Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma
Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its aggressive nature. This study aims to develop a radiomics score based on US texture analysis for differential diagnosis between TNBC and fibr...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 13546 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.09.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-31906-4 |
Cover
Loading…
Abstract | Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its aggressive nature. This study aims to develop a radiomics score based on US texture analysis for differential diagnosis between TNBC and fibroadenoma, and to evaluate its diagnostic performance compared with pathologic results. We retrospectively included 715 pathology-proven fibroadenomas and 186 pathology-proven TNBCs which were examined by three different US machines. We developed the radiomics score by using penalized logistic regression with a least absolute shrinkage and selection operator (LASSO) analysis from 730 extracted features consisting of 14 intensity-based features, 132 textural features and 584 wavelet-based features. The constructed radiomics score showed significant difference between fibroadenoma and TNBC for all three US machines (
p
< 0.001). Although the radiomics score showed dependency on the type of US machine, we developed more elaborate radiomics score for a subgroup in which US examinations were performed with iU22. This subsequent radiomics score also showed good diagnostic performance, even for BI-RADS category 3 or 4a lesions (AUC 0.782) which were presumed as probably benign or low suspicious of malignancy by radiologists. It was expected to assist radiologist’s diagnosis and reduce the number of invasive biopsies, although US standardization should be overcome before clinical application. |
---|---|
AbstractList | Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its aggressive nature. This study aims to develop a radiomics score based on US texture analysis for differential diagnosis between TNBC and fibroadenoma, and to evaluate its diagnostic performance compared with pathologic results. We retrospectively included 715 pathology-proven fibroadenomas and 186 pathology-proven TNBCs which were examined by three different US machines. We developed the radiomics score by using penalized logistic regression with a least absolute shrinkage and selection operator (LASSO) analysis from 730 extracted features consisting of 14 intensity-based features, 132 textural features and 584 wavelet-based features. The constructed radiomics score showed significant difference between fibroadenoma and TNBC for all three US machines (p < 0.001). Although the radiomics score showed dependency on the type of US machine, we developed more elaborate radiomics score for a subgroup in which US examinations were performed with iU22. This subsequent radiomics score also showed good diagnostic performance, even for BI-RADS category 3 or 4a lesions (AUC 0.782) which were presumed as probably benign or low suspicious of malignancy by radiologists. It was expected to assist radiologist’s diagnosis and reduce the number of invasive biopsies, although US standardization should be overcome before clinical application. Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its aggressive nature. This study aims to develop a radiomics score based on US texture analysis for differential diagnosis between TNBC and fibroadenoma, and to evaluate its diagnostic performance compared with pathologic results. We retrospectively included 715 pathology-proven fibroadenomas and 186 pathology-proven TNBCs which were examined by three different US machines. We developed the radiomics score by using penalized logistic regression with a least absolute shrinkage and selection operator (LASSO) analysis from 730 extracted features consisting of 14 intensity-based features, 132 textural features and 584 wavelet-based features. The constructed radiomics score showed significant difference between fibroadenoma and TNBC for all three US machines (p < 0.001). Although the radiomics score showed dependency on the type of US machine, we developed more elaborate radiomics score for a subgroup in which US examinations were performed with iU22. This subsequent radiomics score also showed good diagnostic performance, even for BI-RADS category 3 or 4a lesions (AUC 0.782) which were presumed as probably benign or low suspicious of malignancy by radiologists. It was expected to assist radiologist's diagnosis and reduce the number of invasive biopsies, although US standardization should be overcome before clinical application.Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its aggressive nature. This study aims to develop a radiomics score based on US texture analysis for differential diagnosis between TNBC and fibroadenoma, and to evaluate its diagnostic performance compared with pathologic results. We retrospectively included 715 pathology-proven fibroadenomas and 186 pathology-proven TNBCs which were examined by three different US machines. We developed the radiomics score by using penalized logistic regression with a least absolute shrinkage and selection operator (LASSO) analysis from 730 extracted features consisting of 14 intensity-based features, 132 textural features and 584 wavelet-based features. The constructed radiomics score showed significant difference between fibroadenoma and TNBC for all three US machines (p < 0.001). Although the radiomics score showed dependency on the type of US machine, we developed more elaborate radiomics score for a subgroup in which US examinations were performed with iU22. This subsequent radiomics score also showed good diagnostic performance, even for BI-RADS category 3 or 4a lesions (AUC 0.782) which were presumed as probably benign or low suspicious of malignancy by radiologists. It was expected to assist radiologist's diagnosis and reduce the number of invasive biopsies, although US standardization should be overcome before clinical application. Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its aggressive nature. This study aims to develop a radiomics score based on US texture analysis for differential diagnosis between TNBC and fibroadenoma, and to evaluate its diagnostic performance compared with pathologic results. We retrospectively included 715 pathology-proven fibroadenomas and 186 pathology-proven TNBCs which were examined by three different US machines. We developed the radiomics score by using penalized logistic regression with a least absolute shrinkage and selection operator (LASSO) analysis from 730 extracted features consisting of 14 intensity-based features, 132 textural features and 584 wavelet-based features. The constructed radiomics score showed significant difference between fibroadenoma and TNBC for all three US machines ( p < 0.001). Although the radiomics score showed dependency on the type of US machine, we developed more elaborate radiomics score for a subgroup in which US examinations were performed with iU22. This subsequent radiomics score also showed good diagnostic performance, even for BI-RADS category 3 or 4a lesions (AUC 0.782) which were presumed as probably benign or low suspicious of malignancy by radiologists. It was expected to assist radiologist’s diagnosis and reduce the number of invasive biopsies, although US standardization should be overcome before clinical application. |
ArticleNumber | 13546 |
Author | Han, Kyunghwa Kim, Eun-Kyung Kwak, Jin Young Lee, Eunjung Lee, Si Eun |
Author_xml | – sequence: 1 givenname: Si Eun orcidid: 0000-0002-3225-5484 surname: Lee fullname: Lee, Si Eun organization: Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine – sequence: 2 givenname: Kyunghwa surname: Han fullname: Han, Kyunghwa organization: Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine – sequence: 3 givenname: Jin Young surname: Kwak fullname: Kwak, Jin Young organization: Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine – sequence: 4 givenname: Eunjung surname: Lee fullname: Lee, Eunjung organization: Department of Computational Science and Engineering, Yonsei University – sequence: 5 givenname: Eun-Kyung orcidid: 0000-0002-3368-5013 surname: Kim fullname: Kim, Eun-Kyung email: EKKIM@yuhs.ac organization: Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30202040$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcluFDEUtFAQCUN-gAOyxCWXBm-9XZBQxCZFQgJytrw8D4667YntTsjf42YSCDnEPjxbr-q5XPUcHYQYAKGXlLyhhA9vs6DtODSEDg2nI-ka8QQdMSLahnHGDu6dD9FxzhekrpaNgo7P0CEnrG5BjtDlN2V9nL3JODp8_h0X-FWWBNiBWmvGPmDrnYMEoXg11Yvahph9xhrKNUDAJfndBE2ArSr-CrBOoHLBRgUDCatgsfM6RWUhxFm9QE-dmjIc39YNOv_44cfp5-bs66cvp-_PGtMKUhowjIymE6JnohNaC6K14q6lY0-sYNQNlvdad6RVgpjaNay3zJKB2l4NXc836N1-7m7RM1hT5Sc1yV3ys0o3Miov_-8E_1Nu45XsKKeierxBJ7cDUrxcIBc5-2xgmlSAuGTJKKn2inZY33r9AHoRlxTq91YUHYdqPauoV_cV_ZVyl0YFDHuASTHnBE4aX6qncRXoJ0mJXLOX--xlzV7-yV6KSmUPqHfTHyXxPSlXcNhC-if7EdZv9NLB-g |
CitedBy_id | crossref_primary_10_3389_fonc_2022_868164 crossref_primary_10_1093_bjro_tzad004 crossref_primary_10_1186_s12938_021_00968_3 crossref_primary_10_1002_jum_16377 crossref_primary_10_1016_j_ultrasmedbio_2020_01_015 crossref_primary_10_1155_2021_8615450 crossref_primary_10_12677_ACM_2023_13102325 crossref_primary_10_2147_CMAR_S359986 crossref_primary_10_1093_carcin_bgad098 crossref_primary_10_1186_s12885_020_07413_z crossref_primary_10_1016_j_clbc_2025_01_005 crossref_primary_10_1186_s12967_022_03840_7 crossref_primary_10_1016_j_ejrad_2021_109781 crossref_primary_10_1002_mp_14610 crossref_primary_10_2147_RMI_S295205 crossref_primary_10_1002_mp_13678 crossref_primary_10_3389_fonc_2021_570747 crossref_primary_10_1007_s00330_021_08224_x crossref_primary_10_1155_2024_6631016 crossref_primary_10_1371_journal_pone_0227315 crossref_primary_10_22328_2079_5343_2024_15_1_15_21 crossref_primary_10_3390_jcm11030616 crossref_primary_10_1097_MD_0000000000025878 crossref_primary_10_1042_BSR20190489 crossref_primary_10_3389_fonc_2024_1411261 crossref_primary_10_1007_s00432_022_04142_7 crossref_primary_10_1055_a_1557_1062 crossref_primary_10_3389_fonc_2022_963925 crossref_primary_10_1089_cbr_2020_4147 crossref_primary_10_3390_diagnostics12123130 crossref_primary_10_1002_jum_16564 crossref_primary_10_3174_ajnr_A6505 crossref_primary_10_3390_jcm9072156 crossref_primary_10_1007_s10147_024_02594_0 crossref_primary_10_1148_radiol_2021202553 crossref_primary_10_7759_cureus_49015 crossref_primary_10_1007_s11042_024_18523_2 crossref_primary_10_1055_a_1346_0095 crossref_primary_10_1002_jum_15304 crossref_primary_10_1016_j_compbiomed_2020_103629 crossref_primary_10_1097_RLI_0000000000000543 crossref_primary_10_3389_fonc_2023_1158736 crossref_primary_10_1007_s12539_022_00547_7 crossref_primary_10_1016_j_ultrasmedbio_2022_06_019 crossref_primary_10_3389_fonc_2021_632176 crossref_primary_10_37015_AUDT_2020_200051 crossref_primary_10_1038_s41598_021_84048_5 crossref_primary_10_1259_bjr_20210598 crossref_primary_10_37015_AUDT_2021_200052 crossref_primary_10_3348_jksr_2020_81_3_632 crossref_primary_10_4103_jmp_JMP_82_20 crossref_primary_10_1007_s12194_024_00842_6 crossref_primary_10_1007_s11517_022_02728_4 crossref_primary_10_3389_fonc_2022_993466 crossref_primary_10_3389_fonc_2022_865548 crossref_primary_10_3390_diagnostics14111158 crossref_primary_10_3390_e21111110 crossref_primary_10_14366_usg_22014 crossref_primary_10_1021_acs_bioconjchem_3c00267 crossref_primary_10_3389_fonc_2022_979358 crossref_primary_10_1016_j_acra_2022_11_002 crossref_primary_10_1055_a_1640_9508 crossref_primary_10_3233_XST_180488 crossref_primary_10_1002_jum_16620 crossref_primary_10_1007_s11547_023_01739_x crossref_primary_10_1148_radiol_2020191368 crossref_primary_10_1155_2020_5418364 crossref_primary_10_2214_AJR_18_20532 crossref_primary_10_1016_j_crad_2021_09_010 crossref_primary_10_1093_bjrai_ubae016 crossref_primary_10_1111_evj_13321 crossref_primary_10_3390_ph11040123 crossref_primary_10_1007_s00330_021_08009_2 crossref_primary_10_3389_fonc_2020_01621 crossref_primary_10_3390_cancers14020277 |
Cites_doi | 10.1093/annonc/mdx034 10.14366/usg.16030 10.1038/srep24454 10.1001/archsurg.135.6.696 10.1007/s11547-007-0189-6 10.1007/s10549-018-4675-4 10.1109/TMI.2012.2206398 10.1007/s10549-004-2043-z 10.1158/1078-0432.CCR-06-3045 10.1177/0284185113488580 10.1109/TMI.2013.2279938 10.1007/s00330-009-1656-3 10.1118/1.4921123 10.1016/S0301-5629(02)00541-0 10.2214/ajr.184.4.01841260 10.1002/mp.12453 10.1016/j.compmedimag.2010.11.003 10.1038/nrclinonc.2017.141 10.1016/j.ultrasmedbio.2015.03.003 10.2214/AJR.12.8781 10.1186/s12938-015-0022-8 10.1118/1.2401039 10.7863/jum.2012.31.10.1531 10.1038/ncomms5006 10.7314/APJCP.2015.16.8.3229 10.1016/j.breast.2007.11.031 10.1016/S0895-6111(02)00027-7 10.7863/ultra.34.2.225 10.1016/j.clbc.2017.08.002 10.1158/1078-0432.CCR-05-2281 10.14366/usg.17036 10.1016/S1076-6332(03)00723-2 10.1148/radiol.10081308 10.1007/978-3-319-19425-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-31906-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | PMC6131410 30202040 10_1038_s41598_018_31906_4 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-ec209c64472464bb40bba3f51970d421f8d37bb605a40c40bc27d2d081d7a8673 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:34:05 EDT 2025 Thu Jul 10 18:39:06 EDT 2025 Wed Aug 13 06:42:59 EDT 2025 Wed Feb 19 02:43:06 EST 2025 Thu Apr 24 22:55:36 EDT 2025 Tue Jul 01 00:58:04 EDT 2025 Fri Feb 21 02:38:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-ec209c64472464bb40bba3f51970d421f8d37bb605a40c40bc27d2d081d7a8673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-3225-5484 0000-0002-3368-5013 |
OpenAccessLink | https://www.proquest.com/docview/2101980522?pq-origsite=%requestingapplication% |
PMID | 30202040 |
PQID | 2101980522 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6131410 proquest_miscellaneous_2102324587 proquest_journals_2101980522 pubmed_primary_30202040 crossref_citationtrail_10_1038_s41598_018_31906_4 crossref_primary_10_1038_s41598_018_31906_4 springer_journals_10_1038_s41598_018_31906_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-10 |
PublicationDateYYYYMMDD | 2018-09-10 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lambin (CR31) 2017; 14 Rodríguez-Pinilla (CR2) 2006; 12 Cho (CR5) 2016; 35 Antropova, Huynh, Giger (CR35) 2017; 44 Kuo, Chang, Lee, Moon, Chen (CR19) 2002; 28 Wojcinski (CR9) 2012; 31 Yoon (CR13) 2017; 0 Mersin, Yildirim, Berberoglu, Gülben (CR3) 2008; 17 Irshad (CR4) 2013; 200 Yang, Liu, Liu, Song (CR12) 2015; 16 Guo (CR26) 2018; 18 Chang (CR15) 2000; 135 Drukker, Giger, Vyborny, Mendelson (CR14) 2004; 11 Cai (CR32) 2015; 14 Valdora, Houssami, Rossi, Calabrese, Tagliafico (CR21) 2018; 169 Chen, Huang, Lin (CR29) 2011; 35 Chang, Wu, Moon, Chen (CR27) 2005; 89 Dent (CR1) 2007; 13 Aerts (CR22) 2014; 5 Sivaramakrishna, Powell, Lieber, Chilcote, Shekhar (CR17) 2002; 26 Kim, Choi (CR11) 2013; 54 Hong, Rosen, Soo, Baker (CR7) 2005; 184 CR8 Costantini (CR6) 2007; 112 Alvarenga, Pereira, Infantosi, Azevedo (CR18) 2007; 34 Moon (CR25) 2015; 42 Limkin (CR20) 2017; 28 CR24 Cheng (CR34) 2016; 6 Gomez, Pereira, Infantosi (CR23) 2012; 31 Ko (CR10) 2010; 20 Min-Chun (CR30) 2013; 32 Lo (CR33) 2015; 41 Singh, Maxwell, Baker, Nicholas, Lo (CR16) 2011; 258 Ardakani, Gharbali, Mohammadi (CR28) 2015; 34 W Gomez (31906_CR23) 2012; 31 H Mersin (31906_CR3) 2008; 17 DR Chen (31906_CR29) 2011; 35 31906_CR8 31906_CR24 AV Alvarenga (31906_CR18) 2007; 34 M Costantini (31906_CR6) 2007; 112 F Valdora (31906_CR21) 2018; 169 SM Rodríguez-Pinilla (31906_CR2) 2006; 12 R-F Chang (31906_CR27) 2005; 89 L Cai (31906_CR32) 2015; 14 R Dent (31906_CR1) 2007; 13 S Wojcinski (31906_CR9) 2012; 31 WJ Kuo (31906_CR19) 2002; 28 GY Yoon (31906_CR13) 2017; 0 K Drukker (31906_CR14) 2004; 11 Q Yang (31906_CR12) 2015; 16 P Lambin (31906_CR31) 2017; 14 MY Kim (31906_CR11) 2013; 54 ES Ko (31906_CR10) 2010; 20 AS Hong (31906_CR7) 2005; 184 N Cho (31906_CR5) 2016; 35 CM Lo (31906_CR33) 2015; 41 N Antropova (31906_CR35) 2017; 44 RF Chang (31906_CR15) 2000; 135 HJ Aerts (31906_CR22) 2014; 5 R Sivaramakrishna (31906_CR17) 2002; 26 A Irshad (31906_CR4) 2013; 200 Y Guo (31906_CR26) 2018; 18 JZ Cheng (31906_CR34) 2016; 6 S Singh (31906_CR16) 2011; 258 WK Moon (31906_CR25) 2015; 42 AA Ardakani (31906_CR28) 2015; 34 Y Min-Chun (31906_CR30) 2013; 32 EJ Limkin (31906_CR20) 2017; 28 |
References_xml | – volume: 28 start-page: 1191 year: 2017 end-page: 1206 ident: CR20 article-title: Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology publication-title: Ann Oncol doi: 10.1093/annonc/mdx034 – volume: 35 start-page: 281 year: 2016 end-page: 288 ident: CR5 article-title: Molecular subtypes and imaging phenotypes of breast cancer publication-title: Ultrasonography doi: 10.14366/usg.16030 – volume: 6 year: 2016 ident: CR34 article-title: Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans publication-title: Sci Rep doi: 10.1038/srep24454 – volume: 135 start-page: 696 year: 2000 end-page: 699 ident: CR15 article-title: Computer-aided diagnosis for surgical office-based breast ultrasound publication-title: Arch Surg doi: 10.1001/archsurg.135.6.696 – volume: 112 start-page: 877 year: 2007 end-page: 894 ident: CR6 article-title: Solid breast mass characterisation: use of the sonographic BI-RADS classification publication-title: Radiol Med doi: 10.1007/s11547-007-0189-6 – volume: 169 start-page: 217 year: 2018 end-page: 229 ident: CR21 article-title: Rapid review: radiomics and breast cancer publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-018-4675-4 – volume: 31 start-page: 1889 year: 2012 end-page: 1899 ident: CR23 article-title: Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2206398 – volume: 89 start-page: 179 year: 2005 ident: CR27 article-title: Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors publication-title: Breast Cancer Research and Treatment doi: 10.1007/s10549-004-2043-z – volume: 13 start-page: 4429 year: 2007 end-page: 4434 ident: CR1 article-title: Triple-negative breast cancer: clinical features and patterns of recurrence publication-title: Clinical cancer research doi: 10.1158/1078-0432.CCR-06-3045 – volume: 54 start-page: 889 year: 2013 end-page: 894 ident: CR11 article-title: Mammographic and ultrasonographic features of triple-negative breast cancer: a comparison with other breast cancer subtypes publication-title: Acta Radiol doi: 10.1177/0284185113488580 – volume: 32 start-page: 2262 year: 2013 end-page: 2273 ident: CR30 article-title: Robust Texture Analysis Using Multi-Resolution Gray-Scale Invariant Features for Breast Sonographic Tumor Diagnosis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2279938 – ident: CR8 – volume: 20 start-page: 1111 year: 2010 end-page: 1117 ident: CR10 article-title: Triple-negative breast cancer: correlation between imaging and pathological findings publication-title: Eur Radiol doi: 10.1007/s00330-009-1656-3 – volume: 42 start-page: 3024 year: 2015 end-page: 3035 ident: CR25 article-title: Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features publication-title: Med Phys doi: 10.1118/1.4921123 – volume: 28 start-page: 903 year: 2002 end-page: 909 ident: CR19 article-title: Retrieval technique for the diagnosis of solid breast tumors on sonogram publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(02)00541-0 – volume: 184 start-page: 1260 year: 2005 end-page: 1265 ident: CR7 article-title: BI-RADS for sonography: positive and negative predictive values of sonographic features publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.184.4.01841260 – volume: 44 start-page: 5162 year: 2017 end-page: 5171 ident: CR35 article-title: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets publication-title: Med Phys doi: 10.1002/mp.12453 – volume: 35 start-page: 220 year: 2011 end-page: 226 ident: CR29 article-title: Computer-aided diagnosis with textural features for breast lesions in sonograms publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2010.11.003 – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: CR31 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 41 start-page: 2039 year: 2015 end-page: 2048 ident: CR33 article-title: Intensity-Invariant Texture Analysis for Classification of BI-RADS Category 3 Breast Masses publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.03.003 – volume: 200 start-page: 284 year: 2013 end-page: 290 ident: CR4 article-title: Assessing the role of ultrasound in predicting the biological behavior of breast cancer publication-title: American Journal of Roentgenology doi: 10.2214/AJR.12.8781 – volume: 14 year: 2015 ident: CR32 article-title: Robust phase-based texture descriptor for classification of breast ultrasound images publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0022-8 – volume: 34 start-page: 379 year: 2007 end-page: 387 ident: CR18 article-title: Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images publication-title: Med Phys doi: 10.1118/1.2401039 – volume: 31 start-page: 1531 year: 2012 end-page: 1541 ident: CR9 article-title: Sonographic features of triple-negative and non-triple-negative breast cancer publication-title: J Ultrasound Med doi: 10.7863/jum.2012.31.10.1531 – volume: 5 year: 2014 ident: CR22 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 16 start-page: 3229 year: 2015 end-page: 3232 ident: CR12 article-title: Ultrasonographic features of triple-negative breast cancer: a comparison with other breast cancer subtypes publication-title: Asian Pac J Cancer Prev doi: 10.7314/APJCP.2015.16.8.3229 – volume: 17 start-page: 341 year: 2008 end-page: 346 ident: CR3 article-title: The prognostic importance of triple negative breast carcinoma publication-title: The Breast doi: 10.1016/j.breast.2007.11.031 – volume: 26 start-page: 303 year: 2002 end-page: 307 ident: CR17 article-title: Texture analysis of lesions in breast ultrasound images publication-title: Computerized medical imaging and graphics doi: 10.1016/S0895-6111(02)00027-7 – volume: 34 start-page: 225 year: 2015 end-page: 231 ident: CR28 article-title: Classification of breast tumors using sonographic texture analysis publication-title: J Ultrasound Med doi: 10.7863/ultra.34.2.225 – volume: 18 start-page: e335 year: 2018 end-page: e344 ident: CR26 article-title: Radiomics Analysis on Ultrasound for Prediction of Biologic Behavior in Breast Invasive Ductal Carcinoma publication-title: Clin Breast Cancer doi: 10.1016/j.clbc.2017.08.002 – ident: CR24 – volume: 12 start-page: 1533 year: 2006 end-page: 1539 ident: CR2 article-title: Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas publication-title: Clinical cancer research doi: 10.1158/1078-0432.CCR-05-2281 – volume: 0 start-page: 0 year: 2017 end-page: 0 ident: CR13 article-title: Are there any sonographic features that can be used to differentiate between small triple-negative breast cancer and fibroadenoma? publication-title: Ultrasonography doi: 10.14366/usg.17036 – volume: 11 start-page: 526 year: 2004 end-page: 535 ident: CR14 article-title: Computerized detection and classification of cancer on breast ultrasound publication-title: Acad Radiol doi: 10.1016/S1076-6332(03)00723-2 – volume: 258 start-page: 73 year: 2011 end-page: 80 ident: CR16 article-title: Computer-aided classification of breast masses: performance and interobserver variability of expert radiologists versus residents publication-title: Radiology doi: 10.1148/radiol.10081308 – volume: 42 start-page: 3024 year: 2015 ident: 31906_CR25 publication-title: Med Phys doi: 10.1118/1.4921123 – volume: 16 start-page: 3229 year: 2015 ident: 31906_CR12 publication-title: Asian Pac J Cancer Prev doi: 10.7314/APJCP.2015.16.8.3229 – volume: 169 start-page: 217 year: 2018 ident: 31906_CR21 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-018-4675-4 – volume: 54 start-page: 889 year: 2013 ident: 31906_CR11 publication-title: Acta Radiol doi: 10.1177/0284185113488580 – volume: 31 start-page: 1531 year: 2012 ident: 31906_CR9 publication-title: J Ultrasound Med doi: 10.7863/jum.2012.31.10.1531 – volume: 14 year: 2015 ident: 31906_CR32 publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0022-8 – volume: 34 start-page: 379 year: 2007 ident: 31906_CR18 publication-title: Med Phys doi: 10.1118/1.2401039 – volume: 28 start-page: 1191 year: 2017 ident: 31906_CR20 publication-title: Ann Oncol doi: 10.1093/annonc/mdx034 – volume: 18 start-page: e335 year: 2018 ident: 31906_CR26 publication-title: Clin Breast Cancer doi: 10.1016/j.clbc.2017.08.002 – volume: 20 start-page: 1111 year: 2010 ident: 31906_CR10 publication-title: Eur Radiol doi: 10.1007/s00330-009-1656-3 – volume: 26 start-page: 303 year: 2002 ident: 31906_CR17 publication-title: Computerized medical imaging and graphics doi: 10.1016/S0895-6111(02)00027-7 – volume: 11 start-page: 526 year: 2004 ident: 31906_CR14 publication-title: Acad Radiol doi: 10.1016/S1076-6332(03)00723-2 – volume: 34 start-page: 225 year: 2015 ident: 31906_CR28 publication-title: J Ultrasound Med doi: 10.7863/ultra.34.2.225 – volume: 14 start-page: 749 year: 2017 ident: 31906_CR31 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 31 start-page: 1889 year: 2012 ident: 31906_CR23 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2206398 – volume: 112 start-page: 877 year: 2007 ident: 31906_CR6 publication-title: Radiol Med doi: 10.1007/s11547-007-0189-6 – volume: 258 start-page: 73 year: 2011 ident: 31906_CR16 publication-title: Radiology doi: 10.1148/radiol.10081308 – volume: 13 start-page: 4429 year: 2007 ident: 31906_CR1 publication-title: Clinical cancer research doi: 10.1158/1078-0432.CCR-06-3045 – volume: 28 start-page: 903 year: 2002 ident: 31906_CR19 publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(02)00541-0 – volume: 17 start-page: 341 year: 2008 ident: 31906_CR3 publication-title: The Breast doi: 10.1016/j.breast.2007.11.031 – volume: 200 start-page: 284 year: 2013 ident: 31906_CR4 publication-title: American Journal of Roentgenology doi: 10.2214/AJR.12.8781 – volume: 135 start-page: 696 year: 2000 ident: 31906_CR15 publication-title: Arch Surg doi: 10.1001/archsurg.135.6.696 – volume: 12 start-page: 1533 year: 2006 ident: 31906_CR2 publication-title: Clinical cancer research doi: 10.1158/1078-0432.CCR-05-2281 – volume: 184 start-page: 1260 year: 2005 ident: 31906_CR7 publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.184.4.01841260 – volume: 41 start-page: 2039 year: 2015 ident: 31906_CR33 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.03.003 – volume: 44 start-page: 5162 year: 2017 ident: 31906_CR35 publication-title: Med Phys doi: 10.1002/mp.12453 – volume: 5 year: 2014 ident: 31906_CR22 publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 35 start-page: 281 year: 2016 ident: 31906_CR5 publication-title: Ultrasonography doi: 10.14366/usg.16030 – volume: 32 start-page: 2262 year: 2013 ident: 31906_CR30 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2279938 – volume: 0 start-page: 0 year: 2017 ident: 31906_CR13 publication-title: Ultrasonography doi: 10.14366/usg.17036 – ident: 31906_CR8 – volume: 6 year: 2016 ident: 31906_CR34 publication-title: Sci Rep doi: 10.1038/srep24454 – ident: 31906_CR24 doi: 10.1007/978-3-319-19425-7 – volume: 35 start-page: 220 year: 2011 ident: 31906_CR29 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2010.11.003 – volume: 89 start-page: 179 year: 2005 ident: 31906_CR27 publication-title: Breast Cancer Research and Treatment doi: 10.1007/s10549-004-2043-z |
SSID | ssj0000529419 |
Score | 2.5248995 |
Snippet | Triple-negative breast cancer (TNBC) is sometimes mistaken for fibroadenoma due to its tendency to show benign morphology on breast ultrasound (US) albeit its... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13546 |
SubjectTerms | 631/67/1347 692/700/1421/1860 Benign Breast cancer Differential diagnosis Fibroadenoma Humanities and Social Sciences Invasiveness Malignancy multidisciplinary Pathology Radiomics Science Science (multidisciplinary) Standardization Ultrasound |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXVN6hBRmJG1h1HO86OSGEqCokOAAr7S3yE1Zqk3aTPfDvmXEe1VLRY2RHecx45ps3wFsdjBal9RzNn5Ir5Q23eum5jZWyqKBlTMMmvn5bnq3Ul_ViPTrcujGtcpKJSVD71pGP_ARNE7SPBcKFD5dXnKZGUXR1HKFxF-5R6zIyvvRazz4WimKpvBprZURRnnSor6imLCenYIXGtNrXRzdA5s1cyX8CpkkPnR7CwxFAso8DxR_BndA8hvvDSMk_T-Dqu_EbqjTuWBvZ6gejzI7dNrAYUgvPjm0aNk1FwdN9jhcp2W7TsTFni_Vb8r7zJvxKXcGZpcT1njlikC0zjWcRjezWoMhqL8xTWJ1-_vnpjI9jFbhDeNbz4KSoHOIgLdVSWauEtaaIVMEqvJJ5LH2hrUU7xyjhcNVJ7aVH7OC1KZe6eAYHTduEF8ACKsAqisqXaFbZQiN8q2wuo0RYs3BFyCCffm7txp7jNPrivE6x76KsB4LUSJA6EaRWGbyb77kcOm7cuvt4olk9nr6uvuaVDN7My3huKBhimtDu0h4Ck4tSZ_B8IPH8uAIxtETploHeI_68gXpy7680m9-pNzeiI8qczeD9xCbXr_X_r3h5-1ccwQNJLEuTK8QxHPTbXXiFWKi3rxPD_wV2mway priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BFRKXqi2vtBQZiRtEJI43To7VqgghwaFlJW6RHduwEiR0Ew78e2acR7VAkXqMbCtxxvZ84_lmBuBQWiWjTJsQzZ8sFMKoUMvUhNrlQqOC5s4Xm7i4TM9m4vx6cr0CfIiF8aR9n9LSH9MDO-ykQUVDwWAx3eblaAWLVfhAqduJxjdNp-O9CnmuRJz38TFRkr0xdFkHvQKWr_mRL5ykXvecfoKPPWhkP7rP_AwrtvoC610ZyadN-PNLmTlFFzesdmz2mxGbA-fGnPVzbNi8YkMlFNzRd_jgCXbzhvU8LdYu6MY9rOyNzwTONJHVW1bSolgwVRnm0LCuFR5T9b3agtnpz6vpWdiXUghLhGRtaEse5SViH8lFKrQWkdYqcRS1GhnBY5eZRGqNto0SUYmtJZeGG8QLRqoslck2rFV1ZXeBWVR6uYtyk6EppROJkC3XMXccocykTGwA8fBzi7LPM07lLu4K7-9OsqITSIECKbxAChHA0Tjmocuy8W7vvUFmRb_jmgJN1zin-gw8gIOxGfcKOUBUZetH34cA5CSTAex0Ih5flyBu5niiBSCXhD92oDzcyy3V_Nbn40ZERGzZAI6HZfL3s_49i6__1_0bbHBawlS9ItqDtXbxaL8jHmr1vt8AzznvBKA priority: 102 providerName: Springer Nature |
Title | Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma |
URI | https://link.springer.com/article/10.1038/s41598-018-31906-4 https://www.ncbi.nlm.nih.gov/pubmed/30202040 https://www.proquest.com/docview/2101980522 https://www.proquest.com/docview/2102324587 https://pubmed.ncbi.nlm.nih.gov/PMC6131410 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_6geCLWL8arccKvmk02exlkweR69FSDlqk9eDewm52owfXxCY5sP-9M5vk5GwVn0Kym8-Zzfxmd2Z-AG-lVTJItPHR_Ul8IYzytYyNr4tUaDTQvHBkE-cX8dlczBbjxQ4MdEf9B2zude2IT2perz78vLn9jAP-U5cynnxs0AhRolhIM30peshiF_bRMkmicjjv4X5X65unwnF9UBF2H8EE7_No7r_Mtq26A0DvxlH-sZjqbNTpY3jUg0s26bThAHZs-QQedHSTt0_h5lKZJWUhN6wq2PyKUdTHurassK68Z8OWJRsYU3Dkr3DHBeItG9bHc7G2ppl5v7TfXMVwpimovWU5KU_NVGlYgQ54pfB3Vl2rZzA_Pfk6PfN7ygU_R-jW-jbnQZojRpJcxEJrEWitooKyWwMjeFgkJpJaow-kRJBja86l4QZxhZEqiWX0HPbKqrSHwCwax7QIUpOgy6UjidAu1SEvOEKecR5ZD8Lh42Z5X4-caDFWmVsXj5KsE0iGAsmcQDLhwbvNOT-6ahz_7H00yCwbFCtDFzdMiceBe_Bm04xjihZKVGmrtetDQHOcSA9edCLe3C5CfI3aE3ggt4S_6UD1urdbyuV3V7cbkRNF1XrwflCT34_197d4-R-P-QoectJborYIjmCvrdf2NYKlVo9gVy7kCPYnk9nVDLfHJxdfLvHoNJ6O3ATEyI2RX8SjE60 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcUHkHChgJThA1cbzr5ICqAq22tF2h0pV6S-3YgZVK0m6yQv1T_MbOOI9qqeitx8jOw5nxzDeeF8A7aZUMYm18NH9iXwijfC1Hxtd5IjQqaJ67ZhMHk9F4Kr4dD49X4G-XC0NhlZ1MdILalBmdkW-gaYL2cYBwYfPs3KeuUeRd7VpoNGyxZy_-oMlWfdr9ivR9z_nO9tGXsd92FfAzRCe1bzMeJBnCAMnFSGgtAq1VlFMCZ2AED_PYRFJrhPlKBBmOZlwablB1GqnikYzwuXdgVUQIFQaw-nl78v2wP9Uhv5kIkzY7J4jijQo1JGWxhXQMmaD5LpY14DVYez068x8XrdN8O2vwoIWsbKvhsYewYotHcLdpYnnxGM4PlZlRbnPFypxNfzCKJVnMLcutKxpasVnBuj4sKE9O8cKF980q1kaJsXpO5_1-YX-6OuRMU6h8zTJiyTlThWE5mvWlQiFZ_lZPYHorv_wpDIqysM-BWVS5SR4kJkZDTkcSAWOiQ55zBFLDLLIehN3PTbO2yjk12zhNnbc9itOGICkSJHUESYUHH_p7zpoaHzfOXu9olrb7vUqvuNODt_0w7lRyv6jClgs3h-DrMJYePGtI3L8uQtTOUZ56IJeI30-gKuDLI8Xsl6sGjniMYnU9-NixydVn_X8VL25exRu4Nz462E_3dyd7L-E-J_alvhnBOgzq-cK-QiRW69ct-zM4ue0ddwmLOUO9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEHcCA4wETxA1cdw6eUAIMaqNwYSASn3L7NhmlbZka1Kh_TV-Hec4l6lM7G2PlZ228bl9x-cG8EpaJaNUmxDdnzQUwqhQy4kJtcuERgPNnR828XV_sjMTn-fj-Qb86WthKK2y14leUZuqoDvyEbom6B9HCBdGrkuL-LY9fX9yGtIEKYq09uM0WhbZs2e_0X2r3-1uI61fcz799PPjTthNGAgLRCpNaAseZQVCAsnFRGgtIq1V4qiYMzKCxy41idQaIb8SUYGrBZeGGzSjRqp0IhP83mtwXSZoNlGW5FwO9zsUQRNx1tXpREk6qtFWUj1bTBeSGTryYt0WXgC4F_M0_wnWehs4vQO3O_DKPrTcdhc2bHkPbrTjLM_uw-l3ZRZU5VyzyrHZD0bHt1pa5qxvH1qzRcn6iSyoWY7wg0_0W9SsyxdjzZJu_sPS_vIdyZmmpPmGFcScS6ZKwxw6-JVCdVkdqwcwu5IDfwibZVXax8AsGt_MRZlJ0aXTiUTomOmYO46QalwkNoC4P9y86Pqd09iNo9zH3ZM0bwmSI0FyT5BcBPBmeOak7fZx6e6tnmZ5J_l1fs6nAbwcllFmKRCjSlut_B4CsuNUBvCoJfHwcwnid46aNQC5RvxhA_UDX18pF4e-LzgiM8raDeBtzybnf-v_b_Hk8rd4ATdRzvIvu_t7T-EWJ-6lARrRFmw2y5V9hpCs0c897zM4uGph-wskUkaN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+of+US+texture+features+in+differential+diagnosis+between+triple-negative+breast+cancer+and+fibroadenoma&rft.jtitle=Scientific+reports&rft.au=Lee%2C+Si+Eun&rft.au=Han%2C+Kyunghwa&rft.au=Kwak%2C+Jin+Young&rft.au=Lee%2C+Eunjung&rft.date=2018-09-10&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft.spage=13546&rft_id=info:doi/10.1038%2Fs41598-018-31906-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |