Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design

Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-e...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 10; no. 1; pp. 161 - 19
Main Authors Wang, Hai-Long, You, En-Ming, Panneerselvam, Rajapandiyan, Ding, Song-Yuan, Tian, Zhong-Qun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.08.2021
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies. This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales.
AbstractList Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies. This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales.
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.
This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales.
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales.
ArticleNumber 161
Author Tian, Zhong-Qun
You, En-Ming
Panneerselvam, Rajapandiyan
Ding, Song-Yuan
Wang, Hai-Long
Author_xml – sequence: 1
  givenname: Hai-Long
  surname: Wang
  fullname: Wang, Hai-Long
  email: wanghl@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 2
  givenname: En-Ming
  surname: You
  fullname: You, En-Ming
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 3
  givenname: Rajapandiyan
  orcidid: 0000-0002-3566-4558
  surname: Panneerselvam
  fullname: Panneerselvam, Rajapandiyan
  organization: Department of Chemistry, SRM University- AP
– sequence: 4
  givenname: Song-Yuan
  orcidid: 0000-0002-1862-0713
  surname: Ding
  fullname: Ding, Song-Yuan
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 5
  givenname: Zhong-Qun
  orcidid: 0000-0002-9775-8189
  surname: Tian
  fullname: Tian, Zhong-Qun
  email: zqtian@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34349103$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3TAQhU1JadI0f6CLYuimGzd62nIXhRD6uBAohHYtxtL4Rre25Ep2IP--cm7SJllEG4nROR9HmnldHPjgsSjeUvKREq5Ok6C8aSrCaEWIbNuKvSiOGBFN1UiuDh6cD4uTlHYkr1ZQoppXxSEXXLQZc1T8PrPX4A2mMvRlWmIPBiv0V2vNlpcwgi_B23JzWaYJzRxDMmFymD6VfQxj6cGH09GZXJ_jYuYlZtQcyhFyqQrT7AwMpcXktv5N8bKHIeHJ3X5c_Pr65ef59-rix7fN-dlFZaQgc4Wy7a1EI4zkwGtuecOA9J3owFBhgUJTK9aqrsb8RioQJW9rQMlkbZmp-XGx2XNtgJ2eohsh3ugATt8WQtxqiDnYgJo0lqtGil5aIwRFRUlvWN9RxTqpuMysz3vWtHQjWoN-jjA8gj6-8e5Kb8O1VpyrtqUZ8OEOEMOfBdOsR5cMDgN4DEvSTEolJKWEZOn7J9JdWKLPX7WqmgxrOc-qdw8T_Yty39MsUHvB2pQUsdfGzTC7sAZ0g6ZErxOk9xOk8wTp2wnSLFvZE-s9_VkT35tSFvstxv-xn3H9BUXE2LM
CitedBy_id crossref_primary_10_1007_s00604_022_05393_4
crossref_primary_10_1002_smll_202401674
crossref_primary_10_1002_adom_202302848
crossref_primary_10_3390_molecules29030661
crossref_primary_10_1002_chem_202400578
crossref_primary_10_1039_D3CP03958G
crossref_primary_10_1109_OJNANO_2022_3233485
crossref_primary_10_1021_acs_jpcc_3c05445
crossref_primary_10_3390_bios13060631
crossref_primary_10_1016_j_nanoen_2022_107989
crossref_primary_10_1016_j_apsusc_2022_155217
crossref_primary_10_1002_adma_202312518
crossref_primary_10_1002_adfm_202405341
crossref_primary_10_1002_adom_202401259
crossref_primary_10_1088_1361_6528_acfe15
crossref_primary_10_1002_jrs_6628
crossref_primary_10_1016_j_jiec_2025_02_020
crossref_primary_10_3390_chemengineering8010015
crossref_primary_10_2351_7_0001027
crossref_primary_10_1016_j_electacta_2024_144689
crossref_primary_10_1063_5_0197236
crossref_primary_10_1039_D3TA03383J
crossref_primary_10_1007_s12274_023_5525_1
crossref_primary_10_1039_D3NR01218B
crossref_primary_10_1063_5_0196152
crossref_primary_10_1016_j_cej_2023_144161
crossref_primary_10_1515_nanoph_2023_0131
crossref_primary_10_1016_j_trac_2024_117784
crossref_primary_10_1021_acs_langmuir_2c03016
crossref_primary_10_1039_D4CS00588K
crossref_primary_10_1016_j_cogsc_2022_100589
crossref_primary_10_1021_acs_jpca_2c05962
crossref_primary_10_1021_acs_chemrev_2c00078
crossref_primary_10_1021_jacs_2c11503
crossref_primary_10_1088_1361_6528_ac622e
crossref_primary_10_1063_5_0077592
crossref_primary_10_1039_D2NH00023G
crossref_primary_10_1109_MC_2022_3143087
crossref_primary_10_1039_D4SC02463J
crossref_primary_10_1002_adfm_202307298
crossref_primary_10_1002_smll_202205924
crossref_primary_10_1016_j_jwpe_2025_107202
crossref_primary_10_1021_acs_langmuir_2c02254
crossref_primary_10_1021_acs_langmuir_3c01459
crossref_primary_10_1016_j_chemosphere_2022_136610
crossref_primary_10_1016_j_saa_2022_122129
crossref_primary_10_1364_OE_471884
crossref_primary_10_1038_s44310_024_00045_2
crossref_primary_10_1016_j_saa_2024_124867
crossref_primary_10_1021_acsphotonics_4c01657
crossref_primary_10_1109_ACCESS_2023_3269579
crossref_primary_10_1021_acsami_2c14829
crossref_primary_10_1016_j_seppur_2023_123209
crossref_primary_10_1002_smll_202206167
crossref_primary_10_1016_j_chempr_2024_10_025
crossref_primary_10_1021_acs_jpclett_3c00478
crossref_primary_10_1039_D4RA08733J
crossref_primary_10_1002_admt_202101425
crossref_primary_10_1002_adma_202210807
crossref_primary_10_1016_j_jcis_2023_05_117
crossref_primary_10_1016_j_apsusc_2024_160003
crossref_primary_10_1002_adfm_202211154
crossref_primary_10_1016_j_biortech_2022_126831
crossref_primary_10_1039_D3CS00734K
crossref_primary_10_1016_j_coelec_2023_101373
crossref_primary_10_1021_acs_chemrev_2c00914
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_1016_j_trac_2023_117188
crossref_primary_10_1021_acsaom_4c00023
crossref_primary_10_3389_fbioe_2021_808933
crossref_primary_10_1021_acsanm_4c04712
crossref_primary_10_1021_jacs_4c03726
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_12677_mos_2024_133194
crossref_primary_10_1364_OE_462117
crossref_primary_10_1016_j_molliq_2023_123311
crossref_primary_10_1002_lpor_202200814
crossref_primary_10_1021_acs_jpcc_3c04275
crossref_primary_10_1002_admi_202101133
crossref_primary_10_1016_j_trac_2021_116481
crossref_primary_10_1021_acsnano_4c02670
crossref_primary_10_1038_s41377_022_00943_0
crossref_primary_10_1063_5_0174031
crossref_primary_10_1021_acsphotonics_4c00700
crossref_primary_10_1039_D4AY00348A
crossref_primary_10_1002_andp_202400354
crossref_primary_10_1021_acsami_2c10800
crossref_primary_10_1021_acs_jpcc_3c03607
crossref_primary_10_1039_D2NH00276K
crossref_primary_10_1063_5_0226248
crossref_primary_10_1021_acs_chemrev_3c00475
crossref_primary_10_1002_adom_202301948
crossref_primary_10_1002_ijch_202200007
crossref_primary_10_1039_D4TC02391A
crossref_primary_10_1515_nanoph_2024_0463
crossref_primary_10_1088_2053_1591_ac90a3
crossref_primary_10_1021_acs_jpclett_4c00964
crossref_primary_10_1021_acs_jpcc_4c05853
crossref_primary_10_1016_j_colsurfb_2024_114366
crossref_primary_10_1039_D4CS00883A
crossref_primary_10_1063_5_0180255
crossref_primary_10_1515_nanoph_2021_0620
crossref_primary_10_1038_s41377_024_01394_5
crossref_primary_10_1186_s43074_024_00119_6
crossref_primary_10_1364_JOSAB_538553
crossref_primary_10_1063_5_0222253
crossref_primary_10_3390_molecules30010015
crossref_primary_10_1016_j_bios_2022_114768
crossref_primary_10_1016_j_coelec_2024_101509
crossref_primary_10_1021_acs_nanolett_5c00280
crossref_primary_10_1007_s10008_023_05381_5
crossref_primary_10_1007_s12274_023_5934_1
crossref_primary_10_1038_s41377_021_00613_7
crossref_primary_10_1016_j_saa_2025_126092
crossref_primary_10_1021_acsphyschemau_2c00061
crossref_primary_10_1021_acsanm_1c04145
crossref_primary_10_1186_s43074_023_00098_0
crossref_primary_10_3390_chemosensors11030190
crossref_primary_10_1016_S1872_2067_22_64095_6
crossref_primary_10_3390_ma16052005
crossref_primary_10_1021_acsanm_4c04342
crossref_primary_10_1016_j_ccr_2024_216320
crossref_primary_10_1007_s44211_022_00168_6
crossref_primary_10_1016_j_measurement_2024_115329
crossref_primary_10_1039_D3CS01070H
crossref_primary_10_1039_D4CE00835A
crossref_primary_10_2139_ssrn_4174870
crossref_primary_10_3390_ijms25147675
crossref_primary_10_1021_acsaom_4c00061
crossref_primary_10_3390_photonics12030180
crossref_primary_10_29026_oea_2021_210076
crossref_primary_10_1002_cnma_202300584
crossref_primary_10_1021_acs_jpcb_2c08431
crossref_primary_10_1039_D2TA06050G
crossref_primary_10_1038_s41377_022_00724_9
crossref_primary_10_3390_coatings13050844
crossref_primary_10_1007_s10570_024_06066_6
crossref_primary_10_1021_acsanm_5c00480
crossref_primary_10_1021_acsomega_4c01009
crossref_primary_10_3390_s22051997
Cites_doi 10.1021/acs.nanolett.0c01199
10.1039/f29797500790
10.1021/nn800047e
10.1038/nnano.2016.241
10.1364/AO.19.004159
10.1038/ncomms6228
10.1038/s41566-019-0456-9
10.1039/D0TC00040J
10.1038/lsa.2017.172
10.1146/annurev.anchem.1.031207.112814
10.1021/jacs.7b10645
10.1038/ncomms2538
10.5796/electrochemistry.68.942
10.1117/1.JNP.9.093791
10.1021/jacs.9b04638
10.1039/c0cc04988c
10.1038/nature11653
10.1007/s13206-016-0406-2
10.1021/ac7017487
10.1021/acsnano.9b04224
10.1016/0009-2614(82)83457-X
10.1073/pnas.1016530108
10.1021/acs.chemrev.6b00743
10.1038/ncomms1490
10.1002/adom.201600223
10.1126/science.1198258
10.1007/BFb0048317
10.1039/D0SC00809E
10.1073/pnas.1920091117
10.1126/science.275.5303.1102
10.1038/nphoton.2013.373
10.1038/20154
10.1021/acs.chemrev.6b00343
10.1039/C7CS00238F
10.1021/ac981093u
10.1038/nphoton.2012.161
10.1103/PhysRevLett.45.201
10.1021/acs.nanolett.7b02736
10.1002/0470027320.s0101
10.1103/PhysRevB.83.115428
10.1039/c3nr02924g
10.1093/nsr/nwz180
10.1021/jacs.5b08143
10.1002/adom.202001081
10.1002/adma.200700678
10.1016/0009-2614(74)85388-1
10.1002/jrs.6006
10.1038/nnano.2011.79
10.1103/PhysRevLett.78.1667
10.1038/lsa.2017.96
10.1021/acs.chemrev.6b00596
10.1038/s41560-018-0292-z
10.1103/PhysRevB.78.155407
10.1021/acs.accounts.9b00545
10.1021/acs.nanolett.6b03958
10.1021/jp2107507
10.1038/nature12151
10.1063/1.3321313
10.1038/s41467-020-18016-4
10.1021/acsnano.5b05605
10.1039/C7AN01299C
10.1021/jacs.9b12803
10.1364/AO.24.001498
10.1002/9780470035641
10.1016/S0022-0728(77)80224-6
10.1063/1.464263
10.1038/natrevmats.2016.21
10.1021/jp209982h
10.1088/0957-4484/25/23/235301
10.1016/S0030-4018(00)00894-4
10.1063/1.126546
10.1002/jrs.6030
10.1002/anie.200702072
10.1126/science.aab2051
10.1146/annurev.physchem.58.032806.104607
10.1021/ph400147y
10.1016/S0009-2614(99)01451-7
10.1021/nn403444j
10.1038/s41598-017-15111-3
10.1063/1.3378682
10.1021/jz302018x
10.1038/s41586-019-1059-9
10.1021/j100177a056
10.1021/acs.accounts.6b00409
10.1038/nature08907
10.1021/nn500903v
10.1021/nl300351j
10.1038/ncomms1211
10.1038/s41563-019-0356-x
10.1126/science.aah5243
10.1063/5.0009766
10.1021/nn1031406
10.1016/0167-5729(88)90011-8
10.1063/1.437095
10.1246/bcsj.70.2861
10.1016/0924-2031(93)87021-K
10.1021/ac103273r
10.1021/ja2074533
10.1021/ja00457a071
10.1103/PhysRevLett.83.4357
10.1021/jz200498z
10.1063/1.440560
10.1021/jacs.5b04670
10.1002/anie.202010431
10.1039/C7FD00144D
10.1021/acs.nanolett.6b01405
10.1038/nmat2596
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-021-00599-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 19
ExternalDocumentID oai_doaj_org_article_07d38754f5dc441e810fc2fb182b5835
PMC8338991
34349103
10_1038_s41377_021_00599_2
Genre Journal Article
Review
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-e59fd5ec4c53a363d372a0fb4bac14da1a768298b6e20414ee5396ae5256d2c63
IEDL.DBID 7X7
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:15:22 EDT 2025
Thu Aug 21 18:45:56 EDT 2025
Fri Jul 11 09:17:11 EDT 2025
Wed Aug 13 05:15:50 EDT 2025
Mon Jul 21 05:24:56 EDT 2025
Thu Apr 24 23:04:28 EDT 2025
Tue Jul 01 03:45:16 EDT 2025
Fri Feb 21 02:38:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-e59fd5ec4c53a363d372a0fb4bac14da1a768298b6e20414ee5396ae5256d2c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3566-4558
0000-0002-1862-0713
0000-0002-9775-8189
OpenAccessLink https://www.proquest.com/docview/2557913933?pq-origsite=%requestingapplication%
PMID 34349103
PQID 2557913933
PQPubID 2041947
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_07d38754f5dc441e810fc2fb182b5835
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8338991
proquest_miscellaneous_2558451100
proquest_journals_2557913933
pubmed_primary_34349103
crossref_citationtrail_10_1038_s41377_021_00599_2
crossref_primary_10_1038_s41377_021_00599_2
springer_journals_10_1038_s41377_021_00599_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-04
PublicationDateYYYYMMDD 2021-08-04
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References LiJFCore-shell nanoparticle-enhanced Raman spectroscopyChem. Rev.20171175002506910.1021/acs.chemrev.6b00596
WeiHXuHXHot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopyNanoscale2013510794108052013Nanos...510794W10.1039/c3nr02924g
HayazawaNMetallized tip amplification of near-field Raman scatteringOpt. Commun.20001833333362000OptCo.183..333H10.1016/S0030-4018(00)00894-4
KerkerMWangDSChewHSurface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errataAppl. Opt.198019415941741980ApOpt..19.4159K10.1364/AO.19.004159
LiuYNote: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scatteringRev. Sci. Instrum.2010810361052010RScI...81c6105L10.1063/1.3321313
Zhao, K. H. & Zhong, X. H. Optics. Ch 1. (Peking University Press, China, 1984).
FleischmannMHendraPJMcQuillanAJRaman spectra of pyridine adsorbed at a silver electrodeChem. Phys. Lett.1974261631661974CPL....26..163F10.1016/0009-2614(74)85388-1
LiJFExtraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticlesJ. Am. Chem. Soc.2011133159221592510.1021/ja2074533
ZhongYJReview of mid-infrared plasmonic materialsJ. Nanophotonics201590937912015JNano...9.3791Z10.1117/1.JNP.9.093791
MoskovitsMSurface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metalsJ. Chem. Phys.197869415941611978JChPh..69.4159M10.1063/1.437095
McMahonJMGraySKSchatzGCFundamental behavior of electric field enhancements in the gaps between closely spaced nanostructuresPhys. Rev. B2011831154282011PhRvB..83k5428M10.1103/PhysRevB.83.115428
DingSYElectromagnetic theories of surface-enhanced Raman spectroscopyChem. Soc. Rev.2017464042407610.1039/C7CS00238F
JiangDAg films annealed in a nanoscale limited area for surface-enhanced Raman scattering detectionNanotechnology2014252353012014Nanot..25w5301J10.1088/0957-4484/25/23/235301
LiCYIn situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopyJ. Am. Chem. Soc.20151377648765110.1021/jacs.5b04670
CreightonJABlatchfordCGAlbrechtMGPlasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelengthJ. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.19797579079810.1039/f29797500790
HuangSCProbing nanoscale spatial distribution of plasmonically excited hot carriersNat. Commun.2020112020NatCo..11.4211H10.1038/s41467-020-18016-4
OsawaMDynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)Bull. Chem. Soc. Jpn.1997702861288010.1246/bcsj.70.2861
JinMZLuFBelkinMAHigh-sensitivity infrared vibrational nanospectroscopy in waterLight.: Sci. Appl.20176e170962017LSA.....6E7096J10.1038/lsa.2017.96
LuFJinMZBelkinMATip-enhanced infrared nanospectroscopy via molecular expansion force detectionNat. Photonics201483073122014NaPho...8..307L10.1038/nphoton.2013.373
DongJCDirect in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfacesJ. Am. Chem. Soc.202014271571910.1021/jacs.9b12803
NishikawaYSilver island films for surface-enhanced infrared-absorption spectroscopy–effect of island morphology on the absorption enhancementVib. Spectrosc.19936435310.1016/0924-2031(93)87021-K
Aroca, R. Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, Ltd, Hoboken, 2006).
ZhongJHProbing the electronic and catalytic properties of a bimetallic surface with 3 nm resolutionNat. Nanotechnol.2017121321362017NatNa..12..132Z10.1038/nnano.2016.241
WangHLIntegrated plasmon-enhanced Raman scattering (iPERS) spectroscopySci. Rep.201772017NatSR...714630W10.1038/s41598-017-15111-3
LiNNDirectional control of light with nanoantennasAdv. Optical Mater.20219200108110.1002/adom.202001081
PettingerBSurface enhanced Raman spectroscopy: towards single molecule spectroscopyElectrochemistry20006894294910.5796/electrochemistry.68.942
MeyerSALeRuECEtchegoinPGCombining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS)Anal. Chem.2011832337234410.1021/ac103273r
OhYJEngineering hot spots on plasmonic nanopillar arrays for SERS: a reviewBioChip J.20161029730910.1007/s13206-016-0406-2
HuangCGain, detuning, and radiation patterns of nanoparticle optical antennasPhys. Rev. B2008781554072008PhRvB..78o5407H10.1103/PhysRevB.78.155407
Pérez-JiménezAISurface-enhanced Raman spectroscopy: benefits, trade-offs and future developmentsChem. Sci.2020114563457710.1039/D0SC00809E
LiJFIn situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applicationsACS Nano20137894089522013Nanos...5.8940L10.1021/nn403444j
Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Berlin Heidelberg: Springer-Verlag, 1988).
SonntagMDSingle-molecule tip-enhanced Raman spectroscopyJ. Phys. Chem. C.201211647848310.1021/jp209982h
RodrigoDMid-infrared plasmonic biosensing with grapheneScience20153491651682015Sci...349..165R10.1126/science.aab2051
FrontieraRRSurface-enhanced femtosecond stimulated Raman spectroscopyJ. Phys. Chem. Lett.201121199120310.1021/jz200498z
HuckCSurface-enhanced infrared spectroscopy using nanometer-sized gapsACS Nano201484908491410.1021/nn500903v
LeeJVisualizing vibrational normal modes of a single molecule with atomically confined lightNature201956878822019Natur.568...78L10.1038/s41586-019-1059-9
ShegaiTAngular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregatesACS Nano201152036204110.1021/nn1031406
XueXKPractically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodesAnal. Chem.20088016617110.1021/ac7017487
DodsonSOptimizing electromagnetic hotspots in plasmonic bowtie nanoantennaeJ. Phys. Chem. Lett.2013449650110.1021/jz302018x
DongJCShell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfacesAdv. Optical Mater.201641144115810.1002/adom.201600223
LaiHSMetal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering – a reviewJ. Mater. Chem. C.202082952296310.1039/D0TC00040J
MasseyGASubwavelength resolution far-infrared microscopyAppl. Opt.198524149815011985ApOpt..24.1498M10.1364/AO.24.001498
KimJSingle-particle analysis on plasmonic nanogap systems for quantitative SERSJ. Raman Spectrosc.2021523753852021JRSp...52..375K10.1002/jrs.6030
JiangNNanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616389839042016NanoL..16.3898J10.1021/acs.nanolett.6b01405
LimDKHighly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gapNat. Nanotechnol.201164524602011NatNa...6..452L10.1038/nnano.2011.79
KampMCascaded nanooptics to probe microsecond atomic-scale phenomenaProc. Natl Acad. Sci. USA2020117148191482610.1073/pnas.1920091117
FuYHDirectional visible light scattering by silicon nanoparticlesNat. Commun.201342013NatCo...4.1527F10.1038/ncomms2538
NeubrechFSurface-enhanced infrared spectroscopy using resonant nanoantennasChem. Rev.20171175110514510.1021/acs.chemrev.6b00743
YouEMAttenuated total reflection-cascading nanostructure-enhanced Raman spectroscopy on flat surfaces: a nano-optical designJ. Raman Spectrosc.2021524464572021JRSp...52..446Y10.1002/jrs.6006
BenzFSingle-molecule optomechanics in “picocavities”Science20163547267292016Sci...354..726B10.1126/science.aah5243
McKeeKJSmithEADevelopment of a scanning angle total internal reflection Raman spectrometerRev. Sci. Instrum.2010810431062010RScI...81d3106M10.1063/1.3378682
XuHSpectroscopy of single hemoglobin molecules by surface enhanced Raman scatteringPhys. Rev. Lett.199983435743601999PhRvL..83.4357X10.1103/PhysRevLett.83.4357
ZhangYVisually constructing the chemical structure of a single molecule by scanning Raman picoscopyNatl Sci. Rev.201961169117510.1093/nsr/nwz180
OsawaMIkedaMSurface-enhanced infrared absorption of P-Nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanismsJ. Phys. Chem.1991959914991910.1021/j100177a056
LiCYIn situ probing electrified interfacial water structures at atomically flat surfacesNat. Mater.2019186977012019NatMa..18..697L10.1038/s41563-019-0356-x
ChabalYJSurface infrared spectroscopySurf. Sci. Rep.198882113571988SurSR...8..211C10.1016/0167-5729(88)90011-8
ChiangNConformational contrast of surface-mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616777477782016NanoL..16.7774C10.1021/acs.nanolett.6b03958
LiuYLocalized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitationChem. Commun.2011473784378610.1039/c0cc04988c
MurrayWABarnesWLPlasmonic materialsAdv. Mater.2007193771378210.1002/adma.200700678
SavageKJRevealing the quantum regime in tunnelling plasmonicsNature20124915745772012Natur.491..574S10.1038/nature11653
ZengZCElectrochemical tip-enhanced Raman spectroscopyJ. Am. Chem. Soc.2015137119281193110.1021/jacs.5b08143
HartsteinAKirtleyJRTsangJCEnhancement of the infrared absorption from molecular monolayers with thin metal overlayersPhys. Rev. Lett.1980452012041980PhRvL..45..201H10.1103/PhysRevLett.45.201
AutoreMBoron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limitLight. Sci. Appl.201871717210.1038/lsa.2017.172
DongLNanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopyNano Lett.201717576857742017NanoL..17.5768D10.1021/acs.nanolett.7b02736
KneippKSingle molecule detection using surface-enhanced Raman scattering (SERS)Phys. Rev. Lett.199778166716701997PhRvL..78.1667K10.1103/PhysRevLett.78.1667
StöckleRMNanoscale chemical analysis
F Benz (599_CR79) 2016; 354
PL Stiles (599_CR48) 2008; 1
JF Li (599_CR67) 2011; 133
CKA Nyamekye (599_CR99) 2018; 143
Y Zhang (599_CR108) 2019; 6
ZC Zeng (599_CR105) 2015; 137
MZ Jin (599_CR110) 2017; 6
JA Creighton (599_CR7) 1979; 75
WA Murray (599_CR47) 2007; 19
S Kim (599_CR107) 2019; 13
JC Dong (599_CR71) 2016; 4
M Moskovits (599_CR6) 1978; 69
S Mubeen (599_CR89) 2012; 12
M Kerker (599_CR43) 1980; 19
T Shegai (599_CR94) 2011; 2
HM Wang (599_CR111) 2020; 20
M Osawa (599_CR11) 1997; 70
KJ McKee (599_CR98) 2010; 81
B Pettinger (599_CR30) 2000; 68
R Roberto (599_CR44) 1993; 98
MD Sonntag (599_CR55) 2012; 116
J Gersten (599_CR45) 1980; 73
KA Willets (599_CR46) 2007; 58
DK Lim (599_CR58) 2010; 9
A Boltasseva (599_CR49) 2011; 331
JC Dong (599_CR76) 2019; 4
599_CR1
H Wang (599_CR64) 2007; 46
SY Ding (599_CR18) 2017; 46
JF Li (599_CR21) 2017; 117
HS Lai (599_CR20) 2020; 8
J Langer (599_CR25) 2020; 14
JC Dong (599_CR73) 2020; 142
EA Pozzi (599_CR82) 2017; 117
DL Jeanmaire (599_CR5) 1977; 84
H Zhang (599_CR22) 2020; 53
J Lee (599_CR80) 2019; 568
DV Murphy (599_CR32) 1982; 85
Y Liu (599_CR100) 2010; 81
M Autore (599_CR39) 2018; 7
N Jiang (599_CR85) 2016; 16
XK Xue (599_CR101) 2008; 80
R Stanley (599_CR50) 2012; 6
DK Lim (599_CR66) 2011; 6
T Shegai (599_CR91) 2011; 5
MG Albrecht (599_CR4) 1977; 99
M Osawa (599_CR10) 1991; 95
N Bodappa (599_CR72) 2019; 141
A Hartstein (599_CR8) 1980; 45
599_CR34
Y Liu (599_CR52) 2011; 47
R Zhang (599_CR77) 2013; 498
SA Meyer (599_CR96) 2011; 83
F Lu (599_CR78) 2014; 8
AI Pérez-Jiménez (599_CR26) 2020; 11
MS Anderson (599_CR27) 2000; 76
WQ Zhu (599_CR86) 2014; 5
CY Li (599_CR70) 2015; 137
NN Li (599_CR93) 2021; 9
ZB Wang (599_CR109) 2011; 2
H Wei (599_CR59) 2013; 5
N Chiang (599_CR83) 2017; 139
S Dodson (599_CR60) 2013; 4
599_CR42
N Hayazawa (599_CR28) 2000; 183
FJ García de Abajo (599_CR36) 2014; 1
M Kamp (599_CR104) 2020; 117
EM You (599_CR53) 2021; 52
L Dong (599_CR62) 2017; 17
C Huck (599_CR56) 2014; 8
CY Li (599_CR74) 2019; 18
K Kneipp (599_CR14) 1997; 78
S Chen (599_CR68) 2016; 10
H Xu (599_CR16) 1999; 83
B Knoll (599_CR41) 1999; 399
C Huang (599_CR90) 2008; 78
SY Ding (599_CR88) 2017; 205
599_CR51
Y Nishikawa (599_CR13) 1993; 6
YJ Chabal (599_CR2) 1988; 8
GA Massey (599_CR40) 1985; 24
599_CR9
YH Fu (599_CR92) 2013; 4
YJ Zhong (599_CR38) 2015; 9
RR Frontiera (599_CR33) 2011; 2
AE Bjerke (599_CR12) 1999; 71
M Fleischmann (599_CR3) 1974; 26
SM Nie (599_CR15) 1997; 275
JF Li (599_CR69) 2013; 7
F Le (599_CR65) 2008; 2
D Jiang (599_CR23) 2014; 25
D Rodrigo (599_CR37) 2015; 349
YJ Oh (599_CR24) 2016; 10
F Neubrech (599_CR35) 2017; 117
RA Alvarez-Puebla (599_CR63) 2011; 108
S Mahapatra (599_CR81) 2020; 153
JH Zhong (599_CR54) 2017; 12
SA Meyer (599_CR97) 2012; 116
J Kim (599_CR57) 2021; 52
SY Ding (599_CR17) 2016; 1
N Chiang (599_CR84) 2016; 16
JF Li (599_CR31) 2010; 464
JM McMahon (599_CR61) 2011; 83
SC Huang (599_CR106) 2020; 11
M Su (599_CR75) 2020; 59
599_CR103
599_CR102
KJ Savage (599_CR87) 2012; 491
JM Nam (599_CR19) 2016; 49
RM Stöckle (599_CR29) 2000; 318
HL Wang (599_CR95) 2017; 7
References_xml – reference: HayazawaNMetallized tip amplification of near-field Raman scatteringOpt. Commun.20001833333362000OptCo.183..333H10.1016/S0030-4018(00)00894-4
– reference: HuckCSurface-enhanced infrared spectroscopy using nanometer-sized gapsACS Nano201484908491410.1021/nn500903v
– reference: StilesPLSurface-enhanced Raman spectroscopyAnnu. Rev. Anal. Chem.2008160162610.1146/annurev.anchem.1.031207.112814
– reference: LiCYIn situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopyJ. Am. Chem. Soc.20151377648765110.1021/jacs.5b04670
– reference: LiJFCore-shell nanoparticle-enhanced Raman spectroscopyChem. Rev.20171175002506910.1021/acs.chemrev.6b00596
– reference: NieSMEmorySRProbing Single molecules and single nanoparticles by surface-enhanced Raman scatteringScience19972751102110610.1126/science.275.5303.1102
– reference: MurrayWABarnesWLPlasmonic materialsAdv. Mater.2007193771378210.1002/adma.200700678
– reference: LeFMetallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorptionACS Nano2008270771810.1021/nn800047e
– reference: LiCYIn situ probing electrified interfacial water structures at atomically flat surfacesNat. Mater.2019186977012019NatMa..18..697L10.1038/s41563-019-0356-x
– reference: Galabov, B. S. D. T. Vibrational Spectra and Structure (eds Boris, S. G. & Todor, D., Elsevier, 1996).
– reference: ChabalYJSurface infrared spectroscopySurf. Sci. Rep.198882113571988SurSR...8..211C10.1016/0167-5729(88)90011-8
– reference: LuFJinMZBelkinMATip-enhanced infrared nanospectroscopy via molecular expansion force detectionNat. Photonics201483073122014NaPho...8..307L10.1038/nphoton.2013.373
– reference: LiuYNote: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scatteringRev. Sci. Instrum.2010810361052010RScI...81c6105L10.1063/1.3321313
– reference: FleischmannMHendraPJMcQuillanAJRaman spectra of pyridine adsorbed at a silver electrodeChem. Phys. Lett.1974261631661974CPL....26..163F10.1016/0009-2614(74)85388-1
– reference: XuHSpectroscopy of single hemoglobin molecules by surface enhanced Raman scatteringPhys. Rev. Lett.199983435743601999PhRvL..83.4357X10.1103/PhysRevLett.83.4357
– reference: LiJFExtraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticlesJ. Am. Chem. Soc.2011133159221592510.1021/ja2074533
– reference: FuYHDirectional visible light scattering by silicon nanoparticlesNat. Commun.201342013NatCo...4.1527F10.1038/ncomms2538
– reference: MurphyDVSurface-enhanced hyper-raman scattering from SO32− adsorbed on Ag powderChem. Phys. Lett.19828543471982CPL....85...43M10.1016/0009-2614(82)83457-X
– reference: FrontieraRRSurface-enhanced femtosecond stimulated Raman spectroscopyJ. Phys. Chem. Lett.201121199120310.1021/jz200498z
– reference: AndersonMSLocally enhanced Raman spectroscopy with an atomic force microscopeAppl. Phys. Lett.200076313031322000ApPhL..76.3130A10.1063/1.126546
– reference: HartsteinAKirtleyJRTsangJCEnhancement of the infrared absorption from molecular monolayers with thin metal overlayersPhys. Rev. Lett.1980452012041980PhRvL..45..201H10.1103/PhysRevLett.45.201
– reference: DodsonSOptimizing electromagnetic hotspots in plasmonic bowtie nanoantennaeJ. Phys. Chem. Lett.2013449650110.1021/jz302018x
– reference: GerstenJNitzanAElectromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfacesJ. Chem. Phys.198073302330371980JChPh..73.3023G10.1063/1.440560
– reference: WilletsKAVan DuyneRPLocalized surface plasmon resonance spectroscopy and sensingAnnu. Rev. Phys. Chem.2007582672972007ARPC...58..267W10.1146/annurev.physchem.58.032806.104607
– reference: DongJCShell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfacesAdv. Optical Mater.201641144115810.1002/adom.201600223
– reference: RobertoRClaroFTheory of surface enhanced Raman scattering in colloidsJ. Chem. Phys.19939899810061993JChPh..98..998R10.1063/1.464263
– reference: MeyerSALeRuECEtchegoinPGCombining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS)Anal. Chem.2011832337234410.1021/ac103273r
– reference: SonntagMDSingle-molecule tip-enhanced Raman spectroscopyJ. Phys. Chem. C.201211647848310.1021/jp209982h
– reference: MasseyGASubwavelength resolution far-infrared microscopyAppl. Opt.198524149815011985ApOpt..24.1498M10.1364/AO.24.001498
– reference: LangerJPresent and future of surface-enhanced Raman scatteringACS Nano2020142811710.1021/acsnano.9b04224
– reference: LiuYLocalized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitationChem. Commun.2011473784378610.1039/c0cc04988c
– reference: KimJSingle-particle analysis on plasmonic nanogap systems for quantitative SERSJ. Raman Spectrosc.2021523753852021JRSp...52..375K10.1002/jrs.6030
– reference: ChiangNConformational contrast of surface-mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616777477782016NanoL..16.7774C10.1021/acs.nanolett.6b03958
– reference: ZengZCElectrochemical tip-enhanced Raman spectroscopyJ. Am. Chem. Soc.2015137119281193110.1021/jacs.5b08143
– reference: ChiangNProbing intermolecular vibrational symmetry breaking in self-assembled monolayers with ultrahigh vacuum tip-enhanced Raman spectroscopyJ. Am. Chem. Soc.2017139186641866910.1021/jacs.7b10645
– reference: JeanmaireDLVan DuyneRPSurface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrodeJ. Electroanal. Chem. Interfacial Electrochem.19778412010.1016/S0022-0728(77)80224-6
– reference: MoskovitsMSurface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metalsJ. Chem. Phys.197869415941611978JChPh..69.4159M10.1063/1.437095
– reference: AlbrechtMGCreightonJAAnomalously intense Raman spectra of pyridine at a silver electrodeJ. Am. Chem. Soc.1977995215521710.1021/ja00457a071
– reference: MubeenSPlasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxideNano Lett.201212208820942012NanoL..12.2088M10.1021/nl300351j
– reference: ShegaiTA bimetallic nanoantenna for directional colour routingNat. Commun.201122011NatCo...2..481S10.1038/ncomms1490
– reference: WangHLIntegrated plasmon-enhanced Raman scattering (iPERS) spectroscopySci. Rep.201772017NatSR...714630W10.1038/s41598-017-15111-3
– reference: McKeeKJSmithEADevelopment of a scanning angle total internal reflection Raman spectrometerRev. Sci. Instrum.2010810431062010RScI...81d3106M10.1063/1.3378682
– reference: OhYJEngineering hot spots on plasmonic nanopillar arrays for SERS: a reviewBioChip J.20161029730910.1007/s13206-016-0406-2
– reference: MahapatraSTip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolutionJ. Chem. Phys.202015301090210.1063/5.0009766
– reference: Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Berlin Heidelberg: Springer-Verlag, 1988).
– reference: Aroca, R. Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, Ltd, Hoboken, 2006).
– reference: LimDKHighly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gapNat. Nanotechnol.201164524602011NatNa...6..452L10.1038/nnano.2011.79
– reference: DongJCDirect in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfacesJ. Am. Chem. Soc.202014271571910.1021/jacs.9b12803
– reference: NeubrechFSurface-enhanced infrared spectroscopy using resonant nanoantennasChem. Rev.20171175110514510.1021/acs.chemrev.6b00743
– reference: KerkerMWangDSChewHSurface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errataAppl. Opt.198019415941741980ApOpt..19.4159K10.1364/AO.19.004159
– reference: DongLNanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopyNano Lett.201717576857742017NanoL..17.5768D10.1021/acs.nanolett.7b02736
– reference: ShegaiTAngular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregatesACS Nano201152036204110.1021/nn1031406
– reference: DingSYElectromagnetic theories of surface-enhanced Raman spectroscopyChem. Soc. Rev.2017464042407610.1039/C7CS00238F
– reference: Sheppard, N. The historical development of experimental techniques in vibrational spectroscopy. in Handbook of Vibrational Spectroscopy (eds Chalmers, J. M. & Griffiths, P.R., 2006).
– reference: KampMCascaded nanooptics to probe microsecond atomic-scale phenomenaProc. Natl Acad. Sci. USA2020117148191482610.1073/pnas.1920091117
– reference: McMahonJMGraySKSchatzGCFundamental behavior of electric field enhancements in the gaps between closely spaced nanostructuresPhys. Rev. B2011831154282011PhRvB..83k5428M10.1103/PhysRevB.83.115428
– reference: JiangDAg films annealed in a nanoscale limited area for surface-enhanced Raman scattering detectionNanotechnology2014252353012014Nanot..25w5301J10.1088/0957-4484/25/23/235301
– reference: DongJCIn situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfacesNat. Energy2019460672019NatEn...4...60D10.1038/s41560-018-0292-z
– reference: PozziEAUltrahigh-vacuum Tip-enhanced Raman spectroscopyChem. Rev.20171174961498210.1021/acs.chemrev.6b00343
– reference: NishikawaYSilver island films for surface-enhanced infrared-absorption spectroscopy–effect of island morphology on the absorption enhancementVib. Spectrosc.19936435310.1016/0924-2031(93)87021-K
– reference: JiangNNanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616389839042016NanoL..16.3898J10.1021/acs.nanolett.6b01405
– reference: LaiHSMetal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering – a reviewJ. Mater. Chem. C.202082952296310.1039/D0TC00040J
– reference: ZhongYJReview of mid-infrared plasmonic materialsJ. Nanophotonics201590937912015JNano...9.3791Z10.1117/1.JNP.9.093791
– reference: ChenSHow to light special hot spots in multiparticle-film configurationsACS Nano20161058158710.1021/acsnano.5b05605
– reference: LimDKNanogap-engineerable Raman-active nanodumbbells for single-molecule detectionNat. Mater.2010960672010NatMa...9...60L10.1038/nmat2596
– reference: DingSYFurther expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticleFaraday Discuss.20172054574682017FaDi..205..457D10.1039/C7FD00144D
– reference: RodrigoDMid-infrared plasmonic biosensing with grapheneScience20153491651682015Sci...349..165R10.1126/science.aab2051
– reference: NyamekyeCKACombined measurement of directional Raman scattering and surface-plasmon-polariton cone from adsorbates on smooth planar gold surfacesAnalyst20181434004082018Ana...143..400N10.1039/C7AN01299C
– reference: StöckleRMNanoscale chemical analysis by tip-enhanced Raman spectroscopyChem. Phys. Lett.20003181311362000CPL...318..131S10.1016/S0009-2614(99)01451-7
– reference: YouEMAttenuated total reflection-cascading nanostructure-enhanced Raman spectroscopy on flat surfaces: a nano-optical designJ. Raman Spectrosc.2021524464572021JRSp...52..446Y10.1002/jrs.6006
– reference: García de AbajoFJGraphene plasmonics: challenges and opportunitiesACS Photonics2014113515210.1021/ph400147y
– reference: XueXKPractically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodesAnal. Chem.20088016617110.1021/ac7017487
– reference: KimSHigh external-efficiency nanofocusing for lens-free near-field optical nanoscopyNat. Photonics2019136366432019NaPho..13..636K10.1038/s41566-019-0456-9
– reference: JinMZLuFBelkinMAHigh-sensitivity infrared vibrational nanospectroscopy in waterLight.: Sci. Appl.20176e170962017LSA.....6E7096J10.1038/lsa.2017.96
– reference: LiJFShell-isolated nanoparticle-enhanced Raman spectroscopyNature20104643923952010Natur.464..392L10.1038/nature08907
– reference: LiJFIn situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applicationsACS Nano20137894089522013Nanos...5.8940L10.1021/nn403444j
– reference: DingSYNanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materialsNat. Rev. Mater.20161160212016NatRM...116021D10.1038/natrevmats.2016.21
– reference: AutoreMBoron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limitLight. Sci. Appl.201871717210.1038/lsa.2017.172
– reference: SuMIn situ Raman study of CO electrooxidation on Pt(hkl) single-crystal surfaces in acidic solutionAngew. Chem. Int. Ed.202059235542355810.1002/anie.202010431
– reference: LiNNDirectional control of light with nanoantennasAdv. Optical Mater.20219200108110.1002/adom.202001081
– reference: ZhongJHProbing the electronic and catalytic properties of a bimetallic surface with 3 nm resolutionNat. Nanotechnol.2017121321362017NatNa..12..132Z10.1038/nnano.2016.241
– reference: WangHKunduJHalasNJPlasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrateAngew. Chem. Int. Ed.2007469040904410.1002/anie.200702072
– reference: HuangCGain, detuning, and radiation patterns of nanoparticle optical antennasPhys. Rev. B2008781554072008PhRvB..78o5407H10.1103/PhysRevB.78.155407
– reference: WangZBOptical virtual imaging at 50 nm lateral resolution with a white-light nanoscopeNat. Commun.201122011NatCo...2..218W10.1038/ncomms1211
– reference: CreightonJABlatchfordCGAlbrechtMGPlasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelengthJ. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.19797579079810.1039/f29797500790
– reference: KneippKSingle molecule detection using surface-enhanced Raman scattering (SERS)Phys. Rev. Lett.199778166716701997PhRvL..78.1667K10.1103/PhysRevLett.78.1667
– reference: LeeJVisualizing vibrational normal modes of a single molecule with atomically confined lightNature201956878822019Natur.568...78L10.1038/s41586-019-1059-9
– reference: WangHMProbing mid-infrared phonon polaritons in the aqueous PhaseNano Lett.202020398639912020NanoL..20.3986W10.1021/acs.nanolett.0c01199
– reference: BenzFSingle-molecule optomechanics in “picocavities”Science20163547267292016Sci...354..726B10.1126/science.aah5243
– reference: HuangSCProbing nanoscale spatial distribution of plasmonically excited hot carriersNat. Commun.2020112020NatCo..11.4211H10.1038/s41467-020-18016-4
– reference: OsawaMDynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)Bull. Chem. Soc. Jpn.1997702861288010.1246/bcsj.70.2861
– reference: KnollBKeilmannFNear-field probing of vibrational absorption for chemical microscopyNature19993991341371999Natur.399..134K10.1038/20154
– reference: MeyerSACombined SPR and SERS microscopy in the Kretschmann configurationJ. Phys. Chem. A20121161000100710.1021/jp2107507
– reference: Osawa, M. Surface-enhanced infrared absorption. in Near-Field Optics and Surface Plasmon Polaritons (ed Kawata, S., Springer, Berlin, Heidelberg, 2001).
– reference: OsawaMIkedaMSurface-enhanced infrared absorption of P-Nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanismsJ. Phys. Chem.1991959914991910.1021/j100177a056
– reference: WeiHXuHXHot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopyNanoscale2013510794108052013Nanos...510794W10.1039/c3nr02924g
– reference: BjerkeAEGriffithsPRTheissWSurface-enhanced infrared absorption of CO on platinized platinumAnal. Chem.1999711967197410.1021/ac981093u
– reference: ZhuWQCrozierKBQuantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scatteringNat. Commun.201452014NatCo...5.5228Z10.1038/ncomms6228
– reference: Pérez-JiménezAISurface-enhanced Raman spectroscopy: benefits, trade-offs and future developmentsChem. Sci.2020114563457710.1039/D0SC00809E
– reference: Alvarez-PueblaRAGold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prionsProc. Natl Acad. Sci. USA2011108815781612011PNAS..108.8157A10.1073/pnas.1016530108
– reference: ZhangRChemical mapping of a single molecule by plasmon-enhanced Raman scatteringNature201349882862013Natur.498...82Z10.1038/nature12151
– reference: Xu, W. Q. et al. A device for integrated plasmon-enhanced Raman with adjustable excitation angle (in Chinese), China Patent CN206270249U (2017).
– reference: Zhao, K. H. & Zhong, X. H. Optics. Ch 1. (Peking University Press, China, 1984).
– reference: ZhangHCore-shell nanostructure-enhanced Raman spectroscopy for surface catalysisAcc. Chem. Res.20205372973910.1021/acs.accounts.9b00545
– reference: StanleyRPlasmonics in the mid-infraredNat. Photonics201264094112012NaPho...6..409S10.1038/nphoton.2012.161
– reference: BoltassevaAAtwaterHALow-loss plasmonic metamaterialsScience20113312902912011Sci...331..290B10.1126/science.1198258
– reference: BodappaNEarly stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopyJ. Am. Chem. Soc.2019141121921219610.1021/jacs.9b04638
– reference: ZhangYVisually constructing the chemical structure of a single molecule by scanning Raman picoscopyNatl Sci. Rev.201961169117510.1093/nsr/nwz180
– reference: PettingerBSurface enhanced Raman spectroscopy: towards single molecule spectroscopyElectrochemistry20006894294910.5796/electrochemistry.68.942
– reference: NamJMPlasmonic nanogap-enhanced Raman scattering with nanoparticlesAcc. Chem. Res.2016492746275510.1021/acs.accounts.6b00409
– reference: SavageKJRevealing the quantum regime in tunnelling plasmonicsNature20124915745772012Natur.491..574S10.1038/nature11653
– volume: 20
  start-page: 3986
  year: 2020
  ident: 599_CR111
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01199
– volume: 75
  start-page: 790
  year: 1979
  ident: 599_CR7
  publication-title: J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.
  doi: 10.1039/f29797500790
– volume: 2
  start-page: 707
  year: 2008
  ident: 599_CR65
  publication-title: ACS Nano
  doi: 10.1021/nn800047e
– volume: 12
  start-page: 132
  year: 2017
  ident: 599_CR54
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.241
– volume: 19
  start-page: 4159
  year: 1980
  ident: 599_CR43
  publication-title: Appl. Opt.
  doi: 10.1364/AO.19.004159
– volume: 5
  year: 2014
  ident: 599_CR86
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6228
– volume: 13
  start-page: 636
  year: 2019
  ident: 599_CR107
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0456-9
– volume: 8
  start-page: 2952
  year: 2020
  ident: 599_CR20
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D0TC00040J
– volume: 7
  start-page: 17172
  year: 2018
  ident: 599_CR39
  publication-title: Light. Sci. Appl.
  doi: 10.1038/lsa.2017.172
– volume: 1
  start-page: 601
  year: 2008
  ident: 599_CR48
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev.anchem.1.031207.112814
– volume: 139
  start-page: 18664
  year: 2017
  ident: 599_CR83
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10645
– volume: 4
  year: 2013
  ident: 599_CR92
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2538
– volume: 68
  start-page: 942
  year: 2000
  ident: 599_CR30
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.68.942
– volume: 9
  start-page: 093791
  year: 2015
  ident: 599_CR38
  publication-title: J. Nanophotonics
  doi: 10.1117/1.JNP.9.093791
– volume: 141
  start-page: 12192
  year: 2019
  ident: 599_CR72
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04638
– volume: 47
  start-page: 3784
  year: 2011
  ident: 599_CR52
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04988c
– volume: 491
  start-page: 574
  year: 2012
  ident: 599_CR87
  publication-title: Nature
  doi: 10.1038/nature11653
– volume: 10
  start-page: 297
  year: 2016
  ident: 599_CR24
  publication-title: BioChip J.
  doi: 10.1007/s13206-016-0406-2
– volume: 80
  start-page: 166
  year: 2008
  ident: 599_CR101
  publication-title: Anal. Chem.
  doi: 10.1021/ac7017487
– volume: 14
  start-page: 28
  year: 2020
  ident: 599_CR25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04224
– volume: 85
  start-page: 43
  year: 1982
  ident: 599_CR32
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(82)83457-X
– volume: 108
  start-page: 8157
  year: 2011
  ident: 599_CR63
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1016530108
– volume: 117
  start-page: 5110
  year: 2017
  ident: 599_CR35
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00743
– volume: 2
  year: 2011
  ident: 599_CR94
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1490
– volume: 4
  start-page: 1144
  year: 2016
  ident: 599_CR71
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.201600223
– volume: 331
  start-page: 290
  year: 2011
  ident: 599_CR49
  publication-title: Science
  doi: 10.1126/science.1198258
– ident: 599_CR51
  doi: 10.1007/BFb0048317
– volume: 11
  start-page: 4563
  year: 2020
  ident: 599_CR26
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00809E
– ident: 599_CR102
– volume: 117
  start-page: 14819
  year: 2020
  ident: 599_CR104
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1920091117
– volume: 275
  start-page: 1102
  year: 1997
  ident: 599_CR15
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 8
  start-page: 307
  year: 2014
  ident: 599_CR78
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.373
– volume: 399
  start-page: 134
  year: 1999
  ident: 599_CR41
  publication-title: Nature
  doi: 10.1038/20154
– volume: 117
  start-page: 4961
  year: 2017
  ident: 599_CR82
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00343
– volume: 46
  start-page: 4042
  year: 2017
  ident: 599_CR18
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00238F
– volume: 71
  start-page: 1967
  year: 1999
  ident: 599_CR12
  publication-title: Anal. Chem.
  doi: 10.1021/ac981093u
– volume: 6
  start-page: 409
  year: 2012
  ident: 599_CR50
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.161
– volume: 45
  start-page: 201
  year: 1980
  ident: 599_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.201
– volume: 17
  start-page: 5768
  year: 2017
  ident: 599_CR62
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02736
– ident: 599_CR1
  doi: 10.1002/0470027320.s0101
– volume: 83
  start-page: 115428
  year: 2011
  ident: 599_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.115428
– volume: 5
  start-page: 10794
  year: 2013
  ident: 599_CR59
  publication-title: Nanoscale
  doi: 10.1039/c3nr02924g
– volume: 6
  start-page: 1169
  year: 2019
  ident: 599_CR108
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwz180
– volume: 137
  start-page: 11928
  year: 2015
  ident: 599_CR105
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08143
– volume: 9
  start-page: 2001081
  year: 2021
  ident: 599_CR93
  publication-title: Adv. Optical Mater.
  doi: 10.1002/adom.202001081
– volume: 19
  start-page: 3771
  year: 2007
  ident: 599_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700678
– volume: 26
  start-page: 163
  year: 1974
  ident: 599_CR3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 52
  start-page: 446
  year: 2021
  ident: 599_CR53
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.6006
– volume: 6
  start-page: 452
  year: 2011
  ident: 599_CR66
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.79
– volume: 78
  start-page: 1667
  year: 1997
  ident: 599_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1667
– volume: 6
  start-page: e17096
  year: 2017
  ident: 599_CR110
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2017.96
– volume: 117
  start-page: 5002
  year: 2017
  ident: 599_CR21
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00596
– volume: 4
  start-page: 60
  year: 2019
  ident: 599_CR76
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0292-z
– volume: 78
  start-page: 155407
  year: 2008
  ident: 599_CR90
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.155407
– volume: 53
  start-page: 729
  year: 2020
  ident: 599_CR22
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00545
– volume: 16
  start-page: 7774
  year: 2016
  ident: 599_CR84
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03958
– volume: 116
  start-page: 1000
  year: 2012
  ident: 599_CR97
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp2107507
– volume: 498
  start-page: 82
  year: 2013
  ident: 599_CR77
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 81
  start-page: 036105
  year: 2010
  ident: 599_CR100
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3321313
– volume: 11
  year: 2020
  ident: 599_CR106
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18016-4
– volume: 10
  start-page: 581
  year: 2016
  ident: 599_CR68
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05605
– volume: 143
  start-page: 400
  year: 2018
  ident: 599_CR99
  publication-title: Analyst
  doi: 10.1039/C7AN01299C
– volume: 142
  start-page: 715
  year: 2020
  ident: 599_CR73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12803
– volume: 24
  start-page: 1498
  year: 1985
  ident: 599_CR40
  publication-title: Appl. Opt.
  doi: 10.1364/AO.24.001498
– ident: 599_CR9
  doi: 10.1002/9780470035641
– volume: 84
  start-page: 1
  year: 1977
  ident: 599_CR5
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(77)80224-6
– volume: 98
  start-page: 998
  year: 1993
  ident: 599_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464263
– volume: 1
  start-page: 16021
  year: 2016
  ident: 599_CR17
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.21
– volume: 116
  start-page: 478
  year: 2012
  ident: 599_CR55
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp209982h
– ident: 599_CR34
– volume: 25
  start-page: 235301
  year: 2014
  ident: 599_CR23
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/23/235301
– volume: 183
  start-page: 333
  year: 2000
  ident: 599_CR28
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(00)00894-4
– volume: 76
  start-page: 3130
  year: 2000
  ident: 599_CR27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126546
– volume: 52
  start-page: 375
  year: 2021
  ident: 599_CR57
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.6030
– volume: 46
  start-page: 9040
  year: 2007
  ident: 599_CR64
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200702072
– volume: 349
  start-page: 165
  year: 2015
  ident: 599_CR37
  publication-title: Science
  doi: 10.1126/science.aab2051
– volume: 58
  start-page: 267
  year: 2007
  ident: 599_CR46
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104607
– volume: 1
  start-page: 135
  year: 2014
  ident: 599_CR36
  publication-title: ACS Photonics
  doi: 10.1021/ph400147y
– volume: 318
  start-page: 131
  year: 2000
  ident: 599_CR29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01451-7
– volume: 7
  start-page: 8940
  year: 2013
  ident: 599_CR69
  publication-title: ACS Nano
  doi: 10.1021/nn403444j
– volume: 7
  year: 2017
  ident: 599_CR95
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15111-3
– volume: 81
  start-page: 043106
  year: 2010
  ident: 599_CR98
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3378682
– volume: 4
  start-page: 496
  year: 2013
  ident: 599_CR60
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz302018x
– volume: 568
  start-page: 78
  year: 2019
  ident: 599_CR80
  publication-title: Nature
  doi: 10.1038/s41586-019-1059-9
– volume: 95
  start-page: 9914
  year: 1991
  ident: 599_CR10
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100177a056
– volume: 49
  start-page: 2746
  year: 2016
  ident: 599_CR19
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00409
– volume: 464
  start-page: 392
  year: 2010
  ident: 599_CR31
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 8
  start-page: 4908
  year: 2014
  ident: 599_CR56
  publication-title: ACS Nano
  doi: 10.1021/nn500903v
– volume: 12
  start-page: 2088
  year: 2012
  ident: 599_CR89
  publication-title: Nano Lett.
  doi: 10.1021/nl300351j
– volume: 2
  year: 2011
  ident: 599_CR109
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1211
– volume: 18
  start-page: 697
  year: 2019
  ident: 599_CR74
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0356-x
– volume: 354
  start-page: 726
  year: 2016
  ident: 599_CR79
  publication-title: Science
  doi: 10.1126/science.aah5243
– volume: 153
  start-page: 010902
  year: 2020
  ident: 599_CR81
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0009766
– volume: 5
  start-page: 2036
  year: 2011
  ident: 599_CR91
  publication-title: ACS Nano
  doi: 10.1021/nn1031406
– volume: 8
  start-page: 211
  year: 1988
  ident: 599_CR2
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/0167-5729(88)90011-8
– ident: 599_CR42
– volume: 69
  start-page: 4159
  year: 1978
  ident: 599_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437095
– volume: 70
  start-page: 2861
  year: 1997
  ident: 599_CR11
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.70.2861
– volume: 6
  start-page: 43
  year: 1993
  ident: 599_CR13
  publication-title: Vib. Spectrosc.
  doi: 10.1016/0924-2031(93)87021-K
– volume: 83
  start-page: 2337
  year: 2011
  ident: 599_CR96
  publication-title: Anal. Chem.
  doi: 10.1021/ac103273r
– ident: 599_CR103
– volume: 133
  start-page: 15922
  year: 2011
  ident: 599_CR67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2074533
– volume: 99
  start-page: 5215
  year: 1977
  ident: 599_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume: 83
  start-page: 4357
  year: 1999
  ident: 599_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.4357
– volume: 2
  start-page: 1199
  year: 2011
  ident: 599_CR33
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200498z
– volume: 73
  start-page: 3023
  year: 1980
  ident: 599_CR45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440560
– volume: 137
  start-page: 7648
  year: 2015
  ident: 599_CR70
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04670
– volume: 59
  start-page: 23554
  year: 2020
  ident: 599_CR75
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010431
– volume: 205
  start-page: 457
  year: 2017
  ident: 599_CR88
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00144D
– volume: 16
  start-page: 3898
  year: 2016
  ident: 599_CR85
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01405
– volume: 9
  start-page: 60
  year: 2010
  ident: 599_CR58
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2596
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.602454
SecondaryResourceType review_article
Snippet Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps...
This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 161
SubjectTerms 639/624
639/766/400
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Design
Lasers
Microscopes
Molecular
Nanoparticles
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Review
Review Article
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPQKmMxA2s9TPxcisVVUGCQ0Wl3iy_ogJdZ0V2_z9jO7t0gcKFqx-R5Zmxv8nMfEbopeCKa80scXGuiBTeEi0sI7oN3DswEclz7fDHT-3pufxwoS6uPfWVc8IqPXDduBntggBMLXsVPFzdUTPae947wMVOAXzIpy_cedecqa81X45R3U1VMlTo2Sgztx7JGQmFk4TwnZuoEPb_CWX-niz5S8S0XEQn99DdCUHio7ry--hWTA_Q7ZLJ6cd99O2oRvVHPPR4XH_vrY8kpssS6cdndmETting92e4VFlmNsthCf7yG5xLTXCyaZgtcppepZZdgz-OVwNeWGgiw7L8-8ahJH48ROcn7z4fn5LpRQXiAZmtSFTzPqjopVfCilYE0XFLeyed9UwGyyx4H3yuXRs5lUzGqMS8tVEBMALZteIR2ktDik8QhrOhs7p1UQYpPZg1pzn3GnztXsJHXIPYZneNn-jG86sXV6aEvYU2VSIGJGKKRAxv0KvtnGUl2_jr6LdZaNuRmSi7NID6mEl9zL_Up0EHG5GbyXpHA25Wl-lShWjQi2032F0OptgUh3UZozO3G6UNelw1ZLsSIYUEGAazux3d2Vnqbk_6clm4vbXIhIesQa83WvZzWTdvxdP_sRXP0B1ezEMTKg_QHihZfA6Ia-UOi3H9ABIIJUw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lRfBF_Ha1SgTfNDSfuznfTrHUA32oFvoW8rW26GWP7vX_d5L9kNMq-JpMliEzk8zszPyC0CvBFdeaWeLiQhEpvCVaWEZ0Hbh3YCKS597hT5_rkzO5Olfne4hPvTClaL9AWpZjeqoOO-plhsYjuaCgQIoQOHYPMlQ76PbBcrn6spr_rEDAwqhuxg4ZKvQNi3duoQLWf5OH-Weh5G_Z0nIJHd9Fd0bvES8Hfu-hvZjuo1ulitP3D9D35ZDR73HX4v76qrU-kpguSpYfn9q1TdimgD-e4tJhmZEsuw3Eym9xbjPByabuaJ1L9AZYWdifHm87vLYwRLpN-e-NQyn6eIjOjj98fX9CxtcUiAevbEuiWrRBRS-9ElbUIoiGW9o66axnMlhmIfLgC-3qyKlkMkYlFrWNCpwikFstHqH91KX4BGE4FxqraxdlkNKDSXOa664hzm4lfMRViE27a_wINZ5fvPhhSspbaDNIxIBETJGI4RV6Pa_ZDEAb_6R-l4U2U2aQ7DLQXX0zo9IY2gQB4ZhsVfDg9UXNaOt56yCkcgo8zwodTiI3o-X2BkKsJkOlClGhl_M02FxOpNgUu-tCozOuG6UVejxoyMyJkEKCCwarmx3d2WF1dyZdXhRcby0y2CGr0JtJy36x9fetePp_5M_QbV4MQRMqD9E-qFN8Dn7V1r0YDeknZh8ckw
  priority: 102
  providerName: Springer Nature
Title Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design
URI https://link.springer.com/article/10.1038/s41377-021-00599-2
https://www.ncbi.nlm.nih.gov/pubmed/34349103
https://www.proquest.com/docview/2557913933
https://www.proquest.com/docview/2558451100
https://pubmed.ncbi.nlm.nih.gov/PMC8338991
https://doaj.org/article/07d38754f5dc441e810fc2fb182b5835
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgExIviDuBURmJN7Dq2E7i8oK6atOoxIQKk_pm-ZYNQZ2ytP-fYyfNVC57iuQ4keNzjvOdiz8j9JazgkmZa2L8pCCCW00k1zmRpWPWgIkIFvcOfz4vzy7EfFks-4Bb25dV7tbEtFC7xsYY-RigbxUpLDn_uP5F4qlRMbvaH6FxFx1G6rKo1dWyGmIs4LrkVFb9XhnK5bgVkWGPxLqExExC2N7_KNH2_wtr_l0y-UfeNP2OTh-iBz2OxNNO8I_QHR8eo3upntO2T9CPaZfbb3FT43Z7XWvriQ9XKd-PF3qlA9bB4U8LnPZaRk7LZg1e8wccN5zgoEMzXsVivY5gdgteOd40eKWhiTTrFAHHLpV_PEUXpyffZmekP1eBWMBnG-KLSe0Kb4UtuOYld7ximtZGGG1z4XSuwQdhE2lKz6jIhfcFn5TaFwCPQIIlf4YOQhP8C4Rhhai0LI0XTggLxs1orMAGj7sW8BKToXw3u8r2pOPx7IufKiW_uVSdRBRIRCWJKJahd8Mz645y49bex1FoQ89Il50amutL1VufopXj4JiJunAW8J-XOa0tqw04V6YADJqho53IVW_DrbrRuAy9GW6D9cWUig6-2aY-MjK8UZqh552GDCPhggsAY_B0tac7e0PdvxO-XyWGb8kj7WGeofc7LbsZ1v-n4uXtX_EK3WdJ8SWh4ggdgPr414CoNmaUzGaEDqfT-dc5XI9Pzr8soHVWzkYpSvEbITIidg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviDeBAkaCE1jr2E7iRUKoPKpd-jhUrbQ34zgOrWCTZbMrxJ_iNzJ2kq2WR2-9Jo7leGbsb-yZbwCeC55wpWJDczdMqBTWUCVMTFVacJujiUjuc4cPDtPRifw0SSYb8KvPhfFhlf2aGBbqorb-jHyA0DfzFJZCvJ19p75qlL9d7UtotGqx537-QJeteTP-gPJ9wfnux-P3I9pVFaAW0cmCumRYFomz0ibCiFQUIuOGlbnMjY1lYWKDCJwPVZ46zmQsnUvEMDUuQXCA408F9nsFruLGy7yzl02y1ZkOukoxU1mXm8OEGjTSM_pRHwcRmFAoX9v_QpmAf2Hbv0M0_7inDdvf7k240eFWstMq2i3YcNVtuBbiR21zB77utLEEDalL0iznpbGOuuo0xBeQIzM1FTFVQcZHJOR2eg7NeoZe-mviE1xIZap6MPXBgS2h7XKOXS1qMjX4iNazcOJOihBuchdOLmXG78FmVVfuARBckTKj0tzJQkqLiwlnPuIbPfxSYid5BHE_u9p2JOe-1sY3HS7bhdKtRDRKRAeJaB7By9U3s5bi48LW77zQVi09PXd4UM-_6M7aNcsKgY6gLJPCIt50Kmal5WWOzlyeIOaNYLsXue7WjEafa3gEz1av0dr9FY6pXL0MbZRnlGMsgvuthqxGIqSQCP7w62xNd9aGuv6mOjsNjOJKeJrFOIJXvZadD-v_U_Hw4r94CtdHxwf7en98uPcItngwAkWZ3IZNVCX3GNHcIn8STIjA58u22d8ti1pn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBhgJnsBqYjuJi4TQxlatDKqpYtLePMdx2DSalKYV4l_jr-PsJJ3Kx972mtiW47tz7uzf_Q7gJWcxkzLSNLODmApuNJVcR1QmOTMZmohgLnf48zjZPxIfj-PjDfjV5cI4WGW3J_qNOq-MOyPvo-ubOgpLzvtFC4s43B2-n32nroKUu2ntymk0KnJgf_7A8K1-N9pFWb9ibLj35cM-bSsMUIOeyoLaeFDksTXCxFzzhOc8ZTosMpFpE4lcRxq9cTaQWWJZKCJhbcwHibYxOgr4LQnHca_BZuqioh5s7uyNDyerEx4MnKJQpm2mTshlvxaO3486VITnRaFs7W_oiwb8y9P9G7D5x62t_xkOb8Ot1osl243a3YENW96F6x5Naup7cL7dIAtqUhWkXs4LbSy15alHG5CJnuqS6DInownxmZ6OUbOaYcz-lrh0F1LqsupPHVSwobddznGoRUWmGh_RaubP30nuwSf34ehK1vwB9MqqtI-A4P6UaplkVuRCGNxaWOjw3xjvFwIHyQKIutVVpqU8d5U3vil_9c6laiSiUCLKS0SxAF6v-swawo9LW-84oa1aOrJu_6Caf1Wt7aswzTmGhaKIc4Pep5VRWBhWZBjaZTF6wAFsdSJX7Q5Sqwt9D-DF6jXavrvQ0aWtlr6NdPxyYRjAw0ZDVjPhggt0BbF3uqY7a1Ndf1OenXp-cckd6WIUwJtOyy6m9f-leHz5VzyHG2iv6tNofPAEbjJvA5KGYgt6qEn2Kbp2i-xZa0METq7abH8DV85gAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+of+surface-enhanced+Raman+and+IR+spectroscopies%3A+from+nano%2Fmicrostructures+to+macro-optical+design&rft.jtitle=Light%2C+science+%26+applications&rft.au=Hai-Long%2C+Wang&rft.au=En-Ming%2C+You&rft.au=Panneerselvam+Rajapandiyan&rft.au=Song-Yuan%2C+Ding&rft.date=2021-08-04&rft.pub=Springer+Nature+B.V&rft.eissn=2047-7538&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-021-00599-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon