Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2

Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angioten...

Full description

Saved in:
Bibliographic Details
Published inNature chemical biology Vol. 17; no. 1; pp. 113 - 121
Main Authors Bracken, Colton J., Lim, Shion A., Solomon, Paige, Rettko, Nicholas J., Nguyen, Duy P., Zha, Beth Shoshana, Schaefer, Kaitlin, Byrnes, James R., Zhou, Jie, Lui, Irene, Liu, Jia, Pance, Katarina, Zhou, Xin X., Leung, Kevin K., Wells, James A.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC 50 ) of 4.0 nM (180 ng ml −1 ). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy. A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency.
AbstractList Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC 50 ) of 4.0 nM (180 ng ml −1 ). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy. A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency.
Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.
Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with half-maximal inhibitory concentration (IC 50 ) of 4.0 nM (180 ng/mL). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.
Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC ) of 4.0 nM (180 ng ml ). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.
Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml−1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency.
Author Zhou, Jie
Leung, Kevin K.
Lui, Irene
Wells, James A.
Lim, Shion A.
Nguyen, Duy P.
Schaefer, Kaitlin
Byrnes, James R.
Pance, Katarina
Zhou, Xin X.
Rettko, Nicholas J.
Zha, Beth Shoshana
Liu, Jia
Solomon, Paige
Bracken, Colton J.
AuthorAffiliation 6 Present address: Lyell Immunopharama Inc., Seattle, WA 98109, USA
1 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
4 Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, 94158, USA
5 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
3 Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
7 Present address: Merck & Co., South San Francisco, CA 94080, USA
2 Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA 94158, USA
AuthorAffiliation_xml – name: 5 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
– name: 7 Present address: Merck & Co., South San Francisco, CA 94080, USA
– name: 3 Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
– name: 4 Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, 94158, USA
– name: 6 Present address: Lyell Immunopharama Inc., Seattle, WA 98109, USA
– name: 1 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
– name: 2 Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA 94158, USA
Author_xml – sequence: 1
  givenname: Colton J.
  orcidid: 0000-0003-3499-7032
  surname: Bracken
  fullname: Bracken, Colton J.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 2
  givenname: Shion A.
  orcidid: 0000-0003-2136-2732
  surname: Lim
  fullname: Lim, Shion A.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 3
  givenname: Paige
  surname: Solomon
  fullname: Solomon, Paige
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 4
  givenname: Nicholas J.
  orcidid: 0000-0002-4332-2697
  surname: Rettko
  fullname: Rettko, Nicholas J.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 5
  givenname: Duy P.
  surname: Nguyen
  fullname: Nguyen, Duy P.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco, Lyell Immunopharma Inc
– sequence: 6
  givenname: Beth Shoshana
  surname: Zha
  fullname: Zha, Beth Shoshana
  organization: Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco
– sequence: 7
  givenname: Kaitlin
  surname: Schaefer
  fullname: Schaefer, Kaitlin
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 8
  givenname: James R.
  orcidid: 0000-0003-0297-1209
  surname: Byrnes
  fullname: Byrnes, James R.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 9
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 10
  givenname: Irene
  orcidid: 0000-0002-6171-5443
  surname: Lui
  fullname: Lui, Irene
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 11
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco, Merck & Co
– sequence: 12
  givenname: Katarina
  surname: Pance
  fullname: Pance, Katarina
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 14
  givenname: Xin X.
  surname: Zhou
  fullname: Zhou, Xin X.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 15
  givenname: Kevin K.
  orcidid: 0000-0002-2087-4974
  surname: Leung
  fullname: Leung, Kevin K.
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 16
  givenname: James A.
  orcidid: 0000-0001-8267-5519
  surname: Wells
  fullname: Wells, James A.
  email: jim.wells@ucsf.edu
  organization: Department of Pharmaceutical Chemistry, University of California, San Francisco, Department of Cellular & Molecular Pharmacology, University of California San Francisco, Chan Zuckerberg Biohub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33082574$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1EVT7aP8ChitQLF1N_x7lUWla0ICFVKpSr5cSzW9PE3toJEvx6vCzdthw4eSQ_78w78x6g3RADIHREyQklXH_KgkrdYMIIJkTVDaY7aJ9KybAQqtnd1pLsoYOcbwnhSlH9Fu1xTjSTtdhH16cer2yyY1z5rrLBVcPUj_7O9hDG6ua8cnGwPuSq7WP3q5rNz1jV-uB8WD7RAaYx2d4_QHU1-36F5_EGs3fozcL2Gd4_v4fox5ez6_k5vvz29WI-u8SdFGTEQHlbN1KCbSkVTLe8Y4wJzaxt64XitdMLENQ2ErhjDlSjnAAnKJBW8wIcos-bvqupHcB1xXLxYlbJDzbdm2i9-f8n-J9mGe-M5lJpokuD4-cGKf6eII9m8LmDvrcB4pQNE5I1mim9nvXxBXobpxTKeoWqy0FFo0ShPvzraGvlz8ELwDZAl2LOCRZbhBKzTtVsUjUlVfOUqqFFpF-IOj_a0cf1Vr5_Xco30lzmhCWkv7ZfUT0CIEu1CA
CitedBy_id crossref_primary_10_1016_j_chembiol_2024_07_018
crossref_primary_10_1016_j_ymthe_2021_11_008
crossref_primary_10_1007_s11033_021_06819_7
crossref_primary_10_1186_s12934_021_01576_5
crossref_primary_10_1021_jacs_1c11554
crossref_primary_10_1021_jacs_1c08226
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_1016_j_mcpro_2022_100247
crossref_primary_10_1080_19420862_2021_1958663
crossref_primary_10_1146_annurev_chembioeng_100522_102155
crossref_primary_10_1038_s41589_023_01368_5
crossref_primary_10_1038_s41467_021_24963_3
crossref_primary_10_3390_biology13100831
crossref_primary_10_1016_j_ijbiomac_2023_128191
crossref_primary_10_1002_pro_70090
crossref_primary_10_1371_journal_pone_0272364
crossref_primary_10_7554_eLife_73027
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_3389_fcimb_2021_697876
crossref_primary_10_1016_j_jbc_2021_100557
crossref_primary_10_1080_19420862_2021_1893426
crossref_primary_10_1039_D1SC01203G
crossref_primary_10_3390_ijms23042172
crossref_primary_10_1080_19420862_2022_2057832
crossref_primary_10_1080_19420862_2024_2311992
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1371_journal_ppat_1009704
crossref_primary_10_1002_pro_5017
crossref_primary_10_1021_jacs_4c06160
crossref_primary_10_1016_j_cell_2021_02_022
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1016_j_nantod_2021_101350
crossref_primary_10_1002_ange_202100316
crossref_primary_10_1021_acs_biochem_2c00291
crossref_primary_10_3390_ijms23062928
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1021_acscentsci_0c01708
crossref_primary_10_1016_j_antiviral_2023_105738
crossref_primary_10_1038_s41598_024_66290_9
crossref_primary_10_1038_s42003_025_07827_0
crossref_primary_10_1016_j_ijbiomac_2022_04_096
crossref_primary_10_1126_scitranslmed_abn1252
crossref_primary_10_3389_fimmu_2023_1111385
crossref_primary_10_1021_acsomega_1c03558
crossref_primary_10_1186_s12951_024_02329_3
crossref_primary_10_3389_fimmu_2021_732938
crossref_primary_10_3389_fimmu_2022_869825
crossref_primary_10_1002_biot_202100577
crossref_primary_10_1002_anie_202100316
crossref_primary_10_1038_s42003_022_03866_z
crossref_primary_10_3390_vaccines12040417
crossref_primary_10_1186_s12985_021_01624_x
crossref_primary_10_1371_journal_ppat_1009328
crossref_primary_10_3389_fimmu_2022_965446
crossref_primary_10_1016_j_chembiol_2024_03_010
crossref_primary_10_1016_j_str_2022_02_011
crossref_primary_10_1155_2021_7251119
crossref_primary_10_3390_v16010036
crossref_primary_10_1016_j_biotechadv_2022_107986
crossref_primary_10_1016_j_isci_2022_104798
crossref_primary_10_1007_s40259_024_00691_0
crossref_primary_10_1021_acschembio_2c00185
crossref_primary_10_1111_bph_15359
crossref_primary_10_1073_pnas_2310469121
crossref_primary_10_3390_bios13060640
Cites_doi 10.7554/eLife.31098
10.1101/2020.05.21.109157
10.1038/s41594-020-0469-6
10.1016/j.jmb.2004.05.051
10.1128/mSphere.00802-20
10.1038/s41594-018-0028-6
10.1038/s41586-020-2456-9
10.1073/pnas.1202866109
10.1146/annurev-immunol-042617-053327
10.1038/s41586-020-2349-y
10.1073/pnas.0505379103
10.1101/2020.04.16.045419
10.1016/0003-2697(84)90805-4
10.1074/mcp.O115.052209
10.7554/eLife.34317
10.1080/19420862.2020.1778435
10.1038/nbt1127
10.1016/j.cell.2020.05.025
10.3390/v12050513
10.1016/S0022-2836(03)00896-9
10.1126/science.abb2762
10.1074/jbc.M114.614842
10.1016/j.cell.2015.01.016
10.1073/pnas.89.10.4285
10.1093/emboj/19.5.921
10.1128/AAC.00842-16
10.1080/22221751.2020.1768806
10.1038/s41577-020-0365-7
10.1002/jcc.20084
10.1038/s41586-020-2381-y
10.1007/s10555-005-6193-1
10.1002/pro.3235
10.3791/51492
10.1038/nmeth.4169
10.1016/j.jmb.2013.03.020
10.1016/j.tibtech.2003.08.007
10.1038/s41586-020-2180-5
10.1038/nbt.3907
10.2174/1381612822666160921143011
10.1080/19420862.2017.1305529
10.1007/978-1-62703-992-5_8
10.1016/j.coph.2008.07.006
10.1074/jbc.M007734200
10.1101/2019.12.15.877092
10.1016/j.jmb.2008.01.093
10.1038/nmeth.2727
10.1101/2020.07.14.203414
10.1038/363446a0
10.1101/2020.07.04.187989
10.1126/science.abb2507
10.1038/nmeth.4193
10.1016/j.cell.2020.02.058
10.1016/S0161-5890(00)00081-X
10.1128/JVI.00645-06
ContentType Journal Article
Contributor Peters, Jessica K
Li, Junrui
Titus, Erron W
Sun, Ming
Thwin, Aye C
Whitis, Natalie
Tsui, Tsz Kin Martin
Kim, Kate
Flores, Sebastian
Hoppe, Nick
Melo, Arthur
Paulino, Joana
Chio, Un Seng
Lo, Megan
Biel, Justin
Tse, Eric
Diwanji, Devan
Herrera, Nadia
Campbell, Melody G
Zhang, Yang
Yu, Zanlin
Asarnow, Daniel
Thomas, Paul V
Liu, Yanxin
Schaefer, Kaitlin
Owens, Tristan W
Billesboelle, Christian
Young, Iris D
Pospiech, Jr, Thomas H
Chen, Jen
Kratochvil, Huong T
Deshpande, Ishan
Nguyen, Henry C
Smith, Amber M
Braxton, Julian R
Rizo, Alexandrea N
Trenker, Raphael
Dickinson, Miles Sasha
Zhao, Jianhua
Faust, Bryan
Trinidad, Donovan
Azumaya, Caleigh M
Diallo, Amy
Jin, Mingliang
Zhang, Kaihua
Puchades, Cristina
Moritz, Michelle
Moss, Frank
Lopez, Kyle E
Zhou, Fengbo
Nguyen, Phuong
Nowotny, Carlos
Li, Yen-Li
Lam, Victor L
Gupta, Meghna
Sangwan, Smriti
Safari, Mali
Bulkley, David
Bowen, Alisa
Wang, Feng
Merz, Gregory E
Pourmal, Sergei
Schulze-Gahmen, Ursula
Liu, Xi
Doan, Loan
Brilot, Axel F
Li, Fei
Chio, Cynthia M
Li, Yang
Contributor_xml – sequence: 1
  givenname: Caleigh M
  surname: Azumaya
  fullname: Azumaya, Caleigh M
– sequence: 2
  givenname: Julian R
  surname: Braxton
  fullname: Braxton, Julian R
– sequence: 3
  givenname: Axel F
  surname: Brilot
  fullname: Brilot, Axel F
– sequence: 4
  givenname: Meghna
  surname: Gupta
  fullname: Gupta, Meghna
– sequence: 5
  givenname: Fei
  surname: Li
  fullname: Li, Fei
– sequence: 6
  givenname: Kyle E
  surname: Lopez
  fullname: Lopez, Kyle E
– sequence: 7
  givenname: Arthur
  surname: Melo
  fullname: Melo, Arthur
– sequence: 8
  givenname: Gregory E
  surname: Merz
  fullname: Merz, Gregory E
– sequence: 9
  givenname: Frank
  surname: Moss
  fullname: Moss, Frank
– sequence: 10
  givenname: Joana
  surname: Paulino
  fullname: Paulino, Joana
– sequence: 11
  givenname: Thomas H
  surname: Pospiech, Jr
  fullname: Pospiech, Jr, Thomas H
– sequence: 12
  givenname: Sergei
  surname: Pourmal
  fullname: Pourmal, Sergei
– sequence: 13
  givenname: Cristina
  surname: Puchades
  fullname: Puchades, Cristina
– sequence: 14
  givenname: Alexandrea N
  surname: Rizo
  fullname: Rizo, Alexandrea N
– sequence: 15
  givenname: Amber M
  surname: Smith
  fullname: Smith, Amber M
– sequence: 16
  givenname: Ming
  surname: Sun
  fullname: Sun, Ming
– sequence: 17
  givenname: Paul V
  surname: Thomas
  fullname: Thomas, Paul V
– sequence: 18
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
– sequence: 19
  givenname: Zanlin
  surname: Yu
  fullname: Yu, Zanlin
– sequence: 20
  givenname: Daniel
  surname: Asarnow
  fullname: Asarnow, Daniel
– sequence: 21
  givenname: Melody G
  surname: Campbell
  fullname: Campbell, Melody G
– sequence: 22
  givenname: Cynthia M
  surname: Chio
  fullname: Chio, Cynthia M
– sequence: 23
  givenname: Un Seng
  surname: Chio
  fullname: Chio, Un Seng
– sequence: 24
  givenname: Miles Sasha
  surname: Dickinson
  fullname: Dickinson, Miles Sasha
– sequence: 25
  givenname: Devan
  surname: Diwanji
  fullname: Diwanji, Devan
– sequence: 26
  givenname: Bryan
  surname: Faust
  fullname: Faust, Bryan
– sequence: 27
  givenname: Nick
  surname: Hoppe
  fullname: Hoppe, Nick
– sequence: 28
  givenname: Mingliang
  surname: Jin
  fullname: Jin, Mingliang
– sequence: 29
  givenname: Junrui
  surname: Li
  fullname: Li, Junrui
– sequence: 30
  givenname: Yanxin
  surname: Liu
  fullname: Liu, Yanxin
– sequence: 31
  givenname: Henry C
  surname: Nguyen
  fullname: Nguyen, Henry C
– sequence: 32
  givenname: Smriti
  surname: Sangwan
  fullname: Sangwan, Smriti
– sequence: 33
  givenname: Raphael
  surname: Trenker
  fullname: Trenker, Raphael
– sequence: 34
  givenname: Donovan
  surname: Trinidad
  fullname: Trinidad, Donovan
– sequence: 35
  givenname: Eric
  surname: Tse
  fullname: Tse, Eric
– sequence: 36
  givenname: Kaihua
  surname: Zhang
  fullname: Zhang, Kaihua
– sequence: 37
  givenname: Fengbo
  surname: Zhou
  fullname: Zhou, Fengbo
– sequence: 38
  givenname: Christian
  surname: Billesboelle
  fullname: Billesboelle, Christian
– sequence: 39
  givenname: Alisa
  surname: Bowen
  fullname: Bowen, Alisa
– sequence: 40
  givenname: Yen-Li
  surname: Li
  fullname: Li, Yen-Li
– sequence: 41
  givenname: Phuong
  surname: Nguyen
  fullname: Nguyen, Phuong
– sequence: 42
  givenname: Carlos
  surname: Nowotny
  fullname: Nowotny, Carlos
– sequence: 43
  givenname: Mali
  surname: Safari
  fullname: Safari, Mali
– sequence: 44
  givenname: Kaitlin
  surname: Schaefer
  fullname: Schaefer, Kaitlin
– sequence: 45
  givenname: Tsz Kin Martin
  surname: Tsui
  fullname: Tsui, Tsz Kin Martin
– sequence: 46
  givenname: Natalie
  surname: Whitis
  fullname: Whitis, Natalie
– sequence: 47
  givenname: Jianhua
  surname: Zhao
  fullname: Zhao, Jianhua
– sequence: 48
  givenname: Kate
  surname: Kim
  fullname: Kim, Kate
– sequence: 49
  givenname: Michelle
  surname: Moritz
  fullname: Moritz, Michelle
– sequence: 50
  givenname: Tristan W
  surname: Owens
  fullname: Owens, Tristan W
– sequence: 51
  givenname: Jessica K
  surname: Peters
  fullname: Peters, Jessica K
– sequence: 52
  givenname: Justin
  surname: Biel
  fullname: Biel, Justin
– sequence: 53
  givenname: Ishan
  surname: Deshpande
  fullname: Deshpande, Ishan
– sequence: 54
  givenname: Nadia
  surname: Herrera
  fullname: Herrera, Nadia
– sequence: 55
  givenname: Huong T
  surname: Kratochvil
  fullname: Kratochvil, Huong T
– sequence: 56
  givenname: Xi
  surname: Liu
  fullname: Liu, Xi
– sequence: 57
  givenname: Ursula
  surname: Schulze-Gahmen
  fullname: Schulze-Gahmen, Ursula
– sequence: 58
  givenname: Iris D
  surname: Young
  fullname: Young, Iris D
– sequence: 59
  givenname: Jen
  surname: Chen
  fullname: Chen, Jen
– sequence: 60
  givenname: Amy
  surname: Diallo
  fullname: Diallo, Amy
– sequence: 61
  givenname: Loan
  surname: Doan
  fullname: Doan, Loan
– sequence: 62
  givenname: Sebastian
  surname: Flores
  fullname: Flores, Sebastian
– sequence: 63
  givenname: Victor L
  surname: Lam
  fullname: Lam, Victor L
– sequence: 64
  givenname: Yang
  surname: Li
  fullname: Li, Yang
– sequence: 65
  givenname: Megan
  surname: Lo
  fullname: Lo, Megan
– sequence: 66
  givenname: Aye C
  surname: Thwin
  fullname: Thwin, Aye C
– sequence: 67
  givenname: Erron W
  surname: Titus
  fullname: Titus, Erron W
– sequence: 68
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
– sequence: 69
  givenname: David
  surname: Bulkley
  fullname: Bulkley, David
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
CorporateAuthor Protein purification team
Infrastructure team
Leadership team
Crystallography team
QCRG Structural Biology Consortium
CryoEM data processing team
CryoEM grid freezing/collection team
Mammalian cell expression team
Bacterial expression team
CorporateAuthor_xml – name: Protein purification team
– name: Bacterial expression team
– name: Leadership team
– name: CryoEM grid freezing/collection team
– name: CryoEM data processing team
– name: QCRG Structural Biology Consortium
– name: Mammalian cell expression team
– name: Infrastructure team
– name: Crystallography team
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7TK
7TM
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
LK8
M0S
M1P
M2P
M7N
M7P
P64
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41589-020-00679-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1552-4469
EndPage 121
ExternalDocumentID PMC8356808
33082574
10_1038_s41589_020_00679_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Quantitative Biosciences Institute FastGrants COVID19 grant Laboratory For Genomics Research
– fundername: Helen Hay Whitney Foundation (HHWF)
  funderid: https://doi.org/10.13039/100005237
– fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
  grantid: DRG-2204-14; DRG-2297-17
  funderid: https://doi.org/10.13039/100001021
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: HL007185; F32 5F32CA239417; 5F32CA236151-02; R35 GM122451-01
  funderid: https://doi.org/10.13039/100000054
– fundername: National Science Foundation (NSF)
  funderid: https://doi.org/10.13039/100000001
– fundername: Chan-Zuckerberg Biohub UCSF Program for Breakthrough Biomedical Research Fast Grants from Emergent Ventures at the Mercatus Center, George Mason University (#2154) The Harrington Discovery Institute (GA33116)
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: HR0011-19-2-0020
  funderid: https://doi.org/10.13039/100000185
– fundername: NCI NIH HHS
  grantid: F32 CA236151
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: F32 5F32CA239417
– fundername: NIGMS NIH HHS
  grantid: T32 GM007618
– fundername: NCI NIH HHS
  grantid: F32 CA239417
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: 5F32CA236151-02
– fundername: NIAID NIH HHS
  grantid: U19 AI135990
– fundername: NHLBI NIH HHS
  grantid: T32 HL007185
– fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
  grantid: DRG-2297-17
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: R35 GM122451-01
– fundername: NIGMS NIH HHS
  grantid: R35 GM122451
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
KB.
KC.
LK5
LK8
M0L
M1P
M2P
M7P
M7R
NACWA
NNMJJ
O9-
ODYON
P2P
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c540t-e13b7955eab11428b3c222482aab7f637d8fe41a95e3d2de696d4ed41e0b83f63
IEDL.DBID 7X7
ISSN 1552-4450
1552-4469
IngestDate Thu Aug 21 18:09:03 EDT 2025
Mon Jul 21 11:46:05 EDT 2025
Sat Aug 23 12:50:58 EDT 2025
Wed Feb 19 02:27:02 EST 2025
Tue Jul 01 01:27:48 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Fri Feb 21 02:39:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-e13b7955eab11428b3c222482aab7f637d8fe41a95e3d2de696d4ed41e0b83f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
QCRG Structural Biology Consortium.
C.J.B. and D.P.N. designed and constructed the VH-phage library. C.J.B., S.A.L., N.J.R., J.Z., I.L., J. L., K.P. cloned, expressed, and purified the VH binders and/or antigens. C.J.B., S.A.L., J.L. designed and/or conducted the in vitro characterization of the VH binders. J.R.B. designed and conducted the competition ELISA assay with convalescent patient sera. P.S., N.J.R., S.A.L. designed and conducted the pseudovirus neutralization assays. P.S., N.J.R., B.S.Z., S.A.L. designed and conducted the live virus neutralization assays. K.S. prepared samples for cryo-EM and the QCRG SBC performed cryo-EM data collection and analyses. S.A.L., X.X.Z., K.K.L., J.A.W. led the coordination of external collaborations and supervised the project. C.J.B., S.A.L., J.A.W. co-wrote the manuscript with input from all the authors.
In addition to those listed explicitly in the author contributions, the structural biology portion of this work was performed by the QCRG (Quantitative Biosciences Institute Coronavirus Research Group) Structural Biology Consortium. Listed below are the contributing members of the consortium listed by teams in order of team relevance to the published work. Within each team the team leads are italicized (responsible for organization of each team, and for the experimental design utilized within each team), then the rest of team members are listed alphabetically. CryoEM grid freezing/collection team: Caleigh M. Azumaya, Cristina Puchades, Ming Sun, Julian R. Braxton, Axel F. Brilot, Meghna Gupta, Fei Li, Kyle E. Lopez, Arthur Melo, Gregory E. Merz, Frank Moss, Joana Paulino, Thomas H. Pospiech, Jr., Sergei Pourmal, Alexandrea N. Rizo, Amber M. Smith, Paul V. Thomas, Feng Wang, Zanlin Yu. CryoEM data processing team: Miles Sasha Dickinson, Henry C. Nguyen, Daniel Asarnow, Julian R. Braxton, Melody G. Campbell, Cynthia M. Chio, Un Seng Chio, Devan Diwanji, Bryan Faust, Meghna Gupta, Nick Hoppe, Mingliang Jin, Fei Li, Junrui Li, Yanxin Liu, Gregory E. Merz, Joana Paulino, Thomas H. Pospiech, Jr., Sergei Pourmal, Smriti Sangwan, Raphael Trenker, Donovan Trinidad, Eric Tse, Kaihua Zhang, Fengbo Zhou. Mammalian cell expression team: Christian Billesboelle, Melody G. Campbell, Devan Diwanji, Carlos Nowotny, Amber M. Smith, Jianhua Zhao, Caleigh M. Azumaya, Alisa Bowen, Nick Hoppe, Yen-Li Li, Phuong Nguyen, Cristina Puchades, Mali Safari, Smriti Sangwan, Kaitlin Schaefer, Raphael Trenker, Tsz Kin Martin Tsui, Natalie Whitis. Protein purification team: Daniel Asarnow, Michelle Moritz, Tristan W. Owens, Sergei Pourmal, Caleigh M. Azumaya, Cynthia M. Chio, Bryan Faust, Meghna Gupta, Kate Kim, Joana Paulino, Jessica K. Peters, Kaitlin Schaefer, Tsz Kin Martin Tsui. Crystallography team: Nadia Herrera, Huong T. Kratochvil, Ursula Schulze-Gahmen, Iris D. Young, Justin Biel, Ishan Deshpande, Xi Liu. Bacterial expression team: Amy Diallo, Meghna Gupta, Erron W. Titus, Jen Chen, Loan Doan, Sebastian Flores, Mingliang Jin, Huong T. Kratochvil, Victor L. Lam, Yang Li, Megan Lo, Gregory E. Merz, Joana Paulino, Aye C. Thwin, Zanlin Yu, Fengbo Zhou, Yang Zhang. Infrastructure team: David Bulkley, Arceli Joves, Almarie Joves, Liam McKay, Mariano Tabios, Eric Tse. Leadership team: Oren S Rosenberg, Kliment A Verba, David A Agard, Yifan Cheng, James S Fraser, Adam Frost, Natalia Jura, Tanja Kortemme, Nevan J Krogan, Aashish Manglik, Daniel R. Southworth, Robert M Stroud. The QCRG Structural Biology Consortium has received support from: Quantitative Biosciences Institute, Defense Advanced Research Projects Agency HR0011-19-2-0020 (to D.A.A. and K.A.V.; B. Shoichet PI), FastGrants COVID19 grant (K.A.Verba PI), Laboratory For Genomics Research (O.S. Rosenberg PI) and Laboratory For Genomics Research (R.M. Stroud PI)
Author Contributions
ORCID 0000-0002-6171-5443
0000-0002-2087-4974
0000-0003-2136-2732
0000-0003-3499-7032
0000-0003-0297-1209
0000-0002-4332-2697
0000-0001-8267-5519
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8356808
PMID 33082574
PQID 2473304964
PQPubID 29034
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356808
proquest_miscellaneous_2452982686
proquest_journals_2473304964
pubmed_primary_33082574
crossref_primary_10_1038_s41589_020_00679_1
crossref_citationtrail_10_1038_s41589_020_00679_1
springer_journals_10_1038_s41589_020_00679_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Nature chemical biology
PublicationTitleAbbrev Nat Chem Biol
PublicationTitleAlternate Nat Chem Biol
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Arbabi-Ghahroudi, Tanha, MacKenzie (CR14) 2005; 24
CR38
Galimidi (CR46) 2015; 160
CR33
Kucukelbir, Sigworth, Tagare (CR54) 2014; 11
CR31
Yan (CR1) 2020; 367
Abraham (CR2) 2020; 20
Sun (CR20) 2020; 12
Binz (CR43) 2017; 9
Pinto (CR4) 2020; 583
Cao (CR6) 2020; 182
Rouet, Dudgeon, Christie, Langley, Christ (CR19) 2015; 290
Nilvebrant, Tessier, Sidhu (CR18) 2016; 22
Hornsby (CR29) 2015; 14
CR8
Dong (CR40) 2020; 9
Goddard (CR55) 2018; 27
CR49
Birtalan (CR28) 2008; 377
De Genst (CR13) 2006; 103
Zimmermann (CR15) 2018; 7
Crawford (CR36) 2020; 12
Shi (CR7) 2020; 584
Nguyen, Hamers, Wyns, Muyldermans (CR9) 2000; 19
Palomo (CR23) 2016; 60
Ingram, Schmidt, Ploegh (CR11) 2018; 36
Neuman (CR34) 2006; 80
Binz, Amstutz, Plückthun (CR41) 2005; 23
Binz, Stumpp, Forrer, Amstutz, Plückthun (CR42) 2003; 332
Walls (CR37) 2020; 180
Lan (CR39) 2020; 581
Chen, Sidhu (CR48) 2014; 1131
Byrnes (CR35) 2020; 5
McMahon (CR16) 2018; 25
Punjani, Rubinstein, Fleet, Brubaker (CR51) 2017; 14
Dudgeon (CR27) 2012; 109
Strauch (CR45) 2017; 35
CR52
Conrath, Lauwereys, Wyns, Muyldermans (CR44) 2001; 276
Lee (CR47) 2004; 340
Wrapp (CR32) 2020; 367
Martinko (CR30) 2018; 7
Saerens, Ghassabeh, Muyldermans (CR17) 2008; 8
Robbiani (CR3) 2020; 584
Rogers (CR5) 2020; 7520
Zheng (CR50) 2017; 14
Harmsen (CR25) 2000; 37
Pettersen (CR53) 2004; 25
Carter (CR24) 1992; 89
CR22
Hamer-Casterman, Atarchouch (CR12) 1998; 363
Holt, Herring, Jespers, Woolven, Tomlinson (CR10) 2003; 21
Ma, Barthelemy, Rouge, Wiesmann, Sidhu (CR26) 2013; 425
Huo (CR21) 2020; 27
HK Binz (679_CR43) 2017; 9
LJ Holt (679_CR10) 2003; 21
679_CR52
A Kucukelbir (679_CR54) 2014; 11
HK Binz (679_CR42) 2003; 332
R Shi (679_CR7) 2020; 584
EM Strauch (679_CR45) 2017; 35
G Chen (679_CR48) 2014; 1131
C Hamer-Casterman (679_CR12) 1998; 363
C McMahon (679_CR16) 2018; 25
KE Conrath (679_CR44) 2001; 276
AJ Martinko (679_CR30) 2018; 7
AC Walls (679_CR37) 2020; 180
679_CR22
KHD Crawford (679_CR36) 2020; 12
RP Galimidi (679_CR46) 2015; 160
SQ Zheng (679_CR50) 2017; 14
DF Robbiani (679_CR3) 2020; 584
X Ma (679_CR26) 2013; 425
BW Neuman (679_CR34) 2006; 80
R Yan (679_CR1) 2020; 367
D Pinto (679_CR4) 2020; 583
TF Rogers (679_CR5) 2020; 7520
HK Binz (679_CR41) 2005; 23
I Zimmermann (679_CR15) 2018; 7
679_CR8
D Wrapp (679_CR32) 2020; 367
A Punjani (679_CR51) 2017; 14
J Dong (679_CR40) 2020; 9
M Hornsby (679_CR29) 2015; 14
679_CR31
J Nilvebrant (679_CR18) 2016; 22
679_CR33
J Abraham (679_CR2) 2020; 20
C Palomo (679_CR23) 2016; 60
J Lan (679_CR39) 2020; 581
EF Pettersen (679_CR53) 2004; 25
TD Goddard (679_CR55) 2018; 27
VK Nguyen (679_CR9) 2000; 19
D Saerens (679_CR17) 2008; 8
Y Cao (679_CR6) 2020; 182
679_CR38
M Arbabi-Ghahroudi (679_CR14) 2005; 24
R Rouet (679_CR19) 2015; 290
S Birtalan (679_CR28) 2008; 377
E De Genst (679_CR13) 2006; 103
CV Lee (679_CR47) 2004; 340
K Dudgeon (679_CR27) 2012; 109
Z Sun (679_CR20) 2020; 12
MM Harmsen (679_CR25) 2000; 37
JR Byrnes (679_CR35) 2020; 5
679_CR49
J Huo (679_CR21) 2020; 27
P Carter (679_CR24) 1992; 89
JR Ingram (679_CR11) 2018; 36
32817948 - bioRxiv. 2020 Aug 10
References_xml – volume: 180
  start-page: 281
  year: 2020
  end-page: 292
  ident: CR37
  article-title: Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– ident: CR22
– volume: 5
  start-page: e00802
  year: 2020
  end-page: e00820
  ident: CR35
  article-title: Competitive SARS-CoV-2 serology reveals most antibodies targeting the Spike receptor-binding domain compete for ACE2 binding
  publication-title: mSphere
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: CR4
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 1131
  start-page: 113
  year: 2014
  end-page: 131
  ident: CR48
  article-title: Design and generation of synthetic antibody libraries for phage display
  publication-title: Methods Mol. Biol.
– ident: CR49
– volume: 377
  start-page: 1518
  year: 2008
  end-page: 1528
  ident: CR28
  article-title: The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies
  publication-title: J. Mol. Biol.
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: CR39
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 36
  start-page: 695
  year: 2018
  end-page: 715
  ident: CR11
  article-title: Exploiting nanobodies’ singular traits
  publication-title: Annu. Rev. Immunol.
– volume: 7
  start-page: e31098
  year: 2018
  ident: CR30
  article-title: Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins
  publication-title: eLife
– volume: 27
  start-page: 846
  year: 2020
  end-page: 854
  ident: CR21
  article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2
  publication-title: Nat. Struct. Mol. Biol.
– volume: 25
  start-page: 289
  year: 2018
  end-page: 296
  ident: CR16
  article-title: Yeast surface display platform for rapid discovery of conformationally selective nanobodies
  publication-title: Nat. Struct. Mol. Biol.
– ident: CR8
– volume: 340
  start-page: 1073
  year: 2004
  end-page: 1093
  ident: CR47
  article-title: High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 32
  ident: CR15
  article-title: Synthetic single domain antibodies for the conformational trapping of membrane proteins
  publication-title: eLife
– volume: 12
  start-page: 513
  year: 2020
  ident: CR36
  article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays
  publication-title: Viruses
– volume: 89
  start-page: 4285
  year: 1992
  end-page: 4289
  ident: CR24
  article-title: Humanization of an anti-p185HER2 antibody for human cancer therapy
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 600
  year: 2008
  end-page: 608
  ident: CR17
  article-title: Single-domain antibodies as building blocks for novel therapeutics
  publication-title: Curr. Opin. Pharmacol.
– volume: 182
  start-page: 73
  year: 2020
  end-page: 84
  ident: CR6
  article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells
  publication-title: Cell
– volume: 14
  start-page: 2833
  year: 2015
  end-page: 2847
  ident: CR29
  article-title: A high throughput platform for recombinant antibodies to folded proteins
  publication-title: Mol. Cell. Proteomics
– volume: 276
  start-page: 7346
  year: 2001
  end-page: 7350
  ident: CR44
  article-title: Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 401
  year: 2020
  end-page: 403
  ident: CR2
  article-title: Passive antibody therapy in COVID-19
  publication-title: Nat. Rev. Immunol.
– volume: 584
  start-page: 437
  year: 2020
  end-page: 442
  ident: CR3
  article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals
  publication-title: Nature
– volume: 332
  start-page: 489
  year: 2003
  end-page: 503
  ident: CR42
  article-title: Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins
  publication-title: J. Mol. Biol.
– volume: 584
  start-page: 120
  year: 2020
  end-page: 124
  ident: CR7
  article-title: A human neutralizing antibody targets the receptor binding site of SARS-CoV-2
  publication-title: Nature
– volume: 19
  start-page: 921
  year: 2000
  end-page: 930
  ident: CR9
  article-title: Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire
  publication-title: EMBO J.
– volume: 35
  start-page: 667
  year: 2017
  end-page: 671
  ident: CR45
  article-title: Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site
  publication-title: Nat. Biotechnol.
– volume: 27
  start-page: 14
  year: 2018
  end-page: 25
  ident: CR55
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
– volume: 22
  start-page: 6527
  year: 2016
  end-page: 6537
  ident: CR18
  article-title: Engineered autonomous human variable domains
  publication-title: Curr. Pharm. Des.
– volume: 109
  start-page: 10879
  year: 2012
  end-page: 10884
  ident: CR27
  article-title: General strategy for the generation of human antibody variable domains with increased aggregation resistance
  publication-title: Proc. Natl Acad. Sci. USA
– ident: CR33
– volume: 7520
  start-page: eabc7520
  year: 2020
  ident: CR5
  article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
– volume: 11
  start-page: 63
  year: 2014
  end-page: 65
  ident: CR54
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat. Methods
– volume: 290
  start-page: 11905
  year: 2015
  end-page: 11917
  ident: CR19
  article-title: Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies
  publication-title: J. Biol. Chem.
– volume: 160
  start-page: 433
  year: 2015
  end-page: 446
  ident: CR46
  article-title: Intra-Spike crosslinking overcomes antibody evasion by HIV-1
  publication-title: Cell
– volume: 80
  start-page: 7918
  year: 2006
  end-page: 7928
  ident: CR34
  article-title: Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy
  publication-title: J. Virol.
– volume: 12
  start-page: 1778435
  year: 2020
  ident: CR20
  article-title: Potent neutralization of SARS-CoV-2 by human antibody heavy-chain variable domains isolated from a large library with a new stable scaffold
  publication-title: MAbs
– volume: 363
  start-page: 446
  year: 1998
  end-page: 448
  ident: CR12
  article-title: Naturally occurring antibodies devoid of light chains
  publication-title: Nature
– volume: 425
  start-page: 2247
  year: 2013
  end-page: 2259
  ident: CR26
  article-title: Design of synthetic autonomous VH domain libraries and structural analysis of a VH domain bound to vascular endothelial growth factor
  publication-title: J. Mol. Biol.
– ident: CR38
– volume: 23
  start-page: 1257
  year: 2005
  end-page: 1268
  ident: CR41
  article-title: Engineering novel binding proteins from nonimmunoglobulin domains
  publication-title: Nat. Biotechnol.
– ident: CR52
– ident: CR31
– volume: 21
  start-page: 484
  year: 2003
  end-page: 490
  ident: CR10
  article-title: Domain antibodies: proteins for therapy
  publication-title: Trends Biotechnol.
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: CR50
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 37
  start-page: 579
  year: 2000
  end-page: 590
  ident: CR25
  article-title: Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features
  publication-title: Mol. Immunol.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: CR32
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 9
  start-page: 1034
  year: 2020
  end-page: 1036
  ident: CR40
  article-title: Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity
  publication-title: Emerg. Microbes Infect.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: CR53
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: CR1
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
– volume: 24
  start-page: 501
  year: 2005
  end-page: 519
  ident: CR14
  article-title: Prokaryotic expression of antibodies
  publication-title: Cancer Metastasis Rev.
– volume: 103
  start-page: 4586
  year: 2006
  end-page: 4591
  ident: CR13
  article-title: Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 60
  start-page: 6498
  year: 2016
  end-page: 6509
  ident: CR23
  article-title: Trivalency of a nanobody specific for the human respiratory syncytial virus fusion glycoprotein drastically enhances virus neutralization and impacts escape mutant selection
  publication-title: Antimicrob. Agents Chemother.
– volume: 9
  start-page: 1262
  year: 2017
  end-page: 1269
  ident: CR43
  article-title: Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin drug candidate
  publication-title: MAbs
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: CR51
  article-title: CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 7
  start-page: e31098
  year: 2018
  ident: 679_CR30
  publication-title: eLife
  doi: 10.7554/eLife.31098
– ident: 679_CR33
  doi: 10.1101/2020.05.21.109157
– volume: 7520
  start-page: eabc7520
  year: 2020
  ident: 679_CR5
  publication-title: Science
– volume: 27
  start-page: 846
  year: 2020
  ident: 679_CR21
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0469-6
– volume: 340
  start-page: 1073
  year: 2004
  ident: 679_CR47
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.05.051
– volume: 5
  start-page: e00802
  year: 2020
  ident: 679_CR35
  publication-title: mSphere
  doi: 10.1128/mSphere.00802-20
– volume: 25
  start-page: 289
  year: 2018
  ident: 679_CR16
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0028-6
– volume: 584
  start-page: 437
  year: 2020
  ident: 679_CR3
  publication-title: Nature
  doi: 10.1038/s41586-020-2456-9
– volume: 109
  start-page: 10879
  year: 2012
  ident: 679_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1202866109
– volume: 36
  start-page: 695
  year: 2018
  ident: 679_CR11
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053327
– volume: 583
  start-page: 290
  year: 2020
  ident: 679_CR4
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 103
  start-page: 4586
  year: 2006
  ident: 679_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0505379103
– ident: 679_CR22
  doi: 10.1101/2020.04.16.045419
– ident: 679_CR31
  doi: 10.1016/0003-2697(84)90805-4
– volume: 14
  start-page: 2833
  year: 2015
  ident: 679_CR29
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O115.052209
– volume: 7
  start-page: 1
  year: 2018
  ident: 679_CR15
  publication-title: eLife
  doi: 10.7554/eLife.34317
– volume: 12
  start-page: 1778435
  year: 2020
  ident: 679_CR20
  publication-title: MAbs
  doi: 10.1080/19420862.2020.1778435
– volume: 23
  start-page: 1257
  year: 2005
  ident: 679_CR41
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1127
– volume: 182
  start-page: 73
  year: 2020
  ident: 679_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.025
– volume: 12
  start-page: 513
  year: 2020
  ident: 679_CR36
  publication-title: Viruses
  doi: 10.3390/v12050513
– volume: 332
  start-page: 489
  year: 2003
  ident: 679_CR42
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00896-9
– volume: 367
  start-page: 1444
  year: 2020
  ident: 679_CR1
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 290
  start-page: 11905
  year: 2015
  ident: 679_CR19
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.614842
– volume: 160
  start-page: 433
  year: 2015
  ident: 679_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.016
– volume: 89
  start-page: 4285
  year: 1992
  ident: 679_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.89.10.4285
– volume: 19
  start-page: 921
  year: 2000
  ident: 679_CR9
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.5.921
– volume: 60
  start-page: 6498
  year: 2016
  ident: 679_CR23
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00842-16
– volume: 9
  start-page: 1034
  year: 2020
  ident: 679_CR40
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1768806
– volume: 20
  start-page: 401
  year: 2020
  ident: 679_CR2
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0365-7
– volume: 25
  start-page: 1605
  year: 2004
  ident: 679_CR53
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 584
  start-page: 120
  year: 2020
  ident: 679_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-2381-y
– volume: 24
  start-page: 501
  year: 2005
  ident: 679_CR14
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-005-6193-1
– volume: 27
  start-page: 14
  year: 2018
  ident: 679_CR55
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– ident: 679_CR8
  doi: 10.3791/51492
– volume: 14
  start-page: 290
  year: 2017
  ident: 679_CR51
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 425
  start-page: 2247
  year: 2013
  ident: 679_CR26
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2013.03.020
– volume: 21
  start-page: 484
  year: 2003
  ident: 679_CR10
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2003.08.007
– volume: 581
  start-page: 215
  year: 2020
  ident: 679_CR39
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 35
  start-page: 667
  year: 2017
  ident: 679_CR45
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3907
– volume: 22
  start-page: 6527
  year: 2016
  ident: 679_CR18
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612822666160921143011
– volume: 9
  start-page: 1262
  year: 2017
  ident: 679_CR43
  publication-title: MAbs
  doi: 10.1080/19420862.2017.1305529
– volume: 1131
  start-page: 113
  year: 2014
  ident: 679_CR48
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-992-5_8
– volume: 8
  start-page: 600
  year: 2008
  ident: 679_CR17
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2008.07.006
– volume: 276
  start-page: 7346
  year: 2001
  ident: 679_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M007734200
– ident: 679_CR52
  doi: 10.1101/2019.12.15.877092
– volume: 377
  start-page: 1518
  year: 2008
  ident: 679_CR28
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.01.093
– volume: 11
  start-page: 63
  year: 2014
  ident: 679_CR54
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2727
– ident: 679_CR49
  doi: 10.1101/2020.07.14.203414
– volume: 363
  start-page: 446
  year: 1998
  ident: 679_CR12
  publication-title: Nature
  doi: 10.1038/363446a0
– ident: 679_CR38
  doi: 10.1101/2020.07.04.187989
– volume: 367
  start-page: 1260
  year: 2020
  ident: 679_CR32
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 14
  start-page: 331
  year: 2017
  ident: 679_CR50
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 180
  start-page: 281
  year: 2020
  ident: 679_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 37
  start-page: 579
  year: 2000
  ident: 679_CR25
  publication-title: Mol. Immunol.
  doi: 10.1016/S0161-5890(00)00081-X
– volume: 80
  start-page: 7918
  year: 2006
  ident: 679_CR34
  publication-title: J. Virol.
  doi: 10.1128/JVI.00645-06
– reference: 32817948 - bioRxiv. 2020 Aug 10;:
SSID ssj0036618
Score 2.5798662
Snippet Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113
SubjectTerms 631/154/51
631/250/255
631/326/596/4130
631/45/535
631/92/469
ACE2
Affinity
Angiotensin
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - antagonists & inhibitors
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - genetics
Angiotensin-Converting Enzyme 2 - immunology
Animals
Antibodies
Antibodies, Neutralizing - chemistry
Antibodies, Neutralizing - genetics
Antibodies, Neutralizing - immunology
Antibodies, Viral - chemistry
Antibodies, Viral - genetics
Antibodies, Viral - immunology
Binders
Binding sites
Binding Sites, Antibody - genetics
Binding Sites, Antibody - immunology
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chlorocebus aethiops
COVID-19
Cryoelectron Microscopy
Epitopes
HEK293 Cells
Humans
Models, Molecular
Neutralization
Neutralizing
Peptide Library
Peptidyl-dipeptidase A
Phages
Prophylaxis
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Receptors
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Single-Chain Antibodies - chemistry
Single-Chain Antibodies - genetics
Single-Chain Antibodies - immunology
Spike Glycoprotein, Coronavirus - antagonists & inhibitors
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Spike protein
Vero Cells
Title Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2
URI https://link.springer.com/article/10.1038/s41589-020-00679-1
https://www.ncbi.nlm.nih.gov/pubmed/33082574
https://www.proquest.com/docview/2473304964
https://www.proquest.com/docview/2452982686
https://pubmed.ncbi.nlm.nih.gov/PMC8356808
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw8ATbA7xMsPERGJOREC9grfFHYj-htGqpkKjQvtS3KI5dEcGSjrYP8Os5u0mmMrGXRIrPSuy7-L7vAN4NpLTI2CT1zI0K7QzVC8FowQdGWTw2hfH5zl9nyfRSfJnLeWtwW7Vhld2ZGA5q25TeRn7KROpVb52IT8sb6rtGee9q20LjIez70mU-pCud9woXR94TUuGkZFQIOWiTZgZcna6QcflgIebzqpNU03iXMd2RNu8GTf7jOQ0MafIEDlpJkmRb1D-FB64-hKOsRi36-jd5T0JsZzCaH8KjUdfX7QguhhUNBb-bZVWSorYkBBUixeErydWU2Oa6qOoVMcjnfpBsNGbEVCH5JUDXbhOsI38cOc_OzumouaLsGVxOxhejKW17K9ASZbQ1dTE3qZbSFcZn0yrDS5QUhGJFYdJFwlOrFk7EhZaOW2ZdohMrnBWxQxxyBHgOe3VTu5dApJNaLPBpWsYCFUoTC6tZ7LQSTtlERxB3G5uXbeFx3__iZx4c4FzlW2TkiIw8ICOPI_jQz1luy27cC33c4Stvf8FVfkswEbzth3GvvUekqF2z8TCSaVSwVBLBiy16-9dxX8hHpjg73UF8D-ALc--O1NX3UKAbpVrf0SSCjx2J3H7W_1fx6v5VvIbHzMfTBPPPMeytf23cGxSI1uYkUD1e1eTzCexnk-FwhvfhePbt7C8Wkweu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTKoVwQtDy2FDAScAGrWT927QNCITSk9HGgadXbsl47YlW6G0giVD6Kb2TszaYKFb31uh6vHzP2PDwPgJcdKS0yNkk9c6NCO0P1SDCa845RFq9NYXy888FhMjgWn0_l6Qr8aWNhvFtleyeGi9rWhbeRbzORetVbJ-L9-Af1VaP862pbQqMhiz138QtVtsm73Y-I31eM9XeGvQGdVxWgBUonU-piblItpcuNjyNVhhfII4VieW7SUcJTq0ZOxLmWjltmXaITK5wVscPZcwTA_96C24Jz7U-U6n9qb36OvC6E3knJqBCyMw_S6XC1PUFG6Z2TmI_jTlJN42VGeEW6veqk-c9LbWCA_Xtwdy65km5DavdhxVXrsNGtUGs_vyCvSfAlDUb6dVjrtXXkNmD4oaQhwXg9LguSV5YEJ0akcBySnAyIrc_zspoQg3z1jHR7O4yYMgTbBOjKzYI15rcjR90vR7RXn1D2AI5vZNcfwmpVV-4xEOmkFiP8mhaxQAXWxMJqFjuthFM20RHE7cZmxTzRua-38T0LD-5cZQ0yMkRGFpCRxRG8WfQZN2k-roXeavGVzY_8JLsk0AheLJpxr_0LTF65euZhJNOo0KkkgkcNehfDcZ84SKbYO11C_ALAJwJfbqnKbyEhOErRvoJKBG9bErmc1v9XsXn9Kp7D2mB4sJ_t7x7uPYE7zPvyBNPTFqxOf87cUxTGpuZZOAEEvt70kfsL121AtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKBFwQtDwCBYwEXMDajR9JfEBo2Xa1pVAh-tDe0jh2RARNFnZXqHwaX8fYSbZaKnrrNR4nsWfG8_A8AF70pTQo2CR1wo0KZTVVhWA0432dGDw2hXb5zp_2o_GR-DCRkzX40-XCuLDK7kz0B7Wpc-cj7zERO9NbRaJXtGERn7dH76Y_qOsg5W5au3YaDYns2bNfaL7N3u5uI65fMjbaORyOadthgOaoqcypDbmOlZQ20y6nNNE8R3kpEpZlOi4iHpuksCLMlLTcMGMjFRlhjQgtroQjAL73GlyPuQwdj8WTpbHHUe75NDwpGRVC9tuEnT5PejMUmi5Qibmc7ihWNFwVihc03YsBm__c2nphOLoDt1stlgwasrsLa7bagM1BhRb86Rl5RXxcqXfYb8DNYddTbhMO35fUFxuvp2VOssoQH9CI1I6fJMdjYurTrKxmRKOM_UYGwx1GdOkTbzx0ZRfeM_PbkoPBlwM6rI8puwdHV7Lr92G9qiv7EIi0UokCn8Z5KNCY1aEwioVWJcImJlIBhN3Gpnlb9Nz13vie-st3nqQNMlJERuqRkYYBvF7OmTYlPy6F3urwlbbsP0vPiTWA58th3Gt3G5NVtl44GMkUGndJFMCDBr3Lz3FXREjGODteQfwSwBUFXx2pyq--ODhq1K6bSgBvOhI5_63_r-LR5at4BjeQ2dKPu_t7j-EWc2E93gu1Bevznwv7BPWyuX7qGYDAyVVz3F_hr0Th
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-paratopic+and+multivalent+VH+domains+block+ACE2+binding+and+neutralize+SARS-CoV-2&rft.jtitle=Nature+chemical+biology&rft.au=Bracken%2C+Colton+J&rft.au=Lim%2C+Shion+A&rft.au=Solomon%2C+Paige&rft.au=Rettko%2C+Nicholas+J&rft.date=2021-01-01&rft.issn=1552-4469&rft.eissn=1552-4469&rft.volume=17&rft.issue=1&rft.spage=113&rft_id=info:doi/10.1038%2Fs41589-020-00679-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon