR58) 2007; 26
AB Schwartz (11102_CR103) 1999; 82
AL Hof (11102_CR131) 2001; 34
GF Anatol (11102_CR66) 1986; 18
S Ambike (11102_CR107) 2015; 233
H Reimann (11102_CR128) 2017; 12
SL Barton (11102_CR46) 2019; 237
RJ Peterka (11102_CR19) 2002; 88
MY Osoba (11102_CR21) 2019; 4
JF Kalaska (11102_CR44) 1997; 7
11102_CR89
SM Kung (11102_CR29) 2018; 57
CA Fukuchi (11102_CR56) 2018; 6
B Siciliano (11102_CR62) 2008
PK Mutha (11102_CR52) 2017; 97
P Whelan (11102_CR77) 1996; 49
MM Churchland (11102_CR100) 2012; 487
DA Kistemaker (11102_CR68) 2007; 98
AJ Hodgson (11102_CR102) 2000; 30
O Kiehn (11102_CR104) 2016; 17
M Pijnappels (11102_CR22) 2008; 18
M Kim (11102_CR124) 2015; 12
K Kawahara (11102_CR115) 1982; 43
CE Bauby (11102_CR12) 2000; 33
A Prochazka (11102_CR99) 2007; 165
M Kim (11102_CR125) 2017; 33
DJ Clark (11102_CR76) 2015; 9
J Nilsson (11102_CR73) 1987; 129
H Geyer (11102_CR37) 2010; 18
RC Browning (11102_CR10) 2006; 100
M Günther (11102_CR38) 2003; 89
GE Loeb (11102_CR98) 2012; 106
SA Chvatal (11102_CR133) 2013; 7
MR Hinder (11102_CR109) 2003; 549
M Ackermann (11102_CR1) 2012; 45
WG Darling (11102_CR79) 2011; 10
A Di Russo (11102_CR42) 2021; 17
YP Ivanenko (11102_CR51) 2006; 95
K Matsuoka (11102_CR117) 1985; 52
P Sabes (11102_CR45) 2000; 10
RF Reynolds (11102_CR49) 2005; 569
R Kawai (11102_CR82) 2015; 86
K Stollenmaier (11102_CR108) 2020; 8
D Levine (11102_CR3) 2012
AS Aruin (11102_CR6) 1998; 109
H Reimann (11102_CR23) 2020; 2
PA Guertin (11102_CR113) 2013; 3
L-S Chou (11102_CR83) 2001; 13
C Mantziaris (11102_CR114) 2020; 80
H van der Kooij (11102_CR121) 2011; 30
AE Patla (11102_CR84) 1991; 17
J Maxwell Donelan (11102_CR15) 2001; 268
EM Summerside (11102_CR11) 2018; 15
NV VandderNoot (11102_CR36) 2018; 37
N Hogan (11102_CR61) 1984; 4
E Todorov (11102_CR97) 2002; 5
JR Lackner (11102_CR110) 1994; 72
YP Ivanenko (11102_CR134) 2004; 556
S Song (11102_CR39) 2015; 593
DS Peterson (11102_CR87) 2016; 31
JL Hicks (11102_CR70) 2015; 137
PL Gribble (11102_CR67) 1998; 79
RF Reynolds (11102_CR48) 2005; 15
S Carver (11102_CR120) 2006; 95
DH Sutherland (11102_CR25) 1993; 288
AS Voloshina (11102_CR32) 2013; 216
JS Matthis (11102_CR30) 2014; 40
S Miller (11102_CR116) 1977; 30
SD Prentice (11102_CR31) 2004; 20
References_xml – volume: 37
  start-page: 168
  issue: 1
  year: 2018
  end-page: 196
  ident: CR36
  article-title: Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917743320
– volume: 15
  start-page: 20180197
  issue: 143
  year: 2018
  ident: CR11
  article-title: Contributions of metabolic and temporal costs to human gait selection
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2018.0197
– volume: 507
  start-page: 293
  year: 1998
  end-page: 304
  ident: CR91
  article-title: Ensemble firing of muscle afferents recorded during normal locomotion in cats
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1998.293bu.x
– volume: 34
  start-page: 1085
  issue: 8
  year: 2001
  end-page: 1089
  ident: CR131
  article-title: The force resulting from the action of mono- and biarticular muscles in a limb
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00056-2
– volume: 22
  start-page: 529
  issue: 4
  year: 2019
  end-page: 533
  ident: CR93
  article-title: Spinal stretch reflexes support efficient hand control
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0336-0
– volume: 217
  start-page: 1
  issue: 1
  year: 2012
  end-page: 5
  ident: CR130
  article-title: The bliss of motor abundance
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3000-4
– volume: 30
  start-page: 105
  issue: 1
  year: 2000
  end-page: 118
  ident: CR102
  article-title: A model-independent definition of attractor behavior applicable to interactive tasks
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/5326.827459
– volume: 95
  start-page: 602
  issue: 2
  year: 2006
  end-page: 618
  ident: CR51
  article-title: Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00767.2005
– year: 1994
  ident: CR63
  publication-title: A Mathematical Introduction to Robotic Manipulation
– volume: 17
  start-page: 277
  issue: 4
  year: 1958
  end-page: 283
  ident: CR9
  article-title: Energy-speed relation and optimal speed during level walking
  publication-title: Int. Z. Angew. Physiol. Einschließlich Arbeitsphysiologie
– volume: 98
  start-page: 1075
  issue: 3
  year: 2007
  end-page: 82
  ident: CR68
  article-title: Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00287.2007
– volume: 556
  start-page: 267
  issue: 1
  year: 2004
  end-page: 282
  ident: CR134
  article-title: Five basic muscle activation patterns account for muscle activity during human locomotion
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.057174
– year: 1967
  ident: CR129
  publication-title: The Co-ordination and Regulation of Movements
– volume: 549
  start-page: 953
  issue: 3
  year: 2003
  end-page: 963
  ident: CR109
  article-title: The case for an internal dynamics model versus equilibrium point control in human movement
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.033845
– volume: 31
  start-page: 25:1
  issue: 4
  year: 2012
  end-page: 25:11
  ident: CR112
  article-title: Optimizing locomotion controllers using biologically-based actuators and objectives
  publication-title: ACM Trans. Gr.
  doi: 10.1145/2185520.2185521
– volume: 1
  start-page: 49
  issue: 1
  year: 2019
  end-page: 57
  ident: CR132
  article-title: Concerted control of stance and balance locomotor subfunctions-leg force as a conductor
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2895891
– volume: 43
  start-page: 1910
  issue: 10
  year: 2010
  end-page: 1915
  ident: CR27
  article-title: The cost of walking downhill: Is the preferred gait energetically optimal?
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.03.030
– volume: 78
  start-page: 9
  issue: 1
  year: 1998
  end-page: 17
  ident: CR41
  article-title: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050408
– volume: 17
  start-page: 224
  issue: 4
  year: 2016
  end-page: 238
  ident: CR104
  article-title: Decoding the organization of spinal circuits that control locomotion
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.9
– volume: 89
  start-page: 89
  issue: 2
  year: 2003
  end-page: 106
  ident: CR38
  article-title: Synthesis of two-dimensional human walking: A test of the -model
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-003-0414-x
– volume: 111
  start-page: 389
  issue: 5–6
  year: 2017
  end-page: 403
  ident: CR90
  article-title: A multi-joint model of quiet, upright stance accounts for the "uncontrolled manifold" structure of joint variance
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-017-0733-y
– volume: 43
  start-page: 697
  issue: 2
  year: 1991
  end-page: 712
  ident: CR94
  article-title: Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(91)90328-L
– volume: 106
  start-page: 757
  issue: 11–12
  year: 2012
  end-page: 65
  ident: CR98
  article-title: Optimal isn’t good enough
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-012-0514-6
– volume: 237
  start-page: 2875
  issue: 11
  year: 2019
  end-page: 2883
  ident: CR47
  article-title: The development of visually guided stepping
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-019-05629-5
– volume: 30
  start-page: 759
  issue: 3
  year: 2011
  end-page: 778
  ident: CR121
  article-title: Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0291-y
– volume: 73
  start-page: 113
  year: 1995
  end-page: 121
  ident: CR40
  article-title: A model of the neuro-musculo-skeletal system for human locomotion. II. Real-time adaptability under various constraints
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204049
– year: 1981
  ident: CR4
  publication-title: Human Walking
– volume: 49
  start-page: 481
  issue: 5
  year: 1996
  end-page: 515
  ident: CR77
  article-title: Control of locomotion in the decerebrate cat
  publication-title: Prog. Neurobiol.
  doi: 10.1016/0301-0082(96)00028-7
– volume: 45
  start-page: 1293
  issue: 7
  year: 2012
  end-page: 1298
  ident: CR1
  article-title: Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.029
– volume: 10
  start-page: 740
  issue: 6
  year: 2000
  end-page: 746
  ident: CR45
  article-title: The planning and control of reaching movements
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(00)00149-5
– ident: CR60
– volume: 17
  start-page: 603
  issue: 3
  year: 1991
  end-page: 634
  ident: CR84
  article-title: Visual control of locomotion: Strategies for changing direction and for going over obstacles
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.17.3.603
– volume: 7
  start-page: 282
  issue: 4
  year: 1985
  end-page: 288
  ident: CR28
  article-title: Influence of walking speed on gait parameters
  publication-title: J. Biomed. Eng.
  doi: 10.1016/0141-5425(85)90055-X
– volume: 10
  start-page: 353
  year: 2011
  end-page: 384
  ident: CR79
  article-title: Functional recovery following motor cortex lesions in non-human primates
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S0219635211002737
– volume: 57
  start-page: 69
  year: 2018
  end-page: 82
  ident: CR126
  article-title: Responses of human ankle muscles to mediolateral balance perturbations during walking
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.11.009
– volume: 9
  start-page: 9510
  issue: 1
  year: 2019
  ident: CR57
  article-title: Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and BMI
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45397-4
– volume: 42
  start-page: 1282
  issue: 9
  year: 2009
  end-page: 1287
  ident: CR119
  article-title: Modular control of human walking: A simulation study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.009
– volume: 598
  start-page: 1987
  issue: 10
  year: 2020
  end-page: 2000
  ident: CR55
  article-title: Fast responses to stepping-target displacements when walking
  publication-title: J. Physiol.
  doi: 10.1113/JP278986
– volume: 26
  start-page: 105
  issue: 3
  year: 2007
  ident: CR58
  article-title: SIMBICON: Simple biped locomotion control
  publication-title: ACM Trans. Gr.
  doi: 10.1145/1276377.1276509
– volume: 10
  start-page: 20140405
  year: 2014
  ident: CR18
  article-title: Stepping in the direction of the fall: The next foot placement can be predicted from current upper body state in steady-state walking
  publication-title: Biol. Let.
  doi: 10.1098/rsbl.2014.0405
– volume: 288
  start-page: 20202432
  issue: 1946
  year: 2021
  ident: CR34
  article-title: Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2020.2432
– volume: 4
  start-page: 2745
  issue: 11
  year: 1984
  end-page: 2754
  ident: CR61
  article-title: An organizing principle for a class of voluntary movements
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.04-11-02745.1984
– volume: 13
  start-page: 036005
  issue: 3
  year: 2018
  ident: CR122
  article-title: A simple bipedal model for studying control of gait termination
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/aaae8e
– volume: 7
  start-page: 48
  year: 2013
  ident: CR133
  article-title: Common muscle synergies for balance and walking
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00048
– volume: 288
  start-page: 139
  year: 1993
  end-page: 47
  ident: CR25
  article-title: Common gait abnormalities of the knee in cerebral palsy
  publication-title: Clin. Orthop. Relat. Res.
– volume: 40
  start-page: 106
  issue: 1
  year: 2014
  end-page: 115
  ident: CR30
  article-title: Visual control of foot placement when walking over complex terrain
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/a0033101
– ident: CR89
– year: 2012
  ident: CR3
  publication-title: Whittle’s Gait Analysis
– volume: 109
  start-page: 350
  issue: 4
  year: 1998
  end-page: 359
  ident: CR6
  article-title: Anticipatory postural adjustments in conditions of postural instability
  publication-title: Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control
  doi: 10.1016/S0924-980X(98)00029-0
– volume: 97
  start-page: 555
  issue: 4
  year: 2017
  end-page: 565
  ident: CR52
  article-title: Reflex circuits and their modulation in motor control: A historical perspective and current view
  publication-title: J. Indian Inst. Sci.
  doi: 10.1007/s41745-017-0052-2
– ident: CR69
– year: 2017
  ident: CR105
  publication-title: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications
– volume: 20
  start-page: 735
  issue: 8
  year: 1987
  end-page: 742
  ident: CR7
  article-title: Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90052-2
– volume: 39
  start-page: 788
  issue: 5
  year: 2000
  end-page: 805
  ident: CR80
  article-title: Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(99)00259-2
– volume: 111
  start-page: 97
  year: 1995
  end-page: 111
  ident: CR35
  article-title: A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204048
– volume: 43
  start-page: 225
  year: 1982
  end-page: 230
  ident: CR115
  article-title: A two compartment model of the stepping generator: Analysis of the roles of a stage-setter and a rhythm generator
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00319981
– volume: 237
  start-page: 1673
  issue: 7
  year: 2019
  end-page: 1690
  ident: CR46
  article-title: Control strategies for rapid, visually guided adjustments of the foot during continuous walking
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-019-05538-7
– volume: 15
  start-page: e1006993
  issue: 10
  year: 2019
  ident: CR59
  article-title: Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006993
– volume: 175
  start-page: 249
  issue: 2
  year: 2006
  end-page: 262
  ident: CR81
  article-title: Parallel stages of learning and recovery of skilled reaching after motor cortex stroke: “Oppositions” organize normal and compensatory movements
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2006.08.039
– volume: 104
  start-page: 47
  issue: 1
  year: 2019
  end-page: 62
  ident: CR74
  article-title: The meaning of behavior: Discriminating reflex and volition in the brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.09.024
– volume: 15
  start-page: 20170816
  issue: 143
  year: 2018
  ident: CR16
  article-title: Control of human gait stability through foot placement
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0816
– volume: 11
  start-page: 1317
  year: 1998
  end-page: 1329
  ident: CR96
  article-title: Multiple paired forward and inverse models for motor control
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00066-5
– volume: 8
  start-page: 308
  year: 2020
  ident: CR108
  article-title: Predicting perturbed human arm movements in a neuro-musculoskeletal model to investigate the muscular force response
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00308
– volume: 88
  start-page: 1097
  issue: 3
  year: 2002
  end-page: 118
  ident: CR19
  article-title: Sensorimotor integration in human postural control
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2002.88.3.1097
– volume: 58
  start-page: 185
  issue: 2
  year: 1999
  end-page: 205
  ident: CR54
  article-title: What functions do reflexes serve during human locomotion?
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(98)00081-1
– volume: 9
  start-page: e52507
  year: 2020
  ident: CR106
  article-title: Postural control of arm and fingers through integration of movement commands
  publication-title: Elife
  doi: 10.7554/eLife.52507
– volume: 37
  start-page: 827
  issue: 6
  year: 2004
  end-page: 835
  ident: CR14
  article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.06.002
– volume: 83
  start-page: 22
  issue: 1
  year: 1990
  end-page: 28
  ident: CR92
  article-title: Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00232189
– volume: 6
  start-page: e4640
  year: 2018
  ident: CR56
  article-title: A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals
  publication-title: PeerJ
  doi: 10.7717/peerj.4640
– volume: 268
  start-page: 1985
  issue: 1480
  year: 2001
  end-page: 1992
  ident: CR15
  article-title: Mechanical and metabolic determinants of the preferred step width in human walking
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2001.1761
– volume: 137
  start-page: 1
  issue: 2
  year: 2015
  ident: CR70
  article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029304
– volume: 7
  start-page: 18
  issue: 1
  year: 2018
  end-page: 25
  ident: CR13
  article-title: Strategies for the control of balance during locomotion
  publication-title: Kinesiol. Rev.
  doi: 10.1123/kr.2017-0053
– volume: 236
  start-page: 43
  issue: 1
  year: 2018
  end-page: 57
  ident: CR88
  article-title: Gait bradykinesia in Parkinson’s disease: A change in the motor program which controls the synergy of gait
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-017-5106-1
– volume: 15
  start-page: R48
  issue: 2
  year: 2005
  end-page: R49
  ident: CR48
  article-title: Rapid visuo-motor processes drive the leg regardless of balance constraints
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.12.051
– volume: 233
  start-page: 711
  issue: 3
  year: 2015
  end-page: 721
  ident: CR107
  article-title: Processes underlying unintentional finger-force changes in the absence of visual feedback
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-4148-x
– volume: 245
  start-page: 1209
  issue: 4923
  year: 1989
  end-page: 1210
  ident: CR101
  article-title: Visuomotor coordination in reaching and locomotion
  publication-title: Science (New York, NY)
  doi: 10.1126/science.2675307
– volume: 90
  start-page: 146
  issue: 2
  year: 2004
  end-page: 155
  ident: CR78
  article-title: Contribution of stretch reflexes to locomotor control: A modeling study
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-003-0449-z
– volume: 86
  start-page: 800
  issue: 3
  year: 2015
  end-page: 812
  ident: CR82
  article-title: Motor cortex is required for learning but not for executing a motor skill
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.024
– volume: 52
  start-page: 367
  year: 1985
  end-page: 376
  ident: CR117
  article-title: Sustained oscillations generated by mutually inhibiting neurons with adaptation
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00449593
– volume: 12
  start-page: 1
  year: 2017
  end-page: 16
  ident: CR128
  article-title: Complementary mechanisms for upright balance during walking
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172215
– volume: 57
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR29
  article-title: What factors determine the preferred gait transition speed in humans? A review of the triggering mechanisms
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.10.023
– volume: 32
  start-page: 1
  issue: 6
  year: 2013
  end-page: 11
  ident: CR111
  article-title: Flexible muscle-based locomotion for bipedal creatures
  publication-title: ACM Trans. Gr.
  doi: 10.1145/2508363.2508399
– volume: 18
  start-page: 21
  issue: 1
  year: 1985
  end-page: 38
  ident: CR127
  article-title: Biped gait stabilization via foot placement
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90042-9
– volume: 55
  start-page: 263
  issue: 2
  year: 1984
  ident: CR5
  article-title: Preparatory process for anticipatory postural adjustments: Modulation of leg muscles reflex pathways during preparation for arm movements in standing man
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00237277
– volume: 7
  start-page: 42
  year: 2013
  ident: CR43
  article-title: Control of reaching movements by muscle synergy combinations
  publication-title: Front. Comput. Neurosci.
– volume: 5
  start-page: 1226
  issue: 11
  year: 2002
  end-page: 35
  ident: CR97
  article-title: Optimal feedback control as a theory of motor coordination
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn963
– volume: 33
  start-page: 406
  issue: 2
  year: 2017
  end-page: 418
  ident: CR125
  article-title: Once-per-step control of ankle push-off work improves balance in a three-dimensional simulation of bipedal walking
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2016.2636297
– volume: 38
  start-page: 242
  issue: 2
  year: 2013
  end-page: 246
  ident: CR50
  article-title: Why you need to look where you step for precise foot placement: The effects of gaze eccentricity on stepping errors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.11.019
– volume: 18
  start-page: 263
  issue: 3
  year: 2010
  end-page: 273
  ident: CR37
  article-title: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2047592
– volume: 80
  start-page: 312
  issue: 2
  year: 2013
  end-page: 325
  ident: CR75
  article-title: Goals and habits in the brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.007
– volume: 11
  issue: 5
  year: 2014
  ident: CR85
  article-title: Useful properties of spinal circuits for learning and performing planar reaches
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056006
– volume: 216
  start-page: 3963
  issue: 21
  year: 2013
  end-page: 3970
  ident: CR32
  article-title: Biomechanics and energetics of walking on uneven terrain
  publication-title: J. Exp. Biol.
– volume: 31
  start-page: 95
  issue: 2
  year: 2016
  end-page: 107
  ident: CR87
  article-title: Neural control of walking in people with parkinsonism
  publication-title: Physiology
  doi: 10.1152/physiol.00034.2015
– volume: 9
  start-page: 195
  issue: 3
  year: 2003
  end-page: 204
  ident: CR26
  article-title: How we walk: Central control of muscle activity during human walking
  publication-title: Neuroscientist
  doi: 10.1177/1073858403009003012
– volume: 129
  start-page: 107
  issue: 1
  year: 1987
  end-page: 114
  ident: CR73
  article-title: Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1987.tb08045.x
– volume: 165
  start-page: 255
  year: 2007
  end-page: 265
  ident: CR99
  article-title: The neuromechanical tuning hypothesis
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)65016-4
– volume: 8
  start-page: 31
  issue: 1
  year: 1965
  end-page: 47
  ident: CR8
  article-title: An analysis of the energy expenditure in level and grade walking
  publication-title: Ergonomics
  doi: 10.1080/00140136508930772
– volume: 2
  start-page: 94
  year: 2020
  ident: CR23
  article-title: Interactions between different age-related factors affecting balance control in walking
  publication-title: Front. Sports Active Living
  doi: 10.3389/fspor.2020.00094
– volume: 27
  start-page: 112
  issue: 1
  year: 2008
  end-page: 25
  ident: CR123
  article-title: The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2007.08.003
– ident: CR64
– volume: 45
  start-page: 2564
  issue: 15
  year: 2012
  end-page: 2569
  ident: CR2
  article-title: How much muscle strength is required to walk in a crouch gait?
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.07.028
– volume: 12
  start-page: 43
  issue: 1
  year: 2015
  ident: CR124
  article-title: Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0027-3
– volume: 100
  start-page: 390
  issue: 2
  year: 2006
  end-page: 398
  ident: CR10
  article-title: Effects of obesity and sex on the energetic cost and preferred speed of walking
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00767.2005
– volume: 3
  start-page: 183
  year: 2013
  ident: CR113
  article-title: Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2012.00183
– volume: 79
  start-page: 368
  issue: 4
  year: 2008
  end-page: 376
  ident: CR24
  article-title: Parkinson’s disease: Clinical features and diagnosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.131045
– volume: 569
  start-page: 677
  issue: 2
  year: 2005
  end-page: 684
  ident: CR49
  article-title: Visual guidance of the human foot during a step: Visually guided stepping
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.095869
– volume: 9
  start-page: 1271
  issue: September
  year: 2018
  ident: CR17
  article-title: Neural control of balance during walking
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01271
– volume: 7
  start-page: 849
  issue: 6
  year: 1997
  end-page: 859
  ident: CR44
  article-title: Cortical control of reaching movements
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(97)80146-8
– volume: 72
  start-page: 299
  issue: 1
  year: 1994
  end-page: 313
  ident: CR110
  article-title: Rapid adaptation to Coriolis force perturbations of arm trajectory
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1994.72.1.299
– year: 2008
  ident: CR62
  publication-title: Springer Handbook of Robotics
  doi: 10.1007/978-3-540-30301-5
– volume: 5
  start-page: 532
  issue: 7
  year: 2004
  end-page: 46
  ident: CR20
  article-title: Optimal feedback control and the neural basis of volitional motor control
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1427
– volume: 79
  start-page: 1409
  issue: 3
  year: 1998
  end-page: 24
  ident: CR67
  article-title: Are complex control signals required for human arm movement?
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.79.3.1409
– ident: CR53
– volume: 30
  start-page: 387
  year: 1977
  ident: CR116
  article-title: The spinal locomotor generator
  publication-title: Exp. Brain Res.
– volume: 9
  start-page: 246
  year: 2015
  ident: CR76
  article-title: Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00246
– volume: 80
  start-page: 16
  issue: 1–2
  year: 2020
  end-page: 30
  ident: CR114
  article-title: Central pattern generating networks in insect locomotion
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.22738
– volume: 34
  start-page: 180:1
  issue: 6
  year: 2015
  end-page: 180:9
  ident: CR71
  article-title: Push-recovery stability of biped locomotion
  publication-title: ACM Trans. Gr.
  doi: 10.1145/2816795.2818124
– volume: 9
  start-page: 718
  year: 1999
  end-page: 727
  ident: CR95
  article-title: Internal models for motor control and trajectory planning
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(99)00028-8
– volume: 33
  start-page: 1433
  issue: 11
  year: 2000
  end-page: 1440
  ident: CR12
  article-title: Active control of lateral balance in human walking
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00101-9
– volume: 13
  start-page: 17
  issue: 1
  year: 2001
  end-page: 26
  ident: CR83
  article-title: Motion of the whole body’s center of mass when stepping over obstacles of different heights
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00087-4
– volume: 95
  start-page: 123
  issue: 2
  year: 2006
  end-page: 34
  ident: CR120
  article-title: Modeling the dynamics of sensory reweighting
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-006-0069-5
– volume: 82
  start-page: 2705
  issue: 5
  year: 1999
  end-page: 18
  ident: CR103
  article-title: Motor cortical activity during drawing movements: Population representation during lemniscate tracing
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.5.2705
– volume: 8
  start-page: 144
  year: 2014
  ident: CR65
  article-title: Spinal circuits can accommodate interaction torques during multijoint limb movements
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00144
– volume: 20
  start-page: 255
  issue: 3
  year: 2004
  end-page: 265
  ident: CR31
  article-title: Locomotor adaptations for changes in the slope of the walking surface
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.09.006
– volume: 593
  start-page: 3493
  year: 2015
  end-page: 3511
  ident: CR39
  article-title: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion
  publication-title: J. Physiol.
  doi: 10.1113/JP270228
– volume: 18
  start-page: 17
  issue: 1
  year: 1986
  end-page: 54
  ident: CR66
  article-title: Once more on the equilibrium-point hypothesis ( Model) for motor control
  publication-title: J. Motor Behav.
  doi: 10.1080/00222895.1986.10735369
– volume: 57
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR72
  article-title: Effects of step length and step frequency on lower-limb muscle function in human gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.03.004
– volume: 81
  start-page: 227
  issue: 3
  year: 1999
  end-page: 237
  ident: CR118
  article-title: Passive bipedal walking with phasic muscle contraction
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050558
– volume: 487
  start-page: 51
  issue: 7405
  year: 2012
  end-page: 6
  ident: CR100
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 4
  start-page: 143
  issue: 1
  year: 2019
  end-page: 153
  ident: CR21
  article-title: Balance and gait in the elderly: A contemporary review
  publication-title: Laryngosc. Investig. Otolaryngol.
  doi: 10.1002/lio2.252
– volume: 2
  start-page: a009621
  issue: 12
  year: 2012
  end-page: a009621
  ident: CR86
  article-title: Functional neuroanatomy of the Basal Ganglia
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a009621
– volume: 17
  start-page: e1008594
  issue: 5
  year: 2021
  ident: CR42
  article-title: Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008594
– start-page: 197
  year: 2016
  end-page: 223
  ident: CR33
  article-title: Why is neuromechanical modeling of balance and locomotion so hard?
  publication-title: Neuromechanical Modeling of Posture and Locomotion
  doi: 10.1007/978-1-4939-3267-2_7
– volume: 18
  start-page: 188
  issue: 2
  year: 2008
  end-page: 196
  ident: CR22
  article-title: Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2007.06.004
– volume-title: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications
  year: 2017
  ident: 11102_CR105
– volume: 38
  start-page: 242
  issue: 2
  year: 2013
  ident: 11102_CR50
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.11.019
– volume-title: Human Walking
  year: 1981
  ident: 11102_CR4
– volume: 17
  start-page: 277
  issue: 4
  year: 1958
  ident: 11102_CR9
  publication-title: Int. Z. Angew. Physiol. Einschließlich Arbeitsphysiologie
– ident: 11102_CR89
  doi: 10.1093/acprof:oso/9780195333169.003.0007
– volume: 598
  start-page: 1987
  issue: 10
  year: 2020
  ident: 11102_CR55
  publication-title: J. Physiol.
  doi: 10.1113/JP278986
– volume: 88
  start-page: 1097
  issue: 3
  year: 2002
  ident: 11102_CR19
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2002.88.3.1097
– volume: 9
  start-page: 195
  issue: 3
  year: 2003
  ident: 11102_CR26
  publication-title: Neuroscientist
  doi: 10.1177/1073858403009003012
– volume-title: The Co-ordination and Regulation of Movements
  year: 1967
  ident: 11102_CR129
– volume: 33
  start-page: 1433
  issue: 11
  year: 2000
  ident: 11102_CR12
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00101-9
– volume: 13
  start-page: 036005
  issue: 3
  year: 2018
  ident: 11102_CR122
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/aaae8e
– volume: 43
  start-page: 1910
  issue: 10
  year: 2010
  ident: 11102_CR27
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.03.030
– ident: 11102_CR60
  doi: 10.1145/1275808.1276509
– volume: 79
  start-page: 1409
  issue: 3
  year: 1998
  ident: 11102_CR67
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.79.3.1409
– volume: 11
  start-page: 1317
  year: 1998
  ident: 11102_CR96
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00066-5
– volume: 97
  start-page: 555
  issue: 4
  year: 2017
  ident: 11102_CR52
  publication-title: J. Indian Inst. Sci.
  doi: 10.1007/s41745-017-0052-2
– ident: 11102_CR64
  doi: 10.1137/1.9781611971217
– volume: 9
  start-page: 246
  year: 2015
  ident: 11102_CR76
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00246
– volume-title: A Mathematical Introduction to Robotic Manipulation
  year: 1994
  ident: 11102_CR63
– volume: 7
  start-page: 849
  issue: 6
  year: 1997
  ident: 11102_CR44
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(97)80146-8
– volume: 95
  start-page: 602
  issue: 2
  year: 2006
  ident: 11102_CR51
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00767.2005
– volume: 111
  start-page: 389
  issue: 5–6
  year: 2017
  ident: 11102_CR90
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-017-0733-y
– volume-title: Springer Handbook of Robotics
  year: 2008
  ident: 11102_CR62
  doi: 10.1007/978-3-540-30301-5
– volume: 9
  start-page: 1271
  issue: September
  year: 2018
  ident: 11102_CR17
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01271
– volume: 288
  start-page: 20202432
  issue: 1946
  year: 2021
  ident: 11102_CR34
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2020.2432
– volume: 236
  start-page: 43
  issue: 1
  year: 2018
  ident: 11102_CR88
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-017-5106-1
– volume: 43
  start-page: 225
  year: 1982
  ident: 11102_CR115
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00319981
– volume: 37
  start-page: 827
  issue: 6
  year: 2004
  ident: 11102_CR14
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.06.002
– volume: 100
  start-page: 390
  issue: 2
  year: 2006
  ident: 11102_CR10
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00767.2005
– volume: 83
  start-page: 22
  issue: 1
  year: 1990
  ident: 11102_CR92
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00232189
– volume: 72
  start-page: 299
  issue: 1
  year: 1994
  ident: 11102_CR110
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1994.72.1.299
– volume: 40
  start-page: 106
  issue: 1
  year: 2014
  ident: 11102_CR30
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/a0033101
– volume: 31
  start-page: 25:1
  issue: 4
  year: 2012
  ident: 11102_CR112
  publication-title: ACM Trans. Gr.
  doi: 10.1145/2185520.2185521
– ident: 11102_CR69
  doi: 10.1007/3-540-32494-1_4
– volume: 129
  start-page: 107
  issue: 1
  year: 1987
  ident: 11102_CR73
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1987.tb08045.x
– volume: 9
  start-page: 9510
  issue: 1
  year: 2019
  ident: 11102_CR57
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45397-4
– volume: 20
  start-page: 735
  issue: 8
  year: 1987
  ident: 11102_CR7
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90052-2
– volume: 15
  start-page: 20170816
  issue: 143
  year: 2018
  ident: 11102_CR16
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0816
– volume: 593
  start-page: 3493
  year: 2015
  ident: 11102_CR39
  publication-title: J. Physiol.
  doi: 10.1113/JP270228
– volume: 17
  start-page: 224
  issue: 4
  year: 2016
  ident: 11102_CR104
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.9
– volume: 111
  start-page: 97
  year: 1995
  ident: 11102_CR35
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204048
– volume: 569
  start-page: 677
  issue: 2
  year: 2005
  ident: 11102_CR49
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.095869
– volume: 12
  start-page: 1
  year: 2017
  ident: 11102_CR128
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0172215
– volume: 6
  start-page: e4640
  year: 2018
  ident: 11102_CR56
  publication-title: PeerJ
  doi: 10.7717/peerj.4640
– volume: 549
  start-page: 953
  issue: 3
  year: 2003
  ident: 11102_CR109
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.033845
– volume: 82
  start-page: 2705
  issue: 5
  year: 1999
  ident: 11102_CR103
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.5.2705
– volume: 43
  start-page: 697
  issue: 2
  year: 1991
  ident: 11102_CR94
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(91)90328-L
– volume: 58
  start-page: 185
  issue: 2
  year: 1999
  ident: 11102_CR54
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(98)00081-1
– volume: 79
  start-page: 368
  issue: 4
  year: 2008
  ident: 11102_CR24
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.131045
– volume: 26
  start-page: 105
  issue: 3
  year: 2007
  ident: 11102_CR58
  publication-title: ACM Trans. Gr.
  doi: 10.1145/1276377.1276509
– volume: 57
  start-page: 1
  year: 2017
  ident: 11102_CR72
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.03.004
– volume: 98
  start-page: 1075
  issue: 3
  year: 2007
  ident: 11102_CR68
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00287.2007
– volume: 8
  start-page: 308
  year: 2020
  ident: 11102_CR108
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00308
– volume: 57
  start-page: 69
  year: 2018
  ident: 11102_CR126
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.11.009
– volume: 17
  start-page: e1008594
  issue: 5
  year: 2021
  ident: 11102_CR42
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008594
– volume: 2
  start-page: a009621
  issue: 12
  year: 2012
  ident: 11102_CR86
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a009621
– volume: 216
  start-page: 3963
  issue: 21
  year: 2013
  ident: 11102_CR32
  publication-title: J. Exp. Biol.
– volume: 20
  start-page: 255
  issue: 3
  year: 2004
  ident: 11102_CR31
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.09.006
– volume: 487
  start-page: 51
  issue: 7405
  year: 2012
  ident: 11102_CR100
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 30
  start-page: 105
  issue: 1
  year: 2000
  ident: 11102_CR102
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/5326.827459
– volume: 4
  start-page: 143
  issue: 1
  year: 2019
  ident: 11102_CR21
  publication-title: Laryngosc. Investig. Otolaryngol.
  doi: 10.1002/lio2.252
– volume: 8
  start-page: 144
  year: 2014
  ident: 11102_CR65
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00144
– volume: 39
  start-page: 788
  issue: 5
  year: 2000
  ident: 11102_CR80
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(99)00259-2
– volume: 7
  start-page: 48
  year: 2013
  ident: 11102_CR133
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00048
– volume: 45
  start-page: 2564
  issue: 15
  year: 2012
  ident: 11102_CR2
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.07.028
– volume: 106
  start-page: 757
  issue: 11–12
  year: 2012
  ident: 11102_CR98
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-012-0514-6
– volume: 33
  start-page: 406
  issue: 2
  year: 2017
  ident: 11102_CR125
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2016.2636297
– volume: 217
  start-page: 1
  issue: 1
  year: 2012
  ident: 11102_CR130
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3000-4
– ident: 11102_CR53
  doi: 10.1016/S0166-4115(08)60736-0
– volume: 95
  start-page: 123
  issue: 2
  year: 2006
  ident: 11102_CR120
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-006-0069-5
– volume: 78
  start-page: 9
  issue: 1
  year: 1998
  ident: 11102_CR41
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050408
– volume: 81
  start-page: 227
  issue: 3
  year: 1999
  ident: 11102_CR118
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050558
– volume: 7
  start-page: 282
  issue: 4
  year: 1985
  ident: 11102_CR28
  publication-title: J. Biomed. Eng.
  doi: 10.1016/0141-5425(85)90055-X
– volume: 2
  start-page: 94
  year: 2020
  ident: 11102_CR23
  publication-title: Front. Sports Active Living
  doi: 10.3389/fspor.2020.00094
– volume: 80
  start-page: 312
  issue: 2
  year: 2013
  ident: 11102_CR75
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.007
– volume: 137
  start-page: 1
  issue: 2
  year: 2015
  ident: 11102_CR70
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029304
– volume: 42
  start-page: 1282
  issue: 9
  year: 2009
  ident: 11102_CR119
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.009
– volume: 15
  start-page: R48
  issue: 2
  year: 2005
  ident: 11102_CR48
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.12.051
– volume: 11
  issue: 5
  year: 2014
  ident: 11102_CR85
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056006
– volume: 233
  start-page: 711
  issue: 3
  year: 2015
  ident: 11102_CR107
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-4148-x
– volume: 31
  start-page: 95
  issue: 2
  year: 2016
  ident: 11102_CR87
  publication-title: Physiology
  doi: 10.1152/physiol.00034.2015
– volume: 507
  start-page: 293
  year: 1998
  ident: 11102_CR91
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1998.293bu.x
– volume: 7
  start-page: 18
  issue: 1
  year: 2018
  ident: 11102_CR13
  publication-title: Kinesiol. Rev.
  doi: 10.1123/kr.2017-0053
– volume: 5
  start-page: 1226
  issue: 11
  year: 2002
  ident: 11102_CR97
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn963
– volume: 17
  start-page: 603
  issue: 3
  year: 1991
  ident: 11102_CR84
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/0096-1523.17.3.603
– volume: 55
  start-page: 263
  issue: 2
  year: 1984
  ident: 11102_CR5
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00237277
– volume: 4
  start-page: 2745
  issue: 11
  year: 1984
  ident: 11102_CR61
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.04-11-02745.1984
– volume: 5
  start-page: 532
  issue: 7
  year: 2004
  ident: 11102_CR20
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1427
– volume: 73
  start-page: 113
  year: 1995
  ident: 11102_CR40
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204049
– volume: 8
  start-page: 31
  issue: 1
  year: 1965
  ident: 11102_CR8
  publication-title: Ergonomics
  doi: 10.1080/00140136508930772
– volume: 104
  start-page: 47
  issue: 1
  year: 2019
  ident: 11102_CR74
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.09.024
– volume: 34
  start-page: 1085
  issue: 8
  year: 2001
  ident: 11102_CR131
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00056-2
– volume: 109
  start-page: 350
  issue: 4
  year: 1998
  ident: 11102_CR6
  publication-title: Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control
  doi: 10.1016/S0924-980X(98)00029-0
– volume: 245
  start-page: 1209
  issue: 4923
  year: 1989
  ident: 11102_CR101
  publication-title: Science (New York, NY)
  doi: 10.1126/science.2675307
– volume: 237
  start-page: 1673
  issue: 7
  year: 2019
  ident: 11102_CR46
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-019-05538-7
– volume: 18
  start-page: 188
  issue: 2
  year: 2008
  ident: 11102_CR22
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2007.06.004
– volume: 30
  start-page: 387
  year: 1977
  ident: 11102_CR116
  publication-title: Exp. Brain Res.
– volume: 15
  start-page: e1006993
  issue: 10
  year: 2019
  ident: 11102_CR59
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006993
– volume: 22
  start-page: 529
  issue: 4
  year: 2019
  ident: 11102_CR93
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0336-0
– volume: 18
  start-page: 263
  issue: 3
  year: 2010
  ident: 11102_CR37
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2047592
– volume: 86
  start-page: 800
  issue: 3
  year: 2015
  ident: 11102_CR82
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.024
– volume: 268
  start-page: 1985
  issue: 1480
  year: 2001
  ident: 11102_CR15
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2001.1761
– volume: 7
  start-page: 42
  year: 2013
  ident: 11102_CR43
  publication-title: Front. Comput. Neurosci.
– volume: 175
  start-page: 249
  issue: 2
  year: 2006
  ident: 11102_CR81
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2006.08.039
– volume: 556
  start-page: 267
  issue: 1
  year: 2004
  ident: 11102_CR134
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.057174
– volume-title: Whittle’s Gait Analysis
  year: 2012
  ident: 11102_CR3
– volume: 9
  start-page: 718
  year: 1999
  ident: 11102_CR95
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(99)00028-8
– volume: 57
  start-page: 1
  year: 2018
  ident: 11102_CR29
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.10.023
– volume: 90
  start-page: 146
  issue: 2
  year: 2004
  ident: 11102_CR78
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-003-0449-z
– volume: 80
  start-page: 16
  issue: 1–2
  year: 2020
  ident: 11102_CR114
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.22738
– volume: 13
  start-page: 17
  issue: 1
  year: 2001
  ident: 11102_CR83
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00087-4
– volume: 27
  start-page: 112
  issue: 1
  year: 2008
  ident: 11102_CR123
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2007.08.003
– volume: 34
  start-page: 180:1
  issue: 6
  year: 2015
  ident: 11102_CR71
  publication-title: ACM Trans. Gr.
  doi: 10.1145/2816795.2818124
– volume: 52
  start-page: 367
  year: 1985
  ident: 11102_CR117
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00449593
– volume: 37
  start-page: 168
  issue: 1
  year: 2018
  ident: 11102_CR36
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917743320
– volume: 15
  start-page: 20180197
  issue: 143
  year: 2018
  ident: 11102_CR11
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2018.0197
– volume: 30
  start-page: 759
  issue: 3
  year: 2011
  ident: 11102_CR121
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0291-y
– volume: 1
  start-page: 49
  issue: 1
  year: 2019
  ident: 11102_CR132
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2895891
– volume: 237
  start-page: 2875
  issue: 11
  year: 2019
  ident: 11102_CR47
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-019-05629-5
– volume: 18
  start-page: 21
  issue: 1
  year: 1985
  ident: 11102_CR127
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(85)90042-9
– volume: 45
  start-page: 1293
  issue: 7
  year: 2012
  ident: 11102_CR1
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.029
– volume: 32
  start-page: 1
  issue: 6
  year: 2013
  ident: 11102_CR111
  publication-title: ACM Trans. Gr.
  doi: 10.1145/2508363.2508399
– volume: 10
  start-page: 740
  issue: 6
  year: 2000
  ident: 11102_CR45
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(00)00149-5
– volume: 3
  start-page: 183
  year: 2013
  ident: 11102_CR113
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2012.00183
– volume: 18
  start-page: 17
  issue: 1
  year: 1986
  ident: 11102_CR66
  publication-title: J. Motor Behav.
  doi: 10.1080/00222895.1986.10735369
– volume: 10
  start-page: 353
  year: 2011
  ident: 11102_CR79
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S0219635211002737
– volume: 49
  start-page: 481
  issue: 5
  year: 1996
  ident: 11102_CR77
  publication-title: Prog. Neurobiol.
  doi: 10.1016/0301-0082(96)00028-7
– volume: 89
  start-page: 89
  issue: 2
  year: 2003
  ident: 11102_CR38
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-003-0414-x
– volume: 10
  start-page: 20140405
  year: 2014
  ident: 11102_CR18
  publication-title: Biol. Let.
  doi: 10.1098/rsbl.2014.0405
– volume: 288
  start-page: 139
  year: 1993
  ident: 11102_CR25
  publication-title: Clin. Orthop. Relat. Res.
– start-page: 197
  volume-title: Neuromechanical Modeling of Posture and Locomotion
  year: 2016
  ident: 11102_CR33
  doi: 10.1007/978-1-4939-3267-2_7
– volume: 12
  start-page: 43
  issue: 1
  year: 2015
  ident: 11102_CR124
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0027-3
– volume: 165
  start-page: 255
  year: 2007
  ident: 11102_CR99
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(06)65016-4
– volume: 9
  start-page: e52507
  year: 2020
  ident: 11102_CR106
  publication-title: Elife
  doi: 10.7554/eLife.52507
SSID ssj0000529419
Score 2.4565227
Snippet Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement...
Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8189
SubjectTerms 631/378/116/2392
631/378/2632
Balance
Biomechanical Phenomena
Electromyography
Feedback
Humanities and Social Sciences
Humans
Kinematics
Leg
Legs
Locomotion
Locomotion - physiology
Mechanical properties
Metabolism
Motor task performance
Movement - physiology
multidisciplinary
Muscle, Skeletal - physiology
Muscles
Nervous system
Oscillators
Reflex
Reflexes
Rhythms
Science
Science (multidisciplinary)
Stretch reflex
Walking
Walking - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLafp0khYVemtNrIdfxzQkhEJ7aiA3YY1kupB6w9oLzb_vjOTdZvu89LbY8jLMw9_Ikr4P4I2T3vdOUqXJmiYoymDuCLhyJDgoanrKxdXzj5-qi0vz4aq8uiP1xXvCEj1wctxx0XqkFqNWZW_4HKXrqSdxoTGNwhLjuXVFmHdnMpVYvVVrZDufkil0czwSUvFpMpp7UXmzoscOEkXC_t91mb9ulvxpxTQC0fkjeDh3kOIkWb4P98LwGO4nTcnbJ-BOROSo_LpOW0xF1LoRy15EOT5B4LVM0j2Cfjje9S7GG9bGEmTidfgmcLHC9WIaBX-jFfz6GqZudUt_FLnFp_EpXJ6ffT69yGchhRypIZtyMr6lqR0G573pVKm9QhVQVa0rjXah6EzhKmy7OvgCO91XnccaNSEXUrsV9DPYG5ZDeAFCh4owz5WVp4lUr0yje-yYU6YtuyCxykBunGpxZhlnsYtrG1e7dWNTICwFwsZAWJnB2-0zN4lj46-j33OstiOZHzteoKyxc9bYf2VNBkebSNu5aEerWIlZEqI3Gbze3qZy4zWUbgjLdRzDcs3klQyep8TYWsJM9cyYl0G9kzI7pu7eGRZfIqU3QY6Rpszg3Sa5fpj1Z1cc_A9XHMIDxVXBjLT1EexNq3V4SY3W5F7FmvoO3pojaA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkL7dpkWF3loTS5Yt-xTS0hAK7amBvQlpJLcLqb1ZeyH595mRvQ7bR27Glo2smdGMNKPvY-y9E943TqClCY0LFKkgdei4UkB3kGl8y8Xs-bfv5dm5-rooFtOGWz-VVW7nxDhR-w5oj_xIEk2uwOm2Ol5dpsQaRdnViULjPntA0GVU0qUXet5joSyWEvV0VibLq6Me_RWdKcMVGBo58Xrs-KMI2_-vWPPvksk_8qbRHZ0esP0pjuQno-Afs3uhfcIejsyS10-ZO-ERqfL3Ziw05ZHxhncNj6R8HF1YNxL4cLxwVPvO-xUxZHHs4kW44rBcw2Y59Jx2ajlNYu1g19f4oYgwPvTP2Pnplx-fz9KJTiEFDMuGFDtf4wIPgvNeWVnkXoIMIMvaFSp3IbMqcyXUVgefgc2b0nrQkKP_Agy6Qv6c7bVdG14ynocSPZ8rSo_LqUaqKm_AErJMXdggoEyY2A6qgQlrnCgvLkzMeeeVGQVhUBAmCsKIhH2Y31mNSBt3tv5EsppbEkp2vNGtf5rJ6ExWe8DwVMuiUXQG1zUYz7pQqUpCATV-5HAraTOZbm9uFS1h7-bHaHSUSbFt6DaxDZE246gk7MWoGHNPCK-ecPMSpndUZqeru0_a5a8I7I2ORwlVJOzjVrluu_X_oXh191-8Zo8k6TshzupDtjesN-ENBlKDexut5Qb_Lhvf
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5qRfBFvDfalhV802Cyu7k91kNLKeiThb4t2dmNHqhJOckB---d2VzkaBV8C8luGHZmMrOZ2e8DeGtT5xqbkqelBW1QpMbYUuCKkcJBUtAsG6rnnz7n55f64iq72gM5n4UJTfsB0jJ8pufusA89BRo-DEZbJ_JOJuS4B_cZup2tepWvlv8qXLnSaTWdj0lUecfUnRgUoPrvyi__bJP8rVYaQtDZY3g05Y7iZJT2Cez59ik8GNkkb5-BPREBnfL7dmwuFYHlRnSNCER8gsJWN5L2CLqw3O8u-htmxRIk4rX_IXC9we166AX_nRX84WqHenNLLwqo4kP_HC7PTr-szuOJQiFGSsWGmISvaFOH3jqna5kpJ1F6lHllM62sT2qd2ByruvAuwVo1ee2wQEUxCynR8uoF7Ldd6w9AKJ9TtLNZ7mgL1UhdqgZrRpOpstqnmEeQzotqcMIXZ5qLaxPq3Ko0oyIMKcIERZg0gnfLnJsRXeOfoz-yrpaRjIwdbnSbr2ayFJNUDiklLWTWaD53axvKYa0vdSkxw4pecjhr2kzu2hvJHMwpxfIygjfLY3I0rp7Ure-2YQwTNdOqRPByNIxFEsaoZ6y8CIodk9kRdfdJu_4WwLwp2OhUZxG8n43rl1h_X4pX_zf8NTyUbP-MOlscwv6w2fojSqYGexy85ycYcBmH
  priority: 102
  providerName: Springer Nature
Title A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements
URI https://link.springer.com/article/10.1038/s41598-022-11102-1
https://www.ncbi.nlm.nih.gov/pubmed/35581211
https://www.proquest.com/docview/2665413628
https://www.proquest.com/docview/2666547423
https://pubmed.ncbi.nlm.nih.gov/PMC9114145
https://doaj.org/article/09dc326725f44628bf192be8482c5c91
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7uB4Iv4m-r5xLBN61u07RpH0T2ljuOhTtEXdi30KTpubC2Z9uF2__embRdWV0Fn7a0SQmZmf1mmuT7AF7rIM8LHWCkBRILFC6MrxG4fINwMJbYS7vV88ur-GIuZotocQCD3FE_gc3e0o70pOb16t3tj81HDPgP3ZHx5H2DIEQHxbCswsglsY5DOEZkkhSol32633F981QEaX92Zn_XHXxyNP77cs8_t1D-to7q4On8Ptzr80o26RzhARzY8iHc6ZQmN49AT5hjrvy-7jaeMqeAw6qCOZE-hpBWdYI-DC807YVnzQ0pZjEc4sreMrOszXrZNoy-3DL6UyvbrN7gixzjeNs8hvn52dfphd_LK_gG07TWx8GnWPAZq_NcZDwKc264NTxOdSRCbceZGOvYpJm0-dhkYRFnuZEmRDwzmITZ8AkclVVpnwELbYxIqKM4x_Kq4CIJC5MR00waZTYwsQfBMKnK9NzjJIGxUm4NPExUZwiFhlDOECrw4M22z03HvPHP1qdkq21LYs12N6r6WvVBqMZpbjBdlTwqBJ3J1QXmt9omIuEmMim-5GSwtBo8UXHSZw4Q5xMPXm0fYxDSykpW2mrt2pCIM86KB087x9iOhPjriUfPA7njMjtD3X1SLr85om8EIhGIyIO3g3P9Gtbfp-L5_zV_AXc5-T8x0soTOGrrtX2JiVarR3AoF3IEx5PJ7MsMf0_Prj59xrvTeDpyHy9GLr5-AvmpKQQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOM7rgFALrVrarhBqpd7c-BFYqSTLJivYP8VvZMZJtloevfW22jiW4xnPw2N_H8BLFRpTqhBXWphigsKF9hU6Ll-jOwhSfEu56vnRONk7ER9P49M1-DXchaFjlYNNdIba1Jr2yDc50eSGaG6zd9PvPrFGUXV1oNDo1OLALn5gyta83f-A8n3F-e7O8fs9v2cV8DVGJ61vjc4xz9FWGSMKHkeGa241T3IVi0jZoBCBSnRepNYEuojKpDA61RGacY2xh42w32uwLiJMZUawvr0z_vR5uatDdTMR5v3tnCDKNhv0kHSLDXM-NCvEJLLiAR1RwL-i278Paf5RqXUOcPc23OojV7bVqdodWLPVXbjecVku7oHaYg4b89u8O9rKHMcOq0vmaAAZOs26owxi-EPRaXvWTImTi-EQz-1PpiczPZ-0DaO9YUZms2qL2QI7cpjmbXMfTq5kqh_AqKor-whYZBP0tSpODCZwJRdZVOqCsGzyuLChTjwIh0mVukc3J5KNc-mq7FEmO0FIFIR0gpChB6-X70w7bI9LW2-TrJYtCZfb_VHPvsh-mcsgNxoD4pTHpaBbv6rECFrZTGRcxzrHTjYGScveWDTyQrU9eLF8jMucajdFZeu5a0M00TgrHjzsFGM5EkLIJ6Q-D9IVlVkZ6uqTavLVQYmjqxOhiD14MyjXxbD-PxWPL_-K53Bj7_joUB7ujw-ewE1Ouk94t-kGjNrZ3D7FMK5Vz_q1w-Dsqpfrb8p2XEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4g2cZzXAaFCWbUUKg5U2puJxw6sVJJlkxXsX-PXMeM8quXRW2-rjWM5nrdnPB9jT3VoTKlDlLQwxQBFSPA1Gi4f0BwEKb6lXfb8w3FycCLfzeLZFvs13IWhsspBJzpFbWqgM_KJIJjcENVtNin7soiP-9NXi-8-IUhRpnWA0-hY5Miuf2D41rw83EdaPxNi-vbTmwO_RxjwAT2V1rcGcox5wGpjZCHiyAgQFkSS61hG2gaFDHQCeZFaE0ARlUlhIIUIVTqgH2IjnPcSu5xGcUgyls7S8XyHMmgyzPt7OkGUTRq0lXSfDaM_VDCEKbJhCx1kwL_83L_LNf_I2TpTOL3Brvc-LN_rmO4m27LVLXalQ7Vc32Z6j7sumd9WXZErd2g7vC65AwTkaD7rDjyI4w9Ndfe8WRA6F8clntqfHOZLWM3bhtMpMScFWrXFco0Tue7mbXOHnVzIRt9l21Vd2XuMRzZBq6vjxGAoVwqZRSUU1NUmjwsbQuKxcNhUBX2fc4LbOFUu3x5lqiOEQkIoRwgVeuz5-M6i6_Jx7ujXRKtxJHXodn_Uyy-qF3gV5AbQNU5FXEq6_6tL9KW1zWQmIIYcJ9kdKK16tdGoMyb32JPxMQo8ZXGKytYrN4YAo3FXPLbTMca4EuqVTz37PJZusMzGUjefVPOvrqk4Gj0ZythjLwbmOlvW_7fi_vlf8ZhdRSFV7w-Pjx6wa4JYnxrfprtsu12u7EP051r9yAkOZ58vWlJ_Awe3XxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neuromuscular+model+of+human+locomotion+combines+spinal+reflex+circuits+with+voluntary+movements&rft.jtitle=Scientific+reports&rft.au=Ramadan%2C+Rachid&rft.au=Geyer%2C+Hartmut&rft.au=Jeka%2C+John&rft.au=Sch%C3%B6ner%2C+Gregor&rft.date=2022-05-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-11102-1&rft.externalDocID=10_1038_s41598_022_11102_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon