Engineering circular RNA for enhanced protein production
Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid...
Saved in:
Published in | Nature biotechnology Vol. 41; no. 2; pp. 262 - 272 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.02.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5′ and 3′ untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes.
Protein expression from circular RNAs is enhanced several hundred-fold by optimizing vector design. |
---|---|
AbstractList | Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5′ and 3′ untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes.
Protein expression from circular RNAs is enhanced several hundred-fold by optimizing vector design. Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5′ and 3′ untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes. Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5' and 3' untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes.Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5' and 3' untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes. Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can encode proteins, raising the promise of circRNA as a platform for gene expression. In this study, we developed a systematic approach for rapid assembly and testing of features that affect protein production from synthetic circRNAs. To maximize circRNA translation, we optimized five elements: vector topology, 5′ and 3′ untranslated regions, internal ribosome entry sites and synthetic aptamers recruiting translation initiation machinery. Together, these design principles improve circRNA protein yields by several hundred-fold, provide increased translation over messenger RNA in vitro, provide more durable translation in vivo and are generalizable across multiple transgenes.Protein expression from circular RNAs is enhanced several hundred-fold by optimizing vector design. |
Author | Cardenas, Angel Abe, Brian T. Wang, Sean K. Wender, Paul A. Chang, Howard Y. Li, Zhijian Chen, Chun-Kan Amaya, Laura Chen, Robert Belk, Julia A. |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0001-8141-9687 surname: Chen fullname: Chen, Robert organization: Center for Personal Dynamic Regulomes, Stanford University – sequence: 2 givenname: Sean K. orcidid: 0000-0003-1557-8510 surname: Wang fullname: Wang, Sean K. organization: Center for Personal Dynamic Regulomes, Stanford University, Department of Ophthalmology, Stanford University School of Medicine – sequence: 3 givenname: Julia A. orcidid: 0000-0003-4724-6158 surname: Belk fullname: Belk, Julia A. organization: Department of Computer Science, Stanford University – sequence: 4 givenname: Laura orcidid: 0000-0002-8742-9111 surname: Amaya fullname: Amaya, Laura organization: Center for Personal Dynamic Regulomes, Stanford University – sequence: 5 givenname: Zhijian surname: Li fullname: Li, Zhijian organization: Department of Chemistry, Stanford University – sequence: 6 givenname: Angel surname: Cardenas fullname: Cardenas, Angel organization: Center for Personal Dynamic Regulomes, Stanford University – sequence: 7 givenname: Brian T. surname: Abe fullname: Abe, Brian T. organization: Center for Personal Dynamic Regulomes, Stanford University – sequence: 8 givenname: Chun-Kan surname: Chen fullname: Chen, Chun-Kan organization: Center for Personal Dynamic Regulomes, Stanford University – sequence: 9 givenname: Paul A. orcidid: 0000-0001-6319-2829 surname: Wender fullname: Wender, Paul A. organization: Department of Chemistry, Stanford University, Department of Chemical and Systems Biology, Stanford University – sequence: 10 givenname: Howard Y. orcidid: 0000-0002-9459-4393 surname: Chang fullname: Chang, Howard Y. email: howchang@stanford.edu organization: Center for Personal Dynamic Regulomes, Stanford University, Howard Hughes Medical Institute, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35851375$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3TAQha2KqjzaP9AFisSGTVqPnfixQUKIQiVUJETXluNMLka59sVOKvXf4_QCbVmwmpHmO6Mzc_bJTogBCfkM9AtQrr7mBlola8pYTYFrXtN3ZA_aRtQgtNgpPV3G0Ipdsp_zPaVUNEJ8ILu8VS1w2e4RdR5WPiAmH1aV88nNo03VzY_TaoipwnBng8O-2qQ4oQ9L7Wc3-Rg-kveDHTN-eqoH5Oe389uzy_rq-uL72elV7dqGTjVqrjhnbtA9SFfM0Y7rxjLnoEPVgwVlBw3IOyZU10tOpWSOA2-EHIQY-AE52e7dzN0ae4dhSnY0m-TXNv020Xrz_yT4O7OKv4zWHFqpy4LjpwUpPsyYJ7P22eE42oBxzoYJDVJJIaGgR6_Q-zinUM4zTEqhNFC9UIf_Onqx8vzUArAt4FLMOeHwggA1S3Jmm5wpyZk_yRlaROqVyPnJLp8uV_nxbSnfSvNmiRHTX9tvqB4BM0esEA |
CitedBy_id | crossref_primary_10_1093_nar_gkae847 crossref_primary_10_52396_JUSTC_2023_0048 crossref_primary_10_1038_s41434_025_00521_0 crossref_primary_10_1016_j_molcel_2024_04_022 crossref_primary_10_1021_jacs_3c00841 crossref_primary_10_1002_advs_202416629 crossref_primary_10_1038_s44318_025_00404_5 crossref_primary_10_1002_bit_28703 crossref_primary_10_1038_s41551_025_01344_5 crossref_primary_10_1007_s12038_023_00415_6 crossref_primary_10_1016_j_ncrna_2024_03_004 crossref_primary_10_1109_JBHI_2024_3491732 crossref_primary_10_1016_j_omtm_2023_101123 crossref_primary_10_3390_ijms242015230 crossref_primary_10_1016_j_ncrna_2024_11_007 crossref_primary_10_1002_INMD_20240054 crossref_primary_10_1073_pnas_2307798120 crossref_primary_10_1038_s43018_023_00627_7 crossref_primary_10_1021_acssuschemeng_3c07658 crossref_primary_10_1038_s41573_024_01042_y crossref_primary_10_3390_vaccines11101600 crossref_primary_10_3724_abbs_2024241 crossref_primary_10_1038_s41568_023_00586_2 crossref_primary_10_1016_j_tips_2024_02_002 crossref_primary_10_1080_14760584_2024_2354251 crossref_primary_10_3390_biom14040503 crossref_primary_10_1261_rna_079462_122 crossref_primary_10_3389_fphar_2022_1010579 crossref_primary_10_1039_D4QM00479E crossref_primary_10_1016_j_chembiol_2023_09_015 crossref_primary_10_1016_j_omtn_2023_04_001 crossref_primary_10_3390_plants14010061 crossref_primary_10_1002_adbi_202300211 crossref_primary_10_1038_d41573_022_00129_8 crossref_primary_10_1002_mco2_339 crossref_primary_10_1002_wrna_1850 crossref_primary_10_1016_j_talanta_2025_127730 crossref_primary_10_1073_pnas_2302191120 crossref_primary_10_1016_j_gendis_2024_101347 crossref_primary_10_1515_mr_2023_0062 crossref_primary_10_3389_fimmu_2023_1301545 crossref_primary_10_1128_mbio_01775_23 crossref_primary_10_3390_vaccines13010030 crossref_primary_10_1039_D3CS00194F crossref_primary_10_1016_j_omtn_2024_102286 crossref_primary_10_1016_j_omtn_2024_102440 crossref_primary_10_1038_s41587_024_02424_8 crossref_primary_10_1007_s10620_024_08291_2 crossref_primary_10_1016_j_trac_2024_118112 crossref_primary_10_1038_s41551_024_01306_3 crossref_primary_10_3389_fcell_2022_1044897 crossref_primary_10_1126_science_adr6006 crossref_primary_10_1002_mco2_70079 crossref_primary_10_1016_j_biopha_2024_117753 crossref_primary_10_3390_pharmaceutics15071972 crossref_primary_10_1016_j_addr_2024_115419 crossref_primary_10_1016_j_ijbiomac_2023_124929 crossref_primary_10_1038_s41576_024_00806_x crossref_primary_10_1039_D4PY00124A crossref_primary_10_1007_s11064_023_03935_7 crossref_primary_10_1021_acs_biomac_4c00373 crossref_primary_10_1021_acssynbio_3c00253 crossref_primary_10_1002_mco2_720 crossref_primary_10_1038_s41467_024_53242_0 crossref_primary_10_1038_s41467_024_51044_y crossref_primary_10_3389_fimmu_2024_1489378 crossref_primary_10_1016_j_compbiolchem_2023_107989 crossref_primary_10_3389_fimmu_2022_1091797 crossref_primary_10_3390_ijms24076235 crossref_primary_10_1093_nar_gkaf089 crossref_primary_10_1016_j_ebiom_2025_105638 crossref_primary_10_3389_fendo_2024_1465975 crossref_primary_10_1007_s12035_024_03977_0 crossref_primary_10_1002_tox_24089 crossref_primary_10_1093_nar_gkae711 crossref_primary_10_1080_15476286_2023_2269508 crossref_primary_10_3390_mps6020036 crossref_primary_10_3390_cancers16152660 crossref_primary_10_3390_chemosensors12070120 crossref_primary_10_1038_s41587_024_02174_7 crossref_primary_10_1208_s12248_023_00860_z crossref_primary_10_1038_s12276_024_01251_w crossref_primary_10_4103_1673_5374_379017 crossref_primary_10_1038_s41573_023_00827_x crossref_primary_10_1016_j_ijbiomac_2025_141588 crossref_primary_10_2174_0115665232284076240207073542 crossref_primary_10_1111_imm_13861 crossref_primary_10_3389_fnano_2025_1475969 crossref_primary_10_3390_ijms25179437 crossref_primary_10_1016_j_isci_2024_109861 crossref_primary_10_3389_fgene_2023_1264606 crossref_primary_10_1261_rna_080334_124 crossref_primary_10_1038_s41580_023_00624_9 crossref_primary_10_1371_journal_pgen_1010923 crossref_primary_10_1038_s41587_025_02561_8 crossref_primary_10_59717_j_xinn_med_2024_100081 crossref_primary_10_1002_mco2_667 crossref_primary_10_1038_s41589_024_01781_4 crossref_primary_10_1038_s41598_024_69744_2 crossref_primary_10_1002_advs_202303597 crossref_primary_10_3390_cells13232033 crossref_primary_10_1261_rna_080008_124 crossref_primary_10_1186_s40164_023_00451_w crossref_primary_10_1080_15476286_2024_2399307 crossref_primary_10_1111_acel_70021 crossref_primary_10_1038_s41587_024_02306_z crossref_primary_10_3390_ijms252413685 crossref_primary_10_1360_TB_2023_0613 crossref_primary_10_1038_s44222_024_00259_1 crossref_primary_10_1016_j_ejphar_2023_175867 crossref_primary_10_1016_j_gendis_2025_101605 crossref_primary_10_1016_j_ijbiomac_2025_139532 crossref_primary_10_1002_EXP_20210146 crossref_primary_10_1016_j_omtn_2023_07_034 crossref_primary_10_1038_s41467_023_42672_x crossref_primary_10_1186_s12967_025_06226_7 crossref_primary_10_1124_jpet_123_001587 crossref_primary_10_1186_s11658_024_00662_x crossref_primary_10_1186_s12859_023_05331_y crossref_primary_10_2147_JHC_S459633 crossref_primary_10_1186_s12943_024_02124_6 crossref_primary_10_1186_s13045_023_01452_2 crossref_primary_10_1360_SSV_2023_0156 crossref_primary_10_1016_j_ijbiomac_2024_130129 crossref_primary_10_3390_ijms251810121 crossref_primary_10_1016_j_omtn_2023_06_002 crossref_primary_10_1038_s41467_024_50774_3 crossref_primary_10_1038_s41541_025_01097_x crossref_primary_10_1002_wrna_1823 crossref_primary_10_1016_j_bbcan_2023_188909 crossref_primary_10_1186_s12929_024_01080_z crossref_primary_10_1038_s41587_024_02393_y crossref_primary_10_1038_s41591_022_02061_1 crossref_primary_10_3390_v15081697 crossref_primary_10_1038_d41586_023_03058_7 crossref_primary_10_1016_j_molcel_2024_08_020 crossref_primary_10_1039_D4NR01770F crossref_primary_10_3390_biom14111416 crossref_primary_10_1016_j_addr_2023_114961 crossref_primary_10_1016_j_canlet_2024_217120 crossref_primary_10_1126_sciadv_adn7256 crossref_primary_10_1186_s12929_023_00977_5 crossref_primary_10_1038_s41392_023_01561_x crossref_primary_10_1038_s41573_024_01041_z crossref_primary_10_3390_pathogens13080692 crossref_primary_10_1007_s10528_025_11068_5 crossref_primary_10_1152_ajpheart_00580_2024 crossref_primary_10_32604_or_2024_030945 crossref_primary_10_1038_s41467_024_55274_y crossref_primary_10_1007_s00210_023_02809_7 crossref_primary_10_1186_s13045_025_01671_9 crossref_primary_10_1038_s43586_024_00348_w crossref_primary_10_2147_IJN_S461289 crossref_primary_10_1021_jacs_4c02704 crossref_primary_10_3389_fcimb_2022_980974 crossref_primary_10_2478_jtim_2023_0122 crossref_primary_10_1016_j_psj_2024_104757 crossref_primary_10_1016_j_tibtech_2024_07_012 crossref_primary_10_1038_s41419_024_07248_7 crossref_primary_10_1016_j_addr_2023_114972 crossref_primary_10_1016_j_jmb_2025_169064 crossref_primary_10_1093_nar_gkae1167 crossref_primary_10_2217_epi_2023_0141 crossref_primary_10_3390_ani13172711 crossref_primary_10_1093_nar_gkad554 crossref_primary_10_3390_genes15111423 crossref_primary_10_1007_s10142_024_01394_z crossref_primary_10_1038_s41551_024_01245_z |
Cites_doi | 10.1128/jvi.65.11.5886-5894.1991 10.1056/NEJMoa2035389 10.1038/s41592-020-0889-6 10.1021/acscentsci.1c00361 10.1038/nrm2838 10.1038/s41467-018-05096-6 10.1016/j.chom.2010.07.003 10.1016/j.cell.2017.02.017 10.1073/pnas.97.10.5633 10.1073/pnas.1802429115 10.1073/pnas.1906182116 10.1186/gb-2003-4-7-223 10.1038/nmeth.1318 10.1002/adma.202004452 10.1128/JVI.72.12.9668-9675.1998 10.1038/70699 10.1371/journal.pone.0087491 10.1016/j.sbi.2009.03.005 10.1126/science.7536344 10.1038/nmeth.2413 10.1038/mt.2012.7 10.4161/rna.3.2.2990 10.1073/pnas.1805358115 10.1128/jvi.71.8.6243-6246.1997 10.1371/journal.pone.0003647 10.1007/s12033-013-9674-4 10.1016/j.ymthe.2018.12.011 10.1073/pnas.1614193114 10.1056/NEJMoa2027906 10.1371/journal.pone.0125215 10.1128/JVI.01327-06 10.1128/MCB.26.6.2419-2429.2006 10.1038/cr.2017.15 10.1016/j.molcel.2019.07.016 10.3389/fmicb.2017.02629 10.1016/j.molcel.2017.05.022 10.1021/cb3002478 10.1006/viro.2002.1770 10.1016/j.tibs.2008.04.007 10.1002/j.1460-2075.1996.tb00884.x 10.1093/nar/gkn188 10.1128/JVI.74.24.11983-11987.2000 10.1073/pnas.0900153106 10.1016/j.molcel.2021.07.042 10.1073/pnas.94.6.2410 10.1017/S1355838299991483 10.1093/nar/gkv1367 10.1002/embj.201386124 10.1016/j.ymeth.2021.02.020 10.1016/j.molcel.2020.12.041 10.1038/nature12730 10.1128/JVI.78.3.1393-1402.2004 10.53555/eijmhs.v4i2.36 10.1093/nar/gkj081 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. corrected publication 2022 2022. The Author(s). The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022, corrected publication 2022 |
Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022, corrected publication 2022 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RC3 7X8 5PM |
DOI | 10.1038/s41587-022-01393-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 272 |
ExternalDocumentID | PMC9931579 35851375 10_1038_s41587_022_01393_0 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Stanford Graduate Fellowship National Science Foundation Graduate Research Fellowship (DGE-1656518) – fundername: National Institutes of Health (R01-CA031845) National Science Foundation (CHE-1856414) – fundername: National Institutes of Health (R35-CA209919) – fundername: Stanford NIH Biotechnology Training Grant (5T32GM008412) – fundername: National Eye Institute Training Grant (T32EY027816) – fundername: Stanford Center for Molecular Analysis and Design – fundername: NEI NIH HHS grantid: T32 EY027816 – fundername: NCI NIH HHS grantid: R01 CA031845 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: R37 CA031845 – fundername: NHGRI NIH HHS grantid: R00 HG011475 – fundername: NIAMS NIH HHS grantid: T32 AR050942 – fundername: NIGMS NIH HHS grantid: T32 GM008412 – fundername: NCI NIH HHS grantid: R35 CA209919 – fundername: ; |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K C6C CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c540t-e938332cf9d17c1540b394a2cc1be8d1a18af91e3b268bd730772c313467f66f3 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Thu Aug 21 18:38:18 EDT 2025 Thu Jul 10 21:51:48 EDT 2025 Fri Jul 25 09:14:08 EDT 2025 Thu Apr 03 07:06:14 EDT 2025 Tue Jul 01 04:10:04 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 21 02:39:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-e938332cf9d17c1540b394a2cc1be8d1a18af91e3b268bd730772c313467f66f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9459-4393 0000-0001-6319-2829 0000-0003-1557-8510 0000-0002-8742-9111 0000-0003-4724-6158 0000-0001-8141-9687 |
OpenAccessLink | https://www.nature.com/articles/s41587-022-01393-0 |
PMID | 35851375 |
PQID | 2776891091 |
PQPubID | 47191 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9931579 proquest_miscellaneous_2691787671 proquest_journals_2776891091 pubmed_primary_35851375 crossref_primary_10_1038_s41587_022_01393_0 crossref_citationtrail_10_1038_s41587_022_01393_0 springer_journals_10_1038_s41587_022_01393_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2023 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Chen (CR42) 2021; 81 Truong (CR22) 2019; 116 Chen (CR4) 2017; 67 Wang, Liebhaber (CR25) 1996; 15 Grote Beverborg (CR52) 2015; 10 Blyn, Towner, Semler, Ehrenfeld (CR13) 1997; 71 Zeng (CR28) 2020; 32 Wang (CR18) 2014; 505 Huston (CR43) 2021; 81 Sokoloski (CR29) 2010; 8 Shi (CR19) 2017; 27 McKinlay (CR49) 2017; 114 Gruber, Lorenz, Bernhart, Neuböck, Hofacker (CR40) 2008; 36 Chen (CR11) 2019; 76 Shaner (CR53) 2013; 10 Su (CR54) 2020; 17 CR46 Hall (CR10) 2012; 7 Mangus, Evans, Jacobson (CR12) 2003; 4 Jackson, Hellen, Pestova (CR6) 2010; 11 Souii, Ben M’hadheb-Gharbi, Gharbi (CR36) 2013; 55 Bailey, Tapprich (CR33) 2007; 81 Wahlestedt (CR41) 2000; 97 Chen, Sarnow (CR7) 1995; 268 Jiang, Xu, Russell (CR26) 2006; 26 Walter, Nguyen, Ehrenfeld, Semler (CR16) 1999; 5 Haabeth (CR55) 2021; 7 Baden (CR1) 2021; 384 Bhattacharyya, Das (CR45) 2006; 3 Michnick, Arnold (CR47) 1999; 17 Holcik, Liebhaber (CR24) 1997; 94 Yang (CR39) 2003; 305 Engler, Kandzia, Marillonnet (CR8) 2008; 3 Kieft (CR30) 2008; 33 Enuka (CR48) 2016; 44 Orlandini von Niessen (CR27) 2019; 27 Nicholson, Pelletier, Le, Sonenberg (CR38) 1991; 65 Filbin, Kieft (CR31) 2009; 19 Graff, Cha, Blyn, Ehrenfeld (CR15) 1998; 72 Murray, Steil, Roberts, Barton (CR34) 2004; 78 McKinlay, Benner, Haabeth, Waymouth, Wender (CR50) 2018; 115 Gamarnik, Andino (CR14) 1997; 3 Martinez-Salas, Francisco-Velilla, Fernandez-Chamorro, Embarek (CR32) 2017; 8 Karikó, Muramatsu, Keller, Weissman (CR51) 2012; 20 de Breyne, Yu, Unbehaun, Pestova, Hellen (CR35) 2009; 106 CR21 Luo (CR17) 2014; 9 Steckelberg (CR20) 2018; 115 Walsh (CR2) 2020; 383 Obi, Chen (CR3) 2021; 196 Richner (CR23) 2017; 168 Gibson (CR9) 2009; 6 Wesselhoeft, Kowalski, Anderson (CR5) 2018; 9 Sweeney, Abaeva, Pestova, Hellen (CR37) 2014; 33 Gamarnik, Böddeker, Andino (CR44) 2000; 74 Y Su (1393_CR54) 2020; 17 B Truong (1393_CR22) 2019; 116 A Souii (1393_CR36) 2013; 55 1393_CR21 JM Richner (1393_CR23) 2017; 168 RJ Jackson (1393_CR6) 2010; 11 C-K Chen (1393_CR42) 2021; 81 AG Orlandini von Niessen (1393_CR27) 2019; 27 CY Chen (1393_CR7) 1995; 268 RA Wesselhoeft (1393_CR5) 2018; 9 JM Bailey (1393_CR33) 2007; 81 KE Murray (1393_CR34) 2004; 78 S de Breyne (1393_CR35) 2009; 106 X Wang (1393_CR18) 2014; 505 OAW Haabeth (1393_CR55) 2021; 7 R Nicholson (1393_CR38) 1991; 65 YG Chen (1393_CR4) 2017; 67 YG Chen (1393_CR11) 2019; 76 D Yang (1393_CR39) 2003; 305 AV Gamarnik (1393_CR14) 1997; 3 ME Filbin (1393_CR31) 2009; 19 C Engler (1393_CR8) 2008; 3 Z Luo (1393_CR17) 2014; 9 CJ McKinlay (1393_CR49) 2017; 114 E Martinez-Salas (1393_CR32) 2017; 8 N Grote Beverborg (1393_CR52) 2015; 10 AR Gruber (1393_CR40) 2008; 36 S Bhattacharyya (1393_CR45) 2006; 3 M Holcik (1393_CR24) 1997; 94 K Karikó (1393_CR51) 2012; 20 BL Walter (1393_CR16) 1999; 5 C Wahlestedt (1393_CR41) 2000; 97 DA Mangus (1393_CR12) 2003; 4 A-L Steckelberg (1393_CR20) 2018; 115 LR Baden (1393_CR1) 2021; 384 KJ Sokoloski (1393_CR29) 2010; 8 1393_CR46 H Shi (1393_CR19) 2017; 27 J Graff (1393_CR15) 1998; 72 SW Michnick (1393_CR47) 1999; 17 AV Gamarnik (1393_CR44) 2000; 74 X Wang (1393_CR25) 1996; 15 DG Gibson (1393_CR9) 2009; 6 P Obi (1393_CR3) 2021; 196 NC Shaner (1393_CR53) 2013; 10 JS Kieft (1393_CR30) 2008; 33 NC Huston (1393_CR43) 2021; 81 CJ McKinlay (1393_CR50) 2018; 115 C Zeng (1393_CR28) 2020; 32 MP Hall (1393_CR10) 2012; 7 EE Walsh (1393_CR2) 2020; 383 Y Jiang (1393_CR26) 2006; 26 LB Blyn (1393_CR13) 1997; 71 TR Sweeney (1393_CR37) 2014; 33 Y Enuka (1393_CR48) 2016; 44 35978134 - Nat Biotechnol. 2023 Feb;41(2):293. doi: 10.1038/s41587-022-01472-2 |
References_xml | – volume: 65 start-page: 5886 year: 1991 end-page: 5894 ident: CR38 article-title: Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies publication-title: J. Virol. doi: 10.1128/jvi.65.11.5886-5894.1991 – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: CR1 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 17 start-page: 852 year: 2020 end-page: 860 ident: CR54 article-title: Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals publication-title: Nat. Methods doi: 10.1038/s41592-020-0889-6 – volume: 7 start-page: 1191 year: 2021 end-page: 1204 ident: CR55 article-title: An mRNA SARS-CoV-2 vaccine employing charge-altering releasable transporters with a TLR-9 agonist induces neutralizing antibodies and T cell memory publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00361 – volume: 11 start-page: 113 year: 2010 end-page: 127 ident: CR6 article-title: The mechanism of eukaryotic translation initiation and principles of its regulation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2838 – volume: 9 year: 2018 ident: CR5 article-title: Engineering circular RNA for potent and stable translation in eukaryotic cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-05096-6 – volume: 8 start-page: 196 year: 2010 end-page: 207 ident: CR29 article-title: Sindbis virus usurps the cellular HuR protein to stabilize its transcripts and promote productive infections in mammalian and mosquito cells publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.07.003 – volume: 168 start-page: 1114 year: 2017 end-page: 1125.e10 ident: CR23 article-title: Modified mRNA vaccines protect against Zika virus infection publication-title: Cell doi: 10.1016/j.cell.2017.02.017 – volume: 97 start-page: 5633 year: 2000 end-page: 5638 ident: CR41 article-title: Potent and nontoxic antisense oligonucleotides containing locked nucleic acids publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.10.5633 – volume: 115 start-page: 6404 year: 2018 end-page: 6409 ident: CR20 article-title: A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802429115 – volume: 116 start-page: 21150 year: 2019 end-page: 21159 ident: CR22 article-title: Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906182116 – volume: 4 year: 2003 ident: CR12 article-title: Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression publication-title: Genome Biol. doi: 10.1186/gb-2003-4-7-223 – volume: 6 start-page: 343 year: 2009 end-page: 345 ident: CR9 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods doi: 10.1038/nmeth.1318 – ident: CR21 – ident: CR46 – volume: 32 start-page: e2004452 year: 2020 ident: CR28 article-title: Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo publication-title: Adv. Mater. doi: 10.1002/adma.202004452 – volume: 72 start-page: 9668 year: 1998 end-page: 9675 ident: CR15 article-title: Interaction of poly(rC) binding protein 2 with the 5′ noncoding region of hepatitis A virus RNA and its effects on translation publication-title: J. Virol. doi: 10.1128/JVI.72.12.9668-9675.1998 – volume: 17 start-page: 1159 year: 1999 end-page: 1160 ident: CR47 article-title: ‘Itching’ for new strategies in protein engineering publication-title: Nat. Biotechnol. doi: 10.1038/70699 – volume: 9 start-page: e87491 year: 2014 ident: CR17 article-title: PolyC-binding protein 1 interacts with 5′-untranslated region of enterovirus 71 RNA in membrane-associated complex to facilitate viral replication publication-title: PLoS ONE doi: 10.1371/journal.pone.0087491 – volume: 19 start-page: 267 year: 2009 end-page: 276 ident: CR31 article-title: Toward a structural understanding of IRES RNA function publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.03.005 – volume: 268 start-page: 415 year: 1995 end-page: 417 ident: CR7 article-title: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs publication-title: Science doi: 10.1126/science.7536344 – volume: 10 start-page: 407 year: 2013 end-page: 409 ident: CR53 article-title: A bright monomeric green fluorescent protein derived from publication-title: Nat. Methods doi: 10.1038/nmeth.2413 – volume: 20 start-page: 948 year: 2012 end-page: 953 ident: CR51 article-title: Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin publication-title: Mol. Ther. doi: 10.1038/mt.2012.7 – volume: 3 start-page: 60 year: 2006 end-page: 68 ident: CR45 article-title: An apical GAGA loop within 5′ UTR of the coxsackievirus B3 RNA maintains structural organization of the IRES element required for efficient ribosome entry publication-title: RNA Biol. doi: 10.4161/rna.3.2.2990 – volume: 115 start-page: E5859 year: 2018 end-page: E5866 ident: CR50 article-title: Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1805358115 – volume: 71 start-page: 6243 year: 1997 end-page: 6246 ident: CR13 article-title: Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA publication-title: J. Virol. doi: 10.1128/jvi.71.8.6243-6246.1997 – volume: 3 start-page: e3647 year: 2008 ident: CR8 article-title: A one pot, one step, precision cloning method with high throughput capability publication-title: PLoS ONE doi: 10.1371/journal.pone.0003647 – volume: 55 start-page: 179 year: 2013 end-page: 202 ident: CR36 article-title: Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy publication-title: Mol. Biotechnol. doi: 10.1007/s12033-013-9674-4 – volume: 27 start-page: 824 year: 2019 end-page: 836 ident: CR27 article-title: Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.12.011 – volume: 3 start-page: 882 year: 1997 end-page: 892 ident: CR14 article-title: Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA publication-title: RNA – volume: 114 start-page: E448 year: 2017 end-page: E456 ident: CR49 article-title: Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1614193114 – volume: 383 start-page: 2439 year: 2020 end-page: 2450 ident: CR2 article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 10 start-page: e0125215 year: 2015 ident: CR52 article-title: Erythropoietin in the general population: reference ranges and clinical, biochemical and genetic correlates publication-title: PLoS ONE doi: 10.1371/journal.pone.0125215 – volume: 81 start-page: 650 year: 2007 end-page: 668 ident: CR33 article-title: Structure of the 5′ nontranslated region of the coxsackievirus b3 genome: chemical modification and comparative sequence analysis publication-title: J. Virol. doi: 10.1128/JVI.01327-06 – volume: 26 start-page: 2419 year: 2006 end-page: 2429 ident: CR26 article-title: A nucleolin-binding 3′ untranslated region element stabilizes β-globin mRNA in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.6.2419-2429.2006 – volume: 27 start-page: 315 year: 2017 end-page: 328 ident: CR19 article-title: YTHDF3 facilitates translation and decay of -methyladenosine-modified RNA publication-title: Cell Res. doi: 10.1038/cr.2017.15 – volume: 76 start-page: 96 year: 2019 end-page: 109 ident: CR11 article-title: -methyladenosine modification controls circular RNA immunity publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.016 – volume: 8 start-page: 2629 year: 2017 ident: CR32 article-title: Insights into structural and mechanistic features of viral IRES elements publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02629 – volume: 67 start-page: 228 year: 2017 end-page: 238 ident: CR4 article-title: Sensing self and foreign circular RNAs by intron identity publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.022 – volume: 7 start-page: 1848 year: 2012 end-page: 1857 ident: CR10 article-title: Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate publication-title: ACS Chem. Biol. doi: 10.1021/cb3002478 – volume: 305 start-page: 31 year: 2003 end-page: 43 ident: CR39 article-title: A shine-dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA publication-title: Virology doi: 10.1006/viro.2002.1770 – volume: 33 start-page: 274 year: 2008 end-page: 283 ident: CR30 article-title: Viral IRES RNA structures and ribosome interactions publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.04.007 – volume: 15 start-page: 5040 year: 1996 end-page: 5051 ident: CR25 article-title: Complementary change in determinants and trans factors in the evolution of an mRNP stability complex publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00884.x – volume: 36 start-page: W70 year: 2008 end-page: W74 ident: CR40 article-title: The Vienna RNA websuite publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn188 – volume: 74 start-page: 11983 year: 2000 end-page: 11987 ident: CR44 article-title: Translation and replication of human rhinovirus type 14 and mengovirus in oocytes publication-title: J. Virol. doi: 10.1128/JVI.74.24.11983-11987.2000 – volume: 106 start-page: 9197 year: 2009 end-page: 9202 ident: CR35 article-title: Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900153106 – volume: 81 start-page: 4300 year: 2021 end-page: 4318 ident: CR42 article-title: Structured elements drive extensive circular RNA translation publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.042 – volume: 94 start-page: 2410 year: 1997 end-page: 2414 ident: CR24 article-title: Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA–protein complexes sharing and components publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.6.2410 – volume: 5 start-page: 1570 year: 1999 end-page: 1585 ident: CR16 article-title: Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements publication-title: RNA doi: 10.1017/S1355838299991483 – volume: 44 start-page: 1370 year: 2016 end-page: 1383 ident: CR48 article-title: Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1367 – volume: 33 start-page: 76 year: 2014 end-page: 92 ident: CR37 article-title: The mechanism of translation initiation on type 1 picornavirus IRESs publication-title: EMBO J. doi: 10.1002/embj.201386124 – volume: 196 start-page: 85 year: 2021 end-page: 103 ident: CR3 article-title: The design and synthesis of circular RNAs publication-title: Methods doi: 10.1016/j.ymeth.2021.02.020 – volume: 81 start-page: 584 year: 2021 end-page: 598 ident: CR43 article-title: Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.12.041 – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: CR18 article-title: -methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 78 start-page: 1393 year: 2004 end-page: 1402 ident: CR34 article-title: Replication of poliovirus RNA with complete internal ribosome entry site deletions publication-title: J. Virol. doi: 10.1128/JVI.78.3.1393-1402.2004 – volume: 97 start-page: 5633 year: 2000 ident: 1393_CR41 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.10.5633 – volume: 67 start-page: 228 year: 2017 ident: 1393_CR4 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.022 – volume: 32 start-page: e2004452 year: 2020 ident: 1393_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.202004452 – volume: 74 start-page: 11983 year: 2000 ident: 1393_CR44 publication-title: J. Virol. doi: 10.1128/JVI.74.24.11983-11987.2000 – volume: 384 start-page: 403 year: 2021 ident: 1393_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 6 start-page: 343 year: 2009 ident: 1393_CR9 publication-title: Nat. Methods doi: 10.1038/nmeth.1318 – volume: 4 year: 2003 ident: 1393_CR12 publication-title: Genome Biol. doi: 10.1186/gb-2003-4-7-223 – volume: 8 start-page: 196 year: 2010 ident: 1393_CR29 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.07.003 – volume: 8 start-page: 2629 year: 2017 ident: 1393_CR32 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02629 – volume: 115 start-page: E5859 year: 2018 ident: 1393_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1805358115 – volume: 116 start-page: 21150 year: 2019 ident: 1393_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906182116 – volume: 33 start-page: 76 year: 2014 ident: 1393_CR37 publication-title: EMBO J. doi: 10.1002/embj.201386124 – volume: 76 start-page: 96 year: 2019 ident: 1393_CR11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.016 – volume: 7 start-page: 1848 year: 2012 ident: 1393_CR10 publication-title: ACS Chem. Biol. doi: 10.1021/cb3002478 – volume: 268 start-page: 415 year: 1995 ident: 1393_CR7 publication-title: Science doi: 10.1126/science.7536344 – volume: 94 start-page: 2410 year: 1997 ident: 1393_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.6.2410 – volume: 65 start-page: 5886 year: 1991 ident: 1393_CR38 publication-title: J. Virol. doi: 10.1128/jvi.65.11.5886-5894.1991 – volume: 9 start-page: e87491 year: 2014 ident: 1393_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0087491 – volume: 305 start-page: 31 year: 2003 ident: 1393_CR39 publication-title: Virology doi: 10.1006/viro.2002.1770 – volume: 27 start-page: 315 year: 2017 ident: 1393_CR19 publication-title: Cell Res. doi: 10.1038/cr.2017.15 – volume: 168 start-page: 1114 year: 2017 ident: 1393_CR23 publication-title: Cell doi: 10.1016/j.cell.2017.02.017 – volume: 36 start-page: W70 year: 2008 ident: 1393_CR40 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn188 – volume: 115 start-page: 6404 year: 2018 ident: 1393_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802429115 – volume: 72 start-page: 9668 year: 1998 ident: 1393_CR15 publication-title: J. Virol. doi: 10.1128/JVI.72.12.9668-9675.1998 – volume: 71 start-page: 6243 year: 1997 ident: 1393_CR13 publication-title: J. Virol. doi: 10.1128/jvi.71.8.6243-6246.1997 – volume: 114 start-page: E448 year: 2017 ident: 1393_CR49 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1614193114 – volume: 81 start-page: 650 year: 2007 ident: 1393_CR33 publication-title: J. Virol. doi: 10.1128/JVI.01327-06 – volume: 5 start-page: 1570 year: 1999 ident: 1393_CR16 publication-title: RNA doi: 10.1017/S1355838299991483 – volume: 44 start-page: 1370 year: 2016 ident: 1393_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1367 – volume: 7 start-page: 1191 year: 2021 ident: 1393_CR55 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c00361 – volume: 9 year: 2018 ident: 1393_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05096-6 – volume: 106 start-page: 9197 year: 2009 ident: 1393_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900153106 – ident: 1393_CR21 doi: 10.53555/eijmhs.v4i2.36 – volume: 81 start-page: 584 year: 2021 ident: 1393_CR43 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.12.041 – volume: 17 start-page: 1159 year: 1999 ident: 1393_CR47 publication-title: Nat. Biotechnol. doi: 10.1038/70699 – volume: 19 start-page: 267 year: 2009 ident: 1393_CR31 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.03.005 – volume: 20 start-page: 948 year: 2012 ident: 1393_CR51 publication-title: Mol. Ther. doi: 10.1038/mt.2012.7 – volume: 15 start-page: 5040 year: 1996 ident: 1393_CR25 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00884.x – ident: 1393_CR46 doi: 10.1093/nar/gkj081 – volume: 505 start-page: 117 year: 2014 ident: 1393_CR18 publication-title: Nature doi: 10.1038/nature12730 – volume: 3 start-page: 882 year: 1997 ident: 1393_CR14 publication-title: RNA – volume: 17 start-page: 852 year: 2020 ident: 1393_CR54 publication-title: Nat. Methods doi: 10.1038/s41592-020-0889-6 – volume: 81 start-page: 4300 year: 2021 ident: 1393_CR42 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.07.042 – volume: 3 start-page: e3647 year: 2008 ident: 1393_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003647 – volume: 196 start-page: 85 year: 2021 ident: 1393_CR3 publication-title: Methods doi: 10.1016/j.ymeth.2021.02.020 – volume: 26 start-page: 2419 year: 2006 ident: 1393_CR26 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.6.2419-2429.2006 – volume: 3 start-page: 60 year: 2006 ident: 1393_CR45 publication-title: RNA Biol. doi: 10.4161/rna.3.2.2990 – volume: 383 start-page: 2439 year: 2020 ident: 1393_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 78 start-page: 1393 year: 2004 ident: 1393_CR34 publication-title: J. Virol. doi: 10.1128/JVI.78.3.1393-1402.2004 – volume: 11 start-page: 113 year: 2010 ident: 1393_CR6 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2838 – volume: 10 start-page: 407 year: 2013 ident: 1393_CR53 publication-title: Nat. Methods doi: 10.1038/nmeth.2413 – volume: 10 start-page: e0125215 year: 2015 ident: 1393_CR52 publication-title: PLoS ONE doi: 10.1371/journal.pone.0125215 – volume: 33 start-page: 274 year: 2008 ident: 1393_CR30 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.04.007 – volume: 27 start-page: 824 year: 2019 ident: 1393_CR27 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.12.011 – volume: 55 start-page: 179 year: 2013 ident: 1393_CR36 publication-title: Mol. Biotechnol. doi: 10.1007/s12033-013-9674-4 – reference: 35978134 - Nat Biotechnol. 2023 Feb;41(2):293. doi: 10.1038/s41587-022-01472-2 |
SSID | ssj0006466 |
Score | 2.707246 |
Snippet | Circular RNAs (circRNAs) are stable and prevalent RNAs in eukaryotic cells that arise from back-splicing. Synthetic circRNAs and some endogenous circRNAs can... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 262 |
SubjectTerms | 3' Untranslated regions 631/1647/2300 631/208/1792 631/61/201 631/61/51/391 Agriculture Aptamers Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Circular RNA Cloning Design optimization Gene expression In vivo methods and tests Life Sciences mRNA Protein folding Proteins Ribonucleic acid RNA RNA - genetics RNA - metabolism RNA Splicing RNA, Circular - genetics RNA, Messenger - genetics RNA, Messenger - metabolism Severe acute respiratory syndrome coronavirus 2 Splicing Topology Transgenes Translation Translation initiation |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GouiD6PyqTqngmxabZkvTxzEcQ9gexMHeSpKmbiCd7OPB_95L-uHmVPCppbm26SV3-R13_QXgFp2iTghNPSGI8JppIvEsTLyAcYGAAueQJXvuD1hv2HwatUY1CMp_YWzRvqW0tG66rA57mONCg-Zgas8NaKEehunbhrrdzOoO61Tel-X5SeIbaQxOih9lfMp_eMb6YrSBMDcLJb9lS-0i1D2EgwI9uu28v0dQ01kd9tuvs4JBQ9dhJ99d8gOvr3AN1mG3X2TRj4GvNLhqMrOlqO7zoO0ignV1NrZVAa6lcJhk5pjkHLMnMOw-vnR6XrGDgqcQiS08HWEASgOVRgkJFaIlX9KoKQKliNQ8IYJwkUZEU4ljIxO0dgTbihKK7jNlLKWnsJVNM30OLudSBIgtfcU4ghghk1bEZEApGrigoXSAlKqMVUEvbna5eIttmpvyOFd_jOqPrfpj34G76p73nFzjT-lGOUJxYWjzOAgxXooMu6kDN1UzmojJe4hMT5cowzAmRa8fosxZPqDV66hJi9Kw5UC4NtSVgKHfXm_JJmNLw43IjrTCyIH7clJ8dev3r7j4n_gl7JkN7vM68QZsLWZLfYUwaCGv7bz_BOmN_NQ priority: 102 providerName: Springer Nature |
Title | Engineering circular RNA for enhanced protein production |
URI | https://link.springer.com/article/10.1038/s41587-022-01393-0 https://www.ncbi.nlm.nih.gov/pubmed/35851375 https://www.proquest.com/docview/2776891091 https://www.proquest.com/docview/2691787671 https://pubmed.ncbi.nlm.nih.gov/PMC9931579 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH7aipjgMG0FRhigTOIGEXHc2M5pais6NIlqQkPqLfKviEooZbQc-O95dtzQDsEliWJHSfzs5895X74HcIJO0RpCq0RKIpNeZRQecZNkTEgEFNiHvNjz1Zhd3vR-T_JJ-OA2D7TKpU_0jtrMtPtGfp5xBMaFk7H8ef8vcVmjXHQ1pND4CBtOusxRuvikXXDhbOtjlSQVjl6Zs_DTTErF-RwnLnc2c8QE6jhs6xPTK7T5mjT5X-TUT0ijL_A5IMm435j-K3ywdRc2m9yST13YXlEa7MKnqxBD3wGxUhDr6YMnosbX436M-DW29a3nBMRewGFau71pFGZ34WZ08Xd4mYT8CYlGHLZIbIHLT5rpqjCEa8RKqaJFT2ZaE2WFIZIIWRXEUoWWUQbHOkJtTQlF51kxVtE96NSz2u5DLISSGSLLVDOBEEYqkxdMZZTi8JaUqwjIsvFKHcTFXY6Lu9IHuakomwYvscFL3-BlGsFpe819I63xbu3DpU3KMMzm5UuniOBHW4wDxEU9ZG1nj1iH4YoUfT7HOt8aE7a3oy4oSnkeAV8zblvBiW-vl9TTWy_CjbiO5LyI4GzZDV4e6-23OHj_Lb7Dlktn37DCD6GzeHi0Rwh6FurY92zcitGvY9jojwaDMe4HF-M_13h2yIbPzSX_Xg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIl4HBMsrUCBIcIKosb1xnANCFbBsaXcPqJV6c_2KuhLKlu5WqH-K38jYTtIuFb31lCh2XuOZ8efM5BuAt-gUnSWszpQiKhvWVuNeaTPKhUJAgToUyJ4nUz7eH34_KA7W4E_3L4xPq-x8YnDUdm78N_JNWiIwrjyN5afjX5mvGuWjq10JjagWO-7sNy7ZFh-3v-D4vqN09HXv8zhrqwpkBtHJMnMVLsoYNXVlSWkQQeSaVUNFjSHaCUsUEaquiGMan1dbtAAEoIYRhi6l5rxmeN0bcHPIWOUtSoy-9Z6fx9goyYVP5yx4-5NOzsTmAidKf5T6RAjmc-ZWJ8JL6PZykuY_kdowAY4ewP0WuaZbUdUewpprBnAr1rI8G8C9C8yGA7g9aWP2j0BcaEjN7CQkvqY_plsp4uXUNUchByENhBGzxm9tZLR9DPvXItknsN7MG_cMUiG0oohkc8MFQialbVFxTRlDd6JYqRMgnfCkacnMfU2NnzIE1ZmQUeASBS6DwGWewPv-nONI5XFl741uTGRr1gt5roQJvOmb0SB9lEU1bn6KfTiugHGOKbHP0ziE_e2YD8KyskigXBncvoMn-15taWZHgfQbcSQpyiqBD50anD_W_9_i-dVv8RrujPcmu3J3e7rzAu6ixFnMSN-A9eXJqXuJgGupXwUtT-Hwus3qL0KHNnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxNBFD5BiEQfDNQLq6hrok-66c5Md2f2wRgiNFykMUaSvo1z29CEbJGWGP4av44zsxcoRN54atOZvZ05l296vj0H4CM6RWcJKxOliEoGpdX4jduE5kIhoEAdCsWeD0f57tFgf5yNl-CyfRfG0ypbnxgctZ0a_x95n3IExoUvY9kvG1rEz-3ht9O_ie8g5TOtbTuNWkUO3MU_3L7Nvu5t41p_onS48_v7btJ0GEgMIpV54grcoDFqysISbhBNpJoVA0WNIdoJSxQRqiyIYxrvXVu0BgSjhhGG7qXM85LheR_BCmcZ8TbGx91mDyN9yJOSVHhqZ5Y3L-ykTPRnGDT9r9STIpjnzy0GxTtI9y5h81bWNgTD4Ro8a1BsvFWr3TosuaoHj-u-lhc9eHqjymEPVg-b_P1zEDcGYjM5CyTY-NdoK0bsHLvqOPAR4lA8YlL5T1tXt30BRw8i2ZewXE0rtwGxEFpRRLWpyQXCJ6VtVuSaMoauRTGuIyCt8KRpCpv7_honMiTYmZC1wCUKXAaByzSCz90xp3VZj3tnb7ZrIhsTn8lrhYzgQzeMxukzLqpy03Ock-NuGOMNxzmv6iXsLsd8QpbxLAK-sLjdBF_4e3GkmhyHAuCIKUnGiwi-tGpwfVv_f4rX9z_Fe1hFg5I_9kYHb-AJCpzV5PRNWJ6fnbu3iL3m-l1Q8hj-PLRVXQHf5Dqh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+circular+RNA+for+enhanced+protein+production&rft.jtitle=Nature+biotechnology&rft.au=Chen%2C+Robert&rft.au=Wang%2C+Sean+K&rft.au=Belk%2C+Julia+A&rft.au=Amaya%2C+Laura&rft.date=2023-02-01&rft.issn=1546-1696&rft.eissn=1546-1696&rft.volume=41&rft.issue=2&rft.spage=262&rft_id=info:doi/10.1038%2Fs41587-022-01393-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |