Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-e...
Saved in:
Published in | Light, science & applications Vol. 10; no. 1; pp. 161 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.08.2021
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.
This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales. |
---|---|
AbstractList | Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies. Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies. This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales. Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle-nanoparticle and nanoparticle-substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies. This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales. Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and macro scales. |
ArticleNumber | 161 |
Author | Tian, Zhong-Qun You, En-Ming Panneerselvam, Rajapandiyan Ding, Song-Yuan Wang, Hai-Long |
Author_xml | – sequence: 1 givenname: Hai-Long surname: Wang fullname: Wang, Hai-Long email: wanghl@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 2 givenname: En-Ming surname: You fullname: You, En-Ming organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 3 givenname: Rajapandiyan orcidid: 0000-0002-3566-4558 surname: Panneerselvam fullname: Panneerselvam, Rajapandiyan organization: Department of Chemistry, SRM University- AP – sequence: 4 givenname: Song-Yuan orcidid: 0000-0002-1862-0713 surname: Ding fullname: Ding, Song-Yuan organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 5 givenname: Zhong-Qun orcidid: 0000-0002-9775-8189 surname: Tian fullname: Tian, Zhong-Qun email: zqtian@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34349103$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3TAQhU1JadI0f6CLYuimGzd62nIXhRD6uBAohHYtxtL4Rre25Ep2IP--cm7SJllEG4nROR9HmnldHPjgsSjeUvKREq5Ok6C8aSrCaEWIbNuKvSiOGBFN1UiuDh6cD4uTlHYkr1ZQoppXxSEXXLQZc1T8PrPX4A2mMvRlWmIPBiv0V2vNlpcwgi_B23JzWaYJzRxDMmFymD6VfQxj6cGH09GZXJ_jYuYlZtQcyhFyqQrT7AwMpcXktv5N8bKHIeHJ3X5c_Pr65ef59-rix7fN-dlFZaQgc4Wy7a1EI4zkwGtuecOA9J3owFBhgUJTK9aqrsb8RioQJW9rQMlkbZmp-XGx2XNtgJ2eohsh3ugATt8WQtxqiDnYgJo0lqtGil5aIwRFRUlvWN9RxTqpuMysz3vWtHQjWoN-jjA8gj6-8e5Kb8O1VpyrtqUZ8OEOEMOfBdOsR5cMDgN4DEvSTEolJKWEZOn7J9JdWKLPX7WqmgxrOc-qdw8T_Yty39MsUHvB2pQUsdfGzTC7sAZ0g6ZErxOk9xOk8wTp2wnSLFvZE-s9_VkT35tSFvstxv-xn3H9BUXE2LM |
CitedBy_id | crossref_primary_10_1007_s00604_022_05393_4 crossref_primary_10_1002_smll_202401674 crossref_primary_10_1002_adom_202302848 crossref_primary_10_3390_molecules29030661 crossref_primary_10_1002_chem_202400578 crossref_primary_10_1039_D3CP03958G crossref_primary_10_1109_OJNANO_2022_3233485 crossref_primary_10_1021_acs_jpcc_3c05445 crossref_primary_10_3390_bios13060631 crossref_primary_10_1016_j_nanoen_2022_107989 crossref_primary_10_1016_j_apsusc_2022_155217 crossref_primary_10_1002_adma_202312518 crossref_primary_10_1002_adfm_202405341 crossref_primary_10_1002_adom_202401259 crossref_primary_10_1088_1361_6528_acfe15 crossref_primary_10_1002_jrs_6628 crossref_primary_10_1016_j_jiec_2025_02_020 crossref_primary_10_3390_chemengineering8010015 crossref_primary_10_2351_7_0001027 crossref_primary_10_1016_j_electacta_2024_144689 crossref_primary_10_1063_5_0197236 crossref_primary_10_1039_D3TA03383J crossref_primary_10_1007_s12274_023_5525_1 crossref_primary_10_1039_D3NR01218B crossref_primary_10_1063_5_0196152 crossref_primary_10_1016_j_cej_2023_144161 crossref_primary_10_1515_nanoph_2023_0131 crossref_primary_10_1016_j_trac_2024_117784 crossref_primary_10_1021_acs_langmuir_2c03016 crossref_primary_10_1039_D4CS00588K crossref_primary_10_1016_j_cogsc_2022_100589 crossref_primary_10_1021_acs_jpca_2c05962 crossref_primary_10_1021_acs_chemrev_2c00078 crossref_primary_10_1021_jacs_2c11503 crossref_primary_10_1088_1361_6528_ac622e crossref_primary_10_1063_5_0077592 crossref_primary_10_1039_D2NH00023G crossref_primary_10_1109_MC_2022_3143087 crossref_primary_10_1039_D4SC02463J crossref_primary_10_1002_adfm_202307298 crossref_primary_10_1002_smll_202205924 crossref_primary_10_1016_j_jwpe_2025_107202 crossref_primary_10_1021_acs_langmuir_2c02254 crossref_primary_10_1021_acs_langmuir_3c01459 crossref_primary_10_1016_j_chemosphere_2022_136610 crossref_primary_10_1016_j_saa_2022_122129 crossref_primary_10_1364_OE_471884 crossref_primary_10_1038_s44310_024_00045_2 crossref_primary_10_1016_j_saa_2024_124867 crossref_primary_10_1021_acsphotonics_4c01657 crossref_primary_10_1109_ACCESS_2023_3269579 crossref_primary_10_1021_acsami_2c14829 crossref_primary_10_1016_j_seppur_2023_123209 crossref_primary_10_1002_smll_202206167 crossref_primary_10_1016_j_chempr_2024_10_025 crossref_primary_10_1021_acs_jpclett_3c00478 crossref_primary_10_1039_D4RA08733J crossref_primary_10_1002_admt_202101425 crossref_primary_10_1002_adma_202210807 crossref_primary_10_1016_j_jcis_2023_05_117 crossref_primary_10_1016_j_apsusc_2024_160003 crossref_primary_10_1002_adfm_202211154 crossref_primary_10_1016_j_biortech_2022_126831 crossref_primary_10_1039_D3CS00734K crossref_primary_10_1016_j_coelec_2023_101373 crossref_primary_10_1021_acs_chemrev_2c00914 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1016_j_trac_2023_117188 crossref_primary_10_1021_acsaom_4c00023 crossref_primary_10_3389_fbioe_2021_808933 crossref_primary_10_1021_acsanm_4c04712 crossref_primary_10_1021_jacs_4c03726 crossref_primary_10_1039_D4SC02853H crossref_primary_10_12677_mos_2024_133194 crossref_primary_10_1364_OE_462117 crossref_primary_10_1016_j_molliq_2023_123311 crossref_primary_10_1002_lpor_202200814 crossref_primary_10_1021_acs_jpcc_3c04275 crossref_primary_10_1002_admi_202101133 crossref_primary_10_1016_j_trac_2021_116481 crossref_primary_10_1021_acsnano_4c02670 crossref_primary_10_1038_s41377_022_00943_0 crossref_primary_10_1063_5_0174031 crossref_primary_10_1021_acsphotonics_4c00700 crossref_primary_10_1039_D4AY00348A crossref_primary_10_1002_andp_202400354 crossref_primary_10_1021_acsami_2c10800 crossref_primary_10_1021_acs_jpcc_3c03607 crossref_primary_10_1039_D2NH00276K crossref_primary_10_1063_5_0226248 crossref_primary_10_1021_acs_chemrev_3c00475 crossref_primary_10_1002_adom_202301948 crossref_primary_10_1002_ijch_202200007 crossref_primary_10_1039_D4TC02391A crossref_primary_10_1515_nanoph_2024_0463 crossref_primary_10_1088_2053_1591_ac90a3 crossref_primary_10_1021_acs_jpclett_4c00964 crossref_primary_10_1021_acs_jpcc_4c05853 crossref_primary_10_1016_j_colsurfb_2024_114366 crossref_primary_10_1039_D4CS00883A crossref_primary_10_1063_5_0180255 crossref_primary_10_1515_nanoph_2021_0620 crossref_primary_10_1038_s41377_024_01394_5 crossref_primary_10_1186_s43074_024_00119_6 crossref_primary_10_1364_JOSAB_538553 crossref_primary_10_1063_5_0222253 crossref_primary_10_3390_molecules30010015 crossref_primary_10_1016_j_bios_2022_114768 crossref_primary_10_1016_j_coelec_2024_101509 crossref_primary_10_1021_acs_nanolett_5c00280 crossref_primary_10_1007_s10008_023_05381_5 crossref_primary_10_1007_s12274_023_5934_1 crossref_primary_10_1038_s41377_021_00613_7 crossref_primary_10_1016_j_saa_2025_126092 crossref_primary_10_1021_acsphyschemau_2c00061 crossref_primary_10_1021_acsanm_1c04145 crossref_primary_10_1186_s43074_023_00098_0 crossref_primary_10_3390_chemosensors11030190 crossref_primary_10_1016_S1872_2067_22_64095_6 crossref_primary_10_3390_ma16052005 crossref_primary_10_1021_acsanm_4c04342 crossref_primary_10_1016_j_ccr_2024_216320 crossref_primary_10_1007_s44211_022_00168_6 crossref_primary_10_1016_j_measurement_2024_115329 crossref_primary_10_1039_D3CS01070H crossref_primary_10_1039_D4CE00835A crossref_primary_10_2139_ssrn_4174870 crossref_primary_10_3390_ijms25147675 crossref_primary_10_1021_acsaom_4c00061 crossref_primary_10_3390_photonics12030180 crossref_primary_10_29026_oea_2021_210076 crossref_primary_10_1002_cnma_202300584 crossref_primary_10_1021_acs_jpcb_2c08431 crossref_primary_10_1039_D2TA06050G crossref_primary_10_1038_s41377_022_00724_9 crossref_primary_10_3390_coatings13050844 crossref_primary_10_1007_s10570_024_06066_6 crossref_primary_10_1021_acsanm_5c00480 crossref_primary_10_1021_acsomega_4c01009 crossref_primary_10_3390_s22051997 |
Cites_doi | 10.1021/acs.nanolett.0c01199 10.1039/f29797500790 10.1021/nn800047e 10.1038/nnano.2016.241 10.1364/AO.19.004159 10.1038/ncomms6228 10.1038/s41566-019-0456-9 10.1039/D0TC00040J 10.1038/lsa.2017.172 10.1146/annurev.anchem.1.031207.112814 10.1021/jacs.7b10645 10.1038/ncomms2538 10.5796/electrochemistry.68.942 10.1117/1.JNP.9.093791 10.1021/jacs.9b04638 10.1039/c0cc04988c 10.1038/nature11653 10.1007/s13206-016-0406-2 10.1021/ac7017487 10.1021/acsnano.9b04224 10.1016/0009-2614(82)83457-X 10.1073/pnas.1016530108 10.1021/acs.chemrev.6b00743 10.1038/ncomms1490 10.1002/adom.201600223 10.1126/science.1198258 10.1007/BFb0048317 10.1039/D0SC00809E 10.1073/pnas.1920091117 10.1126/science.275.5303.1102 10.1038/nphoton.2013.373 10.1038/20154 10.1021/acs.chemrev.6b00343 10.1039/C7CS00238F 10.1021/ac981093u 10.1038/nphoton.2012.161 10.1103/PhysRevLett.45.201 10.1021/acs.nanolett.7b02736 10.1002/0470027320.s0101 10.1103/PhysRevB.83.115428 10.1039/c3nr02924g 10.1093/nsr/nwz180 10.1021/jacs.5b08143 10.1002/adom.202001081 10.1002/adma.200700678 10.1016/0009-2614(74)85388-1 10.1002/jrs.6006 10.1038/nnano.2011.79 10.1103/PhysRevLett.78.1667 10.1038/lsa.2017.96 10.1021/acs.chemrev.6b00596 10.1038/s41560-018-0292-z 10.1103/PhysRevB.78.155407 10.1021/acs.accounts.9b00545 10.1021/acs.nanolett.6b03958 10.1021/jp2107507 10.1038/nature12151 10.1063/1.3321313 10.1038/s41467-020-18016-4 10.1021/acsnano.5b05605 10.1039/C7AN01299C 10.1021/jacs.9b12803 10.1364/AO.24.001498 10.1002/9780470035641 10.1016/S0022-0728(77)80224-6 10.1063/1.464263 10.1038/natrevmats.2016.21 10.1021/jp209982h 10.1088/0957-4484/25/23/235301 10.1016/S0030-4018(00)00894-4 10.1063/1.126546 10.1002/jrs.6030 10.1002/anie.200702072 10.1126/science.aab2051 10.1146/annurev.physchem.58.032806.104607 10.1021/ph400147y 10.1016/S0009-2614(99)01451-7 10.1021/nn403444j 10.1038/s41598-017-15111-3 10.1063/1.3378682 10.1021/jz302018x 10.1038/s41586-019-1059-9 10.1021/j100177a056 10.1021/acs.accounts.6b00409 10.1038/nature08907 10.1021/nn500903v 10.1021/nl300351j 10.1038/ncomms1211 10.1038/s41563-019-0356-x 10.1126/science.aah5243 10.1063/5.0009766 10.1021/nn1031406 10.1016/0167-5729(88)90011-8 10.1063/1.437095 10.1246/bcsj.70.2861 10.1016/0924-2031(93)87021-K 10.1021/ac103273r 10.1021/ja2074533 10.1021/ja00457a071 10.1103/PhysRevLett.83.4357 10.1021/jz200498z 10.1063/1.440560 10.1021/jacs.5b04670 10.1002/anie.202010431 10.1039/C7FD00144D 10.1021/acs.nanolett.6b01405 10.1038/nmat2596 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-021-00599-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_07d38754f5dc441e810fc2fb182b5835 PMC8338991 34349103 10_1038_s41377_021_00599_2 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-e59fd5ec4c53a363d372a0fb4bac14da1a768298b6e20414ee5396ae5256d2c63 |
IEDL.DBID | 7X7 |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:15:22 EDT 2025 Thu Aug 21 18:45:56 EDT 2025 Fri Jul 11 09:17:11 EDT 2025 Wed Aug 13 05:15:50 EDT 2025 Mon Jul 21 05:24:56 EDT 2025 Thu Apr 24 23:04:28 EDT 2025 Tue Jul 01 03:45:16 EDT 2025 Fri Feb 21 02:38:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-e59fd5ec4c53a363d372a0fb4bac14da1a768298b6e20414ee5396ae5256d2c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3566-4558 0000-0002-1862-0713 0000-0002-9775-8189 |
OpenAccessLink | https://www.proquest.com/docview/2557913933?pq-origsite=%requestingapplication% |
PMID | 34349103 |
PQID | 2557913933 |
PQPubID | 2041947 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07d38754f5dc441e810fc2fb182b5835 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8338991 proquest_miscellaneous_2558451100 proquest_journals_2557913933 pubmed_primary_34349103 crossref_citationtrail_10_1038_s41377_021_00599_2 crossref_primary_10_1038_s41377_021_00599_2 springer_journals_10_1038_s41377_021_00599_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-04 |
PublicationDateYYYYMMDD | 2021-08-04 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | LiJFCore-shell nanoparticle-enhanced Raman spectroscopyChem. Rev.20171175002506910.1021/acs.chemrev.6b00596 WeiHXuHXHot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopyNanoscale2013510794108052013Nanos...510794W10.1039/c3nr02924g HayazawaNMetallized tip amplification of near-field Raman scatteringOpt. Commun.20001833333362000OptCo.183..333H10.1016/S0030-4018(00)00894-4 KerkerMWangDSChewHSurface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errataAppl. Opt.198019415941741980ApOpt..19.4159K10.1364/AO.19.004159 LiuYNote: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scatteringRev. Sci. Instrum.2010810361052010RScI...81c6105L10.1063/1.3321313 Zhao, K. H. & Zhong, X. H. Optics. Ch 1. (Peking University Press, China, 1984). FleischmannMHendraPJMcQuillanAJRaman spectra of pyridine adsorbed at a silver electrodeChem. Phys. Lett.1974261631661974CPL....26..163F10.1016/0009-2614(74)85388-1 LiJFExtraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticlesJ. Am. Chem. Soc.2011133159221592510.1021/ja2074533 ZhongYJReview of mid-infrared plasmonic materialsJ. Nanophotonics201590937912015JNano...9.3791Z10.1117/1.JNP.9.093791 MoskovitsMSurface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metalsJ. Chem. Phys.197869415941611978JChPh..69.4159M10.1063/1.437095 McMahonJMGraySKSchatzGCFundamental behavior of electric field enhancements in the gaps between closely spaced nanostructuresPhys. Rev. B2011831154282011PhRvB..83k5428M10.1103/PhysRevB.83.115428 DingSYElectromagnetic theories of surface-enhanced Raman spectroscopyChem. Soc. Rev.2017464042407610.1039/C7CS00238F JiangDAg films annealed in a nanoscale limited area for surface-enhanced Raman scattering detectionNanotechnology2014252353012014Nanot..25w5301J10.1088/0957-4484/25/23/235301 LiCYIn situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopyJ. Am. Chem. Soc.20151377648765110.1021/jacs.5b04670 CreightonJABlatchfordCGAlbrechtMGPlasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelengthJ. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.19797579079810.1039/f29797500790 HuangSCProbing nanoscale spatial distribution of plasmonically excited hot carriersNat. Commun.2020112020NatCo..11.4211H10.1038/s41467-020-18016-4 OsawaMDynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)Bull. Chem. Soc. Jpn.1997702861288010.1246/bcsj.70.2861 JinMZLuFBelkinMAHigh-sensitivity infrared vibrational nanospectroscopy in waterLight.: Sci. Appl.20176e170962017LSA.....6E7096J10.1038/lsa.2017.96 LuFJinMZBelkinMATip-enhanced infrared nanospectroscopy via molecular expansion force detectionNat. Photonics201483073122014NaPho...8..307L10.1038/nphoton.2013.373 DongJCDirect in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfacesJ. Am. Chem. Soc.202014271571910.1021/jacs.9b12803 NishikawaYSilver island films for surface-enhanced infrared-absorption spectroscopy–effect of island morphology on the absorption enhancementVib. Spectrosc.19936435310.1016/0924-2031(93)87021-K Aroca, R. Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, Ltd, Hoboken, 2006). ZhongJHProbing the electronic and catalytic properties of a bimetallic surface with 3 nm resolutionNat. Nanotechnol.2017121321362017NatNa..12..132Z10.1038/nnano.2016.241 WangHLIntegrated plasmon-enhanced Raman scattering (iPERS) spectroscopySci. Rep.201772017NatSR...714630W10.1038/s41598-017-15111-3 LiNNDirectional control of light with nanoantennasAdv. Optical Mater.20219200108110.1002/adom.202001081 PettingerBSurface enhanced Raman spectroscopy: towards single molecule spectroscopyElectrochemistry20006894294910.5796/electrochemistry.68.942 MeyerSALeRuECEtchegoinPGCombining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS)Anal. Chem.2011832337234410.1021/ac103273r OhYJEngineering hot spots on plasmonic nanopillar arrays for SERS: a reviewBioChip J.20161029730910.1007/s13206-016-0406-2 HuangCGain, detuning, and radiation patterns of nanoparticle optical antennasPhys. Rev. B2008781554072008PhRvB..78o5407H10.1103/PhysRevB.78.155407 Pérez-JiménezAISurface-enhanced Raman spectroscopy: benefits, trade-offs and future developmentsChem. Sci.2020114563457710.1039/D0SC00809E LiJFIn situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applicationsACS Nano20137894089522013Nanos...5.8940L10.1021/nn403444j Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Berlin Heidelberg: Springer-Verlag, 1988). SonntagMDSingle-molecule tip-enhanced Raman spectroscopyJ. Phys. Chem. C.201211647848310.1021/jp209982h RodrigoDMid-infrared plasmonic biosensing with grapheneScience20153491651682015Sci...349..165R10.1126/science.aab2051 FrontieraRRSurface-enhanced femtosecond stimulated Raman spectroscopyJ. Phys. Chem. Lett.201121199120310.1021/jz200498z HuckCSurface-enhanced infrared spectroscopy using nanometer-sized gapsACS Nano201484908491410.1021/nn500903v LeeJVisualizing vibrational normal modes of a single molecule with atomically confined lightNature201956878822019Natur.568...78L10.1038/s41586-019-1059-9 ShegaiTAngular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregatesACS Nano201152036204110.1021/nn1031406 XueXKPractically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodesAnal. Chem.20088016617110.1021/ac7017487 DodsonSOptimizing electromagnetic hotspots in plasmonic bowtie nanoantennaeJ. Phys. Chem. Lett.2013449650110.1021/jz302018x DongJCShell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfacesAdv. Optical Mater.201641144115810.1002/adom.201600223 LaiHSMetal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering – a reviewJ. Mater. Chem. C.202082952296310.1039/D0TC00040J MasseyGASubwavelength resolution far-infrared microscopyAppl. Opt.198524149815011985ApOpt..24.1498M10.1364/AO.24.001498 KimJSingle-particle analysis on plasmonic nanogap systems for quantitative SERSJ. Raman Spectrosc.2021523753852021JRSp...52..375K10.1002/jrs.6030 JiangNNanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616389839042016NanoL..16.3898J10.1021/acs.nanolett.6b01405 LimDKHighly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gapNat. Nanotechnol.201164524602011NatNa...6..452L10.1038/nnano.2011.79 KampMCascaded nanooptics to probe microsecond atomic-scale phenomenaProc. Natl Acad. Sci. USA2020117148191482610.1073/pnas.1920091117 FuYHDirectional visible light scattering by silicon nanoparticlesNat. Commun.201342013NatCo...4.1527F10.1038/ncomms2538 NeubrechFSurface-enhanced infrared spectroscopy using resonant nanoantennasChem. Rev.20171175110514510.1021/acs.chemrev.6b00743 YouEMAttenuated total reflection-cascading nanostructure-enhanced Raman spectroscopy on flat surfaces: a nano-optical designJ. Raman Spectrosc.2021524464572021JRSp...52..446Y10.1002/jrs.6006 BenzFSingle-molecule optomechanics in “picocavities”Science20163547267292016Sci...354..726B10.1126/science.aah5243 McKeeKJSmithEADevelopment of a scanning angle total internal reflection Raman spectrometerRev. Sci. Instrum.2010810431062010RScI...81d3106M10.1063/1.3378682 XuHSpectroscopy of single hemoglobin molecules by surface enhanced Raman scatteringPhys. Rev. Lett.199983435743601999PhRvL..83.4357X10.1103/PhysRevLett.83.4357 ZhangYVisually constructing the chemical structure of a single molecule by scanning Raman picoscopyNatl Sci. Rev.201961169117510.1093/nsr/nwz180 OsawaMIkedaMSurface-enhanced infrared absorption of P-Nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanismsJ. Phys. Chem.1991959914991910.1021/j100177a056 LiCYIn situ probing electrified interfacial water structures at atomically flat surfacesNat. Mater.2019186977012019NatMa..18..697L10.1038/s41563-019-0356-x ChabalYJSurface infrared spectroscopySurf. Sci. Rep.198882113571988SurSR...8..211C10.1016/0167-5729(88)90011-8 ChiangNConformational contrast of surface-mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616777477782016NanoL..16.7774C10.1021/acs.nanolett.6b03958 LiuYLocalized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitationChem. Commun.2011473784378610.1039/c0cc04988c MurrayWABarnesWLPlasmonic materialsAdv. Mater.2007193771378210.1002/adma.200700678 SavageKJRevealing the quantum regime in tunnelling plasmonicsNature20124915745772012Natur.491..574S10.1038/nature11653 ZengZCElectrochemical tip-enhanced Raman spectroscopyJ. Am. Chem. Soc.2015137119281193110.1021/jacs.5b08143 HartsteinAKirtleyJRTsangJCEnhancement of the infrared absorption from molecular monolayers with thin metal overlayersPhys. Rev. Lett.1980452012041980PhRvL..45..201H10.1103/PhysRevLett.45.201 AutoreMBoron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limitLight. Sci. Appl.201871717210.1038/lsa.2017.172 DongLNanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopyNano Lett.201717576857742017NanoL..17.5768D10.1021/acs.nanolett.7b02736 KneippKSingle molecule detection using surface-enhanced Raman scattering (SERS)Phys. Rev. Lett.199778166716701997PhRvL..78.1667K10.1103/PhysRevLett.78.1667 StöckleRMNanoscale chemical analysis F Benz (599_CR79) 2016; 354 PL Stiles (599_CR48) 2008; 1 JF Li (599_CR67) 2011; 133 CKA Nyamekye (599_CR99) 2018; 143 Y Zhang (599_CR108) 2019; 6 ZC Zeng (599_CR105) 2015; 137 MZ Jin (599_CR110) 2017; 6 JA Creighton (599_CR7) 1979; 75 WA Murray (599_CR47) 2007; 19 S Kim (599_CR107) 2019; 13 JC Dong (599_CR71) 2016; 4 M Moskovits (599_CR6) 1978; 69 S Mubeen (599_CR89) 2012; 12 M Kerker (599_CR43) 1980; 19 T Shegai (599_CR94) 2011; 2 HM Wang (599_CR111) 2020; 20 M Osawa (599_CR11) 1997; 70 KJ McKee (599_CR98) 2010; 81 B Pettinger (599_CR30) 2000; 68 R Roberto (599_CR44) 1993; 98 MD Sonntag (599_CR55) 2012; 116 J Gersten (599_CR45) 1980; 73 KA Willets (599_CR46) 2007; 58 DK Lim (599_CR58) 2010; 9 A Boltasseva (599_CR49) 2011; 331 JC Dong (599_CR76) 2019; 4 599_CR1 H Wang (599_CR64) 2007; 46 SY Ding (599_CR18) 2017; 46 JF Li (599_CR21) 2017; 117 HS Lai (599_CR20) 2020; 8 J Langer (599_CR25) 2020; 14 JC Dong (599_CR73) 2020; 142 EA Pozzi (599_CR82) 2017; 117 DL Jeanmaire (599_CR5) 1977; 84 H Zhang (599_CR22) 2020; 53 J Lee (599_CR80) 2019; 568 DV Murphy (599_CR32) 1982; 85 Y Liu (599_CR100) 2010; 81 M Autore (599_CR39) 2018; 7 N Jiang (599_CR85) 2016; 16 XK Xue (599_CR101) 2008; 80 R Stanley (599_CR50) 2012; 6 DK Lim (599_CR66) 2011; 6 T Shegai (599_CR91) 2011; 5 MG Albrecht (599_CR4) 1977; 99 M Osawa (599_CR10) 1991; 95 N Bodappa (599_CR72) 2019; 141 A Hartstein (599_CR8) 1980; 45 599_CR34 Y Liu (599_CR52) 2011; 47 R Zhang (599_CR77) 2013; 498 SA Meyer (599_CR96) 2011; 83 F Lu (599_CR78) 2014; 8 AI Pérez-Jiménez (599_CR26) 2020; 11 MS Anderson (599_CR27) 2000; 76 WQ Zhu (599_CR86) 2014; 5 CY Li (599_CR70) 2015; 137 NN Li (599_CR93) 2021; 9 ZB Wang (599_CR109) 2011; 2 H Wei (599_CR59) 2013; 5 N Chiang (599_CR83) 2017; 139 S Dodson (599_CR60) 2013; 4 599_CR42 N Hayazawa (599_CR28) 2000; 183 FJ García de Abajo (599_CR36) 2014; 1 M Kamp (599_CR104) 2020; 117 EM You (599_CR53) 2021; 52 L Dong (599_CR62) 2017; 17 C Huck (599_CR56) 2014; 8 CY Li (599_CR74) 2019; 18 K Kneipp (599_CR14) 1997; 78 S Chen (599_CR68) 2016; 10 H Xu (599_CR16) 1999; 83 B Knoll (599_CR41) 1999; 399 C Huang (599_CR90) 2008; 78 SY Ding (599_CR88) 2017; 205 599_CR51 Y Nishikawa (599_CR13) 1993; 6 YJ Chabal (599_CR2) 1988; 8 GA Massey (599_CR40) 1985; 24 599_CR9 YH Fu (599_CR92) 2013; 4 YJ Zhong (599_CR38) 2015; 9 RR Frontiera (599_CR33) 2011; 2 AE Bjerke (599_CR12) 1999; 71 M Fleischmann (599_CR3) 1974; 26 SM Nie (599_CR15) 1997; 275 JF Li (599_CR69) 2013; 7 F Le (599_CR65) 2008; 2 D Jiang (599_CR23) 2014; 25 D Rodrigo (599_CR37) 2015; 349 YJ Oh (599_CR24) 2016; 10 F Neubrech (599_CR35) 2017; 117 RA Alvarez-Puebla (599_CR63) 2011; 108 S Mahapatra (599_CR81) 2020; 153 JH Zhong (599_CR54) 2017; 12 SA Meyer (599_CR97) 2012; 116 J Kim (599_CR57) 2021; 52 SY Ding (599_CR17) 2016; 1 N Chiang (599_CR84) 2016; 16 JF Li (599_CR31) 2010; 464 JM McMahon (599_CR61) 2011; 83 SC Huang (599_CR106) 2020; 11 M Su (599_CR75) 2020; 59 599_CR103 599_CR102 KJ Savage (599_CR87) 2012; 491 JM Nam (599_CR19) 2016; 49 RM Stöckle (599_CR29) 2000; 318 HL Wang (599_CR95) 2017; 7 |
References_xml | – reference: HayazawaNMetallized tip amplification of near-field Raman scatteringOpt. Commun.20001833333362000OptCo.183..333H10.1016/S0030-4018(00)00894-4 – reference: HuckCSurface-enhanced infrared spectroscopy using nanometer-sized gapsACS Nano201484908491410.1021/nn500903v – reference: StilesPLSurface-enhanced Raman spectroscopyAnnu. Rev. Anal. Chem.2008160162610.1146/annurev.anchem.1.031207.112814 – reference: LiCYIn situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopyJ. Am. Chem. Soc.20151377648765110.1021/jacs.5b04670 – reference: LiJFCore-shell nanoparticle-enhanced Raman spectroscopyChem. Rev.20171175002506910.1021/acs.chemrev.6b00596 – reference: NieSMEmorySRProbing Single molecules and single nanoparticles by surface-enhanced Raman scatteringScience19972751102110610.1126/science.275.5303.1102 – reference: MurrayWABarnesWLPlasmonic materialsAdv. Mater.2007193771378210.1002/adma.200700678 – reference: LeFMetallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorptionACS Nano2008270771810.1021/nn800047e – reference: LiCYIn situ probing electrified interfacial water structures at atomically flat surfacesNat. Mater.2019186977012019NatMa..18..697L10.1038/s41563-019-0356-x – reference: Galabov, B. S. D. T. Vibrational Spectra and Structure (eds Boris, S. G. & Todor, D., Elsevier, 1996). – reference: ChabalYJSurface infrared spectroscopySurf. Sci. Rep.198882113571988SurSR...8..211C10.1016/0167-5729(88)90011-8 – reference: LuFJinMZBelkinMATip-enhanced infrared nanospectroscopy via molecular expansion force detectionNat. Photonics201483073122014NaPho...8..307L10.1038/nphoton.2013.373 – reference: LiuYNote: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scatteringRev. Sci. Instrum.2010810361052010RScI...81c6105L10.1063/1.3321313 – reference: FleischmannMHendraPJMcQuillanAJRaman spectra of pyridine adsorbed at a silver electrodeChem. Phys. Lett.1974261631661974CPL....26..163F10.1016/0009-2614(74)85388-1 – reference: XuHSpectroscopy of single hemoglobin molecules by surface enhanced Raman scatteringPhys. Rev. Lett.199983435743601999PhRvL..83.4357X10.1103/PhysRevLett.83.4357 – reference: LiJFExtraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticlesJ. Am. Chem. Soc.2011133159221592510.1021/ja2074533 – reference: FuYHDirectional visible light scattering by silicon nanoparticlesNat. Commun.201342013NatCo...4.1527F10.1038/ncomms2538 – reference: MurphyDVSurface-enhanced hyper-raman scattering from SO32− adsorbed on Ag powderChem. Phys. Lett.19828543471982CPL....85...43M10.1016/0009-2614(82)83457-X – reference: FrontieraRRSurface-enhanced femtosecond stimulated Raman spectroscopyJ. Phys. Chem. Lett.201121199120310.1021/jz200498z – reference: AndersonMSLocally enhanced Raman spectroscopy with an atomic force microscopeAppl. Phys. Lett.200076313031322000ApPhL..76.3130A10.1063/1.126546 – reference: HartsteinAKirtleyJRTsangJCEnhancement of the infrared absorption from molecular monolayers with thin metal overlayersPhys. Rev. Lett.1980452012041980PhRvL..45..201H10.1103/PhysRevLett.45.201 – reference: DodsonSOptimizing electromagnetic hotspots in plasmonic bowtie nanoantennaeJ. Phys. Chem. Lett.2013449650110.1021/jz302018x – reference: GerstenJNitzanAElectromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfacesJ. Chem. Phys.198073302330371980JChPh..73.3023G10.1063/1.440560 – reference: WilletsKAVan DuyneRPLocalized surface plasmon resonance spectroscopy and sensingAnnu. Rev. Phys. Chem.2007582672972007ARPC...58..267W10.1146/annurev.physchem.58.032806.104607 – reference: DongJCShell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfacesAdv. Optical Mater.201641144115810.1002/adom.201600223 – reference: RobertoRClaroFTheory of surface enhanced Raman scattering in colloidsJ. Chem. Phys.19939899810061993JChPh..98..998R10.1063/1.464263 – reference: MeyerSALeRuECEtchegoinPGCombining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS)Anal. Chem.2011832337234410.1021/ac103273r – reference: SonntagMDSingle-molecule tip-enhanced Raman spectroscopyJ. Phys. Chem. C.201211647848310.1021/jp209982h – reference: MasseyGASubwavelength resolution far-infrared microscopyAppl. Opt.198524149815011985ApOpt..24.1498M10.1364/AO.24.001498 – reference: LangerJPresent and future of surface-enhanced Raman scatteringACS Nano2020142811710.1021/acsnano.9b04224 – reference: LiuYLocalized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitationChem. Commun.2011473784378610.1039/c0cc04988c – reference: KimJSingle-particle analysis on plasmonic nanogap systems for quantitative SERSJ. Raman Spectrosc.2021523753852021JRSp...52..375K10.1002/jrs.6030 – reference: ChiangNConformational contrast of surface-mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616777477782016NanoL..16.7774C10.1021/acs.nanolett.6b03958 – reference: ZengZCElectrochemical tip-enhanced Raman spectroscopyJ. Am. Chem. Soc.2015137119281193110.1021/jacs.5b08143 – reference: ChiangNProbing intermolecular vibrational symmetry breaking in self-assembled monolayers with ultrahigh vacuum tip-enhanced Raman spectroscopyJ. Am. Chem. Soc.2017139186641866910.1021/jacs.7b10645 – reference: JeanmaireDLVan DuyneRPSurface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrodeJ. Electroanal. Chem. Interfacial Electrochem.19778412010.1016/S0022-0728(77)80224-6 – reference: MoskovitsMSurface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metalsJ. Chem. Phys.197869415941611978JChPh..69.4159M10.1063/1.437095 – reference: AlbrechtMGCreightonJAAnomalously intense Raman spectra of pyridine at a silver electrodeJ. Am. Chem. Soc.1977995215521710.1021/ja00457a071 – reference: MubeenSPlasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxideNano Lett.201212208820942012NanoL..12.2088M10.1021/nl300351j – reference: ShegaiTA bimetallic nanoantenna for directional colour routingNat. Commun.201122011NatCo...2..481S10.1038/ncomms1490 – reference: WangHLIntegrated plasmon-enhanced Raman scattering (iPERS) spectroscopySci. Rep.201772017NatSR...714630W10.1038/s41598-017-15111-3 – reference: McKeeKJSmithEADevelopment of a scanning angle total internal reflection Raman spectrometerRev. Sci. Instrum.2010810431062010RScI...81d3106M10.1063/1.3378682 – reference: OhYJEngineering hot spots on plasmonic nanopillar arrays for SERS: a reviewBioChip J.20161029730910.1007/s13206-016-0406-2 – reference: MahapatraSTip-enhanced Raman spectroscopy: chemical analysis with nanoscale to angstrom scale resolutionJ. Chem. Phys.202015301090210.1063/5.0009766 – reference: Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Berlin Heidelberg: Springer-Verlag, 1988). – reference: Aroca, R. Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, Ltd, Hoboken, 2006). – reference: LimDKHighly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gapNat. Nanotechnol.201164524602011NatNa...6..452L10.1038/nnano.2011.79 – reference: DongJCDirect in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfacesJ. Am. Chem. Soc.202014271571910.1021/jacs.9b12803 – reference: NeubrechFSurface-enhanced infrared spectroscopy using resonant nanoantennasChem. Rev.20171175110514510.1021/acs.chemrev.6b00743 – reference: KerkerMWangDSChewHSurface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errataAppl. Opt.198019415941741980ApOpt..19.4159K10.1364/AO.19.004159 – reference: DongLNanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopyNano Lett.201717576857742017NanoL..17.5768D10.1021/acs.nanolett.7b02736 – reference: ShegaiTAngular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregatesACS Nano201152036204110.1021/nn1031406 – reference: DingSYElectromagnetic theories of surface-enhanced Raman spectroscopyChem. Soc. Rev.2017464042407610.1039/C7CS00238F – reference: Sheppard, N. The historical development of experimental techniques in vibrational spectroscopy. in Handbook of Vibrational Spectroscopy (eds Chalmers, J. M. & Griffiths, P.R., 2006). – reference: KampMCascaded nanooptics to probe microsecond atomic-scale phenomenaProc. Natl Acad. Sci. USA2020117148191482610.1073/pnas.1920091117 – reference: McMahonJMGraySKSchatzGCFundamental behavior of electric field enhancements in the gaps between closely spaced nanostructuresPhys. Rev. B2011831154282011PhRvB..83k5428M10.1103/PhysRevB.83.115428 – reference: JiangDAg films annealed in a nanoscale limited area for surface-enhanced Raman scattering detectionNanotechnology2014252353012014Nanot..25w5301J10.1088/0957-4484/25/23/235301 – reference: DongJCIn situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfacesNat. Energy2019460672019NatEn...4...60D10.1038/s41560-018-0292-z – reference: PozziEAUltrahigh-vacuum Tip-enhanced Raman spectroscopyChem. Rev.20171174961498210.1021/acs.chemrev.6b00343 – reference: NishikawaYSilver island films for surface-enhanced infrared-absorption spectroscopy–effect of island morphology on the absorption enhancementVib. Spectrosc.19936435310.1016/0924-2031(93)87021-K – reference: JiangNNanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopyNano Lett.201616389839042016NanoL..16.3898J10.1021/acs.nanolett.6b01405 – reference: LaiHSMetal–organic frameworks: opportunities and challenges for surface-enhanced Raman scattering – a reviewJ. Mater. Chem. C.202082952296310.1039/D0TC00040J – reference: ZhongYJReview of mid-infrared plasmonic materialsJ. Nanophotonics201590937912015JNano...9.3791Z10.1117/1.JNP.9.093791 – reference: ChenSHow to light special hot spots in multiparticle-film configurationsACS Nano20161058158710.1021/acsnano.5b05605 – reference: LimDKNanogap-engineerable Raman-active nanodumbbells for single-molecule detectionNat. Mater.2010960672010NatMa...9...60L10.1038/nmat2596 – reference: DingSYFurther expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticleFaraday Discuss.20172054574682017FaDi..205..457D10.1039/C7FD00144D – reference: RodrigoDMid-infrared plasmonic biosensing with grapheneScience20153491651682015Sci...349..165R10.1126/science.aab2051 – reference: NyamekyeCKACombined measurement of directional Raman scattering and surface-plasmon-polariton cone from adsorbates on smooth planar gold surfacesAnalyst20181434004082018Ana...143..400N10.1039/C7AN01299C – reference: StöckleRMNanoscale chemical analysis by tip-enhanced Raman spectroscopyChem. Phys. Lett.20003181311362000CPL...318..131S10.1016/S0009-2614(99)01451-7 – reference: YouEMAttenuated total reflection-cascading nanostructure-enhanced Raman spectroscopy on flat surfaces: a nano-optical designJ. Raman Spectrosc.2021524464572021JRSp...52..446Y10.1002/jrs.6006 – reference: García de AbajoFJGraphene plasmonics: challenges and opportunitiesACS Photonics2014113515210.1021/ph400147y – reference: XueXKPractically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodesAnal. Chem.20088016617110.1021/ac7017487 – reference: KimSHigh external-efficiency nanofocusing for lens-free near-field optical nanoscopyNat. Photonics2019136366432019NaPho..13..636K10.1038/s41566-019-0456-9 – reference: JinMZLuFBelkinMAHigh-sensitivity infrared vibrational nanospectroscopy in waterLight.: Sci. Appl.20176e170962017LSA.....6E7096J10.1038/lsa.2017.96 – reference: LiJFShell-isolated nanoparticle-enhanced Raman spectroscopyNature20104643923952010Natur.464..392L10.1038/nature08907 – reference: LiJFIn situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applicationsACS Nano20137894089522013Nanos...5.8940L10.1021/nn403444j – reference: DingSYNanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materialsNat. Rev. Mater.20161160212016NatRM...116021D10.1038/natrevmats.2016.21 – reference: AutoreMBoron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limitLight. Sci. Appl.201871717210.1038/lsa.2017.172 – reference: SuMIn situ Raman study of CO electrooxidation on Pt(hkl) single-crystal surfaces in acidic solutionAngew. Chem. Int. Ed.202059235542355810.1002/anie.202010431 – reference: LiNNDirectional control of light with nanoantennasAdv. Optical Mater.20219200108110.1002/adom.202001081 – reference: ZhongJHProbing the electronic and catalytic properties of a bimetallic surface with 3 nm resolutionNat. Nanotechnol.2017121321362017NatNa..12..132Z10.1038/nnano.2016.241 – reference: WangHKunduJHalasNJPlasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrateAngew. Chem. Int. Ed.2007469040904410.1002/anie.200702072 – reference: HuangCGain, detuning, and radiation patterns of nanoparticle optical antennasPhys. Rev. B2008781554072008PhRvB..78o5407H10.1103/PhysRevB.78.155407 – reference: WangZBOptical virtual imaging at 50 nm lateral resolution with a white-light nanoscopeNat. Commun.201122011NatCo...2..218W10.1038/ncomms1211 – reference: CreightonJABlatchfordCGAlbrechtMGPlasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelengthJ. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.19797579079810.1039/f29797500790 – reference: KneippKSingle molecule detection using surface-enhanced Raman scattering (SERS)Phys. Rev. Lett.199778166716701997PhRvL..78.1667K10.1103/PhysRevLett.78.1667 – reference: LeeJVisualizing vibrational normal modes of a single molecule with atomically confined lightNature201956878822019Natur.568...78L10.1038/s41586-019-1059-9 – reference: WangHMProbing mid-infrared phonon polaritons in the aqueous PhaseNano Lett.202020398639912020NanoL..20.3986W10.1021/acs.nanolett.0c01199 – reference: BenzFSingle-molecule optomechanics in “picocavities”Science20163547267292016Sci...354..726B10.1126/science.aah5243 – reference: HuangSCProbing nanoscale spatial distribution of plasmonically excited hot carriersNat. Commun.2020112020NatCo..11.4211H10.1038/s41467-020-18016-4 – reference: OsawaMDynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)Bull. Chem. Soc. Jpn.1997702861288010.1246/bcsj.70.2861 – reference: KnollBKeilmannFNear-field probing of vibrational absorption for chemical microscopyNature19993991341371999Natur.399..134K10.1038/20154 – reference: MeyerSACombined SPR and SERS microscopy in the Kretschmann configurationJ. Phys. Chem. A20121161000100710.1021/jp2107507 – reference: Osawa, M. Surface-enhanced infrared absorption. in Near-Field Optics and Surface Plasmon Polaritons (ed Kawata, S., Springer, Berlin, Heidelberg, 2001). – reference: OsawaMIkedaMSurface-enhanced infrared absorption of P-Nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanismsJ. Phys. Chem.1991959914991910.1021/j100177a056 – reference: WeiHXuHXHot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopyNanoscale2013510794108052013Nanos...510794W10.1039/c3nr02924g – reference: BjerkeAEGriffithsPRTheissWSurface-enhanced infrared absorption of CO on platinized platinumAnal. Chem.1999711967197410.1021/ac981093u – reference: ZhuWQCrozierKBQuantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scatteringNat. Commun.201452014NatCo...5.5228Z10.1038/ncomms6228 – reference: Pérez-JiménezAISurface-enhanced Raman spectroscopy: benefits, trade-offs and future developmentsChem. Sci.2020114563457710.1039/D0SC00809E – reference: Alvarez-PueblaRAGold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prionsProc. Natl Acad. Sci. USA2011108815781612011PNAS..108.8157A10.1073/pnas.1016530108 – reference: ZhangRChemical mapping of a single molecule by plasmon-enhanced Raman scatteringNature201349882862013Natur.498...82Z10.1038/nature12151 – reference: Xu, W. Q. et al. A device for integrated plasmon-enhanced Raman with adjustable excitation angle (in Chinese), China Patent CN206270249U (2017). – reference: Zhao, K. H. & Zhong, X. H. Optics. Ch 1. (Peking University Press, China, 1984). – reference: ZhangHCore-shell nanostructure-enhanced Raman spectroscopy for surface catalysisAcc. Chem. Res.20205372973910.1021/acs.accounts.9b00545 – reference: StanleyRPlasmonics in the mid-infraredNat. Photonics201264094112012NaPho...6..409S10.1038/nphoton.2012.161 – reference: BoltassevaAAtwaterHALow-loss plasmonic metamaterialsScience20113312902912011Sci...331..290B10.1126/science.1198258 – reference: BodappaNEarly stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopyJ. Am. Chem. Soc.2019141121921219610.1021/jacs.9b04638 – reference: ZhangYVisually constructing the chemical structure of a single molecule by scanning Raman picoscopyNatl Sci. Rev.201961169117510.1093/nsr/nwz180 – reference: PettingerBSurface enhanced Raman spectroscopy: towards single molecule spectroscopyElectrochemistry20006894294910.5796/electrochemistry.68.942 – reference: NamJMPlasmonic nanogap-enhanced Raman scattering with nanoparticlesAcc. Chem. Res.2016492746275510.1021/acs.accounts.6b00409 – reference: SavageKJRevealing the quantum regime in tunnelling plasmonicsNature20124915745772012Natur.491..574S10.1038/nature11653 – volume: 20 start-page: 3986 year: 2020 ident: 599_CR111 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01199 – volume: 75 start-page: 790 year: 1979 ident: 599_CR7 publication-title: J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys. doi: 10.1039/f29797500790 – volume: 2 start-page: 707 year: 2008 ident: 599_CR65 publication-title: ACS Nano doi: 10.1021/nn800047e – volume: 12 start-page: 132 year: 2017 ident: 599_CR54 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.241 – volume: 19 start-page: 4159 year: 1980 ident: 599_CR43 publication-title: Appl. Opt. doi: 10.1364/AO.19.004159 – volume: 5 year: 2014 ident: 599_CR86 publication-title: Nat. Commun. doi: 10.1038/ncomms6228 – volume: 13 start-page: 636 year: 2019 ident: 599_CR107 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0456-9 – volume: 8 start-page: 2952 year: 2020 ident: 599_CR20 publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC00040J – volume: 7 start-page: 17172 year: 2018 ident: 599_CR39 publication-title: Light. Sci. Appl. doi: 10.1038/lsa.2017.172 – volume: 1 start-page: 601 year: 2008 ident: 599_CR48 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.1.031207.112814 – volume: 139 start-page: 18664 year: 2017 ident: 599_CR83 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10645 – volume: 4 year: 2013 ident: 599_CR92 publication-title: Nat. Commun. doi: 10.1038/ncomms2538 – volume: 68 start-page: 942 year: 2000 ident: 599_CR30 publication-title: Electrochemistry doi: 10.5796/electrochemistry.68.942 – volume: 9 start-page: 093791 year: 2015 ident: 599_CR38 publication-title: J. Nanophotonics doi: 10.1117/1.JNP.9.093791 – volume: 141 start-page: 12192 year: 2019 ident: 599_CR72 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04638 – volume: 47 start-page: 3784 year: 2011 ident: 599_CR52 publication-title: Chem. Commun. doi: 10.1039/c0cc04988c – volume: 491 start-page: 574 year: 2012 ident: 599_CR87 publication-title: Nature doi: 10.1038/nature11653 – volume: 10 start-page: 297 year: 2016 ident: 599_CR24 publication-title: BioChip J. doi: 10.1007/s13206-016-0406-2 – volume: 80 start-page: 166 year: 2008 ident: 599_CR101 publication-title: Anal. Chem. doi: 10.1021/ac7017487 – volume: 14 start-page: 28 year: 2020 ident: 599_CR25 publication-title: ACS Nano doi: 10.1021/acsnano.9b04224 – volume: 85 start-page: 43 year: 1982 ident: 599_CR32 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(82)83457-X – volume: 108 start-page: 8157 year: 2011 ident: 599_CR63 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016530108 – volume: 117 start-page: 5110 year: 2017 ident: 599_CR35 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00743 – volume: 2 year: 2011 ident: 599_CR94 publication-title: Nat. Commun. doi: 10.1038/ncomms1490 – volume: 4 start-page: 1144 year: 2016 ident: 599_CR71 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201600223 – volume: 331 start-page: 290 year: 2011 ident: 599_CR49 publication-title: Science doi: 10.1126/science.1198258 – ident: 599_CR51 doi: 10.1007/BFb0048317 – volume: 11 start-page: 4563 year: 2020 ident: 599_CR26 publication-title: Chem. Sci. doi: 10.1039/D0SC00809E – ident: 599_CR102 – volume: 117 start-page: 14819 year: 2020 ident: 599_CR104 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1920091117 – volume: 275 start-page: 1102 year: 1997 ident: 599_CR15 publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 8 start-page: 307 year: 2014 ident: 599_CR78 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.373 – volume: 399 start-page: 134 year: 1999 ident: 599_CR41 publication-title: Nature doi: 10.1038/20154 – volume: 117 start-page: 4961 year: 2017 ident: 599_CR82 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00343 – volume: 46 start-page: 4042 year: 2017 ident: 599_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00238F – volume: 71 start-page: 1967 year: 1999 ident: 599_CR12 publication-title: Anal. Chem. doi: 10.1021/ac981093u – volume: 6 start-page: 409 year: 2012 ident: 599_CR50 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.161 – volume: 45 start-page: 201 year: 1980 ident: 599_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.201 – volume: 17 start-page: 5768 year: 2017 ident: 599_CR62 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02736 – ident: 599_CR1 doi: 10.1002/0470027320.s0101 – volume: 83 start-page: 115428 year: 2011 ident: 599_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.115428 – volume: 5 start-page: 10794 year: 2013 ident: 599_CR59 publication-title: Nanoscale doi: 10.1039/c3nr02924g – volume: 6 start-page: 1169 year: 2019 ident: 599_CR108 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwz180 – volume: 137 start-page: 11928 year: 2015 ident: 599_CR105 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08143 – volume: 9 start-page: 2001081 year: 2021 ident: 599_CR93 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202001081 – volume: 19 start-page: 3771 year: 2007 ident: 599_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.200700678 – volume: 26 start-page: 163 year: 1974 ident: 599_CR3 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 52 start-page: 446 year: 2021 ident: 599_CR53 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.6006 – volume: 6 start-page: 452 year: 2011 ident: 599_CR66 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.79 – volume: 78 start-page: 1667 year: 1997 ident: 599_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1667 – volume: 6 start-page: e17096 year: 2017 ident: 599_CR110 publication-title: Light.: Sci. Appl. doi: 10.1038/lsa.2017.96 – volume: 117 start-page: 5002 year: 2017 ident: 599_CR21 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00596 – volume: 4 start-page: 60 year: 2019 ident: 599_CR76 publication-title: Nat. Energy doi: 10.1038/s41560-018-0292-z – volume: 78 start-page: 155407 year: 2008 ident: 599_CR90 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.155407 – volume: 53 start-page: 729 year: 2020 ident: 599_CR22 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00545 – volume: 16 start-page: 7774 year: 2016 ident: 599_CR84 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03958 – volume: 116 start-page: 1000 year: 2012 ident: 599_CR97 publication-title: J. Phys. Chem. A doi: 10.1021/jp2107507 – volume: 498 start-page: 82 year: 2013 ident: 599_CR77 publication-title: Nature doi: 10.1038/nature12151 – volume: 81 start-page: 036105 year: 2010 ident: 599_CR100 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3321313 – volume: 11 year: 2020 ident: 599_CR106 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18016-4 – volume: 10 start-page: 581 year: 2016 ident: 599_CR68 publication-title: ACS Nano doi: 10.1021/acsnano.5b05605 – volume: 143 start-page: 400 year: 2018 ident: 599_CR99 publication-title: Analyst doi: 10.1039/C7AN01299C – volume: 142 start-page: 715 year: 2020 ident: 599_CR73 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12803 – volume: 24 start-page: 1498 year: 1985 ident: 599_CR40 publication-title: Appl. Opt. doi: 10.1364/AO.24.001498 – ident: 599_CR9 doi: 10.1002/9780470035641 – volume: 84 start-page: 1 year: 1977 ident: 599_CR5 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(77)80224-6 – volume: 98 start-page: 998 year: 1993 ident: 599_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.464263 – volume: 1 start-page: 16021 year: 2016 ident: 599_CR17 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.21 – volume: 116 start-page: 478 year: 2012 ident: 599_CR55 publication-title: J. Phys. Chem. C. doi: 10.1021/jp209982h – ident: 599_CR34 – volume: 25 start-page: 235301 year: 2014 ident: 599_CR23 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/23/235301 – volume: 183 start-page: 333 year: 2000 ident: 599_CR28 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(00)00894-4 – volume: 76 start-page: 3130 year: 2000 ident: 599_CR27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126546 – volume: 52 start-page: 375 year: 2021 ident: 599_CR57 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.6030 – volume: 46 start-page: 9040 year: 2007 ident: 599_CR64 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200702072 – volume: 349 start-page: 165 year: 2015 ident: 599_CR37 publication-title: Science doi: 10.1126/science.aab2051 – volume: 58 start-page: 267 year: 2007 ident: 599_CR46 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104607 – volume: 1 start-page: 135 year: 2014 ident: 599_CR36 publication-title: ACS Photonics doi: 10.1021/ph400147y – volume: 318 start-page: 131 year: 2000 ident: 599_CR29 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01451-7 – volume: 7 start-page: 8940 year: 2013 ident: 599_CR69 publication-title: ACS Nano doi: 10.1021/nn403444j – volume: 7 year: 2017 ident: 599_CR95 publication-title: Sci. Rep. doi: 10.1038/s41598-017-15111-3 – volume: 81 start-page: 043106 year: 2010 ident: 599_CR98 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3378682 – volume: 4 start-page: 496 year: 2013 ident: 599_CR60 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz302018x – volume: 568 start-page: 78 year: 2019 ident: 599_CR80 publication-title: Nature doi: 10.1038/s41586-019-1059-9 – volume: 95 start-page: 9914 year: 1991 ident: 599_CR10 publication-title: J. Phys. Chem. doi: 10.1021/j100177a056 – volume: 49 start-page: 2746 year: 2016 ident: 599_CR19 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00409 – volume: 464 start-page: 392 year: 2010 ident: 599_CR31 publication-title: Nature doi: 10.1038/nature08907 – volume: 8 start-page: 4908 year: 2014 ident: 599_CR56 publication-title: ACS Nano doi: 10.1021/nn500903v – volume: 12 start-page: 2088 year: 2012 ident: 599_CR89 publication-title: Nano Lett. doi: 10.1021/nl300351j – volume: 2 year: 2011 ident: 599_CR109 publication-title: Nat. Commun. doi: 10.1038/ncomms1211 – volume: 18 start-page: 697 year: 2019 ident: 599_CR74 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0356-x – volume: 354 start-page: 726 year: 2016 ident: 599_CR79 publication-title: Science doi: 10.1126/science.aah5243 – volume: 153 start-page: 010902 year: 2020 ident: 599_CR81 publication-title: J. Chem. Phys. doi: 10.1063/5.0009766 – volume: 5 start-page: 2036 year: 2011 ident: 599_CR91 publication-title: ACS Nano doi: 10.1021/nn1031406 – volume: 8 start-page: 211 year: 1988 ident: 599_CR2 publication-title: Surf. Sci. Rep. doi: 10.1016/0167-5729(88)90011-8 – ident: 599_CR42 – volume: 69 start-page: 4159 year: 1978 ident: 599_CR6 publication-title: J. Chem. Phys. doi: 10.1063/1.437095 – volume: 70 start-page: 2861 year: 1997 ident: 599_CR11 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.70.2861 – volume: 6 start-page: 43 year: 1993 ident: 599_CR13 publication-title: Vib. Spectrosc. doi: 10.1016/0924-2031(93)87021-K – volume: 83 start-page: 2337 year: 2011 ident: 599_CR96 publication-title: Anal. Chem. doi: 10.1021/ac103273r – ident: 599_CR103 – volume: 133 start-page: 15922 year: 2011 ident: 599_CR67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2074533 – volume: 99 start-page: 5215 year: 1977 ident: 599_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 83 start-page: 4357 year: 1999 ident: 599_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.4357 – volume: 2 start-page: 1199 year: 2011 ident: 599_CR33 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200498z – volume: 73 start-page: 3023 year: 1980 ident: 599_CR45 publication-title: J. Chem. Phys. doi: 10.1063/1.440560 – volume: 137 start-page: 7648 year: 2015 ident: 599_CR70 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04670 – volume: 59 start-page: 23554 year: 2020 ident: 599_CR75 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202010431 – volume: 205 start-page: 457 year: 2017 ident: 599_CR88 publication-title: Faraday Discuss. doi: 10.1039/C7FD00144D – volume: 16 start-page: 3898 year: 2016 ident: 599_CR85 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01405 – volume: 9 start-page: 60 year: 2010 ident: 599_CR58 publication-title: Nat. Mater. doi: 10.1038/nmat2596 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.602454 |
SecondaryResourceType | review_article |
Snippet | Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps... This review focuses on the advance of optical design from nano/micro to macro in SERS and SEIRA, especially on the optical coupling between nano/micro and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161 |
SubjectTerms | 639/624 639/766/400 Applied and Technical Physics Atomic Classical and Continuum Physics Design Lasers Microscopes Molecular Nanoparticles Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Review Review Article Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPQKmMxA2s9TPxcisVVUGCQ0Wl3iy_ogJdZ0V2_z9jO7t0gcKFqx-R5Zmxv8nMfEbopeCKa80scXGuiBTeEi0sI7oN3DswEclz7fDHT-3pufxwoS6uPfWVc8IqPXDduBntggBMLXsVPFzdUTPae947wMVOAXzIpy_cedecqa81X45R3U1VMlTo2Sgztx7JGQmFk4TwnZuoEPb_CWX-niz5S8S0XEQn99DdCUHio7ry--hWTA_Q7ZLJ6cd99O2oRvVHPPR4XH_vrY8kpssS6cdndmETting92e4VFlmNsthCf7yG5xLTXCyaZgtcppepZZdgz-OVwNeWGgiw7L8-8ahJH48ROcn7z4fn5LpRQXiAZmtSFTzPqjopVfCilYE0XFLeyed9UwGyyx4H3yuXRs5lUzGqMS8tVEBMALZteIR2ktDik8QhrOhs7p1UQYpPZg1pzn3GnztXsJHXIPYZneNn-jG86sXV6aEvYU2VSIGJGKKRAxv0KvtnGUl2_jr6LdZaNuRmSi7NID6mEl9zL_Up0EHG5GbyXpHA25Wl-lShWjQi2032F0OptgUh3UZozO3G6UNelw1ZLsSIYUEGAazux3d2Vnqbk_6clm4vbXIhIesQa83WvZzWTdvxdP_sRXP0B1ezEMTKg_QHihZfA6Ia-UOi3H9ABIIJUw priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lRfBF_Ha1SgTfNDSfuznfTrHUA32oFvoW8rW26GWP7vX_d5L9kNMq-JpMliEzk8zszPyC0CvBFdeaWeLiQhEpvCVaWEZ0Hbh3YCKS597hT5_rkzO5Olfne4hPvTClaL9AWpZjeqoOO-plhsYjuaCgQIoQOHYPMlQ76PbBcrn6spr_rEDAwqhuxg4ZKvQNi3duoQLWf5OH-Weh5G_Z0nIJHd9Fd0bvES8Hfu-hvZjuo1ulitP3D9D35ZDR73HX4v76qrU-kpguSpYfn9q1TdimgD-e4tJhmZEsuw3Eym9xbjPByabuaJ1L9AZYWdifHm87vLYwRLpN-e-NQyn6eIjOjj98fX9CxtcUiAevbEuiWrRBRS-9ElbUIoiGW9o66axnMlhmIfLgC-3qyKlkMkYlFrWNCpwikFstHqH91KX4BGE4FxqraxdlkNKDSXOa664hzm4lfMRViE27a_wINZ5fvPhhSspbaDNIxIBETJGI4RV6Pa_ZDEAb_6R-l4U2U2aQ7DLQXX0zo9IY2gQB4ZhsVfDg9UXNaOt56yCkcgo8zwodTiI3o-X2BkKsJkOlClGhl_M02FxOpNgUu-tCozOuG6UVejxoyMyJkEKCCwarmx3d2WF1dyZdXhRcby0y2CGr0JtJy36x9fetePp_5M_QbV4MQRMqD9E-qFN8Dn7V1r0YDeknZh8ckw priority: 102 providerName: Springer Nature |
Title | Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design |
URI | https://link.springer.com/article/10.1038/s41377-021-00599-2 https://www.ncbi.nlm.nih.gov/pubmed/34349103 https://www.proquest.com/docview/2557913933 https://www.proquest.com/docview/2558451100 https://pubmed.ncbi.nlm.nih.gov/PMC8338991 https://doaj.org/article/07d38754f5dc441e810fc2fb182b5835 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgExIviDuBURmJN7Dq2E7i8oK6atOoxIQKk_pm-ZYNQZ2ytP-fYyfNVC57iuQ4keNzjvOdiz8j9JazgkmZa2L8pCCCW00k1zmRpWPWgIkIFvcOfz4vzy7EfFks-4Bb25dV7tbEtFC7xsYY-RigbxUpLDn_uP5F4qlRMbvaH6FxFx1G6rKo1dWyGmIs4LrkVFb9XhnK5bgVkWGPxLqExExC2N7_KNH2_wtr_l0y-UfeNP2OTh-iBz2OxNNO8I_QHR8eo3upntO2T9CPaZfbb3FT43Z7XWvriQ9XKd-PF3qlA9bB4U8LnPZaRk7LZg1e8wccN5zgoEMzXsVivY5gdgteOd40eKWhiTTrFAHHLpV_PEUXpyffZmekP1eBWMBnG-KLSe0Kb4UtuOYld7ximtZGGG1z4XSuwQdhE2lKz6jIhfcFn5TaFwCPQIIlf4YOQhP8C4Rhhai0LI0XTggLxs1orMAGj7sW8BKToXw3u8r2pOPx7IufKiW_uVSdRBRIRCWJKJahd8Mz645y49bex1FoQ89Il50amutL1VufopXj4JiJunAW8J-XOa0tqw04V6YADJqho53IVW_DrbrRuAy9GW6D9cWUig6-2aY-MjK8UZqh552GDCPhggsAY_B0tac7e0PdvxO-XyWGb8kj7WGeofc7LbsZ1v-n4uXtX_EK3WdJ8SWh4ggdgPr414CoNmaUzGaEDqfT-dc5XI9Pzr8soHVWzkYpSvEbITIidg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviDeBAkaCE1jr2E7iRUKoPKpd-jhUrbQ34zgOrWCTZbMrxJ_iNzJ2kq2WR2-9Jo7leGbsb-yZbwCeC55wpWJDczdMqBTWUCVMTFVacJujiUjuc4cPDtPRifw0SSYb8KvPhfFhlf2aGBbqorb-jHyA0DfzFJZCvJ19p75qlL9d7UtotGqx537-QJeteTP-gPJ9wfnux-P3I9pVFaAW0cmCumRYFomz0ibCiFQUIuOGlbnMjY1lYWKDCJwPVZ46zmQsnUvEMDUuQXCA408F9nsFruLGy7yzl02y1ZkOukoxU1mXm8OEGjTSM_pRHwcRmFAoX9v_QpmAf2Hbv0M0_7inDdvf7k240eFWstMq2i3YcNVtuBbiR21zB77utLEEDalL0iznpbGOuuo0xBeQIzM1FTFVQcZHJOR2eg7NeoZe-mviE1xIZap6MPXBgS2h7XKOXS1qMjX4iNazcOJOihBuchdOLmXG78FmVVfuARBckTKj0tzJQkqLiwlnPuIbPfxSYid5BHE_u9p2JOe-1sY3HS7bhdKtRDRKRAeJaB7By9U3s5bi48LW77zQVi09PXd4UM-_6M7aNcsKgY6gLJPCIt50Kmal5WWOzlyeIOaNYLsXue7WjEafa3gEz1av0dr9FY6pXL0MbZRnlGMsgvuthqxGIqSQCP7w62xNd9aGuv6mOjsNjOJKeJrFOIJXvZadD-v_U_Hw4r94CtdHxwf7en98uPcItngwAkWZ3IZNVCX3GNHcIn8STIjA58u22d8ti1pn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBhgJnsBqYjuJi4TQxlatDKqpYtLePMdx2DSalKYV4l_jr-PsJJ3Kx972mtiW47tz7uzf_Q7gJWcxkzLSNLODmApuNJVcR1QmOTMZmohgLnf48zjZPxIfj-PjDfjV5cI4WGW3J_qNOq-MOyPvo-ubOgpLzvtFC4s43B2-n32nroKUu2ntymk0KnJgf_7A8K1-N9pFWb9ibLj35cM-bSsMUIOeyoLaeFDksTXCxFzzhOc8ZTosMpFpE4lcRxq9cTaQWWJZKCJhbcwHibYxOgr4LQnHca_BZuqioh5s7uyNDyerEx4MnKJQpm2mTshlvxaO3486VITnRaFs7W_oiwb8y9P9G7D5x62t_xkOb8Ot1osl243a3YENW96F6x5Naup7cL7dIAtqUhWkXs4LbSy15alHG5CJnuqS6DInownxmZ6OUbOaYcz-lrh0F1LqsupPHVSwobddznGoRUWmGh_RaubP30nuwSf34ehK1vwB9MqqtI-A4P6UaplkVuRCGNxaWOjw3xjvFwIHyQKIutVVpqU8d5U3vil_9c6laiSiUCLKS0SxAF6v-swawo9LW-84oa1aOrJu_6Caf1Wt7aswzTmGhaKIc4Pep5VRWBhWZBjaZTF6wAFsdSJX7Q5Sqwt9D-DF6jXavrvQ0aWtlr6NdPxyYRjAw0ZDVjPhggt0BbF3uqY7a1Ndf1OenXp-cckd6WIUwJtOyy6m9f-leHz5VzyHG2iv6tNofPAEbjJvA5KGYgt6qEn2Kbp2i-xZa0METq7abH8DV85gAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+of+surface-enhanced+Raman+and+IR+spectroscopies%3A+from+nano%2Fmicrostructures+to+macro-optical+design&rft.jtitle=Light%2C+science+%26+applications&rft.au=Hai-Long%2C+Wang&rft.au=En-Ming%2C+You&rft.au=Panneerselvam+Rajapandiyan&rft.au=Song-Yuan%2C+Ding&rft.date=2021-08-04&rft.pub=Springer+Nature+B.V&rft.eissn=2047-7538&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-021-00599-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |