Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2
Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angioten...
Saved in:
Published in | Nature chemical biology Vol. 17; no. 1; pp. 113 - 121 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC
50
) of 4.0 nM (180 ng ml
−1
). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.
A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency. |
---|---|
AbstractList | Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC
50
) of 4.0 nM (180 ng ml
−1
). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.
A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency. Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml-1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy. Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with half-maximal inhibitory concentration (IC 50 ) of 4.0 nM (180 ng/mL). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy. Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC ) of 4.0 nM (180 ng ml ). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy. Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and assemble synthetic human variable heavy (VH) domains toward neutralizing epitopes. We constructed a VH-phage library and targeted the angiotensin-converting enzyme 2 (ACE2) binding interface of the SARS-CoV-2 Spike receptor-binding domain (Spike-RBD). Using a masked selection approach, we identified VH binders to two non-overlapping epitopes and further assembled these into multivalent and bi-paratopic formats. These VH constructs showed increased affinity to Spike (up to 600-fold) and neutralization potency (up to 1,400-fold) on pseudotyped SARS-CoV-2 virus when compared to standalone VH domains. The most potent binder, a trivalent VH, neutralized authentic SARS-CoV-2 with a half-maximal inhibitory concentration (IC50) of 4.0 nM (180 ng ml−1). A cryo-EM structure of the trivalent VH bound to Spike shows each VH domain engaging an RBD at the ACE2 binding site, confirming our original design strategy.A screening approach finds VH-domain antibodies that bind the SARS-CoV-2 Spike protein receptor-binding domain at its interface with host ACE2. Bi-paratopic and multivalent binders have high affinity and potency. |
Author | Zhou, Jie Leung, Kevin K. Lui, Irene Wells, James A. Lim, Shion A. Nguyen, Duy P. Schaefer, Kaitlin Byrnes, James R. Pance, Katarina Zhou, Xin X. Rettko, Nicholas J. Zha, Beth Shoshana Liu, Jia Solomon, Paige Bracken, Colton J. |
AuthorAffiliation | 6 Present address: Lyell Immunopharama Inc., Seattle, WA 98109, USA 1 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA 4 Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, 94158, USA 5 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA 3 Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA 7 Present address: Merck & Co., South San Francisco, CA 94080, USA 2 Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA 94158, USA |
AuthorAffiliation_xml | – name: 5 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA – name: 7 Present address: Merck & Co., South San Francisco, CA 94080, USA – name: 3 Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA – name: 4 Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, 94158, USA – name: 6 Present address: Lyell Immunopharama Inc., Seattle, WA 98109, USA – name: 1 Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA – name: 2 Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA 94158, USA |
Author_xml | – sequence: 1 givenname: Colton J. orcidid: 0000-0003-3499-7032 surname: Bracken fullname: Bracken, Colton J. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 2 givenname: Shion A. orcidid: 0000-0003-2136-2732 surname: Lim fullname: Lim, Shion A. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 3 givenname: Paige surname: Solomon fullname: Solomon, Paige organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 4 givenname: Nicholas J. orcidid: 0000-0002-4332-2697 surname: Rettko fullname: Rettko, Nicholas J. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 5 givenname: Duy P. surname: Nguyen fullname: Nguyen, Duy P. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco, Lyell Immunopharma Inc – sequence: 6 givenname: Beth Shoshana surname: Zha fullname: Zha, Beth Shoshana organization: Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco – sequence: 7 givenname: Kaitlin surname: Schaefer fullname: Schaefer, Kaitlin organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 8 givenname: James R. orcidid: 0000-0003-0297-1209 surname: Byrnes fullname: Byrnes, James R. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 9 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 10 givenname: Irene orcidid: 0000-0002-6171-5443 surname: Lui fullname: Lui, Irene organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 11 givenname: Jia surname: Liu fullname: Liu, Jia organization: Department of Pharmaceutical Chemistry, University of California, San Francisco, Merck & Co – sequence: 12 givenname: Katarina surname: Pance fullname: Pance, Katarina organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 14 givenname: Xin X. surname: Zhou fullname: Zhou, Xin X. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 15 givenname: Kevin K. orcidid: 0000-0002-2087-4974 surname: Leung fullname: Leung, Kevin K. organization: Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 16 givenname: James A. orcidid: 0000-0001-8267-5519 surname: Wells fullname: Wells, James A. email: jim.wells@ucsf.edu organization: Department of Pharmaceutical Chemistry, University of California, San Francisco, Department of Cellular & Molecular Pharmacology, University of California San Francisco, Chan Zuckerberg Biohub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33082574$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhi1EVT7aP8ChitQLF1N_x7lUWla0ICFVKpSr5cSzW9PE3toJEvx6vCzdthw4eSQ_78w78x6g3RADIHREyQklXH_KgkrdYMIIJkTVDaY7aJ9KybAQqtnd1pLsoYOcbwnhSlH9Fu1xTjSTtdhH16cer2yyY1z5rrLBVcPUj_7O9hDG6ua8cnGwPuSq7WP3q5rNz1jV-uB8WD7RAaYx2d4_QHU1-36F5_EGs3fozcL2Gd4_v4fox5ez6_k5vvz29WI-u8SdFGTEQHlbN1KCbSkVTLe8Y4wJzaxt64XitdMLENQ2ErhjDlSjnAAnKJBW8wIcos-bvqupHcB1xXLxYlbJDzbdm2i9-f8n-J9mGe-M5lJpokuD4-cGKf6eII9m8LmDvrcB4pQNE5I1mim9nvXxBXobpxTKeoWqy0FFo0ShPvzraGvlz8ELwDZAl2LOCRZbhBKzTtVsUjUlVfOUqqFFpF-IOj_a0cf1Vr5_Xco30lzmhCWkv7ZfUT0CIEu1CA |
CitedBy_id | crossref_primary_10_1016_j_chembiol_2024_07_018 crossref_primary_10_1016_j_ymthe_2021_11_008 crossref_primary_10_1007_s11033_021_06819_7 crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_1021_jacs_1c11554 crossref_primary_10_1021_jacs_1c08226 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1016_j_mcpro_2022_100247 crossref_primary_10_1080_19420862_2021_1958663 crossref_primary_10_1146_annurev_chembioeng_100522_102155 crossref_primary_10_1038_s41589_023_01368_5 crossref_primary_10_1038_s41467_021_24963_3 crossref_primary_10_3390_biology13100831 crossref_primary_10_1016_j_ijbiomac_2023_128191 crossref_primary_10_1002_pro_70090 crossref_primary_10_1371_journal_pone_0272364 crossref_primary_10_7554_eLife_73027 crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_1042_BCJ20200514 crossref_primary_10_3389_fcimb_2021_697876 crossref_primary_10_1016_j_jbc_2021_100557 crossref_primary_10_1080_19420862_2021_1893426 crossref_primary_10_1039_D1SC01203G crossref_primary_10_3390_ijms23042172 crossref_primary_10_1080_19420862_2022_2057832 crossref_primary_10_1080_19420862_2024_2311992 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1371_journal_ppat_1009704 crossref_primary_10_1002_pro_5017 crossref_primary_10_1021_jacs_4c06160 crossref_primary_10_1016_j_cell_2021_02_022 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1016_j_nantod_2021_101350 crossref_primary_10_1002_ange_202100316 crossref_primary_10_1021_acs_biochem_2c00291 crossref_primary_10_3390_ijms23062928 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1021_acscentsci_0c01708 crossref_primary_10_1016_j_antiviral_2023_105738 crossref_primary_10_1038_s41598_024_66290_9 crossref_primary_10_1038_s42003_025_07827_0 crossref_primary_10_1016_j_ijbiomac_2022_04_096 crossref_primary_10_1126_scitranslmed_abn1252 crossref_primary_10_3389_fimmu_2023_1111385 crossref_primary_10_1021_acsomega_1c03558 crossref_primary_10_1186_s12951_024_02329_3 crossref_primary_10_3389_fimmu_2021_732938 crossref_primary_10_3389_fimmu_2022_869825 crossref_primary_10_1002_biot_202100577 crossref_primary_10_1002_anie_202100316 crossref_primary_10_1038_s42003_022_03866_z crossref_primary_10_3390_vaccines12040417 crossref_primary_10_1186_s12985_021_01624_x crossref_primary_10_1371_journal_ppat_1009328 crossref_primary_10_3389_fimmu_2022_965446 crossref_primary_10_1016_j_chembiol_2024_03_010 crossref_primary_10_1016_j_str_2022_02_011 crossref_primary_10_1155_2021_7251119 crossref_primary_10_3390_v16010036 crossref_primary_10_1016_j_biotechadv_2022_107986 crossref_primary_10_1016_j_isci_2022_104798 crossref_primary_10_1007_s40259_024_00691_0 crossref_primary_10_1021_acschembio_2c00185 crossref_primary_10_1111_bph_15359 crossref_primary_10_1073_pnas_2310469121 crossref_primary_10_3390_bios13060640 |
Cites_doi | 10.7554/eLife.31098 10.1101/2020.05.21.109157 10.1038/s41594-020-0469-6 10.1016/j.jmb.2004.05.051 10.1128/mSphere.00802-20 10.1038/s41594-018-0028-6 10.1038/s41586-020-2456-9 10.1073/pnas.1202866109 10.1146/annurev-immunol-042617-053327 10.1038/s41586-020-2349-y 10.1073/pnas.0505379103 10.1101/2020.04.16.045419 10.1016/0003-2697(84)90805-4 10.1074/mcp.O115.052209 10.7554/eLife.34317 10.1080/19420862.2020.1778435 10.1038/nbt1127 10.1016/j.cell.2020.05.025 10.3390/v12050513 10.1016/S0022-2836(03)00896-9 10.1126/science.abb2762 10.1074/jbc.M114.614842 10.1016/j.cell.2015.01.016 10.1073/pnas.89.10.4285 10.1093/emboj/19.5.921 10.1128/AAC.00842-16 10.1080/22221751.2020.1768806 10.1038/s41577-020-0365-7 10.1002/jcc.20084 10.1038/s41586-020-2381-y 10.1007/s10555-005-6193-1 10.1002/pro.3235 10.3791/51492 10.1038/nmeth.4169 10.1016/j.jmb.2013.03.020 10.1016/j.tibtech.2003.08.007 10.1038/s41586-020-2180-5 10.1038/nbt.3907 10.2174/1381612822666160921143011 10.1080/19420862.2017.1305529 10.1007/978-1-62703-992-5_8 10.1016/j.coph.2008.07.006 10.1074/jbc.M007734200 10.1101/2019.12.15.877092 10.1016/j.jmb.2008.01.093 10.1038/nmeth.2727 10.1101/2020.07.14.203414 10.1038/363446a0 10.1101/2020.07.04.187989 10.1126/science.abb2507 10.1038/nmeth.4193 10.1016/j.cell.2020.02.058 10.1016/S0161-5890(00)00081-X 10.1128/JVI.00645-06 |
ContentType | Journal Article |
Contributor | Peters, Jessica K Li, Junrui Titus, Erron W Sun, Ming Thwin, Aye C Whitis, Natalie Tsui, Tsz Kin Martin Kim, Kate Flores, Sebastian Hoppe, Nick Melo, Arthur Paulino, Joana Chio, Un Seng Lo, Megan Biel, Justin Tse, Eric Diwanji, Devan Herrera, Nadia Campbell, Melody G Zhang, Yang Yu, Zanlin Asarnow, Daniel Thomas, Paul V Liu, Yanxin Schaefer, Kaitlin Owens, Tristan W Billesboelle, Christian Young, Iris D Pospiech, Jr, Thomas H Chen, Jen Kratochvil, Huong T Deshpande, Ishan Nguyen, Henry C Smith, Amber M Braxton, Julian R Rizo, Alexandrea N Trenker, Raphael Dickinson, Miles Sasha Zhao, Jianhua Faust, Bryan Trinidad, Donovan Azumaya, Caleigh M Diallo, Amy Jin, Mingliang Zhang, Kaihua Puchades, Cristina Moritz, Michelle Moss, Frank Lopez, Kyle E Zhou, Fengbo Nguyen, Phuong Nowotny, Carlos Li, Yen-Li Lam, Victor L Gupta, Meghna Sangwan, Smriti Safari, Mali Bulkley, David Bowen, Alisa Wang, Feng Merz, Gregory E Pourmal, Sergei Schulze-Gahmen, Ursula Liu, Xi Doan, Loan Brilot, Axel F Li, Fei Chio, Cynthia M Li, Yang |
Contributor_xml | – sequence: 1 givenname: Caleigh M surname: Azumaya fullname: Azumaya, Caleigh M – sequence: 2 givenname: Julian R surname: Braxton fullname: Braxton, Julian R – sequence: 3 givenname: Axel F surname: Brilot fullname: Brilot, Axel F – sequence: 4 givenname: Meghna surname: Gupta fullname: Gupta, Meghna – sequence: 5 givenname: Fei surname: Li fullname: Li, Fei – sequence: 6 givenname: Kyle E surname: Lopez fullname: Lopez, Kyle E – sequence: 7 givenname: Arthur surname: Melo fullname: Melo, Arthur – sequence: 8 givenname: Gregory E surname: Merz fullname: Merz, Gregory E – sequence: 9 givenname: Frank surname: Moss fullname: Moss, Frank – sequence: 10 givenname: Joana surname: Paulino fullname: Paulino, Joana – sequence: 11 givenname: Thomas H surname: Pospiech, Jr fullname: Pospiech, Jr, Thomas H – sequence: 12 givenname: Sergei surname: Pourmal fullname: Pourmal, Sergei – sequence: 13 givenname: Cristina surname: Puchades fullname: Puchades, Cristina – sequence: 14 givenname: Alexandrea N surname: Rizo fullname: Rizo, Alexandrea N – sequence: 15 givenname: Amber M surname: Smith fullname: Smith, Amber M – sequence: 16 givenname: Ming surname: Sun fullname: Sun, Ming – sequence: 17 givenname: Paul V surname: Thomas fullname: Thomas, Paul V – sequence: 18 givenname: Feng surname: Wang fullname: Wang, Feng – sequence: 19 givenname: Zanlin surname: Yu fullname: Yu, Zanlin – sequence: 20 givenname: Daniel surname: Asarnow fullname: Asarnow, Daniel – sequence: 21 givenname: Melody G surname: Campbell fullname: Campbell, Melody G – sequence: 22 givenname: Cynthia M surname: Chio fullname: Chio, Cynthia M – sequence: 23 givenname: Un Seng surname: Chio fullname: Chio, Un Seng – sequence: 24 givenname: Miles Sasha surname: Dickinson fullname: Dickinson, Miles Sasha – sequence: 25 givenname: Devan surname: Diwanji fullname: Diwanji, Devan – sequence: 26 givenname: Bryan surname: Faust fullname: Faust, Bryan – sequence: 27 givenname: Nick surname: Hoppe fullname: Hoppe, Nick – sequence: 28 givenname: Mingliang surname: Jin fullname: Jin, Mingliang – sequence: 29 givenname: Junrui surname: Li fullname: Li, Junrui – sequence: 30 givenname: Yanxin surname: Liu fullname: Liu, Yanxin – sequence: 31 givenname: Henry C surname: Nguyen fullname: Nguyen, Henry C – sequence: 32 givenname: Smriti surname: Sangwan fullname: Sangwan, Smriti – sequence: 33 givenname: Raphael surname: Trenker fullname: Trenker, Raphael – sequence: 34 givenname: Donovan surname: Trinidad fullname: Trinidad, Donovan – sequence: 35 givenname: Eric surname: Tse fullname: Tse, Eric – sequence: 36 givenname: Kaihua surname: Zhang fullname: Zhang, Kaihua – sequence: 37 givenname: Fengbo surname: Zhou fullname: Zhou, Fengbo – sequence: 38 givenname: Christian surname: Billesboelle fullname: Billesboelle, Christian – sequence: 39 givenname: Alisa surname: Bowen fullname: Bowen, Alisa – sequence: 40 givenname: Yen-Li surname: Li fullname: Li, Yen-Li – sequence: 41 givenname: Phuong surname: Nguyen fullname: Nguyen, Phuong – sequence: 42 givenname: Carlos surname: Nowotny fullname: Nowotny, Carlos – sequence: 43 givenname: Mali surname: Safari fullname: Safari, Mali – sequence: 44 givenname: Kaitlin surname: Schaefer fullname: Schaefer, Kaitlin – sequence: 45 givenname: Tsz Kin Martin surname: Tsui fullname: Tsui, Tsz Kin Martin – sequence: 46 givenname: Natalie surname: Whitis fullname: Whitis, Natalie – sequence: 47 givenname: Jianhua surname: Zhao fullname: Zhao, Jianhua – sequence: 48 givenname: Kate surname: Kim fullname: Kim, Kate – sequence: 49 givenname: Michelle surname: Moritz fullname: Moritz, Michelle – sequence: 50 givenname: Tristan W surname: Owens fullname: Owens, Tristan W – sequence: 51 givenname: Jessica K surname: Peters fullname: Peters, Jessica K – sequence: 52 givenname: Justin surname: Biel fullname: Biel, Justin – sequence: 53 givenname: Ishan surname: Deshpande fullname: Deshpande, Ishan – sequence: 54 givenname: Nadia surname: Herrera fullname: Herrera, Nadia – sequence: 55 givenname: Huong T surname: Kratochvil fullname: Kratochvil, Huong T – sequence: 56 givenname: Xi surname: Liu fullname: Liu, Xi – sequence: 57 givenname: Ursula surname: Schulze-Gahmen fullname: Schulze-Gahmen, Ursula – sequence: 58 givenname: Iris D surname: Young fullname: Young, Iris D – sequence: 59 givenname: Jen surname: Chen fullname: Chen, Jen – sequence: 60 givenname: Amy surname: Diallo fullname: Diallo, Amy – sequence: 61 givenname: Loan surname: Doan fullname: Doan, Loan – sequence: 62 givenname: Sebastian surname: Flores fullname: Flores, Sebastian – sequence: 63 givenname: Victor L surname: Lam fullname: Lam, Victor L – sequence: 64 givenname: Yang surname: Li fullname: Li, Yang – sequence: 65 givenname: Megan surname: Lo fullname: Lo, Megan – sequence: 66 givenname: Aye C surname: Thwin fullname: Thwin, Aye C – sequence: 67 givenname: Erron W surname: Titus fullname: Titus, Erron W – sequence: 68 givenname: Yang surname: Zhang fullname: Zhang, Yang – sequence: 69 givenname: David surname: Bulkley fullname: Bulkley, David |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
CorporateAuthor | Protein purification team Infrastructure team Leadership team Crystallography team QCRG Structural Biology Consortium CryoEM data processing team CryoEM grid freezing/collection team Mammalian cell expression team Bacterial expression team |
CorporateAuthor_xml | – name: Protein purification team – name: Bacterial expression team – name: Leadership team – name: CryoEM grid freezing/collection team – name: CryoEM data processing team – name: QCRG Structural Biology Consortium – name: Mammalian cell expression team – name: Infrastructure team – name: Crystallography team |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. LK8 M0S M1P M2P M7N M7P P64 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/s41589-020-00679-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1552-4469 |
EndPage | 121 |
ExternalDocumentID | PMC8356808 33082574 10_1038_s41589_020_00679_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Quantitative Biosciences Institute FastGrants COVID19 grant Laboratory For Genomics Research – fundername: Helen Hay Whitney Foundation (HHWF) funderid: https://doi.org/10.13039/100005237 – fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation) grantid: DRG-2204-14; DRG-2297-17 funderid: https://doi.org/10.13039/100001021 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: HL007185; F32 5F32CA239417; 5F32CA236151-02; R35 GM122451-01 funderid: https://doi.org/10.13039/100000054 – fundername: National Science Foundation (NSF) funderid: https://doi.org/10.13039/100000001 – fundername: Chan-Zuckerberg Biohub UCSF Program for Breakthrough Biomedical Research Fast Grants from Emergent Ventures at the Mercatus Center, George Mason University (#2154) The Harrington Discovery Institute (GA33116) – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: HR0011-19-2-0020 funderid: https://doi.org/10.13039/100000185 – fundername: NCI NIH HHS grantid: F32 CA236151 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: F32 5F32CA239417 – fundername: NIGMS NIH HHS grantid: T32 GM007618 – fundername: NCI NIH HHS grantid: F32 CA239417 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: 5F32CA236151-02 – fundername: NIAID NIH HHS grantid: U19 AI135990 – fundername: NHLBI NIH HHS grantid: T32 HL007185 – fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation) grantid: DRG-2297-17 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R35 GM122451-01 – fundername: NIGMS NIH HHS grantid: R35 GM122451 |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ KB. KC. LK5 LK8 M0L M1P M2P M7P M7R NACWA NNMJJ O9- ODYON P2P PCBAR PDBOC PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c540t-e13b7955eab11428b3c222482aab7f637d8fe41a95e3d2de696d4ed41e0b83f63 |
IEDL.DBID | 7X7 |
ISSN | 1552-4450 1552-4469 |
IngestDate | Thu Aug 21 18:09:03 EDT 2025 Mon Jul 21 11:46:05 EDT 2025 Sat Aug 23 12:50:58 EDT 2025 Wed Feb 19 02:27:02 EST 2025 Tue Jul 01 01:27:48 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Fri Feb 21 02:39:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-e13b7955eab11428b3c222482aab7f637d8fe41a95e3d2de696d4ed41e0b83f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 QCRG Structural Biology Consortium. C.J.B. and D.P.N. designed and constructed the VH-phage library. C.J.B., S.A.L., N.J.R., J.Z., I.L., J. L., K.P. cloned, expressed, and purified the VH binders and/or antigens. C.J.B., S.A.L., J.L. designed and/or conducted the in vitro characterization of the VH binders. J.R.B. designed and conducted the competition ELISA assay with convalescent patient sera. P.S., N.J.R., S.A.L. designed and conducted the pseudovirus neutralization assays. P.S., N.J.R., B.S.Z., S.A.L. designed and conducted the live virus neutralization assays. K.S. prepared samples for cryo-EM and the QCRG SBC performed cryo-EM data collection and analyses. S.A.L., X.X.Z., K.K.L., J.A.W. led the coordination of external collaborations and supervised the project. C.J.B., S.A.L., J.A.W. co-wrote the manuscript with input from all the authors. In addition to those listed explicitly in the author contributions, the structural biology portion of this work was performed by the QCRG (Quantitative Biosciences Institute Coronavirus Research Group) Structural Biology Consortium. Listed below are the contributing members of the consortium listed by teams in order of team relevance to the published work. Within each team the team leads are italicized (responsible for organization of each team, and for the experimental design utilized within each team), then the rest of team members are listed alphabetically. CryoEM grid freezing/collection team: Caleigh M. Azumaya, Cristina Puchades, Ming Sun, Julian R. Braxton, Axel F. Brilot, Meghna Gupta, Fei Li, Kyle E. Lopez, Arthur Melo, Gregory E. Merz, Frank Moss, Joana Paulino, Thomas H. Pospiech, Jr., Sergei Pourmal, Alexandrea N. Rizo, Amber M. Smith, Paul V. Thomas, Feng Wang, Zanlin Yu. CryoEM data processing team: Miles Sasha Dickinson, Henry C. Nguyen, Daniel Asarnow, Julian R. Braxton, Melody G. Campbell, Cynthia M. Chio, Un Seng Chio, Devan Diwanji, Bryan Faust, Meghna Gupta, Nick Hoppe, Mingliang Jin, Fei Li, Junrui Li, Yanxin Liu, Gregory E. Merz, Joana Paulino, Thomas H. Pospiech, Jr., Sergei Pourmal, Smriti Sangwan, Raphael Trenker, Donovan Trinidad, Eric Tse, Kaihua Zhang, Fengbo Zhou. Mammalian cell expression team: Christian Billesboelle, Melody G. Campbell, Devan Diwanji, Carlos Nowotny, Amber M. Smith, Jianhua Zhao, Caleigh M. Azumaya, Alisa Bowen, Nick Hoppe, Yen-Li Li, Phuong Nguyen, Cristina Puchades, Mali Safari, Smriti Sangwan, Kaitlin Schaefer, Raphael Trenker, Tsz Kin Martin Tsui, Natalie Whitis. Protein purification team: Daniel Asarnow, Michelle Moritz, Tristan W. Owens, Sergei Pourmal, Caleigh M. Azumaya, Cynthia M. Chio, Bryan Faust, Meghna Gupta, Kate Kim, Joana Paulino, Jessica K. Peters, Kaitlin Schaefer, Tsz Kin Martin Tsui. Crystallography team: Nadia Herrera, Huong T. Kratochvil, Ursula Schulze-Gahmen, Iris D. Young, Justin Biel, Ishan Deshpande, Xi Liu. Bacterial expression team: Amy Diallo, Meghna Gupta, Erron W. Titus, Jen Chen, Loan Doan, Sebastian Flores, Mingliang Jin, Huong T. Kratochvil, Victor L. Lam, Yang Li, Megan Lo, Gregory E. Merz, Joana Paulino, Aye C. Thwin, Zanlin Yu, Fengbo Zhou, Yang Zhang. Infrastructure team: David Bulkley, Arceli Joves, Almarie Joves, Liam McKay, Mariano Tabios, Eric Tse. Leadership team: Oren S Rosenberg, Kliment A Verba, David A Agard, Yifan Cheng, James S Fraser, Adam Frost, Natalia Jura, Tanja Kortemme, Nevan J Krogan, Aashish Manglik, Daniel R. Southworth, Robert M Stroud. The QCRG Structural Biology Consortium has received support from: Quantitative Biosciences Institute, Defense Advanced Research Projects Agency HR0011-19-2-0020 (to D.A.A. and K.A.V.; B. Shoichet PI), FastGrants COVID19 grant (K.A.Verba PI), Laboratory For Genomics Research (O.S. Rosenberg PI) and Laboratory For Genomics Research (R.M. Stroud PI) Author Contributions |
ORCID | 0000-0002-6171-5443 0000-0002-2087-4974 0000-0003-2136-2732 0000-0003-3499-7032 0000-0003-0297-1209 0000-0002-4332-2697 0000-0001-8267-5519 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8356808 |
PMID | 33082574 |
PQID | 2473304964 |
PQPubID | 29034 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356808 proquest_miscellaneous_2452982686 proquest_journals_2473304964 pubmed_primary_33082574 crossref_primary_10_1038_s41589_020_00679_1 crossref_citationtrail_10_1038_s41589_020_00679_1 springer_journals_10_1038_s41589_020_00679_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Nature chemical biology |
PublicationTitleAbbrev | Nat Chem Biol |
PublicationTitleAlternate | Nat Chem Biol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Arbabi-Ghahroudi, Tanha, MacKenzie (CR14) 2005; 24 CR38 Galimidi (CR46) 2015; 160 CR33 Kucukelbir, Sigworth, Tagare (CR54) 2014; 11 CR31 Yan (CR1) 2020; 367 Abraham (CR2) 2020; 20 Sun (CR20) 2020; 12 Binz (CR43) 2017; 9 Pinto (CR4) 2020; 583 Cao (CR6) 2020; 182 Rouet, Dudgeon, Christie, Langley, Christ (CR19) 2015; 290 Nilvebrant, Tessier, Sidhu (CR18) 2016; 22 Hornsby (CR29) 2015; 14 CR8 Dong (CR40) 2020; 9 Goddard (CR55) 2018; 27 CR49 Birtalan (CR28) 2008; 377 De Genst (CR13) 2006; 103 Zimmermann (CR15) 2018; 7 Crawford (CR36) 2020; 12 Shi (CR7) 2020; 584 Nguyen, Hamers, Wyns, Muyldermans (CR9) 2000; 19 Palomo (CR23) 2016; 60 Ingram, Schmidt, Ploegh (CR11) 2018; 36 Neuman (CR34) 2006; 80 Binz, Amstutz, Plückthun (CR41) 2005; 23 Binz, Stumpp, Forrer, Amstutz, Plückthun (CR42) 2003; 332 Walls (CR37) 2020; 180 Lan (CR39) 2020; 581 Chen, Sidhu (CR48) 2014; 1131 Byrnes (CR35) 2020; 5 McMahon (CR16) 2018; 25 Punjani, Rubinstein, Fleet, Brubaker (CR51) 2017; 14 Dudgeon (CR27) 2012; 109 Strauch (CR45) 2017; 35 CR52 Conrath, Lauwereys, Wyns, Muyldermans (CR44) 2001; 276 Lee (CR47) 2004; 340 Wrapp (CR32) 2020; 367 Martinko (CR30) 2018; 7 Saerens, Ghassabeh, Muyldermans (CR17) 2008; 8 Robbiani (CR3) 2020; 584 Rogers (CR5) 2020; 7520 Zheng (CR50) 2017; 14 Harmsen (CR25) 2000; 37 Pettersen (CR53) 2004; 25 Carter (CR24) 1992; 89 CR22 Hamer-Casterman, Atarchouch (CR12) 1998; 363 Holt, Herring, Jespers, Woolven, Tomlinson (CR10) 2003; 21 Ma, Barthelemy, Rouge, Wiesmann, Sidhu (CR26) 2013; 425 Huo (CR21) 2020; 27 HK Binz (679_CR43) 2017; 9 LJ Holt (679_CR10) 2003; 21 679_CR52 A Kucukelbir (679_CR54) 2014; 11 HK Binz (679_CR42) 2003; 332 R Shi (679_CR7) 2020; 584 EM Strauch (679_CR45) 2017; 35 G Chen (679_CR48) 2014; 1131 C Hamer-Casterman (679_CR12) 1998; 363 C McMahon (679_CR16) 2018; 25 KE Conrath (679_CR44) 2001; 276 AJ Martinko (679_CR30) 2018; 7 AC Walls (679_CR37) 2020; 180 679_CR22 KHD Crawford (679_CR36) 2020; 12 RP Galimidi (679_CR46) 2015; 160 SQ Zheng (679_CR50) 2017; 14 DF Robbiani (679_CR3) 2020; 584 X Ma (679_CR26) 2013; 425 BW Neuman (679_CR34) 2006; 80 R Yan (679_CR1) 2020; 367 D Pinto (679_CR4) 2020; 583 TF Rogers (679_CR5) 2020; 7520 HK Binz (679_CR41) 2005; 23 I Zimmermann (679_CR15) 2018; 7 679_CR8 D Wrapp (679_CR32) 2020; 367 A Punjani (679_CR51) 2017; 14 J Dong (679_CR40) 2020; 9 M Hornsby (679_CR29) 2015; 14 679_CR31 J Nilvebrant (679_CR18) 2016; 22 679_CR33 J Abraham (679_CR2) 2020; 20 C Palomo (679_CR23) 2016; 60 J Lan (679_CR39) 2020; 581 EF Pettersen (679_CR53) 2004; 25 TD Goddard (679_CR55) 2018; 27 VK Nguyen (679_CR9) 2000; 19 D Saerens (679_CR17) 2008; 8 Y Cao (679_CR6) 2020; 182 679_CR38 M Arbabi-Ghahroudi (679_CR14) 2005; 24 R Rouet (679_CR19) 2015; 290 S Birtalan (679_CR28) 2008; 377 E De Genst (679_CR13) 2006; 103 CV Lee (679_CR47) 2004; 340 K Dudgeon (679_CR27) 2012; 109 Z Sun (679_CR20) 2020; 12 MM Harmsen (679_CR25) 2000; 37 JR Byrnes (679_CR35) 2020; 5 679_CR49 J Huo (679_CR21) 2020; 27 P Carter (679_CR24) 1992; 89 JR Ingram (679_CR11) 2018; 36 32817948 - bioRxiv. 2020 Aug 10 |
References_xml | – volume: 180 start-page: 281 year: 2020 end-page: 292 ident: CR37 article-title: Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – ident: CR22 – volume: 5 start-page: e00802 year: 2020 end-page: e00820 ident: CR35 article-title: Competitive SARS-CoV-2 serology reveals most antibodies targeting the Spike receptor-binding domain compete for ACE2 binding publication-title: mSphere – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: CR4 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 1131 start-page: 113 year: 2014 end-page: 131 ident: CR48 article-title: Design and generation of synthetic antibody libraries for phage display publication-title: Methods Mol. Biol. – ident: CR49 – volume: 377 start-page: 1518 year: 2008 end-page: 1528 ident: CR28 article-title: The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies publication-title: J. Mol. Biol. – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR39 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 36 start-page: 695 year: 2018 end-page: 715 ident: CR11 article-title: Exploiting nanobodies’ singular traits publication-title: Annu. Rev. Immunol. – volume: 7 start-page: e31098 year: 2018 ident: CR30 article-title: Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins publication-title: eLife – volume: 27 start-page: 846 year: 2020 end-page: 854 ident: CR21 article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 publication-title: Nat. Struct. Mol. Biol. – volume: 25 start-page: 289 year: 2018 end-page: 296 ident: CR16 article-title: Yeast surface display platform for rapid discovery of conformationally selective nanobodies publication-title: Nat. Struct. Mol. Biol. – ident: CR8 – volume: 340 start-page: 1073 year: 2004 end-page: 1093 ident: CR47 article-title: High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold publication-title: J. Mol. Biol. – volume: 7 start-page: 1 year: 2018 end-page: 32 ident: CR15 article-title: Synthetic single domain antibodies for the conformational trapping of membrane proteins publication-title: eLife – volume: 12 start-page: 513 year: 2020 ident: CR36 article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays publication-title: Viruses – volume: 89 start-page: 4285 year: 1992 end-page: 4289 ident: CR24 article-title: Humanization of an anti-p185HER2 antibody for human cancer therapy publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: 600 year: 2008 end-page: 608 ident: CR17 article-title: Single-domain antibodies as building blocks for novel therapeutics publication-title: Curr. Opin. Pharmacol. – volume: 182 start-page: 73 year: 2020 end-page: 84 ident: CR6 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell – volume: 14 start-page: 2833 year: 2015 end-page: 2847 ident: CR29 article-title: A high throughput platform for recombinant antibodies to folded proteins publication-title: Mol. Cell. Proteomics – volume: 276 start-page: 7346 year: 2001 end-page: 7350 ident: CR44 article-title: Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs publication-title: J. Biol. Chem. – volume: 20 start-page: 401 year: 2020 end-page: 403 ident: CR2 article-title: Passive antibody therapy in COVID-19 publication-title: Nat. Rev. Immunol. – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: CR3 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 332 start-page: 489 year: 2003 end-page: 503 ident: CR42 article-title: Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins publication-title: J. Mol. Biol. – volume: 584 start-page: 120 year: 2020 end-page: 124 ident: CR7 article-title: A human neutralizing antibody targets the receptor binding site of SARS-CoV-2 publication-title: Nature – volume: 19 start-page: 921 year: 2000 end-page: 930 ident: CR9 article-title: Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire publication-title: EMBO J. – volume: 35 start-page: 667 year: 2017 end-page: 671 ident: CR45 article-title: Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site publication-title: Nat. Biotechnol. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: CR55 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 22 start-page: 6527 year: 2016 end-page: 6537 ident: CR18 article-title: Engineered autonomous human variable domains publication-title: Curr. Pharm. Des. – volume: 109 start-page: 10879 year: 2012 end-page: 10884 ident: CR27 article-title: General strategy for the generation of human antibody variable domains with increased aggregation resistance publication-title: Proc. Natl Acad. Sci. USA – ident: CR33 – volume: 7520 start-page: eabc7520 year: 2020 ident: CR5 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 11 start-page: 63 year: 2014 end-page: 65 ident: CR54 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat. Methods – volume: 290 start-page: 11905 year: 2015 end-page: 11917 ident: CR19 article-title: Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies publication-title: J. Biol. Chem. – volume: 160 start-page: 433 year: 2015 end-page: 446 ident: CR46 article-title: Intra-Spike crosslinking overcomes antibody evasion by HIV-1 publication-title: Cell – volume: 80 start-page: 7918 year: 2006 end-page: 7928 ident: CR34 article-title: Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy publication-title: J. Virol. – volume: 12 start-page: 1778435 year: 2020 ident: CR20 article-title: Potent neutralization of SARS-CoV-2 by human antibody heavy-chain variable domains isolated from a large library with a new stable scaffold publication-title: MAbs – volume: 363 start-page: 446 year: 1998 end-page: 448 ident: CR12 article-title: Naturally occurring antibodies devoid of light chains publication-title: Nature – volume: 425 start-page: 2247 year: 2013 end-page: 2259 ident: CR26 article-title: Design of synthetic autonomous VH domain libraries and structural analysis of a VH domain bound to vascular endothelial growth factor publication-title: J. Mol. Biol. – ident: CR38 – volume: 23 start-page: 1257 year: 2005 end-page: 1268 ident: CR41 article-title: Engineering novel binding proteins from nonimmunoglobulin domains publication-title: Nat. Biotechnol. – ident: CR52 – ident: CR31 – volume: 21 start-page: 484 year: 2003 end-page: 490 ident: CR10 article-title: Domain antibodies: proteins for therapy publication-title: Trends Biotechnol. – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR50 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 37 start-page: 579 year: 2000 end-page: 590 ident: CR25 article-title: Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features publication-title: Mol. Immunol. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR32 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 9 start-page: 1034 year: 2020 end-page: 1036 ident: CR40 article-title: Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity publication-title: Emerg. Microbes Infect. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR53 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: CR1 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 24 start-page: 501 year: 2005 end-page: 519 ident: CR14 article-title: Prokaryotic expression of antibodies publication-title: Cancer Metastasis Rev. – volume: 103 start-page: 4586 year: 2006 end-page: 4591 ident: CR13 article-title: Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies publication-title: Proc. Natl Acad. Sci. USA – volume: 60 start-page: 6498 year: 2016 end-page: 6509 ident: CR23 article-title: Trivalency of a nanobody specific for the human respiratory syncytial virus fusion glycoprotein drastically enhances virus neutralization and impacts escape mutant selection publication-title: Antimicrob. Agents Chemother. – volume: 9 start-page: 1262 year: 2017 end-page: 1269 ident: CR43 article-title: Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin drug candidate publication-title: MAbs – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: CR51 article-title: CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 7 start-page: e31098 year: 2018 ident: 679_CR30 publication-title: eLife doi: 10.7554/eLife.31098 – ident: 679_CR33 doi: 10.1101/2020.05.21.109157 – volume: 7520 start-page: eabc7520 year: 2020 ident: 679_CR5 publication-title: Science – volume: 27 start-page: 846 year: 2020 ident: 679_CR21 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0469-6 – volume: 340 start-page: 1073 year: 2004 ident: 679_CR47 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.05.051 – volume: 5 start-page: e00802 year: 2020 ident: 679_CR35 publication-title: mSphere doi: 10.1128/mSphere.00802-20 – volume: 25 start-page: 289 year: 2018 ident: 679_CR16 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0028-6 – volume: 584 start-page: 437 year: 2020 ident: 679_CR3 publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 109 start-page: 10879 year: 2012 ident: 679_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1202866109 – volume: 36 start-page: 695 year: 2018 ident: 679_CR11 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053327 – volume: 583 start-page: 290 year: 2020 ident: 679_CR4 publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 103 start-page: 4586 year: 2006 ident: 679_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0505379103 – ident: 679_CR22 doi: 10.1101/2020.04.16.045419 – ident: 679_CR31 doi: 10.1016/0003-2697(84)90805-4 – volume: 14 start-page: 2833 year: 2015 ident: 679_CR29 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O115.052209 – volume: 7 start-page: 1 year: 2018 ident: 679_CR15 publication-title: eLife doi: 10.7554/eLife.34317 – volume: 12 start-page: 1778435 year: 2020 ident: 679_CR20 publication-title: MAbs doi: 10.1080/19420862.2020.1778435 – volume: 23 start-page: 1257 year: 2005 ident: 679_CR41 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1127 – volume: 182 start-page: 73 year: 2020 ident: 679_CR6 publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 12 start-page: 513 year: 2020 ident: 679_CR36 publication-title: Viruses doi: 10.3390/v12050513 – volume: 332 start-page: 489 year: 2003 ident: 679_CR42 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00896-9 – volume: 367 start-page: 1444 year: 2020 ident: 679_CR1 publication-title: Science doi: 10.1126/science.abb2762 – volume: 290 start-page: 11905 year: 2015 ident: 679_CR19 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.614842 – volume: 160 start-page: 433 year: 2015 ident: 679_CR46 publication-title: Cell doi: 10.1016/j.cell.2015.01.016 – volume: 89 start-page: 4285 year: 1992 ident: 679_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.89.10.4285 – volume: 19 start-page: 921 year: 2000 ident: 679_CR9 publication-title: EMBO J. doi: 10.1093/emboj/19.5.921 – volume: 60 start-page: 6498 year: 2016 ident: 679_CR23 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00842-16 – volume: 9 start-page: 1034 year: 2020 ident: 679_CR40 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1768806 – volume: 20 start-page: 401 year: 2020 ident: 679_CR2 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0365-7 – volume: 25 start-page: 1605 year: 2004 ident: 679_CR53 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 584 start-page: 120 year: 2020 ident: 679_CR7 publication-title: Nature doi: 10.1038/s41586-020-2381-y – volume: 24 start-page: 501 year: 2005 ident: 679_CR14 publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-005-6193-1 – volume: 27 start-page: 14 year: 2018 ident: 679_CR55 publication-title: Protein Sci. doi: 10.1002/pro.3235 – ident: 679_CR8 doi: 10.3791/51492 – volume: 14 start-page: 290 year: 2017 ident: 679_CR51 publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 425 start-page: 2247 year: 2013 ident: 679_CR26 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2013.03.020 – volume: 21 start-page: 484 year: 2003 ident: 679_CR10 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2003.08.007 – volume: 581 start-page: 215 year: 2020 ident: 679_CR39 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 35 start-page: 667 year: 2017 ident: 679_CR45 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3907 – volume: 22 start-page: 6527 year: 2016 ident: 679_CR18 publication-title: Curr. Pharm. Des. doi: 10.2174/1381612822666160921143011 – volume: 9 start-page: 1262 year: 2017 ident: 679_CR43 publication-title: MAbs doi: 10.1080/19420862.2017.1305529 – volume: 1131 start-page: 113 year: 2014 ident: 679_CR48 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-992-5_8 – volume: 8 start-page: 600 year: 2008 ident: 679_CR17 publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2008.07.006 – volume: 276 start-page: 7346 year: 2001 ident: 679_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007734200 – ident: 679_CR52 doi: 10.1101/2019.12.15.877092 – volume: 377 start-page: 1518 year: 2008 ident: 679_CR28 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.01.093 – volume: 11 start-page: 63 year: 2014 ident: 679_CR54 publication-title: Nat. Methods doi: 10.1038/nmeth.2727 – ident: 679_CR49 doi: 10.1101/2020.07.14.203414 – volume: 363 start-page: 446 year: 1998 ident: 679_CR12 publication-title: Nature doi: 10.1038/363446a0 – ident: 679_CR38 doi: 10.1101/2020.07.04.187989 – volume: 367 start-page: 1260 year: 2020 ident: 679_CR32 publication-title: Science doi: 10.1126/science.abb2507 – volume: 14 start-page: 331 year: 2017 ident: 679_CR50 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 180 start-page: 281 year: 2020 ident: 679_CR37 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 37 start-page: 579 year: 2000 ident: 679_CR25 publication-title: Mol. Immunol. doi: 10.1016/S0161-5890(00)00081-X – volume: 80 start-page: 7918 year: 2006 ident: 679_CR34 publication-title: J. Virol. doi: 10.1128/JVI.00645-06 – reference: 32817948 - bioRxiv. 2020 Aug 10;: |
SSID | ssj0036618 |
Score | 2.5798662 |
Snippet | Neutralizing agents against SARS-CoV-2 are urgently needed for the treatment and prophylaxis of COVID-19. Here, we present a strategy to rapidly identify and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | 631/154/51 631/250/255 631/326/596/4130 631/45/535 631/92/469 ACE2 Affinity Angiotensin Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - antagonists & inhibitors Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - immunology Animals Antibodies Antibodies, Neutralizing - chemistry Antibodies, Neutralizing - genetics Antibodies, Neutralizing - immunology Antibodies, Viral - chemistry Antibodies, Viral - genetics Antibodies, Viral - immunology Binders Binding sites Binding Sites, Antibody - genetics Binding Sites, Antibody - immunology Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science Chlorocebus aethiops COVID-19 Cryoelectron Microscopy Epitopes HEK293 Cells Humans Models, Molecular Neutralization Neutralizing Peptide Library Peptidyl-dipeptidase A Phages Prophylaxis Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Receptors SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Single-Chain Antibodies - chemistry Single-Chain Antibodies - genetics Single-Chain Antibodies - immunology Spike Glycoprotein, Coronavirus - antagonists & inhibitors Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike protein Vero Cells |
Title | Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2 |
URI | https://link.springer.com/article/10.1038/s41589-020-00679-1 https://www.ncbi.nlm.nih.gov/pubmed/33082574 https://www.proquest.com/docview/2473304964 https://www.proquest.com/docview/2452982686 https://pubmed.ncbi.nlm.nih.gov/PMC8356808 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw8ATbA7xMsPERGJOREC9grfFHYj-htGqpkKjQvtS3KI5dEcGSjrYP8Os5u0mmMrGXRIrPSuy7-L7vAN4NpLTI2CT1zI0K7QzVC8FowQdGWTw2hfH5zl9nyfRSfJnLeWtwW7Vhld2ZGA5q25TeRn7KROpVb52IT8sb6rtGee9q20LjIez70mU-pCud9woXR94TUuGkZFQIOWiTZgZcna6QcflgIebzqpNU03iXMd2RNu8GTf7jOQ0MafIEDlpJkmRb1D-FB64-hKOsRi36-jd5T0JsZzCaH8KjUdfX7QguhhUNBb-bZVWSorYkBBUixeErydWU2Oa6qOoVMcjnfpBsNGbEVCH5JUDXbhOsI38cOc_OzumouaLsGVxOxhejKW17K9ASZbQ1dTE3qZbSFcZn0yrDS5QUhGJFYdJFwlOrFk7EhZaOW2ZdohMrnBWxQxxyBHgOe3VTu5dApJNaLPBpWsYCFUoTC6tZ7LQSTtlERxB3G5uXbeFx3__iZx4c4FzlW2TkiIw8ICOPI_jQz1luy27cC33c4Stvf8FVfkswEbzth3GvvUekqF2z8TCSaVSwVBLBiy16-9dxX8hHpjg73UF8D-ALc--O1NX3UKAbpVrf0SSCjx2J3H7W_1fx6v5VvIbHzMfTBPPPMeytf23cGxSI1uYkUD1e1eTzCexnk-FwhvfhePbt7C8Wkweu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTKoVwQtDy2FDAScAGrWT927QNCITSk9HGgadXbsl47YlW6G0giVD6Kb2TszaYKFb31uh6vHzP2PDwPgJcdKS0yNkk9c6NCO0P1SDCa845RFq9NYXy888FhMjgWn0_l6Qr8aWNhvFtleyeGi9rWhbeRbzORetVbJ-L9-Af1VaP862pbQqMhiz138QtVtsm73Y-I31eM9XeGvQGdVxWgBUonU-piblItpcuNjyNVhhfII4VieW7SUcJTq0ZOxLmWjltmXaITK5wVscPZcwTA_96C24Jz7U-U6n9qb36OvC6E3knJqBCyMw_S6XC1PUFG6Z2TmI_jTlJN42VGeEW6veqk-c9LbWCA_Xtwdy65km5DavdhxVXrsNGtUGs_vyCvSfAlDUb6dVjrtXXkNmD4oaQhwXg9LguSV5YEJ0akcBySnAyIrc_zspoQg3z1jHR7O4yYMgTbBOjKzYI15rcjR90vR7RXn1D2AI5vZNcfwmpVV-4xEOmkFiP8mhaxQAXWxMJqFjuthFM20RHE7cZmxTzRua-38T0LD-5cZQ0yMkRGFpCRxRG8WfQZN2k-roXeavGVzY_8JLsk0AheLJpxr_0LTF65euZhJNOo0KkkgkcNehfDcZ84SKbYO11C_ALAJwJfbqnKbyEhOErRvoJKBG9bErmc1v9XsXn9Kp7D2mB4sJ_t7x7uPYE7zPvyBNPTFqxOf87cUxTGpuZZOAEEvt70kfsL121AtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKBFwQtDwCBYwEXMDajR9JfEBo2Xa1pVAh-tDe0jh2RARNFnZXqHwaX8fYSbZaKnrrNR4nsWfG8_A8AF70pTQo2CR1wo0KZTVVhWA0432dGDw2hXb5zp_2o_GR-DCRkzX40-XCuLDK7kz0B7Wpc-cj7zERO9NbRaJXtGERn7dH76Y_qOsg5W5au3YaDYns2bNfaL7N3u5uI65fMjbaORyOadthgOaoqcypDbmOlZQ20y6nNNE8R3kpEpZlOi4iHpuksCLMlLTcMGMjFRlhjQgtroQjAL73GlyPuQwdj8WTpbHHUe75NDwpGRVC9tuEnT5PejMUmi5Qibmc7ihWNFwVihc03YsBm__c2nphOLoDt1stlgwasrsLa7bagM1BhRb86Rl5RXxcqXfYb8DNYddTbhMO35fUFxuvp2VOssoQH9CI1I6fJMdjYurTrKxmRKOM_UYGwx1GdOkTbzx0ZRfeM_PbkoPBlwM6rI8puwdHV7Lr92G9qiv7EIi0UokCn8Z5KNCY1aEwioVWJcImJlIBhN3Gpnlb9Nz13vie-st3nqQNMlJERuqRkYYBvF7OmTYlPy6F3urwlbbsP0vPiTWA58th3Gt3G5NVtl44GMkUGndJFMCDBr3Lz3FXREjGODteQfwSwBUFXx2pyq--ODhq1K6bSgBvOhI5_63_r-LR5at4BjeQ2dKPu_t7j-EWc2E93gu1Bevznwv7BPWyuX7qGYDAyVVz3F_hr0Th |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-paratopic+and+multivalent+VH+domains+block+ACE2+binding+and+neutralize+SARS-CoV-2&rft.jtitle=Nature+chemical+biology&rft.au=Bracken%2C+Colton+J&rft.au=Lim%2C+Shion+A&rft.au=Solomon%2C+Paige&rft.au=Rettko%2C+Nicholas+J&rft.date=2021-01-01&rft.issn=1552-4469&rft.eissn=1552-4469&rft.volume=17&rft.issue=1&rft.spage=113&rft_id=info:doi/10.1038%2Fs41589-020-00679-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon |