A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements
Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 8189 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles. |
---|---|
AbstractList | Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles. Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles. Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles. |
ArticleNumber | 8189 |
Author | Jeka, John Schöner, Gregor Geyer, Hartmut Ramadan, Rachid Reimann, Hendrik |
Author_xml | – sequence: 1 givenname: Rachid surname: Ramadan fullname: Ramadan, Rachid organization: Institute for Neural Computation, Ruhr University Bochum – sequence: 2 givenname: Hartmut surname: Geyer fullname: Geyer, Hartmut organization: Robotics Institute, Carnegie Mellon University – sequence: 3 givenname: John surname: Jeka fullname: Jeka, John organization: Department of Kinesiology and Applied Physiology, University of Delaware – sequence: 4 givenname: Gregor surname: Schöner fullname: Schöner, Gregor organization: Institute for Neural Computation, Ruhr University Bochum – sequence: 5 givenname: Hendrik surname: Reimann fullname: Reimann, Hendrik email: jhrei@udel.edu organization: Department of Kinesiology and Applied Physiology, University of Delaware |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35581211$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBLLFhE_Azk2yQqopHpUpsYG05NzczHjn2YMcD_Hs8kxbaLuqFbdnnHH32vS-rEx88VtVrRt8zKtoPSTLVtTXlvGaM0TI_q844larmgvOTe_vT6iKlLS1D8U6y7kV1KpRqGWfsrOovicccw5QTZGcimcKAjoSRbPJkPHEBwhRmGzwpm956TCTtrDeORBwd_iZgI2Q7J_LLzhuyDy772cQ_JWiPE_o5vaqej8YlvLhdz6sfnz99v_pa33z7cn11eVODknSucYCOMwrYD4M0XImBA0fgTdcrKXqkRtK-gc6scKBgxNiYAVYgWrkCyQWK8-p6yR2C2epdtFPB0MFYfTwIca1NnC041LQbQPBmxdUoZcPbfmQd77GVLQcFHStZH5esXe6nQlbeEY17EPrwxtuNXoe97hiTTKoS8O42IIafGdOsJ5sAnTMeQ06aN02j5KqAF-nbR9JtyLH88FGlJBOFsKje3Cf6h3JXyiJoFwHEkFIpjgY7m0PlCqB1mlF9aBy9NI4ujaOPjaMPVv7Iepf-pEksplTEfo3xP_YTrr_0zNb0 |
CitedBy_id | crossref_primary_10_3389_fbioe_2022_959357 crossref_primary_10_1126_scirobotics_adg0279 crossref_primary_10_1155_2024_2751643 crossref_primary_10_1109_TNSRE_2022_3183571 crossref_primary_10_1109_LRA_2024_3388842 crossref_primary_10_3390_bioengineering11040353 crossref_primary_10_1371_journal_pone_0292334 crossref_primary_10_1098_rsif_2024_0191 crossref_primary_10_1186_s12984_023_01235_3 crossref_primary_10_3390_biomimetics9100618 crossref_primary_10_1242_jeb_245784 crossref_primary_10_4103_ijciis_ijciis_74_23 |
Cites_doi | 10.1177/0278364917743320 10.1098/rsif.2018.0197 10.1111/j.1469-7793.1998.293bu.x 10.1016/S0021-9290(01)00056-2 10.1038/s41593-019-0336-0 10.1007/s00221-012-3000-4 10.1109/5326.827459 10.1152/jn.00767.2005 10.1152/jn.00287.2007 10.1113/jphysiol.2003.057174 10.1113/jphysiol.2002.033845 10.1145/2185520.2185521 10.1109/TMRB.2019.2895891 10.1016/j.jbiomech.2010.03.030 10.1007/s004220050408 10.1038/nrn.2016.9 10.1007/s00422-003-0414-x 10.1007/s00422-017-0733-y 10.1016/0306-4522(91)90328-L 10.1007/s00422-012-0514-6 10.1007/s00221-019-05629-5 10.1007/s10827-010-0291-y 10.1007/BF00204049 10.1016/0301-0082(96)00028-7 10.1016/j.jbiomech.2012.01.029 10.1016/S0959-4388(00)00149-5 10.1037/0096-1523.17.3.603 10.1016/0141-5425(85)90055-X 10.1142/S0219635211002737 10.1016/j.humov.2017.11.009 10.1038/s41598-019-45397-4 10.1016/j.jbiomech.2009.03.009 10.1113/JP278986 10.1145/1276377.1276509 10.1098/rsbl.2014.0405 10.1098/rspb.2020.2432 10.1523/JNEUROSCI.04-11-02745.1984 10.1088/1748-3190/aaae8e 10.3389/fncom.2013.00048 10.1037/a0033101 10.1016/S0924-980X(98)00029-0 10.1007/s41745-017-0052-2 10.1016/0021-9290(87)90052-2 10.1016/S0028-3908(99)00259-2 10.1007/BF00204048 10.1007/BF00319981 10.1007/s00221-019-05538-7 10.1371/journal.pcbi.1006993 10.1016/j.bbr.2006.08.039 10.1016/j.neuron.2019.09.024 10.1098/rsif.2017.0816 10.1016/S0893-6080(98)00066-5 10.3389/fbioe.2020.00308 10.1152/jn.2002.88.3.1097 10.1016/S0301-0082(98)00081-1 10.7554/eLife.52507 10.1016/j.jbiomech.2003.06.002 10.1007/BF00232189 10.7717/peerj.4640 10.1098/rspb.2001.1761 10.1115/1.4029304 10.1123/kr.2017-0053 10.1007/s00221-017-5106-1 10.1016/j.cub.2004.12.051 10.1007/s00221-014-4148-x 10.1126/science.2675307 10.1007/s00422-003-0449-z 10.1016/j.neuron.2015.03.024 10.1007/BF00449593 10.1371/journal.pone.0172215 10.1016/j.humov.2017.10.023 10.1145/2508363.2508399 10.1016/0021-9290(85)90042-9 10.1007/BF00237277 10.1038/nn963 10.1109/TRO.2016.2636297 10.1016/j.gaitpost.2012.11.019 10.1109/TNSRE.2010.2047592 10.1016/j.neuron.2013.09.007 10.1088/1741-2560/11/5/056006 10.1152/physiol.00034.2015 10.1177/1073858403009003012 10.1111/j.1748-1716.1987.tb08045.x 10.1016/S0079-6123(06)65016-4 10.1080/00140136508930772 10.3389/fspor.2020.00094 10.1016/j.humov.2007.08.003 10.1016/j.jbiomech.2012.07.028 10.1186/s12984-015-0027-3 10.1152/japplphysiol.00767.2005 10.3389/fneur.2012.00183 10.1136/jnnp.2007.131045 10.1113/jphysiol.2005.095869 10.3389/fphys.2018.01271 10.1016/S0959-4388(97)80146-8 10.1152/jn.1994.72.1.299 10.1007/978-3-540-30301-5 10.1038/nrn1427 10.1152/jn.1998.79.3.1409 10.3389/fnhum.2015.00246 10.1002/dneu.22738 10.1145/2816795.2818124 10.1016/S0959-4388(99)00028-8 10.1016/S0021-9290(00)00101-9 10.1016/S0966-6362(00)00087-4 10.1007/s00422-006-0069-5 10.1152/jn.1999.82.5.2705 10.3389/fncom.2014.00144 10.1016/j.gaitpost.2003.09.006 10.1113/JP270228 10.1080/00222895.1986.10735369 10.1016/j.jbiomech.2017.03.004 10.1007/s004220050558 10.1038/nature11129 10.1002/lio2.252 10.1101/cshperspect.a009621 10.1371/journal.pcbi.1008594 10.1007/978-1-4939-3267-2_7 10.1016/j.jelekin.2007.06.004 10.1093/acprof:oso/9780195333169.003.0007 10.1145/1275808.1276509 10.1137/1.9781611971217 10.1007/3-540-32494-1_4 10.1016/S0166-4115(08)60736-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-11102-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_09dc326725f44628bf192be8482c5c91 PMC9114145 35581211 10_1038_s41598_022_11102_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: CRCNS 1822568 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Bundesministerium für Bildung und Forschung grantid: 01GQ1803 funderid: http://dx.doi.org/10.13039/501100002347 – fundername: National Science Foundation grantid: CRCNS 1822568 – fundername: Bundesministerium für Bildung und Forschung grantid: 01GQ1803 – fundername: ; grantid: 01GQ1803 – fundername: ; grantid: CRCNS 1822568 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-edc9210cebdd4a253d2c2ec269b543be0a40b6c9a7ed0ca3f6adc7c3847c423e3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Thu Aug 21 14:11:40 EDT 2025 Fri Jul 11 02:20:00 EDT 2025 Wed Aug 13 08:09:49 EDT 2025 Mon Jul 21 06:01:01 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Tue Jul 01 04:16:27 EDT 2025 Fri Feb 21 02:36:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-edc9210cebdd4a253d2c2ec269b543be0a40b6c9a7ed0ca3f6adc7c3847c423e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-11102-1 |
PMID | 35581211 |
PQID | 2665413628 |
PQPubID | 2041939 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09dc326725f44628bf192be8482c5c91 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114145 proquest_miscellaneous_2666547423 proquest_journals_2665413628 pubmed_primary_35581211 crossref_citationtrail_10_1038_s41598_022_11102_1 crossref_primary_10_1038_s41598_022_11102_1 springer_journals_10_1038_s41598_022_11102_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-17 |
PublicationDateYYYYMMDD | 2022-05-17 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Nilsson, Thorstensson (CR73) 1987; 129 Stollenmaier, Ilg, Haeufle (CR108) 2020; 8 Reynolds, Day (CR48) 2005; 15 Chou, Kaufman, Brey, Draganich (CR83) 2001; 13 Buhrmann, Di Paolo (CR65) 2014; 8 Kistemaker, Van Soest, Bobbert (CR68) 2007; 98 Murray, Li, Sastry (CR63) 1994 Darling, Pizzimenti, Morecraft (CR79) 2011; 10 Jankovic (CR24) 2008; 79 Bruijn, van Dieën (CR16) 2018; 15 Smid, den Otter (CR50) 2013; 38 Neptune, Clark, Kautz (CR119) 2009; 42 Ralston (CR9) 1958; 17 Schwartz, Moran (CR103) 1999; 82 Mantziaris, Bockemühl, Büschges (CR114) 2020; 80 Woollacott, Bonnet, Yabe (CR5) 1984; 55 Hof, Duysens (CR126) 2018; 57 Carver, Kiemel, Jeka (CR120) 2006; 95 Taga (CR41) 1998; 78 Reimann, Fettrow, Thompson, Jeka (CR17) 2018; 9 Voloshina, Kuo, Daley, Ferris (CR32) 2013; 216 Tsianos, Goodner, Loeb (CR85) 2014; 11 Ivanenko, Poppele, Lacquaniti (CR134) 2004; 556 Gribble, Ostry, Sanguineti, Laboissière (CR67) 1998; 79 Dean (CR8) 1965; 8 Siciliano, Khatib (CR62) 2008 Hunter, Hendrix, Dean (CR27) 2010; 43 Inman, Ralston, Todd, Lieberman (CR4) 1981 (CR26) 2003; 9 Miller, Scott (CR116) 1977; 30 Reynolds, Day (CR49) 2005; 569 Kirtley, Whittle, Jefferson (CR28) 1985; 7 Pijnappels, Reeves, Maganaris, van Dieën (CR22) 2008; 18 CR53 Maxwell Donelan, Shipman, Kram, Kuo (CR14) 2004; 37 Ong, Geijtenbeek, Hicks, Delp (CR59) 2019; 15 Latash (CR130) 2012; 217 Mowbray, Gottwald, Zhao, Atkinson, Cowie (CR47) 2019; 237 Warabi, Furuyama, Sugai, Kato, Yanagisawa (CR88) 2018; 236 Zehr, Stein (CR54) 1999; 58 Kim, Collins (CR125) 2017; 33 Kim, Collins (CR124) 2015; 12 Ambike, Zatsiorsky, Latash (CR107) 2015; 233 Whishaw (CR80) 2000; 39 Dolan, Dayan (CR75) 2013; 80 Hof (CR123) 2008; 27 Peterka (CR19) 2002; 88 CR69 VandderNoot, Ijspeert, Ronsse (CR36) 2018; 37 Lee, Lee, Kwon, Jeong, O’Sullivan, Park, Lee (CR71) 2015; 34 Guertin (CR113) 2013; 3 Taga (CR35) 1995; 111 CR64 Levine, Richards, Whittle (CR3) 2012 Osoba, Rao, Agrawal, Lalwani (CR21) 2019; 4 CR60 Geijtenbeek, Van De Panne, Van Der Stappen (CR111) 2013; 32 Sarmadi, Schumacher, Seyfarth, Sharbafi (CR132) 2019; 1 Browning, Baker, Herron, Kram (CR10) 2006; 100 Lanciego, Luquin, Obeso (CR86) 2012; 2 Yakovenko, Gritsenko, Prochazka (CR78) 2004; 90 Wang, Srinivasan (CR18) 2014; 10 Sabes (CR45) 2000; 10 Loeb (CR98) 2012; 106 Hogan (CR61) 1984; 4 Fukuchi, Fukuchi, Duarte (CR56) 2018; 6 Bernstein (CR129) 1967 Sutherland, Davids (CR25) 1993; 288 Lim, Lin, Pandy (CR72) 2017; 57 Maxwell Donelan, Kram, Kuo (CR15) 2001; 268 Anatol (CR66) 1986; 18 Wolpert, Kawato (CR96) 1998; 11 Kalaska, Scott, Cisek, Sergio (CR44) 1997; 7 Hinder, Milner (CR109) 2003; 549 Todorov, Jordan (CR97) 2002; 5 Reimann, Fettrow, Thompson, Agada, McFadyen, Jeka (CR128) 2017; 12 Clark (CR76) 2015; 9 Matthis, Fajen (CR30) 2014; 40 De Groote, Falisse (CR34) 2021; 288 Hof (CR131) 2001; 34 Yin, Loken, Panne (CR58) 2007; 26 Gharbawie, Whishaw (CR81) 2006; 175 Weiler, Gribble, Pruszynski (CR93) 2019; 22 Geyer, Herr (CR37) 2010; 18 Günther, Ruder (CR38) 2003; 89 Llewellyn, Yang, Prochazka (CR92) 1990; 83 Bouisset, Zattara (CR7) 1987; 20 Reimann, Fettrow, Jeka (CR13) 2018; 7 Kawato (CR95) 1999; 9 CR89 (CR118) 1999; 81 Whelan (CR77) 1996; 49 Suzuki, Geyer (CR122) 2018; 13 Kung, Fink, Legg, Ali, Shultz (CR29) 2018; 57 Song, Geyer (CR39) 2015; 593 Scott (CR20) 2004; 5 Zhang, Jeroen, Brenner, Verschueren, Duysens (CR55) 2020; 598 Moissenet, Leboeuf, Armand (CR57) 2019; 9 Bauby, Kuo (CR12) 2000; 33 Ivanenko, Poppele, Lacquaniti (CR51) 2006; 95 Balleine (CR74) 2019; 104 Reimann, Schöner (CR90) 2017; 111 Ackermann, van den Bogert (CR1) 2012; 45 Prochazka, Gorassini (CR91) 1998; 507 Di Russo, Stanev, Armand, Ijspeert (CR42) 2021; 17 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (CR100) 2012; 487 Patla, Prentice, Robinson, Neufeld (CR84) 1991; 17 Summerside, Kram, Ahmed (CR11) 2018; 15 Barton, Matthis, Fajen (CR46) 2019; 237 Albert, Hadjiosif, Jang, Zimnik, Soteropoulos, Baker, Churchland, Krakauer, Shadmehr (CR106) 2020; 9 van der Kooij, Peterka (CR121) 2011; 30 Lackner, Dizio (CR110) 1994; 72 Reimann, Ramadan, Fettrow, Hafer, Geyer, Jeka (CR23) 2020; 2 d’Avella, Lacquaniti (CR43) 2013; 7 Kiehn (CR104) 2016; 17 Hicks, Uchida, Seth, Rajagopal, Delp (CR70) 2015; 137 Sharbafi, Seyfarth (CR105) 2017 Mutha (CR52) 2017; 97 Steele, van der Krogt, Schwartz, Delp (CR2) 2012; 45 Prentice, Hasler, Groves, Frank (CR31) 2004; 20 Peterson, Horak (CR87) 2016; 31 Wang, Hamner, Delp, Koltun (CR112) 2012; 31 Allen, Ting, Prilutsky, Edwards (CR33) 2016 Aruin, Forrest, Latash (CR6) 1998; 109 Matsuoka (CR117) 1985; 52 Latash, Gottlieb (CR94) 1991; 43 Taga (CR40) 1995; 73 Georgopoulos, Grillner (CR101) 1989; 245 Kawahara, Mori (CR115) 1982; 43 Prochazka, Yakovenko (CR99) 2007; 165 Hodgson, Hogan (CR102) 2000; 30 Townsend (CR127) 1985; 18 Kawai, Markman, Poddar, Ko, Fantana, Dhawale, Kampff, Ölveczky (CR82) 2015; 86 Chvatal, Ting (CR133) 2013; 7 G Taga (11102_CR40) 1995; 73 ML Latash (11102_CR94) 1991; 43 A d’Avella (11102_CR43) 2013; 7 CF Ong (11102_CR59) 2019; 15 J Maxwell Donelan (11102_CR14) 2004; 37 J Jankovic (11102_CR24) 2008; 79 MA Sharbafi (11102_CR105) 2017 AP Georgopoulos (11102_CR101) 1989; 245 T Warabi (11102_CR88) 2018; 236 GA Tsianos (11102_CR85) 2014; 11 JM Wang (11102_CR112) 2012; 31 BW Balleine (11102_CR74) 2019; 104 DM Wolpert (11102_CR96) 1998; 11 RM Murray (11102_CR63) 1994 11102_CR53 LC Hunter (11102_CR27) 2010; 43 T Buhrmann (11102_CR65) 2014; 8 T Geijtenbeek (11102_CR111) 2013; 32 JL Allen (11102_CR33) 2016 AL Hof (11102_CR126) 2018; 57 SH Scott (11102_CR20) 2004; 5 F De Groote (11102_CR34) 2021; 288 RJ Dolan (11102_CR75) 2013; 80 J Weiler (11102_CR93) 2019; 22 C Kirtley (11102_CR28) 1985; 7 VT Inman (11102_CR4) 1981 H Reimann (11102_CR17) 2018; 9 ST Albert (11102_CR106) 2020; 9 F Moissenet (11102_CR57) 2019; 9 Jens Bo Nielsen (11102_CR26) 2003; 9 IQ Whishaw (11102_CR80) 2000; 39 HJ Ralston (11102_CR9) 1958; 17 ML Latash (11102_CR130) 2012; 217 11102_CR64 11102_CR69 Y Suzuki (11102_CR122) 2018; 13 A Sarmadi (11102_CR132) 2019; 1 KA Smid (11102_CR50) 2013; 38 A Prochazka (11102_CR91) 1998; 507 AL Hof (11102_CR123) 2008; 27 KM Steele (11102_CR2) 2012; 45 11102_CR60 OA Gharbawie (11102_CR81) 2006; 175 MA Townsend (11102_CR127) 1985; 18 G Taga (11102_CR41) 1998; 78 EP Zehr (11102_CR54) 1999; 58 YS Zhang (11102_CR55) 2020; 598 Richard Quint van der Linde (11102_CR118) 1999; 81 H Reimann (11102_CR90) 2017; 111 R Mowbray (11102_CR47) 2019; 237 Y Lee (11102_CR71) 2015; 34 RR Neptune (11102_CR119) 2009; 42 H Reimann (11102_CR13) 2018; 7 SM Bruijn (11102_CR16) 2018; 15 M Llewellyn (11102_CR92) 1990; 83 Y Wang (11102_CR18) 2014; 10 N Bernstein (11102_CR129) 1967 GA Dean (11102_CR8) 1965; 8 MH Woollacott (11102_CR5) 1984; 55 JL Lanciego (11102_CR86) 2012; 2 S Bouisset (11102_CR7) 1987; 20 G Taga (11102_CR35) 1995; 111 YP Lim (11102_CR72) 2017; 57 M Kawato (11102_CR95) 1999; 9 S Yakovenko (11102_CR78) 2004; 90 K Yin (11102_CR58) 2007; 26 AB Schwartz (11102_CR103) 1999; 82 AL Hof (11102_CR131) 2001; 34 GF Anatol (11102_CR66) 1986; 18 S Ambike (11102_CR107) 2015; 233 H Reimann (11102_CR128) 2017; 12 SL Barton (11102_CR46) 2019; 237 RJ Peterka (11102_CR19) 2002; 88 MY Osoba (11102_CR21) 2019; 4 JF Kalaska (11102_CR44) 1997; 7 11102_CR89 SM Kung (11102_CR29) 2018; 57 CA Fukuchi (11102_CR56) 2018; 6 B Siciliano (11102_CR62) 2008 PK Mutha (11102_CR52) 2017; 97 P Whelan (11102_CR77) 1996; 49 MM Churchland (11102_CR100) 2012; 487 DA Kistemaker (11102_CR68) 2007; 98 AJ Hodgson (11102_CR102) 2000; 30 O Kiehn (11102_CR104) 2016; 17 M Pijnappels (11102_CR22) 2008; 18 M Kim (11102_CR124) 2015; 12 K Kawahara (11102_CR115) 1982; 43 CE Bauby (11102_CR12) 2000; 33 A Prochazka (11102_CR99) 2007; 165 M Kim (11102_CR125) 2017; 33 DJ Clark (11102_CR76) 2015; 9 J Nilsson (11102_CR73) 1987; 129 H Geyer (11102_CR37) 2010; 18 RC Browning (11102_CR10) 2006; 100 M Günther (11102_CR38) 2003; 89 GE Loeb (11102_CR98) 2012; 106 SA Chvatal (11102_CR133) 2013; 7 MR Hinder (11102_CR109) 2003; 549 M Ackermann (11102_CR1) 2012; 45 WG Darling (11102_CR79) 2011; 10 A Di Russo (11102_CR42) 2021; 17 YP Ivanenko (11102_CR51) 2006; 95 K Matsuoka (11102_CR117) 1985; 52 P Sabes (11102_CR45) 2000; 10 RF Reynolds (11102_CR49) 2005; 569 R Kawai (11102_CR82) 2015; 86 K Stollenmaier (11102_CR108) 2020; 8 D Levine (11102_CR3) 2012 AS Aruin (11102_CR6) 1998; 109 H Reimann (11102_CR23) 2020; 2 PA Guertin (11102_CR113) 2013; 3 L-S Chou (11102_CR83) 2001; 13 C Mantziaris (11102_CR114) 2020; 80 H van der Kooij (11102_CR121) 2011; 30 AE Patla (11102_CR84) 1991; 17 J Maxwell Donelan (11102_CR15) 2001; 268 EM Summerside (11102_CR11) 2018; 15 NV VandderNoot (11102_CR36) 2018; 37 N Hogan (11102_CR61) 1984; 4 E Todorov (11102_CR97) 2002; 5 JR Lackner (11102_CR110) 1994; 72 YP Ivanenko (11102_CR134) 2004; 556 S Song (11102_CR39) 2015; 593 DS Peterson (11102_CR87) 2016; 31 JL Hicks (11102_CR70) 2015; 137 PL Gribble (11102_CR67) 1998; 79 RF Reynolds (11102_CR48) 2005; 15 S Carver (11102_CR120) 2006; 95 DH Sutherland (11102_CR25) 1993; 288 AS Voloshina (11102_CR32) 2013; 216 JS Matthis (11102_CR30) 2014; 40 S Miller (11102_CR116) 1977; 30 SD Prentice (11102_CR31) 2004; 20 |
References_xml | – volume: 37 start-page: 168 issue: 1 year: 2018 end-page: 196 ident: CR36 article-title: Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker publication-title: Int. J. Robot. Res. doi: 10.1177/0278364917743320 – volume: 15 start-page: 20180197 issue: 143 year: 2018 ident: CR11 article-title: Contributions of metabolic and temporal costs to human gait selection publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2018.0197 – volume: 507 start-page: 293 year: 1998 end-page: 304 ident: CR91 article-title: Ensemble firing of muscle afferents recorded during normal locomotion in cats publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1998.293bu.x – volume: 34 start-page: 1085 issue: 8 year: 2001 end-page: 1089 ident: CR131 article-title: The force resulting from the action of mono- and biarticular muscles in a limb publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00056-2 – volume: 22 start-page: 529 issue: 4 year: 2019 end-page: 533 ident: CR93 article-title: Spinal stretch reflexes support efficient hand control publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0336-0 – volume: 217 start-page: 1 issue: 1 year: 2012 end-page: 5 ident: CR130 article-title: The bliss of motor abundance publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3000-4 – volume: 30 start-page: 105 issue: 1 year: 2000 end-page: 118 ident: CR102 article-title: A model-independent definition of attractor behavior applicable to interactive tasks publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/5326.827459 – volume: 95 start-page: 602 issue: 2 year: 2006 end-page: 618 ident: CR51 article-title: Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds publication-title: J. Neurophysiol. doi: 10.1152/jn.00767.2005 – year: 1994 ident: CR63 publication-title: A Mathematical Introduction to Robotic Manipulation – volume: 17 start-page: 277 issue: 4 year: 1958 end-page: 283 ident: CR9 article-title: Energy-speed relation and optimal speed during level walking publication-title: Int. Z. Angew. Physiol. Einschließlich Arbeitsphysiologie – volume: 98 start-page: 1075 issue: 3 year: 2007 end-page: 82 ident: CR68 article-title: Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories publication-title: J. Neurophysiol. doi: 10.1152/jn.00287.2007 – volume: 556 start-page: 267 issue: 1 year: 2004 end-page: 282 ident: CR134 article-title: Five basic muscle activation patterns account for muscle activity during human locomotion publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.057174 – year: 1967 ident: CR129 publication-title: The Co-ordination and Regulation of Movements – volume: 549 start-page: 953 issue: 3 year: 2003 end-page: 963 ident: CR109 article-title: The case for an internal dynamics model versus equilibrium point control in human movement publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.033845 – volume: 31 start-page: 25:1 issue: 4 year: 2012 end-page: 25:11 ident: CR112 article-title: Optimizing locomotion controllers using biologically-based actuators and objectives publication-title: ACM Trans. Gr. doi: 10.1145/2185520.2185521 – volume: 1 start-page: 49 issue: 1 year: 2019 end-page: 57 ident: CR132 article-title: Concerted control of stance and balance locomotor subfunctions-leg force as a conductor publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2019.2895891 – volume: 43 start-page: 1910 issue: 10 year: 2010 end-page: 1915 ident: CR27 article-title: The cost of walking downhill: Is the preferred gait energetically optimal? publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.03.030 – volume: 78 start-page: 9 issue: 1 year: 1998 end-page: 17 ident: CR41 article-title: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance publication-title: Biol. Cybern. doi: 10.1007/s004220050408 – volume: 17 start-page: 224 issue: 4 year: 2016 end-page: 238 ident: CR104 article-title: Decoding the organization of spinal circuits that control locomotion publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.9 – volume: 89 start-page: 89 issue: 2 year: 2003 end-page: 106 ident: CR38 article-title: Synthesis of two-dimensional human walking: A test of the -model publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0414-x – volume: 111 start-page: 389 issue: 5–6 year: 2017 end-page: 403 ident: CR90 article-title: A multi-joint model of quiet, upright stance accounts for the "uncontrolled manifold" structure of joint variance publication-title: Biol. Cybern. doi: 10.1007/s00422-017-0733-y – volume: 43 start-page: 697 issue: 2 year: 1991 end-page: 712 ident: CR94 article-title: Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements publication-title: Neuroscience doi: 10.1016/0306-4522(91)90328-L – volume: 106 start-page: 757 issue: 11–12 year: 2012 end-page: 65 ident: CR98 article-title: Optimal isn’t good enough publication-title: Biol. Cybern. doi: 10.1007/s00422-012-0514-6 – volume: 237 start-page: 2875 issue: 11 year: 2019 end-page: 2883 ident: CR47 article-title: The development of visually guided stepping publication-title: Exp. Brain Res. doi: 10.1007/s00221-019-05629-5 – volume: 30 start-page: 759 issue: 3 year: 2011 end-page: 778 ident: CR121 article-title: Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0291-y – volume: 73 start-page: 113 year: 1995 end-page: 121 ident: CR40 article-title: A model of the neuro-musculo-skeletal system for human locomotion. II. Real-time adaptability under various constraints publication-title: Biol. Cybern. doi: 10.1007/BF00204049 – year: 1981 ident: CR4 publication-title: Human Walking – volume: 49 start-page: 481 issue: 5 year: 1996 end-page: 515 ident: CR77 article-title: Control of locomotion in the decerebrate cat publication-title: Prog. Neurobiol. doi: 10.1016/0301-0082(96)00028-7 – volume: 45 start-page: 1293 issue: 7 year: 2012 end-page: 1298 ident: CR1 article-title: Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.029 – volume: 10 start-page: 740 issue: 6 year: 2000 end-page: 746 ident: CR45 article-title: The planning and control of reaching movements publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(00)00149-5 – ident: CR60 – volume: 17 start-page: 603 issue: 3 year: 1991 end-page: 634 ident: CR84 article-title: Visual control of locomotion: Strategies for changing direction and for going over obstacles publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.17.3.603 – volume: 7 start-page: 282 issue: 4 year: 1985 end-page: 288 ident: CR28 article-title: Influence of walking speed on gait parameters publication-title: J. Biomed. Eng. doi: 10.1016/0141-5425(85)90055-X – volume: 10 start-page: 353 year: 2011 end-page: 384 ident: CR79 article-title: Functional recovery following motor cortex lesions in non-human primates publication-title: J. Integr. Neurosci. doi: 10.1142/S0219635211002737 – volume: 57 start-page: 69 year: 2018 end-page: 82 ident: CR126 article-title: Responses of human ankle muscles to mediolateral balance perturbations during walking publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.11.009 – volume: 9 start-page: 9510 issue: 1 year: 2019 ident: CR57 article-title: Lower limb sagittal gait kinematics can be predicted based on walking speed, gender, age and BMI publication-title: Sci. Rep. doi: 10.1038/s41598-019-45397-4 – volume: 42 start-page: 1282 issue: 9 year: 2009 end-page: 1287 ident: CR119 article-title: Modular control of human walking: A simulation study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.009 – volume: 598 start-page: 1987 issue: 10 year: 2020 end-page: 2000 ident: CR55 article-title: Fast responses to stepping-target displacements when walking publication-title: J. Physiol. doi: 10.1113/JP278986 – volume: 26 start-page: 105 issue: 3 year: 2007 ident: CR58 article-title: SIMBICON: Simple biped locomotion control publication-title: ACM Trans. Gr. doi: 10.1145/1276377.1276509 – volume: 10 start-page: 20140405 year: 2014 ident: CR18 article-title: Stepping in the direction of the fall: The next foot placement can be predicted from current upper body state in steady-state walking publication-title: Biol. Let. doi: 10.1098/rsbl.2014.0405 – volume: 288 start-page: 20202432 issue: 1946 year: 2021 ident: CR34 article-title: Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2020.2432 – volume: 4 start-page: 2745 issue: 11 year: 1984 end-page: 2754 ident: CR61 article-title: An organizing principle for a class of voluntary movements publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.04-11-02745.1984 – volume: 13 start-page: 036005 issue: 3 year: 2018 ident: CR122 article-title: A simple bipedal model for studying control of gait termination publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/aaae8e – volume: 7 start-page: 48 year: 2013 ident: CR133 article-title: Common muscle synergies for balance and walking publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00048 – volume: 288 start-page: 139 year: 1993 end-page: 47 ident: CR25 article-title: Common gait abnormalities of the knee in cerebral palsy publication-title: Clin. Orthop. Relat. Res. – volume: 40 start-page: 106 issue: 1 year: 2014 end-page: 115 ident: CR30 article-title: Visual control of foot placement when walking over complex terrain publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/a0033101 – ident: CR89 – year: 2012 ident: CR3 publication-title: Whittle’s Gait Analysis – volume: 109 start-page: 350 issue: 4 year: 1998 end-page: 359 ident: CR6 article-title: Anticipatory postural adjustments in conditions of postural instability publication-title: Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control doi: 10.1016/S0924-980X(98)00029-0 – volume: 97 start-page: 555 issue: 4 year: 2017 end-page: 565 ident: CR52 article-title: Reflex circuits and their modulation in motor control: A historical perspective and current view publication-title: J. Indian Inst. Sci. doi: 10.1007/s41745-017-0052-2 – ident: CR69 – year: 2017 ident: CR105 publication-title: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications – volume: 20 start-page: 735 issue: 8 year: 1987 end-page: 742 ident: CR7 article-title: Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90052-2 – volume: 39 start-page: 788 issue: 5 year: 2000 end-page: 805 ident: CR80 article-title: Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat publication-title: Neuropharmacology doi: 10.1016/S0028-3908(99)00259-2 – volume: 111 start-page: 97 year: 1995 end-page: 111 ident: CR35 article-title: A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait publication-title: Biol. Cybern. doi: 10.1007/BF00204048 – volume: 43 start-page: 225 year: 1982 end-page: 230 ident: CR115 article-title: A two compartment model of the stepping generator: Analysis of the roles of a stage-setter and a rhythm generator publication-title: Biol. Cybern. doi: 10.1007/BF00319981 – volume: 237 start-page: 1673 issue: 7 year: 2019 end-page: 1690 ident: CR46 article-title: Control strategies for rapid, visually guided adjustments of the foot during continuous walking publication-title: Exp. Brain Res. doi: 10.1007/s00221-019-05538-7 – volume: 15 start-page: e1006993 issue: 10 year: 2019 ident: CR59 article-title: Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006993 – volume: 175 start-page: 249 issue: 2 year: 2006 end-page: 262 ident: CR81 article-title: Parallel stages of learning and recovery of skilled reaching after motor cortex stroke: “Oppositions” organize normal and compensatory movements publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2006.08.039 – volume: 104 start-page: 47 issue: 1 year: 2019 end-page: 62 ident: CR74 article-title: The meaning of behavior: Discriminating reflex and volition in the brain publication-title: Neuron doi: 10.1016/j.neuron.2019.09.024 – volume: 15 start-page: 20170816 issue: 143 year: 2018 ident: CR16 article-title: Control of human gait stability through foot placement publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0816 – volume: 11 start-page: 1317 year: 1998 end-page: 1329 ident: CR96 article-title: Multiple paired forward and inverse models for motor control publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00066-5 – volume: 8 start-page: 308 year: 2020 ident: CR108 article-title: Predicting perturbed human arm movements in a neuro-musculoskeletal model to investigate the muscular force response publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00308 – volume: 88 start-page: 1097 issue: 3 year: 2002 end-page: 118 ident: CR19 article-title: Sensorimotor integration in human postural control publication-title: J. Neurophysiol. doi: 10.1152/jn.2002.88.3.1097 – volume: 58 start-page: 185 issue: 2 year: 1999 end-page: 205 ident: CR54 article-title: What functions do reflexes serve during human locomotion? publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(98)00081-1 – volume: 9 start-page: e52507 year: 2020 ident: CR106 article-title: Postural control of arm and fingers through integration of movement commands publication-title: Elife doi: 10.7554/eLife.52507 – volume: 37 start-page: 827 issue: 6 year: 2004 end-page: 835 ident: CR14 article-title: Mechanical and metabolic requirements for active lateral stabilization in human walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.06.002 – volume: 83 start-page: 22 issue: 1 year: 1990 end-page: 28 ident: CR92 article-title: Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking publication-title: Exp. Brain Res. doi: 10.1007/BF00232189 – volume: 6 start-page: e4640 year: 2018 ident: CR56 article-title: A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals publication-title: PeerJ doi: 10.7717/peerj.4640 – volume: 268 start-page: 1985 issue: 1480 year: 2001 end-page: 1992 ident: CR15 article-title: Mechanical and metabolic determinants of the preferred step width in human walking publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2001.1761 – volume: 137 start-page: 1 issue: 2 year: 2015 ident: CR70 article-title: Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement publication-title: J. Biomech. Eng. doi: 10.1115/1.4029304 – volume: 7 start-page: 18 issue: 1 year: 2018 end-page: 25 ident: CR13 article-title: Strategies for the control of balance during locomotion publication-title: Kinesiol. Rev. doi: 10.1123/kr.2017-0053 – volume: 236 start-page: 43 issue: 1 year: 2018 end-page: 57 ident: CR88 article-title: Gait bradykinesia in Parkinson’s disease: A change in the motor program which controls the synergy of gait publication-title: Exp. Brain Res. doi: 10.1007/s00221-017-5106-1 – volume: 15 start-page: R48 issue: 2 year: 2005 end-page: R49 ident: CR48 article-title: Rapid visuo-motor processes drive the leg regardless of balance constraints publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.12.051 – volume: 233 start-page: 711 issue: 3 year: 2015 end-page: 721 ident: CR107 article-title: Processes underlying unintentional finger-force changes in the absence of visual feedback publication-title: Exp. Brain Res. doi: 10.1007/s00221-014-4148-x – volume: 245 start-page: 1209 issue: 4923 year: 1989 end-page: 1210 ident: CR101 article-title: Visuomotor coordination in reaching and locomotion publication-title: Science (New York, NY) doi: 10.1126/science.2675307 – volume: 90 start-page: 146 issue: 2 year: 2004 end-page: 155 ident: CR78 article-title: Contribution of stretch reflexes to locomotor control: A modeling study publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0449-z – volume: 86 start-page: 800 issue: 3 year: 2015 end-page: 812 ident: CR82 article-title: Motor cortex is required for learning but not for executing a motor skill publication-title: Neuron doi: 10.1016/j.neuron.2015.03.024 – volume: 52 start-page: 367 year: 1985 end-page: 376 ident: CR117 article-title: Sustained oscillations generated by mutually inhibiting neurons with adaptation publication-title: Biol. Cybern. doi: 10.1007/BF00449593 – volume: 12 start-page: 1 year: 2017 end-page: 16 ident: CR128 article-title: Complementary mechanisms for upright balance during walking publication-title: PLoS ONE doi: 10.1371/journal.pone.0172215 – volume: 57 start-page: 1 year: 2018 end-page: 12 ident: CR29 article-title: What factors determine the preferred gait transition speed in humans? A review of the triggering mechanisms publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.10.023 – volume: 32 start-page: 1 issue: 6 year: 2013 end-page: 11 ident: CR111 article-title: Flexible muscle-based locomotion for bipedal creatures publication-title: ACM Trans. Gr. doi: 10.1145/2508363.2508399 – volume: 18 start-page: 21 issue: 1 year: 1985 end-page: 38 ident: CR127 article-title: Biped gait stabilization via foot placement publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90042-9 – volume: 55 start-page: 263 issue: 2 year: 1984 ident: CR5 article-title: Preparatory process for anticipatory postural adjustments: Modulation of leg muscles reflex pathways during preparation for arm movements in standing man publication-title: Exp. Brain Res. doi: 10.1007/BF00237277 – volume: 7 start-page: 42 year: 2013 ident: CR43 article-title: Control of reaching movements by muscle synergy combinations publication-title: Front. Comput. Neurosci. – volume: 5 start-page: 1226 issue: 11 year: 2002 end-page: 35 ident: CR97 article-title: Optimal feedback control as a theory of motor coordination publication-title: Nat. Neurosci. doi: 10.1038/nn963 – volume: 33 start-page: 406 issue: 2 year: 2017 end-page: 418 ident: CR125 article-title: Once-per-step control of ankle push-off work improves balance in a three-dimensional simulation of bipedal walking publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2016.2636297 – volume: 38 start-page: 242 issue: 2 year: 2013 end-page: 246 ident: CR50 article-title: Why you need to look where you step for precise foot placement: The effects of gaze eccentricity on stepping errors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.11.019 – volume: 18 start-page: 263 issue: 3 year: 2010 end-page: 273 ident: CR37 article-title: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2047592 – volume: 80 start-page: 312 issue: 2 year: 2013 end-page: 325 ident: CR75 article-title: Goals and habits in the brain publication-title: Neuron doi: 10.1016/j.neuron.2013.09.007 – volume: 11 issue: 5 year: 2014 ident: CR85 article-title: Useful properties of spinal circuits for learning and performing planar reaches publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056006 – volume: 216 start-page: 3963 issue: 21 year: 2013 end-page: 3970 ident: CR32 article-title: Biomechanics and energetics of walking on uneven terrain publication-title: J. Exp. Biol. – volume: 31 start-page: 95 issue: 2 year: 2016 end-page: 107 ident: CR87 article-title: Neural control of walking in people with parkinsonism publication-title: Physiology doi: 10.1152/physiol.00034.2015 – volume: 9 start-page: 195 issue: 3 year: 2003 end-page: 204 ident: CR26 article-title: How we walk: Central control of muscle activity during human walking publication-title: Neuroscientist doi: 10.1177/1073858403009003012 – volume: 129 start-page: 107 issue: 1 year: 1987 end-page: 114 ident: CR73 article-title: Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1987.tb08045.x – volume: 165 start-page: 255 year: 2007 end-page: 265 ident: CR99 article-title: The neuromechanical tuning hypothesis publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)65016-4 – volume: 8 start-page: 31 issue: 1 year: 1965 end-page: 47 ident: CR8 article-title: An analysis of the energy expenditure in level and grade walking publication-title: Ergonomics doi: 10.1080/00140136508930772 – volume: 2 start-page: 94 year: 2020 ident: CR23 article-title: Interactions between different age-related factors affecting balance control in walking publication-title: Front. Sports Active Living doi: 10.3389/fspor.2020.00094 – volume: 27 start-page: 112 issue: 1 year: 2008 end-page: 25 ident: CR123 article-title: The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2007.08.003 – ident: CR64 – volume: 45 start-page: 2564 issue: 15 year: 2012 end-page: 2569 ident: CR2 article-title: How much muscle strength is required to walk in a crouch gait? publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.07.028 – volume: 12 start-page: 43 issue: 1 year: 2015 ident: CR124 article-title: Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0027-3 – volume: 100 start-page: 390 issue: 2 year: 2006 end-page: 398 ident: CR10 article-title: Effects of obesity and sex on the energetic cost and preferred speed of walking publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00767.2005 – volume: 3 start-page: 183 year: 2013 ident: CR113 article-title: Central pattern generator for locomotion: Anatomical, physiological, and pathophysiological considerations publication-title: Front. Neurol. doi: 10.3389/fneur.2012.00183 – volume: 79 start-page: 368 issue: 4 year: 2008 end-page: 376 ident: CR24 article-title: Parkinson’s disease: Clinical features and diagnosis publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.131045 – volume: 569 start-page: 677 issue: 2 year: 2005 end-page: 684 ident: CR49 article-title: Visual guidance of the human foot during a step: Visually guided stepping publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.095869 – volume: 9 start-page: 1271 issue: September year: 2018 ident: CR17 article-title: Neural control of balance during walking publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01271 – volume: 7 start-page: 849 issue: 6 year: 1997 end-page: 859 ident: CR44 article-title: Cortical control of reaching movements publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(97)80146-8 – volume: 72 start-page: 299 issue: 1 year: 1994 end-page: 313 ident: CR110 article-title: Rapid adaptation to Coriolis force perturbations of arm trajectory publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.72.1.299 – year: 2008 ident: CR62 publication-title: Springer Handbook of Robotics doi: 10.1007/978-3-540-30301-5 – volume: 5 start-page: 532 issue: 7 year: 2004 end-page: 46 ident: CR20 article-title: Optimal feedback control and the neural basis of volitional motor control publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1427 – volume: 79 start-page: 1409 issue: 3 year: 1998 end-page: 24 ident: CR67 article-title: Are complex control signals required for human arm movement? publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.79.3.1409 – ident: CR53 – volume: 30 start-page: 387 year: 1977 ident: CR116 article-title: The spinal locomotor generator publication-title: Exp. Brain Res. – volume: 9 start-page: 246 year: 2015 ident: CR76 article-title: Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00246 – volume: 80 start-page: 16 issue: 1–2 year: 2020 end-page: 30 ident: CR114 article-title: Central pattern generating networks in insect locomotion publication-title: Dev. Neurobiol. doi: 10.1002/dneu.22738 – volume: 34 start-page: 180:1 issue: 6 year: 2015 end-page: 180:9 ident: CR71 article-title: Push-recovery stability of biped locomotion publication-title: ACM Trans. Gr. doi: 10.1145/2816795.2818124 – volume: 9 start-page: 718 year: 1999 end-page: 727 ident: CR95 article-title: Internal models for motor control and trajectory planning publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(99)00028-8 – volume: 33 start-page: 1433 issue: 11 year: 2000 end-page: 1440 ident: CR12 article-title: Active control of lateral balance in human walking publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00101-9 – volume: 13 start-page: 17 issue: 1 year: 2001 end-page: 26 ident: CR83 article-title: Motion of the whole body’s center of mass when stepping over obstacles of different heights publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00087-4 – volume: 95 start-page: 123 issue: 2 year: 2006 end-page: 34 ident: CR120 article-title: Modeling the dynamics of sensory reweighting publication-title: Biol. Cybern. doi: 10.1007/s00422-006-0069-5 – volume: 82 start-page: 2705 issue: 5 year: 1999 end-page: 18 ident: CR103 article-title: Motor cortical activity during drawing movements: Population representation during lemniscate tracing publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.5.2705 – volume: 8 start-page: 144 year: 2014 ident: CR65 article-title: Spinal circuits can accommodate interaction torques during multijoint limb movements publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2014.00144 – volume: 20 start-page: 255 issue: 3 year: 2004 end-page: 265 ident: CR31 article-title: Locomotor adaptations for changes in the slope of the walking surface publication-title: Gait Posture doi: 10.1016/j.gaitpost.2003.09.006 – volume: 593 start-page: 3493 year: 2015 end-page: 3511 ident: CR39 article-title: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion publication-title: J. Physiol. doi: 10.1113/JP270228 – volume: 18 start-page: 17 issue: 1 year: 1986 end-page: 54 ident: CR66 article-title: Once more on the equilibrium-point hypothesis ( Model) for motor control publication-title: J. Motor Behav. doi: 10.1080/00222895.1986.10735369 – volume: 57 start-page: 1 year: 2017 end-page: 7 ident: CR72 article-title: Effects of step length and step frequency on lower-limb muscle function in human gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.03.004 – volume: 81 start-page: 227 issue: 3 year: 1999 end-page: 237 ident: CR118 article-title: Passive bipedal walking with phasic muscle contraction publication-title: Biol. Cybern. doi: 10.1007/s004220050558 – volume: 487 start-page: 51 issue: 7405 year: 2012 end-page: 6 ident: CR100 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – volume: 4 start-page: 143 issue: 1 year: 2019 end-page: 153 ident: CR21 article-title: Balance and gait in the elderly: A contemporary review publication-title: Laryngosc. Investig. Otolaryngol. doi: 10.1002/lio2.252 – volume: 2 start-page: a009621 issue: 12 year: 2012 end-page: a009621 ident: CR86 article-title: Functional neuroanatomy of the Basal Ganglia publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a009621 – volume: 17 start-page: e1008594 issue: 5 year: 2021 ident: CR42 article-title: Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008594 – start-page: 197 year: 2016 end-page: 223 ident: CR33 article-title: Why is neuromechanical modeling of balance and locomotion so hard? publication-title: Neuromechanical Modeling of Posture and Locomotion doi: 10.1007/978-1-4939-3267-2_7 – volume: 18 start-page: 188 issue: 2 year: 2008 end-page: 196 ident: CR22 article-title: Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2007.06.004 – volume-title: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications year: 2017 ident: 11102_CR105 – volume: 38 start-page: 242 issue: 2 year: 2013 ident: 11102_CR50 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.11.019 – volume-title: Human Walking year: 1981 ident: 11102_CR4 – volume: 17 start-page: 277 issue: 4 year: 1958 ident: 11102_CR9 publication-title: Int. Z. Angew. Physiol. Einschließlich Arbeitsphysiologie – ident: 11102_CR89 doi: 10.1093/acprof:oso/9780195333169.003.0007 – volume: 598 start-page: 1987 issue: 10 year: 2020 ident: 11102_CR55 publication-title: J. Physiol. doi: 10.1113/JP278986 – volume: 88 start-page: 1097 issue: 3 year: 2002 ident: 11102_CR19 publication-title: J. Neurophysiol. doi: 10.1152/jn.2002.88.3.1097 – volume: 9 start-page: 195 issue: 3 year: 2003 ident: 11102_CR26 publication-title: Neuroscientist doi: 10.1177/1073858403009003012 – volume-title: The Co-ordination and Regulation of Movements year: 1967 ident: 11102_CR129 – volume: 33 start-page: 1433 issue: 11 year: 2000 ident: 11102_CR12 publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00101-9 – volume: 13 start-page: 036005 issue: 3 year: 2018 ident: 11102_CR122 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/aaae8e – volume: 43 start-page: 1910 issue: 10 year: 2010 ident: 11102_CR27 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.03.030 – ident: 11102_CR60 doi: 10.1145/1275808.1276509 – volume: 79 start-page: 1409 issue: 3 year: 1998 ident: 11102_CR67 publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.79.3.1409 – volume: 11 start-page: 1317 year: 1998 ident: 11102_CR96 publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00066-5 – volume: 97 start-page: 555 issue: 4 year: 2017 ident: 11102_CR52 publication-title: J. Indian Inst. Sci. doi: 10.1007/s41745-017-0052-2 – ident: 11102_CR64 doi: 10.1137/1.9781611971217 – volume: 9 start-page: 246 year: 2015 ident: 11102_CR76 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00246 – volume-title: A Mathematical Introduction to Robotic Manipulation year: 1994 ident: 11102_CR63 – volume: 7 start-page: 849 issue: 6 year: 1997 ident: 11102_CR44 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(97)80146-8 – volume: 95 start-page: 602 issue: 2 year: 2006 ident: 11102_CR51 publication-title: J. Neurophysiol. doi: 10.1152/jn.00767.2005 – volume: 111 start-page: 389 issue: 5–6 year: 2017 ident: 11102_CR90 publication-title: Biol. Cybern. doi: 10.1007/s00422-017-0733-y – volume-title: Springer Handbook of Robotics year: 2008 ident: 11102_CR62 doi: 10.1007/978-3-540-30301-5 – volume: 9 start-page: 1271 issue: September year: 2018 ident: 11102_CR17 publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01271 – volume: 288 start-page: 20202432 issue: 1946 year: 2021 ident: 11102_CR34 publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2020.2432 – volume: 236 start-page: 43 issue: 1 year: 2018 ident: 11102_CR88 publication-title: Exp. Brain Res. doi: 10.1007/s00221-017-5106-1 – volume: 43 start-page: 225 year: 1982 ident: 11102_CR115 publication-title: Biol. Cybern. doi: 10.1007/BF00319981 – volume: 37 start-page: 827 issue: 6 year: 2004 ident: 11102_CR14 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.06.002 – volume: 100 start-page: 390 issue: 2 year: 2006 ident: 11102_CR10 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00767.2005 – volume: 83 start-page: 22 issue: 1 year: 1990 ident: 11102_CR92 publication-title: Exp. Brain Res. doi: 10.1007/BF00232189 – volume: 72 start-page: 299 issue: 1 year: 1994 ident: 11102_CR110 publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.72.1.299 – volume: 40 start-page: 106 issue: 1 year: 2014 ident: 11102_CR30 publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/a0033101 – volume: 31 start-page: 25:1 issue: 4 year: 2012 ident: 11102_CR112 publication-title: ACM Trans. Gr. doi: 10.1145/2185520.2185521 – ident: 11102_CR69 doi: 10.1007/3-540-32494-1_4 – volume: 129 start-page: 107 issue: 1 year: 1987 ident: 11102_CR73 publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1987.tb08045.x – volume: 9 start-page: 9510 issue: 1 year: 2019 ident: 11102_CR57 publication-title: Sci. Rep. doi: 10.1038/s41598-019-45397-4 – volume: 20 start-page: 735 issue: 8 year: 1987 ident: 11102_CR7 publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90052-2 – volume: 15 start-page: 20170816 issue: 143 year: 2018 ident: 11102_CR16 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0816 – volume: 593 start-page: 3493 year: 2015 ident: 11102_CR39 publication-title: J. Physiol. doi: 10.1113/JP270228 – volume: 17 start-page: 224 issue: 4 year: 2016 ident: 11102_CR104 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.9 – volume: 111 start-page: 97 year: 1995 ident: 11102_CR35 publication-title: Biol. Cybern. doi: 10.1007/BF00204048 – volume: 569 start-page: 677 issue: 2 year: 2005 ident: 11102_CR49 publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.095869 – volume: 12 start-page: 1 year: 2017 ident: 11102_CR128 publication-title: PLoS ONE doi: 10.1371/journal.pone.0172215 – volume: 6 start-page: e4640 year: 2018 ident: 11102_CR56 publication-title: PeerJ doi: 10.7717/peerj.4640 – volume: 549 start-page: 953 issue: 3 year: 2003 ident: 11102_CR109 publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.033845 – volume: 82 start-page: 2705 issue: 5 year: 1999 ident: 11102_CR103 publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.5.2705 – volume: 43 start-page: 697 issue: 2 year: 1991 ident: 11102_CR94 publication-title: Neuroscience doi: 10.1016/0306-4522(91)90328-L – volume: 58 start-page: 185 issue: 2 year: 1999 ident: 11102_CR54 publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(98)00081-1 – volume: 79 start-page: 368 issue: 4 year: 2008 ident: 11102_CR24 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.131045 – volume: 26 start-page: 105 issue: 3 year: 2007 ident: 11102_CR58 publication-title: ACM Trans. Gr. doi: 10.1145/1276377.1276509 – volume: 57 start-page: 1 year: 2017 ident: 11102_CR72 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.03.004 – volume: 98 start-page: 1075 issue: 3 year: 2007 ident: 11102_CR68 publication-title: J. Neurophysiol. doi: 10.1152/jn.00287.2007 – volume: 8 start-page: 308 year: 2020 ident: 11102_CR108 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00308 – volume: 57 start-page: 69 year: 2018 ident: 11102_CR126 publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.11.009 – volume: 17 start-page: e1008594 issue: 5 year: 2021 ident: 11102_CR42 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008594 – volume: 2 start-page: a009621 issue: 12 year: 2012 ident: 11102_CR86 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a009621 – volume: 216 start-page: 3963 issue: 21 year: 2013 ident: 11102_CR32 publication-title: J. Exp. Biol. – volume: 20 start-page: 255 issue: 3 year: 2004 ident: 11102_CR31 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2003.09.006 – volume: 487 start-page: 51 issue: 7405 year: 2012 ident: 11102_CR100 publication-title: Nature doi: 10.1038/nature11129 – volume: 30 start-page: 105 issue: 1 year: 2000 ident: 11102_CR102 publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/5326.827459 – volume: 4 start-page: 143 issue: 1 year: 2019 ident: 11102_CR21 publication-title: Laryngosc. Investig. Otolaryngol. doi: 10.1002/lio2.252 – volume: 8 start-page: 144 year: 2014 ident: 11102_CR65 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2014.00144 – volume: 39 start-page: 788 issue: 5 year: 2000 ident: 11102_CR80 publication-title: Neuropharmacology doi: 10.1016/S0028-3908(99)00259-2 – volume: 7 start-page: 48 year: 2013 ident: 11102_CR133 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00048 – volume: 45 start-page: 2564 issue: 15 year: 2012 ident: 11102_CR2 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.07.028 – volume: 106 start-page: 757 issue: 11–12 year: 2012 ident: 11102_CR98 publication-title: Biol. Cybern. doi: 10.1007/s00422-012-0514-6 – volume: 33 start-page: 406 issue: 2 year: 2017 ident: 11102_CR125 publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2016.2636297 – volume: 217 start-page: 1 issue: 1 year: 2012 ident: 11102_CR130 publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3000-4 – ident: 11102_CR53 doi: 10.1016/S0166-4115(08)60736-0 – volume: 95 start-page: 123 issue: 2 year: 2006 ident: 11102_CR120 publication-title: Biol. Cybern. doi: 10.1007/s00422-006-0069-5 – volume: 78 start-page: 9 issue: 1 year: 1998 ident: 11102_CR41 publication-title: Biol. Cybern. doi: 10.1007/s004220050408 – volume: 81 start-page: 227 issue: 3 year: 1999 ident: 11102_CR118 publication-title: Biol. Cybern. doi: 10.1007/s004220050558 – volume: 7 start-page: 282 issue: 4 year: 1985 ident: 11102_CR28 publication-title: J. Biomed. Eng. doi: 10.1016/0141-5425(85)90055-X – volume: 2 start-page: 94 year: 2020 ident: 11102_CR23 publication-title: Front. Sports Active Living doi: 10.3389/fspor.2020.00094 – volume: 80 start-page: 312 issue: 2 year: 2013 ident: 11102_CR75 publication-title: Neuron doi: 10.1016/j.neuron.2013.09.007 – volume: 137 start-page: 1 issue: 2 year: 2015 ident: 11102_CR70 publication-title: J. Biomech. Eng. doi: 10.1115/1.4029304 – volume: 42 start-page: 1282 issue: 9 year: 2009 ident: 11102_CR119 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.009 – volume: 15 start-page: R48 issue: 2 year: 2005 ident: 11102_CR48 publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.12.051 – volume: 11 issue: 5 year: 2014 ident: 11102_CR85 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056006 – volume: 233 start-page: 711 issue: 3 year: 2015 ident: 11102_CR107 publication-title: Exp. Brain Res. doi: 10.1007/s00221-014-4148-x – volume: 31 start-page: 95 issue: 2 year: 2016 ident: 11102_CR87 publication-title: Physiology doi: 10.1152/physiol.00034.2015 – volume: 507 start-page: 293 year: 1998 ident: 11102_CR91 publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1998.293bu.x – volume: 7 start-page: 18 issue: 1 year: 2018 ident: 11102_CR13 publication-title: Kinesiol. Rev. doi: 10.1123/kr.2017-0053 – volume: 5 start-page: 1226 issue: 11 year: 2002 ident: 11102_CR97 publication-title: Nat. Neurosci. doi: 10.1038/nn963 – volume: 17 start-page: 603 issue: 3 year: 1991 ident: 11102_CR84 publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.17.3.603 – volume: 55 start-page: 263 issue: 2 year: 1984 ident: 11102_CR5 publication-title: Exp. Brain Res. doi: 10.1007/BF00237277 – volume: 4 start-page: 2745 issue: 11 year: 1984 ident: 11102_CR61 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.04-11-02745.1984 – volume: 5 start-page: 532 issue: 7 year: 2004 ident: 11102_CR20 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1427 – volume: 73 start-page: 113 year: 1995 ident: 11102_CR40 publication-title: Biol. Cybern. doi: 10.1007/BF00204049 – volume: 8 start-page: 31 issue: 1 year: 1965 ident: 11102_CR8 publication-title: Ergonomics doi: 10.1080/00140136508930772 – volume: 104 start-page: 47 issue: 1 year: 2019 ident: 11102_CR74 publication-title: Neuron doi: 10.1016/j.neuron.2019.09.024 – volume: 34 start-page: 1085 issue: 8 year: 2001 ident: 11102_CR131 publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00056-2 – volume: 109 start-page: 350 issue: 4 year: 1998 ident: 11102_CR6 publication-title: Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control doi: 10.1016/S0924-980X(98)00029-0 – volume: 245 start-page: 1209 issue: 4923 year: 1989 ident: 11102_CR101 publication-title: Science (New York, NY) doi: 10.1126/science.2675307 – volume: 237 start-page: 1673 issue: 7 year: 2019 ident: 11102_CR46 publication-title: Exp. Brain Res. doi: 10.1007/s00221-019-05538-7 – volume: 18 start-page: 188 issue: 2 year: 2008 ident: 11102_CR22 publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2007.06.004 – volume: 30 start-page: 387 year: 1977 ident: 11102_CR116 publication-title: Exp. Brain Res. – volume: 15 start-page: e1006993 issue: 10 year: 2019 ident: 11102_CR59 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006993 – volume: 22 start-page: 529 issue: 4 year: 2019 ident: 11102_CR93 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0336-0 – volume: 18 start-page: 263 issue: 3 year: 2010 ident: 11102_CR37 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2047592 – volume: 86 start-page: 800 issue: 3 year: 2015 ident: 11102_CR82 publication-title: Neuron doi: 10.1016/j.neuron.2015.03.024 – volume: 268 start-page: 1985 issue: 1480 year: 2001 ident: 11102_CR15 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2001.1761 – volume: 7 start-page: 42 year: 2013 ident: 11102_CR43 publication-title: Front. Comput. Neurosci. – volume: 175 start-page: 249 issue: 2 year: 2006 ident: 11102_CR81 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2006.08.039 – volume: 556 start-page: 267 issue: 1 year: 2004 ident: 11102_CR134 publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.057174 – volume-title: Whittle’s Gait Analysis year: 2012 ident: 11102_CR3 – volume: 9 start-page: 718 year: 1999 ident: 11102_CR95 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(99)00028-8 – volume: 57 start-page: 1 year: 2018 ident: 11102_CR29 publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.10.023 – volume: 90 start-page: 146 issue: 2 year: 2004 ident: 11102_CR78 publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0449-z – volume: 80 start-page: 16 issue: 1–2 year: 2020 ident: 11102_CR114 publication-title: Dev. Neurobiol. doi: 10.1002/dneu.22738 – volume: 13 start-page: 17 issue: 1 year: 2001 ident: 11102_CR83 publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00087-4 – volume: 27 start-page: 112 issue: 1 year: 2008 ident: 11102_CR123 publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2007.08.003 – volume: 34 start-page: 180:1 issue: 6 year: 2015 ident: 11102_CR71 publication-title: ACM Trans. Gr. doi: 10.1145/2816795.2818124 – volume: 52 start-page: 367 year: 1985 ident: 11102_CR117 publication-title: Biol. Cybern. doi: 10.1007/BF00449593 – volume: 37 start-page: 168 issue: 1 year: 2018 ident: 11102_CR36 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364917743320 – volume: 15 start-page: 20180197 issue: 143 year: 2018 ident: 11102_CR11 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2018.0197 – volume: 30 start-page: 759 issue: 3 year: 2011 ident: 11102_CR121 publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0291-y – volume: 1 start-page: 49 issue: 1 year: 2019 ident: 11102_CR132 publication-title: IEEE Trans. Med. Robot. Bionics doi: 10.1109/TMRB.2019.2895891 – volume: 237 start-page: 2875 issue: 11 year: 2019 ident: 11102_CR47 publication-title: Exp. Brain Res. doi: 10.1007/s00221-019-05629-5 – volume: 18 start-page: 21 issue: 1 year: 1985 ident: 11102_CR127 publication-title: J. Biomech. doi: 10.1016/0021-9290(85)90042-9 – volume: 45 start-page: 1293 issue: 7 year: 2012 ident: 11102_CR1 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.029 – volume: 32 start-page: 1 issue: 6 year: 2013 ident: 11102_CR111 publication-title: ACM Trans. Gr. doi: 10.1145/2508363.2508399 – volume: 10 start-page: 740 issue: 6 year: 2000 ident: 11102_CR45 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(00)00149-5 – volume: 3 start-page: 183 year: 2013 ident: 11102_CR113 publication-title: Front. Neurol. doi: 10.3389/fneur.2012.00183 – volume: 18 start-page: 17 issue: 1 year: 1986 ident: 11102_CR66 publication-title: J. Motor Behav. doi: 10.1080/00222895.1986.10735369 – volume: 10 start-page: 353 year: 2011 ident: 11102_CR79 publication-title: J. Integr. Neurosci. doi: 10.1142/S0219635211002737 – volume: 49 start-page: 481 issue: 5 year: 1996 ident: 11102_CR77 publication-title: Prog. Neurobiol. doi: 10.1016/0301-0082(96)00028-7 – volume: 89 start-page: 89 issue: 2 year: 2003 ident: 11102_CR38 publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0414-x – volume: 10 start-page: 20140405 year: 2014 ident: 11102_CR18 publication-title: Biol. Let. doi: 10.1098/rsbl.2014.0405 – volume: 288 start-page: 139 year: 1993 ident: 11102_CR25 publication-title: Clin. Orthop. Relat. Res. – start-page: 197 volume-title: Neuromechanical Modeling of Posture and Locomotion year: 2016 ident: 11102_CR33 doi: 10.1007/978-1-4939-3267-2_7 – volume: 12 start-page: 43 issue: 1 year: 2015 ident: 11102_CR124 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0027-3 – volume: 165 start-page: 255 year: 2007 ident: 11102_CR99 publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(06)65016-4 – volume: 9 start-page: e52507 year: 2020 ident: 11102_CR106 publication-title: Elife doi: 10.7554/eLife.52507 |
SSID | ssj0000529419 |
Score | 2.4565227 |
Snippet | Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement... Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8189 |
SubjectTerms | 631/378/116/2392 631/378/2632 Balance Biomechanical Phenomena Electromyography Feedback Humanities and Social Sciences Humans Kinematics Leg Legs Locomotion Locomotion - physiology Mechanical properties Metabolism Motor task performance Movement - physiology multidisciplinary Muscle, Skeletal - physiology Muscles Nervous system Oscillators Reflex Reflexes Rhythms Science Science (multidisciplinary) Stretch reflex Walking Walking - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLafp0khYVemtNrIdfxzQkhEJ7aiA3YY1kupB6w9oLzb_vjOTdZvu89LbY8jLMw9_Ikr4P4I2T3vdOUqXJmiYoymDuCLhyJDgoanrKxdXzj5-qi0vz4aq8uiP1xXvCEj1wctxx0XqkFqNWZW_4HKXrqSdxoTGNwhLjuXVFmHdnMpVYvVVrZDufkil0czwSUvFpMpp7UXmzoscOEkXC_t91mb9ulvxpxTQC0fkjeDh3kOIkWb4P98LwGO4nTcnbJ-BOROSo_LpOW0xF1LoRy15EOT5B4LVM0j2Cfjje9S7GG9bGEmTidfgmcLHC9WIaBX-jFfz6GqZudUt_FLnFp_EpXJ6ffT69yGchhRypIZtyMr6lqR0G573pVKm9QhVQVa0rjXah6EzhKmy7OvgCO91XnccaNSEXUrsV9DPYG5ZDeAFCh4owz5WVp4lUr0yje-yYU6YtuyCxykBunGpxZhlnsYtrG1e7dWNTICwFwsZAWJnB2-0zN4lj46-j33OstiOZHzteoKyxc9bYf2VNBkebSNu5aEerWIlZEqI3Gbze3qZy4zWUbgjLdRzDcs3klQyep8TYWsJM9cyYl0G9kzI7pu7eGRZfIqU3QY6Rpszg3Sa5fpj1Z1cc_A9XHMIDxVXBjLT1EexNq3V4SY3W5F7FmvoO3pojaA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkL7dpkWF3loTS5Yt-xTS0hAK7amBvQlpJLcLqb1ZeyH595mRvQ7bR27Glo2smdGMNKPvY-y9E943TqClCY0LFKkgdei4UkB3kGl8y8Xs-bfv5dm5-rooFtOGWz-VVW7nxDhR-w5oj_xIEk2uwOm2Ol5dpsQaRdnViULjPntA0GVU0qUXet5joSyWEvV0VibLq6Me_RWdKcMVGBo58Xrs-KMI2_-vWPPvksk_8qbRHZ0esP0pjuQno-Afs3uhfcIejsyS10-ZO-ERqfL3Ziw05ZHxhncNj6R8HF1YNxL4cLxwVPvO-xUxZHHs4kW44rBcw2Y59Jx2ajlNYu1g19f4oYgwPvTP2Pnplx-fz9KJTiEFDMuGFDtf4wIPgvNeWVnkXoIMIMvaFSp3IbMqcyXUVgefgc2b0nrQkKP_Agy6Qv6c7bVdG14ynocSPZ8rSo_LqUaqKm_AErJMXdggoEyY2A6qgQlrnCgvLkzMeeeVGQVhUBAmCsKIhH2Y31mNSBt3tv5EsppbEkp2vNGtf5rJ6ExWe8DwVMuiUXQG1zUYz7pQqUpCATV-5HAraTOZbm9uFS1h7-bHaHSUSbFt6DaxDZE246gk7MWoGHNPCK-ecPMSpndUZqeru0_a5a8I7I2ORwlVJOzjVrluu_X_oXh191-8Zo8k6TshzupDtjesN-ENBlKDexut5Qb_Lhvf priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5qRfBFvDfalhV802Cyu7k91kNLKeiThb4t2dmNHqhJOckB---d2VzkaBV8C8luGHZmMrOZ2e8DeGtT5xqbkqelBW1QpMbYUuCKkcJBUtAsG6rnnz7n55f64iq72gM5n4UJTfsB0jJ8pufusA89BRo-DEZbJ_JOJuS4B_cZup2tepWvlv8qXLnSaTWdj0lUecfUnRgUoPrvyi__bJP8rVYaQtDZY3g05Y7iZJT2Cez59ik8GNkkb5-BPREBnfL7dmwuFYHlRnSNCER8gsJWN5L2CLqw3O8u-htmxRIk4rX_IXC9we166AX_nRX84WqHenNLLwqo4kP_HC7PTr-szuOJQiFGSsWGmISvaFOH3jqna5kpJ1F6lHllM62sT2qd2ByruvAuwVo1ee2wQEUxCynR8uoF7Ldd6w9AKJ9TtLNZ7mgL1UhdqgZrRpOpstqnmEeQzotqcMIXZ5qLaxPq3Ko0oyIMKcIERZg0gnfLnJsRXeOfoz-yrpaRjIwdbnSbr2ayFJNUDiklLWTWaD53axvKYa0vdSkxw4pecjhr2kzu2hvJHMwpxfIygjfLY3I0rp7Ure-2YQwTNdOqRPByNIxFEsaoZ6y8CIodk9kRdfdJu_4WwLwp2OhUZxG8n43rl1h_X4pX_zf8NTyUbP-MOlscwv6w2fojSqYGexy85ycYcBmH priority: 102 providerName: Springer Nature |
Title | A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements |
URI | https://link.springer.com/article/10.1038/s41598-022-11102-1 https://www.ncbi.nlm.nih.gov/pubmed/35581211 https://www.proquest.com/docview/2665413628 https://www.proquest.com/docview/2666547423 https://pubmed.ncbi.nlm.nih.gov/PMC9114145 https://doaj.org/article/09dc326725f44628bf192be8482c5c91 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7uB4Iv4m-r5xLBN61u07RpH0T2ljuOhTtEXdi30KTpubC2Z9uF2__embRdWV0Fn7a0SQmZmf1mmuT7AF7rIM8LHWCkBRILFC6MrxG4fINwMJbYS7vV88ur-GIuZotocQCD3FE_gc3e0o70pOb16t3tj81HDPgP3ZHx5H2DIEQHxbCswsglsY5DOEZkkhSol32633F981QEaX92Zn_XHXxyNP77cs8_t1D-to7q4On8Ptzr80o26RzhARzY8iHc6ZQmN49AT5hjrvy-7jaeMqeAw6qCOZE-hpBWdYI-DC807YVnzQ0pZjEc4sreMrOszXrZNoy-3DL6UyvbrN7gixzjeNs8hvn52dfphd_LK_gG07TWx8GnWPAZq_NcZDwKc264NTxOdSRCbceZGOvYpJm0-dhkYRFnuZEmRDwzmITZ8AkclVVpnwELbYxIqKM4x_Kq4CIJC5MR00waZTYwsQfBMKnK9NzjJIGxUm4NPExUZwiFhlDOECrw4M22z03HvPHP1qdkq21LYs12N6r6WvVBqMZpbjBdlTwqBJ3J1QXmt9omIuEmMim-5GSwtBo8UXHSZw4Q5xMPXm0fYxDSykpW2mrt2pCIM86KB087x9iOhPjriUfPA7njMjtD3X1SLr85om8EIhGIyIO3g3P9Gtbfp-L5_zV_AXc5-T8x0soTOGrrtX2JiVarR3AoF3IEx5PJ7MsMf0_Prj59xrvTeDpyHy9GLr5-AvmpKQQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOM7rgFALrVrarhBqpd7c-BFYqSTLJivYP8VvZMZJtloevfW22jiW4xnPw2N_H8BLFRpTqhBXWphigsKF9hU6Ll-jOwhSfEu56vnRONk7ER9P49M1-DXchaFjlYNNdIba1Jr2yDc50eSGaG6zd9PvPrFGUXV1oNDo1OLALn5gyta83f-A8n3F-e7O8fs9v2cV8DVGJ61vjc4xz9FWGSMKHkeGa241T3IVi0jZoBCBSnRepNYEuojKpDA61RGacY2xh42w32uwLiJMZUawvr0z_vR5uatDdTMR5v3tnCDKNhv0kHSLDXM-NCvEJLLiAR1RwL-i278Paf5RqXUOcPc23OojV7bVqdodWLPVXbjecVku7oHaYg4b89u8O9rKHMcOq0vmaAAZOs26owxi-EPRaXvWTImTi-EQz-1PpiczPZ-0DaO9YUZms2qL2QI7cpjmbXMfTq5kqh_AqKor-whYZBP0tSpODCZwJRdZVOqCsGzyuLChTjwIh0mVukc3J5KNc-mq7FEmO0FIFIR0gpChB6-X70w7bI9LW2-TrJYtCZfb_VHPvsh-mcsgNxoD4pTHpaBbv6rECFrZTGRcxzrHTjYGScveWDTyQrU9eLF8jMucajdFZeu5a0M00TgrHjzsFGM5EkLIJ6Q-D9IVlVkZ6uqTavLVQYmjqxOhiD14MyjXxbD-PxWPL_-K53Bj7_joUB7ujw-ewE1Ouk94t-kGjNrZ3D7FMK5Vz_q1w-Dsqpfrb8p2XEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4g2cZzXAaFCWbUUKg5U2puJxw6sVJJlkxXsX-PXMeM8quXRW2-rjWM5nrdnPB9jT3VoTKlDlLQwxQBFSPA1Gi4f0BwEKb6lXfb8w3FycCLfzeLZFvs13IWhsspBJzpFbWqgM_KJIJjcENVtNin7soiP-9NXi-8-IUhRpnWA0-hY5Miuf2D41rw83EdaPxNi-vbTmwO_RxjwAT2V1rcGcox5wGpjZCHiyAgQFkSS61hG2gaFDHQCeZFaE0ARlUlhIIUIVTqgH2IjnPcSu5xGcUgyls7S8XyHMmgyzPt7OkGUTRq0lXSfDaM_VDCEKbJhCx1kwL_83L_LNf_I2TpTOL3Brvc-LN_rmO4m27LVLXalQ7Vc32Z6j7sumd9WXZErd2g7vC65AwTkaD7rDjyI4w9Ndfe8WRA6F8clntqfHOZLWM3bhtMpMScFWrXFco0Tue7mbXOHnVzIRt9l21Vd2XuMRzZBq6vjxGAoVwqZRSUU1NUmjwsbQuKxcNhUBX2fc4LbOFUu3x5lqiOEQkIoRwgVeuz5-M6i6_Jx7ujXRKtxJHXodn_Uyy-qF3gV5AbQNU5FXEq6_6tL9KW1zWQmIIYcJ9kdKK16tdGoMyb32JPxMQo8ZXGKytYrN4YAo3FXPLbTMca4EuqVTz37PJZusMzGUjefVPOvrqk4Gj0ZythjLwbmOlvW_7fi_vlf8ZhdRSFV7w-Pjx6wa4JYnxrfprtsu12u7EP051r9yAkOZ58vWlJ_Awe3XxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neuromuscular+model+of+human+locomotion+combines+spinal+reflex+circuits+with+voluntary+movements&rft.jtitle=Scientific+reports&rft.au=Ramadan%2C+Rachid&rft.au=Geyer%2C+Hartmut&rft.au=Jeka%2C+John&rft.au=Sch%C3%B6ner%2C+Gregor&rft.date=2022-05-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-11102-1&rft.externalDocID=10_1038_s41598_022_11102_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |